diff --git a/.gitattributes b/.gitattributes
index 219f347ea2a8d379a90625ddade0af42c51edd93..9e266ca90e2e96aea455dafbd9dab29d17af5be8 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -3034,3 +3034,56 @@ G9E4T4oBgHgl3EQfgQ3v/content/2301.05116v1.pdf filter=lfs diff=lfs merge=lfs -tex
LNFAT4oBgHgl3EQfwR78/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
qdE2T4oBgHgl3EQf0gjz/content/2301.04143v1.pdf filter=lfs diff=lfs merge=lfs -text
pdE1T4oBgHgl3EQfiQRF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+UdFJT4oBgHgl3EQfNSxs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+WtFJT4oBgHgl3EQfPSye/content/2301.11486v1.pdf filter=lfs diff=lfs merge=lfs -text
+rtE1T4oBgHgl3EQf3AU7/content/2301.03484v1.pdf filter=lfs diff=lfs merge=lfs -text
+DtA0T4oBgHgl3EQfAv-e/content/2301.01967v1.pdf filter=lfs diff=lfs merge=lfs -text
+E9A0T4oBgHgl3EQfBP8f/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+rdE1T4oBgHgl3EQf2wXf/content/2301.03483v1.pdf filter=lfs diff=lfs merge=lfs -text
+hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf filter=lfs diff=lfs merge=lfs -text
+ZdFLT4oBgHgl3EQfWC9a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+StE3T4oBgHgl3EQfDwk0/content/2301.04289v1.pdf filter=lfs diff=lfs merge=lfs -text
+tNE1T4oBgHgl3EQf3gVt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+w9E3T4oBgHgl3EQfOwkK/content/2301.04395v1.pdf filter=lfs diff=lfs merge=lfs -text
+StE3T4oBgHgl3EQfDwk0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+0dFIT4oBgHgl3EQf3CsM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+LNFQT4oBgHgl3EQfUDZM/content/2301.13295v1.pdf filter=lfs diff=lfs merge=lfs -text
+DtA0T4oBgHgl3EQfAv-e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+WtFJT4oBgHgl3EQfPSye/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+xtAzT4oBgHgl3EQf7v7M/content/2301.01895v1.pdf filter=lfs diff=lfs merge=lfs -text
+8NFQT4oBgHgl3EQfHzW5/content/2301.13250v1.pdf filter=lfs diff=lfs merge=lfs -text
+2dE1T4oBgHgl3EQf5gVO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+JdAyT4oBgHgl3EQf5_qu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+UNE0T4oBgHgl3EQflQHp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf filter=lfs diff=lfs merge=lfs -text
+ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf filter=lfs diff=lfs merge=lfs -text
+VNE4T4oBgHgl3EQfnQ0i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+3NE1T4oBgHgl3EQfSQNJ/content/2301.03063v1.pdf filter=lfs diff=lfs merge=lfs -text
+6dAzT4oBgHgl3EQff_zo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+79AzT4oBgHgl3EQfgfxi/content/2301.01469v1.pdf filter=lfs diff=lfs merge=lfs -text
+w9E3T4oBgHgl3EQfOwkK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+mdE1T4oBgHgl3EQfOAP6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+ldE3T4oBgHgl3EQf6Atx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+fNE3T4oBgHgl3EQfHglt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+JdFLT4oBgHgl3EQfKC80/content/2301.12006v1.pdf filter=lfs diff=lfs merge=lfs -text
+bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf filter=lfs diff=lfs merge=lfs -text
+UNE0T4oBgHgl3EQflQHp/content/2301.02485v1.pdf filter=lfs diff=lfs merge=lfs -text
+atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf filter=lfs diff=lfs merge=lfs -text
+6dAzT4oBgHgl3EQff_zo/content/2301.01463v1.pdf filter=lfs diff=lfs merge=lfs -text
+mtE1T4oBgHgl3EQfhQRC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+N9E1T4oBgHgl3EQfZwR9/content/2301.03154v1.pdf filter=lfs diff=lfs merge=lfs -text
+79AzT4oBgHgl3EQfgfxi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+6NE1T4oBgHgl3EQf6wWy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+JdFLT4oBgHgl3EQfKC80/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+LNFQT4oBgHgl3EQfUDZM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf filter=lfs diff=lfs merge=lfs -text
+N9E1T4oBgHgl3EQfZwR9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+J9AyT4oBgHgl3EQfTffD/content/2301.00108v1.pdf filter=lfs diff=lfs merge=lfs -text
+mtAyT4oBgHgl3EQflPh9/content/2301.00449v1.pdf filter=lfs diff=lfs merge=lfs -text
+0dFIT4oBgHgl3EQf3CsM/content/2301.11379v1.pdf filter=lfs diff=lfs merge=lfs -text
+gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf filter=lfs diff=lfs merge=lfs -text
+QNAzT4oBgHgl3EQflf3i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+TtAyT4oBgHgl3EQfVvcM/content/2301.00147v1.pdf filter=lfs diff=lfs merge=lfs -text
+VdE2T4oBgHgl3EQftwjJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
+y9E2T4oBgHgl3EQf4Ain/content/2301.04177v1.pdf filter=lfs diff=lfs merge=lfs -text
+ltFRT4oBgHgl3EQfZTcN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
diff --git a/0NFKT4oBgHgl3EQfNi2Q/content/tmp_files/2301.11755v1.pdf.txt b/0NFKT4oBgHgl3EQfNi2Q/content/tmp_files/2301.11755v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a9196091ededd561eb0b6c0b07d2088aa8742ab4
--- /dev/null
+++ b/0NFKT4oBgHgl3EQfNi2Q/content/tmp_files/2301.11755v1.pdf.txt
@@ -0,0 +1,2123 @@
+Time-frequency metrology with two single-photon states: phase space picture and the
+Hong-Ou-Mandel interferometer
+´Eloi Descamps1,2, Arne Keller2,3, P´erola Milman2
+1D´epartement de Physique de l’´Ecole Normale Sup´erieure - PSL, 45 rue d’Ulm, 75005 Paris, France
+2Universit´ee Paris Cit´e, CNRS, Laboratoire Mat´eriaux et Ph´enom`enes Quantiques, 75013 Paris, France and
+3D´epartement de Physique, Universit´e Paris-Saclay, 91405 Orsay Cedex, France
+(Dated: January 30, 2023)
+We use time-frequency continuous variables as the standard framework to describe states of light
+in the subspace of individual photons occupying distinguishable auxiliary modes. We adapt to this
+setting the interplay between metrological properties and the phase space picture already extensively
+studied for quadrature variables. We also discuss in details the Hong-Ou-Mandel interferometer,
+which was previously shown to saturate precision limits, and provide a general formula for the co-
+incidence probability of a generalized version of this experiment. From the obtained expression, we
+systematically analyze the optimality of this measurement setting for arbitrary unitary transforma-
+tions applied to each one of the input photons. As concrete examples, we discuss transformations
+which can be represented as translations and rotations in time-frequency phase space for some
+specific states.
+PACS numbers:
+I.
+INTRODUCTION
+Much has been discovered since the first proposals to
+use quantum systems in metrology.
+From the role of
+entanglement [1–4] to the one of modes, for pure and
+noisy systems and measurements, several main results
+have been established, and the most important one is
+the fact that quantum mechanical protocols can provide
+a better scaling in precision with the number of probes
+than classical ones. Nevertheless, much still remains to
+be done, in particular concerning the application and the
+adaptation of such results to specific physical configura-
+tions. Of practical importance, for instance, is the issue
+of finding measurement strategies that lead to the opti-
+mal calculated limits, and this is far from being obvious
+for general states.
+Another relevant problem concerns
+adapting the general principles to physical constraints,
+as energy or temperature limits and thresholds [5, 6].
+Those are the main issues of this paper: in one hand, we
+deeply study the conditions for optimality of a specific
+measurement set-up and on the other hand, we consider a
+specific physical system, consisting of individual photons,
+for measuring time and frequency related parameters.
+In order to measure a given parameter κ one performs
+an experiment producing different outcomes x with asso-
+ciated probabilities Pκ(x) and build an unbiased estima-
+tor K such that κ = ⟨K⟩κ is recovered. Here the index κ
+means that we take the average for the probability distri-
+bution Pκ. The Cram´er-Rao bound (CRB) [7] imposes a
+limit on the precision of parameter estimation:
+δκ ≥
+1
+√
+NF
+,
+(1)
+where, δκ is the standard deviation in the estimation of
+κ: δκ =
+�
+Varκ(K), N is the number of independent
+measurements which were performed to estimate κ and
+F is the quantity known as the Fisher information (FI),
+defined by : F =
+�
+dx
+1
+Pκ(x)
+�
+∂Pκ(x)
+∂κ
+�2
+.
+In a quantum setting, one can use as a probe a quan-
+tum state |ψ⟩ which can evolve under the action of
+an operator ˆU(κ) = e−iκ ˆ
+H generated by an Hamilto-
+nian ˆH.
+By optimizing the precision over all possible
+quantum measurements of a parameter κ, one obtains a
+bound, called the quantum Cram´er-Rao bound (QCRB)
+[8] which reads:
+δκ ≥
+1
+√NQ,
+(2)
+where Q is a quantity known as the quantum Fisher
+information (QFI) which for pure states and uni-
+tary
+evolutions
+(as
+the
+ones
+considered
+in
+the
+present
+paper),
+is
+equal
+to
+Q
+=
+4(∆ ˆH)2,
+with
+(∆ ˆH)2 = ⟨ψ(κ)| ˆH2 |ψ(κ)⟩ − ⟨ψ(κ)| ˆH |ψ(κ)⟩2.
+The FI indicates the precision of a given measurement,
+whereas the QFI is the maximum precision obtainable
+with any measurement. For a given setting, we can thus
+compute both quantities (FI and QFI) to have an idea if
+the measurement is optimal (QFI=FI) or not (QFI>FI).
+Determining the QFI is a mathematical task much
+easier than finding a physical experimental set-up that
+reaches it. In quantum optical systems, several propos-
+als and implementations exist where the QFI is indeed
+achieved [4, 9–11], and one example where this is possi-
+ble is the Hong-Ou-Mandel (HOM) experiment [12–15].
+In this experiment, one focus on simple physical systems
+composed of two photons occupying distinguishable spa-
+tial modes with a given spectral distributions. This state
+is a particular example of a state defined in the single
+photon subspace (where each mode is populated by at
+most one photon), in which a general pure state that can
+arXiv:2301.11755v1 [quant-ph] 27 Jan 2023
+
+2
+be expanded as:
+|ψ⟩ =
+�
+dω1 · · · dωnF(ω1, · · · , ωn) |ω1, · · · , ωn⟩ .
+(3)
+In this formula, the indexes 1,2, ..n, label different aux-
+iliary degrees of freedom (as for instance polarization or
+the propagation direction). The state |ω1, · · · , ωn⟩ is a
+pure state where each photon propagating in the mode
+α is exactly at the frequency ωα. The spectral function
+F also known as the joint spectral amplitude (JSA) is
+normalized to one:
+�
+|F(ω1, ..., ωn)|2dω1...dωn = 1.
+In this setting one can introduce time and frequency
+operators for each mode α: ˆωα and ˆtα. They correspond
+respectively to the generators of time and frequency
+shifts of the photon in the mode labeled by α.
+An
+important property of these operators is that, in the
+considered single photon subspace they satisfy the
+commutation relation [ˆωα, ˆtβ] = iδα,β analogous to the
+one observed for the quadrature operators ˆXα and ˆPα.
+Notice that we are using throughout this paper dimen-
+sionless operators, which are relative to particular time
+and frequency scales of the associated implementation.
+For a more complete description of the time frequency
+continuous variables one can refer to Appendix A and
+to [16].
+Previous works on quantum metrology using the
+electromagnetic field quadratures or particles’ posi-
+tion and momentum have shown how the phase space
+(x1, · · · , xn, p1, · · · , pn) can provide not only insight but
+also an elegant geometrical picture of the measurement
+precision [16–18]. Indeed the QFI can also be defined in
+terms of the Bures distance [19] s(|ψ(κ)⟩ , |ψ(κ + dκ)⟩):
+Q = 4( s(|ψ(κ)⟩,|ψ(κ+dκ)⟩)
+dκ
+)2. In the case of pure states,
+this distance is simply expressed in terms of the overlap
+s(|ψ⟩ , |φ⟩) =
+�
+2(1 − |⟨φ|ψ⟩|). Since the overlap of two
+states can be computed as the overlap of their respective
+Wigner function, one can interpret the QFI as a measure
+of how much the Wigner function must be shifted so as it
+becomes orthogonal to the initial one. A consequence of
+this is that the maximum precision of a measurement can
+be seen geometrically on the Wigner function, by looking
+at their typical size of variation in the direction of an evo-
+lution [17]. Since in the case of single photon states one
+can also define a time-frequency phase space associated
+to the variables (τ1, · · · , τn, ϕ1, · · · , ϕn), it is natural to
+investigate wether the same type of interpretation makes
+sense in this context.
+The present paper purposes are thus twofold: in the
+first place, we provide general conditions for the HOM to
+saturate precision limits using time-frequency (TF) vari-
+ables. For such, we consider arbitrary evolution operators
+acting on TF variables of single photons. In second place,
+we provide a phase-space picture and interpretation of
+the QFI for this type of system. Indeed, as shown in [20],
+there is an analogy between the quadrature phase space
+and the TF phase space from which metrological proper-
+ties of time and frequency states can be inferred. Never-
+theless, in the present case, photons have both spectral
+classical wave-like properties and quantum particle-like
+ones. Interpreting from a quantum perspective both the
+role of the spectral distribution and of collective quantum
+properties as entanglement in the single photon subspace
+has shown to demand taking a different perspective on
+the TF phase space [21]. Having this in mind, we in-
+vestigate how relevant examples of evolution operators,
+taken from the universal set of continuous variables quan-
+tum gates, can be implemented and represented in phase
+space, as well as the precision reached when one measures
+them using the HOM experiment. We’ll concentrate on
+single-mode Gaussian operations, analogously to what
+was done in [5], even though we provide a general for-
+mula for any transformation.
+This paper is organized as follows:
+In Section II
+we provide a description of the TF phase space and
+introduce the states we’ll discuss in details as well as
+their representation. In Section III we discuss the HOM
+experiment and the conditions for it to reach optimal
+precision limits. Finally, in Sections IV and V we discuss
+two different Gaussian operations in phase space as well
+as their implementation and the associated precision
+reached in the HOM experiment.
+II.
+TIME FREQUENCY PHASE SPACE
+We consider pure two-photon states which can be writ-
+ten in the form: |ψ⟩ =
+�
+dω1dω2F(ω1, ω2) |ω1, ω2⟩. The
+Wigner function in variables (τ1, τ2, ϕ1, ϕ2) of such states
+can be defined as
+W|ψ⟩(τ1, τ2, ϕ1, ϕ2) =
+�
+dω1dω2e2i(ω1τ1+ω2τ2)F(ϕ1 + ω1, ϕ2 + ω2)F ∗(ϕ1 − ω1, ϕ2 − ω2).
+(4)
+Evolutions generated by ˆωα and ˆtα (α = 1, 2) correspond
+to translations in phase space:
+We−iˆ
+ω1κ|ψ⟩(τ1, τ2, ϕ1, ϕ2) = W|ψ⟩(τ1 − κ, τ2, ϕ1, ϕ2),
+(5a)
+We−iˆt1κ|ψ⟩(τ1, τ2, ϕ1, ϕ2) = W|ψ⟩(τ1, τ2, ϕ1 − κ, ϕ2),
+(5b)
+and analogously for ˆω2 and ˆt2.
+
+3
+Using the QFI formulation based on the Bures
+distance, we can safely state that the precision of
+a measurement device is related to its capability of
+distinguishing between an initial state |ψ(κ)⟩ and a state
+|ψ(κ + dκ)⟩ that has evolved according to a parameter
+κ. This precision is then directly related to how small
+the parameter dκ should be such that these two states
+can be distinguished i.e. the overlap |⟨ψ(κ)|ψ(κ + dκ)⟩|
+gets close to zero. This can be also elegantly interpreted
+using the overlap of the two states’s respective Wigner
+functions, that describe trajectories in the phase space
+that are governed by the interaction Hamiltonian and
+the parameter dκ.
+To gain some familiarity with the studied problem
+we start with the case of a single-photon state |ψ⟩ =
+�
+dωS(ω) |ω⟩. Although using this type of state is not
+current in metrology, this simpler case can be seen as a
+building block and will help understanding the role of the
+spectrum in the present configuration.
+For a single photon, the Wigner function is defined
+as: W(τ, ϕ) =
+�
+dωe2iωτS(ϕ + ω)S∗(ϕ − ω). In the case
+of a Gaussian state |ψG⟩ with spectral wave function
+SG(ω) =
+e
+− ω2
+4σ2
+(2πσ2)1/4 its Wigner function is also Gaussian:
+WG(τ, ϕ) = exp
+�
+−2σ2τ 2 − ϕ2
+2σ2
+�
+. It is characterized by
+its width in the orthogonal directions τ and ϕ: 1/2σ and
+σ respectively.
+An evolution generated by ˆω corresponds to a trans-
+lation in the direction τ in phase space. The associated
+measurement precision is given by the smallest value of
+dκ such that the initial Wigner function is almost orthog-
+onal to the translated one in the corresponding direction.
+Since the width of the Wigner function in the direction
+of evolution is proportional to 1/σ, we have dκ ∼ 1/σ
+leading to a QFI of the order of Q ∼ σ2. Alternatively if
+one considers the generator ˆt, the associated width of the
+state will be σ leading to a QFI of the order of Q ∼ 1/σ2.
+We thus remark that the estimated QFI depends on the
+width of the state in phase space in the direction of evo-
+lution. We notice as well the similarities and differences
+with the quadrature phase space case: even though the
+relation between the phase space geometrical properties
+and metrological interest are common to both variables,
+in the case of quadrature they are related to some abso-
+lute quantum resource dependent quantity, the number
+of photons of the state. In the present case, the single
+photon spectrum is a classical resource and its width can
+only set a relative size scale in phase space.
+It is interesting to notice that this type of interpreta-
+tion is also possible for classical fields, as studied in [22–
+24]. In this classical context, the electromagnetic field
+amplitude replaces the function F and one can also re-
+late spectral metrological properties to the phase space
+structures. Nevertheless, as discussed in [21], this picture
+is merely associated to classical metrological properties
+of single mode fields (their spectrum) and no interesting
+scaling can be observed in this context. As a matter of
+fact, the classical single mode field and the single photon
+phase space can be mapped into one another.
+In the present paper, the multi-modal character of the
+quantum field is an essential ingredient for the discussion
+of the quantum metrological advantage, since it is a con-
+sequence of the multi-photon state. We will see in par-
+ticular how these two features (spectral and particle-like)
+of the considered single photon subspace are combined in
+the QFI.
+The situation is different and richer for bi-photon
+states, since the phase space is of dimension 4.
+One
+can thus imagine different directions of translation as
+for instance the ones generated by operators ˆω1, ˆω2,
+ˆω1 − ˆω2, . . . Then, optimizing the measurement precision
+involves, for a given spectral distribution, choosing a di-
+rection of evolution for which the Wigner function of the
+state has the smallest scale structures. This direction, as
+we’ll see, will depend on the number of photons, and can
+display a non-classical scaling.
+III.
+THE HOM AS A MEASUREMENT DEVICE
+A.
+The setup
+In the setup proposed by Hong, Ou and Mandel [25]
+two photons impinge into a balanced beam splitter (BS),
+each one of them from a different port, as represented on
+figure 1. By measuring the output of the beam-splitter
+using single-photon detectors we can compute the prob-
+ability of obtaining coincidences (when the two photons
+exit the BS by different paths) or anti-coincidences (when
+they bunch and exit the BS at the same path).
+FIG. 1: Schematic representation of HOM experiment.
+Since its original proposal and implementation, many
+modifications and adaptations were made to the HOM
+set-up, which was shown to be very versatile to reveal
+different aspects of quantum optics using two-photon in-
+terference [26]: it can be used to witness particle [27] and
+
+A
+BS
+B4
+spectral [28] entanglement, to saturate precision bounds
+on time delay measurements[12, 13] or to directly mea-
+sure the Wigner function of the incoming state [29, 30].
+We’re interested in quantum metrological tasks, so
+we’ll start by discussing the results obtained in [12],
+where the authors provided experimental evidence that
+the HOM device can saturate precision limits on time
+measurements. To achieve this result, the authors con-
+sidered the initial state:
+|ψU⟩ =
+1
+√
+2
+�
+dΩf(Ω)
+� ��ω0
+1 + Ω, ω0
+2 − Ω
+�
+−
+��ω0
+2 + Ω, ω0
+1 − Ω
+� �
+,
+(6)
+where ω0
+1 and ω0
+2 are the central frequencies of the pho-
+tons. Due to the energy conservation and to the phase-
+matching conditions, the support of the JSA associated
+to (6) is the line ω1 + ω2 = 0 in the plane (ω1, ω2). It
+is anti-diagonal in the plane (ω1, ω2) and infinitely thin
+along the diagonal direction ω− = ω1 − ω2. Adding a
+delay in the arm 1 of the HOM interferometer corre-
+sponds to an evolution generated by the operator ˆω1,
+corresponding to a translation κ in the τ1 direction. The
+QFI is simply calculated as: Q = 4∆(ˆω1)2. After the
+beam-splitter, the measurement can lead to two out-
+comes: coincidence or anti-coincidence, with probability
+Pc and Pa, respectively.
+The FI is thus expressed as:
+F =
+1
+Pc
+� ∂Pc
+∂κ
+�2 +
+1
+Pa
+� ∂Pa
+∂κ
+�2. The authors of [12] thus
+showed that using the input state (6) in the HOM inter-
+ferometer, the two quantities F and Q are the same.
+In [13] the HOM interferometer was also used and
+shown to lead to the QFI in a two-parameter estimation
+experiment. Finally, in [14] biphoton states were classi-
+fied as metrological resources according to their spectral
+width, still in the situation where the HOM experiment
+is used as a measurement apparatus.
+B.
+Generalization: the HOM as an optimal
+measurement device for quantum metrology with
+biphotons
+We now make a general description of the HOM ex-
+periment as a parameter estimation device and try to
+understand and determine when it corresponds to an op-
+timal measurement strategy. In [13], the authors tackle a
+part of this problem by studying the HOM as a measure-
+ment apparatus for two parameter estimation by estab-
+lishing conditions on frequency correlation states. In this
+reference, the authors restrict themselves to time delay
+evolutions.
+In the present paper, we are interested in studying any
+evolution that can be described by a two photon unitary
+|ψ(κ)⟩ = ˆU(κ) |ψ⟩ = e−i ˆ
+Hκ |ψ⟩ (see figure 2). We will see
+that under a symmetry assumption on the JSA of the
+state, it is possible to obtain an explicit formula for the
+FI, and this formula can be used to compute at a glance
+if the measurement setup considered is optimal or not.
+FIG. 2: HOM setup where we apply a general gate ˆU
+before the BS.
+For any input state |ψ⟩, the QFI will then be expressed
+as:
+Q = 4∆( ˆH)2.
+(7)
+On the other hand, one can show that the coincidence
+probability is:
+Pc = 1
+2(1 − ⟨ψ| ˆU † ˆS ˆU |ψ⟩).
+(8)
+(see Appendix B) where we introduced the hermitian
+swap operators ˆS whose action on the states is given
+by ˆS |ω1, ω2⟩ = |ω2, ω1⟩. Furthermore we can compute
+the associated FI. If the state |ψ⟩ is symmetric or anti-
+symmetric (i.e. ˆS |ψ⟩ = ± |ψ⟩) the FI at κ = 0 it is given
+by:
+F = ∆( ˆH − ˆS ˆH ˆS)2.
+(9)
+(see Appendix B). This means that under the symme-
+try assumption on the JSA, comparing the QFI and
+the FI is done simply by comparing the variance of
+two different operators, mainly:
+2 ˆH and
+ˆH − ˆS ˆH ˆS.
+Equation (9) implies that if [ ˆH, ˆS] = 0, then F = 0
+and no information can be obtained about κ from the
+measurements.
+However, if { ˆH, ˆS} = 0 then F = Q
+since ˆS ˆH ˆS = − ˆS2 ˆH = − ˆH.
+In this last case, the
+measurement strategy is optimal. In [31], general con-
+ditions for reaching the QFI were also obtained in the
+context of amplitude correlation measurements. These
+conditions are based on a quantum state’s symmetry
+under (unphysical) path exchange.
+The previous calculations form a simple tool that can
+be applied to different evolution Hamiltonians ˆH. We’ll
+now discuss examples taken from the universal set of
+quantum gates in continuous variables: translations (gen-
+erated by operator ˆωα’s) and rotations (generated by
+ˆH = (ˆω2 +ˆt2)/2). These gates have already been studied
+in [5] in the case of quadrature or position and momen-
+tum. In the present physical configuration, they corre-
+spond to the free evolution of single photons in free space
+
+A
+U
+2
+BS
+B5
+(translations) or in a dispersive medium, as for instance
+an optical fiber combined to time lenses (rotation).
+IV.
+TIME-FREQUENCY PHASE-SPACE
+TRANSLATIONS
+A.
+Different types of translations
+Since we’re considering two-photon states, translations
+can be represented by any linear combination of the cor-
+responding operators, that is : ˆH = αˆω1+βˆω2+γˆt1+δˆt2.
+To illustrate our results we choose to focus on the four
+operators ˆω1, ˆω2 and ˆω± = ˆω1 ± ˆω2, since they are the
+most easily implemented in HOM experiment.
+Notice
+that ˆω± are collective operators acting in both input
+photons while ˆω1,2 act in a single photon only.
+If we consider a state which is (anti-)symmetric and
+separable in the variables ω± = ω1 ± ω2, we can write:
+|ψ⟩ =
+1
+√
+2
+�
+dω+dω−f(ω+)g(ω−)
+����
+ω+ + ω−
+2
+, ω+ − ω−
+2
+�
+,
+(10)
+with g satisfying g(−ω) = ±g(ω) and the functions g
+and f being normalized to one.
+The specific form of
+each function is related to the phase-matching conditions
+and the energy conservation of the two-photon generation
+process and this type of state can be experimentally pro-
+duced in many set-ups [32, 33]. Using equations (7) and
+(9) we can compute the QFI and FI associated to each
+type of evolution:
+• For ˆH = ˆω1, we get Q = ∆(2ˆω1)2 = ∆(ˆω++ˆω−)2 =
+∆(ˆω−)2 + ∆(ˆω+)2, while F = ∆(ˆω−)2. Thus this
+situation is optimal only if ∆(ˆω+)2 = 0, which was
+the case for the state |ψU⟩ of Eq. (6) used in [12]).
+We obtain the same type of result for ˆω2.
+• For ˆH = ˆω+, Q = 4∆(ˆω+)2, while F = ∆(ˆω+ −
+ˆω+)2 = 0.
+In this situation the precision of the
+measurement is zero, and the reason for that is that
+variables ω+ cannot be measured using the HOM
+experiment (we notice that [ˆω+, ˆS] = 0).
+• For ˆH = ˆω−, we get Q = 4∆(ˆω−)2, while F =
+∆(ˆω− + ˆω−)2 = 4∆(ˆω−)2. This time we have F =
+Q, which means that the measurement is optimal.
+In this case, we have that {ˆω−, ˆS} = 0.
+We now illustrate these general expressions and inter-
+pret them using different quantum states and their phase
+space representations.
+B.
+Example: Gaussian and Schr¨odinger cat-like
+state
+To illustrate our point we discuss as an example two
+states |ψG⟩ and |ψC⟩ that can be expressed in the form
+of equation (10). For |ψG⟩, f and g are Gaussians:
+fG(ω+) = e
+−
+(ω+−ωp)2
+4σ2
++
+(2πσ2
++)1/4
+gG(ω−) =
+e
+−
+ω2
+−
+4σ2
+−
+(2πσ2
+−)1/4 ,
+(11)
+where σ± is the width of the corresponding function and
+ωp is a constant, which is also the photon’s central fre-
+quency. As for state |ψC⟩, it can be seen as the general-
+ization of (6). We consider f to be Gaussian and g to be
+the sum of two Gaussians:
+fC(ω+) = fG(ω+)
+gC(ω−) =
+1
+√
+2
+�
+gG(ω− + ∆/2) − gG(ω− − ∆/2)
+�
+,
+(12)
+where ∆ is the distance between the two Gaussian peaks
+of gC. We assume that the two peaks are well separated:
+∆ ≫ σ−.
+Consequently, gC is approximately normal-
+ized to one. We can verify that with these definitions
+the function gG is even while gC is odd by exchange of
+variables ω1 and ω2. We first compute the variances for
+both states (table I) and then apply the formula (7) and
+(9).
+State
+|ψG⟩
+|ψC⟩
+∆(ˆω1)2 or ∆(ˆω2)2
+1
+4σ2
++ + 1
+4σ2
+−
+1
+16∆2 + 1
+4σ2
++ + 1
+4σ2
+−
+(∆ˆω+)2
+σ2
++
+σ2
++
+(∆ˆω−)2
+σ2
+−
+1
+4∆2 + σ2
+−
+TABLE I: Variance of various time translation operators
+for states |ψG⟩ and |ψC⟩. See Appendix C for details.
+So for the case of an evolution generated by ˆω1, for
+|ψG⟩ we obtain:
+Q = σ2
++ + σ2
+−
+F = σ2
+−,
+(13)
+while for |ψC⟩ we have:
+Q = 1
+4∆2 + σ2
++ + σ2
+−
+F = 1
+4∆2 + σ2
+−.
+(14)
+We thus see that time precision using the HOM measure-
+ment and the quantum state evolution generated by ˆω1 is
+optimal only if the parameter σ+ is negligible compared
+to ∆ or σ−. This is exactly the case for the state (6)
+where σ+ = 0.
+In addition, we see that there is a difference between
+the QFI associated to |ψC⟩ and |ψG⟩ involving the param-
+eter ∆. This difference can be interpreted, as discussed
+in [14], as a spectral effect. In this reference, the spectral
+width is considered as a resource, and for a same spectral
+width state |ψC⟩ has a larger variance than state |ψG⟩.
+Nevertheless, as discussed in [21], this effect has a clas-
+sical spectral engineering origin and choosing to use one
+rather than the other depends on the experimentalists
+constraints.
+
+6
+(a) Projection on the plane τ−,
+ω−
+(b) Projection on the plane τ1,
+ω1
+FIG. 3: Wigner function of the cat-like state |ψC⟩
+projected in different variables.
+C.
+Interpretation of translations in the
+time-frequency phase space
+We now discuss the dependency of precision on the
+direction of translation. For such, we can consider the
+Wigner function associated to a JSA which is separable
+in the ω± variables.
+Its Wigner function will also be
+separable on these variables:
+W(τ1, τ2, ϕ1, ϕ2) = W+(τ+, ϕ+)W−(τ−, ϕ−),
+(15)
+where the phase space variables τ± and ϕ± are defined
+as: ϕ± =
+ϕ1±ϕ2
+2
+and τ± = τ1 ± τ2. Even though the
+Wigner function W+ (resp. W−) can be associated to
+the one of a single variable (ω+ (ω−)) and spectral wave
+function f (resp. g), it displays some differences with the
+single photon one. This fact is well illustrated in Fig. 3.
+For state |ψC⟩, according to (15) the projection of the
+Wigner function W− in the plane τ−, φ− of the phase
+space can be represented as show in Figure 3 (a). We see
+that it is composed of two basic shapes: two Gaussian
+peaks and an oscillation pattern in between. Figure 3 (b)
+represents another way to project this very same Wigner
+function onto the plane τ1, φ1 of the phase space. One can
+observe that in this case the distance between the peaks
+is larger than in the previous representation by a factor
+of 2. As precision is directly related to the size of the
+Wigner function structures in phase space, we observe
+that the interference fringes are closer apart in the phase
+space associated to the minus variable than in the one
+associated to mode 1. Thus, the precision in parameter
+estimation will be better using ˆω− as the generator of the
+evolution than when using ˆω1. This phase space based
+observations explain well the result of the computation
+of the QFI:
+4∆(ˆω1)2 = ∆(ˆω−)2.
+(16)
+with the assumption that σ+ ≪ ∆, σ−.
+The reason for the appearance of a factor 2 difference
+in fringe spacing for the Wigner function associated to
+variable ω− is the fact that it is a collective variable,
+and translations in the phase space associated to these
+variables are associated to collective operators, acting on
+both input photons (instead of a single one, as is the case
+of translations generated by operator ˆω1, for instance).
+Thus, one can observe, depending on the biphoton quan-
+tum state (i.e., for some types of frequency entangled
+states), a scaling depending on the number of particles (in
+this case, two). As analyzed in [21] for general single pho-
+ton states composed of n individual photons, we have for
+frequency separable states a scaling corresponding to the
+shot-noise one (i.e., proportional to √n). A Heisenberg-
+like scaling (proportional to n) can be achieved for non-
+physical maximally frequency correlated states, and con-
+sidering a physical non-singular spectrum leads to a non-
+classical scaling in between the shot-noise and the Heisen-
+berg limit.
+Experimentally, such collective translation can be im-
+plemented by adding a delay of τ in arm 1 and of −τ in
+arm 2. Notice that this situation is different from cre-
+ating a delay of 2τ in only one arm, even though both
+situations lead to the same experimental results in the
+particular context of the HOM experiment.
+V.
+TIME-FREQUENCY PHASE SPACE
+ROTATIONS
+We now move to the discussion of the phase space ro-
+tations. For this, we’ll start by providing some intuition
+by discussing in first place the single photon (or single
+mode) situation. In this case, time-frequency phase space
+rotations are generated by the operators ˆR = 1
+2(ˆω2 + ˆt2).
+As previously mentioned, we consider here dimension-
+less observables. Physically, time-frequency phase space
+rotations correspond to performing a fractional Fourier
+transform of the JSA. While for transverse variable of
+single photons the free propagation or a combination of
+lenses can be used for implementing this type of oper-
+ation [34, 35], in the case of time and frequency this
+transformation corresponds to the free propagation in a
+dispersive medium [36–40] combined to temporal lenses
+[41–43].
+A.
+Single mode rotations
+In this Section, we compute the QFI associated to
+a rotation
+ˆR for a single photon, single mode state
+using the variance of this operator for different states
+|ψ⟩ =
+�
+dωS(ω) |ω⟩. As for the translation, this simpler
+configuration is used as a tool to better understand the
+two photon case.
+
+1.5
+1.0
+0.5
+0.0
+T
+-0.5
+-1.0
+1.5
+-10
+-5
+0
+5
+101.5
+1.0
+0.5
+0.0
+T
+-0.5
+-1.0
+1.5
+-5
+-10
+0
+5
+107
+1.
+Gaussian state:
+We start by discussing a single-photon Gaussian state
+at central frequency ω0 and spectral width σ:
+|ψG(ω0)⟩ =
+1
+(2πσ2)1/4
+�
+dωe− (ω−ω0)2
+4σ2
+|ω⟩ .
+(17)
+For this state, we have that:
+∆( ˆR)2 = σ2ω2
+0 + 1
+8
+� 1
+4σ4 + 4σ4 − 2
+�
+.
+(18)
+Eq. (18) has two types of contributions that we can in-
+terpret:
+• The first term σ2ω2
+0 corresponds to the distance in
+phase space (ω0) of the center of the distribution, to
+the origin of the phase space (ω = 0, τ = 0), times
+the width of the state σ in the direction of rotation
+(see Figure 4 (a)). This term is quite intuitive. The
+Wigner function of a state which is rotated by an
+angle θ = 1/2σω0 has an overlap with the Wigner
+function of the initial one which is close to zero.
+• The term
+1
+4σ4 + 4σ4 − 2 reaches 0 as a minimum
+when σ =
+1
+√
+2. For this value the Wigner function
+is perfectly rotationally symmetric.
+Its meaning
+can be intuitively understood if we consider that
+ω0 = 0, so that this term becomes the only con-
+tribution to the variance(see Figure 4 (b)). In this
+case, we are implementing a rotation around the
+center of the state. If the state is fully symmetric
+then this rotation has no effect, and the variance
+is 0. Only in the case where the distributions ro-
+tational symmetry is broken we obtain a non zero
+contribution.
+2.
+Schr¨odinger cat-like state centered at the origin (ω = 0):
+We now consider the superposition of two Gaussian
+states:
+��ψ0
+C
+�
+=
+1
+√
+2(|ψG(∆/2)⟩ − |ψG(−∆/2)⟩).
+(19)
+This state is of course non physical as a single-photon
+state, since it contains negative frequencies.
+However,
+since it can be be well defined using collective variables
+(as for instance ω−) for a two or more photons state,
+we still discuss it. Assuming that the two peaks are well
+separated (∆ ≫ σ), we can ignore the terms proportional
+to e− ∆2
+8σ2 , and this leads to:
+∆( ˆR)2 = 1
+8
+� 1
+4σ4 + 4σ4 − 2
+�
++ 1
+4∆2σ2.
+(20)
+We see that there is no clear metrological advantage
+when using this state compared to the Gaussian state:
+the quantity ∆/2 plays the same role as ω0. This can
+be understood geometrically once again, with the help
+of the Wigner function.
+We see in Figure 4 (c) how
+the considered state evolves under a rotation.
+In this
+situation the interference fringes are rotated around
+their center so even though they display a small scale
+structure, they are moved only by a small amount,
+resulting in a non significant precision improvement.
+3.
+Schr¨odinger cat-like state centered at any frequency:
+We can now discuss the state formed by the superpo-
+sition of two Gaussian states whose peaks are at frequen-
+cies ω0 − ∆/2 and ω0 + ∆/2, and with the same spectral
+width σ as previously considered:
+|ψC⟩ =
+1
+√
+2
+�
+|ψG(ω0 + ∆/2)⟩ − |ψG(ω0 − ∆/2)⟩
+�
+. (21)
+Still under the assumption of a large separation between
+the two central frequencies (∆ ≫ σ), we obtain:
+∆( ˆR)2 = 1
+8
+� 1
+4σ4 + 4σ4 − 2
+�
++ 1
+4∆2(σ2 + ω2
+0) + σ2ω2
+0.
+(22)
+We can notice that by setting ω0 = 0 we recover the
+variance corresponding to the same state rotated around
+its center. Nevertheless, in the present case ω0 ̸= 0, and
+we have two additional terms: σ2ω2
+0 and ∆2ω2
+0/4. Both
+terms can be interpreted as a product of the state’s dis-
+tance to the origin and its structure in phase space. How-
+ever, while the first one is simply the one corresponding
+to the Gaussian state, the second one is a product of the
+states’ distance to the origin and its small structures in
+phase space, created by the interference between the two
+Gaussian states (see Figure 4 (d)). The interference pat-
+tern is thus rotated by an angle θ corresponding to an arc
+of length ω0θ, and since the distance between the fringes
+is of order ∆, if θ ∼ 1/ω0∆ (corresponding to the term
+∆2ω2
+0/4 in the expression of the variance) the rotated
+state is close to orthogonal to the initial one.
+In all this section, we have considered rotations about
+the time and frequency origin of the phase space. Never-
+theless, it is of course possible to displace this origin and
+consider instead rotations about different points of the
+TF phase space. In this case, for a rotation around an
+arbitrary point τ0 and ϕ0, the generator would be given
+by (ˆω − ϕ0)2/2 + (ˆt − τ0)2/2.
+B.
+Different types of rotations
+We now move to the case of two single photons
+(biphoton states). As for the case of translations, there
+are many possible variables and can consider rotations
+in different planes of the phase space:
+ˆR1,
+ˆR2,
+ˆR±,
+
+8
+(a) Gaussian state centered at
+ω0. For θω0 ∼ 1/2σ the initial
+state and the rotate one are
+distinguishable.
+(b) Gaussian state centered at
+the origin. The rotated state will
+be distinguishable from the
+initial one only in the absence of
+rotational symmetry.
+(c) Superposition of two Gaussian
+states (cat-like state) centered the
+origin. The small structures of
+the fringes do not play a relevant
+role since they are only moved by
+a small distance under rotation.
+(d) Superposition of two
+Gaussian states (cat-like state)
+centered at ω0. The fringes play
+an important role, since with
+θω0 ∼ 1/∆, the two states are
+nearly orthogonal.
+FIG. 4: Schematic representation of the Wigner
+function of various states under rotation. The ellipses
+represent the typical width of Gaussians. The doted
+lines represent the rotated states.
+ˆR1 ± ˆR2 . . . where ˆR1 =
+1
+2(ˆω2
+1 + ˆt2
+1) (and similarly for
+ˆR2) and ˆR± = 1
+4(ˆω2
+± + ˆt2
+±) (recall that ˆω± = ˆω1 ± ˆω2 and
+ˆt± = ˆt1 ± ˆt2). For all these operators we can as before
+apply the general formula for the QFI and of the FI to
+the corresponding HOM measurement. The results are
+displayed in table II.
+Operator
+QFI
+FI
+ˆR1
+4∆( ˆR1)2
+∆( ˆR1 − ˆR2)2
+ˆR±
+4∆( ˆR±)2
+0
+ˆR1 + ˆR2
+4∆( ˆR1 + ˆR2)2
+0
+ˆR1 − ˆR2
+4∆( ˆR1 − ˆR2)2
+4∆( ˆR1 − ˆR2)2
+TABLE II: QFI and FI of various rotation operators.
+We see that the only two situations where the HOM
+can indeed be useful as a measurement device for metro-
+logical applications are ˆR1 and ˆR1 − ˆR2. The reason for
+that is the symmetry of ˆR± and ˆR1+ ˆR2, which commute
+with the swap operator ˆS. As for ˆR1, it corresponds to
+the rotation of only one of the photons and may not be
+the optimal strategy. Finally, ˆR1 − ˆR2 corresponds to
+the simultaneous rotation in opposite directions of both
+photons sent into the two different input spatial modes.
+As ˆR1 − ˆR2 anti-commutes with ˆS then we can affirm
+that the HOM measurement is optimal for this type of
+evolution.
+C.
+QFI and FI computation with Gaussian and
+cat-like state
+We now compute the QFI and FI using the variance
+of ˆR1 and ˆR1 − ˆR2 calculated for states |ψG⟩ and |ψC⟩.
+For |ψG⟩:
+We have:
+∆( ˆR1)2 = 1
+32
+�� 1
+σ2
++
++ 1
+σ2
+−
+�2
++ (σ2
++ + σ2
+−)2 − 8
+�
++ 1
+16ω2
+p(σ2
++ + σ2
+−)
+∆( ˆR1 − ˆR2) = 1
+4
+�
+1
+σ2
++σ2
+−
++ σ2
++σ2
+− − 2
+�
++ 1
+4σ2
+−ω2
+p. (23)
+For |ψC⟩:
+We have:
+∆( ˆR1)2 = 1
+32
+�� 1
+σ2
++
++ 1
+σ2
+−
+�2
++ (σ2
++ + σ2
+−)2 − 8
+�
++ 1
+64(4ω2
+p + ∆2)(σ2
++ + σ2
+−)
++ 1
+64∆2ω2
+p + ∆2
+128
+� 1
+σ2
+−
++ σ2
+−
+�
+∆( ˆR1 − ˆR2) = 1
+4
+�
+1
+σ2
++σ2
+−
++ σ2
++σ2
+− − 2
+�
++ 1
+4σ2
+−ω2
+p. (24)
+We notice that for both states 4∆( ˆR1)2 ≥ ∆( ˆR1− ˆR2)2,
+meaning that the measurement of a rotation imple-
+mented in only one mode using the HOM is not an
+optimal measurement.
+Experimentally realizing an evolution generated by ˆR1
+is easier than implementing the one associated to ˆR1− ˆR2.
+Furthermore we see that for the Gaussian state |ψG⟩ a
+dominant term is ω2
+pσ2
+− which appears with the same
+factor in 4∆( ˆR1)2 and ∆( ˆR1 − ˆR2)2, meaning that one
+could perform a measurement which although not opti-
+mal would be pretty efficient. The same applies to the
+Schr¨odinger cat-like state |ψC⟩ where one dominant term
+is ∆2ω2
+p.
+D.
+Phase space interpretation
+We now provide a geometrical interpretation of the
+previous results.
+If we consider that σ− ≫ σ+ in
+
+T
+0
+6
+1
+2g
+03T
+个
+6
+1
+2g7
+0T
+039
+the case of a Gaussian state or ∆ ≫ σ+ in the case
+of a Schr¨odinger cat-like state, the projection of the
+Wigner function on the plane corresponding to collective
+minus variables (τ−, φ−) is the one presenting a relevant
+phase space structure.
+Thus, it would be interesting
+to consider, as in the case of translations, that these
+states are manipulated using operators acting on modes
+associated to this collective variable.
+A na¨ıve guess
+would then trying to apply the rotation operator ˆR−.
+However it comes with many difficulties.
+Indeed it
+first poses an experimental problem, since this rotation
+corresponds to a non-local action which would be very
+hard to implement. In addition, the HOM is not able to
+measure such evolution. Finally, it turns out that this is
+not the operator with the greatest QFI. This fact can be
+understood by taking a more careful look at the Wigner
+function of the considered states. The Wigner function
+for separable states can be factorized as the product
+of two Wigner functions defined in variables plus and
+minus, and we have that W+ is the Wigner function
+of a Gaussian state centered at ωp (corresponding to
+the situation (a) in Figure (4). As for W−, it is either
+the Wigner function of a Gaussian state or the one
+associated to a superposition of two Gaussian states
+centered around zero (corresponding to the situation
+(b) and (c) in Figure 4).
+The QFI increases with the
+distance of the states to the rotation point.
+For this
+reason, states |ψG⟩ and |ψC⟩ under a rotation using ˆR−,
+do not lead to a high QFI.
+A higher QFI is obtained using rotations around a
+point which is far away from the center of the state. In
+this case, the QFI displays a term which is proportional
+to the distance from the center of rotation squared di-
+vided by the width of the state squared.
+Both terms
+ω2
+pσ2
+− and ∆2ω2
+p which were dominant in the expression
+of the variance of ˆR1 and ˆR1 − ˆR2 can be interpreted
+as such.
+This means that the rotation ˆR1, whose ac-
+tion is not easily seen in the variables plus and minus,
+can be interpreted as a rotation which moves W− around
+the distance ωp from the origin of the TF phase space
+(ω = 0).
+For both states then, the main numerical contribution
+to the QFI comes from a classical effect, related to the
+intrinsic resolution associated to the central (high) fre-
+quency of the field. In general, in phase space rotations,
+both in the quadrature and in the TF configuration, the
+distance from the phase space origin plays an important
+role. While in the quadrature configuration this distance
+has a physical meaning that can be associated both to the
+phase space structure and to the number of probes. In
+the case of TF phase space, the distance from the origin
+and the phase space scaling are independent. In partic-
+ular, the distance from the origin can be considered as a
+classical resource that plays no role on the scaling with
+the number of probes.
+E.
+A discussion on scaling properties of rotations
+The different types of FT phase space rotations have
+different types of interpretation in terms of scaling. The
+combined rotations of the type ˆR1 ± ˆR2, for instance,
+can be generalized to an n photon set-up through oper-
+ators as ˆR = �n
+i αi ˆRi, with αi = ±1. In this situation,
+we have that rotation operators are applied individually
+and independently to each one of the the n photons. In
+this case, we can expect, in first place, a collective (clas-
+sical) effect, coming simply from the fact that we have n
+probes (each photon). In addition, it is possible to show
+that a Heisenberg-like scaling can be obtained by con-
+sidering states which are maximally mode entangled in a
+mode basis corresponding to the eigenfunctions of oper-
+ators ˆRi. Indeed, for each photon (the i-th one), we can
+define a mode basis such that ˆRi |φk⟩i = (k + 1/2) |φk⟩i,
+with |φk⟩i =
+1
+√
+2kk!
+1
+π1/4
+�
+dωe− ω2
+2 Hk(ω) |ω⟩i with Hk(ω)
+being the k-th Hermite polynomial associated to the i-
+th photon. For a maximally entangled state in this mode
+basis, i.e. , a state of the type |φ⟩ = �∞
+k=0 Ak
+�n
+i=1 |φk⟩i,
+(where we recall that the subscript i refers to each pho-
+ton and k to the rotation eigenvalues) the ˆR eigenvalues
+behave as random classical variables and we can show
+that the QFI scales as n2.
+As for rotations of the type ˆR±, they cannot be de-
+composed as independently acting on each photon, but
+consist of entangling operators that can be treated ex-
+actly as ˆR1 and ˆR2 but using variables ω± = ω1 ± ω2
+instead of ω1 and ω2.
+We can also compute the scal-
+ing of operators as ˆJ = �
+Ωβ ˆRΩβ where Ωβ = �n
+i αiωi,
+αi = ±1 and β is one of the 2n−1 ways to define a collec-
+tive variable using the coefficients αi. For such, we can
+use the same techniques as in the previous paragraph but
+for the collective variables Ωβ. Nevertheless, the exper-
+imental complexity of producing this type of evolution
+and the entangled states reaching the Heisenberg limit is
+such that we’ll omit this discussion here.
+VI.
+CONCLUSION
+We have extensively analyzed a quantum optical set-
+up, the HOM interferometer, in terms of its quantum
+metrological properties. We provided a general formula
+for the coincidence probability of this experiment which
+led to a general formula for the associated FI. We used
+this formula to analyze different types of evolution and
+showed when it is possible to reach the QFI in this set-
+up. In particular, we made a clear difference between col-
+lective quantum effects that contribute to a better than
+classical precision scaling and classical only effects, asso-
+ciated to single mode spectral properties. We then briefly
+discussed the general scaling properties of the QFI asso-
+ciated to the studied operators.
+Our results provide a complete recipe to optimize the
+HOM experiment with metrological purposes. They rely
+
+10
+on the symmetry properties of quantum states that are
+revealed by the HOM interferometer. An interesting per-
+spective is to generalize this type of reasoning for differ-
+ent set-ups where different symmetries play a role on the
+measurement outputs.
+Acknowledgements
+The French gouvernement through the action France
+2030 from Agence Nationale de la Recherche, reference
+“ANR-22-PETQ-0006” provided financial support to this
+work. We thanks Nicolas Fabre for fruitful discussions
+and comments on the manuscript.
+[1] Daniel Braun, Gerardo Adesso, Fabio Benatti, Roberto
+Floreanini, Ugo Marzolino, Morgan W. Mitchell, and
+Stefano Pirandola.
+Quantum-enhanced measurements
+without entanglement.
+Rev. Mod. Phys., 90:035006,
+Sep 2018. URL: https://link.aps.org/doi/10.1103/
+RevModPhys.90.035006,
+doi:10.1103/RevModPhys.90.
+035006.
+[2] Luca Pezz`e, Augusto Smerzi, Markus K. Oberthaler, Ro-
+man Schmied, and Philipp Treutlein. Quantum metrol-
+ogy with nonclassical states of atomic ensembles. Rev.
+Mod. Phys., 90:035005, Sep 2018. URL: https://link.
+aps.org/doi/10.1103/RevModPhys.90.035005, doi:10.
+1103/RevModPhys.90.035005.
+[3] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac-
+cone.
+Quantum-enhanced measurements: Beating the
+standard quantum limit. Science, 306(5700):1330–1336,
+2004.
+URL: https://www.science.org/doi/abs/10.
+1126/science.1104149,
+arXiv:https://www.science.
+org/doi/pdf/10.1126/science.1104149, doi:10.1126/
+science.1104149.
+[4] Iagoba Apellaniz, Matthias Kleinmann, Otfried G¨uhne,
+and G´eza T´oth.
+Optimal witnessing of the quantum
+fisher information with few measurements.
+Phys. Rev.
+A, 95:032330, Mar 2017.
+URL: https://link.aps.
+org/doi/10.1103/PhysRevA.95.032330,
+doi:10.1103/
+PhysRevA.95.032330.
+[5] Dominik ˇSafr´anek and Ivette Fuentes.
+Optimal probe
+states for the estimation of Gaussian unitary chan-
+nels. Physical Review A, 94(6):062313, December 2016.
+arXiv:1603.05545 [quant-ph]. URL: http://arxiv.org/
+abs/1603.05545, doi:10.1103/PhysRevA.94.062313.
+[6] Louis Garbe, Simone Felicetti, Perola Milman, Thomas
+Coudreau, and Arne Keller.
+Metrological advantage
+at finite temperature for gaussian phase estimation.
+Phys. Rev. A, 99:043815, Apr 2019.
+URL: https://
+link.aps.org/doi/10.1103/PhysRevA.99.043815, doi:
+10.1103/PhysRevA.99.043815.
+[7] Harald Cram´er.
+Mathematical Methods of Statistics.
+Princeton University Press, June 2016.
+[8] Samuel
+L.
+Braunstein,
+Carlton
+M.
+Caves,
+and
+G.
+J.
+Milburn.
+Generalized
+Uncertainty
+Re-
+lations:
+Theory,
+Examples,
+and
+Lorentz
+In-
+variance.
+Annals
+of
+Physics,
+247(1):135–173,
+April
+1996.
+URL:
+https://www.sciencedirect.
+com/science/article/pii/S0003491696900408,
+doi:10.1006/aphy.1996.0040.
+[9] G. Bi´e Alves, A. Pimentel, M. Hor-Meyll, S. P. Wal-
+born, L. Davidovich, and R. L. de Matos Filho. Achiev-
+ing metrological precision limits through postselection.
+Phys. Rev. A, 95:012104, Jan 2017.
+URL: https://
+link.aps.org/doi/10.1103/PhysRevA.95.012104, doi:
+10.1103/PhysRevA.95.012104.
+[10] Spagnolo N. Del Re L. et al.. D’Ambrosio, V.
+Pho-
+tonic polarization gears for ultra-sensitive angular mea-
+surements. Nat Commun, (4):2432, 2013. doi:https:
+//doi.org/10.1038/ncomms3432.
+[11] Xu Yu, Xiang Zhao, Luyi Shen, Yanyan Shao, Jing
+Liu, and Xiaoguang Wang.
+Maximal quantum fisher
+information for phase estimation without initial par-
+ity.
+Opt. Express,
+26(13):16292–16302,
+Jun 2018.
+URL: https://opg.optica.org/oe/abstract.cfm?URI=
+oe-26-13-16292, doi:10.1364/OE.26.016292.
+[12] Yuanyuan Chen, Matthias Fink, Fabian Steinlechner,
+Juan P. Torres, and Rupert Ursin. Hong-ou-mandel in-
+terferometry on a biphoton beat note.
+5(1):43, 2019.
+doi:10.1038/s41534-019-0161-z.
+[13] Kyle M. Jordan, Raphael A. Abrahao, and Jeff S. Lun-
+deen.
+Quantum metrology timing limits of the hong-
+ou-mandel interferometer and of general two-photon
+measurements.
+Phys. Rev. A, 106:063715, Dec 2022.
+URL: https://link.aps.org/doi/10.1103/PhysRevA.
+106.063715, doi:10.1103/PhysRevA.106.063715.
+[14] N. Fabre and S. Felicetti. Parameter estimation of time
+and frequency shifts with generalized hong-ou-mandel
+interferometry.
+Phys. Rev. A, 104:022208, Aug 2021.
+URL: https://link.aps.org/doi/10.1103/PhysRevA.
+104.022208, doi:10.1103/PhysRevA.104.022208.
+[15] Ashley Lyons, George C. Knee, Eliot Bolduc, Thomas
+Roger, Jonathan Leach, Erik M. Gauger, and Daniele
+Faccio.
+Attosecond-resolution
+hong-ou-mandel
+in-
+terferometry.
+Sci. Adv., 4(5):eaap9416, 2018.
+URL:
+https://advances.sciencemag.org/lookup/doi/10.
+1126/sciadv.aap9416, doi:10.1126/sciadv.aap9416.
+[16] Nicolas Fabre, Arne Keller, and P´erola Milman. Time
+and frequency as quantum continuous variables. Phys-
+ical Review A, 105(5):052429, May 2022.
+Publisher:
+American Physical Society.
+URL: https://link.aps.
+org/doi/10.1103/PhysRevA.105.052429, doi:10.1103/
+PhysRevA.105.052429.
+[17] F. Toscano,
+D. A. R. Dalvit,
+L. Davidovich,
+and
+W. H. Zurek.
+Sub-Planck phase-space structures and
+Heisenberg-limited measurements.
+Physical Review A,
+73(2):023803, February 2006.
+Publisher:
+American
+Physical Society. URL: https://link.aps.org/doi/10.
+
+11
+1103/PhysRevA.73.023803, doi:10.1103/PhysRevA.73.
+023803.
+[18] Wojciech Hubert Zurek. Sub-planck structure in phase
+space and its relevance for quantum decoherence. Nature,
+412(6848):712–717, 2001. doi:10.1038/35089017.
+[19] Samuel L. Braunstein and Carlton M. Caves. Statistical
+distance and the geometry of quantum states. Physical
+Review Letters, 72(22):3439–3443, May 1994. Publisher:
+American Physical Society.
+URL: https://link.aps.
+org/doi/10.1103/PhysRevLett.72.3439, doi:10.1103/
+PhysRevLett.72.3439.
+[20] Nicolas Fabre, Arne Keller, and P´erola Milman. Time
+and frequency as quantum continuous variables. Phys.
+Rev. A, 105:052429, May 2022.
+URL: https://link.
+aps.org/doi/10.1103/PhysRevA.105.052429,
+doi:10.
+1103/PhysRevA.105.052429.
+[21] Eloi Descamps, Nicolas Fabre, Arne Keller, and Per-
+ola Milman. Quantum metrology using time-frequency
+as quantum continuous variables:
+sub shot-noise pre-
+cision and phase space representation, October 2022.
+arXiv:2210.05511 [quant-ph]. URL: http://arxiv.org/
+abs/2210.05511.
+[22] Dane R. Austin, Tobias Witting, Adam S. Wyatt, and
+Ian A. Walmsley.
+Measuring sub-planck structural
+analogues in chronocyclic phase space.
+Optics Com-
+munications, 283(5):855–859, 2010.
+Quo vadis Quan-
+tum Optics?
+URL: https://www.sciencedirect.com/
+science/article/pii/S0030401809010529, doi:https:
+//doi.org/10.1016/j.optcom.2009.10.060.
+[23] Ludmi�la
+Praxmeyer,
+Piotr
+Wasylczyk,
+Czes�law
+Radzewicz, and Krzysztof W´odkiewicz. Time-Frequency
+Domain Analogues of Phase Space Sub-Planck Struc-
+tures. Physical Review Letters, 98(6):063901, February
+2007.
+Publisher:
+American Physical Society.
+URL:
+https://link.aps.org/doi/10.1103/PhysRevLett.98.
+063901, doi:10.1103/PhysRevLett.98.063901.
+[24] Ludmila Praxmeyer, Chih-Cheng Chen, Popo Yang,
+Shang-Da Yang, and Ray-Kuang Lee. Direct measure-
+ment of time-frequency analogs of sub-Planck struc-
+tures.
+Physical Review A, 93(5):053835, May 2016.
+Publisher: American Physical Society. URL: https://
+link.aps.org/doi/10.1103/PhysRevA.93.053835, doi:
+10.1103/PhysRevA.93.053835.
+[25] C. K. Hong, Z. Y. Ou, and L. Mandel.
+Measurement
+of subpicosecond time intervals between two photons
+by interference.
+Physical Review Letters, 59(18):2044–
+2046, November 1987.
+Publisher:
+American Physi-
+cal Society. URL: https://link.aps.org/doi/10.1103/
+PhysRevLett.59.2044,
+doi:10.1103/PhysRevLett.59.
+2044.
+[26] Fabre,
+N.,
+Amanti,
+M.,
+Baboux,
+F.,
+Keller,
+A.,
+Ducci, S., and Milman, P.
+Correction:
+The hong-
+ou-mandel experiment:
+from photon indistinguishabil-
+ity to continuous-variable quantum computing.
+Eur.
+Phys. J. D, 76(12):251,
+2022.
+doi:10.1140/epjd/
+s10053-022-00576-3.
+[27] Megan R. Ray and S. J. van Enk.
+Verifying en-
+tanglement in the hong-ou-mandel dip.
+Phys. Rev.
+A, 83:042318, Apr 2011.
+URL: https://link.aps.
+org/doi/10.1103/PhysRevA.83.042318,
+doi:10.1103/
+PhysRevA.83.042318.
+[28] Andreas Eckstein and Christine Silberhorn.
+Broad-
+band frequency mode entanglement in waveguided para-
+metric downconversion.
+Opt. Lett., 33(16):1825, 2008.
+URL: https://www.osapublishing.org/abstract.cfm?
+URI=ol-33-16-1825, doi:10.1364/OL.33.001825.
+[29] T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury,
+S. Ducci, A. Keller, T. Coudreau, and P. Milman. Direct
+measurement of the biphoton wigner function through
+two-photon interference. Scientific Reports, 3:3530, 2013.
+URL: https://doi.org/10.1038/srep03530.
+[30] N. Fabre, M. Amanti, F. Baboux, A. Keller, S. Ducci,
+and P. Milman.
+The Hong–Ou–Mandel experiment:
+from photon indistinguishability to continuous-variable
+quantum computing.
+The European Physical Jour-
+nal D, 76(10):196, October 2022.
+doi:10.1140/epjd/
+s10053-022-00525-0.
+[31] Holger F. Hofmann.
+All path-symmetric pure states
+achieve their maximal phase sensitivity in conventional
+two-path interferometry.
+Phys. Rev. A, 79:033822,
+Mar
+2009.
+URL:
+https://link.aps.org/doi/10.
+1103/PhysRevA.79.033822, doi:10.1103/PhysRevA.79.
+033822.
+[32] Guillaume
+Boucher,
+Tom
+Douce,
+David
+Bresteau,
+Stephen
+Patrick
+Walborn,
+Arne
+Keller,
+Thomas
+Coudreau, Sara Ducci, and Perola Milman. Toolbox for
+continuous variable entanglement production and mea-
+surement using spontaneous parametric down conversion.
+Phys. Rev. A, 92(2):023804, 2015-08-04.
+URL: http:
+//arxiv.org/abs/1506.06077, arXiv:1506.06077, doi:
+10.1103/PhysRevA.92.023804.
+[33] S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Lang-
+ford, and A. Zeilinger.
+Discrete Tunable Color En-
+tanglement.
+Physical Review Letters, 103(25):253601,
+December 2009.
+Publisher:
+American Physical So-
+ciety.
+URL:
+https://link.aps.org/doi/10.1103/
+PhysRevLett.103.253601,
+doi:10.1103/PhysRevLett.
+103.253601.
+[34] D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto
+Ribeiro, and S. P. Walborn. Continuous variable quan-
+tum computation with spatial degrees of freedom of pho-
+tons. Phys. Rev. A, 83(5):052325, 2011. URL: http://
+arxiv.org/abs/1106.3049, arXiv:1106.3049, doi:10.
+1103/PhysRevA.83.052325.
+[35] Pierre Pellat-Finet. Fresnel diffraction and the fractional-
+order
+fourier
+transform.
+Opt.
+Lett.,
+19(18):1388–
+1390, Sep 1994.
+URL: https://opg.optica.org/ol/
+abstract.cfm?URI=ol-19-18-1388,
+doi:10.1364/OL.
+19.001388.
+[36] Panagiotis Vergyris, Charles Babin, Raphael Nold, Elie
+Gouzien, Harald Herrmann, Christine Silberhorn, Olivier
+Alibart, S´ebastien Tanzilli, and Florian Kaiser.
+Two-
+photon phase-sensing with single-photon detection. Ap-
+plied Physics Letters, 117(2):024001, 2020.
+arXiv:
+https://doi.org/10.1063/5.0009527, doi:10.1063/5.
+0009527.
+[37] M. Reisner, F. Mazeas, R. Dauliat, B. Leconte, D. Ak-
+tas, R. Cannon, P. Roy, R. Jamier, G. Sauder, F. Kaiser,
+S. Tanzilli, and L. Labont´e.
+Quantum-limited deter-
+mination of refractive index difference by means of en-
+tanglement.
+npj Quantum Inf, (8):58, 2022.
+URL:
+https://doi.org/10.1038/s41534-022-00567-7.
+[38] Keisuke Goda, Daniel R. Solli, Kevin K. Tsia, and
+Bahram Jalali.
+Theory of amplified dispersive fourier
+transformation.
+Phys. Rev. A, 80:043821, Oct 2009.
+URL: https://link.aps.org/doi/10.1103/PhysRevA.
+80.043821, doi:10.1103/PhysRevA.80.043821.
+[39] K. Goda and B. Jalali.
+Dispersive fourier transforma-
+
+12
+tion for fast continuous single-shot measurements. Na-
+ture Photon, 7:102–112, 2013. URL: https://doi.org/
+10.1038/nphoton.2012.359.
+[40] Hsuan-Hao Lu, Ogaga D. Odele, Daniel E. Leaird, and
+Andrew M. Weiner. Arbitrary shaping of biphoton corre-
+lations using near-field frequency-to-time mapping. Opt.
+Lett., 43(4):743–746, Feb 2018.
+URL: https://opg.
+optica.org/ol/abstract.cfm?URI=ol-43-4-743, doi:
+10.1364/OL.43.000743.
+[41] Mateusz Mazelanik, Adam Leszczy´nski, Micha�l Lipka,
+Micha�l Parniak, and Wojciech Wasilewski.
+Tempo-
+ral imaging for ultra-narrowband few-photon states
+of light.
+Optica,
+7(3):203–208,
+Mar 2020.
+URL:
+https://opg.optica.org/optica/abstract.cfm?URI=
+optica-7-3-203, doi:10.1364/OPTICA.382891.
+[42] Nicolas Fabre. Quantum information in time-frequency
+continuous variables. PhD thesis.
+[43] Avi Pe’er, Barak Dayan, Asher A. Friesem, and Yaron
+Silberberg.
+Temporal shaping of entangled photons.
+Phys. Rev. Lett., 94:073601, Feb 2005. URL: https://
+link.aps.org/doi/10.1103/PhysRevLett.94.073601,
+doi:10.1103/PhysRevLett.94.073601.
+[44] C.
+Fabre
+and
+N.
+Treps.
+Modes
+and
+states
+in
+quantum
+optics.
+Rev.
+Mod.
+Phys.,
+92(3):035005,
+2020.
+URL:
+https://link.aps.org/doi/10.1103/
+RevModPhys.92.035005,
+doi:10.1103/RevModPhys.92.
+035005.
+Appendix A: Time frequency formalism
+In quantum mechanics, light is described with the help of modes [44], representing the various physical properties
+a photon can have: frequency, position, spectral shape, wave vector, polarization... Mathematically we associate
+to each mode α a creation and annihilation operators ˆa†
+α and ˆaα which satisfy the familiar bosonic commutation
+relation [ˆaα, ˆa†
+β] = δα,β. The quantum states are then obtained by acting with the creation operators on the vacuum
+|vac⟩, which can be interpreted as adding a photon in the corresponding mode.
+In time frequency continuous variables we look at modes parameterized by the frequency [16]. We will thus adapt
+the terminology: for us a mode will correspond to all physical parameter needed to describe a photon excluding
+the frequency (position, wave vector, polarization...). In the following we will look at interferometers, and thus the
+parameter α will describe in which arm the photon is propagating. We will thus describe single photon states in
+a given mode α with frequency ω with the help of a creation operator acting on the vacuum state: ˆa†
+α(ω). In this
+situation the commutation relation is written as
+[ˆaα(ω), ˆa†
+β(ω′)] = δ(ω − ω′)δα,β,
+(A1)
+the other commutation relations (between two creation or two annihilation operators) vanishing. It’s useful to intro-
+duce the conjugated temporal variable t, by the use of the Fourier transform:
+ˆaα(t) =
+1
+√
+2π
+�
+dωˆaα(ω)e−iωt.
+(A2)
+We can verify that the creation and annihilation operators in the temporal domain verify the same commutation
+relation as the one in the spectral domain: [ˆaα(t), ˆa†
+β(t′)] = δ(t − t′)δα,β.
+a.
+States in time-frequency variables
+The creation operators allow to define general single photon states on a single mode via:
+|ψ⟩ =
+�
+dωS(ω)ˆa†(ω) |vac⟩ =
+�
+dωS(ω) |ω⟩ .
+(A3)
+The spectrum S(ω) is the Fourier transform of the time of arrival distribution and it can be recovered from the
+state S(ω) = ⟨ω|ψ⟩. If we are interested in a collection of n single photons states in n different modes, we can work
+with the state:
+|ψ⟩ =
+�
+dω1 · · · dωnF(ω1, · · · , ωn)ˆa†
+1(ω1) · · · ˆa†
+n(ωn) |vac⟩ =
+�
+dω1 · · · dωnF(ω1, · · · , ωn) |ω1, · · · , ωn⟩ ,
+(A4)
+where the spectral function F is normalised to one:
+�
+|F(ω1, ω2|2dω1dω2 = 1.
+
+13
+b.
+Time-frequency operators
+We can introduce two very useful operators as follows:
+ˆtα =
+�
+dt tˆa†
+α(t)ˆaα(t)
+ˆωα =
+�
+dω ωˆa†
+α(ω)ˆaα(ω).
+(A5)
+The fundamental property of these operators is the fact that they verify the familiar commutation relation on the
+subspace of single photons:
+[ˆωα, ˆtα] = i.
+(A6)
+More precisely, we have the general result:
+[ˆωα, ˆtα] = i
+∞
+�
+−∞
+dωˆa†
+α(ω)ˆaα(ω) = i ˆNα,
+(A7)
+where the operator ˆNα count the number of photon operator in the mode α.
+The action of the both operators ˆω and ˆt can be computed on the JSA and we have:
+ˆω : S(ω) �→ ωS(ω)
+ˆt : S(ω) �→ −i∂ωS(ω).
+(A8)
+Appendix B: Appendix: Derivation of equations (8) and (9)
+a.
+Equation (8)
+To show equation (8) we start with the state before the BS:
+ˆU |ψ⟩ =
+�
+dω1dω2F(ω1, ω2) |ω1, ω2⟩ .
+(B1)
+The usual balanced BS relation reads:
+|ω1⟩1 |ω2⟩2 �→ 1
+2
+�
+|ω1⟩1 |ω2⟩1 − |ω1⟩1 |ω2⟩2 + |ω1⟩2 |ω2⟩1 − |ω1⟩2 |ω2⟩2
+�
+.
+(B2)
+To be able to use it, we introduce two mode changing operators ˆT1 and ˆT2 defined by:
+ˆT1 |ω1⟩1 |ω2⟩2 = |ω1⟩1 |ω2⟩1
+ˆT2 |ω1⟩1 |ω2⟩2 = |ω1⟩2 |ω2⟩2 .
+(B3)
+With these definition the BS splitter relation is equivalent to applying the operator:
+1
+2( ˆT1 − ˆ1 + ˆS − ˆT2),
+(B4)
+where ˆS is the swap operator, defined as ˆS |ω1, ω2⟩ = |ω2, ω1⟩ So the state coming out of the BS is:
+|ψout⟩ = 1
+2
+�
+dω1dω2F(ω1, ω2)
+�
+ˆT1 ˆU − ˆU + ˆS ˆU − ˆT2 ˆU
+�
+|ω1, ω2⟩ .
+(B5)
+If we do selection on coincidence, we only keep the part of the state with one photon in each mode. We get the state:
+|ψfin⟩ = −1
+2
+�
+dω1dω2F(ω1, ω2)
+�
+ˆU − ˆS ˆU
+�
+|ω1, ω2⟩
+(B6a)
+= 1
+2
+�
+ˆS ˆU − ˆU
+�
+|ψ⟩ .
+(B6b)
+
+14
+We can finally compute the coincidence probability by taking the norm square of |ψfin⟩:
+Pc = ⟨ψfin|ψfin⟩
+(B7a)
+= 1
+4 ⟨ψ|
+�
+ˆU † − ˆU † ˆS
+��
+ˆU − ˆS ˆU
+�
+|ψ⟩
+(B7b)
+= 1
+4 ⟨ψ|
+�
+ˆU † ˆU
+����
+=1
+−2 ˆU † ˆS ˆU + ˆU † ˆS ˆS ˆU
+� �� �
+= ˆU † ˆU=1
+�
+|ψ⟩
+(B7c)
+= 1
+2
+�
+1 − ⟨ψ| ˆU † ˆS ˆU |ψ⟩
+�
+.
+(B7d)
+b.
+Equation (9)
+The expression for Q is a direct consequence of the expression of the QFI for pure state.
+The proof of the expression of F is a little bit more involved. We have to compute:
+FI(κ) = 1
+Pc
+�∂Pc
+∂κ
+�2
++ 1
+Pa
+�∂Pa
+∂κ
+�2
+.
+(B8)
+We have seen the expression of the (anti)-coincidence probability Pc and Pa that depends on ⟨ψ| ˆU † ˆS ˆU |ψ⟩. If we
+make the assumption that the state |ψ⟩ is either symmetric or anti-symmetric we known that we have: ⟨ψ| ˆU † ˆS ˆU |ψ⟩ =
+± ⟨ψ| ˆU † ˆS ˆU ˆS |ψ⟩ = ⟨ψ| ˆV (κ) |ψ⟩ where we denote ˆV (κ) = ˆU † ˆS ˆU ˆS = eiκ ˆ
+He−iκ ˆS ˆ
+H ˆS. We first start by expanding this
+scalar product up to the second order in κ, using the short hand notation ⟨·⟩ = ⟨ψ| · |ψ⟩.
+⟨ψ| ˆV (κ) |ψ⟩ =
+�
+eiκ ˆ
+He−iκ ˆS ˆ
+H ˆS�
+(B9a)
+≃
+��
+1 + iκ ˆH − κ2
+2
+ˆH2��
+1 − iκ ˆS ˆH ˆS − κ2
+2 ( ˆS ˆH ˆS)2��
+(B9b)
+=
+�
+1 + iκ ˆH − iκ ˆS ˆH ˆS − κ2
+2
+ˆH2 − κ2
+2 ( ˆS ˆH ˆS)2 + κ ˆH ˆS ˆH ˆS
+�
+(B9c)
+Since the state |ψ⟩ is (anti)-symmetric, for any operators ˆG, we have
+�
+ˆS ˆG
+�
+= ±
+�
+ˆG
+�
+=
+�
+ˆG ˆS
+�
+, which allows some
+simplifications.
+= 1 − κ2
+2
+� �
+ˆH2�
++
+�
+( ˆS ˆH ˆS)2�
+−
+�
+ˆH ˆS ˆH ˆS
+�
+−
+�
+ˆS ˆH ˆS ˆH
+� �
+(B9d)
+= 1 − κ2
+2
+�
+( ˆH − ˆS ˆH ˆS)2�
+(B9e)
+= 1 − κ2
+2 ∆( ˆH − ˆS ˆH ˆS)2
+(B9f)
+Since thanks to the symmetry of |ψ⟩,
+�
+ˆH − ˆS ˆH ˆS
+�
+=
+�
+ˆH − ˆH ˆS2�
+= 0
+
+15
+By defining ˆG = ˆH − ˆS ˆH ˆS it remains to compute the FI:
+FI(κ = 0) = 1
+Pc
+�∂Pc
+∂κ
+�2
++ 1
+Pa
+�∂Pa
+∂κ
+�2
+(B10a)
+=
+1
+4Pc
+�
+κ∆( ˆG)2�2
++
+1
+4Pa
+�
+κ∆( ˆG)2�2
+(B10b)
+= κ2∆( ˆG)4
+4
+� 1
+Pc
++ 1
+Pa
+�
+(B10c)
+= κ2∆( ˆG)4
+4
+Pa + Pc
+PcPa
+(B10d)
+= κ2∆( ˆG)4
+4
+4
+�
+1 + ⟨ψ| ˆV (κ) |ψ⟩
+� �
+1 − ⟨ψ| ˆV (κ) |ψ⟩
+�
+(B10e)
+= κ2∆( ˆG)4
+1
+1 − ⟨ψ| ˆV (κ) |ψ⟩2
+(B10f)
+= κ2∆( ˆG)4
+1
+κ2∆( ˆG)2
+(B10g)
+= ∆( ˆG)2
+(B10h)
+It is interesting to note that the computation of the Fisher information is singular. Indeed for the HOM interfer-
+ometer around κ = 0 the derivative of the probabilities vanishes ∂κPc,a = 0, while one of the two probability (Pc
+if the state is symmetric or Pa if its anti-symmetric) is also equal to zero. We thus obtain here the FI at zero by
+computing it at κ ̸= 0 and taking the limit. As a result we see that the FI is proportional to the second derivative
+of the coincidence probability. This means that for such a measurement what is important is the curvature of the
+probability peak/dip.
+Appendix C: Appendix: Details on the computation of the various variances
+To compute explicitly the various variances of this paper on the two states |ψG⟩ and |ψG⟩ one can note that
+since these states are separable in the variables ω±, if we consider two operators ˆH+ and ˆH− which are respectively
+functions of ˆω+ and ˆt+ or ˆω− and ˆt− we have:
+�
+ˆH+ ˆH−
+�
+=
+�
+ˆH+
+� �
+ˆH−
+�
+. Where for a fixed state |ψ⟩,
+�
+ˆH
+�
+= ⟨ψ| ˆH |ψ⟩.
+In order to compute any variance, one only has to compute some expectation values. By expanding and using
+the independence property from above, one only need to compute as building block expectation value of the form:
+�
+ˆωk
+±ˆtl
+±
+�
+. Indeed we can use the commutation relation to reorder any product such that the frequency operators are
+on the left of the time operators. One has to pay attention that due to the choice of normalisation in the definition of
+ˆω± = ˆω1 ± ˆω2 and ˆt± = ˆt1 ± ˆt2 we have [ˆω±, ˆt±] = 2i. Such expectation values can be obtained systematically using
+a software (here we used Mathematica), we have the following values:
+
+16
+Operator
+Variable +
+Variable − for |ψG⟩
+Variable − for |ψC⟩
+ˆω
+ωp
+0
+0
+ˆω2
+ω2
+p + σ2
++
+σ2
+−
+σ2
+− + 1
+4∆2
+ˆω3
+3σ2
++ωp + ω3
+p
+0
+0
+ˆω4
+3σ4
++ + 6σ2
++ω2
+p + ω4
+p
+3σ4
+−
+3σ4
+− + 3
+2σ2
+−∆2 +
+1
+16∆4
+ˆt
+0
+0
+0
+ˆt2
+1
+σ2
++
+1
+σ2
+−
+1
+σ2
+−
+ˆt3
+0
+0
+0
+ˆt4
+3
+σ4
++
+3
+σ4
+−
+3
+σ4
+−
+ˆωˆt
+i
+i
+i
+ˆω2ˆt
+2iωp
+0
+0
+ˆωˆt2
+ωp
+σ2
++
+0
+0
+ˆω2ˆt2
+ω2
+p
+σ2
++ − 1
+−1
+∆2
+4σ2
+− − 1
+TABLE III: Expectation values of the various product of plus and minus operators on the states |ψG⟩ and |ψC⟩.
+
diff --git a/0NFKT4oBgHgl3EQfNi2Q/content/tmp_files/load_file.txt b/0NFKT4oBgHgl3EQfNi2Q/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..057756c5f0e7486b93b380216232820f7dffc00f
--- /dev/null
+++ b/0NFKT4oBgHgl3EQfNi2Q/content/tmp_files/load_file.txt
@@ -0,0 +1,1153 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf,len=1152
+page_content='Time-frequency metrology with two single-photon states: phase space picture and the Hong-Ou-Mandel interferometer ´Eloi Descamps1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Arne Keller2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' P´erola Milman2 1D´epartement de Physique de l’´Ecole Normale Sup´erieure - PSL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 45 rue d’Ulm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 75005 Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' France 2Universit´ee Paris Cit´e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Laboratoire Mat´eriaux et Ph´enom`enes Quantiques,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 75013 Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' France and 3D´epartement de Physique,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Universit´e Paris-Saclay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 91405 Orsay Cedex,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' France (Dated: January 30,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 2023) We use time-frequency continuous variables as the standard framework to describe states of light in the subspace of individual photons occupying distinguishable auxiliary modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We adapt to this setting the interplay between metrological properties and the phase space picture already extensively studied for quadrature variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We also discuss in details the Hong-Ou-Mandel interferometer, which was previously shown to saturate precision limits, and provide a general formula for the co- incidence probability of a generalized version of this experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' From the obtained expression, we systematically analyze the optimality of this measurement setting for arbitrary unitary transforma- tions applied to each one of the input photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As concrete examples, we discuss transformations which can be represented as translations and rotations in time-frequency phase space for some specific states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' PACS numbers: I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' INTRODUCTION Much has been discovered since the first proposals to use quantum systems in metrology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' From the role of entanglement [1–4] to the one of modes, for pure and noisy systems and measurements, several main results have been established, and the most important one is the fact that quantum mechanical protocols can provide a better scaling in precision with the number of probes than classical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nevertheless, much still remains to be done, in particular concerning the application and the adaptation of such results to specific physical configura- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Of practical importance, for instance, is the issue of finding measurement strategies that lead to the opti- mal calculated limits, and this is far from being obvious for general states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Another relevant problem concerns adapting the general principles to physical constraints, as energy or temperature limits and thresholds [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Those are the main issues of this paper: in one hand, we deeply study the conditions for optimality of a specific measurement set-up and on the other hand, we consider a specific physical system, consisting of individual photons, for measuring time and frequency related parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In order to measure a given parameter κ one performs an experiment producing different outcomes x with asso- ciated probabilities Pκ(x) and build an unbiased estima- tor K such that κ = ⟨K⟩κ is recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Here the index κ means that we take the average for the probability distri- bution Pκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The Cram´er-Rao bound (CRB) [7] imposes a limit on the precision of parameter estimation: δκ ≥ 1 √ NF , (1) where, δκ is the standard deviation in the estimation of κ: δκ = � Varκ(K), N is the number of independent measurements which were performed to estimate κ and F is the quantity known as the Fisher information (FI), defined by : F = � dx 1 Pκ(x) � ∂Pκ(x) ∂κ �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In a quantum setting, one can use as a probe a quan- tum state |ψ⟩ which can evolve under the action of an operator ˆU(κ) = e−iκ ˆ H generated by an Hamilto- nian ˆH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' By optimizing the precision over all possible quantum measurements of a parameter κ, one obtains a bound, called the quantum Cram´er-Rao bound (QCRB) [8] which reads: δκ ≥ 1 √NQ, (2) where Q is a quantity known as the quantum Fisher information (QFI) which for pure states and uni- tary evolutions (as the ones considered in the present paper), is equal to Q = 4(∆ ˆH)2, with (∆ ˆH)2 = ⟨ψ(κ)| ˆH2 |ψ(κ)⟩ − ⟨ψ(κ)| ˆH |ψ(κ)⟩2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The FI indicates the precision of a given measurement, whereas the QFI is the maximum precision obtainable with any measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For a given setting, we can thus compute both quantities (FI and QFI) to have an idea if the measurement is optimal (QFI=FI) or not (QFI>FI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Determining the QFI is a mathematical task much easier than finding a physical experimental set-up that reaches it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In quantum optical systems, several propos- als and implementations exist where the QFI is indeed achieved [4, 9–11], and one example where this is possi- ble is the Hong-Ou-Mandel (HOM) experiment [12–15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this experiment, one focus on simple physical systems composed of two photons occupying distinguishable spa- tial modes with a given spectral distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This state is a particular example of a state defined in the single photon subspace (where each mode is populated by at most one photon), in which a general pure state that can arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='11755v1 [quant-ph] 27 Jan 2023 2 be expanded as: |ψ⟩ = � dω1 · · · dωnF(ω1, · · · , ωn) |ω1, · · · , ωn⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (3) In this formula, the indexes 1,2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='.n, label different aux- iliary degrees of freedom (as for instance polarization or the propagation direction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The state |ω1, · · · , ωn⟩ is a pure state where each photon propagating in the mode α is exactly at the frequency ωα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The spectral function F also known as the joint spectral amplitude (JSA) is normalized to one: � |F(ω1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', ωn)|2dω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='dωn = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this setting one can introduce time and frequency operators for each mode α: ˆωα and ˆtα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' They correspond respectively to the generators of time and frequency shifts of the photon in the mode labeled by α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' An important property of these operators is that, in the considered single photon subspace they satisfy the commutation relation [ˆωα, ˆtβ] = iδα,β analogous to the one observed for the quadrature operators ˆXα and ˆPα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Notice that we are using throughout this paper dimen- sionless operators, which are relative to particular time and frequency scales of the associated implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For a more complete description of the time frequency continuous variables one can refer to Appendix A and to [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Previous works on quantum metrology using the electromagnetic field quadratures or particles’ posi- tion and momentum have shown how the phase space (x1, · · · , xn, p1, · · · , pn) can provide not only insight but also an elegant geometrical picture of the measurement precision [16–18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Indeed the QFI can also be defined in terms of the Bures distance [19] s(|ψ(κ)⟩ , |ψ(κ + dκ)⟩): Q = 4( s(|ψ(κ)⟩,|ψ(κ+dκ)⟩) dκ )2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the case of pure states, this distance is simply expressed in terms of the overlap s(|ψ⟩ , |φ⟩) = � 2(1 − |⟨φ|ψ⟩|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Since the overlap of two states can be computed as the overlap of their respective Wigner function, one can interpret the QFI as a measure of how much the Wigner function must be shifted so as it becomes orthogonal to the initial one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A consequence of this is that the maximum precision of a measurement can be seen geometrically on the Wigner function, by looking at their typical size of variation in the direction of an evo- lution [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Since in the case of single photon states one can also define a time-frequency phase space associated to the variables (τ1, · · · , τn, ϕ1, · · · , ϕn), it is natural to investigate wether the same type of interpretation makes sense in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The present paper purposes are thus twofold: in the first place, we provide general conditions for the HOM to saturate precision limits using time-frequency (TF) vari- ables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For such, we consider arbitrary evolution operators acting on TF variables of single photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In second place, we provide a phase-space picture and interpretation of the QFI for this type of system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Indeed, as shown in [20], there is an analogy between the quadrature phase space and the TF phase space from which metrological proper- ties of time and frequency states can be inferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Never- theless, in the present case, photons have both spectral classical wave-like properties and quantum particle-like ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Interpreting from a quantum perspective both the role of the spectral distribution and of collective quantum properties as entanglement in the single photon subspace has shown to demand taking a different perspective on the TF phase space [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Having this in mind, we in- vestigate how relevant examples of evolution operators, taken from the universal set of continuous variables quan- tum gates, can be implemented and represented in phase space, as well as the precision reached when one measures them using the HOM experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We’ll concentrate on single-mode Gaussian operations, analogously to what was done in [5], even though we provide a general for- mula for any transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This paper is organized as follows: In Section II we provide a description of the TF phase space and introduce the states we’ll discuss in details as well as their representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In Section III we discuss the HOM experiment and the conditions for it to reach optimal precision limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Finally, in Sections IV and V we discuss two different Gaussian operations in phase space as well as their implementation and the associated precision reached in the HOM experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' TIME FREQUENCY PHASE SPACE We consider pure two-photon states which can be writ- ten in the form: |ψ⟩ = � dω1dω2F(ω1, ω2) |ω1, ω2⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The Wigner function in variables (τ1, τ2, ϕ1, ϕ2) of such states can be defined as W|ψ⟩(τ1, τ2, ϕ1, ϕ2) = � dω1dω2e2i(ω1τ1+ω2τ2)F(ϕ1 + ω1, ϕ2 + ω2)F ∗(ϕ1 − ω1, ϕ2 − ω2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (4) Evolutions generated by ˆωα and ˆtα (α = 1, 2) correspond to translations in phase space: We−iˆ ω1κ|ψ⟩(τ1, τ2, ϕ1, ϕ2) = W|ψ⟩(τ1 − κ, τ2, ϕ1, ϕ2), (5a) We−iˆt1κ|ψ⟩(τ1, τ2, ϕ1, ϕ2) = W|ψ⟩(τ1, τ2, ϕ1 − κ, ϕ2), (5b) and analogously for ˆω2 and ˆt2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 3 Using the QFI formulation based on the Bures distance, we can safely state that the precision of a measurement device is related to its capability of distinguishing between an initial state |ψ(κ)⟩ and a state |ψ(κ + dκ)⟩ that has evolved according to a parameter κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This precision is then directly related to how small the parameter dκ should be such that these two states can be distinguished i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' the overlap |⟨ψ(κ)|ψ(κ + dκ)⟩| gets close to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This can be also elegantly interpreted using the overlap of the two states’s respective Wigner functions, that describe trajectories in the phase space that are governed by the interaction Hamiltonian and the parameter dκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' To gain some familiarity with the studied problem we start with the case of a single-photon state |ψ⟩ = � dωS(ω) |ω⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Although using this type of state is not current in metrology, this simpler case can be seen as a building block and will help understanding the role of the spectrum in the present configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For a single photon, the Wigner function is defined as: W(τ, ϕ) = � dωe2iωτS(ϕ + ω)S∗(ϕ − ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the case of a Gaussian state |ψG⟩ with spectral wave function SG(ω) = e − ω2 4σ2 (2πσ2)1/4 its Wigner function is also Gaussian: WG(τ, ϕ) = exp � −2σ2τ 2 − ϕ2 2σ2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' It is characterized by its width in the orthogonal directions τ and ϕ: 1/2σ and σ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' An evolution generated by ˆω corresponds to a trans- lation in the direction τ in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The associated measurement precision is given by the smallest value of dκ such that the initial Wigner function is almost orthog- onal to the translated one in the corresponding direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Since the width of the Wigner function in the direction of evolution is proportional to 1/σ, we have dκ ∼ 1/σ leading to a QFI of the order of Q ∼ σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Alternatively if one considers the generator ˆt, the associated width of the state will be σ leading to a QFI of the order of Q ∼ 1/σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We thus remark that the estimated QFI depends on the width of the state in phase space in the direction of evo- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We notice as well the similarities and differences with the quadrature phase space case: even though the relation between the phase space geometrical properties and metrological interest are common to both variables, in the case of quadrature they are related to some abso- lute quantum resource dependent quantity, the number of photons of the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the present case, the single photon spectrum is a classical resource and its width can only set a relative size scale in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' It is interesting to notice that this type of interpreta- tion is also possible for classical fields, as studied in [22– 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this classical context, the electromagnetic field amplitude replaces the function F and one can also re- late spectral metrological properties to the phase space structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nevertheless, as discussed in [21], this picture is merely associated to classical metrological properties of single mode fields (their spectrum) and no interesting scaling can be observed in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As a matter of fact, the classical single mode field and the single photon phase space can be mapped into one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the present paper, the multi-modal character of the quantum field is an essential ingredient for the discussion of the quantum metrological advantage, since it is a con- sequence of the multi-photon state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We will see in par- ticular how these two features (spectral and particle-like) of the considered single photon subspace are combined in the QFI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The situation is different and richer for bi-photon states, since the phase space is of dimension 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' One can thus imagine different directions of translation as for instance the ones generated by operators ˆω1, ˆω2, ˆω1 − ˆω2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Then, optimizing the measurement precision involves, for a given spectral distribution, choosing a di- rection of evolution for which the Wigner function of the state has the smallest scale structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This direction, as we’ll see, will depend on the number of photons, and can display a non-classical scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' THE HOM AS A MEASUREMENT DEVICE A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The setup In the setup proposed by Hong, Ou and Mandel [25] two photons impinge into a balanced beam splitter (BS), each one of them from a different port, as represented on figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' By measuring the output of the beam-splitter using single-photon detectors we can compute the prob- ability of obtaining coincidences (when the two photons exit the BS by different paths) or anti-coincidences (when they bunch and exit the BS at the same path).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1: Schematic representation of HOM experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Since its original proposal and implementation, many modifications and adaptations were made to the HOM set-up, which was shown to be very versatile to reveal different aspects of quantum optics using two-photon in- terference [26]: it can be used to witness particle [27] and A BS B4 spectral [28] entanglement, to saturate precision bounds on time delay measurements[12, 13] or to directly mea- sure the Wigner function of the incoming state [29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We’re interested in quantum metrological tasks, so we’ll start by discussing the results obtained in [12], where the authors provided experimental evidence that the HOM device can saturate precision limits on time measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' To achieve this result, the authors con- sidered the initial state: |ψU⟩ = 1 √ 2 � dΩf(Ω) � ��ω0 1 + Ω, ω0 2 − Ω � − ��ω0 2 + Ω, ω0 1 − Ω � � , (6) where ω0 1 and ω0 2 are the central frequencies of the pho- tons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Due to the energy conservation and to the phase- matching conditions, the support of the JSA associated to (6) is the line ω1 + ω2 = 0 in the plane (ω1, ω2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' It is anti-diagonal in the plane (ω1, ω2) and infinitely thin along the diagonal direction ω− = ω1 − ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Adding a delay in the arm 1 of the HOM interferometer corre- sponds to an evolution generated by the operator ˆω1, corresponding to a translation κ in the τ1 direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The QFI is simply calculated as: Q = 4∆(ˆω1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' After the beam-splitter, the measurement can lead to two out- comes: coincidence or anti-coincidence, with probability Pc and Pa, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The FI is thus expressed as: F = 1 Pc � ∂Pc ∂κ �2 + 1 Pa � ∂Pa ∂κ �2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The authors of [12] thus showed that using the input state (6) in the HOM inter- ferometer, the two quantities F and Q are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In [13] the HOM interferometer was also used and shown to lead to the QFI in a two-parameter estimation experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Finally, in [14] biphoton states were classi- fied as metrological resources according to their spectral width, still in the situation where the HOM experiment is used as a measurement apparatus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Generalization: the HOM as an optimal measurement device for quantum metrology with biphotons We now make a general description of the HOM ex- periment as a parameter estimation device and try to understand and determine when it corresponds to an op- timal measurement strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In [13], the authors tackle a part of this problem by studying the HOM as a measure- ment apparatus for two parameter estimation by estab- lishing conditions on frequency correlation states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this reference, the authors restrict themselves to time delay evolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the present paper, we are interested in studying any evolution that can be described by a two photon unitary |ψ(κ)⟩ = ˆU(κ) |ψ⟩ = e−i ˆ Hκ |ψ⟩ (see figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We will see that under a symmetry assumption on the JSA of the state, it is possible to obtain an explicit formula for the FI, and this formula can be used to compute at a glance if the measurement setup considered is optimal or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 2: HOM setup where we apply a general gate ˆU before the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For any input state |ψ⟩, the QFI will then be expressed as: Q = 4∆( ˆH)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (7) On the other hand, one can show that the coincidence probability is: Pc = 1 2(1 − ⟨ψ| ˆU † ˆS ˆU |ψ⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (8) (see Appendix B) where we introduced the hermitian swap operators ˆS whose action on the states is given by ˆS |ω1, ω2⟩ = |ω2, ω1⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Furthermore we can compute the associated FI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' If the state |ψ⟩ is symmetric or anti- symmetric (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' ˆS |ψ⟩ = ± |ψ⟩) the FI at κ = 0 it is given by: F = ∆( ˆH − ˆS ˆH ˆS)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (9) (see Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This means that under the symme- try assumption on the JSA, comparing the QFI and the FI is done simply by comparing the variance of two different operators, mainly: 2 ˆH and ˆH − ˆS ˆH ˆS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Equation (9) implies that if [ ˆH, ˆS] = 0, then F = 0 and no information can be obtained about κ from the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' However, if { ˆH, ˆS} = 0 then F = Q since ˆS ˆH ˆS = − ˆS2 ˆH = − ˆH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this last case, the measurement strategy is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In [31], general con- ditions for reaching the QFI were also obtained in the context of amplitude correlation measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' These conditions are based on a quantum state’s symmetry under (unphysical) path exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The previous calculations form a simple tool that can be applied to different evolution Hamiltonians ˆH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We’ll now discuss examples taken from the universal set of quantum gates in continuous variables: translations (gen- erated by operator ˆωα’s) and rotations (generated by ˆH = (ˆω2 +ˆt2)/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' These gates have already been studied in [5] in the case of quadrature or position and momen- tum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the present physical configuration, they corre- spond to the free evolution of single photons in free space A U 2 BS B5 (translations) or in a dispersive medium, as for instance an optical fiber combined to time lenses (rotation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' TIME-FREQUENCY PHASE-SPACE TRANSLATIONS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Different types of translations Since we’re considering two-photon states, translations can be represented by any linear combination of the cor- responding operators, that is : ˆH = αˆω1+βˆω2+γˆt1+δˆt2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' To illustrate our results we choose to focus on the four operators ˆω1, ˆω2 and ˆω± = ˆω1 ± ˆω2, since they are the most easily implemented in HOM experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Notice that ˆω± are collective operators acting in both input photons while ˆω1,2 act in a single photon only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' If we consider a state which is (anti-)symmetric and separable in the variables ω± = ω1 ± ω2, we can write: |ψ⟩ = 1 √ 2 � dω+dω−f(ω+)g(ω−) ���� ω+ + ω− 2 , ω+ − ω− 2 � , (10) with g satisfying g(−ω) = ±g(ω) and the functions g and f being normalized to one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The specific form of each function is related to the phase-matching conditions and the energy conservation of the two-photon generation process and this type of state can be experimentally pro- duced in many set-ups [32, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Using equations (7) and (9) we can compute the QFI and FI associated to each type of evolution: For ˆH = ˆω1, we get Q = ∆(2ˆω1)2 = ∆(ˆω++ˆω−)2 = ∆(ˆω−)2 + ∆(ˆω+)2, while F = ∆(ˆω−)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Thus this situation is optimal only if ∆(ˆω+)2 = 0, which was the case for the state |ψU⟩ of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (6) used in [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We obtain the same type of result for ˆω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For ˆH = ˆω+, Q = 4∆(ˆω+)2, while F = ∆(ˆω+ − ˆω+)2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this situation the precision of the measurement is zero, and the reason for that is that variables ω+ cannot be measured using the HOM experiment (we notice that [ˆω+, ˆS] = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For ˆH = ˆω−, we get Q = 4∆(ˆω−)2, while F = ∆(ˆω− + ˆω−)2 = 4∆(ˆω−)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This time we have F = Q, which means that the measurement is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this case, we have that {ˆω−, ˆS} = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We now illustrate these general expressions and inter- pret them using different quantum states and their phase space representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Example: Gaussian and Schr¨odinger cat-like state To illustrate our point we discuss as an example two states |ψG⟩ and |ψC⟩ that can be expressed in the form of equation (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For |ψG⟩, f and g are Gaussians: fG(ω+) = e − (ω+−ωp)2 4σ2 + (2πσ2 +)1/4 gG(ω−) = e − ω2 − 4σ2 − (2πσ2 −)1/4 , (11) where σ± is the width of the corresponding function and ωp is a constant, which is also the photon’s central fre- quency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As for state |ψC⟩, it can be seen as the general- ization of (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We consider f to be Gaussian and g to be the sum of two Gaussians: fC(ω+) = fG(ω+) gC(ω−) = 1 √ 2 � gG(ω− + ∆/2) − gG(ω− − ∆/2) � , (12) where ∆ is the distance between the two Gaussian peaks of gC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We assume that the two peaks are well separated: ∆ ≫ σ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Consequently, gC is approximately normal- ized to one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We can verify that with these definitions the function gG is even while gC is odd by exchange of variables ω1 and ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We first compute the variances for both states (table I) and then apply the formula (7) and (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' State |ψG⟩ |ψC⟩ ∆(ˆω1)2 or ∆(ˆω2)2 1 4σ2 + + 1 4σ2 − 1 16∆2 + 1 4σ2 + + 1 4σ2 − (∆ˆω+)2 σ2 + σ2 + (∆ˆω−)2 σ2 − 1 4∆2 + σ2 − TABLE I: Variance of various time translation operators for states |ψG⟩ and |ψC⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' See Appendix C for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' So for the case of an evolution generated by ˆω1, for |ψG⟩ we obtain: Q = σ2 + + σ2 − F = σ2 −, (13) while for |ψC⟩ we have: Q = 1 4∆2 + σ2 + + σ2 − F = 1 4∆2 + σ2 −.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (14) We thus see that time precision using the HOM measure- ment and the quantum state evolution generated by ˆω1 is optimal only if the parameter σ+ is negligible compared to ∆ or σ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This is exactly the case for the state (6) where σ+ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In addition, we see that there is a difference between the QFI associated to |ψC⟩ and |ψG⟩ involving the param- eter ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This difference can be interpreted, as discussed in [14], as a spectral effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this reference, the spectral width is considered as a resource, and for a same spectral width state |ψC⟩ has a larger variance than state |ψG⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nevertheless, as discussed in [21], this effect has a clas- sical spectral engineering origin and choosing to use one rather than the other depends on the experimentalists constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 6 (a) Projection on the plane τ−, ω− (b) Projection on the plane τ1, ω1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 3: Wigner function of the cat-like state |ψC⟩ projected in different variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Interpretation of translations in the time-frequency phase space We now discuss the dependency of precision on the direction of translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For such, we can consider the Wigner function associated to a JSA which is separable in the ω± variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Its Wigner function will also be separable on these variables: W(τ1, τ2, ϕ1, ϕ2) = W+(τ+, ϕ+)W−(τ−, ϕ−), (15) where the phase space variables τ± and ϕ± are defined as: ϕ± = ϕ1±ϕ2 2 and τ± = τ1 ± τ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Even though the Wigner function W+ (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' W−) can be associated to the one of a single variable (ω+ (ω−)) and spectral wave function f (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' g), it displays some differences with the single photon one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This fact is well illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For state |ψC⟩, according to (15) the projection of the Wigner function W− in the plane τ−, φ− of the phase space can be represented as show in Figure 3 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We see that it is composed of two basic shapes: two Gaussian peaks and an oscillation pattern in between.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Figure 3 (b) represents another way to project this very same Wigner function onto the plane τ1, φ1 of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' One can observe that in this case the distance between the peaks is larger than in the previous representation by a factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As precision is directly related to the size of the Wigner function structures in phase space, we observe that the interference fringes are closer apart in the phase space associated to the minus variable than in the one associated to mode 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Thus, the precision in parameter estimation will be better using ˆω− as the generator of the evolution than when using ˆω1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This phase space based observations explain well the result of the computation of the QFI: 4∆(ˆω1)2 = ∆(ˆω−)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (16) with the assumption that σ+ ≪ ∆, σ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The reason for the appearance of a factor 2 difference in fringe spacing for the Wigner function associated to variable ω− is the fact that it is a collective variable, and translations in the phase space associated to these variables are associated to collective operators, acting on both input photons (instead of a single one, as is the case of translations generated by operator ˆω1, for instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Thus, one can observe, depending on the biphoton quan- tum state (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', for some types of frequency entangled states), a scaling depending on the number of particles (in this case, two).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As analyzed in [21] for general single pho- ton states composed of n individual photons, we have for frequency separable states a scaling corresponding to the shot-noise one (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', proportional to √n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A Heisenberg- like scaling (proportional to n) can be achieved for non- physical maximally frequency correlated states, and con- sidering a physical non-singular spectrum leads to a non- classical scaling in between the shot-noise and the Heisen- berg limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Experimentally, such collective translation can be im- plemented by adding a delay of τ in arm 1 and of −τ in arm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Notice that this situation is different from cre- ating a delay of 2τ in only one arm, even though both situations lead to the same experimental results in the particular context of the HOM experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' TIME-FREQUENCY PHASE SPACE ROTATIONS We now move to the discussion of the phase space ro- tations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For this, we’ll start by providing some intuition by discussing in first place the single photon (or single mode) situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this case, time-frequency phase space rotations are generated by the operators ˆR = 1 2(ˆω2 + ˆt2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As previously mentioned, we consider here dimension- less observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physically, time-frequency phase space rotations correspond to performing a fractional Fourier transform of the JSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' While for transverse variable of single photons the free propagation or a combination of lenses can be used for implementing this type of oper- ation [34, 35], in the case of time and frequency this transformation corresponds to the free propagation in a dispersive medium [36–40] combined to temporal lenses [41–43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Single mode rotations In this Section, we compute the QFI associated to a rotation ˆR for a single photon, single mode state using the variance of this operator for different states |ψ⟩ = � dωS(ω) |ω⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As for the translation, this simpler configuration is used as a tool to better understand the two photon case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 10 5 0 5 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='5 5 10 0 5 107 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Gaussian state: We start by discussing a single-photon Gaussian state at central frequency ω0 and spectral width σ: |ψG(ω0)⟩ = 1 (2πσ2)1/4 � dωe− (ω−ω0)2 4σ2 |ω⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (17) For this state, we have that: ∆( ˆR)2 = σ2ω2 0 + 1 8 � 1 4σ4 + 4σ4 − 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (18) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (18) has two types of contributions that we can in- terpret: The first term σ2ω2 0 corresponds to the distance in phase space (ω0) of the center of the distribution, to the origin of the phase space (ω = 0, τ = 0), times the width of the state σ in the direction of rotation (see Figure 4 (a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This term is quite intuitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The Wigner function of a state which is rotated by an angle θ = 1/2σω0 has an overlap with the Wigner function of the initial one which is close to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The term 1 4σ4 + 4σ4 − 2 reaches 0 as a minimum when σ = 1 √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For this value the Wigner function is perfectly rotationally symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Its meaning can be intuitively understood if we consider that ω0 = 0, so that this term becomes the only con- tribution to the variance(see Figure 4 (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this case, we are implementing a rotation around the center of the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' If the state is fully symmetric then this rotation has no effect, and the variance is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Only in the case where the distributions ro- tational symmetry is broken we obtain a non zero contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Schr¨odinger cat-like state centered at the origin (ω = 0): We now consider the superposition of two Gaussian states: ��ψ0 C � = 1 √ 2(|ψG(∆/2)⟩ − |ψG(−∆/2)⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (19) This state is of course non physical as a single-photon state, since it contains negative frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' However, since it can be be well defined using collective variables (as for instance ω−) for a two or more photons state, we still discuss it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Assuming that the two peaks are well separated (∆ ≫ σ), we can ignore the terms proportional to e− ∆2 8σ2 , and this leads to: ∆( ˆR)2 = 1 8 � 1 4σ4 + 4σ4 − 2 � + 1 4∆2σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (20) We see that there is no clear metrological advantage when using this state compared to the Gaussian state: the quantity ∆/2 plays the same role as ω0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This can be understood geometrically once again, with the help of the Wigner function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We see in Figure 4 (c) how the considered state evolves under a rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this situation the interference fringes are rotated around their center so even though they display a small scale structure, they are moved only by a small amount, resulting in a non significant precision improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Schr¨odinger cat-like state centered at any frequency: We can now discuss the state formed by the superpo- sition of two Gaussian states whose peaks are at frequen- cies ω0 − ∆/2 and ω0 + ∆/2, and with the same spectral width σ as previously considered: |ψC⟩ = 1 √ 2 � |ψG(ω0 + ∆/2)⟩ − |ψG(ω0 − ∆/2)⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (21) Still under the assumption of a large separation between the two central frequencies (∆ ≫ σ), we obtain: ∆( ˆR)2 = 1 8 � 1 4σ4 + 4σ4 − 2 � + 1 4∆2(σ2 + ω2 0) + σ2ω2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (22) We can notice that by setting ω0 = 0 we recover the variance corresponding to the same state rotated around its center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nevertheless, in the present case ω0 ̸= 0, and we have two additional terms: σ2ω2 0 and ∆2ω2 0/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Both terms can be interpreted as a product of the state’s dis- tance to the origin and its structure in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' How- ever, while the first one is simply the one corresponding to the Gaussian state, the second one is a product of the states’ distance to the origin and its small structures in phase space, created by the interference between the two Gaussian states (see Figure 4 (d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The interference pat- tern is thus rotated by an angle θ corresponding to an arc of length ω0θ, and since the distance between the fringes is of order ∆, if θ ∼ 1/ω0∆ (corresponding to the term ∆2ω2 0/4 in the expression of the variance) the rotated state is close to orthogonal to the initial one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In all this section, we have considered rotations about the time and frequency origin of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Never- theless, it is of course possible to displace this origin and consider instead rotations about different points of the TF phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this case, for a rotation around an arbitrary point τ0 and ϕ0, the generator would be given by (ˆω − ϕ0)2/2 + (ˆt − τ0)2/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Different types of rotations We now move to the case of two single photons (biphoton states).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As for the case of translations, there are many possible variables and can consider rotations in different planes of the phase space: ˆR1, ˆR2, ˆR±, 8 (a) Gaussian state centered at ω0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For θω0 ∼ 1/2σ the initial state and the rotate one are distinguishable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (b) Gaussian state centered at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The rotated state will be distinguishable from the initial one only in the absence of rotational symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (c) Superposition of two Gaussian states (cat-like state) centered the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The small structures of the fringes do not play a relevant role since they are only moved by a small distance under rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (d) Superposition of two Gaussian states (cat-like state) centered at ω0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The fringes play an important role, since with θω0 ∼ 1/∆, the two states are nearly orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 4: Schematic representation of the Wigner function of various states under rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The ellipses represent the typical width of Gaussians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The doted lines represent the rotated states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' ˆR1 ± ˆR2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' where ˆR1 = 1 2(ˆω2 1 + ˆt2 1) (and similarly for ˆR2) and ˆR± = 1 4(ˆω2 ± + ˆt2 ±) (recall that ˆω± = ˆω1 ± ˆω2 and ˆt± = ˆt1 ± ˆt2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For all these operators we can as before apply the general formula for the QFI and of the FI to the corresponding HOM measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The results are displayed in table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Operator QFI FI ˆR1 4∆( ˆR1)2 ∆( ˆR1 − ˆR2)2 ˆR± 4∆( ˆR±)2 0 ˆR1 + ˆR2 4∆( ˆR1 + ˆR2)2 0 ˆR1 − ˆR2 4∆( ˆR1 − ˆR2)2 4∆( ˆR1 − ˆR2)2 TABLE II: QFI and FI of various rotation operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We see that the only two situations where the HOM can indeed be useful as a measurement device for metro- logical applications are ˆR1 and ˆR1 − ˆR2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The reason for that is the symmetry of ˆR± and ˆR1+ ˆR2, which commute with the swap operator ˆS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As for ˆR1, it corresponds to the rotation of only one of the photons and may not be the optimal strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Finally, ˆR1 − ˆR2 corresponds to the simultaneous rotation in opposite directions of both photons sent into the two different input spatial modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As ˆR1 − ˆR2 anti-commutes with ˆS then we can affirm that the HOM measurement is optimal for this type of evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' QFI and FI computation with Gaussian and cat-like state We now compute the QFI and FI using the variance of ˆR1 and ˆR1 − ˆR2 calculated for states |ψG⟩ and |ψC⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For |ψG⟩: We have: ∆( ˆR1)2 = 1 32 �� 1 σ2 + + 1 σ2 − �2 + (σ2 + + σ2 −)2 − 8 � + 1 16ω2 p(σ2 + + σ2 −) ∆( ˆR1 − ˆR2) = 1 4 � 1 σ2 +σ2 − + σ2 +σ2 − − 2 � + 1 4σ2 −ω2 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (23) For |ψC⟩: We have: ∆( ˆR1)2 = 1 32 �� 1 σ2 + + 1 σ2 − �2 + (σ2 + + σ2 −)2 − 8 � + 1 64(4ω2 p + ∆2)(σ2 + + σ2 −) + 1 64∆2ω2 p + ∆2 128 � 1 σ2 − + σ2 − � ∆( ˆR1 − ˆR2) = 1 4 � 1 σ2 +σ2 − + σ2 +σ2 − − 2 � + 1 4σ2 −ω2 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (24) We notice that for both states 4∆( ˆR1)2 ≥ ∆( ˆR1− ˆR2)2, meaning that the measurement of a rotation imple- mented in only one mode using the HOM is not an optimal measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Experimentally realizing an evolution generated by ˆR1 is easier than implementing the one associated to ˆR1− ˆR2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Furthermore we see that for the Gaussian state |ψG⟩ a dominant term is ω2 pσ2 − which appears with the same factor in 4∆( ˆR1)2 and ∆( ˆR1 − ˆR2)2, meaning that one could perform a measurement which although not opti- mal would be pretty efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The same applies to the Schr¨odinger cat-like state |ψC⟩ where one dominant term is ∆2ω2 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phase space interpretation We now provide a geometrical interpretation of the previous results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' If we consider that σ− ≫ σ+ in T 0 6 1 2g 03T 个 6 1 2g7 0T 039 the case of a Gaussian state or ∆ ≫ σ+ in the case of a Schr¨odinger cat-like state, the projection of the Wigner function on the plane corresponding to collective minus variables (τ−, φ−) is the one presenting a relevant phase space structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Thus, it would be interesting to consider, as in the case of translations, that these states are manipulated using operators acting on modes associated to this collective variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A na¨ıve guess would then trying to apply the rotation operator ˆR−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' However it comes with many difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Indeed it first poses an experimental problem, since this rotation corresponds to a non-local action which would be very hard to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In addition, the HOM is not able to measure such evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Finally, it turns out that this is not the operator with the greatest QFI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This fact can be understood by taking a more careful look at the Wigner function of the considered states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The Wigner function for separable states can be factorized as the product of two Wigner functions defined in variables plus and minus, and we have that W+ is the Wigner function of a Gaussian state centered at ωp (corresponding to the situation (a) in Figure (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As for W−, it is either the Wigner function of a Gaussian state or the one associated to a superposition of two Gaussian states centered around zero (corresponding to the situation (b) and (c) in Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The QFI increases with the distance of the states to the rotation point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For this reason, states |ψG⟩ and |ψC⟩ under a rotation using ˆR−, do not lead to a high QFI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A higher QFI is obtained using rotations around a point which is far away from the center of the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this case, the QFI displays a term which is proportional to the distance from the center of rotation squared di- vided by the width of the state squared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Both terms ω2 pσ2 − and ∆2ω2 p which were dominant in the expression of the variance of ˆR1 and ˆR1 − ˆR2 can be interpreted as such.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This means that the rotation ˆR1, whose ac- tion is not easily seen in the variables plus and minus, can be interpreted as a rotation which moves W− around the distance ωp from the origin of the TF phase space (ω = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For both states then, the main numerical contribution to the QFI comes from a classical effect, related to the intrinsic resolution associated to the central (high) fre- quency of the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In general, in phase space rotations, both in the quadrature and in the TF configuration, the distance from the phase space origin plays an important role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' While in the quadrature configuration this distance has a physical meaning that can be associated both to the phase space structure and to the number of probes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the case of TF phase space, the distance from the origin and the phase space scaling are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In partic- ular, the distance from the origin can be considered as a classical resource that plays no role on the scaling with the number of probes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A discussion on scaling properties of rotations The different types of FT phase space rotations have different types of interpretation in terms of scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The combined rotations of the type ˆR1 ± ˆR2, for instance, can be generalized to an n photon set-up through oper- ators as ˆR = �n i αi ˆRi, with αi = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this situation, we have that rotation operators are applied individually and independently to each one of the the n photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this case, we can expect, in first place, a collective (clas- sical) effect, coming simply from the fact that we have n probes (each photon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In addition, it is possible to show that a Heisenberg-like scaling can be obtained by con- sidering states which are maximally mode entangled in a mode basis corresponding to the eigenfunctions of oper- ators ˆRi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Indeed, for each photon (the i-th one), we can define a mode basis such that ˆRi |φk⟩i = (k + 1/2) |φk⟩i, with |φk⟩i = 1 √ 2kk!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1 π1/4 � dωe− ω2 2 Hk(ω) |ω⟩i with Hk(ω) being the k-th Hermite polynomial associated to the i- th photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For a maximally entangled state in this mode basis, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' , a state of the type |φ⟩ = �∞ k=0 Ak �n i=1 |φk⟩i, (where we recall that the subscript i refers to each pho- ton and k to the rotation eigenvalues) the ˆR eigenvalues behave as random classical variables and we can show that the QFI scales as n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As for rotations of the type ˆR±, they cannot be de- composed as independently acting on each photon, but consist of entangling operators that can be treated ex- actly as ˆR1 and ˆR2 but using variables ω± = ω1 ± ω2 instead of ω1 and ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We can also compute the scal- ing of operators as ˆJ = � Ωβ ˆRΩβ where Ωβ = �n i αiωi, αi = ±1 and β is one of the 2n−1 ways to define a collec- tive variable using the coefficients αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' For such, we can use the same techniques as in the previous paragraph but for the collective variables Ωβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nevertheless, the exper- imental complexity of producing this type of evolution and the entangled states reaching the Heisenberg limit is such that we’ll omit this discussion here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' CONCLUSION We have extensively analyzed a quantum optical set- up, the HOM interferometer, in terms of its quantum metrological properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We provided a general formula for the coincidence probability of this experiment which led to a general formula for the associated FI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We used this formula to analyze different types of evolution and showed when it is possible to reach the QFI in this set- up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In particular, we made a clear difference between col- lective quantum effects that contribute to a better than classical precision scaling and classical only effects, asso- ciated to single mode spectral properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We then briefly discussed the general scaling properties of the QFI asso- ciated to the studied operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Our results provide a complete recipe to optimize the HOM experiment with metrological purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' They rely 10 on the symmetry properties of quantum states that are revealed by the HOM interferometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' An interesting per- spective is to generalize this type of reasoning for differ- ent set-ups where different symmetries play a role on the measurement outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Acknowledgements The French gouvernement through the action France 2030 from Agence Nationale de la Recherche, reference “ANR-22-PETQ-0006” provided financial support to this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We thanks Nicolas Fabre for fruitful discussions and comments on the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [1] Daniel Braun, Gerardo Adesso, Fabio Benatti, Roberto Floreanini, Ugo Marzolino, Morgan W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mitchell, and Stefano Pirandola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum-enhanced measurements without entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 90:035006, Sep 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='035006, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 035006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [2] Luca Pezz`e, Augusto Smerzi, Markus K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Oberthaler, Ro- man Schmied, and Philipp Treutlein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum metrol- ogy with nonclassical states of atomic ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 90:035005, Sep 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='035005, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='035005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [3] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac- cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum-enhanced measurements: Beating the standard quantum limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Science, 306(5700):1330–1336, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1104149, arXiv:https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1104149, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1126/ science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1104149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [4] Iagoba Apellaniz, Matthias Kleinmann, Otfried G¨uhne, and G´eza T´oth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Optimal witnessing of the quantum fisher information with few measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 95:032330, Mar 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='032330, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='032330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [5] Dominik ˇSafr´anek and Ivette Fuentes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Optimal probe states for the estimation of Gaussian unitary chan- nels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review A, 94(6):062313, December 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' arXiv:1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='05545 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/ abs/1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='05545, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='062313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [6] Louis Garbe, Simone Felicetti, Perola Milman, Thomas Coudreau, and Arne Keller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Metrological advantage at finite temperature for gaussian phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 99:043815, Apr 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https:// link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='043815, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='043815.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [7] Harald Cram´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mathematical Methods of Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Princeton University Press, June 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [8] Samuel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Braunstein, Carlton M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Caves, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Milburn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Generalized Uncertainty Re- lations: Theory, Examples, and Lorentz In- variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Annals of Physics, 247(1):135–173, April 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' com/science/article/pii/S0003491696900408, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1006/aphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Bi´e Alves, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Pimentel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Hor-Meyll, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Wal- born, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Davidovich, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' de Matos Filho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Achiev- ing metrological precision limits through postselection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 95:012104, Jan 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https:// link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='012104, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='012104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [10] Spagnolo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Del Re L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='. D’Ambrosio, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Pho- tonic polarization gears for ultra-sensitive angular mea- surements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nat Commun, (4):2432, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' doi:https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1038/ncomms3432.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [11] Xu Yu, Xiang Zhao, Luyi Shen, Yanyan Shao, Jing Liu, and Xiaoguang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Maximal quantum fisher information for phase estimation without initial par- ity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Express, 26(13):16292–16302, Jun 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/oe/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='URI= oe-26-13-16292, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1364/OE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='016292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [12] Yuanyuan Chen, Matthias Fink, Fabian Steinlechner, Juan P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Torres, and Rupert Ursin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Hong-ou-mandel in- terferometry on a biphoton beat note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 5(1):43, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1038/s41534-019-0161-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [13] Kyle M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Jordan, Raphael A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Abrahao, and Jeff S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Lun- deen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum metrology timing limits of the hong- ou-mandel interferometer and of general two-photon measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 106:063715, Dec 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='063715, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='063715.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Fabre and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Felicetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Parameter estimation of time and frequency shifts with generalized hong-ou-mandel interferometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 104:022208, Aug 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='022208, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='022208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [15] Ashley Lyons, George C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Knee, Eliot Bolduc, Thomas Roger, Jonathan Leach, Erik M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Gauger, and Daniele Faccio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Attosecond-resolution hong-ou-mandel in- terferometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 4(5):eaap9416, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://advances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='sciencemag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/lookup/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aap9416, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aap9416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [16] Nicolas Fabre, Arne Keller, and P´erola Milman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Time and frequency as quantum continuous variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys- ical Review A, 105(5):052429, May 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='052429, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='052429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [17] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Toscano, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Dalvit, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Davidovich, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Zurek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Sub-Planck phase-space structures and Heisenberg-limited measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review A, 73(2):023803, February 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 11 1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='023803, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 023803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [18] Wojciech Hubert Zurek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Sub-planck structure in phase space and its relevance for quantum decoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Nature, 412(6848):712–717, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1038/35089017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [19] Samuel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Braunstein and Carlton M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Caves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Statistical distance and the geometry of quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review Letters, 72(22):3439–3443, May 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3439, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [20] Nicolas Fabre, Arne Keller, and P´erola Milman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Time and frequency as quantum continuous variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 105:052429, May 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='052429, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='052429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [21] Eloi Descamps, Nicolas Fabre, Arne Keller, and Per- ola Milman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum metrology using time-frequency as quantum continuous variables: sub shot-noise pre- cision and phase space representation, October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='05511 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/ abs/2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='05511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [22] Dane R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Austin, Tobias Witting, Adam S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Wyatt, and Ian A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Walmsley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Measuring sub-planck structural analogues in chronocyclic phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Optics Com- munications, 283(5):855–859, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quo vadis Quan- tum Optics?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='com/ science/article/pii/S0030401809010529, doi:https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='optcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [23] Ludmi�la Praxmeyer, Piotr Wasylczyk, Czes�law Radzewicz, and Krzysztof W´odkiewicz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Time-Frequency Domain Analogues of Phase Space Sub-Planck Struc- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review Letters, 98(6):063901, February 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 063901, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='063901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [24] Ludmila Praxmeyer, Chih-Cheng Chen, Popo Yang, Shang-Da Yang, and Ray-Kuang Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Direct measure- ment of time-frequency analogs of sub-Planck struc- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review A, 93(5):053835, May 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https:// link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='053835, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='053835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [25] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Hong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ou, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mandel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Measurement of subpicosecond time intervals between two photons by interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review Letters, 59(18):2044– 2046, November 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physi- cal Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='2044, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 2044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [26] Fabre, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', Amanti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', Baboux, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', Keller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', Ducci, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', and Milman, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Correction: The hong- ou-mandel experiment: from photon indistinguishabil- ity to continuous-variable quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' D, 76(12):251, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1140/epjd/ s10053-022-00576-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [27] Megan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ray and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' van Enk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Verifying en- tanglement in the hong-ou-mandel dip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 83:042318, Apr 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='042318, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='042318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [28] Andreas Eckstein and Christine Silberhorn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Broad- band frequency mode entanglement in waveguided para- metric downconversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 33(16):1825, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='osapublishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URI=ol-33-16-1825, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1364/OL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='001825.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [29] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Douce, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Eckstein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Walborn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Khoury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ducci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Keller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Coudreau, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Milman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Direct measurement of the biphoton wigner function through two-photon interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Scientific Reports, 3:3530, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1038/srep03530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [30] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Fabre, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Amanti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Baboux, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Keller, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ducci, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Milman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The Hong–Ou–Mandel experiment: from photon indistinguishability to continuous-variable quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The European Physical Jour- nal D, 76(10):196, October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1140/epjd/ s10053-022-00525-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [31] Holger F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Hofmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 79:033822, Mar 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='033822, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 033822.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [32] Guillaume Boucher, Tom Douce, David Bresteau, Stephen Patrick Walborn, Arne Keller, Thomas Coudreau, Sara Ducci, and Perola Milman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Toolbox for continuous variable entanglement production and mea- surement using spontaneous parametric down conversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 92(2):023804, 2015-08-04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: http: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/abs/1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='06077, arXiv:1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='06077, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='023804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ramelow, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ratschbacher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Fedrizzi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Lang- ford, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Zeilinger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Discrete Tunable Color En- tanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Physical Review Letters, 103(25):253601, December 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Publisher: American Physical So- ciety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='253601, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='253601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [34] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Tasca, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Gomes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Toscano, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Souto Ribeiro, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Walborn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Continuous variable quan- tum computation with spatial degrees of freedom of pho- tons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 83(5):052325, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: http:// arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/abs/1106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3049, arXiv:1106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3049, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='052325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [35] Pierre Pellat-Finet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Fresnel diffraction and the fractional- order fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 19(18):1388– 1390, Sep 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/ol/ abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='URI=ol-19-18-1388, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1364/OL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='001388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [36] Panagiotis Vergyris, Charles Babin, Raphael Nold, Elie Gouzien, Harald Herrmann, Christine Silberhorn, Olivier Alibart, S´ebastien Tanzilli, and Florian Kaiser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Two- photon phase-sensing with single-photon detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ap- plied Physics Letters, 117(2):024001, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' arXiv: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0009527, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 0009527.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Reisner, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mazeas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Dauliat, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Leconte, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Ak- tas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Cannon, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Roy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Jamier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Sauder, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Kaiser, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Tanzilli, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Labont´e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum-limited deter- mination of refractive index difference by means of en- tanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' npj Quantum Inf, (8):58, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1038/s41534-022-00567-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [38] Keisuke Goda, Daniel R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Solli, Kevin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Tsia, and Bahram Jalali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Theory of amplified dispersive fourier transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' A, 80:043821, Oct 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='043821, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='043821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [39] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Goda and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Jalali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Dispersive fourier transforma- 12 tion for fast continuous single-shot measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Na- ture Photon, 7:102–112, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1038/nphoton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='359.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [40] Hsuan-Hao Lu, Ogaga D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Odele, Daniel E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Leaird, and Andrew M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Weiner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Arbitrary shaping of biphoton corre- lations using near-field frequency-to-time mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 43(4):743–746, Feb 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/ol/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='URI=ol-43-4-743, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1364/OL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='000743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [41] Mateusz Mazelanik, Adam Leszczy´nski, Micha�l Lipka, Micha�l Parniak, and Wojciech Wasilewski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Tempo- ral imaging for ultra-narrowband few-photon states of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Optica, 7(3):203–208, Mar 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://opg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='optica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/optica/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='URI= optica-7-3-203, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1364/OPTICA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='382891.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [42] Nicolas Fabre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Quantum information in time-frequency continuous variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' PhD thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [43] Avi Pe’er, Barak Dayan, Asher A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Friesem, and Yaron Silberberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Temporal shaping of entangled photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 94:073601, Feb 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https:// link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='073601, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='073601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Fabre and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Treps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Modes and states in quantum optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=', 92(3):035005, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' URL: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/ RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='035005, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 035005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Appendix A: Time frequency formalism In quantum mechanics, light is described with the help of modes [44], representing the various physical properties a photon can have: frequency, position, spectral shape, wave vector, polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Mathematically we associate to each mode α a creation and annihilation operators ˆa† α and ˆaα which satisfy the familiar bosonic commutation relation [ˆaα, ˆa† β] = δα,β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The quantum states are then obtained by acting with the creation operators on the vacuum |vac⟩, which can be interpreted as adding a photon in the corresponding mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In time frequency continuous variables we look at modes parameterized by the frequency [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We will thus adapt the terminology: for us a mode will correspond to all physical parameter needed to describe a photon excluding the frequency (position, wave vector, polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In the following we will look at interferometers, and thus the parameter α will describe in which arm the photon is propagating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We will thus describe single photon states in a given mode α with frequency ω with the help of a creation operator acting on the vacuum state: ˆa† α(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In this situation the commutation relation is written as [ˆaα(ω), ˆa† β(ω′)] = δ(ω − ω′)δα,β, (A1) the other commutation relations (between two creation or two annihilation operators) vanishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' It’s useful to intro- duce the conjugated temporal variable t, by the use of the Fourier transform: ˆaα(t) = 1 √ 2π � dωˆaα(ω)e−iωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (A2) We can verify that the creation and annihilation operators in the temporal domain verify the same commutation relation as the one in the spectral domain: [ˆaα(t), ˆa† β(t′)] = δ(t − t′)δα,β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' States in time-frequency variables The creation operators allow to define general single photon states on a single mode via: |ψ⟩ = � dωS(ω)ˆa†(ω) |vac⟩ = � dωS(ω) |ω⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (A3) The spectrum S(ω) is the Fourier transform of the time of arrival distribution and it can be recovered from the state S(ω) = ⟨ω|ψ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' If we are interested in a collection of n single photons states in n different modes, we can work with the state: |ψ⟩ = � dω1 · · · dωnF(ω1, · · · , ωn)ˆa† 1(ω1) · · · ˆa† n(ωn) |vac⟩ = � dω1 · · · dωnF(ω1, · · · , ωn) |ω1, · · · , ωn⟩ , (A4) where the spectral function F is normalised to one: � |F(ω1, ω2|2dω1dω2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' 13 b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Time-frequency operators We can introduce two very useful operators as follows: ˆtα = � dt tˆa† α(t)ˆaα(t) ˆωα = � dω ωˆa† α(ω)ˆaα(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (A5) The fundamental property of these operators is the fact that they verify the familiar commutation relation on the subspace of single photons: [ˆωα, ˆtα] = i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (A6) More precisely, we have the general result: [ˆωα, ˆtα] = i ∞ � −∞ dωˆa† α(ω)ˆaα(ω) = i ˆNα, (A7) where the operator ˆNα count the number of photon operator in the mode α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The action of the both operators ˆω and ˆt can be computed on the JSA and we have: ˆω : S(ω) �→ ωS(ω) ˆt : S(ω) �→ −i∂ωS(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (A8) Appendix B: Appendix: Derivation of equations (8) and (9) a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Equation (8) To show equation (8) we start with the state before the BS: ˆU |ψ⟩ = � dω1dω2F(ω1, ω2) |ω1, ω2⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B1) The usual balanced BS relation reads: |ω1⟩1 |ω2⟩2 �→ 1 2 � |ω1⟩1 |ω2⟩1 − |ω1⟩1 |ω2⟩2 + |ω1⟩2 |ω2⟩1 − |ω1⟩2 |ω2⟩2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B2) To be able to use it, we introduce two mode changing operators ˆT1 and ˆT2 defined by: ˆT1 |ω1⟩1 |ω2⟩2 = |ω1⟩1 |ω2⟩1 ˆT2 |ω1⟩1 |ω2⟩2 = |ω1⟩2 |ω2⟩2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B3) With these definition the BS splitter relation is equivalent to applying the operator: 1 2( ˆT1 − ˆ1 + ˆS − ˆT2), (B4) where ˆS is the swap operator, defined as ˆS |ω1, ω2⟩ = |ω2, ω1⟩ So the state coming out of the BS is: |ψout⟩ = 1 2 � dω1dω2F(ω1, ω2) � ˆT1 ˆU − ˆU + ˆS ˆU − ˆT2 ˆU � |ω1, ω2⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B5) If we do selection on coincidence, we only keep the part of the state with one photon in each mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We get the state: |ψfin⟩ = −1 2 � dω1dω2F(ω1, ω2) � ˆU − ˆS ˆU � |ω1, ω2⟩ (B6a) = 1 2 � ˆS ˆU − ˆU � |ψ⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B6b) 14 We can finally compute the coincidence probability by taking the norm square of |ψfin⟩: Pc = ⟨ψfin|ψfin⟩ (B7a) = 1 4 ⟨ψ| � ˆU † − ˆU † ˆS �� ˆU − ˆS ˆU � |ψ⟩ (B7b) = 1 4 ⟨ψ| � ˆU † ˆU ���� =1 −2 ˆU † ˆS ˆU + ˆU † ˆS ˆS ˆU � �� � = ˆU † ˆU=1 � |ψ⟩ (B7c) = 1 2 � 1 − ⟨ψ| ˆU † ˆS ˆU |ψ⟩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B7d) b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Equation (9) The expression for Q is a direct consequence of the expression of the QFI for pure state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' The proof of the expression of F is a little bit more involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We have to compute: FI(κ) = 1 Pc �∂Pc ∂κ �2 + 1 Pa �∂Pa ∂κ �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' (B8) We have seen the expression of the (anti)-coincidence probability Pc and Pa that depends on ⟨ψ| ˆU † ˆS ˆU |ψ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' If we make the assumption that the state |ψ⟩ is either symmetric or anti-symmetric we known that we have: ⟨ψ| ˆU † ˆS ˆU |ψ⟩ = ± ⟨ψ| ˆU † ˆS ˆU ˆS |ψ⟩ = ⟨ψ| ˆV (κ) |ψ⟩ where we denote ˆV (κ) = ˆU † ˆS ˆU ˆS = eiκ ˆ He−iκ ˆS ˆ H ˆS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We first start by expanding this scalar product up to the second order in κ, using the short hand notation ⟨·⟩ = ⟨ψ| · |ψ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' ⟨ψ| ˆV (κ) |ψ⟩ = � eiκ ˆ He−iκ ˆS ˆ H ˆS� (B9a) ≃ �� 1 + iκ ˆH − κ2 2 ˆH2�� 1 − iκ ˆS ˆH ˆS − κ2 2 ( ˆS ˆH ˆS)2�� (B9b) = � 1 + iκ ˆH − iκ ˆS ˆH ˆS − κ2 2 ˆH2 − κ2 2 ( ˆS ˆH ˆS)2 + κ ˆH ˆS ˆH ˆS � (B9c) Since the state |ψ⟩ is (anti)-symmetric, for any operators ˆG, we have � ˆS ˆG � = ± � ˆG � = � ˆG ˆS � , which allows some simplifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' = 1 − κ2 2 � � ˆH2� + � ( ˆS ˆH ˆS)2� − � ˆH ˆS ˆH ˆS � − � ˆS ˆH ˆS ˆH � � (B9d) = 1 − κ2 2 � ( ˆH − ˆS ˆH ˆS)2� (B9e) = 1 − κ2 2 ∆( ˆH − ˆS ˆH ˆS)2 (B9f) Since thanks to the symmetry of |ψ⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆH − ˆS ˆH ˆS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆH − ˆH ˆS2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='By defining ˆG = ˆH − ˆS ˆH ˆS it remains to compute the FI: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='FI(κ = 0) = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='�∂Pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='∂κ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Pa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='�∂Pa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='∂κ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4Pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='κ∆( ˆG)2�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4Pa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='κ∆( ˆG)2�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= κ2∆( ˆG)4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Pa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= κ2∆( ˆG)4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Pa + Pc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='PcPa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= κ2∆( ˆG)4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 + ⟨ψ| ˆV (κ) |ψ⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 − ⟨ψ| ˆV (κ) |ψ⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10e) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= κ2∆( ˆG)4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 − ⟨ψ| ˆV (κ) |ψ⟩2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10f) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= κ2∆( ˆG)4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='κ2∆( ˆG)2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10g) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='= ∆( ˆG)2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='(B10h) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='It is interesting to note that the computation of the Fisher information is singular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Indeed for the HOM interfer- ometer around κ = 0 the derivative of the probabilities vanishes ∂κPc,a = 0, while one of the two probability (Pc if the state is symmetric or Pa if its anti-symmetric) is also equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' We thus obtain here the FI at zero by computing it at κ ̸= 0 and taking the limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' As a result we see that the FI is proportional to the second derivative of the coincidence probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' This means that for such a measurement what is important is the curvature of the probability peak/dip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Appendix C: Appendix: Details on the computation of the various variances To compute explicitly the various variances of this paper on the two states |ψG⟩ and |ψG⟩ one can note that since these states are separable in the variables ω±, if we consider two operators ˆH+ and ˆH− which are respectively functions of ˆω+ and ˆt+ or ˆω− and ˆt− we have: � ˆH+ ˆH− � = � ˆH+ � � ˆH− � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Where for a fixed state |ψ⟩, � ˆH � = ⟨ψ| ˆH |ψ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' In order to compute any variance, one only has to compute some expectation values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' By expanding and using the independence property from above, one only need to compute as building block expectation value of the form: � ˆωk ±ˆtl ± � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Indeed we can use the commutation relation to reorder any product such that the frequency operators are on the left of the time operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' One has to pay attention that due to the choice of normalisation in the definition of ˆω± = ˆω1 ± ˆω2 and ˆt± = ˆt1 ± ˆt2 we have [ˆω±, ˆt±] = 2i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' Such expectation values can be obtained systematically using a software (here we used Mathematica),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content=' we have the following values: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Operator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Variable + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Variable − for |ψG⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='Variable − for |ψC⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ωp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆω2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ω2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='p + σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4∆2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆω3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ωp + ω3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆω4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3σ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ + 6σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ω2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='p + ω4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3σ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3σ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− + 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='2σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='−∆2 + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='16∆4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆt2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆt3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆt4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆωˆt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆω2ˆt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='2iωp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆωˆt2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ωp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ˆω2ˆt2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='ω2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='p ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='+ − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='∆2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='4σ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='− − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
+page_content='TABLE III: Expectation values of the various product of plus and minus operators on the states |ψG⟩ and |ψC⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0NFKT4oBgHgl3EQfNi2Q/content/2301.11755v1.pdf'}
diff --git a/0dFIT4oBgHgl3EQf3CsM/content/2301.11379v1.pdf b/0dFIT4oBgHgl3EQf3CsM/content/2301.11379v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..507b40d96c98622a8ecb011dbafc3375467d84d0
--- /dev/null
+++ b/0dFIT4oBgHgl3EQf3CsM/content/2301.11379v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:16ed4c1a7014e17a039c02a7b4caaef5a1d13a85923ca127c88b09befb95bec1
+size 635058
diff --git a/0dFIT4oBgHgl3EQf3CsM/vector_store/index.faiss b/0dFIT4oBgHgl3EQf3CsM/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..173aaeba3413c9ce9e4b473a47669931582dc2ff
--- /dev/null
+++ b/0dFIT4oBgHgl3EQf3CsM/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9e2c32adec9a81fd9f9d0ad46e26a45391bd0af7b71b207f01625ef1b6aa0496
+size 5701677
diff --git a/1dFAT4oBgHgl3EQfkB03/content/tmp_files/2301.08608v1.pdf.txt b/1dFAT4oBgHgl3EQfkB03/content/tmp_files/2301.08608v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a7e69042ac8a6d6db8b46b573ff7e882e0cc6a84
--- /dev/null
+++ b/1dFAT4oBgHgl3EQfkB03/content/tmp_files/2301.08608v1.pdf.txt
@@ -0,0 +1,1719 @@
+arXiv:2301.08608v1 [cs.AI] 20 Jan 2023
+On the Foundations of Cycles
+in Bayesian Networks⋆
+Christel Baier1, Clemens Dubslaff1, Holger Hermanns2,3, and Nikolai K¨afer1
+1 TU Dresden, Dresden, Germany
+2 Saarland University, Saarbr¨ucken, Germany
+3 Institute of Intelligent Software, Guangzhou, China
+Abstract. Bayesian networks (BNs) are a probabilistic graphical model
+widely used for representing expert knowledge and reasoning under un-
+certainty. Traditionally, they are based on directed acyclic graphs that
+capture dependencies between random variables. However, directed cy-
+cles can naturally arise when cross-dependencies between random vari-
+ables exist, e.g., for modeling feedback loops. Existing methods to deal
+with such cross-dependencies usually rely on reductions to BNs without
+cycles. These approaches are fragile to generalize, since their justifica-
+tions are intermingled with additional knowledge about the application
+context. In this paper, we present a foundational study regarding seman-
+tics for cyclic BNs that are generic and conservatively extend the cycle-
+free setting. First, we propose constraint-based semantics that specify
+requirements for full joint distributions over a BN to be consistent with
+the local conditional probabilities and independencies. Second, two kinds
+of limit semantics that formalize infinite unfolding approaches are intro-
+duced and shown to be computable by a Markov chain construction.
+1
+Introduction
+A Bayesian network (BN) is a probabilistic graphical model representing a set of
+random variables and their conditional dependencies. BNs are ubiquitous across
+many fields where reasoning under uncertainties is of interest [10]. Specifically,
+a BN is a directed acyclic graph with the random variables as nodes and edges
+manifesting conditional dependencies, quantified by conditional probability ta-
+bles (CPTs). The probability of any random variable can then be deduced by
+the CPT entries along all its predecessors. Here, these probabilities are indepen-
+dent of all variables that are no (direct or transitive) predecessors in the graph.
+Acyclicity is hence crucial and commonly assumed to be rooted in some sort of
+causality [23]. A classical use of BNs is in expert systems [22] where BNs ag-
+gregate statistical data obtained by several independent studies. In the medical
+⋆ This work was partially supported by the DFG in projects TRR 248 (CPEC,
+see https://perspicuous-computing.science, project ID 389792660) and EXC 2050/1
+(CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), and the
+Key-Area Research and Development Program Grant 2018B010107004 of Guang-
+dong Province.
+
+2
+C. Baier et al.
+X
+Y
+X=T
+X=F
+F
+s1
+1 − s1
+T
+s2
+1 − s2
+Y
+X
+Y=T
+Y=F
+F
+t1
+1 − t1
+T
+t2
+1 − t2
+Fig. 1: A cyclic GBN with CPTs for X and Y
+domain, e.g., they can capture the correlation of certain symptoms, diseases, and
+human factors [11,15,26].
+Imagine for instance an expert system for supporting diagnosis of Covid-
+19, harvesting multiple clinical studies. One study might have investigated the
+percentage of patients who have been diagnosed with fever also having Covid-
+19, while another study in turn might have investigated among the Covid-19
+patients whether they have fever, too. Clearly, both studies investigate the de-
+pendency between fever and Covid-19, but under different conditions. Fever may
+weaken the immune system and could increase the risk of a Covid-19 infection,
+while Covid-19 itself has fever as a symptom. In case there is uniform knowledge
+about “which symptom was first” in each of the constituent studies, then dy-
+namic Bayesian networks (DBNs) [19] could be used as a model for the expert
+system, breaking the interdependence of fever and Covid-19 through a prece-
+dence relation. However, this implies either to rely only on studies where these
+temporal dependencies are clearly identified or to introduce an artificial notion
+of time that might lead to spurious results [18]. A naive encoding into the BN
+framework always yields a graph structure that contains cycles, as is the case in
+our small example shown in Fig. 1 where X and Y stand for the random variables
+of diagnosing Covid-19 and fever, respectively.
+That cycles might be unavoidable has already been observed in seminal pa-
+pers such as [22,15]. But acyclicity is crucial for computing the joint probability
+distribution of a BN, and thereby is a prerequisite for, e.g., routine inference
+tasks. Existing literature that considers cycles in BNs mainly recommends re-
+ducing questions on the probability values to properties in acyclic BNs. For
+instance, in [11] nodes are collapsed towards removing cycles, while [22] suggests
+to condition on each value combination on a cycle, generating a decomposition
+into tree-like BNs and then averaging over the results to replace cycles. Some-
+times, application-specific methods that restructure the cyclic BN towards an
+acyclic BN by introducing additional nodes [26,8] or by unrolling cycles up to a
+bounded depth [17,2] have been reported to give satisfactory results. Other ap-
+proaches either remove edges that have less influence or reverse edges on cycles
+(see, e.g., [10]). However, such approaches are highly application dependent and
+hinge on knowledge about the context of the statistical data used to construct
+the BN. Furthermore, as already pointed out by [30], they usually reduce the
+solution space of families of joint distributions to a single one, or introduce so-
+lutions not consistent with the CPTs of the original cyclic BN. While obviously
+many practitioners have stumbled on the problem how to treat cycles in BNs
+
+On the Foundations of Cycles in Bayesian Networks
+3
+and on the foundational question “What is the meaning of a cyclic BN?”, there
+is very little work on the foundations of Bayesian reasoning with cycles.
+In this paper, we approach this question by presenting general semantics for
+BNs with cycles, together with algorithms to compute families of joint distri-
+butions for such BNs. First, we investigate how the two main constituents of
+classical BNs, namely consistency with the CPTs and independencies induced
+by the graph structure, influence the joint distributions in the presence of cycles.
+This leads to constraints semantics for cyclic BNs that comprise all those joint
+distributions respecting the constraints, being either a single uniquely defined
+one, none, or infinitely many distributions. Second, we present semantics that
+formalize unfolding approaches and depend on the choice of a cutset, a set of
+random variables that break every cycle in a cyclic BN. Intuitively, such cutsets
+form the seams along which feedback loops can be unraveled. These semantics
+are defined in terms of the limit (or limit average) of a sequence of distribu-
+tions at descending levels in the infinite unfolding of the BN. We show that
+the same semantics can be defined using a Markov chain construction and sub-
+sequent long-run frequency analysis, which enables both precise computation
+of the semantics and deep insights in the semantics’ behavior. Among others,
+an immediate result is that the family of distributions induced with respect to
+the limit semantics is always non-empty. As we will argue, the limit semantics
+have obvious relations to a manifold of approaches that have appeared in the
+literature, yet they have not been spelled out and studied explicitly.
+1.1
+Notation
+Let V be a set of Boolean random variables4 over the domain B = {F, T}. We
+usually denote elements of V by X, Y, or Z. An assignment over V is a function
+b: V → B which we may specify through set notation, e.g., b = {X=T, Y=F} for
+b(X) = T and b(Y ) = F, or even more succinctly as XY . The set of all possible
+assignments over V is denoted by Asg(V). We write bU for the restriction of b to a
+subset U ⊆ V, e.g., b{X} = {X=T}, and may omit set braces, e.g., bX,Y = b{X,Y }.
+A distribution over a set S is a function µ: S → [0, 1] where �
+s∈S µ(s) = 1.
+The set of all distributions over S is denoted by Dist(S). For |S| = n, µ will
+occasionally be represented as a vector of size n for some fixed order on S. In
+the following, we are mainly concerned with distributions over assignments, that
+is distributions µ ∈ Dist(Asg(V)) for some set of random variables V. Each
+such distribution µ induces a probability measure (also called µ) on 2Asg(V).
+Thus, for a set of assignments φ ⊆ Asg(V), we have µ(φ) = �
+b∈φ µ(b). We
+are often interested in the probability of a partial assignment d ∈ Asg(U) on a
+subset U ⊊ V of variables, which is given as the probability of the set of all full
+4 We use Boolean random variables for simplicity of representation, an extension of
+the proposed semantics over random variables with arbitrary finite state spaces is
+certainly possible.
+
+4
+C. Baier et al.
+assignments b ∈ Asg(V) that agree with d on U. As a shorthand, we define
+µ(d) := µ
+�
+{b ∈ Asg(V) : bU = d}
+�
+=
+�
+b∈Asg(V)
+s.t. bU =d
+µ(b).
+The special case µ(X=T) is called the marginal probability of X. The restriction of
+µ ∈ Dist(Asg(V)) to U, denoted µ|U ∈ Dist(Asg(U)), is given by µ|U(d) := µ(d).
+For a set W disjoint from V and ν ∈ Dist(Asg(W)), the product distribution of
+µ and ν is given by (µ ⊗ ν)(c) := µ(cV) · ν(cW) for every c ∈ Asg(V ∪ W). µ is
+called a Dirac distribution if µ(b) = 1 for some assignment b ∈ Asg(V) and thus
+µ(c) = 0 for all other assignments c ̸= b. A Dirac distribution derived from a
+given assignment b is denoted by Dirac(b).
+Graph Notations. For a graph G = ⟨V, E⟩ with nodes V and directed edges
+E ⊆ V × V, we may represent an edge (X, Y ) ∈ E as X → Y if E is clear from
+context. Pre(X) := {Y ∈ V : Y → X} denotes the set of parents of a node X ∈ V,
+and Post∗(X) := {Y ∈ V : X → · · · → Y } is the set of nodes reachable from
+X. A node X is called initial if Pre(X) = ∅, and Init(G) is the set of all nodes
+initial in G. A graph G is strongly connected if each node in V is reachable from
+every other node. A set of nodes D is a strongly connected component (SCC) of
+G if all nodes in D can reach each other and D is not contained in another SCC,
+and a bottom SCC (BSCC) if no node in V \ D can be reached from D.
+Markov Chains. A discrete-time Markov chain (DTMC) is a tuple M = ⟨S, P⟩
+where S is a finite set of states and P: S × S → [0, 1] a function such that
+P(s, ·) ∈ Dist(S) for all states s ∈ S. The underlying graph GM = ⟨S, E⟩ is
+defined by E = {(s, t) ∈ S × S : P(s, t) > 0}. The transient distribution πι
+n ∈
+Dist(S) at step n is defined through the probability πι
+n(s) to be in state s after
+n steps if starting with initial state distribution ι. It satisfies (in matrix-vector
+notation) πι
+n = ι · Pn. We are also interested in the long-run frequency of state
+occupancies when n tends to infinity, defined as the Ces`aro limit lrfι : S → [0, 1]:
+lrfι(s) :=
+lim
+n→∞
+1
+n + 1
+n
+�
+i=0
+πι
+n(s).
+(LRF)
+This limit always exists and corresponds to the long-run fraction of time spent
+in each state [12]. The limit probability limn→∞ πι
+n is arguably more intuitive as
+a measure of the long-run behavior, but may not exist (due to periodicity). In
+case of existence, it agrees with the Ces`aro limit lrfι. If GM forms an SCC, the
+limit is independent of the choice of ι and the superscript can be dropped. We
+denote this limit by lrfM.
+2
+Generalized Bayesian Networks
+We introduce generalized Bayesian networks (GBNs) as a BN model that does
+not impose acyclicity and comes with a distribution over initial nodes.
+
+On the Foundations of Cycles in Bayesian Networks
+5
+Definition 1 (Generalized BN). A GBN B is a tuple ⟨G, P, ι⟩ where
+– G = ⟨V, E⟩ is a directed graph with nodes V and an edge relation E ⊆ V × V,
+– P is a function that maps all non-initial nodes X ∈ V\Init(G) paired with
+each of their parent assignments b ∈ Asg(Pre(X)) to a distribution
+P(X, b): Asg
+�
+{X}
+�
+→ [0, 1],
+– ι is a distribution over the assignments for the initial nodes Init(G), i.e.,
+ι ∈ Dist
+�
+Asg(Init(G))
+�
+.
+The distributions P(X, b) have the same role as the entries in a conditional
+probability table (CPT) for X in classical BNs: they specify the probability for
+X=T or X=F depending on the assignments of the predecessors of X. To this
+end, for X ∈ V\Init(G) and b ∈ Asg(Pre(X)), we also write Pr(X=T | b) for
+P(X, b)(X=T). In the literature, initial nodes are often assigned a marginal prob-
+ability via a CPT as well, assuming independence of all initial nodes. Differently,
+in our definition of GBNs, it is possible to specify an arbitrary distribution ι over
+all initial nodes. If needed, P can be easily extended to initial nodes by setting
+P(X, ∅) := ι|{X} for all X ∈ Init(G). Hence, classical BNs arise as a special
+instance of GBNs where the graph G is acyclic and initial nodes are pairwise
+independent. In that case, the CPTs given by P are a compact representation of
+a single unique full joint distribution dist BN(B) over all random variables X ∈ V.
+For every assignment b ∈ Asg(V), we can compute dist BN(B)(b) by the so-called
+chain rule:
+dist BN(B)(b) := ι
+�
+bInit(G)
+�
+·
+�
+X∈V\Init(G)
+Pr
+�
+bX | bPre(X)
+�
+.
+(CR)
+In light of the semantics introduced later on, we define the standard BN-semantics
+of an acyclic GBN B as the set �B�BN := {distBN(B)}, and �B�BN := ∅ if B con-
+tains cycles.
+The distribution dist BN(B) satisfies two crucial properties: First, it is con-
+sistent with the CPT entries given by P and the distribution ι, and second, it
+observes the independencies encoded in the graph G. In fact, those two properties
+are sufficient to uniquely characterize distBN(B). We briefly review the notion of
+independence and formally define CPT consistency later on in Section 3.
+Independence. Any full joint probability distribution µ ∈ Dist(Asg(V)) may in-
+duce a number of conditional independencies among the random variables in V.
+For X, Y, and Z disjoint subsets of V, the random variables in X and Y are
+independent under µ given Z if the conditional probability of each assignment
+over the nodes in X given an assignment for Z is unaffected by further condi-
+tioning on any assignment of Y. Formally, the set Indep(µ) contains the triple
+(X, Y, Z) iff for all a ∈ Asg(X), b ∈ Asg(Y), and c ∈ Asg(Z), we have
+µ(a | b, c) = µ(a | c)
+or
+µ(b, c) = 0.
+We also write (X ⊥ Y | Z) for (X, Y, Z) ∈ Indep(µ) and may omit the set
+brackets of X, Y, and Z.
+
+6
+C. Baier et al.
+d-separation. For classical BNs, the graph topology encodes independencies that
+are necessarily satisfied by any full joint distribution regardless of the CPT
+entries. Given two random variables X and Y as well as a set of observed variables
+Z, then X and Y are conditionally independent given Z if the corresponding
+nodes in the graph are d-separated given Z [6]. To establish d-separation, all
+simple undirected paths5 between X and Y need to be blocked given Z. Let W
+denote such a simple path W0, W1, . . . , Wk with W0 = X, Wk = Y, and either
+Wi → Wi+1 or Wi ← Wi+1 for all i < k. Then W is blocked given Z if and only
+if there exists an index i, 0 < i < k, such that one of the following two conditions
+holds: (1) Wi is in Z and is situated in a chain or a fork in W, i.e.,
+– Wi−1 → Wi → Wi+1 (forward chain)
+– Wi−1 ← Wi ← Wi+1 (backward chain)
+and
+Wi ∈ Z,
+– Wi−1 ← Wi → Wi+1 (fork)
+(2) Wi is in a collider and neither Wi nor any descendant of Wi is in Z, i.e.,
+– Wi−1 → Wi ← Wi+1 (collider)
+and
+Post∗(Wi) ∩ Z = ∅.
+Two sets of nodes X and Y are d-separated given a third set Z if for each X ∈ X
+and Y ∈ Y, X and Y are d-separated given Z. Notably, the d-separation criterion
+is applicable also in presence of cycles [28]. For a graph G = ⟨V, E⟩ of a GBN,
+we define the set d-sep(G) as
+d-sep(G) :=
+�
+(X, Y, Z) ∈ (2V)3 : X and Y are d-separated given Z
+�
+.
+For acyclic Bayesian networks it is well known that the independencies ev-
+ident from the standard BN semantics’ distribution include the independencies
+derived from the graph. That is, for acyclic GBNs B̸⟳ = ⟨G, P, ι⟩ where all initial
+nodes are pairwise independent under ι, we have
+d-sep(G) ⊆ Indep
+�
+dist BN(B̸⟳)
+�
+.
+For an arbitrary initial distribution, the above relation does not necessarily
+hold. However, we can still find a set of independencies that are necessarily
+observed by the standard BN semantics and thus act as a similar lower bound.
+We do so by assuming the worst case, namely that each initial node depends on
+every other initial node under ι. Formally, given a graph G = ⟨V, E⟩, we define a
+closure operation Close(·) as follows and compute the set d-sep
+�
+Close(G)
+�
+:
+Close(G) :=
+�
+V, E ∪ {(A, B) for A, B ∈ Init(G), A ̸= B}
+�
+.
+Lemma 1. Let B̸⟳ = ⟨G, P, ι⟩ be an acyclic GBN. Then
+d-sep
+�
+Close(G)
+�
+⊆ Indep
+�
+distBN(B̸⟳)
+�
+.
+As intuitively expected, the presence of cycles in G generally reduces the
+number of graph independencies, though note that also in strongly connected
+graphs independencies may exist. For example, if G is a four-node cycle with
+nodes W, X, Y, and Z, then d-sep(G) =
+�
+(W ⊥ Y | X, Z), (X ⊥ Z | W, Y )
+�
+.
+5 A path is simple if no node occurs twice in the path. “Undirected” in this context
+means that edges in either direction can occur along the path.
+
+On the Foundations of Cycles in Bayesian Networks
+7
+3
+Constraints Semantics
+For classical acyclic BNs there is exactly one distribution that agrees with all
+CPTs and satisfies the independencies encoded in the graph. This distribution
+can easily be constructed by means of the chain rule (CR). For cyclic GBNs,
+applying the chain rule towards a full joint distribution is not possible in general,
+as the result is usually not a valid probability distribution. Still, we can look for
+distributions consistent with a GBN’s CPTs and the independencies derived
+from its graph. Depending on the GBN, we will see that there may be none,
+exactly one, or even infinitely many distributions fulfilling these constraints.
+3.1
+CPT-consistency
+We first provide a formal definition of CPT consistency in terms of linear con-
+straints on full joint distributions.
+Definition 2 (Strong and weak CPT-consistency). Let B be a GBN with
+nodes V and X ∈ V. Then µ is called strongly CPT-consistent for X in B (or
+simply CPT-consistent) if for all c ∈ Asg(Pre(X))
+µ(X=T, c) = µ(c) · Pr(X=T | c).
+(Cpt)
+We say that µ is weakly CPT-consistent for X in B if
+µ(X=T) =
+�
+c∈Asg(Pre(X))
+µ(c) · Pr(X=T | c).
+(wCpt)
+Intuitively, the constraint (Cpt) is satisfied for µ if the conditional proba-
+bility µ(X=T | c) equals the entry in the CPT for X under assignment c, i.e.,
+µ(X=T | c) = Pr(X=T | c). In the weak case (wCpt), only the resulting marginal
+probability of X needs to agree with the CPTs.
+Definition 3 (Cpt and wCpt semantics).
+For a GBN B = ⟨G, P, ι⟩, the
+CPT-semantics �B�Cpt is the set of all distributions µ ∈ Dist(Asg(V)) where
+µ|Init(G) = ι and µ is CPT-consistent for every node X ∈ V\Init(G). The weak
+CPT-semantics �B�wCpt is defined analogously.
+Clearly, we have �B�Cpt ⊆ �B�wCpt for all B. The next example shows that
+depending on the CPT values, the set �B�Cpt may be empty, a singleton, or of
+infinite cardinality.
+Example 1. To find CPT-consistent distributions for the GBN from Fig. 1, we
+construct a system of linear equations whose solutions form distributions µ ∈
+Dist
+�
+Asg({X, Y })
+�
+, represented as vectors in the space [0, 1]4:
+
+
+
+
+
+
+
+
+s1
+0
+s1−1
+0
+0
+s2
+0
+s2−1
+t1
+t1−1
+0
+0
+0
+0
+t2
+t2−1
+1
+1
+1
+1
+
+
+
+
+
+
+
+
+·
+
+
+
+
+
+µXY
+µXY
+µXY
+µXY
+
+
+
+
+ =
+
+
+
+
+
+
+
+
+0
+0
+0
+0
+1
+
+
+
+
+
+
+
+
+
+8
+C. Baier et al.
+where, e.g., µXY abbreviates µ(X=T, Y=F). The first line of the matrix states
+the (Cpt) constraint for node X and the parent assignment c = {Y=F}:
+0 = s1 · µXY + 0 · µXY + (s1−1) · µXY + 0 · µXY
+µXY
+= (µXY + µXY ) · s1
+µXY
+= µY · Pr(X=T | Y=F)
+µ(X=T, c) = µ(c) · Pr(X=T | c).
+Analogously, the following three rows encode the CPT constraints for X, Y,
+and their remaining parent assignments. The last row ensures that solutions are
+indeed probability distributions satisfying �
+c µ(c) = 1.
+The number of solutions for the system now depends on the CPT entries s1,
+s2, t1, and t2. For s1 = t2 = 0 and s2 = t1 = 1, no solution exists as the first
+four equations require µ(b) = 0 for all b ∈ Asg({X, Y }), while the last equation
+ensures µXY + µXY + µXY + µXY = 1. For s1 = t1 = 0 and s2 = t2 = 1, all
+distributions with µXY = 1 − µXY and µXY = µXY = 0 are solutions. Finally,
+e.g., for s1 = t1 = 3/4 and s2 = t2 = 1/2, there is exactly one solution with
+µXY = 1/10 and µ(b) = 3/10 for the other three assignments.
+3.2
+Independence-consistency
+We extend Cpt semantics with a set of independencies that need to be observed
+by all induced distributions.
+Definition 4 (Cpt-I semantics). For a GBN B = ⟨G, P, ι⟩ and a set of inde-
+pendencies I, the CPT-I semantics �B�Cpt-I is defined as the set of all CPT-
+consistent distributions µ for which I ⊆ Indep(µ) holds.
+Technically, the distributions in �B�Cpt-I have to fulfill the following polynomial
+constraints in addition to the CPT-consistency constraints:
+µ(b) · µ(bW) = µ(b{X}∪W) · µ(bU∪W)
+(Cpt-I)
+for each independence (X ⊥ U | W) ∈ I with variable X∈V and sets of variables
+U, W ⊆ V, and for each assignment b ∈ Asg({X} ∪ U ∪ W). Note that in case
+µ(bW) > 0, (Cpt-I) is equivalent to the constraint µ(bX | bU∪W) = µ(bX | bW).
+We can now formally state the alternative characterization of the standard
+BN semantics as the unique CPT-consistent distribution that satisfies the d-
+separation independencies of the graph. For each classical BN B with acyclic
+graph G and I = d-sep(G), we have �B�BN = {distBN(B)} = �B�Cpt-I. Thus, the
+Cpt-I semantics provides a conservative extension of the standard BN semantics
+to GBNs with cycles. However, in practice, its use is limited since there might be
+no distribution that satisfies all constraints. In fact, the case where �B�Cpt-I = ∅
+is to be expected for most cyclic GBNs, given that the resulting constraint
+systems tend to be heavily over-determined.
+The next section introduces semantics that follow a more constructive ap-
+proach. We will see later on in Section 5.1 that the families of distributions
+induced by these semantics are always non-empty and usually singletons.
+
+On the Foundations of Cycles in Bayesian Networks
+9
+X
+Y
+Z
+Fig. 2: The graph of a strongly connected GBN
+X0
+Y0
+Z0
+X1
+Y1
+Z1
+X2
+Y2
+Z2
+...
+(a) Unfolding along all nodes
+Z0
+X1
+Y1
+Z1
+X2
+Y2
+Z2
+...
+(b) Unfolding along the Z nodes
+Fig. 3: Two infinite unfoldings of the graph in Fig. 2
+4
+Limit and Limit Average Semantics
+We first develop the basic ideas underling the semantics by following an example,
+before giving a formal treatment in Section 4.2.
+4.1
+Intuition
+Consider the GBN B whose graph G is depicted in Fig. 2. One way to get rid
+of the cycles is to construct an infinite unfolding of B as shown in Fig. 3a. In
+this new graph G∞, each level contains a full copy of the original nodes and
+corresponds to some n ∈ N. For any edge X → Y in the original graph, we
+add edges Xn → Yn+1 to G∞, such that each edge descends one level deeper.
+Clearly any graph constructed in this way is acyclic, but this fact alone does
+not aid in finding a matching distribution since we dearly bought it by giving
+up finiteness. However, we can consider what happens when we plug in some
+initial distribution µ0 over the nodes X0, Y0, and Z0. Looking only at the first
+two levels, we then get a fully specified acyclic BN by using the CPTs given
+by P for X1, Y1, and Z1. For this sub-BN, the standard BN semantics yields
+a full joint distribution over the six nodes from X0 to Z1, which also induces
+a distribution µ1 over the three nodes at level 1. This procedure can then be
+repeated to construct a distribution µ2 over the nodes X2, Y2, and Z2, and,
+more generally, to get a distribution µn+1 given a distribution µn. Recall that
+
+10
+C. Baier et al.
+each of those distributions can be viewed as vector of size 23. Considering the
+sequence µ0, µ1, µ2, . . . , the question naturally arises whether a limit exists, i.e.,
+a distribution/vector µ such that
+µ
+=
+lim
+n→∞ µn.
+Example 2. Consider the GBN from Fig. 1 with CPT entries s1 = t2 = 1 and
+s2 = t1 = 0, which intuitively describe the contradictory dependencies “X iff not
+Y ” and “Y iff X”. For any initial distribution µ0 = ⟨e f g h⟩, the construction
+informally described above yields the following sequence of distributions µn:
+µ0 =
+
+
+
+
+
+e
+f
+g
+h
+
+
+
+
+, µ1 =
+
+
+
+
+
+f
+h
+e
+g
+
+
+
+
+, µ2 =
+
+
+
+
+
+h
+g
+f
+e
+
+
+
+
+, µ3 =
+
+
+
+
+
+g
+e
+h
+f
+
+
+
+
+, µ4 =
+
+
+
+
+
+e
+f
+g
+h
+
+
+
+
+, . . .
+As µ4 = µ0, the sequence starts to cycle infinitely between the first four distribu-
+tions. The series converges for e = f = g = h = 1/4 (in which case the sequence
+is constant), but does not converge for any other initial distribution.
+The example shows that the existence of the limit depends on the given initial
+distribution. In case no limit exists because some distributions keep repeating
+without ever converging, it is possible to determine the limit average (or Ces`aro
+limit) of the sequence:
+˜µ
+=
+lim
+n→∞
+1
+n + 1
+n
+�
+i=0
+µi.
+The limit average has three nice properties: First, if the regular limit µ exists,
+then the limit average ˜µ exists as well and is identical to µ. Second, in our use
+case, ˜µ in fact always exists for any initial distribution µ0. And third, as we
+will see in Section 5, the limit average corresponds to the long-run frequency of
+certain Markov chains, which allows us both to explicitly compute and to derive
+important properties of the limit distributions.
+Example 3. Continuing Ex. 2, the limit average of the sequence µ0, µ1, µ2, . . . is
+the uniform distribution ˜µ = ⟨1/4 1/4 1/4 1/4⟩, regardless of the choice of µ0.
+Before we formally define the infinite unfolding of GBNs and the resulting
+limit semantics, there is one more observation to be made. To ensure that the
+unfolded graph G∞ is acyclic, we redirected every edge of the GBN B to point
+one level deeper, resulting in the graph displayed in Fig. 3a. As can be seen
+in Fig. 3b, we also get an acyclic unfolded graph by only redirecting the edges
+originating in the Z nodes to the next level and keeping all other edges on the
+same level. The relevant property is to pick a set of nodes such that for each
+cycle in the original GBN B, at least one node in the cycle is contained in the
+set. We call such sets the cutsets of B.
+
+On the Foundations of Cycles in Bayesian Networks
+11
+Definition 5 (Cutset). Let B be an GBN with graph G = ⟨V, E⟩. A subset
+C ⊆ V is a cutset for B if every cycle in G contains at least one node from C.
+Example 4. The GBN in Fig. 2 has the following cutsets: {Y }, {Z}, {X, Y },
+{X, Z}, {Y, Z}, and {X, Y, Z}. Note that {X} does not form a cutset as no
+node from the cycle Y → Z → Y is contained.
+So far we implicitly used the set V of all nodes for the unfolding, which always
+trivially forms a cutset. The following definitions will be parameterized with a
+cutset, as the choice of cutsets influences the resulting distributions as well as
+the time complexity.
+4.2
+Formal Definition
+Let Vn := {Xn : X ∈ V} denote the set of nodes on the nth level of the unfolding
+in G∞. For C ⊆ V a cutset of the GBN, the subset of cutset nodes on that level
+is given by Cn := {Xn ∈ Vn : X ∈ C}. Then a distribution γn ∈ Dist(Asg(Cn)) for
+the cutset nodes in Cn suffices to get a full distribution µn+1 ∈ Dist(Asg(Vn+1))
+over all nodes on the next level, n + 1: We look at the graph fragment Gn+1 of
+G∞ given by the nodes Cn ∪ Vn+1 and their respective edges. In this fragment,
+the cutset nodes are initial, so the cutset distribution γn can be combined with
+the initial distribution ι to act as new initial distribution. For the nodes in
+Vn+1, the corresponding CPTs as given by P can be used, i.e., Pn(Xn, ·) =
+P(X, ·) for Xn ∈ Vn. Putting everything together, we obtain an acyclic GBN
+Bn+1 = ⟨Gn+1, Pn+1, ι ⊗ γn⟩. However, GBNs constructed in this way for each
+level n > 0 are all isomorphic and only differ in the given cutset distribution γ.
+For simplicity and in light of later use, we thus define a single representative
+GBN Dissect(B, C, γ) that represents a dissection of B along a given cutset C,
+with ι ⊗ γ as initial distribution.
+Definition 6 (Dissected GBN).
+Let B = ⟨G, P, ι⟩ be a GBN with graph
+G = ⟨V, E⟩ and C ⊆ V a cutset for B with distribution γ ∈ Dist(Asg(C)). Then,
+the C-dissected GBN Dissect(B, C, γ) is the acyclic GBN ⟨GC, PC, ι ⊗ γ⟩ with
+graph GC = ⟨V ∪ C′, EC⟩ where
+– C′ := {X′ : X ∈ C} extends V by fresh copies of all cutset nodes;
+– incoming edges to nodes in C are redirected to their copies, i.e.,
+EC :=
+�
+(X, Y ′) : (X, Y ) ∈ E, Y ∈ C
+�
+∪
+�
+(X, Y ) : (X, Y ) ∈ E, Y /∈ C
+�
+;
+– the function PC uses the CPT entries given by P for the cutset nodes as
+entries for their copies and the original entries for all other nodes, i.e., we
+have PC(Y ′, a) = P(Y, a) for each node Y ′ ∈ C′ and parent assignment a ∈
+Asg(Pre(Y ′)), and PC(X, b) = P(X, b) for X ∈ V\C and b ∈ Asg(Pre(X)).
+Fig. 4 shows two examples of dissections on the GBN of Fig. 2. As any dissected
+GBN is acyclic by construction, the standard BN semantics yields a full joint
+distribution over all nodes in V ∪ C′. We restrict this distribution to the nodes
+
+12
+C. Baier et al.
+X
+Y
+Z
+X′
+Y ′
+Z′
+(a) Cutset C = {X, Y, Z}
+Z
+X
+Y
+Z′
+(b) Cutset C = {Z}
+Fig. 4: Dissections of the GBN in Fig. 2 for two cutsets
+in (V \ C) ∪ C′, as those are the ones on the “next level” of the unfolding, while
+re-identifying the cutset node copies with the original nodes to get a distribution
+over V. Formally, we define the distribution Next(B, C, γ) for each assignment
+b ∈ Asg(V) as
+Next(B, C, γ)(b) := dist BN
+�
+Dissect(B, C, γ)
+�
+(b′)
+where the assignment b′ ∈ Asg
+�
+(V\C) ∪ C′�
+is given by b′(X) = b(X) for all
+X ∈ V\C and b′(Y ′) = b(Y ) for all Y ∈ C. In the unfolded GBN, this allows
+us to get from a cutset distribution γn to the next level distribution µn+1 =
+Next(B, C, γn). The next cutset distribution γn+1 is then given by restricting the
+full distribution to the nodes in C, i.e., γn+1 = Next(B, C, γn)|C.6 Vice versa, a
+cutset distribution γ suffices to recover the full joint distribution over all nodes
+V. Again using the standard BN semantics of the dissected GBN, we define the
+distribution Extend(B, C, γ) ∈ Dist(Asg(V)) as
+Extend(B, C, γ) := dist BN
+�
+Dissect(B, C, γ)
+���
+V.
+With these definitions at hand, we can formally define the limit and limit
+average semantics described in the previous section.
+Definition 7 (Limit and limit average semantics). Let B be a GBN over
+nodes V with cutset C. The limit semantics of B w.r.t. C is the partial function
+Lim(B, C, ·) : Dist
+�
+Asg(C)
+�
+⇀ Dist
+�
+Asg(V)
+�
+from initial cutset distributions γ0 to full distributions µ = Extend(B, C, γ) where
+γ = lim
+n→∞ γn
+and
+γn+1 = Next(B, C, γn)|C.
+The set �B�Lim-C is given by the image of Lim(B, C, ·), i.e.,
+�B�Lim-C := {Lim(B, C, γ0) : γ0 ∈ Dist(Asg(C)) s.t. Lim(B, C, γ0) is defined}.
+The limit average semantics of B w.r.t. C is the partial function
+LimAvg(B, C, ·) : Dist
+�
+Asg(C)
+�
+⇀ Dist
+�
+Asg(V)
+�
+6 Recall that we may view distributions as vectors which allows us to equate distribu-
+tions over different but isomorphic domains.
+
+On the Foundations of Cycles in Bayesian Networks
+13
+X=T
+Y=T
+X=T
+Y=F
+X=F
+Y=T
+X=F
+Y=F
+3/8
+3/8
+1/8
+1/8
+1/2
+1/2
+3/4
+1/4
+1
+X=T
+Y=T
+X=T
+Y=F
+X=F
+Y=T
+X=F
+Y=F
+Fig. 5: A cutset Markov chain for a cutset C = {X, Y }
+from γ0 to distributions µ = Extend(B, C, γ) where
+γ = lim
+n→∞
+1
+n + 1
+n
+�
+i=0
+γn
+and
+γn+1 = Next(B, C, γn)|C.
+The set �B�LimAvg-C is likewise given by the image of LimAvg(B, C, ·).
+We know that the limit average coincides with the regular limit if the lat-
+ter exists, so for every initial cutset distribution γ0, we have Lim(B, C, γ0) =
+LimAvg(B, C, γ0) if Lim(B, C, γ0) is defined. Thus, �B�Lim-C ⊆ �B�LimAvg-C.
+5
+Markov Chain Semantics
+While we gave some motivation for the limit and limit average semantics, their
+definitions do not reveal an explicit way to compute their member distributions.
+In this section we introduce the (cutset) Markov chain semantics which offers
+explicit construction of distributions and is shown to coincide with the limit
+average semantics. It further paves the way for proving several properties of
+both limit semantics in Section 5.1.
+At the core of the cutset Markov chain semantics lies the eponymous cut-
+set Markov chain which captures how probability mass flows from one cutset
+assignment to the others. To this end, the Dirac distributions corresponding to
+each assignment are used as initial distributions in the dissected GBN. With the
+Next function we then get a new distribution over all cutset assignments, and
+the probabilities assigned by this distribution are used as transition probabilities
+for the Markov chain.
+Definition 8 (Cutset Markov chain).
+Let B be a GBN with cutset C. The
+cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩ w.r.t. B and C is a DTMC where
+the transition matrix P is given for all cutset assignments b, c ∈ Asg(C) by
+P(b, c) := Next
+�
+B, C, Dirac(b)
+�
+(c).
+Example 5. Fig. 5 shows the cutset Markov chain for the GBN from Fig. 1 with
+CPT entries s1 = 1/4, s2 = 1, t1 = 1/2, t2 = 0, and cutset C = {X, Y }. Exem-
+plarily, the edge at the bottom from assignment b = {X=F, Y=F} to assignment
+
+14
+C. Baier et al.
+c = {X=F, Y=T} with label 3/8 is derived as follows:
+P(b, c)
+=
+Next
+�
+B, C, Dirac(b)
+�
+(c) = dist BN
+�
+Dissect(B, C, Dirac(b))
+�
+(c′)
+=
+�
+a∈Asg(VC)
+s.t. c′⊆a
+dist BN
+�
+Dissect(B, C, Dirac(b))
+�
+(a)
+=
+�
+a∈Asg(VC)
+s.t. c′⊆a
+Dirac(b)(aX,Y ) · Pr(X′=F | aY ) · Pr(Y ′=T | aX)
+=
+Pr(X′=F | Y=F) · Pr(Y ′=T | X=F) = (1 − s1) · t1
+=
+3/8.
+Note that in the second-to-last step, in the sum over all full assignments a which
+agree with the partial assignment c′, only the assignment which also agrees with
+b remains as for all other assignments we have Dirac(b)(aX,Y ) = 0.
+Given a cutset Markov chain with transition matrix P and an initial cutset
+distribution γ0, we can compute the uniquely defined long-run frequency distri-
+bution lrfγ0 (see Section 1.1). Then the Markov chain semantics is given by the
+extension of this distribution over the whole GBN.
+Definition 9 (Markov chain semantics).
+Let B be a GBN over nodes V
+with a cutset C ⊆ V and cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩. Then
+the Markov chain semantics of B w.r.t. C is the function
+MCS(B, C, ·) : Dist
+�
+Asg(C)
+�
+→ Dist
+�
+Asg(V)
+�
+from cutset distributions γ0 to full distributions µ = Extend(B, C, lrfγ0) where
+lrfγ0 =
+lim
+n→∞
+1
+n+1
+n
+�
+i=0
+γi
+and
+γi+1 = γi · P.
+The set �B�MC-C is defined as the image of MCS(B, C, ·).
+In the following lemma, we give four equivalent characterizations of the long-
+run frequency distributions of the cutset Markov chain.
+Lemma 2. Let B be a GBN with cutset C, cutset distribution γ ∈ Dist(Asg(C)),
+and M = ⟨Asg(C), P⟩ the cutset Markov chain CMC(B, C). Then the following
+statements are equivalent:
+(a) γ = γ · P.
+(b) There exists γ0 ∈ Dist(Asg(C)) such that for γi+1 = γi · P, we have
+γ =
+lim
+n→∞
+1
+n+1
+n
+�
+i=0
+γi.
+(c) γ belongs to the convex hull of the long-run frequency distributions lrfD of
+the bottom SCCs D of M.
+(d) γ = Next(B, C, γ)|C.
+
+On the Foundations of Cycles in Bayesian Networks
+15
+Following Lemma 2, we can equivalently define the cutset Markov chain se-
+mantics as the set of extensions of all stationary distributions for P:
+�B�MC-C :=
+�
+Extend(B, C, γ) : γ ∈ Dist
+�
+Asg(C)
+�
+s.t. γ = γ · P
+�
+.
+Example 6. Continuing Ex. 5, there is a unique stationary distribution γ with
+γ = γ · P for the cutset Markov chain in Fig. 5: γ = ⟨48/121 18/121 40/121 15/121⟩.
+As in this case the cutset C = {X, Y } equals the set of all nodes V, we have
+Extend(B, C, γ) = γ and thus �B�MC-{X,Y } = {γ}.
+As shown by Lemma 2, the behavior of the Next function is captured by
+multiplication with the transition matrix P. Both the distributions in the limit
+average semantics and the long-run frequency distributions of the cutset Markov
+chain are defined in terms of a Ces`aro limit, the former over the sequence of
+distributions obtained by repeated application of Next, the latter by repeated
+multiplication with P. Thus, both semantics are equivalent.
+Theorem 1. Let B be a GBN. Then for any cutset C of B and initial distribution
+γ0 ∈ Dist(Asg(C)), we have
+MCS(B, C, γ0) = LimAvg(B, C, γ0).
+We know that Lim(B, C, γ0) is not defined for all initial distributions γ0.
+However, the set of all limits that do exist contains exactly the distributions
+admitted by the Markov chain and limit average semantics.
+Lemma 3. Let B be a GBN. Then for any cutset C of B, we have
+�B�MC-C = �B�LimAvg-C = �B�Lim-C.
+5.1
+Properties
+By the equivalences established in Theorem 1 and Lemma 3, we gain profound
+insights about the limit and limit average distributions by Markov chain analysis.
+As every finite-state Markov chain has at least one stationary distribution, it
+immediately follows that �B�MC-C—and thus �B�LimAvg-C and �B�Lim-C—is always
+non-empty. Further, if the cutset Markov chain is irreducible, i.e., the graph
+is strongly connected, the stationary distribution is unique and �B�MC-C is a
+singleton. The existence of the limit semantics for a given initial distribution γ0
+hinges on the periodicity of the cutset Markov chain.
+Example 7. We return to Example 2 and construct the cutset Markov chain
+CMC(B, C) = ⟨Asg(C), P⟩ for the (implicitly used) cutset C = {X, Y }:
+X=T
+Y=T
+X=T
+Y=F
+X=F
+Y=T
+X=F
+Y=F
+1
+1
+1
+1
+
+16
+C. Baier et al.
+The chain is strongly connected and has a period of length 4, which explains the
+observed behavior that for any initial distribution γ0, we got the sequence
+γ0, γ1, γ2, γ3, γ0, γ1, . . .
+This sequence obviously converges only for initial distributions that are station-
+ary, i.e., if we have γ0 = γ0 · P.
+The following lemma summarizes the implications that can be drawn from
+close inspection of the cutset Markov chain.
+Lemma 4 (Cardinality).
+Let B be a GBN with cutset C and cutset Markov
+chain CMC(B, C) = ⟨Asg(C), P⟩. Further, let k > 0 denote the number of bottom
+SCCs D1, . . . , Dk of CMC(B, C). Then
+1. the cardinality of the cutset Markov chain semantics is given by
+���B�MC-C
+�� =
+�
+1
+if k = 1,
+∞
+if k > 1;
+2. Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)) if all Di are aperiodic;
+3. Lim(B, C, γ) is only defined for stationary distributions γ with γ = γ · P if
+Di is periodic for any 1 ⩽ i ⩽ k.
+A handy sufficient (albeit not necessary) criterion for both aperiodicity and
+the existence of a single bottom SCC in the cutset Markov chain is the absence
+of zero and one entries in the CPTs and the initial distribution of a GBN.
+Definition 10 (Smooth GBNs).
+A GBN B = ⟨G, P, ι⟩ is called smooth iff
+all CPT entries as given by P and all values in ι are in the open interval ]0, 1[.
+Lemma 5. Let B be a smooth GBN and C a cutset of B. Then the graph of the
+cutset Markov chain CMC(B, C) is a complete digraph.
+Corollary 1. The limit semantics of a smooth GBN B is a singleton for every
+cutset C of B and Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)).
+As noted in [14], one rarely needs to assign a probability of zero (or, con-
+versely, of one) in real-world applications; and doing so in cases where some
+event is extremely unlikely but not impossible is a common modeling error. This
+observation gives reason to expect that most GBNs encountered in practice are
+smooth, and their semantics is thus, in a sense, well-behaved.
+5.2
+Relation to Constraints Semantics
+We take a closer look at how the cutset semantics relates to the CPT-consistency
+semantics defined in Section 3. CPTs of nodes outside cutsets remain unaffected
+in the dissected BNs from which the Markov chain semantics is computed. Since
+there are cyclic GBNs for which no CPT-consistent distribution exists (cf. Ex-
+ample 1) while Markov chain semantics always yields at least one solution due
+to Lemma 4, it cannot be expected that cutset nodes are necessarily CPT-
+consistent. However, they are always weakly CPT-consistent.
+
+On the Foundations of Cycles in Bayesian Networks
+17
+Lemma 6. Let B be a GBN over nodes V, C ⊆ V a cutset for B, and µ ∈
+�B�MC-C. Then µ is strongly CPT-consistent for all nodes in V\C and weakly
+CPT-consistent for the nodes in C.
+The lemma shows a way to find fully CPT consistent distributions: Consider
+there is a distribution µ ∈ �B�MC-C ∩ �B�MC-D for two disjoint cutsets C and D.
+Then by Lemma 6 the nodes in V \ C and V \ D are CPT consistent, so in fact
+µ is CPT consistent. In general, we get the following result.
+Lemma 7. Let B be a GBN over nodes V and C1, . . . , Ck cutsets of B s.t. for
+each node X ∈ V there is an i ∈ {1, . . . , k} with X /∈ Ci. Then
+�
+0⩽i⩽k
+�B�MC-Ci ⊆ �B�Cpt.
+We take a look at which independencies are necessarily observed by the
+distributions in �B�MC-C. Let γ ∈ Dist(Asg(C)) be the cutset distribution and
+let G[C] denote the graph of Dissect(B, C, γ) restricted to the nodes in V such
+that the cutset nodes in C are initial. Then by Lemma 1, the d-separation in-
+dependencies of the closure of G[C] hold in all distributions µ ∈ �B�MC-C, i.e.,
+d-sep
+�
+Close(G[C])
+�
+⊆ Indep(µ). The next lemma states that any Cpt-consistent
+distribution that satisfies these independence constraints for some cutset C also
+belongs to �B�MC-C.
+Lemma 8. Let B be a GBN with cutset C and IC = Close(G[C]). Then we have
+�B�Cpt-IC ⊆ �B�MC-C.
+Combining Lemma 7 and Lemma 8 yields the following equivalence.
+Corollary 2. For a GBN B with cutsets C1, . . . , Ck as in Lemma 7 and the
+independence set I = �
+0⩽i⩽k Close(G[Ci]), we have
+�
+0⩽i⩽k
+�B�MC-Ci = �B�Cpt-I.
+5.3
+Overview
+Fig. 6 gives an overview of the relations between all proposed semantics. Boxes
+represent the set of distributions induced by the respective semantics and arrows
+stand for set inclusion. For the non-trivial inclusions the arrows are annotated
+with the respective lemma or theorem. As an example, Cpt→wCpt states that
+�B�Cpt ⊆ �B�wCpt holds for all GBNs B. The three semantics in the top row
+parameterized with a cutset C and a distribution γ stand for the singleton set
+containing the respective function applied to γ, i.e., �B�Lim-C-γ = {Lim(B, C, γ)}.
+�
+C MC-C stands for the intersection of the Markov chain semantics for various
+cutsets as in Lemma 7, and the incoming arrow from Cpt-IC holds for the set
+of independencies IC as in Lemma 8.
+
+18
+C. Baier et al.
+Lim-C-γ
+LimAvg-C-γ
+MC-C-γ
+Lim-C
+LimAvg-C
+MC-C
+�
+C MC-C
+Cpt-IC
+Cpt
+wCpt-IC
+wCpt
+C.2
+L.6
+L.7
+L.8
+L.3
+L.3
+T.1
+Lim-C-γ
+LimAvg-C-γ
+MC-C-γ
+Lim-C
+LimAvg-C
+MC-C
+�
+C MC-C
+Cpt-IC
+Cpt
+wCpt-IC
+wCpt
+Fig. 6: Relations between different variations of limit, limit average, and Markov
+chain semantics (blue) as well as strong and weak CPT-consistency semantics
+(yellow resp. orange)
+6
+Related Work
+That cycles in a BN might be unavoidable when learning its structure is well
+known for more than 30 years [15,22]. During the learning process of BNs, cy-
+cles might even be favorable as demonstrated in the context of gene regulatory
+networks where cyclic structures induce monotonic scores [32]. That work only
+discusses learning algorithms, but does not deal with evaluating the joint dis-
+tribution of the resulting cyclic BNs. In most applications, however, cycles have
+been seen as a phenomenon to be avoided to ease the computation of the joint
+distribution in BNs. By an example BN comprising a single isolated cycle, [30]
+showed that reversing or removing edges to avoid cycles may reduce the solution
+space from infinitely many joint distributions that are (weakly) consistent with
+the CPTs to a single one. In this setting, our results on weak CPT-semantics
+also provide that wCpt cannot express conditions on the relation of variables
+like implications or mutual exclusion. This is rooted in the fact that the solution
+space of weak CPT-semantics always contains at least one full joint distribu-
+tion with pairwise independent variables. An example where reversing edges led
+to satisfactory results has been considered in [3], investigating the impact of
+reinforced defects by steel corrosion in concrete structures.
+Unfolding cycles up to a bounded depth has been applied in the setting of
+a robotic sensor system by [2]. In their use case, only cycles of length two may
+appear, and only the nodes appearing on the cycles are implicitly used as cutset
+for the unfolding. In [13], the set of all nodes is used for unfolding (correspond-
+ing to a cutset C = V in our setting) and subsequent limit construction, but
+restricted to cases where the limit exists.
+There have been numerous variants of BNs that explicitly or implicitly ad-
+dress cyclic dependencies. Dynamic Bayesian networks (DBNs) [19] extend BNs
+by an explicit notion of discrete time steps that could break cycles through
+
+On the Foundations of Cycles in Bayesian Networks
+19
+timed ordering of random variables. Cycles in BNs could be translated to the
+DBN formalism by introducing a notion of time, e.g., following [13]. Our cutset
+approach is orthogonal, choosing a time-abstract view on cycles and treating
+them as stabilizing feedback loops. Learning DBNs requires “relatively large
+time-series data” [32] and thus, may be computationally demanding. In [18] ac-
+tivator random variables break cycles in DBNs to circumvent spurious results in
+DBN reasoning when infinitesimal small time steps would be required.
+Causal BNs [23] are BNs that impose a meaning on the direction of an
+edge in terms of causal dependency. Several approaches have been proposed
+to extend causal BNs for modeling feedback loops. In [25], an equilibrium se-
+mantics is sketched that is similar to our Markov chain semantics, albeit based
+on variable oderings rather than cutsets. Determining independence relations,
+Markov properties, and joint distributions are central problems addressed for
+cyclic causal BNs [2,5,20,24,29]. Markov properties and joint distributions for
+extended versions of causal BNs have been considered recently, e.g., in directed
+graphs with hyperedges (HEDGes) [5] and cyclic structural causal models (SCMs)
+[2]. Besides others, they show that in presence of cycles, there might be multiple
+solutions for a joint distribution or even no solution at all [7]. While we consider
+all random variables to be observable, the latter approaches focus on models
+with latent variables. Further, while our focus in this paper is not on causality,
+our approach is surely also applicable to causal BNs with cycles.
+Recursive relational Bayesian networks (RRBNs) [9] allow representing prob-
+abilistic relational models where the random variables are given by relations over
+varying domains. The resulting first-order dependencies can become quite com-
+plex and may contain cycles, though semantics are given only for the acyclic
+cases by the construction of corresponding standard BNs.
+Bayesian attack graphs (BAGs) [16] are popular to model and reason about
+security vulnerabilities in computer networks. Learned graphs and thus their
+BN semantics frequently contain cycles, e.g., when using the tool MulVAL [21].
+In [27], “handling cycles correctly” is identified as “a key challenge” in security
+risk analysis. Resolution methods for cyclic patterns in BAGs [1,4,17,31] are
+mainly based on context-specific security considerations, e.g., to break cycles by
+removing edges. The semantic foundations for cyclic BNs laid in this paper do
+not require graph manipulations and decouple the probability theoretic basis
+from context-specific properties.
+7
+Conclusion
+This paper has developed a foundational perspective on the semantics of cycles in
+Bayesian networks. Constraint-based semantics provide a conservative extension
+of the standard BN semantics to the cyclic setting. While conceptually impor-
+tant, their practical use is limited by the fact that for many GBNs, the induced
+constraint system is unsatisfiable. On the other hand, the two introduced limit
+semantics echo in an abstract and formal way what practitioners have been devis-
+ing across a manifold of domain-specific situations. In this abstract perspective,
+
+20
+C. Baier et al.
+cutsets are the ingredients that enable a controlled decoupling of dependencies.
+The appropriate choice of cutsets is where, in our view, domain-specific knowl-
+edge is confined to enter the picture. Utilizing the constructively defined Markov
+chain semantics, we established key results relating and demarcating the differ-
+ent semantic notions and showed that for the ubiquitous class of smooth GBNs
+a unique full joint distribution always exists.
+References
+1. Aguessy, F., Bettan, O., Blanc, G., Conan, V., Debar, H.: Bayesian attack model
+for dynamic risk assessment. CoRR (2016)
+2. Castellano-Quero, M., Fern´andez-Madrigal, J.A., Garc´ıa-Cerezo, A.: Improving
+bayesian inference efficiency for sensory anomaly detection and recovery in mo-
+bile robots. Expert Systems with Applications 163 (2021)
+3. Castillo, E., Guti´errez, J.M., Hadi, A.S.: Modeling probabilistic networks of discrete
+and continuous variables. Journal of Multivariate Analysis 64(1), 48–65 (1998)
+4. Doynikova, E., Kotenko, I.: Enhancement of probabilistic attack graphs for ac-
+curate cyber security monitoring. In: 2017 IEEE SmartWorld/SCALCOM/UIC/
+ATC/CBDCom/IOP/SCI. pp. 1–6 (2017)
+5. Forr´e, P., Mooij, J.M.: Markov properties for graphical models with cycles and
+latent variables (2017)
+6. Geiger, D., Verma, T., Pearl, J.: d-separation: From theorems to algorithms. In:
+Machine Intelligence and Pattern Recognition, vol. 10, pp. 139–148. Elsevier (1990)
+7. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Int. Res. 12, 317–337 (2000)
+8. Han, S.H.: A top-down iteration algorithm for monte carlo method for probability
+estimation of a fault tree with circular logic. NET 50(6), 854–859 (2018)
+9. Jaeger, M.: Complex probabilistic modeling with recursive relational bayesian net-
+works. Ann. Math. Artif. Intell. 32(1-4), 179–220 (2001)
+10. Jensen, F., Nielsen, T.: Bayesian Network and Decision Graphs. Springer (2007)
+11. Jensen, F.V., Andersen, S.K., Kjærulff, U., Andreassen, S.: Munin — on the case
+for probabilities in medical expert systems — a practical exercise. In: AIME 87.
+pp. 149–160. Springer Berlin Heidelberg (1987)
+12. Kemeny, J., Snell, J.: Finite Markov chains. University series in undergraduate
+mathematics, VanNostrand, New York, repr edn. (1969)
+13. K�lopotek, M.A.: Cyclic Bayesian network: Markov process approach. Studia Infor-
+matica: systems and information technology 1(7), 47–55 (2006)
+14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
+niques. Adaptive Computation and Machine Learning, MIT Press (2009)
+15. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
+graphical structures and their application to expert systems. Journal of the Royal
+Statistical Society. Series B (Methodological) 50(2), 157–224 (1988)
+16. Liu, Y., Man, H.: Network vulnerability assessment using Bayesian networks. In:
+Data Mining, Intrusion Detection, Information Assurance, and Data Networks Se-
+curity. vol. 5812, pp. 61–71. SPIE (2005)
+17. Matthews, I., Mace, J., Soudjani, S., van Moorsel, A.: Cyclic bayesian attack
+graphs: A systematic computational approach (2020)
+18. Motzek, A.: Indirect Causes, Dependencies and Causality in Bayesian Networks.
+Ph.D. thesis, University of L¨ubeck (2017)
+
+On the Foundations of Cycles in Bayesian Networks
+21
+19. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
+ing. Ph.D. thesis, University of California, Berkeley (2002)
+20. Neal, R.M.: On deducing conditional independence from d-separation in causal
+graphs with feedback. Journal of Artificial Intelligence Research 12, 87–91 (2000)
+21. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security
+analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium
+- Volume 14. p. 8. SSYM’05, USENIX Association, USA (2005)
+22. Pearl, J.: Fusion, Propagation, and Structuring in Belief Networks, pp. 366–413.
+Morgan Kaufmann Publishers Inc. (1990)
+23. Pearl, J.: Causality: Models, Reasoning and Inference. CUP (2009)
+24. Pearl, J., Dechter, R.: Identifying independencies in causal graphs with feedback.
+In: Proceedings of the Twelfth International Conference on Uncertainty in Artificial
+Intelligence. pp. 420–426. UAI’96, Morgan Kaufmann Publishers Inc. (1996)
+25. Poole, D., Crowley, M.: Cyclic causal models with discrete variables: Markov chain
+equilibrium semantics and sample ordering. In: IJCAI International Joint Confer-
+ence on Artificial Intelligence (2013)
+26. Robert F. Nease, J., Owens, D.K.: Use of influence diagrams to structure medical
+decisions. Medical Decision Making 17(3), 263–275 (1997)
+27. Singhal, A., Ou, X.: Security Risk Analysis of Enterprise Networks Using Proba-
+bilistic Attack Graphs, pp. 53–73. Springer International Publishing, Cham (2017)
+28. Spirtes, P.: Conditional independence in directed cyclic graphical models for feed-
+back. Tech. Rep. CMU-PHIL-53, Carnegie Mellon University (1994)
+29. Spirtes, P.: Directed cyclic graphical representations of feedback models. In: Pro-
+ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp.
+491–498. UAI’95, Morgan Kaufmann Publishers Inc. (1995)
+30. Tulupyev, A.L., Nikolenko, S.I.: Directed cycles in bayesian belief networks: Proba-
+bilistic semantics and consistency checking complexity. In: MICAI 2005: Advances
+in Artificial Intelligence. pp. 214–223. Springer Berlin Heidelberg (2005)
+31. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based
+probabilistic security metric. In: Data and Applications Security XXII. pp. 283–
+296. Springer Berlin Heidelberg (2008)
+32. Wiecek, W., Bois, F.Y., Gayraud, G.: Structure learning of bayesian networks
+involving cyclic structures (2020)
+
+22
+C. Baier et al.
+A
+Appendix
+The appendix contains the proofs omitted from the body of the submission “On
+the Foundations of Cycles in Bayesian Networks” due to space constraints.
+Lemma 1. Let B̸⟳ = ⟨G, P, ι⟩ be an acyclic GBN. Then
+d-sep
+�
+Close(G)
+�
+⊆ Indep
+�
+distBN(B̸⟳)
+�
+.
+Proof. The idea is to show that the dependencies of every possible BN structure
+for the initial distribution ι are covered by the closure operation. Let the graph
+G⋆
+ι = ⟨Init(G), E⋆⟩ be a DAG that is an I-map for ι, i.e., d-sep(G⋆
+ι ) ⊆ Indep(ι).
+Then ι factorizes according to G⋆
+ι , that is for every assignment b ∈ Asg(Init(G)),
+we have
+ι(b) =
+�
+X∈Init(G)
+ι
+�
+bX | bPreG⋆ι (X)
+�
+.
+Now consider the BN B⋆
+̸⟳ with graph G⋆ = ⟨V, E ∪ E⋆⟩ where we add the edges
+of G⋆
+ι to G. The CPTs for the nodes in V \ Init(G) are given by P whereas the
+new CPTs (according to the structure in G⋆
+ι ) for the nodes in Init(G) are derived
+from ι. Then for every assignment c ∈ Asg(V):
+distBN(B⋆
+̸⟳)(c) =
+�
+X∈V
+Pr
+�
+cX | cPre(X)
+�
+=
+�
+X∈Init(G)
+ι
+�
+cX | cPreG⋆ι (X)
+�
+·
+�
+X∈V\Init(G)
+Pr
+�
+cX | cPre(X)
+�
+= ι
+�
+cInit(G)
+�
+·
+�
+X∈V\Init(G)
+Pr
+�
+cX | cPre(X)
+�
+= distBN(B̸⟳)(c).
+As B⋆
+̸⟳ is a regular BN without an initial distribution, we have d-sep(G⋆) ⊆
+Indep(dist BN(B⋆
+̸⟳)).
+We proceed to show d-sep(Close(G)) ⊆ d-sep(G⋆). Let (X ⊥ Y | Z) ∈
+d-sep(Close(G)). Then each path from X to Y in Close(G) is blocked by the
+nodes in Z. As Close(G) contains all possible edges between the nodes Init(G)
+but G⋆ only a subset thereof, it is clear that each path in G⋆ also exists in
+Close(G). Thus, there cannot be an unblocked path from X to Y given Z in G⋆
+either, so (X ⊥ Y | Z) ∈ d-sep(G⋆). Altogether, we have
+d-sep
+�
+Close(G)
+�
+⊆ d-sep(G⋆) ⊆ Indep
+�
+dist BN(B⋆
+̸⟳)
+�
+= Indep
+�
+distBN(B̸⟳)
+�
+.
+⊓⊔
+Lemma 2. Let B be a GBN with cutset C, cutset distribution γ ∈ Dist(Asg(C)),
+and M = ⟨Asg(C), P⟩ the cutset Markov chain CMC(B, C). Then the following
+statements are equivalent:
+(a) γ = γ · P.
+
+On the Foundations of Cycles in Bayesian Networks
+23
+(b) There exists γ0 ∈ Dist(Asg(C)) such that for γi+1 = γi · P, we have
+γ =
+lim
+n→∞
+1
+n+1
+n
+�
+i=0
+γi.
+(c) γ belongs to the convex hull of the long-run frequency distributions lrfD of
+the bottom SCCs D of M.
+(d) γ = Next(B, C, γ)|C.
+Proof. (a) =⇒ (b): If we have γ = γ · P, then statement (b) is obtained by
+considering γ0 = γ, as then γi = γ for all i.
+(b) =⇒ (c): The proof of the implication relies on the following standard facts
+about finite-state Markov chains. Given a BSCC D and an arbitrary distribution
+ν0 ∈ Dist(Asg(D)), the distribution lrfD agrees with the Ces`aro limit of the
+sequence (νi)i⩾0 where νi+1 = νi · PD and PD denotes the restriction of P to
+assignments on D. That is,
+lrfD = lim
+n→∞
+1
+n+1
+n
+�
+i=0
+νi.
+Vice versa, for γ0 ∈ Dist(Asg(C)) and γi+1 = γi · P, then the Ces`aro limit γ
+of the sequence (γi)i⩾0 has the form
+γ =
+�
+D
+λ(D) · lrfD
+where D ranges over all BSCCs of M, λ(D) is the probability for reaching D in M
+with the initial distribution γ0, and all vectors lrfD are padded with zero entries
+to range over the whole state space. In particular, γ is a convex combination
+of the distributions lrfD as 0 ⩽ λ(D) ⩽ 1 and �
+D λ(D) = 1 (because every
+finite-state Markov chain almost surely reaches a BSCC).
+(c) =⇒ (a): Suppose γ = �
+D λ(D)·lrfD where 0 ⩽ λ(D) ⩽ 1, �
+D λ(D) = 1,
+and each lrfD is padded appropriately as before. Then:
+γ · P =
+�
+D
+λ(D) · lrfD · P =
+�
+D
+λ(D) · lrfD = γ
+where we use the fact that lrfD = lrfD · P.
+(a) ⇐⇒ (d): Because γ can be represented as convex combination of Dirac
+distributions as γ = �
+c∈Asg(C) γ(c) · Dirac(c), we know:
+Next(B, C, γ) =
+�
+c∈Asg(C)
+γ(c) · Next
+�
+B, C, Dirac(c)
+�
+.
+As P(c, b) = Next
+�
+B, C, Dirac(c)
+�
+(b) for any assignment b ∈ Asg(C), and assum-
+ing γ = γ · P, we get
+Next(B, C, γ)(b) =
+�
+c∈Asg(C)
+γ(c) · P(c, b) = (γ · P)(b) = γ(b).
+Conversely, assuming Next(B, C, γ)|C = γ, we yield γ = γ · P.
+⊓⊔
+
+24
+C. Baier et al.
+Lemma 3. Let B be a GBN. Then for any cutset C of B, we have
+�B�MC-C = �B�LimAvg-C = �B�Lim-C.
+Proof. We have �B�MC-C = �B�LimAvg-C by Theorem 1 and know �B�Lim-C ⊆
+�B�LimAvg-C, so it remains to show �B�MC-C ⊆ �B�Lim-C. Let µ ∈ �B�MC-C. Then
+there exists a cutset distribution γ s.t. µ = Extend(B, C, γ). We need to show
+there exists an initial distribution γ0 ∈ Dist(Asg(C)) such that γ = limn→∞ γi
+where γi+1 = Next(B, C, γi)|C. Let us choose γ0 = γ. Then we know γ0 =
+Next(B, C, γ0)|C by Lemma 2, so γi = γ0 for all i ∈ N. Thus, γ = limi→∞ γi and
+therefore µ ∈ �B�Lim-C.
+⊓⊔
+Lemma 4 (Cardinality). Let B be a GBN with cutset C and cutset Markov
+chain CMC(B, C) = ⟨Asg(C), P⟩. Further, let k > 0 denote the number of bottom
+SCCs D1, . . . , Dk of CMC(B, C). Then
+1. the cardinality of the cutset Markov chain semantics is given by
+���B�MC-C
+�� =
+�
+1
+if k = 1,
+∞
+if k > 1;
+2. Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)) if all Di are aperiodic;
+3. Lim(B, C, γ) is only defined for stationary distributions γ with γ = γ · P if
+Di is periodic for any 1 ⩽ i ⩽ k.
+Proof. (1.) By Lemma 2, every cutset distribution with γ = γ · P is a convex
+combination of the steady-state distributions for the BSCCs. Thus, for k = 1
+a unique distribution γ exists, whereas for k > 1, there are infinitely many
+real-valued distributions in the convex hull.
+(2.) A Markov chain is aperiodic if all its BSCCs are aperiodic. Aperiodicity
+suffices for the limit limn→∞ γn with γn+1 = γn · P to exist for every γ0. Then
+limn→∞ γ′
+n with γ′
+n+1 = Next(B, C, γ′
+n)|C exists as well by Lemma 2.
+(3.) Assume some BSCC D is periodic with a period of p. Then, for any γ0 ∈
+Dist(Asg(C)), γn+1 = γn · P, and νn = γn|D, we have νp·n = νn. Now consider
+γ0 and γ1 = γ0 · P. If γ0 = γ1, then γ0 = γn for all n ∈ N and γ0 = limn→∞ γn
+holds. Otherwise, if γ0 ̸= γ1, the following non-convergent sequence exists:
+ν0, ν1, . . . , νp, νp+1, . . . , ν2p, ν2p+1, . . .
+Then limn→∞ γn cannot converge either, so Lim(B, C, γ0) is undefined.
+⊓⊔
+Lemma 5. Let B be a smooth GBN and C a cutset of B. Then the graph of the
+cutset Markov chain CMC(B, C) is a complete digraph.
+Proof. The graph of CMC(B, C) = ⟨Asg(C), P⟩ is a complete digraph iff each
+entry in P is positive. Thus, for each two assignments b, c ∈ Asg(C), we need to
+
+On the Foundations of Cycles in Bayesian Networks
+25
+show P(b, c) > 0. Let Bb = Dissect(B, C, Dirac(b)). Then from Definition 8, we
+have
+P(b, c) = Next(Dirac(b), B, C)(c)
+= distBN(Bb)(c′).
+The probability dist BN(Bb)(c′) is given by the sum over all full assignments
+v ∈ Asg(V) that agree with c′ on the assignment of the cutset node copies C′.
+Further, the sum can be partitioned into those v that agree with assignment b
+on C and those that do not:
+distBN(Bb)(c′) =
+�
+v∈Asg(V)
+s.t. c′⊂v, b⊂v
+distBN(Bb)(v) +
+�
+v∈Asg(V)
+s.t. c⊂v, b̸⊂v
+dist BN(Bb)(v).
+By the definition of the standard BN-semantics, we have
+distBN(Bb)(v) = ι
+�
+vInit(G)
+�
+· Dirac(b)(vC) ·
+�
+X∈V\C
+Pr
+�
+vX | vPre(X)
+�
+.
+Now consider the second sum in the previous equation where b ̸⊂ v. For those
+assignments, Dirac(b)(vC) = 0 and thus the whole sum equals zero. For the
+first sum, we have vC = b, so Dirac(b)(vC) = 1 and we only need to consider
+the product with X ∈ V \ C and the initial distribution over Init(G). By the
+construction of Bb, the CPTs of all X ∈ V \C are the original CPTs from B, thus
+their entries all fall within the open interval ]0, 1[ by the smoothness assumption
+of B. The same holds for the value ι
+�
+vInit(G)
+�
+. Thus, the whole product resides
+in ]0, 1[ as well. Finally, note that the sum is non-empty as C′ and C are disjoint,
+so there exists at least one v ∈ Asg(V) with c ⊂ v and b ⊂ v. As a non-empty
+sum over values in ]0, 1[ is necessarily positive, we have distBN(Bb)(c′) > 0 and
+the claim follows.
+⊓⊔
+Corollary 1. The limit semantics of a smooth GBN B is a singleton for every
+cutset C of B and Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)).
+Proof. Follows from Lemma 4 and Lemma 5 because every complete graph forms
+a single bottom SCC and is necessarily aperiodic.
+⊓⊔
+Lemma 6. Let B be a GBN over nodes V, C ⊆ V a cutset for B, and µ ∈
+�B�MC-C. Then µ is strongly CPT-consistent for all nodes in V\C and weakly
+CPT-consistent for the nodes in C.
+Proof. By definition, µ = Extend(B, C, γ) for some γ ∈ Dist(Asg(C)) with
+γ = γ · P. As Extend(B, C, γ) is the standard BN semantics for the acyclic
+BN Dissect(B, C, γ) without the copies of the cutset nodes, CPT-consistency for
+the nodes in V \ C follows directly from the CPT-consistency of the standard
+semantics for acyclic BNs.
+
+26
+C. Baier et al.
+It remains to prove weak CPT-consistency for the cutset nodes. Let δ =
+distBN(Dissect(B, C, γ)) ∈ Dist(Asg(V ∪ C′)). Thus, µ = δ|V and γ = δ|C. Then
+for each assignment b ∈ Asg(C), we have
+µ(b) = γ(b) = (γ · P)(b) = δ(b′)
+where b′ ∈ Asg(C′) is given by b′(Y ′) = b(Y ) for all Y ∈ C. In particular, for each
+Y ∈ C:
+µ(Y=T) = δ(Y ′=T)
+Let D = Asg(Pre(Y )) where Pre(·) refers to the original scGBN. For c ∈
+Asg(C), we write Dc for the set of all assignments d ∈ D that comply with c in
+the sense that if Z ∈ C ∩ Pre(Y ) then c(Z) = d(Z). In this case, c and d can be
+combined to an assignment for C ∪Pre(Y ). Similarly, if d ∈ D, then the notation
+Asgd(C) is used for the set of assignments c ∈ Asg(C) that comply with d. Then:
+δ(Y ′=T) =
+�
+c∈Asg(C)
+δ(Y ′=T | c) · µ(c)
+=
+�
+c∈Asg(C)
+�
+d∈Dc
+δ(Y ′=T | c, d)
+�
+��
+�
+Pr(Y =T|d)
+· δ(d | c)
+� �� �
+µ(d|c)
+· δ(c)
+����
+µ(c)
+=
+�
+d∈D
+Pr(Y =T | d) ·
+�
+c∈Asgd(C)
+µ(d | c) · µ(c)
+=
+�
+d∈D
+Pr(Y =T | d) · µ(d).
+Putting everything together, we obtain:
+µ(Y =T) = δ(Y ′=T) =
+�
+d∈D
+Pr(Y =T | d) · µ(d).
+Thus, µ is weakly CPT-consistent for Y ∈ C.
+⊓⊔
+Lemma 7. Let B be a GBN over nodes V and C1, . . . , Ck cutsets of B s.t. for
+each node X ∈ V there is an i ∈ {1, . . . , k} with X /∈ Ci. Then
+�
+0⩽i⩽k
+�B�MC-Ci ⊆ �B�Cpt.
+Proof. We need to show CPT-consistency for every node under µ ∈ �
+i�B�MC-Ci.
+Let X ∈ V. Then we choose a cutset Ci s.t. X /∈ Ci and CPT consistency follows
+from Lemma 6.
+⊓⊔
+Lemma 8. Let B be a GBN with cutset C and IC = d-sep
+�
+Close(Close(G)[C])
+�
+.
+Then we have
+�B�Cpt-IC ⊆ �B�MC-C.
+
+On the Foundations of Cycles in Bayesian Networks
+27
+Proof. Let µ ∈ �B�Cpt-IC and γ = µ|C. The task is to show that γ satisfies the
+fixed point equation γ = γ · P.
+The standard BN semantics δ = dist BN(Dissect(B, C, γ)) of the dissected BN
+is the unique distribution over Asg(V ∪ C′) that
+– is CPT-consistent w.r.t. the conditional probability tables in Dissect(B, C, γ),
+– agrees with γ when restricted to the assignments for C, and
+– satisfies the conditional independencies in IC.
+Consider the distribution ˜µ ∈ Dist
+�
+Asg(V∪C′)
+�
+defined as follows for b ∈ Asg(V)
+and c′ ∈ Asg(C′):
+˜µ(b, c′) := µ(b) ·
+�
+Y∈C
+Pr
+�
+Y=c′(Y ′) | bPre(Y )
+�
+.
+Then, ˜µ satisfies the above three constraints. Hence, ˜µ = δ.
+For c ∈ Asg(C), let c′ ∈ Asg(C′) denote the corresponding assignment with
+c′(Y ′) = c(Y ) for Y ∈ C.
+(γ · P)(c) = δ(c′) = ˜µ(c′)
+=
+�
+d∈Asg(Pre(C))
+µ(d) ·
+�
+Y∈C
+Pr(Y=c′(Y ′) | d)
+�
+��
+�
+Pr(Y=c(Y )|d)
+= µ(c) = γ(c).
+Hence, γ = γ · P and µ ∈ �B�MC-C.
+⊓⊔
+
diff --git a/1dFAT4oBgHgl3EQfkB03/content/tmp_files/load_file.txt b/1dFAT4oBgHgl3EQfkB03/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d9040859d73b8b1d10c97864a047bc39760312e4
--- /dev/null
+++ b/1dFAT4oBgHgl3EQfkB03/content/tmp_files/load_file.txt
@@ -0,0 +1,907 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf,len=906
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='08608v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='AI] 20 Jan 2023 On the Foundations of Cycles in Bayesian Networks⋆ Christel Baier1, Clemens Dubslaff1, Holger Hermanns2,3, and Nikolai K¨afer1 1 TU Dresden, Dresden, Germany 2 Saarland University, Saarbr¨ucken, Germany 3 Institute of Intelligent Software, Guangzhou, China Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Bayesian networks (BNs) are a probabilistic graphical model widely used for representing expert knowledge and reasoning under un- certainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Traditionally, they are based on directed acyclic graphs that capture dependencies between random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, directed cy- cles can naturally arise when cross-dependencies between random vari- ables exist, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', for modeling feedback loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Existing methods to deal with such cross-dependencies usually rely on reductions to BNs without cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' These approaches are fragile to generalize, since their justifica- tions are intermingled with additional knowledge about the application context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this paper, we present a foundational study regarding seman- tics for cyclic BNs that are generic and conservatively extend the cycle- free setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' First, we propose constraint-based semantics that specify requirements for full joint distributions over a BN to be consistent with the local conditional probabilities and independencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Second, two kinds of limit semantics that formalize infinite unfolding approaches are intro- duced and shown to be computable by a Markov chain construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1 Introduction A Bayesian network (BN) is a probabilistic graphical model representing a set of random variables and their conditional dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' BNs are ubiquitous across many fields where reasoning under uncertainties is of interest [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Specifically, a BN is a directed acyclic graph with the random variables as nodes and edges manifesting conditional dependencies, quantified by conditional probability ta- bles (CPTs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The probability of any random variable can then be deduced by the CPT entries along all its predecessors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Here, these probabilities are indepen- dent of all variables that are no (direct or transitive) predecessors in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Acyclicity is hence crucial and commonly assumed to be rooted in some sort of causality [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A classical use of BNs is in expert systems [22] where BNs ag- gregate statistical data obtained by several independent studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In the medical ⋆ This work was partially supported by the DFG in projects TRR 248 (CPEC, see https://perspicuous-computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='science, project ID 389792660) and EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), and the Key-Area Research and Development Program Grant 2018B010107004 of Guang- dong Province.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' X Y X=T X=F F s1 1 − s1 T s2 1 − s2 Y X Y=T Y=F F t1 1 − t1 T t2 1 − t2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1: A cyclic GBN with CPTs for X and Y domain, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', they can capture the correlation of certain symptoms, diseases, and human factors [11,15,26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Imagine for instance an expert system for supporting diagnosis of Covid- 19, harvesting multiple clinical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' One study might have investigated the percentage of patients who have been diagnosed with fever also having Covid- 19, while another study in turn might have investigated among the Covid-19 patients whether they have fever, too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Clearly, both studies investigate the de- pendency between fever and Covid-19, but under different conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Fever may weaken the immune system and could increase the risk of a Covid-19 infection, while Covid-19 itself has fever as a symptom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In case there is uniform knowledge about “which symptom was first” in each of the constituent studies, then dy- namic Bayesian networks (DBNs) [19] could be used as a model for the expert system, breaking the interdependence of fever and Covid-19 through a prece- dence relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, this implies either to rely only on studies where these temporal dependencies are clearly identified or to introduce an artificial notion of time that might lead to spurious results [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A naive encoding into the BN framework always yields a graph structure that contains cycles, as is the case in our small example shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1 where X and Y stand for the random variables of diagnosing Covid-19 and fever, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' That cycles might be unavoidable has already been observed in seminal pa- pers such as [22,15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' But acyclicity is crucial for computing the joint probability distribution of a BN, and thereby is a prerequisite for, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', routine inference tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Existing literature that considers cycles in BNs mainly recommends re- ducing questions on the probability values to properties in acyclic BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For instance, in [11] nodes are collapsed towards removing cycles, while [22] suggests to condition on each value combination on a cycle, generating a decomposition into tree-like BNs and then averaging over the results to replace cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Some- times, application-specific methods that restructure the cyclic BN towards an acyclic BN by introducing additional nodes [26,8] or by unrolling cycles up to a bounded depth [17,2] have been reported to give satisfactory results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Other ap- proaches either remove edges that have less influence or reverse edges on cycles (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', [10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, such approaches are highly application dependent and hinge on knowledge about the context of the statistical data used to construct the BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Furthermore, as already pointed out by [30], they usually reduce the solution space of families of joint distributions to a single one, or introduce so- lutions not consistent with the CPTs of the original cyclic BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' While obviously many practitioners have stumbled on the problem how to treat cycles in BNs On the Foundations of Cycles in Bayesian Networks 3 and on the foundational question “What is the meaning of a cyclic BN?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', there is very little work on the foundations of Bayesian reasoning with cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this paper, we approach this question by presenting general semantics for BNs with cycles, together with algorithms to compute families of joint distri- butions for such BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' First, we investigate how the two main constituents of classical BNs, namely consistency with the CPTs and independencies induced by the graph structure, influence the joint distributions in the presence of cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' This leads to constraints semantics for cyclic BNs that comprise all those joint distributions respecting the constraints, being either a single uniquely defined one, none, or infinitely many distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Second, we present semantics that formalize unfolding approaches and depend on the choice of a cutset, a set of random variables that break every cycle in a cyclic BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Intuitively, such cutsets form the seams along which feedback loops can be unraveled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' These semantics are defined in terms of the limit (or limit average) of a sequence of distribu- tions at descending levels in the infinite unfolding of the BN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We show that the same semantics can be defined using a Markov chain construction and sub- sequent long-run frequency analysis, which enables both precise computation of the semantics and deep insights in the semantics’ behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Among others, an immediate result is that the family of distributions induced with respect to the limit semantics is always non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As we will argue, the limit semantics have obvious relations to a manifold of approaches that have appeared in the literature, yet they have not been spelled out and studied explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1 Notation Let V be a set of Boolean random variables4 over the domain B = {F, T}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We usually denote elements of V by X, Y, or Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' An assignment over V is a function b: V → B which we may specify through set notation, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', b = {X=T, Y=F} for b(X) = T and b(Y ) = F, or even more succinctly as XY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The set of all possible assignments over V is denoted by Asg(V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We write bU for the restriction of b to a subset U ⊆ V, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', b{X} = {X=T}, and may omit set braces, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', bX,Y = b{X,Y }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A distribution over a set S is a function µ: S → [0, 1] where � s∈S µ(s) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The set of all distributions over S is denoted by Dist(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For |S| = n, µ will occasionally be represented as a vector of size n for some fixed order on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In the following, we are mainly concerned with distributions over assignments, that is distributions µ ∈ Dist(Asg(V)) for some set of random variables V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Each such distribution µ induces a probability measure (also called µ) on 2Asg(V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, for a set of assignments φ ⊆ Asg(V), we have µ(φ) = � b∈φ µ(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We are often interested in the probability of a partial assignment d ∈ Asg(U) on a subset U ⊊ V of variables, which is given as the probability of the set of all full 4 We use Boolean random variables for simplicity of representation, an extension of the proposed semantics over random variables with arbitrary finite state spaces is certainly possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' assignments b ∈ Asg(V) that agree with d on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As a shorthand, we define µ(d) := µ � {b ∈ Asg(V) : bU = d} � = � b∈Asg(V) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' bU =d µ(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The special case µ(X=T) is called the marginal probability of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The restriction of µ ∈ Dist(Asg(V)) to U, denoted µ|U ∈ Dist(Asg(U)), is given by µ|U(d) := µ(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For a set W disjoint from V and ν ∈ Dist(Asg(W)), the product distribution of µ and ν is given by (µ ⊗ ν)(c) := µ(cV) · ν(cW) for every c ∈ Asg(V ∪ W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' µ is called a Dirac distribution if µ(b) = 1 for some assignment b ∈ Asg(V) and thus µ(c) = 0 for all other assignments c ̸= b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A Dirac distribution derived from a given assignment b is denoted by Dirac(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Graph Notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For a graph G = ⟨V, E⟩ with nodes V and directed edges E ⊆ V × V, we may represent an edge (X, Y ) ∈ E as X → Y if E is clear from context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Pre(X) := {Y ∈ V : Y → X} denotes the set of parents of a node X ∈ V, and Post∗(X) := {Y ∈ V : X → · · · → Y } is the set of nodes reachable from X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A node X is called initial if Pre(X) = ∅, and Init(G) is the set of all nodes initial in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A graph G is strongly connected if each node in V is reachable from every other node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A set of nodes D is a strongly connected component (SCC) of G if all nodes in D can reach each other and D is not contained in another SCC, and a bottom SCC (BSCC) if no node in V \\ D can be reached from D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Markov Chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A discrete-time Markov chain (DTMC) is a tuple M = ⟨S, P⟩ where S is a finite set of states and P: S × S → [0, 1] a function such that P(s, ·) ∈ Dist(S) for all states s ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The underlying graph GM = ⟨S, E⟩ is defined by E = {(s, t) ∈ S × S : P(s, t) > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The transient distribution πι n ∈ Dist(S) at step n is defined through the probability πι n(s) to be in state s after n steps if starting with initial state distribution ι.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' It satisfies (in matrix-vector notation) πι n = ι · Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We are also interested in the long-run frequency of state occupancies when n tends to infinity, defined as the Ces`aro limit lrfι : S → [0, 1]: lrfι(s) := lim n→∞ 1 n + 1 n � i=0 πι n(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (LRF) This limit always exists and corresponds to the long-run fraction of time spent in each state [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The limit probability limn→∞ πι n is arguably more intuitive as a measure of the long-run behavior, but may not exist (due to periodicity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In case of existence, it agrees with the Ces`aro limit lrfι.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' If GM forms an SCC, the limit is independent of the choice of ι and the superscript can be dropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We denote this limit by lrfM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2 Generalized Bayesian Networks We introduce generalized Bayesian networks (GBNs) as a BN model that does not impose acyclicity and comes with a distribution over initial nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 5 Definition 1 (Generalized BN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A GBN B is a tuple ⟨G, P, ι⟩ where – G = ⟨V, E⟩ is a directed graph with nodes V and an edge relation E ⊆ V × V, – P is a function that maps all non-initial nodes X ∈ V\\Init(G) paired with each of their parent assignments b ∈ Asg(Pre(X)) to a distribution P(X, b): Asg � {X} � → [0, 1], – ι is a distribution over the assignments for the initial nodes Init(G), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', ι ∈ Dist � Asg(Init(G)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The distributions P(X, b) have the same role as the entries in a conditional probability table (CPT) for X in classical BNs: they specify the probability for X=T or X=F depending on the assignments of the predecessors of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' To this end, for X ∈ V\\Init(G) and b ∈ Asg(Pre(X)), we also write Pr(X=T | b) for P(X, b)(X=T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In the literature, initial nodes are often assigned a marginal prob- ability via a CPT as well, assuming independence of all initial nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Differently, in our definition of GBNs, it is possible to specify an arbitrary distribution ι over all initial nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' If needed, P can be easily extended to initial nodes by setting P(X, ∅) := ι|{X} for all X ∈ Init(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Hence, classical BNs arise as a special instance of GBNs where the graph G is acyclic and initial nodes are pairwise independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In that case, the CPTs given by P are a compact representation of a single unique full joint distribution dist BN(B) over all random variables X ∈ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For every assignment b ∈ Asg(V), we can compute dist BN(B)(b) by the so-called chain rule: dist BN(B)(b) := ι � bInit(G) � � X∈V\\Init(G) Pr � bX | bPre(X) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (CR) In light of the semantics introduced later on, we define the standard BN-semantics of an acyclic GBN B as the set �B�BN := {distBN(B)}, and �B�BN := ∅ if B con- tains cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The distribution dist BN(B) satisfies two crucial properties: First, it is con- sistent with the CPT entries given by P and the distribution ι, and second, it observes the independencies encoded in the graph G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In fact, those two properties are sufficient to uniquely characterize distBN(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We briefly review the notion of independence and formally define CPT consistency later on in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Independence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Any full joint probability distribution µ ∈ Dist(Asg(V)) may in- duce a number of conditional independencies among the random variables in V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For X, Y, and Z disjoint subsets of V, the random variables in X and Y are independent under µ given Z if the conditional probability of each assignment over the nodes in X given an assignment for Z is unaffected by further condi- tioning on any assignment of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Formally, the set Indep(µ) contains the triple (X, Y, Z) iff for all a ∈ Asg(X), b ∈ Asg(Y), and c ∈ Asg(Z), we have µ(a | b, c) = µ(a | c) or µ(b, c) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We also write (X ⊥ Y | Z) for (X, Y, Z) ∈ Indep(µ) and may omit the set brackets of X, Y, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 6 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' d-separation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For classical BNs, the graph topology encodes independencies that are necessarily satisfied by any full joint distribution regardless of the CPT entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Given two random variables X and Y as well as a set of observed variables Z, then X and Y are conditionally independent given Z if the corresponding nodes in the graph are d-separated given Z [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' To establish d-separation, all simple undirected paths5 between X and Y need to be blocked given Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let W denote such a simple path W0, W1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , Wk with W0 = X, Wk = Y, and either Wi → Wi+1 or Wi ← Wi+1 for all i < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then W is blocked given Z if and only if there exists an index i, 0 < i < k, such that one of the following two conditions holds: (1) Wi is in Z and is situated in a chain or a fork in W, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', – Wi−1 → Wi → Wi+1 (forward chain) – Wi−1 ← Wi ← Wi+1 (backward chain) and Wi ∈ Z, – Wi−1 ← Wi → Wi+1 (fork) (2) Wi is in a collider and neither Wi nor any descendant of Wi is in Z, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', – Wi−1 → Wi ← Wi+1 (collider) and Post∗(Wi) ∩ Z = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Two sets of nodes X and Y are d-separated given a third set Z if for each X ∈ X and Y ∈ Y, X and Y are d-separated given Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Notably, the d-separation criterion is applicable also in presence of cycles [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For a graph G = ⟨V, E⟩ of a GBN, we define the set d-sep(G) as d-sep(G) := � (X, Y, Z) ∈ (2V)3 : X and Y are d-separated given Z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For acyclic Bayesian networks it is well known that the independencies ev- ident from the standard BN semantics’ distribution include the independencies derived from the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' That is, for acyclic GBNs B̸⟳ = ⟨G, P, ι⟩ where all initial nodes are pairwise independent under ι, we have d-sep(G) ⊆ Indep � dist BN(B̸⟳) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For an arbitrary initial distribution, the above relation does not necessarily hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, we can still find a set of independencies that are necessarily observed by the standard BN semantics and thus act as a similar lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We do so by assuming the worst case, namely that each initial node depends on every other initial node under ι.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Formally, given a graph G = ⟨V, E⟩, we define a closure operation Close(·) as follows and compute the set d-sep � Close(G) � : Close(G) := � V, E ∪ {(A, B) for A, B ∈ Init(G), A ̸= B} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B̸⟳ = ⟨G, P, ι⟩ be an acyclic GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then d-sep � Close(G) � ⊆ Indep � distBN(B̸⟳) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As intuitively expected, the presence of cycles in G generally reduces the number of graph independencies, though note that also in strongly connected graphs independencies may exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For example, if G is a four-node cycle with nodes W, X, Y, and Z, then d-sep(G) = � (W ⊥ Y | X, Z), (X ⊥ Z | W, Y ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5 A path is simple if no node occurs twice in the path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' “Undirected” in this context means that edges in either direction can occur along the path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 7 3 Constraints Semantics For classical acyclic BNs there is exactly one distribution that agrees with all CPTs and satisfies the independencies encoded in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' This distribution can easily be constructed by means of the chain rule (CR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For cyclic GBNs, applying the chain rule towards a full joint distribution is not possible in general, as the result is usually not a valid probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Still, we can look for distributions consistent with a GBN’s CPTs and the independencies derived from its graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Depending on the GBN, we will see that there may be none, exactly one, or even infinitely many distributions fulfilling these constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1 CPT-consistency We first provide a formal definition of CPT consistency in terms of linear con- straints on full joint distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 2 (Strong and weak CPT-consistency).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with nodes V and X ∈ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then µ is called strongly CPT-consistent for X in B (or simply CPT-consistent) if for all c ∈ Asg(Pre(X)) µ(X=T, c) = µ(c) · Pr(X=T | c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (Cpt) We say that µ is weakly CPT-consistent for X in B if µ(X=T) = � c∈Asg(Pre(X)) µ(c) · Pr(X=T | c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (wCpt) Intuitively, the constraint (Cpt) is satisfied for µ if the conditional proba- bility µ(X=T | c) equals the entry in the CPT for X under assignment c, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', µ(X=T | c) = Pr(X=T | c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In the weak case (wCpt), only the resulting marginal probability of X needs to agree with the CPTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 3 (Cpt and wCpt semantics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For a GBN B = ⟨G, P, ι⟩, the CPT-semantics �B�Cpt is the set of all distributions µ ∈ Dist(Asg(V)) where µ|Init(G) = ι and µ is CPT-consistent for every node X ∈ V\\Init(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The weak CPT-semantics �B�wCpt is defined analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Clearly, we have �B�Cpt ⊆ �B�wCpt for all B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The next example shows that depending on the CPT values, the set �B�Cpt may be empty, a singleton, or of infinite cardinality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' To find CPT-consistent distributions for the GBN from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1, we construct a system of linear equations whose solutions form distributions µ ∈ Dist � Asg({X, Y }) � , represented as vectors in the space [0, 1]4: \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed s1 0 s1−1 0 0 s2 0 s2−1 t1 t1−1 0 0 0 0 t2 t2−1 1 1 1 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed µXY µXY µXY µXY \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed 0 0 0 0 1 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 8 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' where, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', µXY abbreviates µ(X=T, Y=F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The first line of the matrix states the (Cpt) constraint for node X and the parent assignment c = {Y=F}: 0 = s1 · µXY + 0 · µXY + (s1−1) · µXY + 0 · µXY µXY = (µXY + µXY ) · s1 µXY = µY · Pr(X=T | Y=F) µ(X=T, c) = µ(c) · Pr(X=T | c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Analogously, the following three rows encode the CPT constraints for X, Y, and their remaining parent assignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The last row ensures that solutions are indeed probability distributions satisfying � c µ(c) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The number of solutions for the system now depends on the CPT entries s1, s2, t1, and t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For s1 = t2 = 0 and s2 = t1 = 1, no solution exists as the first four equations require µ(b) = 0 for all b ∈ Asg({X, Y }), while the last equation ensures µXY + µXY + µXY + µXY = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For s1 = t1 = 0 and s2 = t2 = 1, all distributions with µXY = 1 − µXY and µXY = µXY = 0 are solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Finally, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', for s1 = t1 = 3/4 and s2 = t2 = 1/2, there is exactly one solution with µXY = 1/10 and µ(b) = 3/10 for the other three assignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='2 Independence-consistency We extend Cpt semantics with a set of independencies that need to be observed by all induced distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 4 (Cpt-I semantics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For a GBN B = ⟨G, P, ι⟩ and a set of inde- pendencies I, the CPT-I semantics �B�Cpt-I is defined as the set of all CPT- consistent distributions µ for which I ⊆ Indep(µ) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Technically, the distributions in �B�Cpt-I have to fulfill the following polynomial constraints in addition to the CPT-consistency constraints: µ(b) · µ(bW) = µ(b{X}∪W) · µ(bU∪W) (Cpt-I) for each independence (X ⊥ U | W) ∈ I with variable X∈V and sets of variables U, W ⊆ V, and for each assignment b ∈ Asg({X} ∪ U ∪ W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Note that in case µ(bW) > 0, (Cpt-I) is equivalent to the constraint µ(bX | bU∪W) = µ(bX | bW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We can now formally state the alternative characterization of the standard BN semantics as the unique CPT-consistent distribution that satisfies the d- separation independencies of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For each classical BN B with acyclic graph G and I = d-sep(G), we have �B�BN = {distBN(B)} = �B�Cpt-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, the Cpt-I semantics provides a conservative extension of the standard BN semantics to GBNs with cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, in practice, its use is limited since there might be no distribution that satisfies all constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In fact, the case where �B�Cpt-I = ∅ is to be expected for most cyclic GBNs, given that the resulting constraint systems tend to be heavily over-determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The next section introduces semantics that follow a more constructive ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We will see later on in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1 that the families of distributions induced by these semantics are always non-empty and usually singletons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 9 X Y Z Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2: The graph of a strongly connected GBN X0 Y0 Z0 X1 Y1 Z1 X2 Y2 Z2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (a) Unfolding along all nodes Z0 X1 Y1 Z1 X2 Y2 Z2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (b) Unfolding along the Z nodes Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3: Two infinite unfoldings of the graph in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2 4 Limit and Limit Average Semantics We first develop the basic ideas underling the semantics by following an example, before giving a formal treatment in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1 Intuition Consider the GBN B whose graph G is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' One way to get rid of the cycles is to construct an infinite unfolding of B as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this new graph G∞, each level contains a full copy of the original nodes and corresponds to some n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For any edge X → Y in the original graph, we add edges Xn → Yn+1 to G∞, such that each edge descends one level deeper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Clearly any graph constructed in this way is acyclic, but this fact alone does not aid in finding a matching distribution since we dearly bought it by giving up finiteness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, we can consider what happens when we plug in some initial distribution µ0 over the nodes X0, Y0, and Z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Looking only at the first two levels, we then get a fully specified acyclic BN by using the CPTs given by P for X1, Y1, and Z1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For this sub-BN, the standard BN semantics yields a full joint distribution over the six nodes from X0 to Z1, which also induces a distribution µ1 over the three nodes at level 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' This procedure can then be repeated to construct a distribution µ2 over the nodes X2, Y2, and Z2, and, more generally, to get a distribution µn+1 given a distribution µn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Recall that 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' each of those distributions can be viewed as vector of size 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Considering the sequence µ0, µ1, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , the question naturally arises whether a limit exists, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', a distribution/vector µ such that µ = lim n→∞ µn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Consider the GBN from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1 with CPT entries s1 = t2 = 1 and s2 = t1 = 0, which intuitively describe the contradictory dependencies “X iff not Y ” and “Y iff X”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For any initial distribution µ0 = ⟨e f g h⟩, the construction informally described above yields the following sequence of distributions µn: µ0 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed e f g h \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, µ1 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed f h e g \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, µ2 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed h g f e \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, µ3 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed g e h f \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, µ4 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed e f g h \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As µ4 = µ0, the sequence starts to cycle infinitely between the first four distribu- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The series converges for e = f = g = h = 1/4 (in which case the sequence is constant), but does not converge for any other initial distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The example shows that the existence of the limit depends on the given initial distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In case no limit exists because some distributions keep repeating without ever converging, it is possible to determine the limit average (or Ces`aro limit) of the sequence: ˜µ = lim n→∞ 1 n + 1 n � i=0 µi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The limit average has three nice properties: First, if the regular limit µ exists, then the limit average ˜µ exists as well and is identical to µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Second, in our use case, ˜µ in fact always exists for any initial distribution µ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' And third, as we will see in Section 5, the limit average corresponds to the long-run frequency of certain Markov chains, which allows us both to explicitly compute and to derive important properties of the limit distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Continuing Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2, the limit average of the sequence µ0, µ1, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' is the uniform distribution ˜µ = ⟨1/4 1/4 1/4 1/4⟩, regardless of the choice of µ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Before we formally define the infinite unfolding of GBNs and the resulting limit semantics, there is one more observation to be made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' To ensure that the unfolded graph G∞ is acyclic, we redirected every edge of the GBN B to point one level deeper, resulting in the graph displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3b, we also get an acyclic unfolded graph by only redirecting the edges originating in the Z nodes to the next level and keeping all other edges on the same level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The relevant property is to pick a set of nodes such that for each cycle in the original GBN B, at least one node in the cycle is contained in the set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We call such sets the cutsets of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 11 Definition 5 (Cutset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be an GBN with graph G = ⟨V, E⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A subset C ⊆ V is a cutset for B if every cycle in G contains at least one node from C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The GBN in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2 has the following cutsets: {Y }, {Z}, {X, Y }, {X, Z}, {Y, Z}, and {X, Y, Z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Note that {X} does not form a cutset as no node from the cycle Y → Z → Y is contained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' So far we implicitly used the set V of all nodes for the unfolding, which always trivially forms a cutset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The following definitions will be parameterized with a cutset, as the choice of cutsets influences the resulting distributions as well as the time complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='2 Formal Definition Let Vn := {Xn : X ∈ V} denote the set of nodes on the nth level of the unfolding in G∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For C ⊆ V a cutset of the GBN, the subset of cutset nodes on that level is given by Cn := {Xn ∈ Vn : X ∈ C}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then a distribution γn ∈ Dist(Asg(Cn)) for the cutset nodes in Cn suffices to get a full distribution µn+1 ∈ Dist(Asg(Vn+1)) over all nodes on the next level, n + 1: We look at the graph fragment Gn+1 of G∞ given by the nodes Cn ∪ Vn+1 and their respective edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this fragment, the cutset nodes are initial, so the cutset distribution γn can be combined with the initial distribution ι to act as new initial distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For the nodes in Vn+1, the corresponding CPTs as given by P can be used, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Pn(Xn, ·) = P(X, ·) for Xn ∈ Vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Putting everything together, we obtain an acyclic GBN Bn+1 = ⟨Gn+1, Pn+1, ι ⊗ γn⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, GBNs constructed in this way for each level n > 0 are all isomorphic and only differ in the given cutset distribution γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For simplicity and in light of later use, we thus define a single representative GBN Dissect(B, C, γ) that represents a dissection of B along a given cutset C, with ι ⊗ γ as initial distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 6 (Dissected GBN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B = ⟨G, P, ι⟩ be a GBN with graph G = ⟨V, E⟩ and C ⊆ V a cutset for B with distribution γ ∈ Dist(Asg(C)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then, the C-dissected GBN Dissect(B, C, γ) is the acyclic GBN ⟨GC, PC, ι ⊗ γ⟩ with graph GC = ⟨V ∪ C′, EC⟩ where – C′ := {X′ : X ∈ C} extends V by fresh copies of all cutset nodes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' – incoming edges to nodes in C are redirected to their copies, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', EC := � (X, Y ′) : (X, Y ) ∈ E, Y ∈ C � ∪ � (X, Y ) : (X, Y ) ∈ E, Y /∈ C � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' – the function PC uses the CPT entries given by P for the cutset nodes as entries for their copies and the original entries for all other nodes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', we have PC(Y ′, a) = P(Y, a) for each node Y ′ ∈ C′ and parent assignment a ∈ Asg(Pre(Y ′)), and PC(X, b) = P(X, b) for X ∈ V\\C and b ∈ Asg(Pre(X)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 4 shows two examples of dissections on the GBN of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As any dissected GBN is acyclic by construction, the standard BN semantics yields a full joint distribution over all nodes in V ∪ C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We restrict this distribution to the nodes 12 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' X Y Z X′ Y ′ Z′ (a) Cutset C = {X, Y, Z} Z X Y Z′ (b) Cutset C = {Z} Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 4: Dissections of the GBN in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2 for two cutsets in (V \\ C) ∪ C′, as those are the ones on the “next level” of the unfolding, while re-identifying the cutset node copies with the original nodes to get a distribution over V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Formally, we define the distribution Next(B, C, γ) for each assignment b ∈ Asg(V) as Next(B, C, γ)(b) := dist BN � Dissect(B, C, γ) � (b′) where the assignment b′ ∈ Asg � (V\\C) ∪ C′� is given by b′(X) = b(X) for all X ∈ V\\C and b′(Y ′) = b(Y ) for all Y ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In the unfolded GBN, this allows us to get from a cutset distribution γn to the next level distribution µn+1 = Next(B, C, γn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The next cutset distribution γn+1 is then given by restricting the full distribution to the nodes in C, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', γn+1 = Next(B, C, γn)|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='6 Vice versa, a cutset distribution γ suffices to recover the full joint distribution over all nodes V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Again using the standard BN semantics of the dissected GBN, we define the distribution Extend(B, C, γ) ∈ Dist(Asg(V)) as Extend(B, C, γ) := dist BN � Dissect(B, C, γ) ��� V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' With these definitions at hand, we can formally define the limit and limit average semantics described in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 7 (Limit and limit average semantics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN over nodes V with cutset C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The limit semantics of B w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' C is the partial function Lim(B, C, ·) : Dist � Asg(C) � ⇀ Dist � Asg(V) � from initial cutset distributions γ0 to full distributions µ = Extend(B, C, γ) where γ = lim n→∞ γn and γn+1 = Next(B, C, γn)|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The set �B�Lim-C is given by the image of Lim(B, C, ·), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', �B�Lim-C := {Lim(B, C, γ0) : γ0 ∈ Dist(Asg(C)) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lim(B, C, γ0) is defined}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The limit average semantics of B w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' C is the partial function LimAvg(B, C, ·) : Dist � Asg(C) � ⇀ Dist � Asg(V) � 6 Recall that we may view distributions as vectors which allows us to equate distribu- tions over different but isomorphic domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 13 X=T Y=T X=T Y=F X=F Y=T X=F Y=F 3/8 3/8 1/8 1/8 1/2 1/2 3/4 1/4 1 X=T Y=T X=T Y=F X=F Y=T X=F Y=F Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5: A cutset Markov chain for a cutset C = {X, Y } from γ0 to distributions µ = Extend(B, C, γ) where γ = lim n→∞ 1 n + 1 n � i=0 γn and γn+1 = Next(B, C, γn)|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The set �B�LimAvg-C is likewise given by the image of LimAvg(B, C, ·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We know that the limit average coincides with the regular limit if the lat- ter exists, so for every initial cutset distribution γ0, we have Lim(B, C, γ0) = LimAvg(B, C, γ0) if Lim(B, C, γ0) is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, �B�Lim-C ⊆ �B�LimAvg-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5 Markov Chain Semantics While we gave some motivation for the limit and limit average semantics, their definitions do not reveal an explicit way to compute their member distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this section we introduce the (cutset) Markov chain semantics which offers explicit construction of distributions and is shown to coincide with the limit average semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' It further paves the way for proving several properties of both limit semantics in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' At the core of the cutset Markov chain semantics lies the eponymous cut- set Markov chain which captures how probability mass flows from one cutset assignment to the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' To this end, the Dirac distributions corresponding to each assignment are used as initial distributions in the dissected GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' With the Next function we then get a new distribution over all cutset assignments, and the probabilities assigned by this distribution are used as transition probabilities for the Markov chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 8 (Cutset Markov chain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩ w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' B and C is a DTMC where the transition matrix P is given for all cutset assignments b, c ∈ Asg(C) by P(b, c) := Next � B, C, Dirac(b) � (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5 shows the cutset Markov chain for the GBN from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1 with CPT entries s1 = 1/4, s2 = 1, t1 = 1/2, t2 = 0, and cutset C = {X, Y }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Exem- plarily, the edge at the bottom from assignment b = {X=F, Y=F} to assignment 14 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' c = {X=F, Y=T} with label 3/8 is derived as follows: P(b, c) = Next � B, C, Dirac(b) � (c) = dist BN � Dissect(B, C, Dirac(b)) � (c′) = � a∈Asg(VC) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' c′⊆a dist BN � Dissect(B, C, Dirac(b)) � (a) = � a∈Asg(VC) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' c′⊆a Dirac(b)(aX,Y ) · Pr(X′=F | aY ) · Pr(Y ′=T | aX) = Pr(X′=F | Y=F) · Pr(Y ′=T | X=F) = (1 − s1) · t1 = 3/8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Note that in the second-to-last step, in the sum over all full assignments a which agree with the partial assignment c′, only the assignment which also agrees with b remains as for all other assignments we have Dirac(b)(aX,Y ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Given a cutset Markov chain with transition matrix P and an initial cutset distribution γ0, we can compute the uniquely defined long-run frequency distri- bution lrfγ0 (see Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then the Markov chain semantics is given by the extension of this distribution over the whole GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 9 (Markov chain semantics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN over nodes V with a cutset C ⊆ V and cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then the Markov chain semantics of B w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' C is the function MCS(B, C, ·) : Dist � Asg(C) � → Dist � Asg(V) � from cutset distributions γ0 to full distributions µ = Extend(B, C, lrfγ0) where lrfγ0 = lim n→∞ 1 n+1 n � i=0 γi and γi+1 = γi · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The set �B�MC-C is defined as the image of MCS(B, C, ·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In the following lemma, we give four equivalent characterizations of the long- run frequency distributions of the cutset Markov chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C, cutset distribution γ ∈ Dist(Asg(C)), and M = ⟨Asg(C), P⟩ the cutset Markov chain CMC(B, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then the following statements are equivalent: (a) γ = γ · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (b) There exists γ0 ∈ Dist(Asg(C)) such that for γi+1 = γi · P, we have γ = lim n→∞ 1 n+1 n � i=0 γi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (c) γ belongs to the convex hull of the long-run frequency distributions lrfD of the bottom SCCs D of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (d) γ = Next(B, C, γ)|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 15 Following Lemma 2, we can equivalently define the cutset Markov chain se- mantics as the set of extensions of all stationary distributions for P: �B�MC-C := � Extend(B, C, γ) : γ ∈ Dist � Asg(C) � s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' γ = γ · P � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Continuing Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5, there is a unique stationary distribution γ with γ = γ · P for the cutset Markov chain in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5: γ = ⟨48/121 18/121 40/121 15/121⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As in this case the cutset C = {X, Y } equals the set of all nodes V, we have Extend(B, C, γ) = γ and thus �B�MC-{X,Y } = {γ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As shown by Lemma 2, the behavior of the Next function is captured by multiplication with the transition matrix P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Both the distributions in the limit average semantics and the long-run frequency distributions of the cutset Markov chain are defined in terms of a Ces`aro limit, the former over the sequence of distributions obtained by repeated application of Next, the latter by repeated multiplication with P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, both semantics are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then for any cutset C of B and initial distribution γ0 ∈ Dist(Asg(C)), we have MCS(B, C, γ0) = LimAvg(B, C, γ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We know that Lim(B, C, γ0) is not defined for all initial distributions γ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, the set of all limits that do exist contains exactly the distributions admitted by the Markov chain and limit average semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then for any cutset C of B, we have �B�MC-C = �B�LimAvg-C = �B�Lim-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1 Properties By the equivalences established in Theorem 1 and Lemma 3, we gain profound insights about the limit and limit average distributions by Markov chain analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As every finite-state Markov chain has at least one stationary distribution, it immediately follows that �B�MC-C—and thus �B�LimAvg-C and �B�Lim-C—is always non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Further, if the cutset Markov chain is irreducible, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', the graph is strongly connected, the stationary distribution is unique and �B�MC-C is a singleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The existence of the limit semantics for a given initial distribution γ0 hinges on the periodicity of the cutset Markov chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Example 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We return to Example 2 and construct the cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩ for the (implicitly used) cutset C = {X, Y }: X=T Y=T X=T Y=F X=F Y=T X=F Y=F 1 1 1 1 16 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The chain is strongly connected and has a period of length 4, which explains the observed behavior that for any initial distribution γ0, we got the sequence γ0, γ1, γ2, γ3, γ0, γ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' This sequence obviously converges only for initial distributions that are station- ary, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', if we have γ0 = γ0 · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The following lemma summarizes the implications that can be drawn from close inspection of the cutset Markov chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 4 (Cardinality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C and cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Further, let k > 0 denote the number of bottom SCCs D1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , Dk of CMC(B, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' the cardinality of the cutset Markov chain semantics is given by ���B�MC-C �� = � 1 if k = 1, ∞ if k > 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)) if all Di are aperiodic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lim(B, C, γ) is only defined for stationary distributions γ with γ = γ · P if Di is periodic for any 1 ⩽ i ⩽ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A handy sufficient (albeit not necessary) criterion for both aperiodicity and the existence of a single bottom SCC in the cutset Markov chain is the absence of zero and one entries in the CPTs and the initial distribution of a GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Definition 10 (Smooth GBNs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A GBN B = ⟨G, P, ι⟩ is called smooth iff all CPT entries as given by P and all values in ι are in the open interval ]0, 1[.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a smooth GBN and C a cutset of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then the graph of the cutset Markov chain CMC(B, C) is a complete digraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The limit semantics of a smooth GBN B is a singleton for every cutset C of B and Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As noted in [14], one rarely needs to assign a probability of zero (or, con- versely, of one) in real-world applications;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' and doing so in cases where some event is extremely unlikely but not impossible is a common modeling error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' This observation gives reason to expect that most GBNs encountered in practice are smooth, and their semantics is thus, in a sense, well-behaved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='2 Relation to Constraints Semantics We take a closer look at how the cutset semantics relates to the CPT-consistency semantics defined in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' CPTs of nodes outside cutsets remain unaffected in the dissected BNs from which the Markov chain semantics is computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Since there are cyclic GBNs for which no CPT-consistent distribution exists (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Ex- ample 1) while Markov chain semantics always yields at least one solution due to Lemma 4, it cannot be expected that cutset nodes are necessarily CPT- consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' However, they are always weakly CPT-consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 17 Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN over nodes V, C ⊆ V a cutset for B, and µ ∈ �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then µ is strongly CPT-consistent for all nodes in V\\C and weakly CPT-consistent for the nodes in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The lemma shows a way to find fully CPT consistent distributions: Consider there is a distribution µ ∈ �B�MC-C ∩ �B�MC-D for two disjoint cutsets C and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then by Lemma 6 the nodes in V \\ C and V \\ D are CPT consistent, so in fact µ is CPT consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In general, we get the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN over nodes V and C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , Ck cutsets of B s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' for each node X ∈ V there is an i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , k} with X /∈ Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then � 0⩽i⩽k �B�MC-Ci ⊆ �B�Cpt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We take a look at which independencies are necessarily observed by the distributions in �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let γ ∈ Dist(Asg(C)) be the cutset distribution and let G[C] denote the graph of Dissect(B, C, γ) restricted to the nodes in V such that the cutset nodes in C are initial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then by Lemma 1, the d-separation in- dependencies of the closure of G[C] hold in all distributions µ ∈ �B�MC-C, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', d-sep � Close(G[C]) � ⊆ Indep(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The next lemma states that any Cpt-consistent distribution that satisfies these independence constraints for some cutset C also belongs to �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C and IC = Close(G[C]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then we have �B�Cpt-IC ⊆ �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Combining Lemma 7 and Lemma 8 yields the following equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For a GBN B with cutsets C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , Ck as in Lemma 7 and the independence set I = � 0⩽i⩽k Close(G[Ci]), we have � 0⩽i⩽k �B�MC-Ci = �B�Cpt-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='3 Overview Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 6 gives an overview of the relations between all proposed semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Boxes represent the set of distributions induced by the respective semantics and arrows stand for set inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For the non-trivial inclusions the arrows are annotated with the respective lemma or theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As an example, Cpt→wCpt states that �B�Cpt ⊆ �B�wCpt holds for all GBNs B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The three semantics in the top row parameterized with a cutset C and a distribution γ stand for the singleton set containing the respective function applied to γ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', �B�Lim-C-γ = {Lim(B, C, γ)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' � C MC-C stands for the intersection of the Markov chain semantics for various cutsets as in Lemma 7, and the incoming arrow from Cpt-IC holds for the set of independencies IC as in Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 18 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lim-C-γ LimAvg-C-γ MC-C-γ Lim-C LimAvg-C MC-C � C MC-C Cpt-IC Cpt wCpt-IC wCpt C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='2 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='6 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='7 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='8 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='3 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='3 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='1 Lim-C-γ LimAvg-C-γ MC-C-γ Lim-C LimAvg-C MC-C � C MC-C Cpt-IC Cpt wCpt-IC wCpt Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 6: Relations between different variations of limit, limit average, and Markov chain semantics (blue) as well as strong and weak CPT-consistency semantics (yellow resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' orange) 6 Related Work That cycles in a BN might be unavoidable when learning its structure is well known for more than 30 years [15,22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' During the learning process of BNs, cy- cles might even be favorable as demonstrated in the context of gene regulatory networks where cyclic structures induce monotonic scores [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' That work only discusses learning algorithms, but does not deal with evaluating the joint dis- tribution of the resulting cyclic BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In most applications, however, cycles have been seen as a phenomenon to be avoided to ease the computation of the joint distribution in BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' By an example BN comprising a single isolated cycle, [30] showed that reversing or removing edges to avoid cycles may reduce the solution space from infinitely many joint distributions that are (weakly) consistent with the CPTs to a single one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this setting, our results on weak CPT-semantics also provide that wCpt cannot express conditions on the relation of variables like implications or mutual exclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' This is rooted in the fact that the solution space of weak CPT-semantics always contains at least one full joint distribu- tion with pairwise independent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' An example where reversing edges led to satisfactory results has been considered in [3], investigating the impact of reinforced defects by steel corrosion in concrete structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Unfolding cycles up to a bounded depth has been applied in the setting of a robotic sensor system by [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In their use case, only cycles of length two may appear, and only the nodes appearing on the cycles are implicitly used as cutset for the unfolding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In [13], the set of all nodes is used for unfolding (correspond- ing to a cutset C = V in our setting) and subsequent limit construction, but restricted to cases where the limit exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' There have been numerous variants of BNs that explicitly or implicitly ad- dress cyclic dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Dynamic Bayesian networks (DBNs) [19] extend BNs by an explicit notion of discrete time steps that could break cycles through On the Foundations of Cycles in Bayesian Networks 19 timed ordering of random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Cycles in BNs could be translated to the DBN formalism by introducing a notion of time, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', following [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Our cutset approach is orthogonal, choosing a time-abstract view on cycles and treating them as stabilizing feedback loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Learning DBNs requires “relatively large time-series data” [32] and thus, may be computationally demanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In [18] ac- tivator random variables break cycles in DBNs to circumvent spurious results in DBN reasoning when infinitesimal small time steps would be required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Causal BNs [23] are BNs that impose a meaning on the direction of an edge in terms of causal dependency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Several approaches have been proposed to extend causal BNs for modeling feedback loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In [25], an equilibrium se- mantics is sketched that is similar to our Markov chain semantics, albeit based on variable oderings rather than cutsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Determining independence relations, Markov properties, and joint distributions are central problems addressed for cyclic causal BNs [2,5,20,24,29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Markov properties and joint distributions for extended versions of causal BNs have been considered recently, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', in directed graphs with hyperedges (HEDGes) [5] and cyclic structural causal models (SCMs) [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Besides others, they show that in presence of cycles, there might be multiple solutions for a joint distribution or even no solution at all [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' While we consider all random variables to be observable, the latter approaches focus on models with latent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Further, while our focus in this paper is not on causality, our approach is surely also applicable to causal BNs with cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Recursive relational Bayesian networks (RRBNs) [9] allow representing prob- abilistic relational models where the random variables are given by relations over varying domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The resulting first-order dependencies can become quite com- plex and may contain cycles, though semantics are given only for the acyclic cases by the construction of corresponding standard BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Bayesian attack graphs (BAGs) [16] are popular to model and reason about security vulnerabilities in computer networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Learned graphs and thus their BN semantics frequently contain cycles, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', when using the tool MulVAL [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In [27], “handling cycles correctly” is identified as “a key challenge” in security risk analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Resolution methods for cyclic patterns in BAGs [1,4,17,31] are mainly based on context-specific security considerations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', to break cycles by removing edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The semantic foundations for cyclic BNs laid in this paper do not require graph manipulations and decouple the probability theoretic basis from context-specific properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 7 Conclusion This paper has developed a foundational perspective on the semantics of cycles in Bayesian networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Constraint-based semantics provide a conservative extension of the standard BN semantics to the cyclic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' While conceptually impor- tant, their practical use is limited by the fact that for many GBNs, the induced constraint system is unsatisfiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the other hand, the two introduced limit semantics echo in an abstract and formal way what practitioners have been devis- ing across a manifold of domain-specific situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this abstract perspective, 20 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' cutsets are the ingredients that enable a controlled decoupling of dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The appropriate choice of cutsets is where, in our view, domain-specific knowl- edge is confined to enter the picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Utilizing the constructively defined Markov chain semantics, we established key results relating and demarcating the differ- ent semantic notions and showed that for the ubiquitous class of smooth GBNs a unique full joint distribution always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Aguessy, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Bettan, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Blanc, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Conan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Debar, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Bayesian attack model for dynamic risk assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' CoRR (2016) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Castellano-Quero, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Fern´andez-Madrigal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Garc´ıa-Cerezo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Improving bayesian inference efficiency for sensory anomaly detection and recovery in mo- bile robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Expert Systems with Applications 163 (2021) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Castillo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Guti´errez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Hadi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Modeling probabilistic networks of discrete and continuous variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Journal of Multivariate Analysis 64(1), 48–65 (1998) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Doynikova, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Kotenko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Enhancement of probabilistic attack graphs for ac- curate cyber security monitoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: 2017 IEEE SmartWorld/SCALCOM/UIC/ ATC/CBDCom/IOP/SCI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 1–6 (2017) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Forr´e, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Mooij, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Markov properties for graphical models with cycles and latent variables (2017) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Geiger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Verma, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Pearl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': d-separation: From theorems to algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: Machine Intelligence and Pattern Recognition, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 139–148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Elsevier (1990) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Halpern, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Axiomatizing causal reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 12, 317–337 (2000) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Han, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : A top-down iteration algorithm for monte carlo method for probability estimation of a fault tree with circular logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' NET 50(6), 854–859 (2018) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Jaeger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Complex probabilistic modeling with recursive relational bayesian net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 32(1-4), 179–220 (2001) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Jensen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Nielsen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Bayesian Network and Decision Graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Springer (2007) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Jensen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Andersen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Kjærulff, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Andreassen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Munin — on the case for probabilities in medical expert systems — a practical exercise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: AIME 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 149–160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Springer Berlin Heidelberg (1987) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Kemeny, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Snell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Finite Markov chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' University series in undergraduate mathematics, VanNostrand, New York, repr edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (1969) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' K�lopotek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Cyclic Bayesian network: Markov process approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Studia Infor- matica: systems and information technology 1(7), 47–55 (2006) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Koller, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Friedman, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Probabilistic Graphical Models: Principles and Tech- niques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Adaptive Computation and Machine Learning, MIT Press (2009) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lauritzen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Spiegelhalter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Local computations with probabilities on graphical structures and their application to expert systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Journal of the Royal Statistical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Series B (Methodological) 50(2), 157–224 (1988) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Man, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Network vulnerability assessment using Bayesian networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: Data Mining, Intrusion Detection, Information Assurance, and Data Networks Se- curity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 5812, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 61–71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' SPIE (2005) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Matthews, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Mace, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Soudjani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', van Moorsel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Cyclic bayesian attack graphs: A systematic computational approach (2020) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Motzek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Indirect Causes, Dependencies and Causality in Bayesian Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' thesis, University of L¨ubeck (2017) On the Foundations of Cycles in Bayesian Networks 21 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Murphy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Dynamic Bayesian Networks: Representation, Inference and Learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' thesis, University of California, Berkeley (2002) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Neal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : On deducing conditional independence from d-separation in causal graphs with feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Journal of Artificial Intelligence Research 12, 87–91 (2000) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Ou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Govindavajhala, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Appel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Mulval: A logic-based network security analyzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: Proceedings of the 14th Conference on USENIX Security Symposium Volume 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' SSYM’05, USENIX Association, USA (2005) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Pearl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Fusion, Propagation, and Structuring in Belief Networks, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 366–413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Morgan Kaufmann Publishers Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (1990) 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Pearl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Causality: Models, Reasoning and Inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' CUP (2009) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Pearl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Dechter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Identifying independencies in causal graphs with feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 420–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' UAI’96, Morgan Kaufmann Publishers Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (1996) 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Poole, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Crowley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Cyclic causal models with discrete variables: Markov chain equilibrium semantics and sample ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: IJCAI International Joint Confer- ence on Artificial Intelligence (2013) 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Robert F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Nease, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Owens, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Use of influence diagrams to structure medical decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Medical Decision Making 17(3), 263–275 (1997) 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Singhal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Ou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Security Risk Analysis of Enterprise Networks Using Proba- bilistic Attack Graphs, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 53–73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Springer International Publishing, Cham (2017) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Spirtes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Conditional independence in directed cyclic graphical models for feed- back.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' CMU-PHIL-53, Carnegie Mellon University (1994) 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Spirtes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Directed cyclic graphical representations of feedback models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: Pro- ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 491–498.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' UAI’95, Morgan Kaufmann Publishers Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (1995) 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Tulupyev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Nikolenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' : Directed cycles in bayesian belief networks: Proba- bilistic semantics and consistency checking complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: MICAI 2005: Advances in Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 214–223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Springer Berlin Heidelberg (2005) 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Islam, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Long, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Singhal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Jajodia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': An attack graph-based probabilistic security metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In: Data and Applications Security XXII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 283– 296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Springer Berlin Heidelberg (2008) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Wiecek, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Bois, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', Gayraud, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=': Structure learning of bayesian networks involving cyclic structures (2020) 22 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' A Appendix The appendix contains the proofs omitted from the body of the submission “On the Foundations of Cycles in Bayesian Networks” due to space constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B̸⟳ = ⟨G, P, ι⟩ be an acyclic GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then d-sep � Close(G) � ⊆ Indep � distBN(B̸⟳) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The idea is to show that the dependencies of every possible BN structure for the initial distribution ι are covered by the closure operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let the graph G⋆ ι = ⟨Init(G), E⋆⟩ be a DAG that is an I-map for ι, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=', d-sep(G⋆ ι ) ⊆ Indep(ι).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then ι factorizes according to G⋆ ι , that is for every assignment b ∈ Asg(Init(G)), we have ι(b) = � X∈Init(G) ι � bX | bPreG⋆ι (X) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Now consider the BN B⋆ ̸⟳ with graph G⋆ = ⟨V, E ∪ E⋆⟩ where we add the edges of G⋆ ι to G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The CPTs for the nodes in V \\ Init(G) are given by P whereas the new CPTs (according to the structure in G⋆ ι ) for the nodes in Init(G) are derived from ι.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then for every assignment c ∈ Asg(V): distBN(B⋆ ̸⟳)(c) = � X∈V Pr � cX | cPre(X) � = � X∈Init(G) ι � cX | cPreG⋆ι (X) � � X∈V\\Init(G) Pr � cX | cPre(X) � = ι � cInit(G) � � X∈V\\Init(G) Pr � cX | cPre(X) � = distBN(B̸⟳)(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As B⋆ ̸⟳ is a regular BN without an initial distribution, we have d-sep(G⋆) ⊆ Indep(dist BN(B⋆ ̸⟳)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We proceed to show d-sep(Close(G)) ⊆ d-sep(G⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let (X ⊥ Y | Z) ∈ d-sep(Close(G)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then each path from X to Y in Close(G) is blocked by the nodes in Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As Close(G) contains all possible edges between the nodes Init(G) but G⋆ only a subset thereof, it is clear that each path in G⋆ also exists in Close(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, there cannot be an unblocked path from X to Y given Z in G⋆ either, so (X ⊥ Y | Z) ∈ d-sep(G⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Altogether, we have d-sep � Close(G) � ⊆ d-sep(G⋆) ⊆ Indep � dist BN(B⋆ ̸⟳) � = Indep � distBN(B̸⟳) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C, cutset distribution γ ∈ Dist(Asg(C)), and M = ⟨Asg(C), P⟩ the cutset Markov chain CMC(B, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then the following statements are equivalent: (a) γ = γ · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 23 (b) There exists γ0 ∈ Dist(Asg(C)) such that for γi+1 = γi · P, we have γ = lim n→∞ 1 n+1 n � i=0 γi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (c) γ belongs to the convex hull of the long-run frequency distributions lrfD of the bottom SCCs D of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (d) γ = Next(B, C, γ)|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (a) =⇒ (b): If we have γ = γ · P, then statement (b) is obtained by considering γ0 = γ, as then γi = γ for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (b) =⇒ (c): The proof of the implication relies on the following standard facts about finite-state Markov chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Given a BSCC D and an arbitrary distribution ν0 ∈ Dist(Asg(D)), the distribution lrfD agrees with the Ces`aro limit of the sequence (νi)i⩾0 where νi+1 = νi · PD and PD denotes the restriction of P to assignments on D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' That is, lrfD = lim n→∞ 1 n+1 n � i=0 νi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Vice versa, for γ0 ∈ Dist(Asg(C)) and γi+1 = γi · P, then the Ces`aro limit γ of the sequence (γi)i⩾0 has the form γ = � D λ(D) · lrfD where D ranges over all BSCCs of M, λ(D) is the probability for reaching D in M with the initial distribution γ0, and all vectors lrfD are padded with zero entries to range over the whole state space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In particular, γ is a convex combination of the distributions lrfD as 0 ⩽ λ(D) ⩽ 1 and � D λ(D) = 1 (because every finite-state Markov chain almost surely reaches a BSCC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (c) =⇒ (a): Suppose γ = � D λ(D)·lrfD where 0 ⩽ λ(D) ⩽ 1, � D λ(D) = 1, and each lrfD is padded appropriately as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then: γ · P = � D λ(D) · lrfD · P = � D λ(D) · lrfD = γ where we use the fact that lrfD = lrfD · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (a) ⇐⇒ (d): Because γ can be represented as convex combination of Dirac distributions as γ = � c∈Asg(C) γ(c) · Dirac(c), we know: Next(B, C, γ) = � c∈Asg(C) γ(c) · Next � B, C, Dirac(c) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As P(c, b) = Next � B, C, Dirac(c) � (b) for any assignment b ∈ Asg(C), and assum- ing γ = γ · P, we get Next(B, C, γ)(b) = � c∈Asg(C) γ(c) · P(c, b) = (γ · P)(b) = γ(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Conversely, assuming Next(B, C, γ)|C = γ, we yield γ = γ · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ 24 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then for any cutset C of B, we have �B�MC-C = �B�LimAvg-C = �B�Lim-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We have �B�MC-C = �B�LimAvg-C by Theorem 1 and know �B�Lim-C ⊆ �B�LimAvg-C, so it remains to show �B�MC-C ⊆ �B�Lim-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let µ ∈ �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then there exists a cutset distribution γ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' µ = Extend(B, C, γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We need to show there exists an initial distribution γ0 ∈ Dist(Asg(C)) such that γ = limn→∞ γi where γi+1 = Next(B, C, γi)|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let us choose γ0 = γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then we know γ0 = Next(B, C, γ0)|C by Lemma 2, so γi = γ0 for all i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, γ = limi→∞ γi and therefore µ ∈ �B�Lim-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Lemma 4 (Cardinality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C and cutset Markov chain CMC(B, C) = ⟨Asg(C), P⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Further, let k > 0 denote the number of bottom SCCs D1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , Dk of CMC(B, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' the cardinality of the cutset Markov chain semantics is given by ���B�MC-C �� = � 1 if k = 1, ∞ if k > 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)) if all Di are aperiodic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Lim(B, C, γ) is only defined for stationary distributions γ with γ = γ · P if Di is periodic for any 1 ⩽ i ⩽ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=') By Lemma 2, every cutset distribution with γ = γ · P is a convex combination of the steady-state distributions for the BSCCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, for k = 1 a unique distribution γ exists, whereas for k > 1, there are infinitely many real-valued distributions in the convex hull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=') A Markov chain is aperiodic if all its BSCCs are aperiodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Aperiodicity suffices for the limit limn→∞ γn with γn+1 = γn · P to exist for every γ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then limn→∞ γ′ n with γ′ n+1 = Next(B, C, γ′ n)|C exists as well by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=') Assume some BSCC D is periodic with a period of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then, for any γ0 ∈ Dist(Asg(C)), γn+1 = γn · P, and νn = γn|D, we have νp·n = νn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Now consider γ0 and γ1 = γ0 · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' If γ0 = γ1, then γ0 = γn for all n ∈ N and γ0 = limn→∞ γn holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Otherwise, if γ0 ̸= γ1, the following non-convergent sequence exists: ν0, ν1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , νp, νp+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , ν2p, ν2p+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then limn→∞ γn cannot converge either, so Lim(B, C, γ0) is undefined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a smooth GBN and C a cutset of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then the graph of the cutset Markov chain CMC(B, C) is a complete digraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The graph of CMC(B, C) = ⟨Asg(C), P⟩ is a complete digraph iff each entry in P is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, for each two assignments b, c ∈ Asg(C), we need to On the Foundations of Cycles in Bayesian Networks 25 show P(b, c) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let Bb = Dissect(B, C, Dirac(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then from Definition 8, we have P(b, c) = Next(Dirac(b), B, C)(c) = distBN(Bb)(c′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The probability dist BN(Bb)(c′) is given by the sum over all full assignments v ∈ Asg(V) that agree with c′ on the assignment of the cutset node copies C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Further, the sum can be partitioned into those v that agree with assignment b on C and those that do not: distBN(Bb)(c′) = � v∈Asg(V) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' c′⊂v, b⊂v distBN(Bb)(v) + � v∈Asg(V) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' c⊂v, b̸⊂v dist BN(Bb)(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' By the definition of the standard BN-semantics, we have distBN(Bb)(v) = ι � vInit(G) � Dirac(b)(vC) · � X∈V\\C Pr � vX | vPre(X) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Now consider the second sum in the previous equation where b ̸⊂ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For those assignments, Dirac(b)(vC) = 0 and thus the whole sum equals zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For the first sum, we have vC = b, so Dirac(b)(vC) = 1 and we only need to consider the product with X ∈ V \\ C and the initial distribution over Init(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' By the construction of Bb, the CPTs of all X ∈ V \\C are the original CPTs from B, thus their entries all fall within the open interval ]0, 1[ by the smoothness assumption of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The same holds for the value ι � vInit(G) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, the whole product resides in ]0, 1[ as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Finally, note that the sum is non-empty as C′ and C are disjoint, so there exists at least one v ∈ Asg(V) with c ⊂ v and b ⊂ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As a non-empty sum over values in ]0, 1[ is necessarily positive, we have distBN(Bb)(c′) > 0 and the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The limit semantics of a smooth GBN B is a singleton for every cutset C of B and Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Follows from Lemma 4 and Lemma 5 because every complete graph forms a single bottom SCC and is necessarily aperiodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN over nodes V, C ⊆ V a cutset for B, and µ ∈ �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then µ is strongly CPT-consistent for all nodes in V\\C and weakly CPT-consistent for the nodes in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' By definition, µ = Extend(B, C, γ) for some γ ∈ Dist(Asg(C)) with γ = γ · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' As Extend(B, C, γ) is the standard BN semantics for the acyclic BN Dissect(B, C, γ) without the copies of the cutset nodes, CPT-consistency for the nodes in V \\ C follows directly from the CPT-consistency of the standard semantics for acyclic BNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' 26 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Baier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' It remains to prove weak CPT-consistency for the cutset nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let δ = distBN(Dissect(B, C, γ)) ∈ Dist(Asg(V ∪ C′)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, µ = δ|V and γ = δ|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then for each assignment b ∈ Asg(C), we have µ(b) = γ(b) = (γ · P)(b) = δ(b′) where b′ ∈ Asg(C′) is given by b′(Y ′) = b(Y ) for all Y ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In particular, for each Y ∈ C: µ(Y=T) = δ(Y ′=T) Let D = Asg(Pre(Y )) where Pre(·) refers to the original scGBN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For c ∈ Asg(C), we write Dc for the set of all assignments d ∈ D that comply with c in the sense that if Z ∈ C ∩ Pre(Y ) then c(Z) = d(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' In this case, c and d can be combined to an assignment for C ∪Pre(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Similarly, if d ∈ D, then the notation Asgd(C) is used for the set of assignments c ∈ Asg(C) that comply with d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then: δ(Y ′=T) = � c∈Asg(C) δ(Y ′=T | c) · µ(c) = � c∈Asg(C) � d∈Dc δ(Y ′=T | c, d) � �� � Pr(Y =T|d) δ(d | c) � �� � µ(d|c) δ(c) ���� µ(c) = � d∈D Pr(Y =T | d) · � c∈Asgd(C) µ(d | c) · µ(c) = � d∈D Pr(Y =T | d) · µ(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Putting everything together, we obtain: µ(Y =T) = δ(Y ′=T) = � d∈D Pr(Y =T | d) · µ(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Thus, µ is weakly CPT-consistent for Y ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN over nodes V and C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , Ck cutsets of B s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' for each node X ∈ V there is an i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' , k} with X /∈ Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then � 0⩽i⩽k �B�MC-Ci ⊆ �B�Cpt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' We need to show CPT-consistency for every node under µ ∈ � i�B�MC-Ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let X ∈ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then we choose a cutset Ci s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' X /∈ Ci and CPT consistency follows from Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔ Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let B be a GBN with cutset C and IC = d-sep � Close(Close(G)[C]) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then we have �B�Cpt-IC ⊆ �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' On the Foundations of Cycles in Bayesian Networks 27 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Let µ ∈ �B�Cpt-IC and γ = µ|C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The task is to show that γ satisfies the fixed point equation γ = γ · P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' The standard BN semantics δ = dist BN(Dissect(B, C, γ)) of the dissected BN is the unique distribution over Asg(V ∪ C′) that – is CPT-consistent w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' the conditional probability tables in Dissect(B, C, γ), – agrees with γ when restricted to the assignments for C, and – satisfies the conditional independencies in IC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Consider the distribution ˜µ ∈ Dist � Asg(V∪C′) � defined as follows for b ∈ Asg(V) and c′ ∈ Asg(C′): ˜µ(b, c′) := µ(b) · � Y∈C Pr � Y=c′(Y ′) | bPre(Y ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Then, ˜µ satisfies the above three constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Hence, ˜µ = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' For c ∈ Asg(C), let c′ ∈ Asg(C′) denote the corresponding assignment with c′(Y ′) = c(Y ) for Y ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' (γ · P)(c) = δ(c′) = ˜µ(c′) = � d∈Asg(Pre(C)) µ(d) · � Y∈C Pr(Y=c′(Y ′) | d) � �� � Pr(Y=c(Y )|d) = µ(c) = γ(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' Hence, γ = γ · P and µ ∈ �B�MC-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
+page_content=' ⊓⊔' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dFAT4oBgHgl3EQfkB03/content/2301.08608v1.pdf'}
diff --git a/1tFST4oBgHgl3EQfWzjN/content/tmp_files/2301.13782v1.pdf.txt b/1tFST4oBgHgl3EQfWzjN/content/tmp_files/2301.13782v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..53548c047df1c80de6756f41eb775c2175e5681b
--- /dev/null
+++ b/1tFST4oBgHgl3EQfWzjN/content/tmp_files/2301.13782v1.pdf.txt
@@ -0,0 +1,1803 @@
+Active Nematic Multipoles: Flow Responses and the Dynamics of Defects and Colloids
+Alexander J.H. Houston1 and Gareth P. Alexander1, 2, ∗
+1Department of Physics, Gibbet Hill Road, University of Warwick, Coventry, CV4 7AL, United Kingdom.
+2Centre for Complexity Science, Zeeman Building,
+University of Warwick, Coventry, CV4 7AL, United Kingdom.
+(Dated: Wednesday 1st February, 2023)
+We introduce a general description of localised distortions in active nematics using the framework
+of active nematic multipoles.
+We give the Stokesian flows for arbitrary multipoles in terms of
+differentiation of a fundamental flow response and describe them explicitly up to quadrupole order.
+We also present the response in terms of the net active force and torque associated to the multipole.
+This allows the identification of the dipolar and quadrupolar distortions that generate self-propulsion
+and self-rotation respectively and serves as a guide for the design of arbitrary flow responses. Our
+results can be applied to both defect loops in three-dimensional active nematics and to systems with
+colloidal inclusions. They reveal the geometry-dependence of the self-dynamics of defect loops and
+provide insights into how colloids might be designed to achieve propulsive or rotational dynamics,
+and more generally for the extraction of work from active nematics. Finally, we extend our analysis
+also to two dimensions and to systems with chiral active stresses.
+I.
+INTRODUCTION
+Active liquid crystals model a wide range of materials, both biological and synthetic [1–3], including cell mono-
+layers [4], tissues [5], bacteria in liquid crystalline environments [6] and bacterial suspensions [7], and synthetic
+suspensions of microtubules [8].
+Nematic and polar phases have been the focus of attention but smectic [9, 10],
+cholesteric [11, 12] and hexatic [13] phases have also been considered. Key features and motifs of the active nematic
+state include self-propelled topological defects [14–16], spontaneous flows and vortices, and on how these may be
+controlled through boundary conditions, confinement [17–19], external fields, geometry or topology. Active defects,
+in particular, have been related to processes of apoptosis in epithelial sheets [5], tissue dynamics, bacterial spreading
+and biofilm formation, and morphogenesis in Hydra [20].
+In three-dimensional active nematics the fundamental excitations are defect loops and system-spanning lines [21, 22].
+The defect loops actively self-propel [23], and self-orient [24], in addition to undergoing deformations in shape. Their
+finite extent means that they represent localised distortions to the nematic director, on scales larger than their size,
+and this facilitates a description through elastic multipoles [24]. It also invites comparison with colloidal inclusions in
+passive liquid crystals, which create localised realignments of the director and act as elastic multipoles [25–27]. These
+multipole distortions mediate interactions between colloids and allow for a means of controlling both the colloidal
+inclusions and the host material. For instance, they facilitate self-assembly and the formation of metamaterials [28, 29],
+and enable novel control of topological defects [27, 30, 31]. While there have been studies of active nematic droplets
+in a host passive liquid crystal [32, 33], colloidal inclusions in host active nematics have not been looked at previously.
+The multipole approach to describing colloidal inclusions and localised director distortions in general, offers an
+equally fruitful paradigm in active nematics. Here, we present a generic analysis of the active flows generated by
+multipole director distortions in an active nematic and predict that the presence of colloids transforms their behaviour
+similarly to the passive case. These active multipole flows represent the responses of the active nematic both to
+localised features, such as defect loops, and to colloidal inclusions. This allows us to identify those distortions which
+produce directed or rotational flows and show that such distortions may be naturally induced by colloids. We also
+characterise the response in terms of the active forces and torques that they induce. This general connection can
+serve as a guide for using colloidal inclusions as a means to control active nematics, or how to design them to engineer
+a desired response, or extract work. The properties of inclusions have been studied in scalar active matter [34], as
+have active droplets in passive nematics [35], but while there have been specific demonstrations of propulsive colloids
+[36, 37] the general responses of inclusions in active nematics have not previously been considered. Understanding
+how such responses relate to local manipulations and molecular fields in active nematics will bring both fundamental
+insights and the potential for control of active metamaterials.
+The remainder of this paper is structured as follows. In Section 2 we briefly review the equations of active nemato-
+hydrodynamics and describe the regime in which our linear multipole approach applies. In Section 3 we present these
+∗ G.P.Alexander@warwick.ac.uk
+arXiv:2301.13782v1 [cond-mat.soft] 31 Jan 2023
+
+2
+multipoles as complex derivatives acting on 1/r, showing how this naturally elucidates their symmetries. In Section
+4 we show that the linear active response to a harmonic distortion is generated by the same complex derivatives
+acting on fundamental flow and pressure solutions and highlight certain examples that illustrate the self-propulsive
+and rotational dynamics that can arise. We then show in Section 5 that these phenomenological responses can be
+discerned from integrals of the active stress, allowing the identification of the distortion which produces propulsion
+along or rotation about a given axis. Sections 6 and 7 contain extensions of our approach, first to two-dimensional
+systems and then to those with chiral active stresses. Section 8 gives a discussion and summary.
+II.
+HYDRODYNAMICS OF ACTIVE NEMATICS
+We summarise the hydrodynamics of active nematics as described by their director field n and fluid velocity u. The
+fluid flow satisfies the continuity ∂iui = 0 and Stokes ∂jσij = 0 equations, with stress tensor [1–3]
+σij = −pδij + 2µDij + ν
+2
+�
+nihj + hinj
+�
++ 1
+2
+�
+nihj − hinj
+�
++ σE
+ij − ζninj.
+(1)
+Here, p is the pressure, µ is the viscosity, Dij = 1
+2(∂iuj + ∂jui) is the symmetric part of the velocity gradients, ν is
+the flow alignment parameter, hi = −δF/δni is the molecular field associated with the Frank free energy F, σE
+ij is the
+Ericksen stress, and ζ is the magnitude of the activity. The active nematic is extensile when ζ > 0 and contractile
+when ζ < 0. The director field satisfies the relaxational equation
+∂tni + uj∂jni + Ωijnj = 1
+γ hi − ν
+�
+Dijnj − ni(njDjknk)
+�
+,
+(2)
+where γ is a rotational viscosity and Ωij = 1
+2(∂iuj − ∂jui) is the antisymmetric part of the velocity gradients. We
+adopt a one-elastic-constant approximation for the Frank free energy [38]
+F =
+� K
+2
+�
+∂inj
+��
+∂inj
+�
+dV,
+(3)
+for which the molecular field is hi = K
+�
+∇2ni − ninj∇2nj
+�
+and the Ericksen stress is σE
+ij = −K∂ink ∂jnk.
+An often-used analytical approximation is to consider the active flows generated by an equilibrium director field.
+This approximation has been used previously in the theoretical description of the active flows generated by defects
+in both two [16, 39] and three dimensions [23], including on curved surfaces [40], and in active turbulence [41]. It
+may be thought of in terms of a limit of weak activity, however, even when the activity is strong enough to generate
+defects, their structure may still be close to that of equilibrium defects and the approximation remain good and the
+comparison of active defect motion and flows described in this way with full numerical simulations suggests that this
+is at least qualitatively the case. The equations can then be reduced to h = 0 for the director field and the Stokes
+equation
+− ∇p + µ∇2u = ζ∇ ·
+�
+nn
+�
+,
+(4)
+for the active flow. Here we have neglected the Ericksen stress since for an equilibrium director field it can be balanced
+by a contribution to the pressure (representing nematic hydrostatic equilibrium).
+We limit our analysis to director fields that can be linearised around a (locally) uniformly aligned state, n = ez +δn,
+with δn · ez = 0, for which the equations reduce to
+∇2δn = 0,
+(5)
+∇ · u = 0,
+(6)
+−∇p + µ∇2u = ζ
+�
+ez
+�
+∇ · δn
+�
++ ∂zδn
+�
+.
+(7)
+These correspond to elastic multipole states in the director field, which are often thought of as an asymptotic de-
+scription, however, they provide a close approximation even at only moderate distances outside a ‘core’ region that
+is the source of the multipole. To illustrate this we show in Fig. 1 a comparison between the exact director field (red
+streamlines) and linear multipole approximation (blue rods) for the most slowly varying monopole distortion created
+by uniformly rotating the director by an angle θ0 within a sphere of radius a. The agreement is close anywhere outside
+the sphere and only deviates significantly in the near-field region inside it. This is relevant to the active system as it
+is well-known that the uniformly aligned active nematic state is fundamentally unstable [42] and active nematics are
+turbulent on large enough scales. Our solutions should be interpreted as describing the behaviour on intermediate
+scales, larger than the core structure of the source but smaller than the scale on which turbulence takes over.
+
+3
+FIG. 1. Comparison of the exact director field (red streamlines) and linearised multipole approximation (blue rods) for the
+most slowly decaying monopole distortion. This is produced by uniformly rotating the director by an angle θ0 within a spherical
+volume of radius a, indicated by the grey disc; the alignment inside the sphere is indicated by the thick red line. The figure
+shows only the xz-plane in which the director rotates and in which the comparison is most strict.
+III.
+MULTIPOLE DIRECTOR DISTORTIONS
+In this section, we describe the multipole director fields satisfying (5). The far-field orientation ez gives a splitting
+of directions in space into those parallel and perpendicular to it. We complexify the perpendicular plane to give the
+decomposition as R3 ∼= C ⊕ R and convert the director deformation δn to the complex form δn = δnx + iδny. The
+real and imaginary parts of δn are harmonic, meaning that at order l they may be expressed as spherical harmonics
+1/rl+1Y l
+m or, as we shall do, as l derivatives of 1/r [43–45]. These order l multipole solutions form a 2(2l + 1)-real-
+dimensional vector space. Associated to the C ⊕ R splitting is a local symmetry group isomorphic to U(1), preserving
+ez, whose irreducible representations provide a natural basis for the vector space of multipoles at each order. We write
+the complex derivatives on C as ∂w = 1
+2(∂x − i∂y) and ∂ ¯
+w = 1
+2(∂x + i∂y) in terms of which the director deformation
+can be written
+δn =
+∞
+�
+l=0
+l
+�
+m=−l
+qlm al+1 ∂m
+¯
+w ∂l−m
+z
+1
+r ,
+(8)
+where qlm are complex coefficients and a is a characteristic length scale of the multipole, as might be set by the radius
+of a colloid. For compactness of notation it is to be understood that when m is negative ∂m
+¯
+w represents ∂|m|
+w . The
+index m denotes the topological charge of the phase winding of the spherical harmonic. This gives the spin of the
+corresponding vector field as 1 − m, where the 1 is due to a vector (δn or δn) being a spin-1 object. The multipoles
+at order l therefore have spins that range from 1 − l to 1 + l. They are illustrated up to quadrupole order in Fig. 2,
+along with a representation in terms of topological defects which we shall elaborate upon shortly. The structure of
+Fig. 2 is such that differentiation maps the distortions of one order to the next, with ∂z leaving the distortion in the
+same spin class, ∂ ¯
+w moving it one column to the left and ∂w moving it one column to the right. The operators ∂w and
+∂ ¯
+w play the same role as the raising and lowering operators in quantum mechanics and the shift by one in the spin
+values simply results from the object on which they act being a spin-1 director deformation as opposed to a spin-0
+wavefunction.
+The monopole distortions, with l = 0, result from a rotation of the director by an angle θ0 in a sphere of radius
+a [46]. They form a two-real-dimensional vector space for which a basis may be taken to be the distortions 1
+r and i 1
+r.
+These are shown at the top of Fig. 2 and can be controllably created in passive nematics using platelet inclusions [47].
+The director distortions of dipole type, with l = 1, form a six-real-dimensional vector space that splits into two-
+
+24
+FIG. 2. The multipolar director distortions up to quadrupole order. The director is shown on a planar cross-section as blue
+rods, along with a topological skeleton corresponding to the spherical harmonic, where appropriate. Defect loops are coloured
+according to wedge (blue) or twist (red-green) type and the charge of point defects is indicated through the use of opposing
+colour pairs: red (+1) and cyan (−1), yellow (+2) and blue (−2), and green (+3) and magenta (−3). Their charge is further
+indicated by a local decoration of the director with an orientation, indicated by black arrows. Each multipole order is classified
+into vertical pairs according to the spin of the distortion. For the chiral multipoles, the visualisation instead shows the director
+along some of its integral curves (orange).
+
+-1
+0
+2
+3
+Monopoles
+Dipoles
+Quadrupoles5
+real-dimensional subspaces for each value of the spin (0, 1, or 2) as
+p0 =
+�
+∂ ¯
+w
+1
+r , i ∂ ¯
+w
+1
+r
+�
+∼ − 1
+2r3
+�
+x ex + y ey, −y ex + x ey
+�
+∼ 1
+r2
+�
+Y 1
+1 , i Y 1
+1
+�
+,
+(9)
+p1 =
+�
+∂z
+1
+r , i ∂z
+1
+r
+�
+∼ − 1
+r3
+�
+z ex, z ey
+�
+∼ 1
+r2
+�
+Y 0
+1 , i Y 0
+1
+�
+,
+(10)
+p2 =
+�
+∂w
+1
+r , i ∂w
+1
+r
+�
+∼ − 1
+2r3
+�
+x ex − y ey, y ex + x ey
+�
+∼ 1
+r2
+�
+Y −1
+1
+, i Y −1
+1
+�
+.
+(11)
+For comparison, we have presented three representations for the distortions of each spin class: in terms of complex
+derivatives of 1/r, two-component vectors whose coefficients are homogenous polynomials of degree 1 and complex
+spherical harmonics. In the interest of space we have suppressed certain prefactors in the last of these, but note
+the difference in sign, and in some cases normalisation, between our representation as complex derivatives and the
+standard form of the harmonic distortions as two-component vectors [48]. The two basis functions of any spin class
+are related by a factor of i, which corresponds to a local rotation of the transverse director distortion by π
+2 . For a
+spin-s distortion this is equivalent to a global rotation by
+π
+2s, with the pair of distortions having the same character
+and simply providing a basis for all possible orientations. The exception is when s = 0, such distortions lack an
+orientation and the local rotation produces two distinct states that transform independently under rotations as a
+scalar and pseudoscalar. In the dipole case the first is the isotropic distortion recognisable as the UPenn dipole [25]
+and the second is an axisymmetric chiral distortion with the far-field character of left-handed double twist. Separating
+p0 into its isotropic and chiral components allows a decomposition of the dipole director deformations into the basis
+p = pI ⊕ pC ⊕ p1 ⊕ p2,
+(12)
+a decomposition which was presented in [49].
+Similarly, the quadrupolar distortions (l = 2) form a ten-real-dimensional vector space that splits into a sum of
+two-real-dimensional subspaces for each value of the spin
+Q−1 =
+�
+∂2
+¯
+w
+1
+r , i ∂2
+¯
+w
+1
+r
+�
+∼
+3
+4r5
+�
+(x2 − y2) ex + 2xy ey, −2xy ex + (x2 − y2) ey
+�
+∼ 1
+r3
+�
+Y 2
+2 , i Y 2
+2
+�
+,
+(13)
+Q0 =
+�
+∂2
+¯
+wz
+1
+r , i ∂2
+¯
+wz
+1
+r
+�
+∼
+3
+2r5
+�
+xz ex + yz ey, −yz ex + xz ey
+�
+∼ 1
+r3
+�
+Y 1
+2 , i Y 1
+2
+�
+,
+(14)
+Q1 =
+�
+∂2
+z
+1
+r , i ∂2
+z
+1
+r
+�
+∼ 1
+r5
+�
+(2z2 − x2 − y2) ex, (2z2 − x2 − y2) ey
+�
+∼ 1
+r3
+�
+Y 0
+2 , i Y 0
+2
+�
+,
+(15)
+Q2 =
+�
+∂2
+wz
+1
+r , i ∂2
+wz
+1
+r
+�
+∼
+3
+2r5
+�
+xz ex − yz ey, yz ex + xz ey
+�
+∼ 1
+r3
+�
+Y −1
+2
+, i Y −1
+2
+�
+,
+(16)
+Q3 =
+�
+∂2
+w
+1
+r , i ∂2
+w
+1
+r
+�
+∼
+3
+4r5
+�
+(x2 − y2) ex − 2xy ey, 2xy ex + (x2 − y2) ey
+�
+∼ 1
+r3
+�
+Y −2
+2
+, i Y −2
+2
+�
+.
+(17)
+Once again the spin-0 distortions can be further partitioned into those that transform as a scalar and pseudoscalar,
+these being the Saturn’s ring distortion [50] and a chiral quadrupole with opposing chirality in the two hemispheres,
+respectively. This yields the basis for the quadrupolar director deformations
+Q = Q−1 ⊕ QI ⊕ QC ⊕ Q1 ⊕ Q2 ⊕ Q3.
+(18)
+The well-known multipoles, the UPenn dipole and Saturn ring quadrupole, are associated to a configuration of
+topological defects in the core region and we describe now an extension of this association to all of the multipoles. In
+general, such an association is not unique, for instance, the colloidal ‘bubblegum’ configuration [51] represents the same
+far field quadrupole as the Saturn ring, however, for each multipole we can construct a representative arrangement of
+topological defects which produce it in the far field on the basis of commensurate symmetries and defects of a type and
+location corresponding to the nodal set of the harmonic. This correspondence allow us to condense the visualisation
+of complicated three-dimensional fields into a few discrete elements, suggests means by which such distortions might
+be induced and enables us to build an intuition for their behaviour in active systems through established results for
+defects [23].
+We first describe some examples, shown in Fig. 3. On the left is the spherical harmonic that describes the UPenn
+dipole, with the form ∂ ¯
+w 1
+r ∼ eiφ sin θ, visualised on a spherical surface. This has nodes at the two poles about which
+the phase has −1 winding and so we can infer similar winding of the director in the transverse plane. Supplementing
+
+6
+FIG. 3.
+The connection between spherical harmonics and nematic topological defects.
+The coloured spheres indicate the
+phase of the complex spherical harmonics with the nodal set shown in white for simplicity. A representative skeleton of the
+corresponding nematic distortion is shown in black and the red arrows indicate the winding vector of the director.
+with the far-field alignment along ez yields the familiar picture of a pair of oppositely charged hedgehog defects.
+Similarly, the Saturn ring quadrupole, described by ∂ ¯
+wz 1
+r ∼ eiφ sin 2θ, has zeros at the poles and around the equator.
+The winding about the poles is still +1, but the sign change in the lower hemisphere means that in the transverse
+plane around the south pole the vector points inwards, resulting in both point defects having topological charge +1.
+With regards to the equatorial line, since the director is everywhere radial the winding vector must be tangential to
+the defect loop, shown by the red arrows in Fig. 3. As the phase changes by π on passing from one hemisphere to the
+other the winding must be ±1 and the far-field alignment allows us to determine it to be −1. For a general multipole
+distortion of the form ∂m
+¯
+w ∂l−m
+z
+(1/r) the nodal set is the poles along with l − m lines of latitude. The phase winding
+of the spherical harmonic dictates the transverse winding of the director and, when supplemented with the far-field
+alignment, allows us to associate topological point defects with the poles. Similarly, nodal lines may be connected
+with defect loops with integer winding and a winding vector that rotates according to eimφ. In Fig. 3 we illustrate
+this for the case ∂2
+¯
+w∂3
+z(1/r) ∼ −Y 5
+2 /r6.
+We now describe briefly the correspondence for our basis of dipolar and quadrupolar distortions. As already stated,
+the isotropic scalar in p0 is the UPenn dipole, its pseudoscalar counterpart a chiral splay-free twist-bend distortion
+whose integral curves are shown in orange in Fig. 2. As a twist-bend mode it may be of particular relevance to
+extensional systems given their instability to bend distortions. The two dipoles of p1 are transverse to the far-field
+alignment, they are related to those resulting from a defect loop of wedge-twist type [21]. The distortions of p2 have
+a hyperbolic character; they describe the far field of a pair of point defects both of which have a hyperbolic structure.
+Such hyperbolic defect pairs arise in toron configurations in frustrated chiral nematics [52, 53].
+Similarly, Q0 contains the Saturn ring quadurpole as the scalar, with the pseudoscalar a pure bend chiral distortion.
+For the latter, the integral curves of the director possess opposing chirality in the two hemispheres, which could be
+generated by an appropriately coated Janus particle. The director distortion exhibits a helical perversion in the z = 0
+plane and, being a local rotation of the Saturn ring distortion, may be viewed as resulting from a pair of vortex point
+defects along with a pure twist defect loop with integer winding. This is similar to the bubblegum defect lines [51, 54]
+that appear between a colloid diad with normal anchoring, suggesting that this chiral quadrupole could be formed by
+two colloids with opposing chiral tangential anchoring.
+The spin-1 quadrupoles consist of pairs of wedge-twist defect loops. The distortions of Q2 may be associated with
+a pair of hyperbolic defects along with a defect ring with the appropriate symmetry. The harmonics of spin −1 and
+3 contain no z-derivatives and so are associated with pairs of point defects only.
+IV.
+FLOWS FROM MULTIPOLE DISTORTIONS
+In this section we calculate the active flow generated by an arbitrary director multipole. We present this initially in
+vectorial form, converting to the complex representation subsequently. As (7) is linear the responses due to the two
+components of δn are independent and so to simplify the derivation we consider only distortions in the x-component
+for now and extend to the general case afterwards. Within this restriction a generic multipole distortion at order l
+
+22
+75
+r3
+r6
+r
+Y7
+may be written as
+δnx = al∇v1 · · · ∇vl
+a
+r ,
+(19)
+where v1, . . . , vl are l directions for the differentiation. Substituting this into (7) gives the Stokes equation in the
+form
+− ∇p(x) + µ∇2u(x) = al+1ζ∇v1 · · · ∇vl
+�
+ex ∂z + ez ∂x
+�1
+r ,
+(20)
+where the use of the superscript (x) is to emphasise that we are only treating the response to distortions in the
+x-component of the director. Taking the divergence of both sides we have
+− ∇2p(x) + µ∇2∇ · u(x) = al+1ζ∇v1 · · · ∇vl∂2
+xz
+2
+r .
+(21)
+Making use of the continuity equation ∇ · u(x) = 0 in conjunction with the identity ∇2r = 2
+r we arrive at the solution
+for the pressure
+p(x) = −al+1ζ∇v1 · · · ∇vl ∂x∂zr = al+1ζ∇v1 · · · ∇vl
+xz
+r3 .
+(22)
+Substituting this back into the Stokes equation (20) we obtain
+µ∇2u(x) = al+1ζ∇v1 · · · ∇vl
+�
+ex ∂z
+�1
+r − ∂x∂xr
+�
+− ey ∂x∂y∂zr + ez ∂x
+�1
+r − ∂z∂zr
+��
+,
+(23)
+which can be integrated using the identity ∇2r3 = 12r to find
+u(x) = al+1 ζ
+4µ∇v1 · · · ∇vl
+�
+ex
+�z
+r + x2z
+r3
+�
++ ey
+xyz
+r3 + ez
+�x
+r + xz2
+r3
+��
+.
+(24)
+Both the pressure and flow solutions for a generic multipole distortion are given in terms of derivatives of a
+fundamental response to a monopole deformation, namely
+p(x) = aζ xz
+r3 ,
+(25)
+u(x) = aζ
+4µ
+�
+ex
+�z
+r + x2z
+r3
+�
++ ey
+xyz
+r3 + ez
+�x
+r + xz2
+r3
+��
+.
+(26)
+This flow response, shown as the top panel in Fig. 4, is primarily extensional in the xz-plane. Interestingly, the flow
+solution (26) does not decay with distance; this reflects the generic hydrodynamic instability of active nematics [42]
+providing a real-space local response counterpart to the usual Fourier mode analysis.
+However, the active flow
+produced by any higher multipole does decay and vanishes at large distances.
+The pressure and flow solutions in (25) and (26) are complemented by analogous ones resulting from distortions
+in the y-component of the director, obtained by simply interchanging x and y. The linearity of (7) makes these
+fundamental responses sufficient to obtain the active flow induced by an arbitrary multipole distortion through taking
+derivatives appropriate to describe the x and y components of the director, respectively.
+We now convert this description to the complex notation used in § III. This is achieved by taking the combinations
+p = p(x) − ip(y) and u = u(x) − iu(y). To see this consider the multipole distortion δn = (Lx + iLy)1/r, where the Li
+are generic real differential operators which generate the i-component of the director by acting on 1/r. This distortion
+has a conjugate partner given by i(Lx + iLy)1/r = (−Ly + iLx)1/r. Acting with this same operator on u(x) − iu(y)
+we have
+(Lx + iLy)(u(x) − iu(y)) = (Lxu(x) + Lyu(y)) − i(−Lyu(x) + Lxu(y)),
+(27)
+and can see that the flow response for our original distortion forms the real part and that for its conjugate partner
+the coefficient of −i and the same holds for the pressure response. This leads us to a complex fundamental pressure
+response
+˜p = aζ ¯wz
+r3 ,
+(28)
+
+8
+FIG. 4. The active flows due to three-dimensional nematic multipole distortions up to quadrupole order. The flows are grouped
+according to their spin, in correspondence with the distortions in Fig. 2. Green and red arrows indicate the net active force
+and torque for the relevant dipoles and quadrupoles respectively, see §V.
+and, introducing complex basis vectors ew = ex + iey and e ¯
+w = ex − iey, a complex-valued fundamental flow vector
+˜u = aζ
+4µ
+�
+ew
+¯w2z
+2r3 + e ¯
+w
+�z
+r + w ¯wz
+r3
+�
++ ez
+¯w
+r
+�
+1 + z2
+r2
+��
+.
+(29)
+We use a tilde to distinguish these fundamental responses from those that result due to a generic distortion and which
+may be found by appropriate differentiation. This provides a unified framework in which the active response to a
+generic nematic multipole can be calculated through the application of the same complex derivatives that we have
+used to describe the director distortion. The resulting active flows for distortions up to quadrupole order are shown
+
+-1
+0
+2
+3
+Monopoles
+Dipoles
+Quadrupoles9
+in Fig. 4, with their layout corresponding to that of the nematic distortions in Fig. 2 which induce them. We now
+describe some examples in more detail.
+A.
+UPenn and chiral dipole
+Typically the active responses induced by the two distortions in a spin class will, like the distortions themselves, be
+related by a global rotation such that while both are needed to form a sufficient basis, the real part essentially serves
+as a proxy for the pair. This is not true for the spin-0 distortions, due to their rotational symmetry, and so we use
+them in providing an explicit illustration of the active flow calculation. We begin with the UPenn dipole [25] and its
+partner the chiral dipole, for which the far-field transverse director is
+δn ≈ αa ∂ ¯
+w
+a
+r ,
+(30)
+where α is a dimensionless coefficient, and the corresponding derivative of the fundamental flow solution in (29) gives
+αa∂ ¯
+w˜u = ζαa2
+4µr5
+�
+ew z ¯w(4z2 + w ¯w) − e ¯
+w 3zw2 ¯w + ez 2
+�
+3z4 + (z2 + w ¯w)2��
+.
+(31)
+Taking the real part gives, after some manipulation, the flow induced by the UPenn dipole as
+u = αa R ∂ ¯
+w˜u = ζαa2
+8µ
+�
+ez
+�1
+r + z2
+r3
+�
++ er
+z
+r2
+�3z2
+r2 − 1
+��
+,
+(32)
+where er is the unit vector in the radial direction. The flow response to the conjugate distortion, the isotropic chiral
+dipole is given by
+u = −αa I ∂ ¯
+w˜u = −ζαa2
+4µ
+z
+r2 eφ,
+(33)
+with eφ the azimuthal unit vector. Both flows decay at large distances like 1/r and are highlighted in the top row of
+Fig. 5. The UPenn dipole flow has a striking net flow directed along the z-axis, reminiscent of that of the Stokeslet
+flow [55, 56] associated with a point force along ez. The chiral dipole generates an axisymmetric flow composed
+of two counter-rotating vortices aligned along ez, mirroring the circulating flows produced by spiral defects in two
+dimensions [57]. The 1/r decay of these active vortex flows is unusually slow, slower than the decay of a point torque
+in Stokesian hydrodynamics [56].
+Despite the similarity between the active flow induced by the UPenn dipole and a Stokeslet, there is a key difference
+in their angular dependence.
+In a Stokeslet, and all related squirming swimmer flows [58, 59] that result from
+derivatives of it, the terms with higher angular dependence decay more quickly such that the lowest order terms
+dominate the far field. By contrast, distortions in active nematics produce asymptotic flow fields in which all terms
+decay at the same rate regardless of their angular dependence as they all result from the same derivative of the
+fundamental flow. Thus, even if the same angular terms are present in both systems, the lowest order ones will
+dominate in the squirming case while the far field will bear the signature of the highest order in the active nematics.
+A closer point of comparison comes from the flows induced by active colloids within a passive nematic [35, 60].
+Calculation of the relevant Green’s functions [61] has shown that the anisotropy of the medium leads to a difference
+in effective viscosities such that a Stokeslet aligned along the director pumps more fluid in this direction. This fits
+with the anisotropy displayed in (32), reaffirming the similarity between the flow induced by the UPenn dipole and
+the Stokeslet.
+Considering the pressure response for these distortions in the same way we have
+αa∂ ¯
+w ˜p = ζαa2
+2r5 z(2z2 − w ¯w) = ζαa2z
+2r3
+�3z2
+r2 − 1
+�
+.
+(34)
+As this expression is purely real it comprises the response due to the UPenn dipole in its entirety; the vanishing
+of the imaginary part shows that the chiral dipole is compatible with a zero pressure solution. Our complexified
+construction allows this property to be read off immediately, since ∂ ¯
+w( ¯wzm/rn) will be real for any m and n, with
+this also resulting in the vanishing z-component of flow for the chiral dipole. Indeed, this property of pure realness is
+unchanged by the action of ∂z, it being real itself, and so extends to higher order distortions.
+
+10
+FIG. 5. The active flows induced by spin 0 dipole (top row) and quadrupole (bottom row) distortions. The flow is indicated
+by blue arrows and superposed upon integral curves of the director, shown in orange. On the left are the UPenn dipole and
+Saturn ring quadrupole and on the right their chiral counterparts.
+B.
+Saturn ring and chiral quadrupole
+Proceeding in the same fashion for the spin-0 quadrupoles, for which δn ≈ αa2∂2
+¯
+wza/r, we find that the complexified
+flow is
+αa2∂2
+¯
+wz˜u = −ζαa3
+4µr7
+�
+−ew ¯w(w2 ¯w2 + 8w ¯wz2 − 8z4) + e ¯
+w3w2 ¯w(w ¯w − 4z2)
++ez2z(w2 ¯w2 − 10w ¯wz2 + 4z2)
+�
+.
+(35)
+Taking the real part gives the flow induced by the Saturn ring quadrupole as
+u = αa2R∂2
+¯
+wz˜u = −ζαa3
+2µr6 (r4 − 12z2r2 + 15z4)er,
+(36)
+that is a purely radial flow reminiscent of a stresslet along ez, shown in the bottom left of Fig. 5. The purely radial
+nature is a result of the divergencelessness of the flow, combined with the 1/r2 decay and rotational invariance about
+ez. Working in spherical coordinates we have
+∇ · u = 1
+r2 ∂r(r2ur) +
+1
+r sin θ [∂θ(uθ sin θ) + ∂φuφ] = 0
+(37)
+All active flows induced by quadrupole distortions decay as 1/r2 and so ∂r(r2ur) = 0. The distortion is rotationally
+symmetric and achiral, meaning uφ = 0 and the condition of zero divergence reduces to
+1
+r sin θ∂θ(uθ sin θ) = 0.
+(38)
+The only non-singular solution is uθ = 0, resulting in ur being the only non-zero flow component. The corresponding
+pressure is given by
+αa2∂2
+¯
+wz ˜p = −3αa3
+2r7 (r4 − 12z2r2 + 15z4).
+(39)
+
+wz11
+Taking the imaginary part of (35) reveals the flow response of the chiral quadrupole to be
+u = −αa2I∂2
+¯
+wz˜u = ζαa3
+µr2 (3 cos2 θ − 1) sin θeφ.
+(40)
+As illustrated in Fig. 5 this is a purely azimuthal flow corresponding to rotation about the z axis and, as for the
+chiral dipole, is compatible with a zero pressure solution. The 1/r2 decay of this rotational flow is the same as that
+which results from the rotlet [55, 56], but unlike the rotlet the flow direction is not uniform. Rather, as can be seen
+in Fig. 5, there is an equatorial band of high-velocity flow accompanied by two slowly counter-rotating polar regions.
+The distribution of flow speeds is such that the net flow is along −eφ, consistent with a rotlet along −ez.
+C.
+Other multipoles
+For the remaining multipoles up to quadrupole order we do not provide the same explicit calculation but instead
+highlight the key features of the active flows they induce. In full we find that half of the dipole distortions contain
+directed components in their active flow responses. Along with the isotropic UPenn dipole which produces flow along
+ez the two spin-1 dipoles produce directed flows transverse to it. These directed flows indicated that were the source
+of the distortion free to move it would exhibit active self-propulsion. The net transverse flows for the dipoles of p1 is
+in accordance with the previously established motile nature of such defect loops [23]. A more complete description of
+the active dynamics of defect loops via their multipole distortions is presented in Section IV D and [24].
+Along with the chiral dipole, the two additional dipoles which do not generate directed flows are those with spin 2.
+These produce active flows which are extensional with the expected two-fold rotational symmetry about the z-axis.
+Direct calculation shows that the flows resulting from spin-2 distortions have zero azimuthal component. Once again,
+this observation is unaffected by z-derivatives and so holds true for the higher-order multipoles of the form ∂n
+z ∂w(1/r).
+Similarly, there are ten linearly independent quadrupoles, five of which can be seen from Fig. 4 to generate rotational
+flows. As expected, it is the four modes of Q±1 that generate rotations about transverse directions and QC that
+produces rotation around ez. For two of these, namely those in Q1, the director distortions are planar, suggesting
+a two-dimensional analogue and the potential to generate them with cogs or gears [62]. These distortions may be
+associated with a pair of opposingly oriented charge-neutral defect loops and so the rotational flow generated by these
+distortions is in accordance with their antiparallel self-propulsion.
+The quadrupoles of Q−1 are composed of pairs of point defects with topological charge +2. Using ∂2
+¯
+w
+1
+r as an
+example, the rotation can be understood by considering the splay distortions in the xz plane. The splay changes sign
+for positive and negative x, leading to antiparallel forces. The active forces are greatest in this plane, as this is where
+the transverse distortion is radial resulting in splay and bend distortions. Along ey the distortions are of twist type
+and so do not contribute to the active force. This results in the rotational flow shown in Fig. 4. The stretching of the
+flow along ez is as observed for a rotlet in a nematic environment [61].
+Although they lack the rotational symmetry of a stresslet, the flows produced by the quadrupoles of Q2 are also
+purely radial. The argument is largely the same as for the Saturn ring distortion, except that the vanishing of uφ is
+not due to rotational invariance but a property inherited from the spin-2 dipoles.
+The quadrupoles of Q3 produce extensional flows whose spin-3 behaviour under rotations about ez is commensurate
+with that of the distortions. Although they visually resemble the similarly extensional flows produced by the dipoles
+of p2, they do not share the property of a vanishing azimuthal flow component.
+D.
+Defect loops
+Of particular relevance to the dynamics of three-dimensional active nematics are charge-neutral defect loops [21,
+23, 24]. For such defect loops the director field has the planar form
+n = cos Υ
+4 ez + sin Υ
+4 ex,
+(41)
+where Υ is the solid angle function for the loop [43, 63], and is a critical point of the Frank free energy in the one-
+elastic-constant approximation [64]. This allows a multipole expansion for the director at distances larger than the
+loop size in which the multipole coefficients are determined explicitly by the loop geometry [24]
+Υ(x) = 1
+2
+�
+K
+ϵijk yj dyk ∂i
+1
+r − 1
+3
+�
+K
+ϵikl ylyk dyl ∂i∂j
+1
+r + . . . ,
+(42)
+
+12
+FIG. 6. Additonal flow solutions induced by spin-1 nematic multipoles. The nematic multipoles which induce the flows are
+shown below them as complex derivatives of 1/r. The red arrows indicate the net active torque.
+where y labels the points of the loop K and r = |x| with the ‘centre of mass’ of the loop defined to be at x = 0. The
+dipole moment vector is the projected area of the loop, while the quadrupole moment is a traceless and symmetric
+tensor with an interpretation via the first moment of area or, in the case of loops weakly perturbed from circular, the
+torsion of the curve.
+The planar form of the director field (41) corresponds to a restricted class of director deformations in which δn is
+purely real. This disrupts the complex basis we have adopted for the representation of multipoles, so that another
+choice is to be preferred.
+We may say that the planar director selects a real structure for the orthogonal plane
+C, breaking the U(1) symmetry, and the restricted multipoles should then be decomposed with respect to this real
+structure. Accordingly, the pressure and flow responses may be generated by derivatives of the fundamental responses
+for distortions in ex, (25) and (26), with these derivatives corresponding to the multipole expansion of the solid
+angle shown in (42). The details of this approach along with the consequences it has for both the self-propulsive and
+self-rotational dynamics of active nematic defect loops are given in [24].
+E.
+Technical note
+We conclude this section with a technical note on the flow solutions that we have presented. The construction
+for calculating active flow responses that we have developed in this section requires knowledge of the multipole
+as a specified set of derivatives of 1/r.
+The harmonic director components satisfy ∇2ni ∝ δ(r) and while this
+delta function does not affect the far-field director it impacts the flow solutions. Consequently, at quadrupole order
+and higher, distinct derivatives of 1
+r can produce the same multipole distortion in the director but have different
+associated active flows. As an explicit example we take the spin-1 quadrupole shown in Fig. 2, which may be written
+as n = a2∂2
+z
+a
+r ex +ez and therefore induces an active flow given by the action of a2∂2
+z on 29, as is illustrated in Fig. 4.
+However the same director distortion is captured by n = −4a2∂2
+w ¯
+w
+a
+r ex + ez, for which the corresponding active flow
+is shown in Fig. 6. A partial resolution to this ambiguity is that any non-equilibrium phenomenological features such
+as propulsion or rotation will be invariant to this choice of derivatives since, as we shall show in the following section,
+they can be expressed directly in terms of the director components. As a more complete resolution we reiterate that
+whenever an exact solution for the director is known the appropriate derivatives can be determined, as demonstrated
+earlier for defect loops [24], and so the apparent ambiguity disappears.
+V.
+ACTIVE FORCES AND TORQUES
+The directed and rotational active flow components highlighted above result in viscous stresses whose net effect
+must be balanced by their active counterparts, since the net force and torque must be zero. Consequently, these
+generic aspects of the response of an active nematic can be identified by considering the contribution that the active
+
+ww13
+stresses make to the force and torque
+f a =
+�
+ζnn · dA ≈
+�
+ζ
+�
+ex
+z δnx
+r
++ ey
+z δny
+r
++ ez
+x δnx + y δny
+r
+�
+dA,
+(43)
+τ a =
+�
+x × ζnn · dA ≈
+�
+ζ
+�
+ex
+�xy δnx
+r
++ (y2 − z2)δny
+r
+�
++ ey
+�(z2 − x2)δnx
+r
+− xy δny
+r
+�
++ ez
+z(−y δnx + x δny)
+r
+�
+dA,
+(44)
+integrating over a large sphere of radius r. These integrals depend on the surface of integration, as the active stresses
+are neither divergenceless nor compactly supported. However, a spherical surface is concordant with the multipole
+approach we are taking and the results are then independent of the radius, as a direct consequence of the orthogonality
+of spherical harmonics. From these expressions we can read off the multipole that will generate any desired active
+force or torque; dipoles generate forces and quadrupoles generate torques. When the active torque is non-zero, the
+compensating viscous torque will drive a persistent rotation of the multipole, creating an active ratchet; similarly, a
+non-zero active force will generate directed fluid flow. The above integrals therefore provide a solution to the inverse
+problem: given a particular non-equilibrium response, which distortion induces it? Hence they serve as a design guide
+for generating out of equilibrium responses in active nematics.
+If the multipole is free to move it will self-propel and rotate. The translational and rotational velocities are related
+to the viscous forces and torques by a general mobility matrix [65].
+In passive nematics, experiments [66] and
+simulations [67, 68] have found that it is sufficient to take a diagonal form for the mobility (no translation-rotation
+coupling) with separate viscosities for motion parallel, µ∥, and perpendicular, µ⊥, to the director, with typical ratio
+of viscosities µ⊥/µ∥ ∼ 1.6 [66–68]. This has the consequence that in general the force and velocity are not colinear
+U = −1
+6πa
+� 1
+µ∥
+f a
+∥ ez + 1
+µ⊥
+f a
+⊥
+�
+.
+(45)
+We again use the UPenn dipole as an example. Integrating the active stresses over a spherical surface of radius R we
+find an active force
+�
+ζnn · dA ≈ −ζαa2
+2
+� �
+ex
+xz
+R4 + ey
+yz
+R4 + ez
+� z
+R + x2 + y2
+R4
+��
+dA = −4πζαa2
+3
+ez.
+(46)
+Balancing this against Stokes drag predicts a ‘self-propulsion’ velocity for the active dipole of
+U = 2ζαa
+9µ∥
+ez.
+(47)
+For extensile activity (ζ > 0) the dipole moves ‘hyperbolic hedgehog first’ and with a speed that increases linearly
+with the core size a. This self-propulsion is in accordance with the directed component of the active flow, as can be
+seen in Fig. 5. The same self-propulsion speed along ex and ey is found for the transverse dipoles of p1, except that
+the parallel viscosity µ∥ should be replaced with µ⊥. Again, this self-propulsion agrees with the directed flow induced
+by these distortions, as calculated through the multipole approach, shown in Fig. 4 [24] and also with the results of
+both a local flow analysis and simulations [23]. The same directed motion has been observed in a related system of an
+active droplet within a passive nematic [35], with the droplet inducing a UPenn dipole in the nematic and moving in
+the direction of the hedgehog defect at a speed that grew with the droplet radius. The mechanism at play is different
+however; the motion results from directional differences in viscosity resulting from the anisotropic environment.
+To illustrate the rotational behaviour we use a member of Q1, ∂2
+z(1/r), as an example. We find an active torque
+�
+ζx × nn · dA ≈ ζαa3
+�
+1
+r6 (2z2 − x2 − y2)
+�
+xyex + (z2 − x2)ey − yzez
+�
+dA
+(48)
+= 8πζαa3
+5
+ey.
+(49)
+Balancing against Stokes drag as was done in the dipole case gives an angular velocity
+Ω = −ζα
+5µey.
+(50)
+
+14
+We note that for this and all other distortions which result in net torques the angular velocity is independent of the
+colloid size. In accordance with the relation ∂2
+z +4∂2
+w ¯
+w(1/r) = 0, the torque resulting from ∂2
+w ¯
+w(1/r) is of the opposite
+sign and a quarter the strength. The net active torques due to harmonics of Q0 and Q−1 have the directions indicated
+in Fig. 4 and half the magnitude of (49).
+Let us consider the approximate magnitude of the effects we have described. Beginning with the self-propulsion
+speed, the fluid viscosity is roughly 10−2 Pa s [17], although effects due to the elongated form of the nematogens
+could increase this by a factor of 30 or so [69, 70]. Both the activity [16] and the dipole moment constant [48] are
+of order unity, meaning the colloid would approximately cover its radius in a second. Similar approximations for the
+quadrupole give an angular velocity of about 2/3 rad s−1. For a colloid of radius 10 µm this has an associated power
+of the order of femtowatts, the same as predicted for bacterial ratchets [71].
+VI.
+TWO-DIMENSIONAL SYSTEMS AND RATCHETS
+As noted above, the planar nature of the rotational distortions in Q1 suggests the existence of two-dimensional
+analogues. In part motivated by this we now discuss the active response of multipolar distortions in two dimensions,
+again beginning with the connection between these multipoles and topological defect configurations.
+A.
+Multipoles and topological defects
+The categorisation of the harmonic distortions in two dimensions is much simpler, but we provide it here for
+completeness. Taking the asymptotic alignment to be along ey the symmetry of the far-field director is now described
+by the order 2 group {1, Ry}, with Ry reflection with axis ey, under which the monopole distortion nx ∼ A log(r/a)
+is antisymmetric. The higher-order distortions are once again generated via differentiation of the monopole, with ∂y
+leaving the symmetry under Ry unchanged and ∂x inverting it.
+It should be noted that the potential multiplicity of differential representations of harmonics that arose in three
+dimensions does not occur in two dimensions. This is because, under the assumption of a single elastic constant, the
+director angle φ may be written as the imaginary part of a meromorphic function of a single complex variable and
+this naturally defines the appropriate set of derivatives. Making z = x+iy our complex variable we write φ = I {f(z)}
+which upon performing a Laurent expansion of f(z) around z = 0 and assuming the existence of a uniform far-field
+alignment gives
+φ = I
+�
+0
+�
+n=−∞
+anzn
+�
+= I
+�
+a0 +
+∞
+�
+n=1
+(−1)n−1
+an
+(n − 1)!∂n
+z (ln z)
+�
+.
+(51)
+Hence at every order there is a one parameter family of distortions, corresponding to the phase of the an. A natural
+basis at order n is provided by {R {∂n
+z (ln z)} , I {∂n
+z (ln z)}}. This basis consists of a symmetric and anti-symmetric
+distortion under the action of Ry, the roles alternating with order, and of course correspond to the two harmonic
+functions cos nθ/rn and sin nθ/rn.
+In two dimensions the connection between defect configurations and far-field multipole distortions can be made
+concrete, and also serves as an illustration of how a particular set of derivatives is determined. For defects with
+topological charges sj at locations zj the angle that the director makes to ex is given by
+φ = φ0 +
+�
+j
+sjI
+�
+ln
+�z − zj
+a
+��
+,
+(52)
+which, upon performing a series expansion, gives
+φ = φ0 +
+�
+j
+sjI {ln(z/a)} −
+∞
+�
+n=1
+I
+��
+j sjzn
+j ¯zn�
+n|z|2n
+,
+(53)
+= φ0 +
+�
+j
+sjI {ln(z/a)} +
+∞
+�
+n=1
+(−1)nI
+��
+j sjzn
+j ∂n
+z ln z
+�
+n!
+,
+(54)
+Provided the total topological charge is zero the winding term proportional to ln w vanishes and φ0 is the far-field
+alignment. The distortions are given as a series of harmonics in which the coefficient of the nth harmonic is determined
+by a sum of zn
+j weighted by the defect charges.
+
+15
+We would like to have a basis of representative defect configurations for each harmonic distortion. However, it
+can be seen from (54) that the correspondence between arrangements of topological defects and the leading order
+nematic multipole is not one-to-one. Two defect-based representations of harmonic will prove particularly useful to
+us. The first, which we develop in this chapter, provides a representation in terms of half-integer defects on the disc
+and allows an intuition for the response to multipole distortions in active nematics through known results for such
+defects [15, 16]. The second uses the method of images to construct defect arrangements corresponding to a specific
+anchoring condition on the disc, with the same multipoles dominating the nematic distortion in the far field. This
+representation naturally lends itself to the control of induced multipoles through colloidal geometry and is explored
+fully in [62]. Nonetheless, both of these representations will be of use to us in the remainder of this chapter and as
+they are equally valid near-field representations for the asymptotic distortions that we are considering we will pass
+fairly freely between them.
+With this aforementioned half-integer representation in mind, let us consider sets of 2m defects sitting on the unit
+circle, with −1/2 defects at the mth roots of unity and +1/2 defects at the intermediate points. A useful formula here
+is the following for the sum of a given power of these roots of unity, after first rotating them all by a given angle θ
+m−1
+�
+k=0
+�
+eiθei 2π
+m k�n
+=
+�
+meinθ,
+if m|n
+0,
+otherwise .
+(55)
+The vanishing of this sum for values of n that are not multiples of m comes directly from the expression for the
+geometric sum and is a consequence of the cyclic group structure of the roots of unity. It means that the lowest order
+multipole distortion induced by such an arrangement of defects is order m and so allows a desired multipole distortion
+to be selected as the dominant far-field contribution. Explicitly, the director angle is given by
+φ = φ0 +
+�
+k odd
+I
+�
+¯zmk�
+k|z|2mk = φ0 + I {¯zm}
+|z|2m + O
+� 1
+z3m
+�
+,
+(56)
+with the approximation becoming rapidly better for higher-order multipoles due to the condition that n must be an
+odd multiple of the number of defects. Rotating the entire set of defects rigidly by an angle −π/(2m) generates the
+conjugate multipole as the dominant far-field contribution
+φ = φ0 +
+�
+k odd
+I
+�
+(−i)k¯zmk�
+k|z|2mk
+= φ0 − R {¯zm}
+|z|2m
++ O
+� 1
+z3m
+�
+,
+(57)
+with the natural interpolation between these two harmonics as the defect configuration is rigidly rotated.
+Hence we can interchange between a given harmonic distortion and a defect arrangement which has this harmonic
+as its dominant far-field contribution, with the correspondence becoming rapidly more accurate for higher orders,
+allowing us to relate the existing results for the behaviour of active defects [15, 16] to ours and vice versa. This
+correspondence is illustrated in Fig. 7. The locations of +1/2 and −1/2 defects are indicated with red and cyan dots
+respectively and the background colouring denotes the phase of the complex function � sj ln(z−zj), whose imaginary
+part provides the director angle for the given defect arrangement. The integral curves of this director field are shown
+in black and are remarkably well matched by those of the leading multipole, shown in white, despite the asymptotic
+nature of the approximation. In this context we are able to make precise the notion of a core region of a singular
+distortion, outside of which our multipole approach applies. The series in (54) is attained through a Taylor series of
+terms of the form ln(1 − 1/z), which are convergent for |z| > 1. More generally the greatest radial displacement of a
+defect defines a core radius, outside of which the multipole series converges onto the exact director angle.
+B.
+Flows from multipole distortions
+We can proceed analogously to our three-dimensional calculation in generating the active flows from a fundamental
+response in two dimensions, provided we are mindful of the logarithmic form that the monopole now has. A director
+rotation by θ0 inside a disc of radius a results in an equilibrium texture given by
+n = cos
+�θ0 log(r/R)
+log(a/R)
+�
+ey + sin
+�θ0 log(r/R)
+log(a/R)
+�
+ex,
+(58)
+which in the far field tends to a monopole distortion n ≈ ey + θ0 log(r/R)
+log(a/R) ex. Due to the logarithmic divergence of the
+fundamental harmonic in two dimensions it is necessary to normalise through a large length R such that a uniformly
+aligned far-field director is recovered.
+
+16
+FIG. 7. Representative defect configurations for nematic multipoles in two dimensions. The red and cyan dots indicate the
+locations of +1/2 and −1/2 defects respectively. The black curves are the integral curves of the corresponding director field
+and the background colour shows the phase of the complex function whose imaginary part gives the exact director angle, as
+in (52). The white lines are the integral curves of the dominant multipole, that is the leading term of (54). The multipole
+series converges onto the exact director angle outside a core region, shown as a white disc, and the leading multipole provides
+a remarkably good approximation in this region.
+Following our three-dimensional analysis we solve Stokes’ equations to linear order in nematic deformations for a
+monopole distortion. We write Stokes’ equations in terms of complex derivatives as
+2∂¯z(−p + iµω) = f,
+(59)
+where we have used that 2∂zu = ∇ · u + iω, with ω the vorticity. Hence we seek f as a ¯z-derivative, implicitly
+performing a Helmholtz derivative with the real and imaginary parts of the differentiated term corresponding to the
+scalar and vector potentials respectively. Expressing the active force in this way we have
+2∂¯z(−p + iµω) =
+ζθ0
+log(a/R)∂¯z
+�i¯z
+z
+�
+(60)
+and so
+− p + iµω =
+ζθ0
+2 log(a/R)
+i¯z
+z .
+(61)
+Reading off the pressure and vorticity, solving for the flow and converting back to Cartesians the fundamental flow
+response is now found to be
+˜u =
+ζθ0
+8µ log(a/R)
+�x2 − y2
+r2
+(−yex + xey) + 2 log
+� r
+R
+�
+(yex + xey)
+�
+,
+(62)
+˜p = −
+ζθ0
+log(a/R)
+xy
+r2 .
+(63)
+There is a clear similarity between these solutions and their three-dimensional counterparts, but while the fundamental
+flow response is still extensional it now grows linearly with distance from the distortion, with this change in scaling
+inherited by the subsequent harmonics.
+
+b)
+a
+)
+(p17
+As in the three-dimensional case we can gain general insight into the active response of a nematic by considering
+the net contribution of the active stresses to the force and torque when integrated over a large circle of radius r
+�
+ζnn · erdr ≈
+�
+ζ
+�yδnx
+r
+ex + xδnx
+r
+ey
+�
+dr,
+(64)
+�
+x × ζnn · erdr ≈
+�
+ζ (y2 − x2)δnx
+r
+dr.
+(65)
+We see that in two dimensions both dipoles will self-propel if free to move and there is a single chiral quadrupole
+which produces rotations.
+The far-field flow solutions for distortions up to dipole order are illustrated in Fig. 8, superposed over the nematic
+director.
+Both dipoles are now motile and as in the three-dimensional case they set up flows reminiscent of the
+Stokeslet.
+Vertical and horizontal self-propulsive modes may be viewed as resulting from normal and tangential
+anchoring respectively of the nematic on a disc. Interpolating between these orthogonal modes the angle of motility
+changes commensurately with the anchoring angle, such that sufficient control of the boundary conditions would allow
+for self-propulsion at an arbitrary angle with respect to the far-field alignment. This change in the dipole character
+can be represented by rigidly rotating the defect pair around the unit circle and the resulting motility is as would be
+expected from the position and orientation of the +1/2 defect [16, 72, 73]. Determining the motility induced by these
+dipolar modes is complicated by the Stokes paradox and although this can be circumvented by various means we do
+not pursue this here. If such dipolar colloids were fixed within the material they would pump the ambient fluid and
+so it should be possible to use them to produce the concentration, filtering and corralling effects observed previously
+by funneling motile bacteria [74].
+In line with our discussion at the beginning of this section, the basis quadrupoles are given by the real and
+imaginary parts of ∂2
+z, these being an achiral and chiral mode respectively, which are shown along with their flows in
+Fig. 8. The flow generated by the achiral quadrupole in Fig. 8(d) is purely radial and resembles the stresslet flow,
+unsurprising as it results from differentiating the vertical dipole in the same way as the stresslet is related to the
+Stokeslet. It is produced by a quadrupole distortion which may be associated with normal anchoring on the disc –
+its counterpart with tangential anchoring has all the charges in its representative defect configuration inverted and
+a reversed flow response. Just as for the dipole distortions, the character of the quadrupole can be smoothly varied
+through adapting the boundary condition and the topological defects which represent the harmonic rotate rigidly in
+step with the changing anchoring angle. A generic anchoring angle will produce a net active torque, maximised for an
+angle of π/4 as illustrated for the chiral quadrupole shown in Fig. 8(e). For extensile activity this distortion generates
+clockwise rotation, as can easily be justified via our representation of the far-field director structure as arising from a
+square arrangement of two +1/2 and two −1/2 defects – the dual mode with the defect charges interchanged rotates
+anticlockwise. By choosing boundary conditions such that the defects are positioned closer to the mid-line of the
+colloid the strength of the active torque can be tuned.
+VII.
+CHIRAL ACTIVE STRESSES
+Chirality is a ubiquitous trait, in living systems and liquid crystals alike. In active matter it opens a wealth of new
+phenomena, including odd viscous [75] and elastic responses [76, 77], surface waves, rotating crystals [78] and non-
+reciprocal interactions [79]. Chiral active stresses induce vortex arrays in active cholesterics [12] and have also been
+shown to be important in nematic cell monolayers where they modify collective motion, the motility of topological
+defects and generate edge currents [80, 81]. We now consider the effects of such chiral active stresses on nematic
+multipoles, both in two and three dimensions.
+A.
+Two dimensions
+For chiral stresses in two dimensions, the active stress tensor has the form σc = χJ(nn − n⊥n⊥)/2, where J is the
+complex structure defined by Jn = n⊥ and Jn⊥ = −n. The chiral active force is
+∇ · σc = χJ
+�
+∇ · (nn)
+�
+,
+(66)
+and is simply a π/2 rotation of the achiral active force. Accordingly we can modify (61) to give
+− p + iµω = −
+ζθ0
+2 log(a/R)
+¯z
+z ,
+(67)
+
+18
+FIG. 8. Distortions up to quadrupole order in two-dimensional active nematics. The active flow in white is superposed on the
+pressure field, with the integral curves of the director shown in black. (a) The fundamental monopole response is extensional
+and grows linearly with distance from the distortion. (b) and (c) show the flows induced by dipole distortions, labelled by the
+appropriate derivative of the nematic monopole, with the green arrows indicating the direction of self-propulsion that would
+result from net active forces in extensile systems. The vertical and horizontal dipoles are the far-field director responses to
+normal and tangential anchoring respectively and may also be interpreted as arising from a pair of +1/2 (cyan) and −1/2 (red)
+defects. The self-propulsion matches that expected for the +1/2 defect.
+and solve as before to find
+˜u =
+χθ0
+8µ log(a/R)
+�2xy
+r2 (−yex + xey) + 2 log
+� r
+R
+�
+(−xex + yey)
+�
+,
+(68)
+˜p =
+χθ0
+log(a/R)
+x2 − y2
+2r2
+.
+(69)
+Another way to understand the relation between achiral and chiral stresses is that, since the monopole active force
+field is spin-2, the π/2 local rotation of the active force results in a global rotation by π/4 of the force field and hence
+the fundamental flow responses. The action of this global rotation, denoted Rπ/4, may be seen by comparing the
+monopole flow responses for achiral and chiral stresses, shown in Fig. 8(a) and Fig. 9(a) respectively. For distortions
+of order n there are two basis flows, ur and ui, corresponding to the real and imaginary parts of ∂n
+z respectively.
+The rotation of the monopole response has the consequence that for achiral and chiral active stresses these flows are
+related by
+uc
+r = Rπ/4
+�
+cos
+�nπ
+4
+�
+ua
+r − sin
+�nπ
+4
+�
+ua
+i
+�
+,
+(70)
+uc
+i = Rπ/4
+�
+sin
+�nπ
+4
+�
+ua
+r + cos
+�nπ
+4
+�
+ua
+i
+�
+,
+(71)
+
+a)
+b)
+-%
+(p
+e)
+02
+hc19
+FIG. 9. Distortions up to quadrupole order in two-dimensional active nematics with purely chiral stresses. The active flow
+in white is superposed on the pressure field, with the integral curves of the director shown in black. (a) The fundamental
+monopole response is extensional and grows linearly with distance from the distortion. (b) and (c) show the flows induced
+by dipole distortions, labelled by the appropriate derivative of the nematic monopole, with the green arrows indicating the
+direction of self-propulsion that would result from net active forces in extensile systems.
+where the superscripts denote the nature of the stresses as achiral or chiral. Hence flow solutions for chiral and achiral
+stresses are related by a clockwise rotation by nπ/4 in the space of solutions followed by a rigid spatial rotation
+anticlockwise by π/4, as can be seen in Fig 9. At dipole order the chiral flow fields are rotated superpositions of
+the achiral ones, with the overall effect of chirality being to rotate the self-propulsion direction anticlockwise by π/2,
+interchanging the roles of horizontal and vertical propulsion. For a generic mixture of achiral and chiral stresses
+the direction of self-propulsion is rotated from the achiral case by an angle arctan(χ/ζ), mirroring the effect such
+stresses have on the flow profile of a +1/2 defect [80]. For the quadrupole distortions we have uc
+i = Rπ/4ua
+r and
+uc
+i = Rπ/4(−ua
+i ) = ua
+i , again swapping which distortion produces a chiral or achiral flow response.
+It is worth
+emphasising that the sign of the macroscopic rotation is not necessarily the same as the sign of the chiral stresses,
+rather it is the product of the signs of the activity and the distortion, just as for achiral stresses.
+
+a)
+b)
+(p
+22
+e)
+hc
+C20
+FIG. 10. The active flows induced by spin 0 dipole distortions with chiral active stresses. The flow is superposed upon the
+integral curves of the director, shown in orange, for the UPenn dipole (left) and chiral dipole (right).
+B.
+Three dimensions
+In three dimensions the chiral active force is χ∇×[∇ · (nn)] [12] and so, by linearity, the fundamental flow responses
+are given by the curl of those derived earlier, namely
+u(x) =
+aχ
+2µr3
+�
+−exxy + ey(x2 − z2) + ezyz
+�
+,
+(72)
+u(y) =
+aχ
+2µr3
+�
+−ex(y2 − z2) + eyxy + −ezxz
+�
+,
+(73)
+for monopole distortions in the x- and y-components respectively. Just as for achiral active stresses, we can combine
+these into a single complex fundamental flow response as u(x) − iu(y), giving
+˜u = i
+r3
+�
+− ¯w2ew + (w ¯w − 2z2)e ¯
+w + 2 ¯wzez
+�
+.
+(74)
+Since the active chiral force is a pure curl the corresponding pressure is constant.
+Owing to the additional derivative the functional behaviour of the flow responses is shifted up one order of distortion
+compared to achiral stresses, meaning dipole distortions induce rotations, although it should be noted that monopoles
+do not produce propulsive flows. The monopole flow responses are still spin-1, but since the flow response for a
+monopole distortion in nx for achiral stresses is primarily in the x − z plane, the action of curl produces a flow that is
+dominantly in the y-direction and similarly the response to a monopole distortion in ny is mainly along ex. Together
+these ingredients mean that heuristically the flow response of a given distortion with chiral active stresses will resemble
+the achiral active stress flow response of the conjugate distortion at one higher order and with the same spin, that
+is the distortion reached by the action of i∂z. This is illustrated in Fig. 10 for the spin-0 dipoles. The UPenn dipole
+induces rotation about ez while the chiral dipole produces a purely radial flow, resembling the achiral flow responses
+of the chiral quadrupole and Saturn’s ring quadurpole respectively.
+The phenomenological response can again be captured through integration of the stress tensor over a large sphere
+of radius r, just as was done for achiral active stresses. To enable us to reduce the active torque to a single boundary
+integral we use the symmetric form of the chiral active stress tensor [12], σc
+ij = [∇ × (nn)]ij + [∇ × (nn)]ji, such that
+
+d21
+to linear order in director distortions we have
+f a =
+�
+χσc · dA ≈ 0,
+(75)
+τ a =
+�
+x × χσc · dA ≈
+�
+χ
+�
+ex
+�xz ∂xδnx − 2yz∂yδnx + (y2 − z2)∂zδnx
+r
+�
++ ey
+�yz∂yδny − 2xz∂xδny + (x2 − z2)∂zδny
+r
+�
++ ez
+−2xy(∂yδnx + ∂xδny) − (x2 − y2)(∂xδnx − ∂yδny) + z(x∂zδnx + y∂zδny)
+r
+�
+dA.
+(76)
+From the first of these equations we see that, to linear order, there are no harmonic distortions which produce net
+forces in a nematic with chiral active stresses. With regard to the net active torques, the x− and y− components
+involve only δnx and δny respectively and each term yields a non-zero integral only for δni ∼ ∂z1/r, hence the two
+spin-1 dipoles produce transverse torques. Turning to the z-component, each term gives a non-zero integral only for
+δni ∼ ∂i1/r, and as the expression is symmetric under interchange of x and y we see that only the UPenn dipole
+produces torques around ez. In other words, a dipolar director distortion which produces a net active force along
+a given direction in an achiral active nematic produces a net torque around the same direction in a chiral active
+nematic.
+These results of course accord with our earlier statements regarding the spins of distortions which are
+capable of producing torques about given axes. Performing the integrals we find that in each case the net active
+torque has magnitude −12πχαa2/5. Balancing this against Stokes drag gives, using the UPenn dipole as an example,
+an angular velocity
+Ω = 3χα
+10µaez.
+(77)
+While the angular velocity in achiral active nematics is independent of the distortion size, in chiral active nematics
+it is inversely proportional to the radius, a direct consequence of the additional derivative in the active stress tensor.
+Accordingly, in chiral active nematics the rotational velocity is largest for smaller colloids.
+VIII.
+DISCUSSION
+We have introduced active nematic multipoles as a novel framework for understanding the dynamics of active
+nematics. Although only formally valid on mesoscopic lengthscales, this approach produces results for the propulsive
+dynamics of defect loops that agree with those of a local analysis [23, 24]. It also provides various testable predictions,
+for example for the axis of self-propulsion or rotation induced by a distortion or how the corresponding velocities
+would scale with the size of a colloid.
+More broadly, our results reveal self-propulsion and rotation as generic non-equilibrium responses that naturally
+arise due to colloidal inclusions in active nematics but also provide a template for the tailored design of particular
+dynamics. This provides insight into the issue of harnessing the energy of active systems to perform useful work,
+something which has been demonstrated in bacterial suspensions [71, 82] and is now receiving greater attention in
+the nematic context [36, 37, 83, 84]. Specific anchoring conditions on colloids have been investigated as a means of
+generating directed motion [36]. Our results suggest that sufficient control of the anchoring conditions would allow for
+steerable and targeted colloidal delivery [85], although there may be routes to a similar degree of dynamical control
+through colloidal geometry alone [62].
+The transformative power of colloids in passive nematics was revealed in their collective behaviour, forming crys-
+talline structures [28, 86–89] which can serve as photonic metamaterials [90]. While our predictions for the dynamics
+of individual colloids have utility in their own right, there is again considerable interest in the collective dynamics
+which might emerge [91]. Although our results are insufficient to fully address these questions, some basic points
+can nonetheless be extracted from the flow solutions. The long-range nature of the active flows suggests that the hy-
+drodynamic interactions will be dominant over elastic ones. The leading contribution to the pair-wise hydrodynamic
+interactions will be the advection of each colloid by the flow field generated by the other, and the even inversion
+symmetry of dipole flows implies that this provides a mechanism for pair-wise propulsion, even for colloids which are
+not self-propulsive themselves.
+To conclude, it has been long-established that the distinct symmetries of ±1/2 nematic defects can be directly
+related to the qualitatively different dynamics they display in active systems [15, 16]. The aim of this paper is to
+bring the insights of this symmetry-based approach to generic nematic distortions.
+
+22
+ACKNOWLEDGMENTS
+This work was supported by the UK EPSRC through Grant No. EP/N509796/1.
+[1] S. Ramaswamy. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys., 1(1):323–345, 2010.
+[2] M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, and R.A. Simha. Hydrodynamics of soft
+active matter. Rev. Mod. Phys., 85(3):1143, 2013.
+[3] A. Doostmohammadi, J. Ign´es-Mullol, J.M. Yeomans, and F. Sagu´es. Active nematics. Nat. Commun., 9(1):1–13, 2018.
+[4] G. Duclos, C. Erlenk¨amper, J.-F. Joanny, and P. Silberzan. Topological defects in confined populations of spindle-shaped
+cells. Nat. Phys., 13(1):58–62, 2017.
+[5] T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C.T. Lim, J.M. Yeomans, and
+B. Ladoux. Topological defects in epithelia govern cell death and extrusion. Nature, 544(7649):212–216, 2017.
+[6] S. Zhou, A. Sokolov, O.D. Lavrentovich, and I.S. Aranson.
+Living liquid crystals.
+Proc. Natl. Acad. Sci. U.S.A.,
+111(4):1265–1270, 2014.
+[7] H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. L¨owen, and J.M. Yeomans. Meso-scale turbulence
+in living fluids. Proc. Natl. Acad. Sci. U.S.A., 109(36):14308–14313, 2012.
+[8] T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, and Z. Dogic. Spontaneous motion in hierarchically assembled
+active matter. Nature, 491(7424):431–434, 2012.
+[9] T.C. Adhyapak, S. Ramaswamy, and J. Toner. Live soap: stability, order, and fluctuations in apolar active smectics. Phys.
+Rev. Lett., 110(11):118102, 2013.
+[10] L. Chen and J. Toner. Universality for moving stripes: A hydrodynamic theory of polar active smectics. Phys. Rev. Lett.,
+111(088701), 2013.
+[11] C.A. Whitfield, T.C. Adhyapak, A. Tiribocchi, G.P. Alexander, D. Marenduzzo, and S. Ramaswamy.
+Hydrodynamic
+instabilities in active cholesteric liquid crystals. Eur. Phys. J.E., 40(4):1–16, 2017.
+[12] S.J. Kole, G.P. Alexander, S. Ramaswamy, and A. Maitra. Layered chiral active matter: Beyond odd elasticity. Phys. Rev.
+Lett., 126(24):248001, 2021.
+[13] A. Maitra, M. Lenz, and R. Voituriez. Chiral active hexatics: Giant number fluctuations, waves, and destruction of order.
+Phys. Rev. Lett., 125(238005), 2020.
+[14] V. Narayan, S. Ramaswamy, and N. Menon. Long-lived giant number fluctuations in a swarming granular nematic. Science,
+317:105, 2007.
+[15] L. Giomi, M.J. Bowick, X. Ma, and M.C. Marchetti. Defect annihilation and proliferation in active nematics. Phys. Rev.
+Lett., 110(22):228101, 2013.
+[16] L. Giomi, M.J. Bowick, P. Mishra, R. Sknepnek, and M.C. Marchetti. Defect dynamics in active nematics. Phil. Trans.
+R. Soc. A, 372(2029):20130365, 2014.
+[17] T.N. Shendruk, A. Doostmohammadi, K. Thijssen, and J.M. Yeomans. Dancing disclinations in confined active nematics.
+Soft Matter, 13(21):3853–3862, 2017.
+[18] M.M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, and M.F. Hagan. Insensitivity of active
+nematic liquid crystal dynamics to topological constraints. Phys. Rev. E, 97(1):012702, 2018.
+[19] A. Opathalage, M.M. Norton, M.P.N. Juniper, B. Langeslay, S.A. Aghvami, S. Fraden, and Z. Dogic.
+Self-organized
+dynamics and the transition to turbulence of confined active nematics. Proc. Natl. Acad. Sci. U.S.A., 116(11):4788–4797,
+2019.
+[20] Y. Maroudas-Sacks, L. Garion, L. Shani-Zerbib, A. Livshits, E. Braun, and K. Keren. Topological defects in the nematic
+order of actin fibres as organization centres of hydra morphogenesis. Nat. Phys., 17:251, 2021.
+[21] G. Duclos, R. Adkins, D. Banerjee, M.S.E. Peterson, M. Varghese, I. Kolvin, A. Baskaran, R.A. Pelcovits, T.R. Powers,
+A. Baskaran, et al. Topological structure and dynamics of three-dimensional active nematics. Science, 367(6482):1120–1124,
+2020.
+[22] S. ˇCopar, J. Aplinc, ˇZ. Kos, S. ˇZumer, and M. Ravnik. Topology of three-dimensional active nematic turbulence confined
+to droplets. Phys. Rev. X, 9(3):031051, 2019.
+[23] J. Binysh, ˇZ. Kos, S. ˇCopar, M. Ravnik, and G.P. Alexander. Three-dimensional active defect loops. Phys. Rev. Lett.,
+124(8):088001, 2020.
+[24] A.J.H. Houston and G.P. Alexander. Defect loops in three-dimensional active nematics as active multipoles. Phys. Rev.
+E, 105(6):L062601, 2022.
+[25] P. Poulin, H. Stark, T.C. Lubensky, and D.A. Weitz.
+Novel colloidal interactions in anisotropic fluids.
+Science,
+275(5307):1770–1773, 1997.
+[26] H. Stark. Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep., 351(6):387–474, 2001.
+[27] I. Muˇseviˇc. Liquid crystal colloids. Springer, 2017.
+[28] I. Muˇseviˇc, M. ˇSkarabot, U. Tkalec, M. Ravnik, and S. ˇZumer. Two-dimensional nematic colloidal crystals self-assembled
+by topological defects. Science, 313(5789):954–958, 2006.
+[29] M. Ravnik and J.M. Yeomans. Confined active nematic flow in cylindrical capillaries. Phys. Rev. Lett., 110(2):026001,
+2013.
+
+23
+[30] M. Ravnik, M. ˇSkarabot, S. ˇZumer, U. Tkalec, I. Poberaj, D. Babiˇc, N. Osterman, and I. Muˇseviˇc. Entangled colloidal
+dimers and wires. Phys. Rev. Lett., 99(247801), 2007.
+[31] U. Tkalec, M. Ravnik, S. ˇCopar, S. ˇZumer, and I. Muˇseviˇc. Reconfigurable knots and links in chiral nematic colloids.
+Science, 333(6038):62–65, 2011.
+[32] P. Guillamat, ˇZ. Kos, J. Hardo¨uin, J. Ign´es-Mullol, M. Ravnik, and F. Sagu´es. Active nematic emulsions. Sci. Adv.,
+4(eaa01470), 2018.
+[33] J. Hardo¨uin, P. Guillamat, F. Sagu´es, and J. Ign´es-Mullol. Dynamics of ring disclinations driven by active nematic shells.
+Front. Phys., 7(00165), 2019.
+[34] Y. Baek, A.P. Solon, X. Xu, N. Nikola, and Y. Kafri. Generic long-range interactions between passive bodies in an active
+fluid. Phys. Rev. Lett., 120(5):058002, 2018.
+[35] M. Rajabi, H. Baza, T. Turiv, and O.D. Lavrentovich. Directional self-locomotion of active droplets enabled by nematic
+environment. Nat. Phys., pages 1–7, 2020.
+[36] B. Loewe and T.N. Shendruk. Passive janus particles are self-propelled in active nematics. New J. Phys., 24(1):012001,
+2022.
+[37] T. Yao, ˇZ. Kos, Q.X. Zhang, Y. Luo, E.B. Steager, M. Ravnik, and K.J. Stebe. Topological defect-propelled swimming of
+nematic colloids. Sci. Adv., 8(34):eabn8176, 2022.
+[38] F.C. Frank. I. liquid crystals. on the theory of liquid crystals. Discuss. Faraday Soc., 25:19–28, 1958.
+[39] L. Angheluta, Z. Chen, M.C. Marchetti, and M.J. Bowick. The role of fluid flow in the dynamics of active nematic defects.
+New J. Phys., 23(3):033009, 2021.
+[40] D. Khoromskaia and G.P. Alexander. Vortex formation and dynamics of defects in active nematic shells. New J. Phys.,
+19(10):103043, 2017.
+[41] R. Alert, J.-F. Joanny, and J. Casademunt. Universal scaling of active nematic turbulence. Nat. Phys., 16(6):682–688,
+2020.
+[42] R.A. Simha and S. Ramaswamy.
+Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled
+particles. Phys. Rev. Lett., 89(5):058101, 2002.
+[43] J.C. Maxwell. A treatise on electricity and magnetism, volume 1. Oxford: Clarendon Press, 1873.
+[44] M.R. Dennis. Canonical representation of spherical functions: Sylvester’s theorem, maxwell’s multipoles and majorana’s
+sphere. J. Phys. A Math., 37(40):9487, 2004.
+[45] V. Arnold et al. Topological content of the maxwell theorem on multiple representation of spherical functions. Topol.
+Methods Nonlinear Anal., 7(2):205–217, 1996.
+[46] F. Brochard and P.-G. De Gennes. Theory of magnetic suspensions in liquid crystals. Journal de Physique, 31(7):691–708,
+1970.
+[47] Y. Yuan, Q. Liu, B. Senyuk, and I.I. Smalyukh. Elastic colloidal monopoles and reconfigurable self-assembly in liquid
+crystals. Nature, 570(7760):214–218, 2019.
+[48] T.C. Lubensky, D. Pettey, N. Currier, and H. Stark. Topological defects and interactions in nematic emulsions. Phys. Rev.
+E, 57(1):610, 1998.
+[49] V.M. Pergamenshchik and V.A. Uzunova. Dipolar colloids in nematostatics: tensorial structure, symmetry, different types,
+and their interaction. Phys. Rev. E, 83(2):021701, 2011.
+[50] E.M. Terentjev. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys. Rev. E,
+51(2):1330, 1995.
+[51] U. Tkalec, M. Ravnik, S. ˇZumer, and I. , Muˇseviˇc. Vortexlike topological defects in nematic colloids: Chiral colloidal
+dimers and 2d crystals. Phys. Rev. Lett., 103(127801), 2009.
+[52] G.P. Alexander. Topology in liquid crystal phases. In The Role of Topology in Materials, pages 229–257. Springer, 2018.
+[53] I.I. Smalyukh, Y. Lansac, N.A. Clark, and R.P. Trivedi. Three-dimensional structure and multistable optical switching of
+triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater., 9(2):139–145, 2010.
+[54] M. Ravnik and S. ˇZumer. Landau–de gennes modelling of nematic liquid crystal colloids. Liquid Crystals, 36(10-11):1201–
+1214, 2009.
+[55] J.R. Blake and A.T. Chwang. Fundamental singularities of viscous flow. J. Eng. Math., 8(1):23–29, 1974.
+[56] A.T. Chwang and T.Y.T. Wu. Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows.
+J. Fluid Mech., 67(4):787–815, 1975.
+[57] D. Khoromskaia and G.P. Alexander. Motility of active fluid drops on surfaces. Phys. Rev. E, 92(6):062311, 2015.
+[58] M.J. Lighthill. On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds
+numbers. Commun. Pure Appl. Math., 5(2):109–118, 1952.
+[59] O.S. Pak and E. Lauga. Generalized squirming motion of a sphere. J. Eng. Math., 88(1):1–28, 2014.
+[60] A. Daddi-Moussa-Ider and A.M. Menzel. Dynamics of a simple model microswimmer in an anisotropic fluid: Implications
+for alignment behavior and active transport in a nematic liquid crystal. Phys. Rev. Fluids, 3(9):094102, 2018.
+[61] ˇZ. Kos and M. Ravnik. Elementary flow field profiles of micro-swimmers in weakly anisotropic nematic fluids: Stokeslet,
+stresslet, rotlet and source flows. Fluids, 3(1):15, 2018.
+[62] A.J.H. Houston. Active and passive nematic multipoles. PhD thesis, University of Warwick, 2022.
+[63] J. Binysh and G.P. Alexander. Maxwell’s theory of solid angle and the construction of knotted fields. J. Phys. A Math.,
+51(38):385202, 2018.
+[64] J. Friedel and P.-G. De Gennes. Boucles de disclination dans les cristaux liquides. CR Acad. Sc. Paris B, 268:257–259,
+1969.
+[65] S. Kim and S.J. Karrila. Microhydrodynamics: Principles and selected applications, 1991.
+
+24
+[66] J.C. Loudet, P. Hanusse, and P. Poulin. Stokes drag on a sphere in a nematic liquid crystal. Science, 306(5701):1525–1525,
+2004.
+[67] R.W. Ruhwandl and E.M. Terentjev.
+Friction drag on a particle moving in a nematic liquid crystal.
+Phys. Rev. E,
+54(5):5204, 1996.
+[68] H. Stark and D. Ventzki. Stokes drag of spherical particles in a nematic environment at low ericksen numbers. Phys. Rev.
+E, 64(3):031711, 2001.
+[69] G.K. Batchelor. The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid
+Mech., 46(4):813–829, 1971.
+[70] C. Lang, J. Hendricks, Z. Zhang, N.K. Reddy, J.P. Rothstein, M.P. Lettinga, J. Vermant, and C. Clasen. Effects of particle
+stiffness on the extensional rheology of model rod-like nanoparticle suspensions. Soft matter, 15(5):833–841, 2019.
+[71] A. Sokolov, M.M. Apodaca, B.A. Grzybowski, and I.S. Aranson. Swimming bacteria power microscopic gears. Proc. Natl.
+Acad. Sci. U.S.A., 107(3):969–974, 2010.
+[72] A.J. Vromans and L. Giomi. Orientational properties of nematic disclinations. Soft matter, 12(30):6490–6495, 2016.
+[73] X. Tang and J.V. Selinger. Orientation of topological defects in 2d nematic liquid crystals. Soft matter, 13(32):5481–5490,
+2017.
+[74] P. Galajda, J. Keymer, P. Chaikin, and R. Austin. A wall of funnels concentrates swimming bacteria. J. Bacteriol.,
+189(23):8704–8707, 2007.
+[75] D. Banerjee, A. Souslov, A.G. Abanov, and V. Vitelli. Odd viscosity in chiral active fluids. Nat. Commun., 8(1):1–12,
+2017.
+[76] C. Scheibner, A. Souslov, D. Banerjee, P. Sur´owka, W. Irvine, and V. Vitelli. Odd elasticity. Nat. Phys., 16(4):475–480,
+2020.
+[77] M. Fruchart, C. Scheibner, and V. Vitelli. Odd viscosity and odd elasticity. arXiv preprint arXiv:2207.00071, 2022.
+[78] T.H. Tan, A. Mietke, J. Li, Y. Chen, H. Higinbotham, P.J. Foster, S. Gokhale, J. Dunkel, and N. Fakhri. Odd dynamics
+of living chiral crystals. Nature, 607(7918):287–293, 2022.
+[79] M.J. Bowick, N. Fakhri, M.C. Marchetti, and S. Ramaswamy. Symmetry, thermodynamics, and topology in active matter.
+Phys. Rev. X, 12(1):010501, 2022.
+[80] L.A. Hoffmann, K. Schakenraad, R.M.H. Merks, and L. Giomi. Chiral stresses in nematic cell monolayers. Soft matter,
+16(3):764–774, 2020.
+[81] V. Yashunsky, D.J.G. Pearce, C. Blanch-Mercader, F. Ascione, P. Silberzan, and L. Giomi. Chiral edge current in nematic
+cell monolayers. Phys. Rev. X, 12(4):041017, 2022.
+[82] R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M.P. Conte, F. Mecarini, F. De Angelis,
+and E. Di Fabrizio. Bacterial ratchet motors. Proc. Natl. Acad. Sci. U.S.A., 107(21):9541–9545, 2010.
+[83] S.P. Thampi, A. Doostmohammadi, T.N. Shendruk, R. Golestanian, and J.M. Yeomans. Active micromachines: Microflu-
+idics powered by mesoscale turbulence. Sci. Adv., 2(7):e1501854, 2016.
+[84] R. Zhang, A. Mozaffari, and J.J. de Pablo. Autonomous materials systems from active liquid crystals. Nat. Rev. Mater.,
+pages 1–17, 2021.
+[85] D.K. Sahu, S. Kole, S. Ramaswamy, and S. Dhara. Omnidirectional transport and navigation of janus particles through a
+nematic liquid crystal film. Phys. Rev. Res., 2(3):032009, 2020.
+[86] M. ˇSkarabot, M. Ravnik, S. ˇZumer, U. Tkalec, I. Poberaj, D. Babiˇc, N. Osterman, and I. Muˇseviˇc. Two-dimensional
+dipolar nematic colloidal crystals. Phys. Rev. E, 76(5):051406, 2007.
+[87] M. ˇSkarabot, M. Ravnik, S. ˇZumer, U. Tkalec, I. Poberaj, D. Babiˇc, N. Osterman, and I. Muˇseviˇc.
+Interactions of
+quadrupolar nematic colloids. Phys. Rev. E, 77(3):031705, 2008.
+[88] U. Ognysta, A. Nych, V. Nazarenko, I. Muˇseviˇc, M. ˇSkarabot, M. Ravnik, S. ˇZumer, I. Poberaj, and D. Babiˇc.
+2d
+interactions and binary crystals of dipolar and quadrupolar nematic colloids. Phys. Rev. Lett., 100(21):217803, 2008.
+[89] U.M. Ognysta, A.B. Nych, V.A. Uzunova, V.M. Pergamenschik, V.G. Nazarenko, M. ˇSkarabot, and I. Muˇseviˇc. Square
+colloidal lattices and pair interaction in a binary system of quadrupolar nematic colloids. Phys. Rev. E, 83(4):041709, 2011.
+[90] I. Muˇseviˇc. Nematic colloids, topology and photonics. Phil. Trans. R. Soc. A, 371(1988):20120266, 2013.
+[91] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D. Bartolo. Emergence of macroscopic directed motion in
+populations of motile colloids. Nature, 503(7474):95–98, 2013.
+
diff --git a/1tFST4oBgHgl3EQfWzjN/content/tmp_files/load_file.txt b/1tFST4oBgHgl3EQfWzjN/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ee9992613acb527dd375558520dbaa8eb3891aa3
--- /dev/null
+++ b/1tFST4oBgHgl3EQfWzjN/content/tmp_files/load_file.txt
@@ -0,0 +1,1437 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf,len=1436
+page_content='Active Nematic Multipoles: Flow Responses and the Dynamics of Defects and Colloids Alexander J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Houston1 and Gareth P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander1, 2, ∗ 1Department of Physics, Gibbet Hill Road, University of Warwick, Coventry, CV4 7AL, United Kingdom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2Centre for Complexity Science, Zeeman Building, University of Warwick, Coventry, CV4 7AL, United Kingdom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (Dated: Wednesday 1st February, 2023) We introduce a general description of localised distortions in active nematics using the framework of active nematic multipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We give the Stokesian flows for arbitrary multipoles in terms of differentiation of a fundamental flow response and describe them explicitly up to quadrupole order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We also present the response in terms of the net active force and torque associated to the multipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This allows the identification of the dipolar and quadrupolar distortions that generate self-propulsion and self-rotation respectively and serves as a guide for the design of arbitrary flow responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Our results can be applied to both defect loops in three-dimensional active nematics and to systems with colloidal inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' They reveal the geometry-dependence of the self-dynamics of defect loops and provide insights into how colloids might be designed to achieve propulsive or rotational dynamics, and more generally for the extraction of work from active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Finally, we extend our analysis also to two dimensions and to systems with chiral active stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' INTRODUCTION Active liquid crystals model a wide range of materials, both biological and synthetic [1–3], including cell mono- layers [4], tissues [5], bacteria in liquid crystalline environments [6] and bacterial suspensions [7], and synthetic suspensions of microtubules [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nematic and polar phases have been the focus of attention but smectic [9, 10], cholesteric [11, 12] and hexatic [13] phases have also been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Key features and motifs of the active nematic state include self-propelled topological defects [14–16], spontaneous flows and vortices, and on how these may be controlled through boundary conditions, confinement [17–19], external fields, geometry or topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Active defects, in particular, have been related to processes of apoptosis in epithelial sheets [5], tissue dynamics, bacterial spreading and biofilm formation, and morphogenesis in Hydra [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In three-dimensional active nematics the fundamental excitations are defect loops and system-spanning lines [21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The defect loops actively self-propel [23], and self-orient [24], in addition to undergoing deformations in shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Their finite extent means that they represent localised distortions to the nematic director, on scales larger than their size, and this facilitates a description through elastic multipoles [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It also invites comparison with colloidal inclusions in passive liquid crystals, which create localised realignments of the director and act as elastic multipoles [25–27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These multipole distortions mediate interactions between colloids and allow for a means of controlling both the colloidal inclusions and the host material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For instance, they facilitate self-assembly and the formation of metamaterials [28, 29], and enable novel control of topological defects [27, 30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' While there have been studies of active nematic droplets in a host passive liquid crystal [32, 33], colloidal inclusions in host active nematics have not been looked at previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The multipole approach to describing colloidal inclusions and localised director distortions in general, offers an equally fruitful paradigm in active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Here, we present a generic analysis of the active flows generated by multipole director distortions in an active nematic and predict that the presence of colloids transforms their behaviour similarly to the passive case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These active multipole flows represent the responses of the active nematic both to localised features, such as defect loops, and to colloidal inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This allows us to identify those distortions which produce directed or rotational flows and show that such distortions may be naturally induced by colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We also characterise the response in terms of the active forces and torques that they induce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This general connection can serve as a guide for using colloidal inclusions as a means to control active nematics, or how to design them to engineer a desired response, or extract work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The properties of inclusions have been studied in scalar active matter [34], as have active droplets in passive nematics [35], but while there have been specific demonstrations of propulsive colloids [36, 37] the general responses of inclusions in active nematics have not previously been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Understanding how such responses relate to local manipulations and molecular fields in active nematics will bring both fundamental insights and the potential for control of active metamaterials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The remainder of this paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In Section 2 we briefly review the equations of active nemato- hydrodynamics and describe the regime in which our linear multipole approach applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In Section 3 we present these ∗ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='Alexander@warwick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='uk arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='13782v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='soft] 31 Jan 2023 2 multipoles as complex derivatives acting on 1/r, showing how this naturally elucidates their symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In Section 4 we show that the linear active response to a harmonic distortion is generated by the same complex derivatives acting on fundamental flow and pressure solutions and highlight certain examples that illustrate the self-propulsive and rotational dynamics that can arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We then show in Section 5 that these phenomenological responses can be discerned from integrals of the active stress, allowing the identification of the distortion which produces propulsion along or rotation about a given axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sections 6 and 7 contain extensions of our approach, first to two-dimensional systems and then to those with chiral active stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Section 8 gives a discussion and summary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' HYDRODYNAMICS OF ACTIVE NEMATICS We summarise the hydrodynamics of active nematics as described by their director field n and fluid velocity u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The fluid flow satisfies the continuity ∂iui = 0 and Stokes ∂jσij = 0 equations, with stress tensor [1–3] σij = −pδij + 2µDij + ν 2 � nihj + hinj � + 1 2 � nihj − hinj � + σE ij − ζninj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (1) Here, p is the pressure, µ is the viscosity, Dij = 1 2(∂iuj + ∂jui) is the symmetric part of the velocity gradients, ν is the flow alignment parameter, hi = −δF/δni is the molecular field associated with the Frank free energy F, σE ij is the Ericksen stress, and ζ is the magnitude of the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active nematic is extensile when ζ > 0 and contractile when ζ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The director field satisfies the relaxational equation ∂tni + uj∂jni + Ωijnj = 1 γ hi − ν � Dijnj − ni(njDjknk) � , (2) where γ is a rotational viscosity and Ωij = 1 2(∂iuj − ∂jui) is the antisymmetric part of the velocity gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We adopt a one-elastic-constant approximation for the Frank free energy [38] F = � K 2 � ∂inj �� ∂inj � dV, (3) for which the molecular field is hi = K � ∇2ni − ninj∇2nj � and the Ericksen stress is σE ij = −K∂ink ∂jnk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' An often-used analytical approximation is to consider the active flows generated by an equilibrium director field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This approximation has been used previously in the theoretical description of the active flows generated by defects in both two [16, 39] and three dimensions [23], including on curved surfaces [40], and in active turbulence [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It may be thought of in terms of a limit of weak activity, however, even when the activity is strong enough to generate defects, their structure may still be close to that of equilibrium defects and the approximation remain good and the comparison of active defect motion and flows described in this way with full numerical simulations suggests that this is at least qualitatively the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The equations can then be reduced to h = 0 for the director field and the Stokes equation − ∇p + µ∇2u = ζ∇ · � nn � , (4) for the active flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Here we have neglected the Ericksen stress since for an equilibrium director field it can be balanced by a contribution to the pressure (representing nematic hydrostatic equilibrium).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We limit our analysis to director fields that can be linearised around a (locally) uniformly aligned state, n = ez +δn, with δn · ez = 0, for which the equations reduce to ∇2δn = 0, (5) ∇ · u = 0, (6) −∇p + µ∇2u = ζ � ez � ∇ · δn � + ∂zδn � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (7) These correspond to elastic multipole states in the director field, which are often thought of as an asymptotic de- scription, however, they provide a close approximation even at only moderate distances outside a ‘core’ region that is the source of the multipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' To illustrate this we show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 1 a comparison between the exact director field (red streamlines) and linear multipole approximation (blue rods) for the most slowly varying monopole distortion created by uniformly rotating the director by an angle θ0 within a sphere of radius a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The agreement is close anywhere outside the sphere and only deviates significantly in the near-field region inside it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is relevant to the active system as it is well-known that the uniformly aligned active nematic state is fundamentally unstable [42] and active nematics are turbulent on large enough scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Our solutions should be interpreted as describing the behaviour on intermediate scales, larger than the core structure of the source but smaller than the scale on which turbulence takes over.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Comparison of the exact director field (red streamlines) and linearised multipole approximation (blue rods) for the most slowly decaying monopole distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is produced by uniformly rotating the director by an angle θ0 within a spherical volume of radius a, indicated by the grey disc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' the alignment inside the sphere is indicated by the thick red line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The figure shows only the xz-plane in which the director rotates and in which the comparison is most strict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' MULTIPOLE DIRECTOR DISTORTIONS In this section, we describe the multipole director fields satisfying (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The far-field orientation ez gives a splitting of directions in space into those parallel and perpendicular to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We complexify the perpendicular plane to give the decomposition as R3 ∼= C ⊕ R and convert the director deformation δn to the complex form δn = δnx + iδny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The real and imaginary parts of δn are harmonic, meaning that at order l they may be expressed as spherical harmonics 1/rl+1Y l m or, as we shall do, as l derivatives of 1/r [43–45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These order l multipole solutions form a 2(2l + 1)-real- dimensional vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Associated to the C ⊕ R splitting is a local symmetry group isomorphic to U(1), preserving ez, whose irreducible representations provide a natural basis for the vector space of multipoles at each order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We write the complex derivatives on C as ∂w = 1 2(∂x − i∂y) and ∂ ¯ w = 1 2(∂x + i∂y) in terms of which the director deformation can be written δn = ∞ � l=0 l � m=−l qlm al+1 ∂m ¯ w ∂l−m z 1 r , (8) where qlm are complex coefficients and a is a characteristic length scale of the multipole, as might be set by the radius of a colloid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For compactness of notation it is to be understood that when m is negative ∂m ¯ w represents ∂|m| w .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The index m denotes the topological charge of the phase winding of the spherical harmonic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This gives the spin of the corresponding vector field as 1 − m, where the 1 is due to a vector (δn or δn) being a spin-1 object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The multipoles at order l therefore have spins that range from 1 − l to 1 + l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' They are illustrated up to quadrupole order in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2, along with a representation in terms of topological defects which we shall elaborate upon shortly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The structure of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2 is such that differentiation maps the distortions of one order to the next, with ∂z leaving the distortion in the same spin class, ∂ ¯ w moving it one column to the left and ∂w moving it one column to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The operators ∂w and ∂ ¯ w play the same role as the raising and lowering operators in quantum mechanics and the shift by one in the spin values simply results from the object on which they act being a spin-1 director deformation as opposed to a spin-0 wavefunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The monopole distortions, with l = 0, result from a rotation of the director by an angle θ0 in a sphere of radius a [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' They form a two-real-dimensional vector space for which a basis may be taken to be the distortions 1 r and i 1 r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These are shown at the top of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2 and can be controllably created in passive nematics using platelet inclusions [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The director distortions of dipole type, with l = 1, form a six-real-dimensional vector space that splits into two- 24 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The multipolar director distortions up to quadrupole order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The director is shown on a planar cross-section as blue rods, along with a topological skeleton corresponding to the spherical harmonic, where appropriate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Defect loops are coloured according to wedge (blue) or twist (red-green) type and the charge of point defects is indicated through the use of opposing colour pairs: red (+1) and cyan (−1), yellow (+2) and blue (−2), and green (+3) and magenta (−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Their charge is further indicated by a local decoration of the director with an orientation, indicated by black arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Each multipole order is classified into vertical pairs according to the spin of the distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For the chiral multipoles, the visualisation instead shows the director along some of its integral curves (orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 1 0 2 3 Monopoles Dipoles Quadrupoles5 real-dimensional subspaces for each value of the spin (0, 1, or 2) as p0 = � ∂ ¯ w 1 r , i ∂ ¯ w 1 r � ∼ − 1 2r3 � x ex + y ey, −y ex + x ey � ∼ 1 r2 � Y 1 1 , i Y 1 1 � , (9) p1 = � ∂z 1 r , i ∂z 1 r � ∼ − 1 r3 � z ex, z ey � ∼ 1 r2 � Y 0 1 , i Y 0 1 � , (10) p2 = � ∂w 1 r , i ∂w 1 r � ∼ − 1 2r3 � x ex − y ey, y ex + x ey � ∼ 1 r2 � Y −1 1 , i Y −1 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (11) For comparison, we have presented three representations for the distortions of each spin class: in terms of complex derivatives of 1/r, two-component vectors whose coefficients are homogenous polynomials of degree 1 and complex spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In the interest of space we have suppressed certain prefactors in the last of these, but note the difference in sign, and in some cases normalisation, between our representation as complex derivatives and the standard form of the harmonic distortions as two-component vectors [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The two basis functions of any spin class are related by a factor of i, which corresponds to a local rotation of the transverse director distortion by π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For a spin-s distortion this is equivalent to a global rotation by π 2s, with the pair of distortions having the same character and simply providing a basis for all possible orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The exception is when s = 0, such distortions lack an orientation and the local rotation produces two distinct states that transform independently under rotations as a scalar and pseudoscalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In the dipole case the first is the isotropic distortion recognisable as the UPenn dipole [25] and the second is an axisymmetric chiral distortion with the far-field character of left-handed double twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Separating p0 into its isotropic and chiral components allows a decomposition of the dipole director deformations into the basis p = pI ⊕ pC ⊕ p1 ⊕ p2, (12) a decomposition which was presented in [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Similarly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' the quadrupolar distortions (l = 2) form a ten-real-dimensional vector space that splits into a sum of two-real-dimensional subspaces for each value of the spin Q−1 = � ∂2 ¯ w 1 r ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i ∂2 ¯ w 1 r � ∼ 3 4r5 � (x2 − y2) ex + 2xy ey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' −2xy ex + (x2 − y2) ey � ∼ 1 r3 � Y 2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i Y 2 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (13) Q0 = � ∂2 ¯ wz 1 r ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i ∂2 ¯ wz 1 r � ∼ 3 2r5 � xz ex + yz ey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' −yz ex + xz ey � ∼ 1 r3 � Y 1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i Y 1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (14) Q1 = � ∂2 z 1 r ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i ∂2 z 1 r � ∼ 1 r5 � (2z2 − x2 − y2) ex,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (2z2 − x2 − y2) ey � ∼ 1 r3 � Y 0 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i Y 0 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (15) Q2 = � ∂2 wz 1 r ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i ∂2 wz 1 r � ∼ 3 2r5 � xz ex − yz ey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' yz ex + xz ey � ∼ 1 r3 � Y −1 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i Y −1 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (16) Q3 = � ∂2 w 1 r ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i ∂2 w 1 r � ∼ 3 4r5 � (x2 − y2) ex − 2xy ey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2xy ex + (x2 − y2) ey � ∼ 1 r3 � Y −2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' i Y −2 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (17) Once again the spin-0 distortions can be further partitioned into those that transform as a scalar and pseudoscalar, these being the Saturn’s ring distortion [50] and a chiral quadrupole with opposing chirality in the two hemispheres, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This yields the basis for the quadrupolar director deformations Q = Q−1 ⊕ QI ⊕ QC ⊕ Q1 ⊕ Q2 ⊕ Q3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (18) The well-known multipoles, the UPenn dipole and Saturn ring quadrupole, are associated to a configuration of topological defects in the core region and we describe now an extension of this association to all of the multipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In general, such an association is not unique, for instance, the colloidal ‘bubblegum’ configuration [51] represents the same far field quadrupole as the Saturn ring, however, for each multipole we can construct a representative arrangement of topological defects which produce it in the far field on the basis of commensurate symmetries and defects of a type and location corresponding to the nodal set of the harmonic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This correspondence allow us to condense the visualisation of complicated three-dimensional fields into a few discrete elements, suggests means by which such distortions might be induced and enables us to build an intuition for their behaviour in active systems through established results for defects [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We first describe some examples, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' On the left is the spherical harmonic that describes the UPenn dipole, with the form ∂ ¯ w 1 r ∼ eiφ sin θ, visualised on a spherical surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This has nodes at the two poles about which the phase has −1 winding and so we can infer similar winding of the director in the transverse plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Supplementing 6 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The connection between spherical harmonics and nematic topological defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The coloured spheres indicate the phase of the complex spherical harmonics with the nodal set shown in white for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A representative skeleton of the corresponding nematic distortion is shown in black and the red arrows indicate the winding vector of the director.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' with the far-field alignment along ez yields the familiar picture of a pair of oppositely charged hedgehog defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Similarly, the Saturn ring quadrupole, described by ∂ ¯ wz 1 r ∼ eiφ sin 2θ, has zeros at the poles and around the equator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The winding about the poles is still +1, but the sign change in the lower hemisphere means that in the transverse plane around the south pole the vector points inwards, resulting in both point defects having topological charge +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' With regards to the equatorial line, since the director is everywhere radial the winding vector must be tangential to the defect loop, shown by the red arrows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As the phase changes by π on passing from one hemisphere to the other the winding must be ±1 and the far-field alignment allows us to determine it to be −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For a general multipole distortion of the form ∂m ¯ w ∂l−m z (1/r) the nodal set is the poles along with l − m lines of latitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The phase winding of the spherical harmonic dictates the transverse winding of the director and, when supplemented with the far-field alignment, allows us to associate topological point defects with the poles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Similarly, nodal lines may be connected with defect loops with integer winding and a winding vector that rotates according to eimφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 3 we illustrate this for the case ∂2 ¯ w∂3 z(1/r) ∼ −Y 5 2 /r6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We now describe briefly the correspondence for our basis of dipolar and quadrupolar distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As already stated, the isotropic scalar in p0 is the UPenn dipole, its pseudoscalar counterpart a chiral splay-free twist-bend distortion whose integral curves are shown in orange in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As a twist-bend mode it may be of particular relevance to extensional systems given their instability to bend distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The two dipoles of p1 are transverse to the far-field alignment, they are related to those resulting from a defect loop of wedge-twist type [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The distortions of p2 have a hyperbolic character;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' they describe the far field of a pair of point defects both of which have a hyperbolic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Such hyperbolic defect pairs arise in toron configurations in frustrated chiral nematics [52, 53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Similarly, Q0 contains the Saturn ring quadurpole as the scalar, with the pseudoscalar a pure bend chiral distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For the latter, the integral curves of the director possess opposing chirality in the two hemispheres, which could be generated by an appropriately coated Janus particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The director distortion exhibits a helical perversion in the z = 0 plane and, being a local rotation of the Saturn ring distortion, may be viewed as resulting from a pair of vortex point defects along with a pure twist defect loop with integer winding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is similar to the bubblegum defect lines [51, 54] that appear between a colloid diad with normal anchoring, suggesting that this chiral quadrupole could be formed by two colloids with opposing chiral tangential anchoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The spin-1 quadrupoles consist of pairs of wedge-twist defect loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The distortions of Q2 may be associated with a pair of hyperbolic defects along with a defect ring with the appropriate symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The harmonics of spin −1 and 3 contain no z-derivatives and so are associated with pairs of point defects only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' FLOWS FROM MULTIPOLE DISTORTIONS In this section we calculate the active flow generated by an arbitrary director multipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We present this initially in vectorial form, converting to the complex representation subsequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As (7) is linear the responses due to the two components of δn are independent and so to simplify the derivation we consider only distortions in the x-component for now and extend to the general case afterwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Within this restriction a generic multipole distortion at order l 22 75 r3 r6 r Y7 may be written as δnx = al∇v1 · · · ∇vl a r , (19) where v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' , vl are l directions for the differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Substituting this into (7) gives the Stokes equation in the form − ∇p(x) + µ∇2u(x) = al+1ζ∇v1 · · · ∇vl � ex ∂z + ez ∂x �1 r , (20) where the use of the superscript (x) is to emphasise that we are only treating the response to distortions in the x-component of the director.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Taking the divergence of both sides we have − ∇2p(x) + µ∇2∇ · u(x) = al+1ζ∇v1 · · · ∇vl∂2 xz 2 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (21) Making use of the continuity equation ∇ · u(x) = 0 in conjunction with the identity ∇2r = 2 r we arrive at the solution for the pressure p(x) = −al+1ζ∇v1 · · · ∇vl ∂x∂zr = al+1ζ∇v1 · · · ∇vl xz r3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (22) Substituting this back into the Stokes equation (20) we obtain µ∇2u(x) = al+1ζ∇v1 · · · ∇vl � ex ∂z �1 r − ∂x∂xr � − ey ∂x∂y∂zr + ez ∂x �1 r − ∂z∂zr �� , (23) which can be integrated using the identity ∇2r3 = 12r to find u(x) = al+1 ζ 4µ∇v1 · · · ∇vl � ex �z r + x2z r3 � + ey xyz r3 + ez �x r + xz2 r3 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (24) Both the pressure and flow solutions for a generic multipole distortion are given in terms of derivatives of a fundamental response to a monopole deformation, namely p(x) = aζ xz r3 , (25) u(x) = aζ 4µ � ex �z r + x2z r3 � + ey xyz r3 + ez �x r + xz2 r3 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (26) This flow response, shown as the top panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4, is primarily extensional in the xz-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Interestingly, the flow solution (26) does not decay with distance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' this reflects the generic hydrodynamic instability of active nematics [42] providing a real-space local response counterpart to the usual Fourier mode analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' However, the active flow produced by any higher multipole does decay and vanishes at large distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The pressure and flow solutions in (25) and (26) are complemented by analogous ones resulting from distortions in the y-component of the director, obtained by simply interchanging x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The linearity of (7) makes these fundamental responses sufficient to obtain the active flow induced by an arbitrary multipole distortion through taking derivatives appropriate to describe the x and y components of the director, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We now convert this description to the complex notation used in § III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is achieved by taking the combinations p = p(x) − ip(y) and u = u(x) − iu(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' To see this consider the multipole distortion δn = (Lx + iLy)1/r, where the Li are generic real differential operators which generate the i-component of the director by acting on 1/r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This distortion has a conjugate partner given by i(Lx + iLy)1/r = (−Ly + iLx)1/r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Acting with this same operator on u(x) − iu(y) we have (Lx + iLy)(u(x) − iu(y)) = (Lxu(x) + Lyu(y)) − i(−Lyu(x) + Lxu(y)), (27) and can see that the flow response for our original distortion forms the real part and that for its conjugate partner the coefficient of −i and the same holds for the pressure response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This leads us to a complex fundamental pressure response ˜p = aζ ¯wz r3 , (28) 8 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active flows due to three-dimensional nematic multipole distortions up to quadrupole order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The flows are grouped according to their spin, in correspondence with the distortions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Green and red arrows indicate the net active force and torque for the relevant dipoles and quadrupoles respectively, see §V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' and, introducing complex basis vectors ew = ex + iey and e ¯ w = ex − iey, a complex-valued fundamental flow vector ˜u = aζ 4µ � ew ¯w2z 2r3 + e ¯ w �z r + w ¯wz r3 � + ez ¯w r � 1 + z2 r2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (29) We use a tilde to distinguish these fundamental responses from those that result due to a generic distortion and which may be found by appropriate differentiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This provides a unified framework in which the active response to a generic nematic multipole can be calculated through the application of the same complex derivatives that we have used to describe the director distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The resulting active flows for distortions up to quadrupole order are shown 1 0 2 3 Monopoles Dipoles Quadrupoles9 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4, with their layout corresponding to that of the nematic distortions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2 which induce them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We now describe some examples in more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' UPenn and chiral dipole Typically the active responses induced by the two distortions in a spin class will, like the distortions themselves, be related by a global rotation such that while both are needed to form a sufficient basis, the real part essentially serves as a proxy for the pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is not true for the spin-0 distortions, due to their rotational symmetry, and so we use them in providing an explicit illustration of the active flow calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We begin with the UPenn dipole [25] and its partner the chiral dipole, for which the far-field transverse director is δn ≈ αa ∂ ¯ w a r , (30) where α is a dimensionless coefficient, and the corresponding derivative of the fundamental flow solution in (29) gives αa∂ ¯ w˜u = ζαa2 4µr5 � ew z ¯w(4z2 + w ¯w) − e ¯ w 3zw2 ¯w + ez 2 � 3z4 + (z2 + w ¯w)2�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (31) Taking the real part gives, after some manipulation, the flow induced by the UPenn dipole as u = αa R ∂ ¯ w˜u = ζαa2 8µ � ez �1 r + z2 r3 � + er z r2 �3z2 r2 − 1 �� , (32) where er is the unit vector in the radial direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The flow response to the conjugate distortion, the isotropic chiral dipole is given by u = −αa I ∂ ¯ w˜u = −ζαa2 4µ z r2 eφ, (33) with eφ the azimuthal unit vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Both flows decay at large distances like 1/r and are highlighted in the top row of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The UPenn dipole flow has a striking net flow directed along the z-axis, reminiscent of that of the Stokeslet flow [55, 56] associated with a point force along ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The chiral dipole generates an axisymmetric flow composed of two counter-rotating vortices aligned along ez, mirroring the circulating flows produced by spiral defects in two dimensions [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The 1/r decay of these active vortex flows is unusually slow, slower than the decay of a point torque in Stokesian hydrodynamics [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Despite the similarity between the active flow induced by the UPenn dipole and a Stokeslet, there is a key difference in their angular dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In a Stokeslet, and all related squirming swimmer flows [58, 59] that result from derivatives of it, the terms with higher angular dependence decay more quickly such that the lowest order terms dominate the far field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' By contrast, distortions in active nematics produce asymptotic flow fields in which all terms decay at the same rate regardless of their angular dependence as they all result from the same derivative of the fundamental flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Thus, even if the same angular terms are present in both systems, the lowest order ones will dominate in the squirming case while the far field will bear the signature of the highest order in the active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A closer point of comparison comes from the flows induced by active colloids within a passive nematic [35, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Calculation of the relevant Green’s functions [61] has shown that the anisotropy of the medium leads to a difference in effective viscosities such that a Stokeslet aligned along the director pumps more fluid in this direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This fits with the anisotropy displayed in (32), reaffirming the similarity between the flow induced by the UPenn dipole and the Stokeslet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Considering the pressure response for these distortions in the same way we have αa∂ ¯ w ˜p = ζαa2 2r5 z(2z2 − w ¯w) = ζαa2z 2r3 �3z2 r2 − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (34) As this expression is purely real it comprises the response due to the UPenn dipole in its entirety;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' the vanishing of the imaginary part shows that the chiral dipole is compatible with a zero pressure solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Our complexified construction allows this property to be read off immediately, since ∂ ¯ w( ¯wzm/rn) will be real for any m and n, with this also resulting in the vanishing z-component of flow for the chiral dipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Indeed, this property of pure realness is unchanged by the action of ∂z, it being real itself, and so extends to higher order distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 10 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active flows induced by spin 0 dipole (top row) and quadrupole (bottom row) distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The flow is indicated by blue arrows and superposed upon integral curves of the director, shown in orange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' On the left are the UPenn dipole and Saturn ring quadrupole and on the right their chiral counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Saturn ring and chiral quadrupole Proceeding in the same fashion for the spin-0 quadrupoles, for which δn ≈ αa2∂2 ¯ wza/r, we find that the complexified flow is αa2∂2 ¯ wz˜u = −ζαa3 4µr7 � −ew ¯w(w2 ¯w2 + 8w ¯wz2 − 8z4) + e ¯ w3w2 ¯w(w ¯w − 4z2) +ez2z(w2 ¯w2 − 10w ¯wz2 + 4z2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (35) Taking the real part gives the flow induced by the Saturn ring quadrupole as u = αa2R∂2 ¯ wz˜u = −ζαa3 2µr6 (r4 − 12z2r2 + 15z4)er, (36) that is a purely radial flow reminiscent of a stresslet along ez, shown in the bottom left of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The purely radial nature is a result of the divergencelessness of the flow, combined with the 1/r2 decay and rotational invariance about ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Working in spherical coordinates we have ∇ · u = 1 r2 ∂r(r2ur) + 1 r sin θ [∂θ(uθ sin θ) + ∂φuφ] = 0 (37) All active flows induced by quadrupole distortions decay as 1/r2 and so ∂r(r2ur) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The distortion is rotationally symmetric and achiral, meaning uφ = 0 and the condition of zero divergence reduces to 1 r sin θ∂θ(uθ sin θ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (38) The only non-singular solution is uθ = 0, resulting in ur being the only non-zero flow component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The corresponding pressure is given by αa2∂2 ¯ wz ˜p = −3αa3 2r7 (r4 − 12z2r2 + 15z4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (39) wz11 Taking the imaginary part of (35) reveals the flow response of the chiral quadrupole to be u = −αa2I∂2 ¯ wz˜u = ζαa3 µr2 (3 cos2 θ − 1) sin θeφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (40) As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 5 this is a purely azimuthal flow corresponding to rotation about the z axis and, as for the chiral dipole, is compatible with a zero pressure solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The 1/r2 decay of this rotational flow is the same as that which results from the rotlet [55, 56], but unlike the rotlet the flow direction is not uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rather, as can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 5, there is an equatorial band of high-velocity flow accompanied by two slowly counter-rotating polar regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The distribution of flow speeds is such that the net flow is along −eφ, consistent with a rotlet along −ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Other multipoles For the remaining multipoles up to quadrupole order we do not provide the same explicit calculation but instead highlight the key features of the active flows they induce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In full we find that half of the dipole distortions contain directed components in their active flow responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Along with the isotropic UPenn dipole which produces flow along ez the two spin-1 dipoles produce directed flows transverse to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These directed flows indicated that were the source of the distortion free to move it would exhibit active self-propulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The net transverse flows for the dipoles of p1 is in accordance with the previously established motile nature of such defect loops [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A more complete description of the active dynamics of defect loops via their multipole distortions is presented in Section IV D and [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Along with the chiral dipole, the two additional dipoles which do not generate directed flows are those with spin 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These produce active flows which are extensional with the expected two-fold rotational symmetry about the z-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Direct calculation shows that the flows resulting from spin-2 distortions have zero azimuthal component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Once again, this observation is unaffected by z-derivatives and so holds true for the higher-order multipoles of the form ∂n z ∂w(1/r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Similarly, there are ten linearly independent quadrupoles, five of which can be seen from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4 to generate rotational flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As expected, it is the four modes of Q±1 that generate rotations about transverse directions and QC that produces rotation around ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For two of these, namely those in Q1, the director distortions are planar, suggesting a two-dimensional analogue and the potential to generate them with cogs or gears [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These distortions may be associated with a pair of opposingly oriented charge-neutral defect loops and so the rotational flow generated by these distortions is in accordance with their antiparallel self-propulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The quadrupoles of Q−1 are composed of pairs of point defects with topological charge +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Using ∂2 ¯ w 1 r as an example, the rotation can be understood by considering the splay distortions in the xz plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The splay changes sign for positive and negative x, leading to antiparallel forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active forces are greatest in this plane, as this is where the transverse distortion is radial resulting in splay and bend distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Along ey the distortions are of twist type and so do not contribute to the active force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This results in the rotational flow shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The stretching of the flow along ez is as observed for a rotlet in a nematic environment [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Although they lack the rotational symmetry of a stresslet, the flows produced by the quadrupoles of Q2 are also purely radial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The argument is largely the same as for the Saturn ring distortion, except that the vanishing of uφ is not due to rotational invariance but a property inherited from the spin-2 dipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The quadrupoles of Q3 produce extensional flows whose spin-3 behaviour under rotations about ez is commensurate with that of the distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Although they visually resemble the similarly extensional flows produced by the dipoles of p2, they do not share the property of a vanishing azimuthal flow component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Defect loops Of particular relevance to the dynamics of three-dimensional active nematics are charge-neutral defect loops [21, 23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For such defect loops the director field has the planar form n = cos Υ 4 ez + sin Υ 4 ex, (41) where Υ is the solid angle function for the loop [43, 63], and is a critical point of the Frank free energy in the one- elastic-constant approximation [64].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This allows a multipole expansion for the director at distances larger than the loop size in which the multipole coefficients are determined explicitly by the loop geometry [24] Υ(x) = 1 2 � K ϵijk yj dyk ∂i 1 r − 1 3 � K ϵikl ylyk dyl ∂i∂j 1 r + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' , (42) 12 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Additonal flow solutions induced by spin-1 nematic multipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The nematic multipoles which induce the flows are shown below them as complex derivatives of 1/r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The red arrows indicate the net active torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' where y labels the points of the loop K and r = |x| with the ‘centre of mass’ of the loop defined to be at x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The dipole moment vector is the projected area of the loop, while the quadrupole moment is a traceless and symmetric tensor with an interpretation via the first moment of area or, in the case of loops weakly perturbed from circular, the torsion of the curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The planar form of the director field (41) corresponds to a restricted class of director deformations in which δn is purely real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This disrupts the complex basis we have adopted for the representation of multipoles, so that another choice is to be preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We may say that the planar director selects a real structure for the orthogonal plane C, breaking the U(1) symmetry, and the restricted multipoles should then be decomposed with respect to this real structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Accordingly, the pressure and flow responses may be generated by derivatives of the fundamental responses for distortions in ex, (25) and (26), with these derivatives corresponding to the multipole expansion of the solid angle shown in (42).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The details of this approach along with the consequences it has for both the self-propulsive and self-rotational dynamics of active nematic defect loops are given in [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Technical note We conclude this section with a technical note on the flow solutions that we have presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The construction for calculating active flow responses that we have developed in this section requires knowledge of the multipole as a specified set of derivatives of 1/r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The harmonic director components satisfy ∇2ni ∝ δ(r) and while this delta function does not affect the far-field director it impacts the flow solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Consequently, at quadrupole order and higher, distinct derivatives of 1 r can produce the same multipole distortion in the director but have different associated active flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As an explicit example we take the spin-1 quadrupole shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2, which may be written as n = a2∂2 z a r ex +ez and therefore induces an active flow given by the action of a2∂2 z on 29, as is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' However the same director distortion is captured by n = −4a2∂2 w ¯ w a r ex + ez, for which the corresponding active flow is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A partial resolution to this ambiguity is that any non-equilibrium phenomenological features such as propulsion or rotation will be invariant to this choice of derivatives since, as we shall show in the following section, they can be expressed directly in terms of the director components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' As a more complete resolution we reiterate that whenever an exact solution for the director is known the appropriate derivatives can be determined, as demonstrated earlier for defect loops [24], and so the apparent ambiguity disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ACTIVE FORCES AND TORQUES The directed and rotational active flow components highlighted above result in viscous stresses whose net effect must be balanced by their active counterparts, since the net force and torque must be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Consequently, these generic aspects of the response of an active nematic can be identified by considering the contribution that the active ww13 stresses make to the force and torque f a = � ζnn · dA ≈ � ζ � ex z δnx r + ey z δny r + ez x δnx + y δny r � dA, (43) τ a = � x × ζnn · dA ≈ � ζ � ex �xy δnx r + (y2 − z2)δny r � + ey �(z2 − x2)δnx r − xy δny r � + ez z(−y δnx + x δny) r � dA, (44) integrating over a large sphere of radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These integrals depend on the surface of integration, as the active stresses are neither divergenceless nor compactly supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' However, a spherical surface is concordant with the multipole approach we are taking and the results are then independent of the radius, as a direct consequence of the orthogonality of spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' From these expressions we can read off the multipole that will generate any desired active force or torque;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' dipoles generate forces and quadrupoles generate torques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' When the active torque is non-zero, the compensating viscous torque will drive a persistent rotation of the multipole, creating an active ratchet;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' similarly, a non-zero active force will generate directed fluid flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The above integrals therefore provide a solution to the inverse problem: given a particular non-equilibrium response, which distortion induces it?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hence they serve as a design guide for generating out of equilibrium responses in active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' If the multipole is free to move it will self-propel and rotate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The translational and rotational velocities are related to the viscous forces and torques by a general mobility matrix [65].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In passive nematics, experiments [66] and simulations [67, 68] have found that it is sufficient to take a diagonal form for the mobility (no translation-rotation coupling) with separate viscosities for motion parallel, µ∥, and perpendicular, µ⊥, to the director, with typical ratio of viscosities µ⊥/µ∥ ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='6 [66–68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This has the consequence that in general the force and velocity are not colinear U = −1 6πa � 1 µ∥ f a ∥ ez + 1 µ⊥ f a ⊥ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (45) We again use the UPenn dipole as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Integrating the active stresses over a spherical surface of radius R we find an active force � ζnn · dA ≈ −ζαa2 2 � � ex xz R4 + ey yz R4 + ez � z R + x2 + y2 R4 �� dA = −4πζαa2 3 ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (46) Balancing this against Stokes drag predicts a ‘self-propulsion’ velocity for the active dipole of U = 2ζαa 9µ∥ ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (47) For extensile activity (ζ > 0) the dipole moves ‘hyperbolic hedgehog first’ and with a speed that increases linearly with the core size a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This self-propulsion is in accordance with the directed component of the active flow, as can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The same self-propulsion speed along ex and ey is found for the transverse dipoles of p1, except that the parallel viscosity µ∥ should be replaced with µ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Again, this self-propulsion agrees with the directed flow induced by these distortions, as calculated through the multipole approach, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4 [24] and also with the results of both a local flow analysis and simulations [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The same directed motion has been observed in a related system of an active droplet within a passive nematic [35], with the droplet inducing a UPenn dipole in the nematic and moving in the direction of the hedgehog defect at a speed that grew with the droplet radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The mechanism at play is different however;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' the motion results from directional differences in viscosity resulting from the anisotropic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' To illustrate the rotational behaviour we use a member of Q1, ∂2 z(1/r), as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We find an active torque � ζx × nn · dA ≈ ζαa3 � 1 r6 (2z2 − x2 − y2) � xyex + (z2 − x2)ey − yzez � dA (48) = 8πζαa3 5 ey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (49) Balancing against Stokes drag as was done in the dipole case gives an angular velocity Ω = −ζα 5µey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (50) 14 We note that for this and all other distortions which result in net torques the angular velocity is independent of the colloid size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In accordance with the relation ∂2 z +4∂2 w ¯ w(1/r) = 0, the torque resulting from ∂2 w ¯ w(1/r) is of the opposite sign and a quarter the strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The net active torques due to harmonics of Q0 and Q−1 have the directions indicated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 4 and half the magnitude of (49).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Let us consider the approximate magnitude of the effects we have described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Beginning with the self-propulsion speed, the fluid viscosity is roughly 10−2 Pa s [17], although effects due to the elongated form of the nematogens could increase this by a factor of 30 or so [69, 70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Both the activity [16] and the dipole moment constant [48] are of order unity, meaning the colloid would approximately cover its radius in a second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Similar approximations for the quadrupole give an angular velocity of about 2/3 rad s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For a colloid of radius 10 µm this has an associated power of the order of femtowatts, the same as predicted for bacterial ratchets [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' TWO-DIMENSIONAL SYSTEMS AND RATCHETS As noted above, the planar nature of the rotational distortions in Q1 suggests the existence of two-dimensional analogues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In part motivated by this we now discuss the active response of multipolar distortions in two dimensions, again beginning with the connection between these multipoles and topological defect configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Multipoles and topological defects The categorisation of the harmonic distortions in two dimensions is much simpler, but we provide it here for completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Taking the asymptotic alignment to be along ey the symmetry of the far-field director is now described by the order 2 group {1, Ry}, with Ry reflection with axis ey, under which the monopole distortion nx ∼ A log(r/a) is antisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The higher-order distortions are once again generated via differentiation of the monopole, with ∂y leaving the symmetry under Ry unchanged and ∂x inverting it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It should be noted that the potential multiplicity of differential representations of harmonics that arose in three dimensions does not occur in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is because, under the assumption of a single elastic constant, the director angle φ may be written as the imaginary part of a meromorphic function of a single complex variable and this naturally defines the appropriate set of derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Making z = x+iy our complex variable we write φ = I {f(z)} which upon performing a Laurent expansion of f(z) around z = 0 and assuming the existence of a uniform far-field alignment gives φ = I � 0 � n=−∞ anzn � = I � a0 + ∞ � n=1 (−1)n−1 an (n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='∂n z (ln z) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (51) Hence at every order there is a one parameter family of distortions, corresponding to the phase of the an.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A natural basis at order n is provided by {R {∂n z (ln z)} , I {∂n z (ln z)}}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This basis consists of a symmetric and anti-symmetric distortion under the action of Ry, the roles alternating with order, and of course correspond to the two harmonic functions cos nθ/rn and sin nθ/rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In two dimensions the connection between defect configurations and far-field multipole distortions can be made concrete, and also serves as an illustration of how a particular set of derivatives is determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For defects with topological charges sj at locations zj the angle that the director makes to ex is given by φ = φ0 + � j sjI � ln �z − zj a �� , (52) which, upon performing a series expansion, gives φ = φ0 + � j sjI {ln(z/a)} − ∞ � n=1 I �� j sjzn j ¯zn� n|z|2n , (53) = φ0 + � j sjI {ln(z/a)} + ∞ � n=1 (−1)nI �� j sjzn j ∂n z ln z � n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' , (54) Provided the total topological charge is zero the winding term proportional to ln w vanishes and φ0 is the far-field alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The distortions are given as a series of harmonics in which the coefficient of the nth harmonic is determined by a sum of zn j weighted by the defect charges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 15 We would like to have a basis of representative defect configurations for each harmonic distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' However, it can be seen from (54) that the correspondence between arrangements of topological defects and the leading order nematic multipole is not one-to-one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Two defect-based representations of harmonic will prove particularly useful to us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The first, which we develop in this chapter, provides a representation in terms of half-integer defects on the disc and allows an intuition for the response to multipole distortions in active nematics through known results for such defects [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The second uses the method of images to construct defect arrangements corresponding to a specific anchoring condition on the disc, with the same multipoles dominating the nematic distortion in the far field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This representation naturally lends itself to the control of induced multipoles through colloidal geometry and is explored fully in [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nonetheless, both of these representations will be of use to us in the remainder of this chapter and as they are equally valid near-field representations for the asymptotic distortions that we are considering we will pass fairly freely between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' With this aforementioned half-integer representation in mind, let us consider sets of 2m defects sitting on the unit circle, with −1/2 defects at the mth roots of unity and +1/2 defects at the intermediate points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A useful formula here is the following for the sum of a given power of these roots of unity, after first rotating them all by a given angle θ m−1 � k=0 � eiθei 2π m k�n = � meinθ, if m|n 0, otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (55) The vanishing of this sum for values of n that are not multiples of m comes directly from the expression for the geometric sum and is a consequence of the cyclic group structure of the roots of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It means that the lowest order multipole distortion induced by such an arrangement of defects is order m and so allows a desired multipole distortion to be selected as the dominant far-field contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Explicitly, the director angle is given by φ = φ0 + � k odd I � ¯zmk� k|z|2mk = φ0 + I {¯zm} |z|2m + O � 1 z3m � , (56) with the approximation becoming rapidly better for higher-order multipoles due to the condition that n must be an odd multiple of the number of defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rotating the entire set of defects rigidly by an angle −π/(2m) generates the conjugate multipole as the dominant far-field contribution φ = φ0 + � k odd I � (−i)k¯zmk� k|z|2mk = φ0 − R {¯zm} |z|2m + O � 1 z3m � , (57) with the natural interpolation between these two harmonics as the defect configuration is rigidly rotated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hence we can interchange between a given harmonic distortion and a defect arrangement which has this harmonic as its dominant far-field contribution, with the correspondence becoming rapidly more accurate for higher orders, allowing us to relate the existing results for the behaviour of active defects [15, 16] to ours and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This correspondence is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The locations of +1/2 and −1/2 defects are indicated with red and cyan dots respectively and the background colouring denotes the phase of the complex function � sj ln(z−zj), whose imaginary part provides the director angle for the given defect arrangement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The integral curves of this director field are shown in black and are remarkably well matched by those of the leading multipole, shown in white, despite the asymptotic nature of the approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In this context we are able to make precise the notion of a core region of a singular distortion, outside of which our multipole approach applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The series in (54) is attained through a Taylor series of terms of the form ln(1 − 1/z), which are convergent for |z| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' More generally the greatest radial displacement of a defect defines a core radius, outside of which the multipole series converges onto the exact director angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Flows from multipole distortions We can proceed analogously to our three-dimensional calculation in generating the active flows from a fundamental response in two dimensions, provided we are mindful of the logarithmic form that the monopole now has.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A director rotation by θ0 inside a disc of radius a results in an equilibrium texture given by n = cos �θ0 log(r/R) log(a/R) � ey + sin �θ0 log(r/R) log(a/R) � ex, (58) which in the far field tends to a monopole distortion n ≈ ey + θ0 log(r/R) log(a/R) ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Due to the logarithmic divergence of the fundamental harmonic in two dimensions it is necessary to normalise through a large length R such that a uniformly aligned far-field director is recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 16 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Representative defect configurations for nematic multipoles in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The red and cyan dots indicate the locations of +1/2 and −1/2 defects respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The black curves are the integral curves of the corresponding director field and the background colour shows the phase of the complex function whose imaginary part gives the exact director angle, as in (52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The white lines are the integral curves of the dominant multipole, that is the leading term of (54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The multipole series converges onto the exact director angle outside a core region, shown as a white disc, and the leading multipole provides a remarkably good approximation in this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Following our three-dimensional analysis we solve Stokes’ equations to linear order in nematic deformations for a monopole distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We write Stokes’ equations in terms of complex derivatives as 2∂¯z(−p + iµω) = f, (59) where we have used that 2∂zu = ∇ · u + iω, with ω the vorticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hence we seek f as a ¯z-derivative, implicitly performing a Helmholtz derivative with the real and imaginary parts of the differentiated term corresponding to the scalar and vector potentials respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Expressing the active force in this way we have 2∂¯z(−p + iµω) = ζθ0 log(a/R)∂¯z �i¯z z � (60) and so − p + iµω = ζθ0 2 log(a/R) i¯z z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (61) Reading off the pressure and vorticity, solving for the flow and converting back to Cartesians the fundamental flow response is now found to be ˜u = ζθ0 8µ log(a/R) �x2 − y2 r2 (−yex + xey) + 2 log � r R � (yex + xey) � , (62) ˜p = − ζθ0 log(a/R) xy r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (63) There is a clear similarity between these solutions and their three-dimensional counterparts, but while the fundamental flow response is still extensional it now grows linearly with distance from the distortion, with this change in scaling inherited by the subsequent harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' b) a ) (p17 As in the three-dimensional case we can gain general insight into the active response of a nematic by considering the net contribution of the active stresses to the force and torque when integrated over a large circle of radius r � ζnn · erdr ≈ � ζ �yδnx r ex + xδnx r ey � dr, (64) � x × ζnn · erdr ≈ � ζ (y2 − x2)δnx r dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (65) We see that in two dimensions both dipoles will self-propel if free to move and there is a single chiral quadrupole which produces rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The far-field flow solutions for distortions up to dipole order are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 8, superposed over the nematic director.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Both dipoles are now motile and as in the three-dimensional case they set up flows reminiscent of the Stokeslet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vertical and horizontal self-propulsive modes may be viewed as resulting from normal and tangential anchoring respectively of the nematic on a disc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Interpolating between these orthogonal modes the angle of motility changes commensurately with the anchoring angle, such that sufficient control of the boundary conditions would allow for self-propulsion at an arbitrary angle with respect to the far-field alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This change in the dipole character can be represented by rigidly rotating the defect pair around the unit circle and the resulting motility is as would be expected from the position and orientation of the +1/2 defect [16, 72, 73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Determining the motility induced by these dipolar modes is complicated by the Stokes paradox and although this can be circumvented by various means we do not pursue this here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' If such dipolar colloids were fixed within the material they would pump the ambient fluid and so it should be possible to use them to produce the concentration, filtering and corralling effects observed previously by funneling motile bacteria [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In line with our discussion at the beginning of this section, the basis quadrupoles are given by the real and imaginary parts of ∂2 z, these being an achiral and chiral mode respectively, which are shown along with their flows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The flow generated by the achiral quadrupole in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 8(d) is purely radial and resembles the stresslet flow, unsurprising as it results from differentiating the vertical dipole in the same way as the stresslet is related to the Stokeslet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It is produced by a quadrupole distortion which may be associated with normal anchoring on the disc – its counterpart with tangential anchoring has all the charges in its representative defect configuration inverted and a reversed flow response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Just as for the dipole distortions, the character of the quadrupole can be smoothly varied through adapting the boundary condition and the topological defects which represent the harmonic rotate rigidly in step with the changing anchoring angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A generic anchoring angle will produce a net active torque, maximised for an angle of π/4 as illustrated for the chiral quadrupole shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 8(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For extensile activity this distortion generates clockwise rotation, as can easily be justified via our representation of the far-field director structure as arising from a square arrangement of two +1/2 and two −1/2 defects – the dual mode with the defect charges interchanged rotates anticlockwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' By choosing boundary conditions such that the defects are positioned closer to the mid-line of the colloid the strength of the active torque can be tuned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' CHIRAL ACTIVE STRESSES Chirality is a ubiquitous trait, in living systems and liquid crystals alike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In active matter it opens a wealth of new phenomena, including odd viscous [75] and elastic responses [76, 77], surface waves, rotating crystals [78] and non- reciprocal interactions [79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chiral active stresses induce vortex arrays in active cholesterics [12] and have also been shown to be important in nematic cell monolayers where they modify collective motion, the motility of topological defects and generate edge currents [80, 81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' We now consider the effects of such chiral active stresses on nematic multipoles, both in two and three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Two dimensions For chiral stresses in two dimensions, the active stress tensor has the form σc = χJ(nn − n⊥n⊥)/2, where J is the complex structure defined by Jn = n⊥ and Jn⊥ = −n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The chiral active force is ∇ · σc = χJ � ∇ · (nn) � , (66) and is simply a π/2 rotation of the achiral active force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Accordingly we can modify (61) to give − p + iµω = − ζθ0 2 log(a/R) ¯z z , (67) 18 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Distortions up to quadrupole order in two-dimensional active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active flow in white is superposed on the pressure field, with the integral curves of the director shown in black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (a) The fundamental monopole response is extensional and grows linearly with distance from the distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (b) and (c) show the flows induced by dipole distortions, labelled by the appropriate derivative of the nematic monopole, with the green arrows indicating the direction of self-propulsion that would result from net active forces in extensile systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The vertical and horizontal dipoles are the far-field director responses to normal and tangential anchoring respectively and may also be interpreted as arising from a pair of +1/2 (cyan) and −1/2 (red) defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The self-propulsion matches that expected for the +1/2 defect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' and solve as before to find ˜u = χθ0 8µ log(a/R) �2xy r2 (−yex + xey) + 2 log � r R � (−xex + yey) � , (68) ˜p = χθ0 log(a/R) x2 − y2 2r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (69) Another way to understand the relation between achiral and chiral stresses is that, since the monopole active force field is spin-2, the π/2 local rotation of the active force results in a global rotation by π/4 of the force field and hence the fundamental flow responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The action of this global rotation, denoted Rπ/4, may be seen by comparing the monopole flow responses for achiral and chiral stresses, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 8(a) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 9(a) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For distortions of order n there are two basis flows, ur and ui, corresponding to the real and imaginary parts of ∂n z respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The rotation of the monopole response has the consequence that for achiral and chiral active stresses these flows are related by uc r = Rπ/4 � cos �nπ 4 � ua r − sin �nπ 4 � ua i � , (70) uc i = Rπ/4 � sin �nπ 4 � ua r + cos �nπ 4 � ua i � , (71) a) b) % (p e) 02 hc19 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Distortions up to quadrupole order in two-dimensional active nematics with purely chiral stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active flow in white is superposed on the pressure field, with the integral curves of the director shown in black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (a) The fundamental monopole response is extensional and grows linearly with distance from the distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (b) and (c) show the flows induced by dipole distortions, labelled by the appropriate derivative of the nematic monopole, with the green arrows indicating the direction of self-propulsion that would result from net active forces in extensile systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' where the superscripts denote the nature of the stresses as achiral or chiral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hence flow solutions for chiral and achiral stresses are related by a clockwise rotation by nπ/4 in the space of solutions followed by a rigid spatial rotation anticlockwise by π/4, as can be seen in Fig 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' At dipole order the chiral flow fields are rotated superpositions of the achiral ones, with the overall effect of chirality being to rotate the self-propulsion direction anticlockwise by π/2, interchanging the roles of horizontal and vertical propulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For a generic mixture of achiral and chiral stresses the direction of self-propulsion is rotated from the achiral case by an angle arctan(χ/ζ), mirroring the effect such stresses have on the flow profile of a +1/2 defect [80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' For the quadrupole distortions we have uc i = Rπ/4ua r and uc i = Rπ/4(−ua i ) = ua i , again swapping which distortion produces a chiral or achiral flow response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It is worth emphasising that the sign of the macroscopic rotation is not necessarily the same as the sign of the chiral stresses, rather it is the product of the signs of the activity and the distortion, just as for achiral stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' a) b) (p 22 e) hc C20 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The active flows induced by spin 0 dipole distortions with chiral active stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The flow is superposed upon the integral curves of the director, shown in orange, for the UPenn dipole (left) and chiral dipole (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Three dimensions In three dimensions the chiral active force is χ∇×[∇ · (nn)] [12] and so, by linearity, the fundamental flow responses are given by the curl of those derived earlier, namely u(x) = aχ 2µr3 � −exxy + ey(x2 − z2) + ezyz � , (72) u(y) = aχ 2µr3 � −ex(y2 − z2) + eyxy + −ezxz � , (73) for monopole distortions in the x- and y-components respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Just as for achiral active stresses, we can combine these into a single complex fundamental flow response as u(x) − iu(y), giving ˜u = i r3 � − ¯w2ew + (w ¯w − 2z2)e ¯ w + 2 ¯wzez � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (74) Since the active chiral force is a pure curl the corresponding pressure is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Owing to the additional derivative the functional behaviour of the flow responses is shifted up one order of distortion compared to achiral stresses, meaning dipole distortions induce rotations, although it should be noted that monopoles do not produce propulsive flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The monopole flow responses are still spin-1, but since the flow response for a monopole distortion in nx for achiral stresses is primarily in the x − z plane, the action of curl produces a flow that is dominantly in the y-direction and similarly the response to a monopole distortion in ny is mainly along ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Together these ingredients mean that heuristically the flow response of a given distortion with chiral active stresses will resemble the achiral active stress flow response of the conjugate distortion at one higher order and with the same spin, that is the distortion reached by the action of i∂z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 10 for the spin-0 dipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The UPenn dipole induces rotation about ez while the chiral dipole produces a purely radial flow, resembling the achiral flow responses of the chiral quadrupole and Saturn’s ring quadurpole respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The phenomenological response can again be captured through integration of the stress tensor over a large sphere of radius r, just as was done for achiral active stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' To enable us to reduce the active torque to a single boundary integral we use the symmetric form of the chiral active stress tensor [12], σc ij = [∇ × (nn)]ij + [∇ × (nn)]ji, such that d21 to linear order in director distortions we have f a = � χσc · dA ≈ 0, (75) τ a = � x × χσc · dA ≈ � χ � ex �xz ∂xδnx − 2yz∂yδnx + (y2 − z2)∂zδnx r � + ey �yz∂yδny − 2xz∂xδny + (x2 − z2)∂zδny r � + ez −2xy(∂yδnx + ∂xδny) − (x2 − y2)(∂xδnx − ∂yδny) + z(x∂zδnx + y∂zδny) r � dA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (76) From the first of these equations we see that, to linear order, there are no harmonic distortions which produce net forces in a nematic with chiral active stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' With regard to the net active torques, the x− and y− components involve only δnx and δny respectively and each term yields a non-zero integral only for δni ∼ ∂z1/r, hence the two spin-1 dipoles produce transverse torques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Turning to the z-component, each term gives a non-zero integral only for δni ∼ ∂i1/r, and as the expression is symmetric under interchange of x and y we see that only the UPenn dipole produces torques around ez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In other words, a dipolar director distortion which produces a net active force along a given direction in an achiral active nematic produces a net torque around the same direction in a chiral active nematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' These results of course accord with our earlier statements regarding the spins of distortions which are capable of producing torques about given axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Performing the integrals we find that in each case the net active torque has magnitude −12πχαa2/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Balancing this against Stokes drag gives, using the UPenn dipole as an example, an angular velocity Ω = 3χα 10µaez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' (77) While the angular velocity in achiral active nematics is independent of the distortion size, in chiral active nematics it is inversely proportional to the radius, a direct consequence of the additional derivative in the active stress tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Accordingly, in chiral active nematics the rotational velocity is largest for smaller colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' DISCUSSION We have introduced active nematic multipoles as a novel framework for understanding the dynamics of active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Although only formally valid on mesoscopic lengthscales, this approach produces results for the propulsive dynamics of defect loops that agree with those of a local analysis [23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' It also provides various testable predictions, for example for the axis of self-propulsion or rotation induced by a distortion or how the corresponding velocities would scale with the size of a colloid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' More broadly, our results reveal self-propulsion and rotation as generic non-equilibrium responses that naturally arise due to colloidal inclusions in active nematics but also provide a template for the tailored design of particular dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' This provides insight into the issue of harnessing the energy of active systems to perform useful work, something which has been demonstrated in bacterial suspensions [71, 82] and is now receiving greater attention in the nematic context [36, 37, 83, 84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Specific anchoring conditions on colloids have been investigated as a means of generating directed motion [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Our results suggest that sufficient control of the anchoring conditions would allow for steerable and targeted colloidal delivery [85], although there may be routes to a similar degree of dynamical control through colloidal geometry alone [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The transformative power of colloids in passive nematics was revealed in their collective behaviour, forming crys- talline structures [28, 86–89] which can serve as photonic metamaterials [90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' While our predictions for the dynamics of individual colloids have utility in their own right, there is again considerable interest in the collective dynamics which might emerge [91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Although our results are insufficient to fully address these questions, some basic points can nonetheless be extracted from the flow solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The long-range nature of the active flows suggests that the hy- drodynamic interactions will be dominant over elastic ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The leading contribution to the pair-wise hydrodynamic interactions will be the advection of each colloid by the flow field generated by the other, and the even inversion symmetry of dipole flows implies that this provides a mechanism for pair-wise propulsion, even for colloids which are not self-propulsive themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' To conclude, it has been long-established that the distinct symmetries of ±1/2 nematic defects can be directly related to the qualitatively different dynamics they display in active systems [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The aim of this paper is to bring the insights of this symmetry-based approach to generic nematic distortions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 22 ACKNOWLEDGMENTS This work was supported by the UK EPSRC through Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' EP/N509796/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The mechanics and statistics of active matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 1(1):323–345, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marchetti, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Joanny, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Liverpool, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Prost, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rao, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Simha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hydrodynamics of soft active matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 85(3):1143, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Doostmohammadi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ign´es-Mullol, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yeomans, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sagu´es.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 9(1):1–13, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Duclos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Erlenk¨amper, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Joanny, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Silberzan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological defects in confined populations of spindle-shaped cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 13(1):58–62, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Saw, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Doostmohammadi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nier, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kocgozlu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Thampi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Toyama, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marcq, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yeomans, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ladoux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological defects in epithelia govern cell death and extrusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nature, 544(7649):212–216, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Zhou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sokolov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lavrentovich, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Aranson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Living liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 111(4):1265–1270, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [7] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Wensink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dunkel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Heidenreich, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Drescher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Goldstein, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' L¨owen, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yeomans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Meso-scale turbulence in living fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 109(36):14308–14313, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sanchez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' DeCamp, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Heymann, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dogic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Spontaneous motion in hierarchically assembled active matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nature, 491(7424):431–434, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Adhyapak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Toner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Live soap: stability, order, and fluctuations in apolar active smectics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 110(11):118102, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Toner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Universality for moving stripes: A hydrodynamic theory of polar active smectics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 111(088701), 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Whitfield, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Adhyapak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tiribocchi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marenduzzo, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hydrodynamic instabilities in active cholesteric liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 40(4):1–16, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kole, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Maitra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Layered chiral active matter: Beyond odd elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 126(24):248001, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Maitra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lenz, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Voituriez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chiral active hexatics: Giant number fluctuations, waves, and destruction of order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 125(238005), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [14] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Narayan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Menon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Long-lived giant number fluctuations in a swarming granular nematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Science, 317:105, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Giomi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bowick, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ma, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marchetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Defect annihilation and proliferation in active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 110(22):228101, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [16] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Giomi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bowick, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mishra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sknepnek, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marchetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Defect dynamics in active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A, 372(2029):20130365, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [17] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Shendruk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Doostmohammadi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Thijssen, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yeomans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dancing disclinations in confined active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soft Matter, 13(21):3853–3862, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Norton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Baskaran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Opathalage, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Langeslay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fraden, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Baskaran, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hagan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Insensitivity of active nematic liquid crystal dynamics to topological constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 97(1):012702, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Opathalage, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Norton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Juniper, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Langeslay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Aghvami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fraden, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dogic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Self-organized dynamics and the transition to turbulence of confined active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 116(11):4788–4797, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Maroudas-Sacks, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Garion, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Shani-Zerbib, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Livshits, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Braun, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Keren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological defects in the nematic order of actin fibres as organization centres of hydra morphogenesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 17:251, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [21] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Duclos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Adkins, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Banerjee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Peterson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Varghese, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kolvin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Baskaran, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pelcovits, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Powers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Baskaran, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological structure and dynamics of three-dimensional active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Science, 367(6482):1120–1124, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇCopar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Aplinc, ˇZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topology of three-dimensional active nematic turbulence confined to droplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' X, 9(3):031051, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Binysh, ˇZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇCopar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Three-dimensional active defect loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 124(8):088001, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Houston and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Defect loops in three-dimensional active nematics as active multipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 105(6):L062601, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Poulin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stark, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lubensky, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Weitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Novel colloidal interactions in anisotropic fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Science, 275(5307):1770–1773, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Physics of colloidal dispersions in nematic liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 351(6):387–474, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [27] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Liquid crystal colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Springer, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [28] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇSkarabot, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tkalec, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Two-dimensional nematic colloidal crystals self-assembled by topological defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Science, 313(5789):954–958, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yeomans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Confined active nematic flow in cylindrical capillaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 110(2):026001, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 23 [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇSkarabot, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tkalec, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Poberaj, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Babiˇc, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Osterman, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Entangled colloidal dimers and wires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 99(247801), 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [31] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tkalec, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇCopar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Reconfigurable knots and links in chiral nematic colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Science, 333(6038):62–65, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [32] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Guillamat, ˇZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hardo¨uin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ign´es-Mullol, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sagu´es.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Active nematic emulsions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 4(eaa01470), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [33] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hardo¨uin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Guillamat, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sagu´es, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ign´es-Mullol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dynamics of ring disclinations driven by active nematic shells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 7(00165), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [34] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Baek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Solon, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Xu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nikola, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kafri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Generic long-range interactions between passive bodies in an active fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 120(5):058002, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [35] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rajabi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Baza, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Turiv, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lavrentovich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Directional self-locomotion of active droplets enabled by nematic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', pages 1–7, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Loewe and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Shendruk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Passive janus particles are self-propelled in active nematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 24(1):012001, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [37] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yao, ˇZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kos, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Luo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Steager, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stebe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological defect-propelled swimming of nematic colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 8(34):eabn8176, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [38] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Frank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' on the theory of liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Discuss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Faraday Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 25:19–28, 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [39] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Angheluta, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marchetti, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bowick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The role of fluid flow in the dynamics of active nematic defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 23(3):033009, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [40] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Khoromskaia and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vortex formation and dynamics of defects in active nematic shells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 19(10):103043, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [41] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Joanny, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Casademunt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Universal scaling of active nematic turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 16(6):682–688, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [42] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Simha and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 89(5):058101, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [43] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Maxwell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A treatise on electricity and magnetism, volume 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Oxford: Clarendon Press, 1873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dennis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Canonical representation of spherical functions: Sylvester’s theorem, maxwell’s multipoles and majorana’s sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 37(40):9487, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [45] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological content of the maxwell theorem on multiple representation of spherical functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Methods Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 7(2):205–217, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [46] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Brochard and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' De Gennes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Theory of magnetic suspensions in liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Journal de Physique, 31(7):691–708, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [47] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yuan, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Senyuk, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Smalyukh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Elastic colloidal monopoles and reconfigurable self-assembly in liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nature, 570(7760):214–218, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [48] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lubensky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pettey, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Currier, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topological defects and interactions in nematic emulsions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 57(1):610, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [49] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pergamenshchik and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Uzunova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dipolar colloids in nematostatics: tensorial structure, symmetry, different types, and their interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 83(2):021701, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [50] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Terentjev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Disclination loops, standing alone and around solid particles, in nematic liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 51(2):1330, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [51] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tkalec, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' , Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vortexlike topological defects in nematic colloids: Chiral colloidal dimers and 2d crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 103(127801), 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [52] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Topology in liquid crystal phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' In The Role of Topology in Materials, pages 229–257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Springer, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [53] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Smalyukh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lansac, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Clark, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Trivedi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 9(2):139–145, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [54] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Landau–de gennes modelling of nematic liquid crystal colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Liquid Crystals, 36(10-11):1201– 1214, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [55] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Blake and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chwang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fundamental singularities of viscous flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 8(1):23–29, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [56] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chwang and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hydromechanics of low-reynolds-number flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' part 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' singularity method for stokes flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 67(4):787–815, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [57] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Khoromskaia and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Motility of active fluid drops on surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 92(6):062311, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [58] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lighthill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 5(2):109–118, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [59] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pak and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lauga.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Generalized squirming motion of a sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 88(1):1–28, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [60] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Daddi-Moussa-Ider and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Menzel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dynamics of a simple model microswimmer in an anisotropic fluid: Implications for alignment behavior and active transport in a nematic liquid crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fluids, 3(9):094102, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [61] ˇZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kos and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Elementary flow field profiles of micro-swimmers in weakly anisotropic nematic fluids: Stokeslet, stresslet, rotlet and source flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fluids, 3(1):15, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [62] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Houston.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Active and passive nematic multipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' PhD thesis, University of Warwick, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [63] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Binysh and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Maxwell’s theory of solid angle and the construction of knotted fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 51(38):385202, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [64] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Friedel and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' De Gennes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Boucles de disclination dans les cristaux liquides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' CR Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Paris B, 268:257–259, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [65] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kim and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Karrila.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Microhydrodynamics: Principles and selected applications, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 24 [66] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Loudet, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hanusse, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Poulin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stokes drag on a sphere in a nematic liquid crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Science, 306(5701):1525–1525, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [67] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ruhwandl and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Terentjev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Friction drag on a particle moving in a nematic liquid crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 54(5):5204, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [68] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stark and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ventzki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Stokes drag of spherical particles in a nematic environment at low ericksen numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 64(3):031711, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [69] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Batchelor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' The stress generated in a non-dilute suspension of elongated particles by pure straining motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 46(4):813–829, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [70] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hendricks, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Zhang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Reddy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rothstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lettinga, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vermant, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Clasen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Effects of particle stiffness on the extensional rheology of model rod-like nanoparticle suspensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soft matter, 15(5):833–841, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [71] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sokolov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Apodaca, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Grzybowski, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Aranson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Swimming bacteria power microscopic gears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 107(3):969–974, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [72] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vromans and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Giomi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Orientational properties of nematic disclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soft matter, 12(30):6490–6495, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [73] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tang and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Selinger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Orientation of topological defects in 2d nematic liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soft matter, 13(32):5481–5490, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [74] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Galajda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Keymer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chaikin, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Austin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A wall of funnels concentrates swimming bacteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bacteriol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 189(23):8704–8707, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [75] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Banerjee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Souslov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Abanov, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vitelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Odd viscosity in chiral active fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 8(1):1–12, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [76] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Scheibner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Souslov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Banerjee, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sur´owka, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Irvine, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vitelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Odd elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 16(4):475–480, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [77] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fruchart, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Scheibner, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Vitelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Odd viscosity and odd elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='00071, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [78] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mietke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Higinbotham, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Foster, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Gokhale, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dunkel, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fakhri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Odd dynamics of living chiral crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nature, 607(7918):287–293, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [79] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bowick, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Fakhri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Marchetti, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Symmetry, thermodynamics, and topology in active matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' X, 12(1):010501, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [80] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Hoffmann, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Schakenraad, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Merks, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Giomi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chiral stresses in nematic cell monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soft matter, 16(3):764–774, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [81] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yashunsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pearce, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Blanch-Mercader, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ascione, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Silberzan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Giomi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Chiral edge current in nematic cell monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' X, 12(4):041017, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [82] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Di Leonardo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Angelani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dell’Arciprete, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ruocco, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Iebba, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Schippa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Conte, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mecarini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' De Angelis, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Di Fabrizio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bacterial ratchet motors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 107(21):9541–9545, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [83] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Thampi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Doostmohammadi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Shendruk, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Golestanian, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Yeomans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Active micromachines: Microflu- idics powered by mesoscale turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 2(7):e1501854, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [84] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mozaffari, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' de Pablo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Autonomous materials systems from active liquid crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', pages 1–17, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [85] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Sahu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Kole, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ramaswamy, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dhara.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Omnidirectional transport and navigation of janus particles through a nematic liquid crystal film.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 2(3):032009, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [86] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇSkarabot, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tkalec, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Poberaj, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Babiˇc, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Osterman, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Two-dimensional dipolar nematic colloidal crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 76(5):051406, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [87] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇSkarabot, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Tkalec, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Poberaj, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Babiˇc, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Osterman, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Interactions of quadrupolar nematic colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 77(3):031705, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [88] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ognysta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nych, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nazarenko, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇSkarabot, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ravnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇZumer, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Poberaj, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Babiˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' 2d interactions and binary crystals of dipolar and quadrupolar nematic colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=', 100(21):217803, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [89] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Ognysta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nych, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Uzunova, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Pergamenschik, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nazarenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' ˇSkarabot, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Square colloidal lattices and pair interaction in a binary system of quadrupolar nematic colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' E, 83(4):041709, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [90] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Muˇseviˇc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nematic colloids, topology and photonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' A, 371(1988):20120266, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' [91] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bricard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Caussin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Desreumaux, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Dauchot, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Bartolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Emergence of macroscopic directed motion in populations of motile colloids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
+page_content=' Nature, 503(7474):95–98, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1tFST4oBgHgl3EQfWzjN/content/2301.13782v1.pdf'}
diff --git a/29FQT4oBgHgl3EQf2zan/content/tmp_files/2301.13425v1.pdf.txt b/29FQT4oBgHgl3EQf2zan/content/tmp_files/2301.13425v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e62405441f99f91f3357d7a807ed14cf1adc6385
--- /dev/null
+++ b/29FQT4oBgHgl3EQf2zan/content/tmp_files/2301.13425v1.pdf.txt
@@ -0,0 +1,986 @@
+Towards Mechatronics Approach of System Design,
+Verification and Validation for Autonomous Vehicles
+Chinmay Samak∗, Tanmay Samak∗, Venkat Krovi
+Abstract—Modern-day autonomous vehicles are increasingly
+becoming complex multidisciplinary systems composed of me-
+chanical, electrical, electronic, computing and information sub-
+systems. Furthermore, the individual constituent technologies em-
+ployed for developing autonomous vehicles have started maturing
+up to a point, where it seems beneficial to start looking at the
+synergistic integration of these components into sub-systems,
+systems, and potentially, system-of-systems. Hence, this work
+applies the principles of mechatronics approach of system design,
+verification and validation for the development of autonomous
+vehicles. Particularly, we discuss leveraging multidisciplinary co-
+design practices along with virtual, hybrid and physical proto-
+typing and testing within a concurrent engineering framework
+to develop and validate a scaled autonomous vehicle using
+the AutoDRIVE ecosystem. We also describe a case-study of
+autonomous parking application using a modular probabilistic
+framework to illustrate the benefits of the proposed approach.
+Index Terms—Autonomous vehicles, mechatronics approach,
+multidisciplinary design, simulation and virtual prototyping,
+rapid prototyping, verification and validation.
+I. INTRODUCTION
+A
+UTOMOTIVE vehicles have evolved significantly over
+the course of time [1]. The gradual transition from purely
+mechanical automobiles to those with greater incorporation of
+electrical, electronic and computer-controlled sub-systems oc-
+curred in phases over the course of the past century; with each
+phase improving performance, convenience and reliability of
+these systems. Modern vehicles are increasingly adopting
+electrical, electronic, computing and information sub-systems
+along with software algorithms for low-level control as well
+as high-level advanced driver assistance system (ADAS) or
+autonomous driving (AD) features [2]. This naturally brings in
+the interplay between different levels of mechanical, electrical,
+electronic, networking and software sub-systems among a
+single vehicle system, thereby transforming them from purely
+mechanical systems, which they were in the past, to complex
+multidisciplinary systems [3]. As such, while it may have
+been justifiable for earlier ADAS/AD feature developers to
+focus on core software development, the increasing complexity
+and interdisciplinary nature of modern automotive systems can
+benefit from synergistic hardware-software co-design comple-
+mented with integrated verification and validation by following
+the mechatronics principles.
+∗These authors contributed equally.
+C. V. Samak, T. V. Samak and V. N. Krovi are with the Automation,
+Robotics and Mechatronics Laboratory (ARMLab), Department of Automo-
+tive Engineering, Clemson University International Center for Automotive
+Research (CU-ICAR), Greenville, SC 29607, USA. Email: {csamak,
+tsamak, vkrovi}@clemson.edu
+������������������
+������������������
+������������������
+������������������
+������������������
+������������
+������������������
+������������
+��������
+������������
+��������
+������������
+����������
+������������
+�����������
+������������
+��������
+������������
+����
+������������
+�����������
+������
+�����������
+�������
+����������
+���������
+�������������
+����������
+����
+��������������
+����������
+�����������������
+�����������
+��������
+����������������������
+��������
+�����������
+�������������
+����������
+�������������
+����������
+�������������������
+�������������������
+��������������������
+����������
+��������������������
+����������
+����������
+���������������
+����������
+���������������
+��������
+����������
+����
+����������
+��������
+����������
+�����������
+�����������
+��������������������
+�����������
+����������������
+�����������
+������������������
+�������������
+������������������
+�����������������
+������������������
+�������
+������������������
+���������������������������
+�����������
+�����������
+�����������
+����������
+�����������
+�����������
+��������������������������������
+���������������
+����������������������
+��������������
+����������������������
+����������������
+�����������
+����������
+����������
+����������
+�����������
+�����������
+�����
+���������
+�����������������
+������
+����������
+���������
+�������
+������
+�����������
+�����������
+�������
+Fig. 1. Extended V-model fostering mechatronics approach of system design,
+verification and validation for autonomous vehicles. The model depicts evolu-
+tion of a concept into a product through decomposition, design, development,
+integration and testing across component, sub-system, system and system-of-
+systems levels in a unified concurrent interdisciplinary engineering framework.
+Mechatronics engineering [4]–[6] focuses on concurrent and
+synergistic integration of mechanical, electrical and electronics
+engineering, computer science and information technology
+for development and validation of complex interdisciplinary
+systems. This ideology is derived from the fact that various
+components of a “mechatronic” system, often belonging to
+a multitude of disciplines, influence each other and hence
+have a design impact at the component, sub-system, system
+and system-of-systems levels. The resulting ”mechatronic”
+realization now builds on capabilities endowed by the vari-
+ous constituent layers. In such a milieu, the system devel-
+opment approach has also evolved from relatively ad-hoc
+to the more formal V-model [7], building on the modular
+software development and validation roadmap [8]. This model
+has evolved through several state-of-the-art progressions [9]
+and our work seeks to further formalize the adoption of
+mechatronics approach of system conceptualization, design,
+development, integration and testing for autonomous vehicles
+(refer Fig. 1).
+A recent book [10] highlights best practices for industrial
+design, development and validation of autonomous vehicles
+and notes the significant adoption of model-based design
+(MBD) for system integration and testing. However, similar
+arXiv:2301.13425v1 [cs.RO] 31 Jan 2023
+
+Freewheeling
+Front Wheel Hub
+Rear Wheel
+Drive Actuator
+Front Wheel
+Drive Actuator
+Front Monocular
+Camera
+Front Binocular
+Camera
+Rear Monocular
+Camera
+Reversed Inertial
+Measurement Unit
+Reversed LIDAR
+and AprilTag Marker
+>
+?
+Power
+Computation
+Communication
+Others
+Lights
+Actuators
+Sensors
+Software
+Chassis
+A
+B
+Fig. 2.
+AutoDRIVE ecosystem fosters mechatronics design principles at two levels: [A] primitive reconfigurability allows permutations and combinations
+of addition, removal or replacement of selective components and sub-assemblies of the vehicle to better suit the application; [B] advanced reconfigurability
+allows complete modification of existing hardware and software architectures, and provides an opportunity for introducing new features and functionalities to
+the ecosystem.
+adoption of such streamlined workflows by academia has
+lagged behind [10]. This gap could be explained by the virtue
+of standardization (e.g., ISO 26262 [11], ISO/IEC 33061 [12],
+VDI 2221 [13], VDI 2206 [14], AUTOSAR [15], etc.) in
+industries versus the fact that majority of academic projects
+are deployed using fragmented hardware-software ecosystems
+(e.g. hobby platforms) with a key focus on developing low-cost
+initial proof-of-concept implementations. Additionally, such an
+opportunistic and potentially uninformed selection of hardware
+[16]–[18] and software [19]–[21] toolchains hinders adoption
+of co-design and concurrent engineering thinking to full extent.
+In this paper, we discuss the design philosophy and one
+of the key motivation factors behind AutoDRIVE ecosystem1
+[22], [23] – adopting and promoting mechatronics approach of
+system design, verification and validation for autonomous ve-
+hicles, with an emphasis on creating a streamlined pathway for
+seamless transition to ultimate industrial practice. This paper
+also describes a detailed case-study which demonstrates the
+methodical adoption of mechatronics approach for designing,
+developing and validating a scaled vehicle in the context of
+autonomous parking2 application using a modular probabilistic
+framework.
+II. MULTIDISCIPLINARY DESIGN
+AutoDRIVE offers an open-access, open-interface and flex-
+ible ecosystem for scaled autonomous vehicle development
+by permitting access to and alteration of hardware as well as
+software aspects of the multidisciplinary autonomous vehicle
+design, thereby making it an apt framework for demonstrat-
+ing the claims and contributions of this work. Particularly,
+AutoDRIVE ecosystem offers the following two levels of
+reconfigurability, thereby promoting hardware-software co-
+design (refer Fig. 2).
+1Webpage: https://autodrive-ecosystem.github.io
+2Video: https://youtu.be/piCyvTM2dek
+• Primitive Reconfigurability: The native vehicle of Au-
+toDRIVE ecosystem, called “Nigel”, is modular enough
+to support out-of-the-box hardware reconfigurability in
+terms of swapping and replacing selective components
+and sub-assemblies of the vehicle, in addition to flexibly
+updating the vehicle firmware and/or autonomous driving
+software stack (ADSS) to better suit the target applica-
+tion.
+• Advanced Reconfigurability: The completely open-
+hardware, open-software architecture of AutoDRIVE
+ecosystem allows modification of vehicle chassis param-
+eters (different form factors and aspect ratios), power-
+train configuration (variable driving performance), com-
+ponent mounting profiles (relocation/replacement of com-
+ponents), as well as firmware and ADSS architecture
+(software flexibility).
+The fundamental step in system design is requirement spec-
+ification, without which the design cannot be truly validated to
+be right or wrong, it can only be surprising [24]. Since Auto-
+DRIVE was intended to be a generic ecosystem for rapidly
+prototyping autonomous driving solutions, the requirement
+elicitation resulted in a superset of requirements demanded by
+the application case study discussed in this paper. Furthermore,
+with AutoDRIVE, there is always a scope for updating the
+designs of various components, sub-systems and systems for
+expanding the ecosystem. That being said, following is a
+summary of functional requirement specifications for Nigel
+as of this version of the ecosystem.
+• General design guidelines:
+– Open-source hardware and software
+– Inexpensive and user-friendly architecture
+– Manufacturing technology agnostic designs
+– Modularly reconfigurable components/sub-systems
+– Integrated and comprehensive resources and tools
+
+O
+D
+Q
+C
+0
+CddB
+A
+Chassis
+Power Electronics
+Computation
+Communication
+Software
+Sensors
+Actuators
+Lights
+PiCamera V2.1
+Robot Operating System
+NVIDIA JetPack SDK
+Throttle Feedback
+Steering Feedback
+AutoDRIVE Devkit
+RPLIDAR A1
+PiCamera V2.1
+Ethernet
+WiFi
+Jetson Nano B01
+Arduino Nano V3.0
+Firmware
+MPU-6050 IMU
+Headlights
+Taillights
+3A
+Master Switch
+10A
+Buck Converter
+11.1V 5200mAh
+LiPo Battery
+LiPo Voltage
+Checker Module
+6V DC 160 RPM 120:1 Geared Motor
+6V DC 160 RPM 120:1 Geared Motor
+Incremental Encoder
+Incremental Encoder
+20A
+Motor Driver
+Rear Wheels
+AprilTag Marker
+MG996R Servo Motor
+Steering Mechanism
+Front Wheels
+Turning Indicators
+Reverse Indicators
+Left Ticks
+Right Ticks
+INT
+Filtering
+Fusion
+I2C
+GPIO
+PWM
+USB
+Lights
+Arduino Nano V3.0
+Jetson Nano B01
+Encoders
+IMU
+Actuators
+Intensity
+Timing
+Throttle
+Steering
+SLAM
+x
+y
+1 m
+STATIC MAP
+ODOMETRY
+LOCALIZATION
+NAVIGATION
+Global
+Costmap
+Local
+Costmap
+Global
+Planner
+Local
+Planner
+Controller
+VEHICLE
+Parking
+Pose
+Throttle/Brake
+Steering
+LIDAR Scan
+Save Map
+Load Map
+TF
+TF
+Odometry
+C
+Fig. 3.
+Conceptualization and design of scaled autonomous vehicle: [A] hardware-software architecture; [B] firmware design specifications; [C] modular
+perception, planning and control architecture for autonomous parking application.
+• Perception sub-system shall offer:
+– Ranging measurements (preferably 360◦)
+– RGB visual feed (preferably front as well as rear)
+– Positional measurements/estimation
+– Inertial measurements/estimation
+– Actuation feedback measurements/estimation
+• Computation and communication sub-systems shall offer:
+– Hierarchical computation topology
+– GPU-enabled high-level edge computation platform
+– Embedded low-level computation platform
+– Vehicle-to-everything communication interface
+• Locomotion and signaling sub-systems shall offer:
+– Kinodynamically constrained drivetrain and steering
+– Standard automotive lighting and signaling
+The functional system requirements were decomposed into
+mechanical, electronics, firmware and ADSS design specifica-
+tions and carefully studied to analyze any potential trade-offs
+so as to finalize the components and ultimately come up with
+a refined system architecture design (refer Fig. 3).
+The proposed hardware-software architecture of the scaled
+autonomous vehicle system is divided into eight sub-systems
+viz. chassis, power, computation, communication, software,
+sensors, actuators and lights, each with its own share of com-
+ponents (refer Fig. 3-A). The embedded firmware architecture
+for low-level data acquisition and control is depicted in Fig.
+3-B, which links the data sources to the respective data sinks
+after processing the information.
+Finally, Fig. 3-C depicts high-level architecture of the
+autonomous parking solution described in this paper. Particu-
+larly, it is shown how this candidate autonomy solution uses
+modular algorithms for simultaneous localization and mapping
+(SLAM) [25], odometry estimation [26], localization [27],
+global [28] and local [29] path planning, and motion control.
+Implementation descriptions are necessarily brief due to the
+space limitations; however, further details can be found in this
+technical report [23].
+III. VIRTUAL PROTOTYPING AND TESTING
+Virtual prototypes help expedite the design process by
+validating the designs against system requirements through
+simulation, and suggesting design revisions at an early stage.
+The scaled autonomous vehicle system was virtually pro-
+totyped and tested in three phases. First, the mechanical
+specifications, motions and fit were carefully analyzed using
+a parametric computer aided design (CAD) assembly of the
+system in conjunction with the physical modeling approach
+for multi-body dynamic systems (refer Fig. 4-A). Parallelly,
+the electronic sub-systems were prototyped using the physical
+modeling approach, and also by adopting electronic design au-
+tomation (EDA) workflow (refer Fig. 4-B). Next, the firmware
+for low-level control (front wheel steering angle and rear wheel
+velocity) of the vehicle was verified to produce reliable results
+(within a specified tolerance of 3e-2 rad for steering angle
+and 3e-1 rad/s for wheel velocity) through model-in-the-loop
+(MIL) and software-in-the-loop (SIL) testing (refer Fig. 4-C).
+The knowledge gained through this process was used to
+update the AutoDRIVE Simulator (refer Fig. 4-D) from its
+initial version discussed in [30], [31] to the one described
+in [22], [23]. The updated simulator was then employed for
+verification and validation of individual ADSS modules and
+finally, the integrated autonomous parking solution was also
+verified using the same toolchain (refer Fig. 5-A). Particularly,
+we tested the vehicle in multiple environments, which included
+unit tests for validating the SLAM, odometry, localization,
+planning and control algorithms, followed by verification
+of the integrated pipeline with and without the addition of
+dynamic obstacles, which were absent while mapping the en-
+vironment. The autonomous navigation behavior was analyzed
+for 5 sample trials and verified to fit within an acceptable
+tolerance threshold of 2.5e-2 m; the acceptable parking pose
+tolerance was set to be 5e-2 m for linear positions in X and
+Y directions and 8.73e-2 rad for the angular orientation about
+Z-axis.
+
+A
+B
+D
+Firmware
+Model
+Vehicle
+Model
+MIL
+SIL
+Firmware
+Code
+Vehicle
+Model
+Vehicle Model
+Embedded
+Firmware
+PIL
+Embedded
+Firmware
+Real-Time
+Vehicle Model
+HIL
+VIL
+Embedded
+Firmware
+Physical
+Vehicle
+C
+E
+Fig. 4. Development and system integration of scaled autonomous vehicle: [A] mechanical assembly; [B] electronic schematic; [C] MBD workflow depicting
+MIL, SIL, PIL, HIL and VIL testing of vehicle firmware; [D] virtual prototype in AutoDRIVE Simulator; [E] physical prototype in AutoDRIVE Testbed.
+IV. HYBRID PROTOTYPING AND TESTING
+All models or virtual prototypes involve certain degrees of
+abstraction, ranging from model fidelity to simulation settings,
+and as such, cannot be treated as perfect representations
+of their real-world counterparts. Therefore, once the virtual
+prototyping and preliminary testing of the system has been
+accomplished, the next step is to prototype and validate it in
+a hybrid fashion (partly virtual and partly physical), focusing
+more on high-level system integration. This method of hybrid
+prototyping and testing is extremely beneficial since it follows
+a gradual transition from simulation to reality, thereby enabling
+a more faithful system verification framework and providing
+a room for potential design revisions even before complete
+physical prototyping is accomplished.
+The scaled vehicle system was subjected to hybrid testing
+by running processor-in-the-loop (PIL), hardware-in-the-loop
+(HIL) and vehicle-in-the-loop (VIL) tests on the embedded
+firmware for confirming minimum deviation from MIL and
+SIL results, specified by the same tolerance values of 3e-2
+rad for steering angle and 3e-1 rad/s for wheel velocity (refer
+Fig. 4-C). The performance of integrated autonomous vehicle
+system was then validated using hybrid testing in two phases.
+First, we deployed the ADSS on the physical vehicle’s
+on-board computer, which was interfaced with AutoDRIVE
+Simulator to receive live sensor feed from the virtual vehicle,
+process it and generate appropriate control commands, and
+finally relay these commands back to the simulated vehicle.
+Specifically, for the autonomous parking solution (refer Fig.
+5-A), we deployed and tested each of the SLAM, odometry,
+localization, planning and control algorithms for satisfactory
+performance. This was naturally followed by deployment and
+validation of the integrated pipeline for accomplishing reliable
+(within a specified tolerance of 2.5e-2 m) source-to-goal
+navigation (within a goal pose tolerance of 5e-2 m and 8.73e-
+2 rad) in different environments, wherein a subset of cases
+included dynamic obstacles as discussed earlier.
+Next, we collected real-world sensor data using AutoDRIVE
+Testbed and replayed it as a real-time stimulus to the ADSS
+deployed on the physical vehicle’s on-board computer run-
+ning in-the-loop with AutoDRIVE Simulator. This way, we
+increased the “real-world” component of the hybrid test and
+verified the autonomous parking solution for expected perfor-
+mance (within same tolerance values as mentioned earlier).
+Particularly, the real-world data being collected/replayed was
+occupancy-grid map of the environment built by executing
+the SLAM module on the physical vehicle, which inherently
+resulted as a unit test of this module in real-world conditions.
+The simulated vehicle had to then localize against this real-
+world map while driving in the virtual scene and navigate
+autonomously from source to goal (parking) pose, which
+further tested the robustness of the integrated pipeline against
+minor environmental variations and/or vehicle behavior.
+V. PHYSICAL PROTOTYPING AND TESTING
+Once the system confirms satisfactory performance un-
+der hybrid testing conditions, the next and final stage in
+mechatronic system development is physical prototyping and
+testing (refer Fig. 4-E). In order to physically validate the
+modular autonomy application (refer Fig. 5-B), we initially
+carried out unit tests to confirm the performance of each
+
+MPU9250
+Right Indicators
+LeftIndicators
+个个
+ArduinoNano
+JetsonNano
+RESET
+VIN
+Switch
+(Rev3.0)
+GND
+5V
+D11/MOSI
+D12/MISO
+DrivePower
+D13/SCK
+3V3
+DO/F
+D1/TX
+EncoderPower
+V
+D10
+交
+8
+8
+LED GND
+Drive GND
+1111
+Encoder Signal
+Signal
+Taillights
+(LowBeam)
+Headlights (High Beam)
+Reverse Indicators
+Drive
+Headlights
+个个个
+SteerO
+OSteering Angle (rad)
+0.5
+MIL Test
+SIL Test
+C
+PIL Test
+HIL Test
+VIL Test
+-0.5
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+Time (s)Wheel Velocity (rad/s)
+10
+MIL Test
+SIL Test
+C
+PIL Test
+HIL Test
+VIL Test
+10
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+Time (s)24 s
+16 s
+08 s
+A
+00 s
+09 s
+18 s
+00 s
+12 s
+24 s
+08 s
+16 s
+24 s
+24 s
+08 s
+16 s
+24 s
+16 s
+08 s
+ii
+ii
+iii
+iv
+v
+00 s
+09 s
+18 s
+00 s
+12 s
+24 s
+08 s
+16 s
+24 s
+24 s
+08 s
+16 s
+Start
+Finish
+ii
+ii
+iii
+iv
+v
+C
+B
+Fig. 5. Verification and validation of scaled autonomous vehicle performance: [A] virtual/hybrid and [B] physical validation of (i) integrated system, unit
+testing of (ii) SLAM, (iii) odometry, (iv) localization, (v) planning and control modules in AutoDRIVE Simulator/Testbed; [C] repeatability/reliability analysis
+represented as mean and standard deviation of 5 trials for each deployment type with acceptable trajectory tolerance in green and parking tolerance in purple.
+of the SLAM, odometry, localization, planning and control
+algorithms followed by deployment of the integrated stack
+for autonomous parking application (refer Fig. 5-C). The
+vehicle was confirmed to exhibit a reliable (within a specified
+tolerance of 2.5e-2 m) source-to-goal navigation (within a goal
+pose tolerance of 5e-2 m and 8.73e-2 rad). Again, for testing
+the robustness of ADSS we introduced dynamic obstacles that
+were not existent while environment mapping was performed.
+VI. CONCLUSION
+In this work, we presented an extended V-model fostering
+mechatronics approach of system design, verification and
+validation for autonomous vehicles. Further, we discussed
+the design philosophy of AutoDRIVE ecosystem, which is
+to exploit and promote the mechatronics approach for au-
+tonomous vehicle development across scales and inculcate a
+habit of following it from academic education and research to
+industrial deployments. We also demonstrated the methodical
+adoption of mechatronics approach for designing, developing
+and validating a scaled autonomous vehicle in the context of
+a detailed case study pertaining to autonomous parking using
+a modular probabilistic framework; including both qualitative
+and quantitative remarks. We showed that the design, devel-
+opment as well as verification and validation of the scaled
+autonomous vehicle with regard to the aforementioned case
+study could be successfully accomplished within a stringent
+time-frame of about one month [23]. It is to be noted that al-
+though the exact timeline of any multidisciplinary project may
+vary depending upon factors such as skill set, experience and
+number of individuals involved, lead time in the supply chain,
+etc., the mechatronics approach definitely proves to be efficient
+in terms of minimizing the design-development iterations by
+the virtue of synergistic integration in a concurrent engineering
+thinking framework. This provides a room for the rectification
+of any design issues early in the development cycle, thereby
+increasing the chances of successful verification and validation
+with minimal loss of time and resources.
+REFERENCES
+[1] S. Beiker, F. Hansson, A. Suneson, and M. Uhl, “How the convergence of
+automotive and tech will create a new ecosystem,” McKinsey Company,
+2016.
+[2] F. Meissner, K. Shirokinskiy, and M. Alexander, “Computer on Wheels:
+Disruption in Automotive Electronics and Semiconductors,” Roland
+Berger: Munich, Germany, 2020.
+[3] J. A. Gumiel, J. Mabe, J. Jim´enez, and J. Barruetabe˜na, “Introducing
+the Electronic Knowledge Framework into the Traditional Automotive
+Suppliers’ Industry: From Mechanical Engineering to Mechatronics,”
+Businesses, vol. 2, no. 2, pp. 273–289, 2022. [Online]. Available:
+https://www.mdpi.com/2673-7116/2/2/18
+[4] W. Bolton, Mechatronics: Electronic Control Systems in Mechanical
+Engineering.
+Longman
+Scientific
+&
+Technical,
+1995.
+[Online].
+Available: https://books.google.com/books?id=XiBTAAAAMAAJ
+[5] C. de Silva, Mechatronics: An Integrated Approach.
+Taylor &
+Francis, 2004. [Online]. Available: https://books.google.com/books?id=
+CjB2ygeR95cC
+[6] G. Onwubolu, Mechatronics: Principles and Applications.
+Elsevier
+Science, 2005. [Online]. Available: https://books.google.com/books?id=
+bgK8kCMpD YC
+[7] J. Gausemeier and S. Moehringer, “VDI 2206- A New Guideline for the
+Design of Mechatronic Systems,” IFAC Proceedings Volumes, vol. 35,
+no. 2, pp. 785–790, 2002, 2nd IFAC Conference on Mechatronic
+Systems, Berkeley, CA, USA, 9-11 December. [Online]. Available:
+https://www.sciencedirect.com/science/article/pii/S1474667017340351
+[8] A. Br¨ohl and W. Dr¨oschel, Das V-Modell: der Standard f¨ur die
+Softwareentwicklung mit Praxisleitfaden, ser. Software - Anwen-
+dungsentwicklung - Informationssysteme.
+Oldenbourg, 1995. [Online].
+Available: https://books.google.com/books?id=B2iKAAAACAAJ
+[9] M.
+Eigner,
+T.
+Dickopf,
+and
+H.
+Apostolov,
+“The
+Evolution
+of
+the V-Model: From VDI 2206 to a System Engineering Based
+Approach for Developing Cybertronic Systems,” in Product Lifecycle
+Management and the Industry of the Future, J. R´ıos, A. Bernard,
+A. Bouras, and S. Foufou, Eds.
+Cham: Springer International
+Publishing, 2017, pp. 382–393. [Online]. Available: https://doi.org/10.
+1007/978-3-319-72905-3 34
+[10] P. Pathrose, ADAS and Automated Driving: A Practical Approach to
+Verification and Validation.
+SAE International, Jun 2022. [Online].
+Available: https://doi.org/10.4271/R-525
+[11] Road vehicles - Functional safety, ISO 26262:2018 ed.
+Geneva, CH:
+International Organization for Standardization, 2018.
+[12] Information
+technology
+-
+Process
+assessment,
+ISO/IEC
+TS
+33061:2021
+ed.
+Geneva,
+CH:
+International
+Organization
+for
+Standardization
+and
+International
+Electrotechnical
+Commission
+(ISO/IEC JTC 1), 2021.
+[13] Design
+of
+technical
+products
+and
+systems,
+VDI
+2221:2019
+ed.
+D¨usseldorf, DE: The Association of German Engineers, 2019.
+
+三
+三
+AutoDRlVE SimulatorSimulator Deployment
+Real-World Map Replay
+Hybrid Deployment
+Real-World Deployment
+0.8-
+0.6-
+0.4-
+(m)
+0.2-
+Coordinate
+0.0-
+X
+-0.2-
+-0.4-
+-0.6-
+0.4
+0.2
+0.0
+-0.2
+-0.4
+Y Coordinate (m)0.8-
+0.6-
+0.4-
+0.2-
+inate
+Coordi
+0.0-
+X
+-0.2-
+-0.4-
+-0.6-
+0.4
+0.2
+0.0
+0.2
+-0.4
+Y Coordinate (m)[14] Development
+of
+mechatronic
+and
+cyber-physical
+systems,
+VDI
+2206:2021 ed.
+D¨usseldorf, DE: The Association of German Engineers,
+2021.
+[15] S. F¨urst, J. M¨ossinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
+P. Heitk¨amper, G. Kinkelin, K. Nishikawa, and K. Lange, “AUTOSAR
+- A Worldwide Standard is on the Road,” in 14th International VDI
+Congress Electronic Systems for Vehicles, Baden-Baden, vol. 62, 2009,
+p. 5.
+[16] S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra,
+O. Guldner, M. Mohamoud, B. Plancher, R. Shin, and J. Vivilecchia,
+“Project-based, collaborative, algorithmic robotics for high school
+students: Programming self-driving race cars at MIT,” in 2017 IEEE
+Integrated STEM Education Conference (ISEC), 2017, pp. 195–203.
+[Online]. Available: https://mit-racecar.github.io
+[17] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
+R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna,
+“F1/10: An Open-Source Autonomous Cyber-Physical Platform,” 2019.
+[Online]. Available: https://arxiv.org/abs/1901.08567
+[18] S. S. Srinivasa, P. Lancaster, J. Michalove, M. Schmittle, C. Summers,
+M. Rockett, J. R. Smith, S. Choudhury, C. Mavrogiannis, and F. Sadeghi,
+“MuSHR: A Low-Cost, Open-Source Robotic Racecar for Education and
+Research,” 2019. [Online]. Available: https://arxiv.org/abs/1908.08031
+[19] N. P. Koenig and A. Howard, “Design and use paradigms for Gazebo,
+an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
+Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
+No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.
+[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
+“CARLA: An Open Urban Driving Simulator,” in Proceedings of the
+1st Annual Conference on Robot Learning, ser. Proceedings of Machine
+Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
+vol. 78.
+PMLR, 13-15 Nov 2017, pp. 1–16. [Online]. Available:
+http://proceedings.mlr.press/v78/dosovitskiy17a.html
+[21] Cognata, “Cognata,” Sep 2022. [Online]. Available: https://www.
+cognata.com/
+[22] T. V. Samak, C. V. Samak, S. Kandhasamy, V. Krovi, and M. Xie,
+“AutoDRIVE: A Comprehensive, Flexible and Integrated Cyber-
+Physical Ecosystem for Enhancing Autonomous Driving Research and
+Education,” 2022. [Online]. Available: https://arxiv.org/abs/2212.05241
+[23] T. V. Samak and C. V. Samak, “AutoDRIVE - Technical Report,” 2022.
+[Online]. Available: https://arxiv.org/abs/2211.08475
+[24] W. Young, W. Boebert, and R. Kain, “Proving a computer system
+secure,” The Scientific Honeyweller, vol. 6, no. 2, pp. 18–27, 1985.
+[25] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A
+Flexible and Scalable SLAM System with Full 3D Motion Estimation,”
+in 2011 IEEE International Symposium on Safety, Security, and
+Rescue
+Robotics,
+2011,
+pp.
+155–160.
+[Online].
+Available:
+http:
+//doi.org/10.1109/SSRR.2011.6106777
+[26] M.
+Jaimez,
+J.
+G.
+Monroy,
+and
+J.
+Gonzalez-Jimenez,
+“Planar
+Odometry
+from
+a
+Radial
+Laser
+Scanner.
+A
+Range
+Flow-based
+Approach,” in 2016 IEEE International Conference on Robotics
+and Automation (ICRA), 2016, pp. 4479–4485. [Online]. Available:
+http://doi.org/10.1109/ICRA.2016.7487647
+[27] D. Fox, “KLD-Sampling: Adaptive Particle Filters,” in Advances
+in
+Neural
+Information
+Processing
+Systems,
+T.
+Dietterich,
+S.
+Becker,
+and
+Z.
+Ghahramani,
+Eds.,
+vol.
+14.
+MIT
+Press,
+2001. [Online]. Available: https://proceedings.neurips.cc/paper/2001/
+file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
+[28] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
+Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
+on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
+[Online]. Available: http://doi.org/10.1109/TSSC.1968.300136
+[29] C. R¨osmann, F. Hoffmann, and T. Bertram, “Kinodynamic Trajectory
+Optimization and Control for Car-Like Robots,” in 2017 IEEE/RSJ
+International Conference on Intelligent Robots and Systems (IROS),
+2017, pp. 5681–5686. [Online]. Available: http://doi.org/10.1109/IROS.
+2017.8206458
+[30] T. V. Samak, C. V. Samak, and M. Xie, “AutoDRIVE Simulator: A
+Simulator for Scaled Autonomous Vehicle Research and Education,”
+in 2021 2nd International Conference on Control, Robotics and
+Intelligent System, ser. CCRIS’21.
+New York, NY, USA: Association
+for
+Computing
+Machinery,
+2021,
+p.
+1–5.
+[Online].
+Available:
+https://doi.org/10.1145/3483845.3483846
+[31] T. V. Samak and C. V. Samak, “AutoDRIVE Simulator - Technical
+Report,” 2022. [Online]. Available: https://arxiv.org/abs/2211.07022
+
diff --git a/29FQT4oBgHgl3EQf2zan/content/tmp_files/load_file.txt b/29FQT4oBgHgl3EQf2zan/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bec9a7108191edc3a8fb1d3accd24be68f3c4fe3
--- /dev/null
+++ b/29FQT4oBgHgl3EQf2zan/content/tmp_files/load_file.txt
@@ -0,0 +1,584 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf,len=583
+page_content='Towards Mechatronics Approach of System Design, Verification and Validation for Autonomous Vehicles Chinmay Samak∗, Tanmay Samak∗, Venkat Krovi Abstract—Modern-day autonomous vehicles are increasingly becoming complex multidisciplinary systems composed of me- chanical, electrical, electronic, computing and information sub- systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Furthermore, the individual constituent technologies em- ployed for developing autonomous vehicles have started maturing up to a point, where it seems beneficial to start looking at the synergistic integration of these components into sub-systems, systems, and potentially, system-of-systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Hence, this work applies the principles of mechatronics approach of system design, verification and validation for the development of autonomous vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Particularly, we discuss leveraging multidisciplinary co- design practices along with virtual, hybrid and physical proto- typing and testing within a concurrent engineering framework to develop and validate a scaled autonomous vehicle using the AutoDRIVE ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' We also describe a case-study of autonomous parking application using a modular probabilistic framework to illustrate the benefits of the proposed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Index Terms—Autonomous vehicles, mechatronics approach, multidisciplinary design, simulation and virtual prototyping, rapid prototyping, verification and validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' INTRODUCTION A UTOMOTIVE vehicles have evolved significantly over the course of time [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The gradual transition from purely mechanical automobiles to those with greater incorporation of electrical, electronic and computer-controlled sub-systems oc- curred in phases over the course of the past century;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' with each phase improving performance, convenience and reliability of these systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Modern vehicles are increasingly adopting electrical, electronic, computing and information sub-systems along with software algorithms for low-level control as well as high-level advanced driver assistance system (ADAS) or autonomous driving (AD) features [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This naturally brings in the interplay between different levels of mechanical, electrical, electronic, networking and software sub-systems among a single vehicle system, thereby transforming them from purely mechanical systems, which they were in the past, to complex multidisciplinary systems [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' As such, while it may have been justifiable for earlier ADAS/AD feature developers to focus on core software development, the increasing complexity and interdisciplinary nature of modern automotive systems can benefit from synergistic hardware-software co-design comple- mented with integrated verification and validation by following the mechatronics principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' ∗These authors contributed equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Krovi are with the Automation, Robotics and Mechatronics Laboratory (ARMLab), Department of Automo- tive Engineering, Clemson University International Center for Automotive Research (CU-ICAR), Greenville, SC 29607, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Email: {csamak, tsamak, vkrovi}@clemson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='edu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������������������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='�������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Extended V-model fostering mechatronics approach of system design, verification and validation for autonomous vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The model depicts evolu- tion of a concept into a product through decomposition, design, development, integration and testing across component, sub-system, system and system-of- systems levels in a unified concurrent interdisciplinary engineering framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Mechatronics engineering [4]–[6] focuses on concurrent and synergistic integration of mechanical, electrical and electronics engineering, computer science and information technology for development and validation of complex interdisciplinary systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This ideology is derived from the fact that various components of a “mechatronic” system, often belonging to a multitude of disciplines, influence each other and hence have a design impact at the component, sub-system, system and system-of-systems levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The resulting ”mechatronic” realization now builds on capabilities endowed by the vari- ous constituent layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' In such a milieu, the system devel- opment approach has also evolved from relatively ad-hoc to the more formal V-model [7], building on the modular software development and validation roadmap [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This model has evolved through several state-of-the-art progressions [9] and our work seeks to further formalize the adoption of mechatronics approach of system conceptualization, design, development, integration and testing for autonomous vehicles (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' A recent book [10] highlights best practices for industrial design, development and validation of autonomous vehicles and notes the significant adoption of model-based design (MBD) for system integration and testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' However, similar arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='13425v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='RO] 31 Jan 2023 Freewheeling Front Wheel Hub Rear Wheel Drive Actuator Front Wheel Drive Actuator Front Monocular Camera Front Binocular Camera Rear Monocular Camera Reversed Inertial Measurement Unit Reversed LIDAR and AprilTag Marker > ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Power Computation Communication Others Lights Actuators Sensors Software Chassis A B Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' AutoDRIVE ecosystem fosters mechatronics design principles at two levels: [A] primitive reconfigurability allows permutations and combinations of addition, removal or replacement of selective components and sub-assemblies of the vehicle to better suit the application;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [B] advanced reconfigurability allows complete modification of existing hardware and software architectures, and provides an opportunity for introducing new features and functionalities to the ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' adoption of such streamlined workflows by academia has lagged behind [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This gap could be explained by the virtue of standardization (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=', ISO 26262 [11], ISO/IEC 33061 [12], VDI 2221 [13], VDI 2206 [14], AUTOSAR [15], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=') in industries versus the fact that majority of academic projects are deployed using fragmented hardware-software ecosystems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' hobby platforms) with a key focus on developing low-cost initial proof-of-concept implementations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Additionally, such an opportunistic and potentially uninformed selection of hardware [16]–[18] and software [19]–[21] toolchains hinders adoption of co-design and concurrent engineering thinking to full extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' In this paper, we discuss the design philosophy and one of the key motivation factors behind AutoDRIVE ecosystem1 [22], [23] – adopting and promoting mechatronics approach of system design, verification and validation for autonomous ve- hicles, with an emphasis on creating a streamlined pathway for seamless transition to ultimate industrial practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This paper also describes a detailed case-study which demonstrates the methodical adoption of mechatronics approach for designing, developing and validating a scaled vehicle in the context of autonomous parking2 application using a modular probabilistic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' MULTIDISCIPLINARY DESIGN AutoDRIVE offers an open-access, open-interface and flex- ible ecosystem for scaled autonomous vehicle development by permitting access to and alteration of hardware as well as software aspects of the multidisciplinary autonomous vehicle design, thereby making it an apt framework for demonstrat- ing the claims and contributions of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Particularly, AutoDRIVE ecosystem offers the following two levels of reconfigurability, thereby promoting hardware-software co- design (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 1Webpage: https://autodrive-ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='io 2Video: https://youtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='be/piCyvTM2dek Primitive Reconfigurability: The native vehicle of Au- toDRIVE ecosystem, called “Nigel”, is modular enough to support out-of-the-box hardware reconfigurability in terms of swapping and replacing selective components and sub-assemblies of the vehicle, in addition to flexibly updating the vehicle firmware and/or autonomous driving software stack (ADSS) to better suit the target applica- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Advanced Reconfigurability: The completely open- hardware, open-software architecture of AutoDRIVE ecosystem allows modification of vehicle chassis param- eters (different form factors and aspect ratios), power- train configuration (variable driving performance), com- ponent mounting profiles (relocation/replacement of com- ponents), as well as firmware and ADSS architecture (software flexibility).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The fundamental step in system design is requirement spec- ification, without which the design cannot be truly validated to be right or wrong, it can only be surprising [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Since Auto- DRIVE was intended to be a generic ecosystem for rapidly prototyping autonomous driving solutions, the requirement elicitation resulted in a superset of requirements demanded by the application case study discussed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Furthermore, with AutoDRIVE, there is always a scope for updating the designs of various components, sub-systems and systems for expanding the ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' That being said, following is a summary of functional requirement specifications for Nigel as of this version of the ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' General design guidelines: – Open-source hardware and software – Inexpensive and user-friendly architecture – Manufacturing technology agnostic designs – Modularly reconfigurable components/sub-systems – Integrated and comprehensive resources and tools O D Q C 0 CddB A Chassis Power Electronics Computation Communication Software Sensors Actuators Lights PiCamera V2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1 Robot Operating System NVIDIA JetPack SDK Throttle Feedback Steering Feedback AutoDRIVE Devkit RPLIDAR A1 PiCamera V2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1 Ethernet WiFi Jetson Nano B01 Arduino Nano V3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0 Firmware MPU-6050 IMU Headlights Taillights 3A Master Switch 10A Buck Converter 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1V 5200mAh LiPo Battery LiPo Voltage Checker Module 6V DC 160 RPM 120:1 Geared Motor 6V DC 160 RPM 120:1 Geared Motor Incremental Encoder Incremental Encoder 20A Motor Driver Rear Wheels AprilTag Marker MG996R Servo Motor Steering Mechanism Front Wheels Turning Indicators Reverse Indicators Left Ticks Right Ticks INT Filtering Fusion I2C GPIO PWM USB Lights Arduino Nano V3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0 Jetson Nano B01 Encoders IMU Actuators Intensity Timing Throttle Steering SLAM x y 1 m STATIC MAP ODOMETRY LOCALIZATION NAVIGATION Global Costmap Local Costmap Global Planner Local Planner Controller VEHICLE Parking Pose Throttle/Brake Steering LIDAR Scan Save Map Load Map TF TF Odometry C Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Conceptualization and design of scaled autonomous vehicle: [A] hardware-software architecture;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [B] firmware design specifications;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [C] modular perception, planning and control architecture for autonomous parking application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='Perception sub-system shall offer: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Ranging measurements (preferably 360◦) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– RGB visual feed (preferably front as well as rear) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Positional measurements/estimation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Inertial measurements/estimation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Actuation feedback measurements/estimation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='Computation and communication sub-systems shall offer: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Hierarchical computation topology ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– GPU-enabled high-level edge computation platform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Embedded low-level computation platform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Vehicle-to-everything communication interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='Locomotion and signaling sub-systems shall offer: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Kinodynamically constrained drivetrain and steering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='– Standard automotive lighting and signaling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='The functional system requirements were decomposed into ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='mechanical,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' electronics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' firmware and ADSS design specifica- tions and carefully studied to analyze any potential trade-offs so as to finalize the components and ultimately come up with a refined system architecture design (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The proposed hardware-software architecture of the scaled autonomous vehicle system is divided into eight sub-systems viz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' chassis, power, computation, communication, software, sensors, actuators and lights, each with its own share of com- ponents (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 3-A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The embedded firmware architecture for low-level data acquisition and control is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 3-B, which links the data sources to the respective data sinks after processing the information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Finally, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 3-C depicts high-level architecture of the autonomous parking solution described in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Particu- larly, it is shown how this candidate autonomy solution uses modular algorithms for simultaneous localization and mapping (SLAM) [25], odometry estimation [26], localization [27], global [28] and local [29] path planning, and motion control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Implementation descriptions are necessarily brief due to the space limitations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' however, further details can be found in this technical report [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' VIRTUAL PROTOTYPING AND TESTING Virtual prototypes help expedite the design process by validating the designs against system requirements through simulation, and suggesting design revisions at an early stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The scaled autonomous vehicle system was virtually pro- totyped and tested in three phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' First, the mechanical specifications, motions and fit were carefully analyzed using a parametric computer aided design (CAD) assembly of the system in conjunction with the physical modeling approach for multi-body dynamic systems (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4-A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Parallelly, the electronic sub-systems were prototyped using the physical modeling approach, and also by adopting electronic design au- tomation (EDA) workflow (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Next, the firmware for low-level control (front wheel steering angle and rear wheel velocity) of the vehicle was verified to produce reliable results (within a specified tolerance of 3e-2 rad for steering angle and 3e-1 rad/s for wheel velocity) through model-in-the-loop (MIL) and software-in-the-loop (SIL) testing (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The knowledge gained through this process was used to update the AutoDRIVE Simulator (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4-D) from its initial version discussed in [30], [31] to the one described in [22], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The updated simulator was then employed for verification and validation of individual ADSS modules and finally, the integrated autonomous parking solution was also verified using the same toolchain (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5-A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Particularly, we tested the vehicle in multiple environments, which included unit tests for validating the SLAM, odometry, localization, planning and control algorithms, followed by verification of the integrated pipeline with and without the addition of dynamic obstacles, which were absent while mapping the en- vironment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The autonomous navigation behavior was analyzed for 5 sample trials and verified to fit within an acceptable tolerance threshold of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='5e-2 m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' the acceptable parking pose tolerance was set to be 5e-2 m for linear positions in X and Y directions and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='73e-2 rad for the angular orientation about Z-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' A B D Firmware Model Vehicle Model MIL SIL Firmware Code Vehicle Model Vehicle Model Embedded Firmware PIL Embedded Firmware Real-Time Vehicle Model HIL VIL Embedded Firmware Physical Vehicle C E Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Development and system integration of scaled autonomous vehicle: [A] mechanical assembly;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [B] electronic schematic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [C] MBD workflow depicting MIL, SIL, PIL, HIL and VIL testing of vehicle firmware;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [D] virtual prototype in AutoDRIVE Simulator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [E] physical prototype in AutoDRIVE Testbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' HYBRID PROTOTYPING AND TESTING All models or virtual prototypes involve certain degrees of abstraction, ranging from model fidelity to simulation settings, and as such, cannot be treated as perfect representations of their real-world counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Therefore, once the virtual prototyping and preliminary testing of the system has been accomplished, the next step is to prototype and validate it in a hybrid fashion (partly virtual and partly physical), focusing more on high-level system integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This method of hybrid prototyping and testing is extremely beneficial since it follows a gradual transition from simulation to reality, thereby enabling a more faithful system verification framework and providing a room for potential design revisions even before complete physical prototyping is accomplished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The scaled vehicle system was subjected to hybrid testing by running processor-in-the-loop (PIL), hardware-in-the-loop (HIL) and vehicle-in-the-loop (VIL) tests on the embedded firmware for confirming minimum deviation from MIL and SIL results, specified by the same tolerance values of 3e-2 rad for steering angle and 3e-1 rad/s for wheel velocity (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The performance of integrated autonomous vehicle system was then validated using hybrid testing in two phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' First, we deployed the ADSS on the physical vehicle’s on-board computer, which was interfaced with AutoDRIVE Simulator to receive live sensor feed from the virtual vehicle, process it and generate appropriate control commands, and finally relay these commands back to the simulated vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Specifically, for the autonomous parking solution (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5-A), we deployed and tested each of the SLAM, odometry, localization, planning and control algorithms for satisfactory performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This was naturally followed by deployment and validation of the integrated pipeline for accomplishing reliable (within a specified tolerance of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='5e-2 m) source-to-goal navigation (within a goal pose tolerance of 5e-2 m and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='73e- 2 rad) in different environments, wherein a subset of cases included dynamic obstacles as discussed earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Next, we collected real-world sensor data using AutoDRIVE Testbed and replayed it as a real-time stimulus to the ADSS deployed on the physical vehicle’s on-board computer run- ning in-the-loop with AutoDRIVE Simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This way, we increased the “real-world” component of the hybrid test and verified the autonomous parking solution for expected perfor- mance (within same tolerance values as mentioned earlier).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Particularly, the real-world data being collected/replayed was occupancy-grid map of the environment built by executing the SLAM module on the physical vehicle, which inherently resulted as a unit test of this module in real-world conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The simulated vehicle had to then localize against this real- world map while driving in the virtual scene and navigate autonomously from source to goal (parking) pose, which further tested the robustness of the integrated pipeline against minor environmental variations and/or vehicle behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' PHYSICAL PROTOTYPING AND TESTING Once the system confirms satisfactory performance un- der hybrid testing conditions, the next and final stage in mechatronic system development is physical prototyping and testing (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4-E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' In order to physically validate the modular autonomy application (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5-B), we initially carried out unit tests to confirm the performance of each MPU9250 Right Indicators LeftIndicators 个个 ArduinoNano JetsonNano RESET VIN Switch (Rev3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0) GND 5V D11/MOSI D12/MISO DrivePower D13/SCK 3V3 DO/F D1/TX EncoderPower V D10 交 8 8 LED GND Drive GND 1111 Encoder Signal Signal Taillights (LowBeam) Headlights (High Beam) Reverse Indicators Drive Headlights 个个个 SteerO OSteering Angle (rad) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='5 MIL Test SIL Test C PIL Test HIL Test VIL Test 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (s)Wheel Velocity (rad/s) 10 MIL Test SIL Test C PIL Test HIL Test VIL Test 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (s)24 s 16 s 08 s A 00 s 09 s 18 s 00 s 12 s 24 s 08 s 16 s 24 s 24 s 08 s 16 s 24 s 16 s 08 s ii ii iii iv v 00 s 09 s 18 s 00 s 12 s 24 s 08 s 16 s 24 s 24 s 08 s 16 s Start Finish ii ii iii iv v C B Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Verification and validation of scaled autonomous vehicle performance: [A] virtual/hybrid and [B] physical validation of (i) integrated system, unit testing of (ii) SLAM, (iii) odometry, (iv) localization, (v) planning and control modules in AutoDRIVE Simulator/Testbed;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [C] repeatability/reliability analysis represented as mean and standard deviation of 5 trials for each deployment type with acceptable trajectory tolerance in green and parking tolerance in purple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' of the SLAM, odometry, localization, planning and control algorithms followed by deployment of the integrated stack for autonomous parking application (refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' The vehicle was confirmed to exhibit a reliable (within a specified tolerance of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='5e-2 m) source-to-goal navigation (within a goal pose tolerance of 5e-2 m and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='73e-2 rad).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Again, for testing the robustness of ADSS we introduced dynamic obstacles that were not existent while environment mapping was performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' CONCLUSION In this work, we presented an extended V-model fostering mechatronics approach of system design, verification and validation for autonomous vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Further, we discussed the design philosophy of AutoDRIVE ecosystem, which is to exploit and promote the mechatronics approach for au- tonomous vehicle development across scales and inculcate a habit of following it from academic education and research to industrial deployments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' We also demonstrated the methodical adoption of mechatronics approach for designing, developing and validating a scaled autonomous vehicle in the context of a detailed case study pertaining to autonomous parking using a modular probabilistic framework;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' including both qualitative and quantitative remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' We showed that the design, devel- opment as well as verification and validation of the scaled autonomous vehicle with regard to the aforementioned case study could be successfully accomplished within a stringent time-frame of about one month [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' It is to be noted that al- though the exact timeline of any multidisciplinary project may vary depending upon factors such as skill set, experience and number of individuals involved, lead time in the supply chain, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=', the mechatronics approach definitely proves to be efficient in terms of minimizing the design-development iterations by the virtue of synergistic integration in a concurrent engineering thinking framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' This provides a room for the rectification of any design issues early in the development cycle, thereby increasing the chances of successful verification and validation with minimal loss of time and resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' REFERENCES [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Beiker, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Hansson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Suneson, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Uhl, “How the convergence of automotive and tech will create a new ecosystem,” McKinsey Company, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Meissner, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Shirokinskiy, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Alexander, “Computer on Wheels: Disruption in Automotive Electronics and Semiconductors,” Roland Berger: Munich, Germany, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Gumiel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Mabe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Jim´enez, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Barruetabe˜na, “Introducing the Electronic Knowledge Framework into the Traditional Automotive Suppliers’ Industry: From Mechanical Engineering to Mechatronics,” Businesses, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 273–289, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='mdpi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/2673-7116/2/2/18 [4] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Bolton, Mechatronics: Electronic Control Systems in Mechanical Engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Longman Scientific & Technical, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='id=XiBTAAAAMAAJ [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' de Silva, Mechatronics: An Integrated Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Taylor & Francis, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='id= CjB2ygeR95cC [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Onwubolu, Mechatronics: Principles and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Elsevier Science, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='id= bgK8kCMpD YC [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Gausemeier and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Moehringer, “VDI 2206- A New Guideline for the Design of Mechatronic Systems,” IFAC Proceedings Volumes, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 785–790, 2002, 2nd IFAC Conference on Mechatronic Systems, Berkeley, CA, USA, 9-11 December.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/science/article/pii/S1474667017340351 [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Br¨ohl and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Dr¨oschel, Das V-Modell: der Standard f¨ur die Softwareentwicklung mit Praxisleitfaden, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Software - Anwen- dungsentwicklung - Informationssysteme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Oldenbourg, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='id=B2iKAAAACAAJ [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Eigner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Dickopf, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Apostolov, “The Evolution of the V-Model: From VDI 2206 to a System Engineering Based Approach for Developing Cybertronic Systems,” in Product Lifecycle Management and the Industry of the Future, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' R´ıos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Bernard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Bouras, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Foufou, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Cham: Springer International Publishing, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 382–393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 1007/978-3-319-72905-3 34 [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Pathrose, ADAS and Automated Driving: A Practical Approach to Verification and Validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' SAE International, Jun 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4271/R-525 [11] Road vehicles - Functional safety, ISO 26262:2018 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Geneva, CH: International Organization for Standardization, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [12] Information technology Process assessment, ISO/IEC TS 33061:2021 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Geneva, CH: International Organization for Standardization and International Electrotechnical Commission (ISO/IEC JTC 1), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [13] Design of technical products and systems, VDI 2221:2019 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' D¨usseldorf, DE: The Association of German Engineers, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 三 三 AutoDRlVE SimulatorSimulator Deployment Real-World Map Replay Hybrid Deployment Real-World Deployment 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='8- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='6- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4- (m) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2- Coordinate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0- X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='6- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4 Y Coordinate (m)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='8- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='6- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2- inate Coordi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0- X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='6- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='4 Y Coordinate (m)[14] Development of mechatronic and cyber-physical systems, VDI 2206:2021 ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' D¨usseldorf, DE: The Association of German Engineers, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' F¨urst, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' M¨ossinger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Bunzel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Weber, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Kirschke-Biller, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Heitk¨amper, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Kinkelin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Nishikawa, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Lange, “AUTOSAR A Worldwide Standard is on the Road,” in 14th International VDI Congress Electronic Systems for Vehicles, Baden-Baden, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 62, 2009, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Karaman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Anders, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Boulet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Connor, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Gregson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Guerra, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Guldner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Mohamoud, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Plancher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Shin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Vivilecchia, “Project-based, collaborative, algorithmic robotics for high school students: Programming self-driving race cars at MIT,” in 2017 IEEE Integrated STEM Education Conference (ISEC), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 195–203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://mit-racecar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='io [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' O’Kelly, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Sukhil, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Abbas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Harkins, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Kao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Pant, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Mangharam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Agarwal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Behl, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Burgio, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Bertogna, “F1/10: An Open-Source Autonomous Cyber-Physical Platform,” 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/abs/1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='08567 [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Srinivasa, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Lancaster, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Michalove, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Schmittle, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Summers, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Rockett, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Smith, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Choudhury, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Mavrogiannis, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Sadeghi, “MuSHR: A Low-Cost, Open-Source Robotic Racecar for Education and Research,” 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/abs/1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='08031 [19] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Koenig and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Howard, “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='04CH37566), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 3, 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2149–2154 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Dosovitskiy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Ros, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Codevilla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Lopez, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Koltun, “CARLA: An Open Urban Driving Simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Proceedings of Machine Learning Research, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Levine, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Vanhoucke, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Goldberg, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' PMLR, 13-15 Nov 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: http://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='press/v78/dosovitskiy17a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='html [21] Cognata, “Cognata,” Sep 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' cognata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='com/ [22] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Kandhasamy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Krovi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Xie, “AutoDRIVE: A Comprehensive, Flexible and Integrated Cyber- Physical Ecosystem for Enhancing Autonomous Driving Research and Education,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/abs/2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='05241 [23] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, “AutoDRIVE - Technical Report,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='08475 [24] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Young, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Boebert, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Kain, “Proving a computer system secure,” The Scientific Honeyweller, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 18–27, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [25] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Kohlbrecher, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' von Stryk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Meyer, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Klingauf, “A Flexible and Scalable SLAM System with Full 3D Motion Estimation,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 155–160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: http: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1109/SSRR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='6106777 [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Jaimez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Monroy, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Gonzalez-Jimenez, “Planar Odometry from a Radial Laser Scanner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' A Range Flow-based Approach,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4479–4485.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: http://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1109/ICRA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='7487647 [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Fox, “KLD-Sampling: Adaptive Particle Filters,” in Advances in Neural Information Processing Systems, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Dietterich, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Becker, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Ghahramani, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' MIT Press, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='cc/paper/2001/ file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='pdf [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Hart, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Nilsson, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 100–107, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: http://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1109/TSSC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='300136 [29] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' R¨osmann, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Hoffmann, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Bertram, “Kinodynamic Trajectory Optimization and Control for Car-Like Robots,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 5681–5686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: http://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1109/IROS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='8206458 [30] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Xie, “AutoDRIVE Simulator: A Simulator for Scaled Autonomous Vehicle Research and Education,” in 2021 2nd International Conference on Control, Robotics and Intelligent System, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' CCRIS’21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' New York, NY, USA: Association for Computing Machinery, 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='1145/3483845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='3483846 [31] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Samak, “AutoDRIVE Simulator - Technical Report,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
+page_content='07022' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/29FQT4oBgHgl3EQf2zan/content/2301.13425v1.pdf'}
diff --git a/2dE1T4oBgHgl3EQf5gVO/vector_store/index.faiss b/2dE1T4oBgHgl3EQf5gVO/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..810ca982a357e07d132d9f8e3d6302323aed488d
--- /dev/null
+++ b/2dE1T4oBgHgl3EQf5gVO/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:40def2a7e6975530d9f8a60bababd272ee9a4ce2986163ecb85c9ab45061b5ae
+size 3735597
diff --git a/3NE1T4oBgHgl3EQfSQNJ/content/2301.03063v1.pdf b/3NE1T4oBgHgl3EQfSQNJ/content/2301.03063v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..ecb37a3045d489dde63134f81344957937eebf65
--- /dev/null
+++ b/3NE1T4oBgHgl3EQfSQNJ/content/2301.03063v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6a4a0475fa1d8c0ba0fdb4f165132c3821cd9ee9cebf819e5bb94983efd1d16b
+size 335398
diff --git a/3NE1T4oBgHgl3EQfSQNJ/vector_store/index.pkl b/3NE1T4oBgHgl3EQfSQNJ/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..31db07d89e0bcdf89843bbd8df744c475d943cb7
--- /dev/null
+++ b/3NE1T4oBgHgl3EQfSQNJ/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fc0c0f702bb117af2144f30d4a0925ca1fd7304bab1cfa5f6d1377f2f2e51ae6
+size 321733
diff --git a/4NE3T4oBgHgl3EQfogr8/content/tmp_files/2301.04635v1.pdf.txt b/4NE3T4oBgHgl3EQfogr8/content/tmp_files/2301.04635v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..95976b5c6274eec3d478d91a866407f29e2dbe44
--- /dev/null
+++ b/4NE3T4oBgHgl3EQfogr8/content/tmp_files/2301.04635v1.pdf.txt
@@ -0,0 +1,1918 @@
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+Abstract. Let A be a multiset with elements in an abelian group. Let FS(A)
+be the multiset containing the 2|A| sums of all subsets of A.
+We study the reconstruction problem “Given FS(A), is it possible to identify
+A?”, and we give a satisfactory answer for all abelian groups. We prove that,
+up to identifying multisets through a natural equivalence relation, the function
+A �→ FS(A) is injective (and thus the reconstruction problem is solvable) if and
+only if every order n of a torsion element of the abelian group satisfies a certain
+number-theoretical property linked to the multiplicative group (Z/nZ)∗.
+The core of the proof relies on a delicate study of the structure of cyclotomic
+units. Moreover, as a tool, we develop an inversion formula for a novel discrete
+Radon transform on finite abelian groups that might be of independent interest.
+1. Introduction
+Let G be an abelian group and let A = {a1, a2, . . . , a|A|} be a finite multiset (i.e., a
+set with repeated elements) with elements in G (see Section 2.1 for a formal definition
+of multiset). Its subset sums multiset FS(A), that is, the multiset containing the
+2|A| sums over all subsets of A (taking into account multiplicities), is defined as
+FS(A) :=
+� �
+i∈I
+ai : I ⊆ {1, 2, . . . , |A|}
+�
+.
+We study the following reconstruction question:
+If one is given FS(A), is it possible to identify A?
+As we will see, this strikingly simple question features a rich structure and its solution
+spans a wide range of mathematics: from the theory of cyclotomic units, to an
+inversion formula for a novel discrete Radon transform. Before going deeper into
+the problem, let us give some background on related results in the literature.
+If, instead of FS(A), one is given the sums over all the
+�|A|
+s
+�
+subsets with fixed
+size equal to s (e.g., if s = 2, the sums over all pairs), the reconstruction problem
+has been studied in the case of a free abelian group G = Zd [SS58; GFS62]. For
+pairs (i.e. s = 2), the reconstruction is possible when the size of A is not a power of
+2 [SS58, Theorem 1 and Theorem 2]. For s-subsets with s > 2, the reconstruction
+is possible if the size of A does not belong to a finite subset of bad sizes [GFS62,
+Section 4]. See the recent survey [Fom19] for a detailed presentation of the history
+of this problem.
+It might seem that if one is only provided with the sums of s-subsets (i.e., subsets
+with size s) then the reconstruction is strictly harder than if one is provided the
+sums of all subsets. This is not true because the information is not ordered and
+1
+arXiv:2301.04635v1 [math.NT] 11 Jan 2023
+
+2
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+thus, even if we have more information, it is also harder to determine which value
+corresponds to which subset.
+Let us now go back to the reconstruction problem for FS. The first important
+observation is the following one. Given a multiset A and a subset B ⊆ A whose
+sum equals 0 (i.e. �
+b∈B b = 0), if we flip the signs of elements of B then FS does
+not change. So, if A′ := (A \ B) ∪ (−B), then FS(A) = FS(A′) (see Fig. 1 for an
+explanation).
+A
+B
+C
+A′
+−(B \ C)
+C \ B
+Figure 1.
+Proof by picture of A ∼0 A′ =⇒ FS(A) = FS(A′).
+The set C in A (highlighted in gray) and the set (C\B)∪(−(B\C))
+in A′ (highlighted in gray) have the same sum because the sum of
+the elements in B is assumed to be 0. Thus, we have a bijection
+between the subsets of A and A′ which keeps the sum unchanged,
+hence FS(A) = FS(A′).
+Hence, if we only know FS(A), the best we can hope for is to identify the equiv-
+alence class of A with respect to the following equivalence relation.
+Definition 1.1. Given two multisets A, A′ with elements in G, we say that A ∼0 A′
+if and only if A′ can be obtained from A by flipping the signs of the elements of a
+subset of A with null sum, i.e., if there exists B ⊆ A, with �
+b∈B b = 0, such that
+A′ = (A \ B) ∪ (−B).
+We have already observed that if A ∼0 A′ then FS(A) = FS(A′). If the group
+is G = Z, this turns out to be an “if and only if” (see Proposition 6.3), while if
+G = Z/2Z it is not (indeed, in Z/2Z one has FS({0, 1}) = {0, 0, 1, 1} = FS({1, 1})).
+It is natural to consider the class of abelian groups such that the double implication
+holds, i.e. the fibers of FS coincide with the equivalence classes of ∼0.
+Definition 1.2. A group G is FS-regular if, for any two multisets A, A′ with ele-
+ments in G, it holds FS(A) = FS(A′) if and only if A ∼0 A′.
+We have already observed that Z/2Z is not FS-regular; moreover, any group con-
+taining a subgroup that is not FS-regular cannot be FS-regular. The next smallest
+non-FS-regular group is elusive; in fact, it turns out that Z/nZ is FS-regular for
+n = 3, 5, 7, 9, 11, 13, 15. But Z/17Z is not FS-regular, and then Z/nZ is FS-regular
+for n = 19, 21, 23, 25, 27, 29 and not FS-regular for m = 31, 33. These small exam-
+ples suggest that the FS-regularity of G may be related to the behavior of powers
+of two in G (notice that 17, 31, 33 are adjacent to a power of two).
+Our main result is the characterization of FS-regular groups. In order to state
+our result, we need to introduce a subset of the natural numbers.
+Definition 1.3. Let OFS be the set of odd natural numbers n ≥ 1 such that (Z/nZ)∗
+is covered by {±2j : j ≥ 0}; more precisely, for each x ∈ Z relatively prime with n
+there exists j ≥ 0 such that either x − 2j or x + 2j is divisible by n.
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+3
+Remark. The first few elements of OFS are
+OFS = {1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 35, 37, 39, 45, 47, 49, 53, 55, . . . },
+and the first few missing odd numbers are
+(2N + 1) \ OFS = {17, 31, 33, 41, 43, 51, 57, 63, 65, 73, 85, 89, 91, 93, 97, 99, 105, . . . }.
+Let us remark that if n ∈ OFS then also all divisors of n belong to OFS. Moreover,
+one can show that if p, q, r are distinct odd primes, then pqr ̸∈ OFS, and therefore
+if n ∈ OFS then n has at most two distinct prime factors.
+We can now state our main theorem.
+Theorem 1.1 (Characterization of FS-regular groups). An abelian group G is FS-
+regular if and only if ord(g) ∈ OFS for all g ∈ G with finite order.
+As a tool in the proof of Theorem 1.1 (see Section 1.1) we define a novel discrete
+Radon transform for abelian groups and we prove an inversion formula for it. We
+refer to Section 5 for some motivation on the definition and for an in-depth discussion
+of the existing related literature. Since the invertibility of the Radon transform may
+have other applications beyond the scope of this paper, we state it here for the
+interested readers.
+Theorem 1.2 (Invertibility of the discrete Radon transform). Let n, d ≥ 1 be pos-
+itive integers. Given a function f : (Z/nZ)d → C, its discrete Radon transform
+Rf = Rn,df : Hom((Z/nZ)d, Z/nZ) × Z/nZ → C is defined as
+Rf(ψ, c) =
+�
+x: ψ(x)=c
+f(x).
+This discrete Radon transform is invertible and admits an inversion formula (see
+Definition 5.2).
+1.1. Sketch of the proof and structure of the paper. Let us briefly describe
+the strategy that the proof follows, postponing a more detailed presentation to the
+dedicated sections.
+For the negative part of the statement, it is sufficient to show that Z/nZ is
+not FS-regular if n ̸∈ OFS. For this, we construct an explicit counterexample in
+Proposition 4.1.
+Proving that if the orders belong to OFS then the group is FS-regular is more
+complicated and relies on some nontrivial properties of the units of cyclotomic fields
+and on the inversion formula for a novel discrete Radon transform on finite abelian
+groups. The proof is divided into three steps.
+Step 1: Proof for G = Z/nZ. Through the polynomial identity
+�
+s∈FS(A)
+ts ≡
+�
+a∈A
+(1 + ta)
+(mod tn − 1),
+we reduce the FS-regularity of Z/nZ to the study of the kernel of the map
+Zn ∋ x = (x0, x1, . . . , xn−1) �→
+� n−1
+�
+j=0
+(1 + ωj
+d)xj�
+d|n,
+
+4
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+where ωd ∈ C is a d-th primitive root of unity and the codomain of the map consists
+of tuples indexed by the divisors of n. Thanks to a dimensional argument, identifying
+the kernel of such map is equivalent to identifying its image, which is exactly what
+we do in Lemma 4.4. This is the hardest and most technical proof of the whole
+paper. Up to this point, we have used only that n is odd. The fact that n ∈ OFS
+is needed in the computation of the rank of the image, which relies heavily on the
+theory of cyclotomic units (see Lemma 4.2).
+This step is carried out in Section 4.
+Step 2: Z/nZ is FS-regular
+=⇒
+(Z/nZ)d is FS-regular. Take A, A′ multisets
+with elements in (Z/nZ)d such that FS(A) = FS(A′).
+Given a homomorphism
+ψ : (Z/nZ)d → Z/nZ, by linearity, it holds FS(ψ(A)) = FS(ψ(A′)), and since Z/nZ
+is FS-regular this implies that ψ(A) ∼0 ψ(A′). So, we know that ψ(A) ∼0 ψ(A′)
+for all homomorphisms ψ : (Z/nZ)d → Z/nZ. In order to deduce that A ∼0 A′,
+we introduce a novel discrete Radon transform (see Definition 5.1) and we prove an
+inversion formula (see Definition 5.2 and Theorem 1.2) which may be of indepen-
+dent interest. This allows us to reconstruct a multiset B ∈ M((Z/nZ)d) from its
+projections {φ(B) : φ ∈ Hom((Z/nZ)d, Z/nZ)}.
+This step is performed in Section 5.
+Step 3: G is FS-regular
+=⇒
+G ⊕ Z is FS-regular.
+In this step, we exploit
+crucially that Z is totally ordered. The argument is short and purely combinatorial.
+This is done in Section 6.
+Once these three steps are established, Theorem 1.1 follows naturally, as shown
+in Section 7. Let us remark here that our proof is not constructive, hence it does
+not provide an efficient algorithm to find the ∼0-equivalence class of A if FS(A) is
+known1.
+To make the paper accessible to a broad audience, in Section 2 we recall basic
+facts about multisets, abelian groups, and cyclotomic units.
+Acknowledgements. The authors are thankful to Fabio Ferri for providing valu-
+able suggestions and references about the theory of cyclotomic units, and also to
+Michele D’Adderio and Elia Bru`e for their comments and feedback on an early ver-
+sion of the manuscript. The second author is supported by the National Science
+Foundation under Grant No. DMS-1926686.
+2. Notation and Preliminaries
+2.1. Multisets. A multiset with elements in a set X is an unordered collection
+of elements of X which may contain a certain element more than once [Bli89]. For
+example, {1, 1, 2, 2, 3} is a multiset. Rigorously, a multiset A is encoded by a function
+µA : X → Z≥0 (Z≥0 denotes the set of nonnegative integers) such that µA(x)
+represents the multiplicity of the element x in A. For example, if A = {1, 1, 2, 2, 3}
+then µA(1) = 2, µA(2) = 2, µA(3) = 1.
+1The nonconstructive part of the proof is contained Section 4. In fact, we show that a certain
+map is injective by proving its surjectivity and then applying a standard dimension argument.
+This kind of reasoning does not produce an efficient way to invert the map we have proven to be
+injective.
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+5
+A multiset A is finite if �
+x∈X µA(x) < ∞. The cardinality of a finite multiset
+A ∈ M(X) is given by |A| := �
+x∈X µA(x).
+Given a set X, let us denote with M(X) the family of finite multisets with
+elements in X.
+Let us define the usual set operations on multisets. Notice that all of them are
+the natural generalization of the standard version when one takes into account the
+multiplicity of elements. Fix two multisets A, B ∈ M(X).
+Membership: We say that x ∈ X is an element of A, denoted by x ∈ A, if
+µA(x) ≥ 1.
+Inclusion: We say that A is a subset of B, denoted by A ⊆ B, if µA(x) ≤ µB(x)
+for all x ∈ X.
+Union: The union A∪B ∈ M(X) is defined as µA∪B(x) := µA(x)+µB(x). Hence,
+{1} ∪ {1, 2} = {1, 1, 2}.
+Cartesian product: The Cartesian product A × B ∈ M(X × X) is defined as
+µA×B((x1, x2)) = µA(x1)µB(x2).
+Difference: If A ⊆ B, the difference B \A is defined as µB\A(x) := µB(x)−µA(x).
+Pushforward: Given a function f : X → Y , the pushforward f(A) ∈ M(Y ) of the
+multiset A (denoted also by {f(a) : a ∈ A}) is defined as
+µf(A)(y) =
+�
+x∈f −1(y)
+µA(x).
+Power set: The power set of A (the family of subsets of A), denoted by P(A) ∈
+M(M(X)), is a multiset defined recursively as follows. For the empty mul-
+tiset, we have P(∅) := {∅}; otherwise let a ∈ A be an element of A and
+define
+P(A) := P(A \ {a}) ∪
+�
+A′ ∪ {a} : A′ ∈ P(A \ {a})
+�
+.
+Notice that |P(A)| = 2|A|. Whenever we iterate over the subsets of A (e.g.,
+{f(A′) : A′ ⊆ A} or �
+A′⊆A f(A′)), the iteration has to be understood over
+P(A) (hence the subsets are counted with multiplicity).
+Taking the complement is an involution of the power set, i.e., P(A) =
+{A \ A′ : A′ ∈ P(A)}, and we have the following identity for the power set
+of a union
+P(A ∪ B) = {A′ ∪ B′ : (A′, B′) ∈ P(A) × P(B)}.
+Sum (and product): If the set X is an additive abelian group, we can define the
+sum � A ∈ X of the elements of A as
+�
+A :=
+�
+x∈X
+µA(x)x.
+Analogously, if X is a multiplicative abelian group, one can define the prod-
+uct � A of the elements of A.
+2.2. Abelian Groups. Let us recall some basic facts about abelian groups that we
+will use extensively later on.
+
+6
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+Any finitely generated abelian group is isomorphic to a finite product of cyclic
+groups [Lan02, Chapter I, Section 8]. We denote with Z/nZ the cyclic group with
+n elements.
+Given some elements g1, g2, . . . , gk ∈ G of an abelian group, we denote with
+⟨g1, g2, . . . , gk⟩ the subgroup generated by such elements. Given an element g ∈ G,
+its order (which may be equal to ∞) is denoted by ord(g).
+For an abelian group G, its rank rk(G) is the cardinality of a maximal set of
+Z-independent2 elements of G. Let us list some useful properties of the rank (see
+[Lan02, Chapter I and XVI]).
+• Any finitely generated abelian group G is isomorphic to Zrk(G) ⊕ G′ where
+G′ is a finite abelian group.
+• Given two abelian groups G, H, it holds rk(G ⊕ H) = rk(G) + rk(H).
+• For a homomorphism φ : G → H of abelian groups, it holds rk(G) =
+rk(ker φ) + rk(Im φ).
+• An abelian group has null rank if and only if all elements have finite order.
+• Let G1, G2, G3 be three abelian groups and φ1 : G1 → G2, φ2 : G2 →
+G3 be two homomorphisms with full rank, i.e. rk(Im φ1) = rk(G2) and
+rk(Im φ2) = rk(G3). Then φ2 ◦ φ1 : G1 → G3 has full rank as well, i.e.
+rk(Im φ2 ◦ φ1) = rk(G3)
+• Given an abelian group G, let us denote with G ⊗ Q its tensor product (as
+a Z-module) with Q (see [Lan02, Chapter XVI]). The dimension of G ⊗ Q
+as vector space over Q coincides with rk(G).
+• For a homomorphism φ : G → H of abelian groups, let φ⊗Q : G⊗Q → H⊗Q
+be its tensorization with Q. It holds rk(Im φ) = dimQ(Im (φ ⊗ Q)).
+2.3. Units of cyclotomic fields. Given n ≥ 1, let ωn := exp(2πi/n) be the prim-
+itive n-th root of unity with minimum positive argument.
+The algebraic number field Q(ωn) is called cyclotomic field. It is well-known that
+the ring of integers of Q(ωn) coincides with Z[ωn]. Our main focus is the group of
+units of Q(ωn), that consists of the invertible elements of its ring of integers.
+For 0 < r < n and s ≥ 1 coprime with n, the element ξ := 1−ωrs
+n
+1−ωrn is a unit of
+Q(ωn). Indeed ξ = 1+ωr
+n +· · ·+ω(s−1)r
+n
+∈ Z[ωn] and, if u ∈ N is such that n divides
+us − 1, then
+ξ−1 = 1 − ωrus
+n
+1 − ωrs
+n
+= 1 + ωrs
+n + · · · + ω(u−1)rs
+n
+∈ Z[ωn].
+It turns out that these units are sufficient to generate a subgroup of finite index
+of the units of Q(ωn). The following statement follows from [Was97, Theorem 8.3
+and Theorem 4.12].
+Theorem 2.1. For any odd n ≥ 3, the multiplicative group Cn ⊆ C generated by
+�1 − ωrs
+n
+1 − ωrn
+: 0 < r < n, s ≥ 1 coprime with n
+�
+is a subgroup of finite index of the units of Q(ωn).
+2Some elements g1, g2, . . . , gk ∈ G are Z-independent if, whenever �
+i aigi = 0 for some
+a1, a2, . . . , ak ∈ Z, it holds a1 = a2 = · · · = ak = 0.
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+7
+Thus, applying Dirichlet’s unit Theorem (see [Mar77, Theorem 38]), we are able
+to compute the rank of Cn (since it coincides with the rank of the group of units of
+Q(ωn)).
+Corollary 2.2. For any odd n ≥ 3, we have rk(Cn) = ϕ(n)
+2
+− 1, where ϕ is Euler’s
+totient function (and Cn is defined in Theorem 2.1).
+The units of Q(ωn) satisfy a family of nontrivial relations known as distribution
+relations (see [Was97, p. 151]). We recall here the relations in the form we will need.
+Notice that 1+ωj
+n is a unit for 1 ≤ j < n because of the identity 1+ωj
+n = 1−ω2j
+n
+1−ωj
+n ∈ Cn.
+Proposition 2.3 (Distribution relations). Let n ≥ 1 be an odd integer and let p be
+one of its prime divisors3. For any 0 ≤ j < n
+p , the identity
+p−1
+�
+k=0
+(1 + ωj+kn/p
+n
+) = 1 + ωjp
+n
+holds.
+Proof. The numbers {1 + ωj+kn/p
+n
+}0≤k
0.
+We claim that, for any 0 ≤ j < n, it holds
+(4.3)
+uS,j − 1
+p
+p−1
+�
+k=0
+uS,j+km/p = uS′,j − 1
+puS′,jp.
+We prove Eq. (4.3) by looking at the projections of both sides onto Qd/Dd and
+considering various cases depending on the divisor d.
+• If d ̸∈ S, then d ̸∈ S′ (since S′ ⊆ S) and thus we have
+ud
+S,j − 1
+p
+p−1
+�
+k=0
+ud
+S,j+km/p = 0 = ud
+S′,j − 1
+pud
+S′,jp.
+• If d ∈ S and υp(d) < υp(S), then d |
+m
+p
+and therefore ud
+S,j+km/p =
+[ed
+j+km/p]Dd = [ed
+j]Dd = ud
+S,j.
+Since υp(d) < υp(S) implies that d ̸∈ S′,
+we deduce
+ud
+S,j − 1
+p
+p−1
+�
+k=0
+ud
+S,j+km/p = ud
+S,j − 1
+p
+p−1
+�
+k=0
+ud
+S,j = 0 = ud
+S′,j − 1
+pud
+S′,jp.
+• If d ∈ S and υp(d) = υp(S), then it holds
+(4.4)
+�
+0, m
+p mod d, 2m
+p mod d, . . . , (p−1)m
+p mod d
+�
+=
+�
+0, d
+p, 2d
+p, . . . , (p−1)d
+p
+�
+.
+To prove the latter identity, notice that for any 0 ≤ k < p, we have
+�
+k m
+p mod d
+�
+=
+�
+k m
+d mod p
+�d
+p
+and therefore the identity between sets follows from the fact that m/d is not
+divisible by p.
+6Here υp(x) denotes the p-adic valuation of a nonzero integer x, i.e. the maximum exponent
+h ≥ 0 such that ph divides x.
+
+14
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+Exploiting Eq. (4.4) and recalling that vd
+p,j ∈ Dd, we obtain
+ud
+S,j − 1
+p
+p−1
+�
+k=0
+ud
+S, j+km/p =
+�
+ed
+j − 1
+p
+p−1
+�
+k=0
+ed
+j+km/p
+�
+Dd
+=
+�
+ed
+j − 1
+p
+p−1
+�
+k=0
+ed
+j+kd/p
+�
+Dd
+=
+�
+ed
+j − 1
+p(ed
+jp − vd
+p,j)
+�
+Dd
+=
+�
+ed
+j − 1
+ped
+jp
+�
+Dd
+= ud
+S′,j − 1
+pud
+S′,jp,
+where in the last steps we used that d ∈ S′ (which is equivalent to the
+assumptions d ∈ S and υp(d) = υp(S)).
+Since we have covered all possible cases, Eq. (4.3) is proven.
+The set S is solvable, therefore the left-hand side of Eq. (4.3) belongs to the image
+of Ψn ⊗ Q, and thus also uS′,j − 1
+puS′,jp belongs to Im (Ψn ⊗ Q) for all 0 ≤ j < n.
+Lemma 4.3, applied with vj := uS′,j, λ := 1/p, and σ(j) := (jp mod n), guarantees
+that also uS′,j belongs to the image of Ψn ⊗ Q for all 0 ≤ j < n, which proves that
+S′ is solvable as desired.
+□
+As a simple consequence of Lemma 4.5, we claim that if S is solvable, then, for
+any prime divisor p of n and for any 0 ≤ h ≤ υp(n), we have that {s ∈ S : υp(s) = h}
+is also solvable. Let us prove it by induction on h, starting from h = υp(n) and going
+backward to h = 0.
+If {s ∈ S : υp(s) = υp(n)} is empty, then it is solvable; otherwise we can apply
+Lemma 4.5 and obtain again that it is solvable. Now, we assume that {s ∈ S :
+υp(s) = h′} is solvable for h′ > h. Then, since the difference of solvable sets is
+solvable, we deduce that ˜S := {s ∈ S : υp(s) ≤ h} is solvable. If {s ∈ S : υp(s) = h}
+is empty, then it is solvable; otherwise we can apply Lemma 4.5 on the set ˜S and
+obtain again that {s ∈ S : υp(s) = h} is solvable as desired.
+We can now conclude by showing that singletons {d} are solvable for each d | n.
+This follows directly from the fact that {d ≥ 1 : d | n} is solvable and that if S
+is solvable then {s ∈ S : υp(s) = h} is solvable for all prime divisors p | n and all
+h ≥ 0.
+□
+Proposition 4.6. For any n ∈ OFS, the group Z/nZ is FS-regular.
+Proof. Let A, A′ ∈ M(Z/nZ) be two multisets such that FS(A) = FS(A′); we shall
+prove that A ∼0 A′.
+By definition of the map FS, it holds the polynomial identity in Z[t]/(tn − 1)
+n−1
+�
+j=0
+µFS(A)(j)tj ≡
+�
+s∈FS(A)
+ts ≡
+�
+a∈A
+(1 + ta) ≡
+n−1
+�
+j=0
+(1 + tj)µA(j)
+(mod tn − 1),
+Thus the condition FS(A) = FS(A′) is equivalent to
+n−1
+�
+j=0
+(1 + tj)µA(j) ≡
+n−1
+�
+j=0
+(1 + tj)µA′(j)
+(mod tn − 1).
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+15
+For any divisor d | n, ωd is a root of tn − 1 and therefore the latter identity implies
+n−1
+�
+j=0
+(1 + ωj
+d)µA(j) =
+n−1
+�
+j=0
+(1 + ωj
+d)µA′(j)
+which, recalling Definition 4.2, is equivalent to
+Fd
+�
+πn
+d
+�
+(µA(j) − µA′(j))0≤j 1 (in particular, proving the invertibility
+of the (d − 1)-planes transform seems to be considerably easier due to the
+larger number of symmetries).
+• The recent work [CHM18] defines a Radon transform which is almost equiva-
+lent to our discrete Radon transform on (Z/pZ)d, where p is a prime number.
+In that paper the Radon transform (which they call classical Radon trans-
+form to distinguish it from the one of Diaconis and Graham) coincides with
+the restriction of ours to the homomorphisms ψ ∈ Hom((Z/pZ)d, Z/pZ)
+such that ψ(0, 0, . . . , 0, 1) ̸= 0. Due to this restriction, they cannot establish
+a full inversion formula [CHM18, Theorem 1].
+• In the work [AI08], the authors define a discrete Radon transform on Zd
+which is equivalent to the Radon transform on Zd with our notation (if one
+allows the group to be non-finite in the definition). An inversion formula
+[AI08, Theorem 4.1] is proven for such discrete Radon transform. Joining
+the methods of [AI08] with ours, it might be possible to produce inversion
+formulas for the discrete Radon transform on groups (Z/nZ × Z)d that are
+neither finite nor torsion-free. We do not investigate this as it goes beyond
+the scope of the paper.
+• An alternative definition of discrete Radon transform for finite abelian groups
+is provided in [Ilm14]. The maximal Radon transform defined in this ref-
+erence [Ilm14, Section 7.3] computes the sum of the function f over all
+translations of maximal cyclic subgroups of G.
+It is not hard to check that, for p prime, the maximal Radon transform
+on (Z/pZ)2 coincides with ours.
+In this special case, the author proves
+the invertibility of the Radon transform [Ilm14, Lemma 3.4]. In general his
+definition does not coincide with ours and, in particular, the maximal Radon
+
+18
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+transform is not invertible in many important cases [Ilm14, Propositions 7.2,
+7.3].
+Let us introduce the concept of inversion formula for our discrete Radon transform
+(cp. [Hel99, Theorem 3.1], [Str82]). The main goal of this section is to obtain an
+inversion formula (see Theorem 1.2).
+Definition 5.2. Let n, d ≥ 1 be positive integers. We say that the Radon transform
+on (Z/nZ)d (see Definition 5.1) admits an inversion formula if there exists a function
+λ = λn,d : Hom((Z/nZ)d, Z/nZ) → Q such that
+f(x) =
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+λ(ψ)Rf(ψ, ψ(x)),
+for all functions f : (Z/nZ)d → C and all x ∈ (Z/nZ)d.
+Let us begin with a simple but useful criterion for the existence of an inversion
+formula.
+Lemma 5.1. Let n, d ≥ 1 be positive integers. A function λ : Hom((Z/nZ)d, Z/nZ) →
+Q induces an inversion formula for the discrete Radon transform on (Z/nZ)d (see
+Definition 5.2) if and only if it satisfies, for all x ∈ (Z/nZ)d,
+(5.5)
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+ψ(x)=0
+λ(ψ) =
+�
+1
+if x = 0,
+0
+otherwise.
+Proof. For any f : (Z/nZ)d → C, any λ : Hom((Z/nZ)d, Z/nZ) → Q and any
+x ∈ (Z/nZ)d, it holds
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+λ(ψ)Rf(ψ, ψ(x)) =
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+λ(ψ)
+�
+x′∈(Z/nZ)d
+ψ(x′)=ψ(x)
+f(x′)
+=
+�
+x′∈(Z/nZ)d
+f(x′)
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+ψ(x′−x)=0
+λ(ψ).
+Thanks to this identity, it is clear that λ induces an inversion formula if and only if
+Eq. (5.5) holds.
+□
+In the next technical lemma we show that inversion formulas behave nicely with
+respect to products.
+Lemma 5.2. Let n, m, d ≥ 1 be positive integers such that n and m are coprime.
+If the discrete Radon transforms on (Z/nZ)d and on (Z/mZ)d admit inversion for-
+mulas, then also the Radon transform on (Z/nmZ)d admits an inversion formula.
+Proof. To simplify the notation, let G := Z/nZ and H := Z/mZ.
+Let ι : Hom(Gd, G)×Hom(Hd, H) → Hom(Gd⊕Hd, G⊕H) be the map such that
+ι(ψ1, ψ2)(x1, x2) = (ψ1(x1), ψ2(x2)) for all ψ1 ∈ Hom(Gd, G), ψ2 ∈ Hom(Hd, H),
+x1 ∈ Gd, x2 ∈ Hd. Since n, m are coprime the map ι is bijective.
+Since we assume that the Radon transforms on Gd and Hd admit inversion for-
+mulas, thanks to Lemma 5.1, we deduce the existence of λ1 : Hom(Gd, G) → Q and
+λ2 : Hom(Hd, H) → Q satisfying Eq. (5.5).
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+19
+Let λ : Hom(Gd ⊕ Hd, G ⊕ H) → Q be the function such that λ(ι(ψ1, ψ2)) =
+λ1(ψ1)λ2(ψ2) for all ψ1 ∈ Hom(Gd, G), ψ2 ∈ Hom(Hd, H). For any x1 ∈ Gd and
+x2 ∈ Hd, we have
+�
+ψ∈Hom(Gd⊕Hd, G⊕H)
+ψ(x1,x2)=(0G,0H)
+λ(ψ) =
+�
+ψ1∈Hom(Gd, G), ψ2∈Hom(Hd, H)
+ψ1(x1)=0G, ψ2(x2)=0H
+λ1(ψ1)λ2(ψ2)
+=
+�
+�
+ψ1∈Hom(Gd, G)
+ψ1(x1)=0G
+λ1(ψ1)
+��
+�
+ψ2∈Hom(Hd, H)
+ψ1(x2)=0H
+λ2(ψ2)
+�
+=
+�
+1
+if x1 = 0G and x2 = 0H,
+0
+otherwise,
+which is equivalent to the fact that the discrete Radon tranform on Gd ⊕ Hd ad-
+mits an inversion formula thanks to Lemma 5.1. This is equivalent to the desired
+statement since G ⊕ H ∼= Z/nmZ as a consequence of the coprimality of m, n.
+□
+Our next goal is to show that the Radon transform on (Z/pkZ)d (with p prime)
+admits an inversion formula (see Lemma 5.8).
+Let us begin with a sequence of technical lemmas (Lemmas 5.3 to 5.6) concerning
+the structure of (Z/pkZ)d, its automorphisms and its canonical scalar product. The
+first two statements, Lemmas 5.3 and 5.4, are special cases of known results (see
+[HR07; SS99]). For completeness, and because the proofs are much simpler compared
+to the proofs of the statements we cite, we provide a self-contained proof for both
+facts.
+Lemma 5.3. Fix a prime p and and two exponents k, d ≥ 1. Given a d × d matrix
+M ∈ (Z/pkZ)d×d, let mulM : (Z/pkZ)d → (Z/pkZ)d be the group homomorphism
+given by the multiplication with the matrix M, i.e., for all x = (x1, x2, . . . , xd) ∈
+(Z/pkZ)d,
+mulM(x) :=
+�
+d
+�
+j=1
+Mijxj
+�
+i=1,...,d.
+The group of automorphisms of (Z/pkZ)d is given by
+Aut((Z/pkZ)d) = {mulM : M ∈ (Z/pkZ)d×d so that p does not divide det(M)}.
+Proof. A homomorphism φ : (Z/pkZ)d → (Z/pkZ)d is uniquely determined by
+the images of the d generators of (Z/pkZ)d, that is by the values φ(1, 0, . . . , 0),
+φ(0, 1, 0, . . . , 0), . . . , φ(0, . . . , 0, 1). Let M ∈ (Z/pkZ)d×d be the matrix such that
+the j-th column is given by the image through φ of the j-th generator. It holds
+φ = mulM.
+It remains to prove that mulM is an automorphism (i.e., its inverse is a homo-
+morphism) if and only if det(M) is not divisible by p. Notice that mulM ◦ mulN =
+mulMN, therefore mulM is an automorphism if and only if M is invertible modulo
+pk, or equivalently det(M) is not divisible by p.
+□
+
+20
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+Lemma 5.4. Fix a prime p and two exponents k, d ≥ 1. For any 0 ≤ h ≤ k, let
+Eh ⊆ (Z/pkZ)d be the subset
+Eh := {x = (x1, . . . , xd) ∈ (Z/pkZ)d : ph divides xi for all i = 1, 2, . . . , d}.
+Moreover, let E∗
+k := Ek = {(0, . . . , 0)} ∈ (Z/pkZ)d and, for 0 ≤ h < k, E∗
+h :=
+Eh \ Eh+1.
+The orbits of the action of the automorphism group of (Z/pkZ)d are exactly
+E∗
+0, E∗
+1, . . . , E∗
+k.
+Proof. The subset Eh coincides with the elements of (Z/pkZ)d with order at most
+pk−h, hence E∗
+h coincides with the elements of (Z/pkZ)d with order equal to pk−h.
+In particular, the image of E∗
+h through an automorphism coincides with E∗
+h.
+To prove that E∗
+h is an orbit for the automorphism group, we show that given
+x = (x1, . . . , xd) ∈ E∗
+h there exists an automorphism φ ∈ Aut((Z/pkZ)d) such that
+φ(ph, 0, 0, . . . , 0) = x. By definition of E∗
+h, it holds υp(xi) ≥ h for all i = 1, 2, . . . , d
+(recall that υp denotes the p-adic valuation), and without loss of generality we may
+assume that υp(x1) = h. Consider the matrix M ∈ (Z/pkZ)d×d with the following
+entries
+M =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+x1/ph
+0
+0
+· · ·
+0
+0
+x2/ph
+1
+0
+· · ·
+0
+0
+x3/ph
+0
+1
+· · ·
+0
+0
+...
+...
+...
+...
+...
+...
+xd−1/ph
+0
+0
+· · ·
+1
+0
+xd/ph
+0
+0
+· · ·
+0
+1
+�
+�
+�
+�
+�
+�
+�
+�
+�
+.
+Since det(M) = x1/ph, which is not divisible by p, the classification of automor-
+phisms proven in Lemma 5.3 guarantees that φ = mulM is an automorphism which
+satisfies φ(ph, 0, . . . , 0) = x, as desired.
+□
+Lemma 5.5. Fix a prime p and two exponents k, d ≥ 1. Denote with · : (Z/pkZ)d ×
+(Z/pkZ)d → Z/pkZ the scalar product x · y := x1y1 + x2y2 + · · · + xdyd.
+For any automorphism φ ∈ Aut((Z/pkZ)d), there exists an automorphism φt ∈
+Aut((Z/pkZ)d) such that φ(x) · y = x · φt(y) for all x, y ∈ (Z/pkZ)d.
+Proof. Thanks to Lemma 5.3, we know that there exists M ∈ (Z/pkZ)d×d such that
+φ = mulM. It can be checked that φt := mulM t, where M t is the transpose of M,
+satisfies the requirements of the statement.
+□
+Lemma 5.6. Fix a prime p and two exponents k, d ≥ 1. Recall the definitions of
+Eh and E∗
+h given in Lemma 5.4.
+Given 0 ≤ h, h′ ≤ k, for any x ∈ E∗
+h it holds
+|{y ∈ Eh′ : x · y = 0}| = p(d−1)(k−h′)+min{h, k−h′}
+and, in particular, this quantity does not depend on the specific choice of x ∈ E∗
+h.
+Proof. Thanks to Lemma 5.4, there exists an automorphism φ ∈ Aut((Z/pkZ)d)
+such that φ((ph, 0, 0, . . . , 0)) = x. Notice (recall Lemma 5.5) that x · y = 0 if and
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+21
+only if (ph, 0, 0, . . . , 0) · φt(y) = 0. Moreover, as a consequence of Lemma 5.4, we
+have that φt(Eh′) = Eh′. Thus, we deduce
+φt�
+{y ∈ Eh′ : x · y = 0}
+�
+= {y ∈ Eh′ : (ph, 0, 0, . . . , 0) · y = 0}.
+In particular, we have shown that the cardinality of such set does not depend on
+the specific choice of x ∈ E∗
+h and we may assume x = (ph, 0, 0, . . . , 0).
+The condition y ∈ Eh′ is equivalent to the fact that y may be expressed as y =
+ph′(z1, z2, . . . zd) with z1, z2, . . . , zd ∈ Z/pk−h′Z. The condition (ph, 0, 0, . . . , 0)·y = 0
+is equivalent to υp(z1) ≥ max(0, k−(h+h′)). To conclude, we distinguish two cases.
+• If k ≤ h+h′, then the constraint υp(z1) ≥ max(0, k −(h+h′)) is empty, and
+thus any choice of z1, z2, . . . , zd ∈ Z/pk−h′Z yields an element y = ph′z of
+{y ∈ Eh′ : (ph, 0, 0, . . . , 0) · y = 0}, thus such set has cardinality pd(k−h′) =
+p(d−1)(k−h′)+min{h,k−h′}.
+• If k ≥ h + h′, then z1 must be divisible by pk−(h+h′), while the other zi
+can be arbitrary values in Z/pk−h′Z.
+Therefore, the cardinality of the
+set {y ∈ Eh′ : (ph, 0, 0, . . . , 0) · y = 0} is p(d−1)(k−h′)+k−h′−(k−(h+h′)) =
+p(d−1)(k−h′)+min{h,k−h′}.
+□
+The only missing ingredient necessary to prove that the discrete Radon transform
+on (Z/pkZ)d admits an inversion formula is the invertibility of a certain matrix,
+which is promptly established in the following lemma.
+Lemma 5.7. Fix a prime p and two exponents k, d ≥ 1. The (k + 1) × (k + 1)
+matrix U (k) ∈ Q(k+1)×(k+1) with entries, for 0 ≤ i, j ≤ k, given by
+U (k)
+ij
+:= p(d−1)(k−j)+min{i, k−j}
+is invertible.
+Proof. It is easier to work with ˜U (k)
+ij
+:= U (k)
+i(k−j) (which is invertible if and only if U (k)
+is invertible). Indeed, defining q := pd−1, one has ˜U (k)
+ij
+= pmin{i,j}qj and therefore
+˜U (k) =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+q
+q2
+· · ·
+qk−1
+qk
+1
+pq
+pq2
+· · ·
+pqk−1
+pqk
+1
+pq
+p2q2
+· · ·
+p2qk−1
+p2qk
+...
+...
+...
+...
+...
+...
+1
+pq
+p2q2
+· · ·
+pk−1qk−1
+pk−1qk
+1
+pq
+p2q2
+· · ·
+pk−1qk−1
+pkqk
+�
+�
+�
+�
+�
+�
+�
+�
+�
+.
+We prove the statement by induction on k. We have ˜U (0) =
+�1�
+, which is in-
+vertible. For the inductive step, subtracting the second-to-last row of ˜U (k) from the
+last, all the entries of the last row become zero, except for the last one, which turns
+into qk(pk − pk−1) ̸= 0. Note further that the top-left k × k submatrix of ˜U (k) is
+˜U (k−1). Therefore, det ˜U (k) = qk(pk − pk−1) det ˜U (k−1), which concludes.
+□
+Lemma 5.8. Fix a prime p and two exponents k, d ≥ 1.
+The discrete Radon
+transform on (Z/pkZ)d admits an inversion formula.
+
+22
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+Proof. Notice that (Z/pkZ)d ∼= Hom((Z/pkZ)d, Z/pkZ) and the isomorphism is
+given by the map that takes y ∈ (Z/pkZ)d and produces the homomorphism (Z/pkZ)d ∋
+x → x · y (where the scalar product is defined in Lemma 5.5). Therefore, applying
+Lemma 5.1, we have that the validity of an inversion formula for the discrete Radon
+transform on (Z/pkZ)d is equivalent to the existence of a function λ : (Z/pkZ)d → Q
+such that, for all x ∈ (Z/pkZ)d,
+�
+y∈(Z/pkZ)d
+x·y=0
+λ(y) =
+�
+1
+if x = (0, 0, . . . , 0),
+0
+otherwise.
+We are going to construct a function λ with this property.
+Let U (k) ∈ Q(k+1)×(k+1) be the matrix considered in Lemma 5.7. Let V (k) ∈
+Q(k+1)×(k+1) be the matrix given by
+V (k)
+ij
+=
+�
+U (k)
+i,j
+if j = k,
+U (k)
+i,j − U (k)
+i,j+1
+if j < k.
+Since V (k) can be obtained by U (k) through Gauss moves, Lemma 5.7 implies that
+V (k) is invertible as well. Notice that, by definition of V (k), for any 0 ≤ i, j ≤ k,
+Lemma 5.6 implies that V (k)
+ij
+= |{y ∈ E∗
+j : x · y = 0}| for any x ∈ E∗
+i (recall that
+E∗
+j = Ej \ Ej+1).
+Let Λ ∈ Qk+1 be the solution of V (k)Λ = (1, 0, . . . , 0).
+Let us define λ :
+(Z/pkZ)d → Q as the function such that λ(y) := Λj when y ∈ E∗
+j .
+We show
+that this function satisfies the sought identity.
+Given x ∈ E∗
+i , we have
+�
+y∈(Z/pkZ)d
+x·y=0
+λ(y) =
+k
+�
+j=0
+|{y ∈ E∗
+j : x · y = 0}|Λj =
+k
+�
+j=0
+V (k)
+ij Λj = (V (k)Λ)i,
+which is the desired formula since the right-hand side is 1 if i = 0 (which is equivalent
+to x = (0, 0, . . . , 0) ∈ (Z/pkZ)d) and 0 otherwise.
+□
+We are ready to show the validity of an inversion formula for all instances of our
+discrete Radon transform.
+Proof of Theorem 1.2. By the classification of finite abelian groups (see Section 2.2),
+the statement follows from Lemmas 5.2 and 5.8.
+□
+Let us apply the inversion formula obtained in Theorem 1.2 to establish the FS-
+regularity of the group (Z/nZ)d when n ∈ OFS. The idea is to project through an
+homomorphism onto Z/nZ, use the FS-regularity of Z/nZ proven in Proposition 4.6,
+and then recover the FS-regularity of (Z/nZ)d thanks to the invertibility of the
+Radon transform on (Z/nZ)d.
+Proposition 5.9. For any n ∈ OFS and any d ≥ 1, the group (Z/nZ)d is FS-regular.
+Proof. For a multiset B ∈ M((Z/nZ)d), by definition of the Radon transform
+on ((Z/nZ)d (see Definition 5.1), one has RµB(ψ, c) = µψ(B)(c) (recall that µB
+denotes the multiplicity of elements in the multiset B, see Section 2.1) for any
+
+ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS
+23
+ψ ∈ Hom((Z/nZ)d, Z/nZ) and any c ∈ Z/nZ. Therefore, the inversion formula of
+Theorem 1.2 implies
+(5.6)
+µB(x) =
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+λ(ψ)µψ(B)(ψ(x)),
+for all x ∈ (Z/nZ)d. Notice that this formula allows us to reconstruct B given all
+its projections ψ(B) onto Z/nZ.
+Take two multisets A, A′ ∈ M((Z/nZ)d) such that FS(A) = FS(A′); our goal is
+to prove that A ∼0 A′.
+For any ψ ∈ Hom((Z/nZ)d, Z/nZ), it holds FS(ψ(A)) = FS(ψ(A′)) and there-
+fore, since we have shown that Z/nZ is FS-regular in Proposition 4.6, we have
+ψ(A) ∼0 ψ(A′).
+Thus (we use only ψ(A) ∼ ψ(A′)), we deduce that for any
+ψ ∈ Hom((Z/nZ)d, Z/nZ),
+(5.7)
+µψ(A)(x) + µψ(A)(−x) = µψ(A′)(x) + µψ(A′)(−x)
+for all x ∈ (Z/nZ)d.
+Joining Eqs. (5.6) and (5.7), we obtain
+µA(x) + µA(−x) =
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+λ(ψ)
+�
+µψ(A)(ψ(x)) + µψ(A)(−ψ(x))
+�
+=
+�
+ψ∈Hom((Z/nZ)d, Z/nZ)
+λ(ψ)
+�
+µψ(A′)(ψ(x)) + µψ(A′)(−ψ(x))
+�
+= µA′(x) + µA′(−x)
+for all x ∈ (Z/nZ)d. The latter identity is equivalent to A ∼ A′, which implies
+A ∼0 A′ thanks to Lemma 3.1-(3).
+□
+6. FS-regularity of products with Z
+In this section we show that multiplying by Z does not break the FS-regularity of
+a group (see Proposition 6.3). In order to do it, we will need two technical lemmas.
+The second one, Lemma 6.2, gives a condition equivalent to FS-regularity which
+comes handy in the proof of the main result of this section.
+Lemma 6.1. Let G be an abelian group without elements of order 2. Given three
+multisets A, A′, B ∈ M(G), if A + FS(B) = A′ + FS(B), then A = A′.
+Proof. Let us first prove the result when B = {b} is a singleton. We prove the result
+by induction on the cardinality of A.
+If |A| = 0, then ∅ = A + FS(B) = A′ + FS(B) and thus A′ = ∅.
+To handle the case |A| > 0, we begin by showing that A and A′ have a common
+element. We argue by contradiction, hence we assume that A and A′ are disjoint.
+Take any a ∈ A. We have a + b ∈ A + FS(B) = A′ + {0, b}. Since a ̸∈ A′, it
+must hold a + b ∈ A′. By repeating this argument (swapping the role of A and A′
+and replacing a with a + b) we obtain that a + 2b ∈ A. Repeating such argument k
+times, we obtain that a + kb ∈ A if k is even, and a + kb ∈ A′ if k is odd. Since A
+and A′ are finite, b must have finite order, otherwise the elements (a+kb)k∈N would
+be all distinct. Let ord(b) be the order of b; by assumption ord(b) is odd. We have
+
+24
+FEDERICO GLAUDO AND ANDREA CIPRIETTI
+the contradiction A ∋ a = a + ord(b)b ∈ A′; therefore we have proven that A and A′
+have a common element.
+Now pick ¯a ∈ A ∩ A′. It holds
+(A \ {¯a}) + FS(B) = (A + FS(B)) \ {¯a, ¯a + b}
+= (A′ + FS(B)) \ {¯a, ¯a + b} = (A′ \ {¯a}) + FS(B).
+Therefore, by the induction hypothesis, A \ {¯a} = A′ \ {¯a}, which is equivalent to
+A = A′.
+Let us now treat general multisets B. We proceed by induction on the cardinality
+of B; the case |B| = 0 is trivial and the case |B| = 1 is already established, so we
+may assume |B| > 1.
+Pick an element ¯b ∈ B. We have
+A + FS(B) = (A + FS(B \ {¯b})) + FS({¯b}),
+and likewise for A′. Applying the induction hypothesis for the three multiset A +
+FS(B\{¯b}), A′+FS(B\{¯b}), {¯b}, yields the relation A+FS(B\{¯b}) = A′+FS(B\{¯b}),
+and one more application yields the sought A = A′.
+□
+Lemma 6.2. An abelian group G is FS-regular if and only if, for all A, A′ ∈ M(G)
+such that FS(A) = FS(A′) + g for some g ∈ G, it holds A ∼ A′.
+Proof. Assume that G is FS-regular and take A, A′ ∈ M(G) such that FS(A) =
+FS(A′) + g for some g ∈ G. Applying Lemma 3.1-(4), we produce a multiset A′′ ∈
+M(G) such that A′′ ∼ A′ and FS(A) = FS(A′′); then we deduce A ∼0 A′′ because
+G is FS-regular. So, we get A ∼0 A′′ ∼ A′ which implies A ∼ A′ by transitivity.
+Let us now show the converse. Given A, A′ ∈ M(G) such that FS(A) = FS(A′),
+the condition described in the statement implies A ∼ A′ which implies A ∼0 A′
+thanks to Lemma 3.1-(3). Therefore we have proven the FS-regularity of G.
+□
+Proposition 6.3. If G is a FS-regular abelian group, then also G⊕Z is FS-regular.
+Proof. We begin by setting up some notation. For B ∈ M(G⊕Z) and z ∈ Z, define
+B 2, the reconstruction is possible if the size of A does not belong to a finite subset of bad sizes [GFS62, Section 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' See the recent survey [Fom19] for a detailed presentation of the history of this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It might seem that if one is only provided with the sums of s-subsets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', subsets with size s) then the reconstruction is strictly harder than if one is provided the sums of all subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is not true because the information is not ordered and 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='04635v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='NT] 11 Jan 2023 2 FEDERICO GLAUDO AND ANDREA CIPRIETTI thus, even if we have more information, it is also harder to determine which value corresponds to which subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us now go back to the reconstruction problem for FS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The first important observation is the following one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a multiset A and a subset B ⊆ A whose sum equals 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' � b∈B b = 0), if we flip the signs of elements of B then FS does not change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' So, if A′ := (A \\ B) ∪ (−B), then FS(A) = FS(A′) (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1 for an explanation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A B C A′ −(B \\ C) C \\ B Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof by picture of A ∼0 A′ =⇒ FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The set C in A (highlighted in gray) and the set (C\\B)∪(−(B\\C)) in A′ (highlighted in gray) have the same sum because the sum of the elements in B is assumed to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thus, we have a bijection between the subsets of A and A′ which keeps the sum unchanged, hence FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Hence, if we only know FS(A), the best we can hope for is to identify the equiv- alence class of A with respect to the following equivalence relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given two multisets A, A′ with elements in G, we say that A ∼0 A′ if and only if A′ can be obtained from A by flipping the signs of the elements of a subset of A with null sum, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', if there exists B ⊆ A, with � b∈B b = 0, such that A′ = (A \\ B) ∪ (−B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have already observed that if A ∼0 A′ then FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If the group is G = Z, this turns out to be an “if and only if” (see Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3), while if G = Z/2Z it is not (indeed, in Z/2Z one has FS({0, 1}) = {0, 0, 1, 1} = FS({1, 1})).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is natural to consider the class of abelian groups such that the double implication holds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' the fibers of FS coincide with the equivalence classes of ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A group G is FS-regular if, for any two multisets A, A′ with ele- ments in G, it holds FS(A) = FS(A′) if and only if A ∼0 A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have already observed that Z/2Z is not FS-regular;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' moreover, any group con- taining a subgroup that is not FS-regular cannot be FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The next smallest non-FS-regular group is elusive;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' in fact, it turns out that Z/nZ is FS-regular for n = 3, 5, 7, 9, 11, 13, 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' But Z/17Z is not FS-regular, and then Z/nZ is FS-regular for n = 19, 21, 23, 25, 27, 29 and not FS-regular for m = 31, 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' These small exam- ples suggest that the FS-regularity of G may be related to the behavior of powers of two in G (notice that 17, 31, 33 are adjacent to a power of two).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Our main result is the characterization of FS-regular groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In order to state our result, we need to introduce a subset of the natural numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let OFS be the set of odd natural numbers n ≥ 1 such that (Z/nZ)∗ is covered by {±2j : j ≥ 0};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' more precisely, for each x ∈ Z relatively prime with n there exists j ≥ 0 such that either x − 2j or x + 2j is divisible by n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 3 Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The first few elements of OFS are OFS = {1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 35, 37, 39, 45, 47, 49, 53, 55, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' }, and the first few missing odd numbers are (2N + 1) \\ OFS = {17, 31, 33, 41, 43, 51, 57, 63, 65, 73, 85, 89, 91, 93, 97, 99, 105, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us remark that if n ∈ OFS then also all divisors of n belong to OFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, one can show that if p, q, r are distinct odd primes, then pqr ̸∈ OFS, and therefore if n ∈ OFS then n has at most two distinct prime factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We can now state our main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 (Characterization of FS-regular groups).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An abelian group G is FS- regular if and only if ord(g) ∈ OFS for all g ∈ G with finite order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' As a tool in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 (see Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) we define a novel discrete Radon transform for abelian groups and we prove an inversion formula for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We refer to Section 5 for some motivation on the definition and for an in-depth discussion of the existing related literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since the invertibility of the Radon transform may have other applications beyond the scope of this paper, we state it here for the interested readers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 (Invertibility of the discrete Radon transform).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, d ≥ 1 be pos- itive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a function f : (Z/nZ)d → C, its discrete Radon transform Rf = Rn,df : Hom((Z/nZ)d, Z/nZ) × Z/nZ → C is defined as Rf(ψ, c) = � x: ψ(x)=c f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This discrete Radon transform is invertible and admits an inversion formula (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Sketch of the proof and structure of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us briefly describe the strategy that the proof follows, postponing a more detailed presentation to the dedicated sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For the negative part of the statement, it is sufficient to show that Z/nZ is not FS-regular if n ̸∈ OFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For this, we construct an explicit counterexample in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proving that if the orders belong to OFS then the group is FS-regular is more complicated and relies on some nontrivial properties of the units of cyclotomic fields and on the inversion formula for a novel discrete Radon transform on finite abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The proof is divided into three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Step 1: Proof for G = Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Through the polynomial identity � s∈FS(A) ts ≡ � a∈A (1 + ta) (mod tn − 1), we reduce the FS-regularity of Z/nZ to the study of the kernel of the map Zn ∋ x = (x0, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xn−1) �→ � n−1 � j=0 (1 + ωj d)xj� d|n, 4 FEDERICO GLAUDO AND ANDREA CIPRIETTI where ωd ∈ C is a d-th primitive root of unity and the codomain of the map consists of tuples indexed by the divisors of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to a dimensional argument, identifying the kernel of such map is equivalent to identifying its image, which is exactly what we do in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is the hardest and most technical proof of the whole paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Up to this point, we have used only that n is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The fact that n ∈ OFS is needed in the computation of the rank of the image, which relies heavily on the theory of cyclotomic units (see Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This step is carried out in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Step 2: Z/nZ is FS-regular =⇒ (Z/nZ)d is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Take A, A′ multisets with elements in (Z/nZ)d such that FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a homomorphism ψ : (Z/nZ)d → Z/nZ, by linearity, it holds FS(ψ(A)) = FS(ψ(A′)), and since Z/nZ is FS-regular this implies that ψ(A) ∼0 ψ(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' So, we know that ψ(A) ∼0 ψ(A′) for all homomorphisms ψ : (Z/nZ)d → Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In order to deduce that A ∼0 A′, we introduce a novel discrete Radon transform (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) and we prove an inversion formula (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2) which may be of indepen- dent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This allows us to reconstruct a multiset B ∈ M((Z/nZ)d) from its projections {φ(B) : φ ∈ Hom((Z/nZ)d, Z/nZ)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This step is performed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Step 3: G is FS-regular =⇒ G ⊕ Z is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In this step, we exploit crucially that Z is totally ordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The argument is short and purely combinatorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is done in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Once these three steps are established, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 follows naturally, as shown in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us remark here that our proof is not constructive, hence it does not provide an efficient algorithm to find the ∼0-equivalence class of A if FS(A) is known1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To make the paper accessible to a broad audience, in Section 2 we recall basic facts about multisets, abelian groups, and cyclotomic units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The authors are thankful to Fabio Ferri for providing valu- able suggestions and references about the theory of cyclotomic units, and also to Michele D’Adderio and Elia Bru`e for their comments and feedback on an early ver- sion of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The second author is supported by the National Science Foundation under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' DMS-1926686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notation and Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Multisets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A multiset with elements in a set X is an unordered collection of elements of X which may contain a certain element more than once [Bli89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For example, {1, 1, 2, 2, 3} is a multiset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Rigorously, a multiset A is encoded by a function µA : X → Z≥0 (Z≥0 denotes the set of nonnegative integers) such that µA(x) represents the multiplicity of the element x in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For example, if A = {1, 1, 2, 2, 3} then µA(1) = 2, µA(2) = 2, µA(3) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1The nonconstructive part of the proof is contained Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In fact, we show that a certain map is injective by proving its surjectivity and then applying a standard dimension argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This kind of reasoning does not produce an efficient way to invert the map we have proven to be injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 5 A multiset A is finite if � x∈X µA(x) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The cardinality of a finite multiset A ∈ M(X) is given by |A| := � x∈X µA(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a set X, let us denote with M(X) the family of finite multisets with elements in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us define the usual set operations on multisets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that all of them are the natural generalization of the standard version when one takes into account the multiplicity of elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix two multisets A, B ∈ M(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Membership: We say that x ∈ X is an element of A, denoted by x ∈ A, if µA(x) ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Inclusion: We say that A is a subset of B, denoted by A ⊆ B, if µA(x) ≤ µB(x) for all x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Union: The union A∪B ∈ M(X) is defined as µA∪B(x) := µA(x)+µB(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Hence, {1} ∪ {1, 2} = {1, 1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Cartesian product: The Cartesian product A × B ∈ M(X × X) is defined as µA×B((x1, x2)) = µA(x1)µB(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Difference: If A ⊆ B, the difference B \\A is defined as µB\\A(x) := µB(x)−µA(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Pushforward: Given a function f : X → Y , the pushforward f(A) ∈ M(Y ) of the multiset A (denoted also by {f(a) : a ∈ A}) is defined as µf(A)(y) = � x∈f −1(y) µA(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Power set: The power set of A (the family of subsets of A), denoted by P(A) ∈ M(M(X)), is a multiset defined recursively as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For the empty mul- tiset, we have P(∅) := {∅};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' otherwise let a ∈ A be an element of A and define P(A) := P(A \\ {a}) ∪ � A′ ∪ {a} : A′ ∈ P(A \\ {a}) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that |P(A)| = 2|A|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Whenever we iterate over the subsets of A (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', {f(A′) : A′ ⊆ A} or � A′⊆A f(A′)), the iteration has to be understood over P(A) (hence the subsets are counted with multiplicity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Taking the complement is an involution of the power set, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', P(A) = {A \\ A′ : A′ ∈ P(A)}, and we have the following identity for the power set of a union P(A ∪ B) = {A′ ∪ B′ : (A′, B′) ∈ P(A) × P(B)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Sum (and product): If the set X is an additive abelian group, we can define the sum � A ∈ X of the elements of A as � A := � x∈X µA(x)x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Analogously, if X is a multiplicative abelian group, one can define the prod- uct � A of the elements of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Abelian Groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us recall some basic facts about abelian groups that we will use extensively later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 6 FEDERICO GLAUDO AND ANDREA CIPRIETTI Any finitely generated abelian group is isomorphic to a finite product of cyclic groups [Lan02, Chapter I, Section 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We denote with Z/nZ the cyclic group with n elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given some elements g1, g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , gk ∈ G of an abelian group, we denote with ⟨g1, g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , gk⟩ the subgroup generated by such elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given an element g ∈ G, its order (which may be equal to ∞) is denoted by ord(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For an abelian group G, its rank rk(G) is the cardinality of a maximal set of Z-independent2 elements of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us list some useful properties of the rank (see [Lan02, Chapter I and XVI]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Any finitely generated abelian group G is isomorphic to Zrk(G) ⊕ G′ where G′ is a finite abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given two abelian groups G, H, it holds rk(G ⊕ H) = rk(G) + rk(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For a homomorphism φ : G → H of abelian groups, it holds rk(G) = rk(ker φ) + rk(Im φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An abelian group has null rank if and only if all elements have finite order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let G1, G2, G3 be three abelian groups and φ1 : G1 → G2, φ2 : G2 → G3 be two homomorphisms with full rank, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' rk(Im φ1) = rk(G2) and rk(Im φ2) = rk(G3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Then φ2 ◦ φ1 : G1 → G3 has full rank as well, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' rk(Im φ2 ◦ φ1) = rk(G3) Given an abelian group G, let us denote with G ⊗ Q its tensor product (as a Z-module) with Q (see [Lan02, Chapter XVI]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The dimension of G ⊗ Q as vector space over Q coincides with rk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For a homomorphism φ : G → H of abelian groups, let φ⊗Q : G⊗Q → H⊗Q be its tensorization with Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It holds rk(Im φ) = dimQ(Im (φ ⊗ Q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Units of cyclotomic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given n ≥ 1, let ωn := exp(2πi/n) be the prim- itive n-th root of unity with minimum positive argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The algebraic number field Q(ωn) is called cyclotomic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is well-known that the ring of integers of Q(ωn) coincides with Z[ωn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Our main focus is the group of units of Q(ωn), that consists of the invertible elements of its ring of integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For 0 < r < n and s ≥ 1 coprime with n, the element ξ := 1−ωrs n 1−ωrn is a unit of Q(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Indeed ξ = 1+ωr n +· · ·+ω(s−1)r n ∈ Z[ωn] and, if u ∈ N is such that n divides us − 1, then ξ−1 = 1 − ωrus n 1 − ωrs n = 1 + ωrs n + · · · + ω(u−1)rs n ∈ Z[ωn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It turns out that these units are sufficient to generate a subgroup of finite index of the units of Q(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The following statement follows from [Was97, Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any odd n ≥ 3, the multiplicative group Cn ⊆ C generated by �1 − ωrs n 1 − ωrn : 0 < r < n, s ≥ 1 coprime with n � is a subgroup of finite index of the units of Q(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2Some elements g1, g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , gk ∈ G are Z-independent if, whenever � i aigi = 0 for some a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , ak ∈ Z, it holds a1 = a2 = · · · = ak = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 7 Thus, applying Dirichlet’s unit Theorem (see [Mar77, Theorem 38]), we are able to compute the rank of Cn (since it coincides with the rank of the group of units of Q(ωn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any odd n ≥ 3, we have rk(Cn) = ϕ(n) 2 − 1, where ϕ is Euler’s totient function (and Cn is defined in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The units of Q(ωn) satisfy a family of nontrivial relations known as distribution relations (see [Was97, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 151]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We recall here the relations in the form we will need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that 1+ωj n is a unit for 1 ≤ j < n because of the identity 1+ωj n = 1−ω2j n 1−ωj n ∈ Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 (Distribution relations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n ≥ 1 be an odd integer and let p be one of its prime divisors3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any 0 ≤ j < n p , the identity p−1 � k=0 (1 + ωj+kn/p n ) = 1 + ωjp n holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The numbers {1 + ωj+kn/p n }0≤k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We claim that, for any 0 ≤ j < n, it holds (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) uS,j − 1 p p−1 � k=0 uS,j+km/p = uS′,j − 1 puS′,jp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) by looking at the projections of both sides onto Qd/Dd and considering various cases depending on the divisor d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If d ̸∈ S, then d ̸∈ S′ (since S′ ⊆ S) and thus we have ud S,j − 1 p p−1 � k=0 ud S,j+km/p = 0 = ud S′,j − 1 pud S′,jp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If d ∈ S and υp(d) < υp(S), then d | m p and therefore ud S,j+km/p = [ed j+km/p]Dd = [ed j]Dd = ud S,j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since υp(d) < υp(S) implies that d ̸∈ S′, we deduce ud S,j − 1 p p−1 � k=0 ud S,j+km/p = ud S,j − 1 p p−1 � k=0 ud S,j = 0 = ud S′,j − 1 pud S′,jp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If d ∈ S and υp(d) = υp(S), then it holds (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4) � 0, m p mod d, 2m p mod d, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , (p−1)m p mod d � = � 0, d p, 2d p, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , (p−1)d p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To prove the latter identity, notice that for any 0 ≤ k < p, we have � k m p mod d � = � k m d mod p �d p and therefore the identity between sets follows from the fact that m/d is not divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 6Here υp(x) denotes the p-adic valuation of a nonzero integer x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' the maximum exponent h ≥ 0 such that ph divides x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 14 FEDERICO GLAUDO AND ANDREA CIPRIETTI Exploiting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4) and recalling that vd p,j ∈ Dd, we obtain ud S,j − 1 p p−1 � k=0 ud S, j+km/p = � ed j − 1 p p−1 � k=0 ed j+km/p � Dd = � ed j − 1 p p−1 � k=0 ed j+kd/p � Dd = � ed j − 1 p(ed jp − vd p,j) � Dd = � ed j − 1 ped jp � Dd = ud S′,j − 1 pud S′,jp, where in the last steps we used that d ∈ S′ (which is equivalent to the assumptions d ∈ S and υp(d) = υp(S)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since we have covered all possible cases, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) is proven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The set S is solvable, therefore the left-hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) belongs to the image of Ψn ⊗ Q, and thus also uS′,j − 1 puS′,jp belongs to Im (Ψn ⊗ Q) for all 0 ≤ j < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3, applied with vj := uS′,j, λ := 1/p, and σ(j) := (jp mod n), guarantees that also uS′,j belongs to the image of Ψn ⊗ Q for all 0 ≤ j < n, which proves that S′ is solvable as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ As a simple consequence of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5, we claim that if S is solvable, then, for any prime divisor p of n and for any 0 ≤ h ≤ υp(n), we have that {s ∈ S : υp(s) = h} is also solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us prove it by induction on h, starting from h = υp(n) and going backward to h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If {s ∈ S : υp(s) = υp(n)} is empty, then it is solvable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' otherwise we can apply Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5 and obtain again that it is solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Now, we assume that {s ∈ S : υp(s) = h′} is solvable for h′ > h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Then, since the difference of solvable sets is solvable, we deduce that ˜S := {s ∈ S : υp(s) ≤ h} is solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If {s ∈ S : υp(s) = h} is empty, then it is solvable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' otherwise we can apply Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5 on the set ˜S and obtain again that {s ∈ S : υp(s) = h} is solvable as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We can now conclude by showing that singletons {d} are solvable for each d | n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This follows directly from the fact that {d ≥ 1 : d | n} is solvable and that if S is solvable then {s ∈ S : υp(s) = h} is solvable for all prime divisors p | n and all h ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any n ∈ OFS, the group Z/nZ is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let A, A′ ∈ M(Z/nZ) be two multisets such that FS(A) = FS(A′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' we shall prove that A ∼0 A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By definition of the map FS, it holds the polynomial identity in Z[t]/(tn − 1) n−1 � j=0 µFS(A)(j)tj ≡ � s∈FS(A) ts ≡ � a∈A (1 + ta) ≡ n−1 � j=0 (1 + tj)µA(j) (mod tn − 1), Thus the condition FS(A) = FS(A′) is equivalent to n−1 � j=0 (1 + tj)µA(j) ≡ n−1 � j=0 (1 + tj)µA′(j) (mod tn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 15 For any divisor d | n, ωd is a root of tn − 1 and therefore the latter identity implies n−1 � j=0 (1 + ωj d)µA(j) = n−1 � j=0 (1 + ωj d)µA′(j) which, recalling Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2, is equivalent to Fd � πn d � (µA(j) − µA′(j))0≤j 1 (in particular, proving the invertibility of the (d − 1)-planes transform seems to be considerably easier due to the larger number of symmetries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The recent work [CHM18] defines a Radon transform which is almost equiva- lent to our discrete Radon transform on (Z/pZ)d, where p is a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In that paper the Radon transform (which they call classical Radon trans- form to distinguish it from the one of Diaconis and Graham) coincides with the restriction of ours to the homomorphisms ψ ∈ Hom((Z/pZ)d, Z/pZ) such that ψ(0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0, 1) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Due to this restriction, they cannot establish a full inversion formula [CHM18, Theorem 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In the work [AI08], the authors define a discrete Radon transform on Zd which is equivalent to the Radon transform on Zd with our notation (if one allows the group to be non-finite in the definition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An inversion formula [AI08, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1] is proven for such discrete Radon transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Joining the methods of [AI08] with ours, it might be possible to produce inversion formulas for the discrete Radon transform on groups (Z/nZ × Z)d that are neither finite nor torsion-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We do not investigate this as it goes beyond the scope of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An alternative definition of discrete Radon transform for finite abelian groups is provided in [Ilm14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The maximal Radon transform defined in this ref- erence [Ilm14, Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3] computes the sum of the function f over all translations of maximal cyclic subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is not hard to check that, for p prime, the maximal Radon transform on (Z/pZ)2 coincides with ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In this special case, the author proves the invertibility of the Radon transform [Ilm14, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In general his definition does not coincide with ours and, in particular, the maximal Radon 18 FEDERICO GLAUDO AND ANDREA CIPRIETTI transform is not invertible in many important cases [Ilm14, Propositions 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us introduce the concept of inversion formula for our discrete Radon transform (cp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' [Hel99, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1], [Str82]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The main goal of this section is to obtain an inversion formula (see Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, d ≥ 1 be positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We say that the Radon transform on (Z/nZ)d (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) admits an inversion formula if there exists a function λ = λn,d : Hom((Z/nZ)d, Z/nZ) → Q such that f(x) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ)Rf(ψ, ψ(x)), for all functions f : (Z/nZ)d → C and all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us begin with a simple but useful criterion for the existence of an inversion formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, d ≥ 1 be positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A function λ : Hom((Z/nZ)d, Z/nZ) → Q induces an inversion formula for the discrete Radon transform on (Z/nZ)d (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2) if and only if it satisfies, for all x ∈ (Z/nZ)d, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5) � ψ∈Hom((Z/nZ)d, Z/nZ) ψ(x)=0 λ(ψ) = � 1 if x = 0, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any f : (Z/nZ)d → C, any λ : Hom((Z/nZ)d, Z/nZ) → Q and any x ∈ (Z/nZ)d, it holds � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ)Rf(ψ, ψ(x)) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ) � x′∈(Z/nZ)d ψ(x′)=ψ(x) f(x′) = � x′∈(Z/nZ)d f(x′) � ψ∈Hom((Z/nZ)d, Z/nZ) ψ(x′−x)=0 λ(ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to this identity, it is clear that λ induces an inversion formula if and only if Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ In the next technical lemma we show that inversion formulas behave nicely with respect to products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, m, d ≥ 1 be positive integers such that n and m are coprime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If the discrete Radon transforms on (Z/nZ)d and on (Z/mZ)d admit inversion for- mulas, then also the Radon transform on (Z/nmZ)d admits an inversion formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To simplify the notation, let G := Z/nZ and H := Z/mZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let ι : Hom(Gd, G)×Hom(Hd, H) → Hom(Gd⊕Hd, G⊕H) be the map such that ι(ψ1, ψ2)(x1, x2) = (ψ1(x1), ψ2(x2)) for all ψ1 ∈ Hom(Gd, G), ψ2 ∈ Hom(Hd, H), x1 ∈ Gd, x2 ∈ Hd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since n, m are coprime the map ι is bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since we assume that the Radon transforms on Gd and Hd admit inversion for- mulas, thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1, we deduce the existence of λ1 : Hom(Gd, G) → Q and λ2 : Hom(Hd, H) → Q satisfying Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 19 Let λ : Hom(Gd ⊕ Hd, G ⊕ H) → Q be the function such that λ(ι(ψ1, ψ2)) = λ1(ψ1)λ2(ψ2) for all ψ1 ∈ Hom(Gd, G), ψ2 ∈ Hom(Hd, H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any x1 ∈ Gd and x2 ∈ Hd, we have � ψ∈Hom(Gd⊕Hd, G⊕H) ψ(x1,x2)=(0G,0H) λ(ψ) = � ψ1∈Hom(Gd, G), ψ2∈Hom(Hd, H) ψ1(x1)=0G, ψ2(x2)=0H λ1(ψ1)λ2(ψ2) = � � ψ1∈Hom(Gd, G) ψ1(x1)=0G λ1(ψ1) �� � ψ2∈Hom(Hd, H) ψ1(x2)=0H λ2(ψ2) � = � 1 if x1 = 0G and x2 = 0H, 0 otherwise, which is equivalent to the fact that the discrete Radon tranform on Gd ⊕ Hd ad- mits an inversion formula thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is equivalent to the desired statement since G ⊕ H ∼= Z/nmZ as a consequence of the coprimality of m, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Our next goal is to show that the Radon transform on (Z/pkZ)d (with p prime) admits an inversion formula (see Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us begin with a sequence of technical lemmas (Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6) concerning the structure of (Z/pkZ)d, its automorphisms and its canonical scalar product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The first two statements, Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4, are special cases of known results (see [HR07;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' SS99]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For completeness, and because the proofs are much simpler compared to the proofs of the statements we cite, we provide a self-contained proof for both facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a d × d matrix M ∈ (Z/pkZ)d×d, let mulM : (Z/pkZ)d → (Z/pkZ)d be the group homomorphism given by the multiplication with the matrix M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', for all x = (x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xd) ∈ (Z/pkZ)d, mulM(x) := � d � j=1 Mijxj � i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=',d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The group of automorphisms of (Z/pkZ)d is given by Aut((Z/pkZ)d) = {mulM : M ∈ (Z/pkZ)d×d so that p does not divide det(M)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A homomorphism φ : (Z/pkZ)d → (Z/pkZ)d is uniquely determined by the images of the d generators of (Z/pkZ)d, that is by the values φ(1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0), φ(0, 1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , φ(0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let M ∈ (Z/pkZ)d×d be the matrix such that the j-th column is given by the image through φ of the j-th generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It holds φ = mulM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It remains to prove that mulM is an automorphism (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', its inverse is a homo- morphism) if and only if det(M) is not divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that mulM ◦ mulN = mulMN, therefore mulM is an automorphism if and only if M is invertible modulo pk, or equivalently det(M) is not divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ 20 FEDERICO GLAUDO AND ANDREA CIPRIETTI Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any 0 ≤ h ≤ k, let Eh ⊆ (Z/pkZ)d be the subset Eh := {x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xd) ∈ (Z/pkZ)d : ph divides xi for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, let E∗ k := Ek = {(0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0)} ∈ (Z/pkZ)d and, for 0 ≤ h < k, E∗ h := Eh \\ Eh+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The orbits of the action of the automorphism group of (Z/pkZ)d are exactly E∗ 0, E∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , E∗ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The subset Eh coincides with the elements of (Z/pkZ)d with order at most pk−h, hence E∗ h coincides with the elements of (Z/pkZ)d with order equal to pk−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In particular, the image of E∗ h through an automorphism coincides with E∗ h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To prove that E∗ h is an orbit for the automorphism group, we show that given x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xd) ∈ E∗ h there exists an automorphism φ ∈ Aut((Z/pkZ)d) such that φ(ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By definition of E∗ h, it holds υp(xi) ≥ h for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , d (recall that υp denotes the p-adic valuation), and without loss of generality we may assume that υp(x1) = h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Consider the matrix M ∈ (Z/pkZ)d×d with the following entries M = � � � � � � � � � x1/ph 0 0 · · 0 0 x2/ph 1 0 · · 0 0 x3/ph 0 1 · · 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' xd−1/ph 0 0 · · 1 0 xd/ph 0 0 · · 0 1 � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since det(M) = x1/ph, which is not divisible by p, the classification of automor- phisms proven in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 guarantees that φ = mulM is an automorphism which satisfies φ(ph, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) = x, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Denote with · : (Z/pkZ)d × (Z/pkZ)d → Z/pkZ the scalar product x · y := x1y1 + x2y2 + · · · + xdyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any automorphism φ ∈ Aut((Z/pkZ)d), there exists an automorphism φt ∈ Aut((Z/pkZ)d) such that φ(x) · y = x · φt(y) for all x, y ∈ (Z/pkZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3, we know that there exists M ∈ (Z/pkZ)d×d such that φ = mulM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It can be checked that φt := mulM t, where M t is the transpose of M, satisfies the requirements of the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Recall the definitions of Eh and E∗ h given in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given 0 ≤ h, h′ ≤ k, for any x ∈ E∗ h it holds |{y ∈ Eh′ : x · y = 0}| = p(d−1)(k−h′)+min{h, k−h′} and, in particular, this quantity does not depend on the specific choice of x ∈ E∗ h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4, there exists an automorphism φ ∈ Aut((Z/pkZ)d) such that φ((ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0)) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice (recall Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5) that x · y = 0 if and ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 21 only if (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · φt(y) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, as a consequence of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4, we have that φt(Eh′) = Eh′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thus, we deduce φt� {y ∈ Eh′ : x · y = 0} � = {y ∈ Eh′ : (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · y = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In particular, we have shown that the cardinality of such set does not depend on the specific choice of x ∈ E∗ h and we may assume x = (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The condition y ∈ Eh′ is equivalent to the fact that y may be expressed as y = ph′(z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' zd) with z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , zd ∈ Z/pk−h′Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The condition (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0)·y = 0 is equivalent to υp(z1) ≥ max(0, k−(h+h′)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To conclude, we distinguish two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If k ≤ h+h′, then the constraint υp(z1) ≥ max(0, k −(h+h′)) is empty, and thus any choice of z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , zd ∈ Z/pk−h′Z yields an element y = ph′z of {y ∈ Eh′ : (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · y = 0}, thus such set has cardinality pd(k−h′) = p(d−1)(k−h′)+min{h,k−h′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If k ≥ h + h′, then z1 must be divisible by pk−(h+h′), while the other zi can be arbitrary values in Z/pk−h′Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, the cardinality of the set {y ∈ Eh′ : (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · y = 0} is p(d−1)(k−h′)+k−h′−(k−(h+h′)) = p(d−1)(k−h′)+min{h,k−h′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ The only missing ingredient necessary to prove that the discrete Radon transform on (Z/pkZ)d admits an inversion formula is the invertibility of a certain matrix, which is promptly established in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The (k + 1) × (k + 1) matrix U (k) ∈ Q(k+1)×(k+1) with entries, for 0 ≤ i, j ≤ k, given by U (k) ij := p(d−1)(k−j)+min{i, k−j} is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is easier to work with ˜U (k) ij := U (k) i(k−j) (which is invertible if and only if U (k) is invertible).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Indeed, defining q := pd−1, one has ˜U (k) ij = pmin{i,j}qj and therefore ˜U (k) = � � � � � � � � � 1 q q2 · · qk−1 qk 1 pq pq2 · · pqk−1 pqk 1 pq p2q2 · · p2qk−1 p2qk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1 pq p2q2 · · pk−1qk−1 pk−1qk 1 pq p2q2 · · pk−1qk−1 pkqk � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove the statement by induction on k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have ˜U (0) = �1� , which is in- vertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For the inductive step, subtracting the second-to-last row of ˜U (k) from the last, all the entries of the last row become zero, except for the last one, which turns into qk(pk − pk−1) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Note further that the top-left k × k submatrix of ˜U (k) is ˜U (k−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, det ˜U (k) = qk(pk − pk−1) det ˜U (k−1), which concludes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The discrete Radon transform on (Z/pkZ)d admits an inversion formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 22 FEDERICO GLAUDO AND ANDREA CIPRIETTI Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that (Z/pkZ)d ∼= Hom((Z/pkZ)d, Z/pkZ) and the isomorphism is given by the map that takes y ∈ (Z/pkZ)d and produces the homomorphism (Z/pkZ)d ∋ x → x · y (where the scalar product is defined in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, applying Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1, we have that the validity of an inversion formula for the discrete Radon transform on (Z/pkZ)d is equivalent to the existence of a function λ : (Z/pkZ)d → Q such that, for all x ∈ (Z/pkZ)d, � y∈(Z/pkZ)d x·y=0 λ(y) = � 1 if x = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0), 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We are going to construct a function λ with this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let U (k) ∈ Q(k+1)×(k+1) be the matrix considered in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let V (k) ∈ Q(k+1)×(k+1) be the matrix given by V (k) ij = � U (k) i,j if j = k, U (k) i,j − U (k) i,j+1 if j < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since V (k) can be obtained by U (k) through Gauss moves, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7 implies that V (k) is invertible as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that, by definition of V (k), for any 0 ≤ i, j ≤ k, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6 implies that V (k) ij = |{y ∈ E∗ j : x · y = 0}| for any x ∈ E∗ i (recall that E∗ j = Ej \\ Ej+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let Λ ∈ Qk+1 be the solution of V (k)Λ = (1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us define λ : (Z/pkZ)d → Q as the function such that λ(y) := Λj when y ∈ E∗ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We show that this function satisfies the sought identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given x ∈ E∗ i , we have � y∈(Z/pkZ)d x·y=0 λ(y) = k � j=0 |{y ∈ E∗ j : x · y = 0}|Λj = k � j=0 V (k) ij Λj = (V (k)Λ)i, which is the desired formula since the right-hand side is 1 if i = 0 (which is equivalent to x = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) ∈ (Z/pkZ)d) and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ We are ready to show the validity of an inversion formula for all instances of our discrete Radon transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By the classification of finite abelian groups (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2), the statement follows from Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Let us apply the inversion formula obtained in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 to establish the FS- regularity of the group (Z/nZ)d when n ∈ OFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The idea is to project through an homomorphism onto Z/nZ, use the FS-regularity of Z/nZ proven in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6, and then recover the FS-regularity of (Z/nZ)d thanks to the invertibility of the Radon transform on (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any n ∈ OFS and any d ≥ 1, the group (Z/nZ)d is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For a multiset B ∈ M((Z/nZ)d), by definition of the Radon transform on ((Z/nZ)d (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1), one has RµB(ψ, c) = µψ(B)(c) (recall that µB denotes the multiplicity of elements in the multiset B, see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) for any ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 23 ψ ∈ Hom((Z/nZ)d, Z/nZ) and any c ∈ Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, the inversion formula of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 implies (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6) µB(x) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ)µψ(B)(ψ(x)), for all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that this formula allows us to reconstruct B given all its projections ψ(B) onto Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Take two multisets A, A′ ∈ M((Z/nZ)d) such that FS(A) = FS(A′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' our goal is to prove that A ∼0 A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any ψ ∈ Hom((Z/nZ)d, Z/nZ), it holds FS(ψ(A)) = FS(ψ(A′)) and there- fore, since we have shown that Z/nZ is FS-regular in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6, we have ψ(A) ∼0 ψ(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thus (we use only ψ(A) ∼ ψ(A′)), we deduce that for any ψ ∈ Hom((Z/nZ)d, Z/nZ), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7) µψ(A)(x) + µψ(A)(−x) = µψ(A′)(x) + µψ(A′)(−x) for all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Joining Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7), we obtain µA(x) + µA(−x) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ) � µψ(A)(ψ(x)) + µψ(A)(−ψ(x)) � = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ) � µψ(A′)(ψ(x)) + µψ(A′)(−ψ(x)) � = µA′(x) + µA′(−x) for all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The latter identity is equivalent to A ∼ A′, which implies A ∼0 A′ thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1-(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' FS-regularity of products with Z In this section we show that multiplying by Z does not break the FS-regularity of a group (see Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In order to do it, we will need two technical lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The second one, Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2, gives a condition equivalent to FS-regularity which comes handy in the proof of the main result of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let G be an abelian group without elements of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given three multisets A, A′, B ∈ M(G), if A + FS(B) = A′ + FS(B), then A = A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us first prove the result when B = {b} is a singleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove the result by induction on the cardinality of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If |A| = 0, then ∅ = A + FS(B) = A′ + FS(B) and thus A′ = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To handle the case |A| > 0, we begin by showing that A and A′ have a common element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We argue by contradiction, hence we assume that A and A′ are disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Take any a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have a + b ∈ A + FS(B) = A′ + {0, b}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since a ̸∈ A′, it must hold a + b ∈ A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By repeating this argument (swapping the role of A and A′ and replacing a with a + b) we obtain that a + 2b ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Repeating such argument k times, we obtain that a + kb ∈ A if k is even, and a + kb ∈ A′ if k is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since A and A′ are finite, b must have finite order, otherwise the elements (a+kb)k∈N would be all distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let ord(b) be the order of b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' by assumption ord(b) is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have 24 FEDERICO GLAUDO AND ANDREA CIPRIETTI the contradiction A ∋ a = a + ord(b)b ∈ A′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' therefore we have proven that A and A′ have a common element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Now pick ¯a ∈ A ∩ A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It holds (A \\ {¯a}) + FS(B) = (A + FS(B)) \\ {¯a, ¯a + b} = (A′ + FS(B)) \\ {¯a, ¯a + b} = (A′ \\ {¯a}) + FS(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, by the induction hypothesis, A \\ {¯a} = A′ \\ {¯a}, which is equivalent to A = A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us now treat general multisets B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We proceed by induction on the cardinality of B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' the case |B| = 0 is trivial and the case |B| = 1 is already established, so we may assume |B| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Pick an element ¯b ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have A + FS(B) = (A + FS(B \\ {¯b})) + FS({¯b}), and likewise for A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Applying the induction hypothesis for the three multiset A + FS(B\\{¯b}), A′+FS(B\\{¯b}), {¯b}, yields the relation A+FS(B\\{¯b}) = A′+FS(B\\{¯b}), and one more application yields the sought A = A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An abelian group G is FS-regular if and only if, for all A, A′ ∈ M(G) such that FS(A) = FS(A′) + g for some g ∈ G, it holds A ∼ A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Assume that G is FS-regular and take A, A′ ∈ M(G) such that FS(A) = FS(A′) + g for some g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Applying Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1-(4), we produce a multiset A′′ ∈ M(G) such that A′′ ∼ A′ and FS(A) = FS(A′′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' then we deduce A ∼0 A′′ because G is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' So, we get A ∼0 A′′ ∼ A′ which implies A ∼ A′ by transitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us now show the converse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given A, A′ ∈ M(G) such that FS(A) = FS(A′), the condition described in the statement implies A ∼ A′ which implies A ∼0 A′ thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1-(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore we have proven the FS-regularity of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If G is a FS-regular abelian group, then also G⊕Z is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We begin by setting up some notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For B ∈ M(G⊕Z) and z ∈ Z, define B 0 and its position fixed at the origin. The corresponding
+Schr¨odinger operator is
+(1.1)
+H = −∆ + V
+where ∆ = �N
+k=1 ∆xk is the Laplacian in R3N, i.e. ∆xk refers to the Laplacian applied
+to the variable xk, and V is the Coulomb potential given by
+(1.2)
+V (x) = −
+N
+�
+k=1
+Z
+|xk| +
+�
+1≤j 0 define
+hb(t) =
+�
+tmin{0,5−b}
+if b ̸= 5
+log(t−1 + 2)
+if b = 5.
+We denote N0 = N ∪ {0}. For all R > 0 and α, β ∈ N3
+0 with |α|, |β| ≥ 1 there exists C
+such that
+(1.7)
+|∂α
+x ∂β
+y γ(x, y)| ≤ C
+�
+1 + |x|2−|α|−|β| + |y|2−|α|−|β|
++ h|α|+|β|(|x − y|)
+�
+∥ρ∥1/2
+L1(B(x,R)) ∥ρ∥1/2
+L1(B(y,R))
+and for all |α| ≥ 1 there exists C such that
+(1.8)
+|∂α
+x γ(x, y)| + |∂α
+y γ(x, y)| ≤ C
+�
+1 + |x|1−|α| + |y|1−|α|
++ h|α|(|x − y|)
+�
+∥ρ∥1/2
+L1(B(x,R)) ∥ρ∥1/2
+L1(B(y,R))
+
+ONE-PARTICLE DENSITY MATRIX
+3
+for all x, y ∈ R3 with x ̸= 0, y ̸= 0 and x ̸= y. The notation ∂α
+x refers to the α-partial
+derivative in the x variable. The constant C depends on α, β, R, N and Z. The right-
+hand side is finite because ψ is normalised and hence ρ ∈ L1(R3). The bounded first
+derivative at the nucleus reflects local Lipschitz continuity of γ on R6. In addition, there
+is local boundedness of up to four derivatives at the diagonal with at worst a logarithmic
+singularity for the fifth derivative. The purpose of this current paper is to show local
+boundedness of the fifth derivative at the diagonal.
+The existence of the fifth-order cusp at the diagonal was previously demonstrated in
+[6] (see also [7]). In this paper, quantum chemistry calculations show that for x, r ∈ R3,
+x ̸= 0 and small r we have
+Re[γ(x + r, x − r)] = γ(x, x) + C(x)|r|5 + R(x, r)
+(1.9)
+for some functions C(x) and R(x, r), the latter having no contribution from |r|k for
+k = 0, 1, 3, 5 in the small |r| expansion at r = 0.
+Our main result is as follows.
+Theorem 1.1. Let ψ be an eigenfunction of (1.3). Define m(x, y) = min{1, |x|, |y|}.
+Then for all |α| + |β| = 5 and R > 0 we have C, depending on R and also on Z, N and
+E, such that
+(1.10)
+|∂α
+x ∂β
+y γ(x, y)| ≤ Cm(x, y)−4 ∥ρ∥1/2
+L1(B(x,R)) ∥ρ∥1/2
+L1(B(y,R))
+for all x, y ∈ R3 obeying 0 < |x − y| ≤ (2N)−1m(x, y).
+Remark 1.2.
+(1) Theorem 1.1 naturally extends to the case of a molecule with
+several nuclei whose positions are fixed. The modifications are straightforward.
+(2) The bound (1.10) naturally complements (1.7) and (1.8) for |α| + |β| ̸= 5.
+(3) As a consequence of [5, Proposition 7.1], the inequality (1.10) shows that γ ∈
+C4,1
+loc
+�
+(R3\{0}) × (R3\{0})
+�
+.
+Notation. As mentioned earlier, we use standard notation whereby x = (x1, . . . , xN) ∈
+R3N, xj ∈ R3, j=1, . . . , N, and where N is the number of electrons. In addition, define
+for 1 ≤ j, k ≤ N, j ̸= k,
+ˆxj = (x1, . . . , xj−1, xj+1, . . . , xN)
+(1.11)
+ˆxjk = (x1, . . . , xj−1, xj+1, . . . , xk−1, xk+1, . . . , xN)
+(1.12)
+with obvious modifications if either j, k equals 1 or N, and if k < j. We define ˆx = ˆx1,
+which will be used throughout. Variables placed before ˆxj and ˆxjk will be placed in the
+removed slots as follows, for any x, y ∈ R3 we have
+(x, ˆxj) = (x1, . . . , xj−1, x, xj+1, . . . , xN),
+(1.13)
+(x, y, ˆxjk) = (x1, . . . , xj−1, x, xj+1, . . . , xk−1, y, xk+1, . . . , xN).
+(1.14)
+In this way, x = (xj, ˆxj) = (xj, xk, ˆxjk).
+
+4
+PETER HEARNSHAW
+We define a cluster to be any subset P ⊂ {1, . . . , N}. Denote P c = {1, . . . , N}\P,
+P ∗ = P\{1}. We will also need cluster sets, P = (P1, . . . , PM), where M ≥ 1 and
+P1, . . . , PM are clusters.
+First-order cluster derivatives are defined, for a non-empty cluster P, by
+(1.15)
+Dα
+P =
+�
+j∈P
+∂α
+xj
+for α ∈ N3
+0, |α| = 1.
+For P = ∅, Dα
+P is defined as the identity.
+Higher order cluster derivatives, for α =
+(α′, α′′, α′′′) ∈ N3
+0 with |α| ≥ 2, are defined by successive application of first-order cluster
+derivatives as follows,
+(1.16)
+Dα
+P = (De1
+P )α′(De2
+P )α′′(De3
+P )α′′′
+where e1, e2, e3 are the standard unit basis vectors of R3. Let P = (P1, . . . , PM) and
+α = (α1, . . . , αM), αj ∈ N3
+0, 1 ≤ j ≤ M, then we define the multicluster derivative (often
+simply referred to as cluster derivative) by
+(1.17)
+Dα
+P = Dα1
+P1 . . . DαM
+PM .
+It can readily be seen that cluster derivatives obey the Leibniz rule.
+Throughout, the letter C refers to a positive constant whose value is unimportant but
+may depend on Z, N and the eigenvalue E.
+Distance function notation and elementary results. For non-empty cluster P,
+define
+ΣP =
+�
+x ∈ R3N :
+�
+j∈P
+|xj|
+�
+l∈P
+m∈P c
+|xl − xm| = 0
+�
+.
+(1.18)
+For P = ∅ we set ΣP := ∅. Denote Σc
+P = R3N\ΣP. For each P we have ΣP ⊂ Σ where
+(1.19)
+Σ =
+�
+x ∈ R3N :
+�
+1≤j≤N
+|xj|
+�
+1≤l 0,
+f∞(x; r; u) := ∥∇u∥L∞(B(x,r)) + ∥u∥L∞(B(x,r))
+(1.28)
+for x ∈ R3N. The ball B(x, r) is considered in R3N. Largely, this notation will be used
+for u = ψ and in this case we have the notation,
+f∞(x; r) := f∞(x; r; ψ).
+(1.29)
+A pointwise cluster derivative bound. To prove Theorem 1.1 we will state and
+prove a new pointwise bound to cluster derivatives of eigenfunctions ψ, which may itself
+be of independent interest. It will be shown by elliptic regularity that for all α the weak
+cluster derivatives Dα
+Pψ exist in the set Σc
+α. It is therefore interesting to consider how
+such cluster derivatives behave as the set Σα is approached.
+Previously, S. Fournais and T. Ø. Sørensen have given bounds to local Lp-norms of
+cluster derivatives of ψ for a single cluster P. Indeed, in [8, Proposition 1.10] it is shown
+that for any multiindex 0 ̸= α ∈ N3
+0, p ∈ (1, ∞] and any 0 < r < R < 1 there exists C,
+depending on r, R, p and α, such that
+(1.30)
+∥Dα
+Pψ∥Lp(B(x,rλP (x))) ≤ CλP(x)1−|α|�
+∥∇ψ∥Lp(B(x,RλP (x))) + ∥ψ∥Lp(B(x,RλP (x)))
+�
+
+6
+PETER HEARNSHAW
+for all x ∈ Σc
+P. Notice that for every x ∈ Σc
+P, we have B(x, rλP(x)) ⊂ Σc
+P by the
+definition of λP(x). Therefore, the set ΣP is avoided when evaluating Dα
+Pψ in the Lp-
+norms.
+The objective of the following theorem is to extend the bounds (1.30) in the case of
+p = ∞ and for cluster derivatives for cluster sets P. In particular, estimates are obtained
+which depend on the order of derivative for each of the respective clusters in P. In the
+following, ∇ denotes the gradient operator in R3N.
+Theorem 1.3. For every cluster set P = (P1, . . . , PM), multiindex α ∈ N3M
+0
+and any
+0 < r < R < 1 there exists C, depending on α, r and R, such that for k = 0, 1,
+(1.31)
+��Dα
+P∇kψ
+��
+L∞(B(x,rλα(x))) ≤ Cλα(x)1−kλP1(x)−|α1| . . . λPM(x)−|αM|f∞(x; R)
+for all x ∈ Σc
+α.
+Furthermore, for each |α| ≥ 1 there exists a function Gα
+P : Σc
+α → C3N such that
+(1.32)
+Dα
+P∇ψ = Gα
+P + ψDα
+P∇Fc
+and for every b ∈ [0, 1) there exists C, depending on α, r, R and b, such that
+(1.33)
+∥Gα
+P∥L∞(B(x,rλα(x))) ≤ Cµα(x)bλP1(x)−|α1| . . . λPM(x)−|αM|f∞(x; R)
+for all x ∈ Σc
+α.
+Remark 1.4.
+(1) In the case of a single cluster and k = 0, the bound (1.31) reestab-
+lishes (1.30) in the case of p = ∞, albeit with a slightly larger radius in the
+L∞-norms on the right-hand side.
+(2) When k = 0 and α ̸= 0, the presence of a single power of λα(x) in the bound
+will cancel a single negative power of λPj(x) for j such that λPj(x) ≤ λPi(x) for
+all i = 1, . . . , M with αi ̸= 0. Notice that the appropriate j will depend on x.
+(3) The bound in (1.33) is stronger than that of (1.31) with k = 1. This is because
+a positive power of µα(x) will partially cancel a single negative power of λPj(x)
+for j such that λPj(x) ≥ λPi(x) for all i = 1, . . . , M with αi ̸= 0.
+The proof of Theorem 1.3 will follow a similar strategy to that of [8, Proposition 1.10].
+An additional result will be required to prove (1.33). This result, [9], shows that ψ can
+be made C1,1(R3N) upon multiplication by a factor, universal in the sense that the factor
+depends only on N and Z.
+We will require an elliptic regularity result, stated below, which will be used in the
+proofs. Beforehand, we clarify the precise form of definitions which we will be using.
+Let Ω be open, θ ∈ (0, 1] and k = N0. We formally define the θ-H¨older seminorms for a
+function f by
+[f]θ,Ω = sup
+x,y∈Ω
+x̸=y
+|f(x) − f(y)|
+|x − y|θ
+,
+[∇kf]θ,Ω = sup
+|α|=k
+[∂αf]θ,Ω.
+
+ONE-PARTICLE DENSITY MATRIX
+7
+The space Ck,θ(Ω) is defined as all f ∈ Ck(Ω) where [∇kf]θ,Ω′ is finite for each Ω′
+compactly contained in Ω. In addition, the space Ck,θ(Ω) is defined as all f ∈ Ck(Ω)
+where [∇kf]θ,Ω is finite. This space has a norm given by
+∥f∥Ck,θ(Ω) = ∥f∥Ck(Ω) + [∇kf]θ,Ω.
+For open Ω ⊂ Rn we can consider the following elliptic equation,
+(1.34)
+Lu := −∆u + c · ∇u + du = g
+for some c : Ω → Cn and d, g : Ω → C. The corresponding bilinear form for operator L
+is defined formally as
+L(u, χ) =
+�
+Ω
+�
+∇u · ∇χ + (c · ∇u)χ + duχ
+�
+dx
+for all u ∈ H1
+loc(Ω) and χ ∈ C∞
+c (Ω). We say that a function u ∈ H1
+loc(Ω) is a weak
+solution to the equation (1.34) in Ω if L(u, χ) =
+�
+Ω gχ dx for every χ ∈ C∞
+c (Ω).
+The following theorem is a restatement of [5, Proposition 3.1] ([8, Proposition A.2] is
+similar), with additional H¨older regularity which follows from the proof.
+Theorem 1.5. Let x0 ∈ Rn, R > 0 and c, d, g ∈ L∞(B(x0, R)) and u ∈ H1(B(x0, R))
+be a weak solution to (1.34) then for each θ ∈ [0, 1) we have u ∈ C1,θ(B(x0, R)) ∩
+H2
+loc(B(x0, R)), and for any r ∈ (0, R) we have
+(1.35)
+∥u∥C1,θ(B(x0,r)) ≤ C(∥u∥L2(B(x0,R)) + ∥g∥L∞(B(x0,R)))
+for C = C(n, K, r, R, θ) where
+∥c∥L∞(B(x0,R)) + ∥d∥L∞(B(x0,R)) ≤ K.
+2. Proof of Theorem 1.3
+Our strategy for the proof will be to choose a suitable function F = F(x), dependent
+only on N and Z, such that the function e−Fψ has greater regularity than ψ itself. Such
+a multiplicative factor is frequently called a Jastrow factor in mathematical literature,
+and this strategy has been used successfully in, for example, [10], [11] to elucidate reg-
+ularity properties of ψ. The function e−Fψ will solve an elliptic equation with bounded
+coefficients which behave suitably well under the action of cluster derivatives. Elliptic
+regularity will then produce bounds to the cluster derivatives of e−Fψ. Such bounds can
+then be used to obtain bounds to the cluster derivatives of ψ itself.
+2.1. Jastrow factors. We begin by defining the function
+(2.1)
+F(x) = Fc(x) − Fs(x),
+
+8
+PETER HEARNSHAW
+for x ∈ R3N, where
+Fc(x) = −Z
+2
+�
+1≤j≤N
+|xj| + 1
+4
+�
+1≤l 0), such that
+(2.10)
+C ∥φ∥L∞(B(x,R)) ≤ ∥ψ∥L∞(B(x,R)) ≤ C′ ∥φ∥L∞(B(x,R))
+for all x ∈ R3N.
+2.2. Derivatives of F. Informally, our objective is to take cluster derivatives of the
+elliptic equation (2.8) and apply elliptic regularity. To do so, we require bounds to the
+cluster derivatives of the coefficients present in this equation. This is the objective of the
+current section. To begin, we state and prove the following preparatory lemma involving
+the distances introduced in (1.21), (1.25) and (1.27).
+
+ONE-PARTICLE DENSITY MATRIX
+9
+Lemma 2.1. For any σ = (σ1, . . . , σM) ∈ N3M
+0
+we have for k = 0, 1,
+(2.11)
+µσ(y)k−|σ| ≤ λσ(y)kλP1(y)−|σ1| . . . λPM(y)−|σM|
+for all y ∈ R3N. Furthermore, let β(1), . . . , β(n) be an arbitrary collection of multiindices
+in N3M
+0
+such that β(1) + · · · + β(n) = σ then
+(2.12)
+n
+�
+j=1
+λβ(j)(y) ≤ λσ(y)
+for all y ∈ R3N.
+Proof. The results are trivial in the case of σ = 0 therefore we assume in the following
+that σ is non-zero. First, observe for all j = 1, . . . , M,
+µσ(y)−|σj| ≤ λPj(y)−|σj|
+µσ(y)1−|σj| ≤ λPj(y)1−|σj|
+if σj ̸= 0
+by the definition of µσ. Now perform the following trivial expansion of the product,
+µσ(y)−|σ| = µσ(y)−|σ1| . . . µσ(y)−|σM|
+≤ λP1(y)−|σ1| . . . λPM(y)−|σM|
+which proves (2.11) for k = 0. For k = 1, consider that for each y we can find l =
+1, . . . , M such that λσ(y) = λPl(y) and σl ̸= 0. Then,
+µσ(y)1−|σ| = µσ(y)−|σ1| . . . µσ(y)1−|σl| . . . µσ(y)−|σM|
+≤ λP1(y)−|σ1| . . . λPl(y)1−|σl| . . . λPM(y)−|σM|
+= λσ(y)λP1(y)−|σ1| . . . λPM(y)−|σM|
+as required.
+. Finally we prove (2.12). As above, take arbitrary y and a corresponding l such that
+λσ(y) = λPl(y) with σl ̸= 0. For each 1 ≤ j ≤ n we denote the N3
+0-components of β(j) as
+β(j) = (β(j)
+1 , . . . , β(j)
+M ). We know β(1)+· · ·+β(n) = σ so in particular, β(1)
+l
++· · ·+β(n)
+l
+= σl.
+Since σl ̸= 0 there exists at least one 1 ≤ r ≤ n such that β(r)
+l
+̸= 0. Hence by the definition
+of λβ(r),
+λβ(r)(y) = min{λPs(y) : β(r)
+s
+̸= 0, s = 1, . . . , M} ≤ λPl(y) = λσ(y).
+The remaining factors λβ(j)(y), for j ̸= r, can each be bounded above by one.
+□
+The following lemma will be useful in proving results about taking cluster derivatives
+of F, as defined in (2.1). Later, we will apply it using f as the function |x| for x ∈ R3,
+or derivatives thereof.
+
+10
+PETER HEARNSHAW
+Lemma 2.2. Let f ∈ C∞(R3\{0}) and k ∈ N0 be such that for each σ ∈ N3
+0 there exists
+C such that
+(2.13)
+|∂σf(x)| ≤ C|x|k−|σ| for all x ̸= 0.
+Then for any α ̸= 0 with |α| ≥ k there exists some new C such that for any l, m =
+1, . . . , N, the weak derivatives Dα
+P(f(xl)) and Dα
+P(f(xl −xm)) are both smooth in Σc
+α and
+obey
+|Dα
+P(f(xl))|, |Dα
+P(f(xl − xm))| ≤ Cqα(x)k−|α|
+for all x ∈ Σc
+α.
+Proof. Take any j = 1, . . . , M with αj ̸= 0, then we have D
+αj
+Pj(f(xl)) ≡ 0 for each l ∈ P c
+j .
+Therefore, for Dα
+P(f(xl)) to not be identically zero we require that l ∈ Pj for each j with
+αj ̸= 0. For such l we have xl ̸= 0 since x ∈ Σc
+α, and
+|xl| ≥ dPj(x)
+for each j with αj ̸= 0 by (1.20). Therefore, for constant C in (2.13), we have
+|Dα
+P(f(xl))| = |∂α1+···+αMf(xl)| ≤ C|xl|k−|α| ≤ Cqα(x)k−|α|
+because |α| ≥ k. Similarly, for each j = 1, . . . , M, with αj ̸= 0 we have D
+αj
+Pj(f(xl−xm)) ≡
+0 if either l, m ∈ Pj or l, m ∈ P c
+j . Therefore, for Dα
+P(f(xl − xm)) to not be identically
+zero we require that
+(l, m) ∈
+�
+j : αj̸=0
+�
+(Pj × P c
+j ) ∪ (P c
+j × Pj)
+�
+.
+For such (l, m) we have xl ̸= xm since x ∈ Σc
+α and
+|xl − xm| ≥
+√
+2 dPj(x)
+for each j with αj ̸= 0 by (1.20). Therefore, for some constant C′,
+|Dα
+P(f(xl − xm))| = |∂α1+···+αMf(xl − xm)| ≤ C|xl − xm|k−|α| ≤ C′qα(x)k−|α|
+because |α| ≥ k.
+□
+The following lemma provides pointwise bounds to cluster derivatives of functions
+involving F.
+Lemma 2.3. For any cluster set P and any |σ| ≥ 1 there exists C, which depends on
+σ, such that for k = 0, 1,
+(2.14)
+��Dσ
+P∇kF(y)
+��,
+��Dσ
+P∇k(eF)(y)
+�� ≤ Cλσ(y)1−kλP1(y)−|σ1| . . . λPM(y)−|σM|
+(2.15)
+��Dσ
+P|∇F(y)|2�� ≤ CλP1(y)−|σ1| . . . λPM(y)−|σM|
+for all y ∈ Σc
+σ. The bound to the first object in (2.14) also holds when F is replaced by
+Fc.
+
+ONE-PARTICLE DENSITY MATRIX
+11
+Proof. Let τ be the function defined as τ(x) = |x| for x ∈ R3. Then, by definition (2.2)
+we can write
+(2.16)
+Fc(y) = −Z
+2
+�
+1≤j≤N
+τ(yj) + 1
+4
+�
+1≤l 0 we can define the following two cutoff factors ζt = ζt(z) and
+θt = θt(z) by
+(3.2)
+ζt(z) = χ
+�4N|z|
+t
+�
+,
+θt(z) = 1 − ζt(z)
+for z ∈ R3. We have the following support criteria for cutoff factors. For any z ∈ R3 and
+t > 0,
+
+ONE-PARTICLE DENSITY MATRIX
+19
+• If ζt(z) ̸= 0 then |z| < (2N)−1t,
+• If θt(z) ̸= 0 then |z| > (4N)−1t.
+Let 0 < δ < (4N)−1ǫ (the use of (4N)−1 is explained in the following lemma). We
+define a biscaled cutoff, which depends on δ and ǫ as parameters, as a function Φ =
+Φδ,ǫ(x, y, ˆx) defined by
+(3.3)
+Φδ,ǫ(x, y, ˆx) =
+�
+2≤j≤N
+g(1)
+j (x − xj)
+�
+2≤j≤N
+g(2)
+j (y − xj)
+�
+2≤k 0,
+1t(z) = 1{(4N)−1t<|z|<(2N)−1t}(z)
+(3.4)
+1′
+t(z) = 1{(4N)−1t<|z|<1}(z)
+(3.5)
+for z ∈ R3. And for each t > 0 we define the function Mt = Mt(x, y, ˆx) by
+Mt(x, y, ˆx) =
+�
+2≤j≤N
+1t(x − xj) +
+�
+2≤j≤N
+1t(y − xj) +
+�
+2≤k (4N)−1ǫ ≥ δ. For such z we therefore have θδ(z) = 1, by the definition
+of θδ, which proves (3.7). For (3.8), if we also have ζδ(z) ̸= 0, then |z| < (2N)−1δ by the
+support criteria for ζδ, giving a contradiction. For (3.9) we need only consider z such
+that ζδ(z) ̸= 0, in which case |z| < (2N)−1δ. This gives 4N|z|ǫ−1 < (2N)−1 and hence,
+by definition, ζǫ(z) = 1.
+. For any A, B ⊂ {2, . . . , N} with A ∩ B = ∅ we define
+τA,B(x) =
+�
+j∈A
+ζδ(x1 − xj)
+�
+j∈B
+(θδζǫ)(x1 − xj)
+�
+j∈{2,...,N}\(A∪B)
+θǫ(x1 − xj)
+and therefore
+�
+A⊂{2,...,N}
+B⊂{2,...,N}\A
+τA,B(x) =
+�
+2≤j≤N
+�
+ζδ(x1 − xj) + (θδζǫ)(x1 − xj) + θǫ(x1 − xj)
+�
+= 1
+for all x ∈ R3N. Let Ξ = {(j, k) : 2 ≤ k < l ≤ N}. For each subset Y, Z ⊂ Ξ with
+Y ∩ Z = ∅ we define
+TY,Z(ˆx) =
+�
+(j,k)∈Y
+ζδ(xj − xk)
+�
+(j,k)∈Z
+(θδζǫ)(xj − xk)
+�
+(j,k) ∈ Ξ\(Y ∪Z)
+θǫ(xj − xk)
+and therefore
+�
+Y ⊂ Ξ
+Z ⊂ Ξ\Y
+TY,Z(ˆx) =
+�
+2≤j δ/2 by the
+reverse triangle inequality. The case of k ∈ S∗ is analogous.
+
+22
+PETER HEARNSHAW
+. Now let k ∈ Q∗. First, we consider the case where either g(1)
+k
+̸= θǫ or g(2)
+k
+̸= θǫ, or both.
+Without loss, assume g(1)
+k
+̸= θǫ. Then either g(1)
+k
+= ζδ or g(1)
+k
+= θδζǫ. Hence by support
+criteria we have the inequalities,
+|x − xk| < (2N)−1ǫ,
+|y − xk| ≤ |x − y| + |x − xk| ≤ 2δ + (2N)−1ǫ ≤ ǫ/N,
+which gives the required inequality since N ≥ 2. Now, suppose that g(1)
+k
+= g(2)
+k
+= θǫ.
+Then there exist pairwise distinct j1, . . . , js ∈ {2, . . . , N} with 1 ≤ s ≤ N − 2 such that
+fj1,j2, fj2,j3, . . . , fjs,k ̸= θǫ and either g(1)
+j1 ̸= θǫ or g(2)
+j1 ̸= θǫ. As before, we see that
+|x − xj1|, |y − xj1| ≤ ǫ/N
+regardless of which (or both) of g(1)
+j1 and g(2)
+j1 are not θǫ. It’s also clear that by support
+criteria, |xj1 − xj2|, . . . , |xjs − xk| ≤ (2N)−1ǫ. Therefore, by the triangle inequality,
+|x − xk| ≤ |x − xj1| + |xj1 − xj2| + · · · + |xjs − xk| ≤ ǫ
+N + ǫ(N − 2)
+2N
+= ǫ
+2,
+and similarly we can show |y − xk| ≤ ǫ/2, completing the proof.
+□
+3.4. Factorisation of biscaled cutoffs. Let Φ be given by (3.3). We can define a
+partial product of Φ as a function of the form
+(3.14)
+Φ′(x, y, ˆx) =
+�
+j∈T1
+g(1)
+j (x − xj)
+�
+j∈T2
+g(2)
+j (y − xj)
+�
+(k,l)∈R1
+fkl(xk − xl)
+where T1, T2 ⊂ {2, . . . , N}, R1 ⊂ {(k, l) : 2 ≤ k < l ≤ N}.
+We now define classes of partial products of Φ which corresponding to a cluster. Let
+T be an arbitrary cluster with 1 ∈ T.
+Φ(x, y, ˆx; T) =
+�
+j∈T ∗
+g(1)
+j (x − xj)
+�
+j∈T ∗
+g(2)
+j (y − xj)
+�
+k,l∈T ∗
+k 0
+such that for any z0 ∈ R3 we get ∂σ
+z |z + z0|s ≤ C|z + z0|s−|σ| for all z ∈ R3, z ̸= −z0.
+Recall the function 1t was defined in (3.4).
+Lemma 3.5. For any σ ∈ N3
+0 with |σ| ≥ 1 and any t > 0 there exists C, depending on
+σ but independent of t, such that
+(3.22)
+|∂σζt(z)|, |∂σθt(z)| ≤ Ct−|σ|1t(z)
+for all z ∈ R3.
+
+24
+PETER HEARNSHAW
+Proof. Without loss we consider the case of θt, the case of ζt being similar.
+In the
+following, χ(j) refers to the j-th (univariate) derivative of the function χ defined in (3.1).
+Now, since |σ| ≥ 1 the chain rule shows that ∂σθt(z) can be written as a sum of terms
+of the form
+(3.23)
+�4N
+t
+�m
+χ(m)�4N|z|
+t
+�
+∂σ1
+z |z| . . . ∂σm
+z |z|
+where 1 ≤ m ≤ |σ|, and σ1, . . . , σm ∈ N3
+0 are non-zero multiindices obeying
+σ1 + · · · + σm = σ.
+Since m ≥ 1 we have that if χ(m)(s) ̸= 0 then s ∈ (1, 2), and therefore for any term
+(3.23) to be non-zero we require that
+(3.24)
+(4N)−1t < |z| < (2N)−1t.
+By the remark preceeding the current lemma, there exists C, dependent on σ1, . . . , σm,
+such that
+∂σ1
+z |z| . . . ∂σm
+z |z| ≤ C|z|m−|σ| ≤ C(4N)|σ|−mtm−|σ|,
+using (3.24). Therefore, the terms (3.23) can readily be bounded to give the desired
+result.
+□
+We now give bounds for the cluster derivatives (3.20)-(3.21) acting on cutoffs.
+Lemma 3.6. Let Φ be any biscaled cutoff and let Q = Q(Φ). Then
+Dα
+x,y,QΦ( · ; Q) ≡ 0
+(3.25)
+for all α ∈ N3
+0 with |α| ≥ 1.
+Proof. By the chain rule, each function in the product (3.15) for Φ( · ; Q) has zero deriv-
+ative upon action of Dα
+x,y,Q.
+□
+Recall that the notion of partial products was defined in (3.14) and the function Mt
+for t > 0 was defined in (3.6).
+Lemma 3.7. Let δ ≤ (4N)−1ǫ and Φ = Φδ,ǫ be a biscaled cutoff. Let Q = Q(Φ). Then
+for any multiindex α ∈ N3N+3
+0
+there exists C, dependent on α but independent of δ and
+ǫ, such that for any partial products Φ′ of Φ we have
+|∂αΦ′(x, y, ˆx)| ≤
+�
+Cǫ−|α|
+if Φ′ = Φ( · ; Q, Qc)
+C
+�
+ǫ−|α| + δ−|α|Mδ(x, y, ˆx)
+�
+otherwise.
+(3.26)
+Proof. Lemma 3.5 gives bounds for the partial derivatives of the function ζδ, θδ, ζǫ, θǫ.
+Considering θδζǫ, we apply the Leibniz rule with σ ∈ N3
+0, |σ| ≥ 1, to obtain
+∂σ(θδζǫ)(z) =
+�
+µ≤σ
+�σ
+µ
+�
+∂µθδ(z)∂σ−µζǫ(z)
+= ∂σθδ(z) + ∂σζǫ(z),
+(3.27)
+
+ONE-PARTICLE DENSITY MATRIX
+25
+since, for each µ ≤ σ with µ ̸= 0 and µ ̸= σ we have
+∂µθδ(z) ∂σ−µζǫ(z) ≡ 0
+by Lemma 3.5 and the definition (3.4).
+. Now, to evaluate ∂αΦ′ we apply the Leibniz rule to the product (3.14) using (3.27)
+where appropriate. Differentiated cutoff factors are bounded by (3.22) and any remaining
+undifferentiated cutoff factors are bounded above by 1. If Φ′ = Φ( · ; Q, Qc), all cutoff
+factors are of the form θǫ by Lemma 3.4 and therefore we need only use the bounds in
+(3.22) with t = ǫ.
+□
+The derivative Dx,y,Q acting on Φ is special in that it contributes only powers of ǫ (and
+not δ) to the bounds. This is shown in the next lemma.
+Lemma 3.8. Let δ ≤ (4N)−1ǫ and Φ = Φδ,ǫ be a biscaled cutoff. Let Q = Q(Φ). For
+any multiindices α ∈ N3
+0 and σ ∈ N3N+3
+0
+there exists C, independent of ǫ and δ, such
+that
+|∂σDα
+x,y,QΦ(x, y, ˆx)| ≤ Cǫ−|α|�
+ǫ−|σ| + δ−|σ|Mδ(x, y, ˆx)
+�
+for all x, y, ˆx.
+Proof. First, set Φ′ = Φ( · ; Q) Φ( · ; Qc) and Φ′′ = Φ( · ; Q, Qc). We then have
+Dα
+x,y,QΦ = Φ′ Dα
+x,y,QΦ′′
+which follows from Lemmas 3.3 and 3.6 and that Φ( · ; Qc) is not dependent on variables
+involved in the Dα
+x,y,Q-derivative. By the definition (3.21), the derivative Dα
+x,y,QΦ′′ can
+be written as a sum of partial derivatives of the form ∂αΦ′′ where α ∈ N3N+3
+0
+obeys
+|α| = |α|. Now, by the Leibniz rule and Lemma 3.7 there exists some constants C and
+C′, independent of δ and ǫ, such that
+|∂σ(Φ′ ∂αΦ′′)| ≤
+�
+τ≤σ
+�σ
+τ
+�
+|∂τΦ′| |∂σ−τ+αΦ′′|
+≤ C
+�
+τ≤σ
+(ǫ−|τ| + δ−|τ|Mδ)ǫ−|σ|+|τ|−|α|
+≤ C′ǫ−|α|(ǫ−|σ| + δ−|σ|Mδ),
+completing the proof.
+□
+4. Proof of Theorem 1.1
+The idea of the proof is to turn partial derivatives of an integral, such as the density
+matrix γ(x, y) weighted with a suitable cutoff, into cluster derivatives under the inte-
+gral. For the density matrix we then estimate the resulting integrals involving cluster
+derivatives of ψ using the pointwise bounds of Theorem 1.3.
+
+26
+PETER HEARNSHAW
+Although Theorem 1.1 is stated using partial derivatives of the density matrix γ(x, y) in
+the x- and y-variables, it is more appropriate to consider directional derivatives. Indeed,
+we define new variables
+u = (x + y)/2,
+(4.1)
+v = (x − y)/2,
+(4.2)
+and consider the ∂α
+u ∂β
+v -derivatives of the density matrix. The ∂u-derivatives act along
+the direction parallel to the diagonal and it is found that they do not affect the non-
+smoothness we get at the diagonal, regardless of how many of these derivatives are taken.
+The ∂v-derivatives act in the direction perpendicular to the diagonal and these derivatives
+are found to contribute to worsening the non-smoothness at the diagonal.
+Consider derivatives of the form ∂α
+x ∂β
+y γ(x, y) where |α|+|β| = 2. As discussed in [5], the
+case where |α| = |β| = 1 (the mixed derivatives) is particularly well-behaved in contrast
+to the other cases. The reason behind this is that when |α| = |β| = 1, differentiation
+under the integral leads to both ψ factors being differentiated exactly once. The greater
+regularity in this case follows from the well known fact that ψ, ∇ψ ∈ L∞
+loc(R3N), first
+proven in [12], whereas higher order derivatives of ψ do not have this locally boundedness.
+This is used in the proof in the following way. In (4.34) below, it will be shown that
+derivatives of the form ∂σ
+v for |σ| = 2 can be written in terms of ∂σ
+u and the mixed
+derivatives ∂α
+x ∂β
+y γ(x, y) for some |α| = |β| = 1. The benefit of this identity is that two
+v-derivatives (which act to worsen the singularity at the diagonal) have been transformed
+into two u-derivatives (which do not worsen the singularity) along with mixed derivatives
+which have good regularity.
+This method only works for two v-derivatives, and the
+strategy of using cluster derivatives, as described above, must be used in conjunction.
+The difficulties encountered in the fifth derivative of the density matrix are described in
+a later section.
+4.1. Density matrix notation. The proof will require auxiliary functions related to
+the density matrix which we introduce now. For l, m ∈ N3
+0 with |l|, |m| ≤ 1 define,
+(4.3)
+γl,m(x, y) =
+�
+R3N−3 ∂l
+xψ(x, ˆx)∂m
+y ψ(y, ˆx) dˆx.
+In this notation, it is clear that γ = γ0,0. For any biscaled cutoff Φ, defined in (3.3), we
+set
+γl,m(x, y; Φ) =
+�
+R3N−3 ∂l
+xψ(x, ˆx)∂m
+y ψ(y, ˆx)Φ(x, y, ˆx) dˆx,
+and define γ( · ; Φ) = γ0,0( · ; Φ). We will consider the above functions in the variables
+(4.1) and (4.2). It is then natural to define for all u, v ∈ R3,
+˜γl,m(u, v) = γl,m(u + v, u − v),
+(4.4)
+˜γl,m(u, v; Φ) = γl,m(u + v, u − v; Φ).
+(4.5)
+
+ONE-PARTICLE DENSITY MATRIX
+27
+4.2. Integrals involving f∞. The following proposition is a restatement of [5, Lemma
+5.1] and is proven in that paper. Notice that the function Mt was defined in (3.6) and
+has a slightly different form to the corresponding function used in the paper.
+Proposition 4.1. Given R > 0, there exists C such that
+(4.6)
+�
+R3N−3 f∞(x, ˆx; R)f∞(y, ˆx; R) dˆx ≤ C ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+for all x, y ∈ R3. In addition, given G ∈ L1(R3) there exists C, independent of G, such
+that
+(4.7)
+�
+R3N−3
+�
+|G(xj − xk)| + |G(z − xk)| + |G(xj)|
+�
+f∞(x, ˆx; R)f∞(y, ˆx; R) dˆx
+≤ C ∥G∥L1(R3) ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+for all x, y, z ∈ R3, and j, k = 2, . . . , N, j ̸= k. In particular, for any t > 0 there exists
+C, independent of t, such that
+(4.8)
+�
+R3N−3 Mt(x, y, ˆx)f∞(x, ˆx; R)f∞(y, ˆx; R) dˆx ≤ Ct3 ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+for all x, y ∈ R3.
+We introduce the following quantities based on the bounded distances (1.21). For any
+x, y ∈ R3 and ˆx ∈ R3N−3 define
+λ(x, y, ˆx) = min{λP(x, ˆx), λS∗(x, ˆx), λP ∗(y, ˆx), λS(y, ˆx)},
+(4.9)
+π(x, y, ˆx) = min{λQ(x, ˆx), λQ(y, ˆx)}.
+(4.10)
+Later, we will see that these quantities appear to negative powers when we apply Theorem
+1.3 to clusters derivatives of ψ involving the clusters P, S and Q. The next lemma will
+give conditions for when these quantities can be bounded away from zero on the support
+of Φ.
+Beforehand, we consider an alternative formulae for (4.10) and (4.9).
+Recall that
+1 ∈ P, S, Q by definition. Using (1.20) we find that
+(4.11)
+π(x, y, ˆx) = min{1, |x|, |y|, |xj| : j ∈ Q∗, 2−1/2|x − xk| : k ∈ Qc,
+2−1/2|y − xk| : k ∈ Qc, 2−1/2|xj − xk| : j ∈ Q∗, k ∈ Qc}.
+In the case of P ∗ ∩ S∗ = ∅ we similarly find that
+(4.12)
+λ(x, y, ˆx) = min{1, |x|, |y|, |xj| : j ∈ P ∗ ∪ S∗, 2−1/2|x − xk| : k ∈ P c,
+2−1/2|y − xk| : k ∈ Sc, 2−1/2|xj − xk| : (j, k) ∈ (P ∗ × P c) ∪ (S∗ × Sc)}.
+
+28
+PETER HEARNSHAW
+Lemma 4.2. Let δ ≤ (4N)−1ǫ, and ǫ ≤ 1 and let Φ = Φδ,ǫ be an arbitrary biscaled
+cutoff. Let x, y ∈ R3 be such that δ ≤ |x − y| ≤ 2δ, and |x|, |y| ≥ ǫ. Then there exists a
+constant C, dependent only on N, such that
+π(x, y, ˆx) ≥ Cǫ
+(4.13)
+λ(x, y, ˆx) ≥ Cδ
+(4.14)
+whenever Φ(x, y, ˆx) ̸= 0. In addition, for all b ≥ 0 with b ̸= 3 and R > 0 there exists C,
+depending on b and R but independent of δ, ǫ, x and y such that
+(4.15)
+�
+supp Φ(x,y, · )
+λ(x, y, ˆx)−bf∞(x, ˆx; R)f∞(y, ˆx; R) dˆx
+≤ C(ǫ−b + hb(δ)) ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+where, for all t > 0, we define
+hb(t) =
+�
+0
+if b < 3
+t3−b
+if b > 3.
+The following corollary will be useful later.
+Corollary 4.3. There exists C, depending on R but independent of δ and ǫ, such that
+(4.16)
+2
+�
+r=1
+�
+R3N−3 λ(x, y, ˆx)−2f∞(x, ˆx; R)f∞(y, ˆx; R)|∇rΦ(x, y, ˆx)| dˆx
+≤ Cǫ−3 ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+for all x, y ∈ R3 with δ ≤ |x − y| ≤ 2δ and |x|, |y| ≥ ǫ.
+Proof of Corollary 4.3. When r = 1 the bound for the integral is immediate.
+Using
+Lemma 3.8 and (4.14), the integral in (4.16) for r = 2 can be bounded by some constant
+multiplying
+�
+supp Φ(x,y, · )
+�
+ǫ−1λ(x, y, ˆx)−2 + δ−3Mδ(x, y, ˆx)
+�
+f∞(x, ˆx; R)f∞(y, ˆx; R) dˆx
+The required bound follows from (4.15) of Lemma 4.2, (4.8) of Proposition 4.1 and that
+ǫ < 1.
+□
+Proof of Lemma 4.2. By Lemma 3.2 we need only consider Φ with P ∗ ∩ S∗ = ∅. By the
+definition of the cluster Q, if j ∈ Q∗ and k ∈ Qc then fjk = θǫ in the formula (3.3)
+defining Φ. Similarly, if k ∈ Qc then g(1)
+k
+= g(2)
+k
+= θǫ. Using the support criteria of θǫ we
+therefore get
+|x − xk|, |y − xk|, |xj − xk| ≥ (4N)−1ǫ
+j ∈ Q∗, k ∈ Qc.
+(4.17)
+
+ONE-PARTICLE DENSITY MATRIX
+29
+In addition, if j ∈ Q∗ we get
+(4.18)
+|xj| ≥ |x| − |x − xj| ≥ ǫ/2
+j ∈ Q∗
+since for such j we have |x − xj| ≤ ǫ/2 by Lemma 3.2. The lower bound (4.13) then
+follows from the formula (4.11) for π(x, y, ˆx).
+. In a similar way we consider the clusters P and S. Indeed, let j ∈ P ∗, k ∈ P c or j ∈ S∗,
+k ∈ Sc, then fjk ̸= ζδ. Similarly, if k ∈ P c then g(1)
+k
+̸= ζδ, and if k ∈ Sc then g(2)
+k
+̸= ζδ.
+Notice that if a cutoff factor is not ζδ then it must either be θδζǫ or θǫ, both of which
+are only supported away from zero. Therefore by the support criteria of these factors we
+obtain the following inequalities,
+|x − xk|, |y − xl| ≥ (4N)−1δ
+k ∈ P c, l ∈ Sc
+(4.19)
+|xj − xk| ≥ (4N)−1δ
+j ∈ P ∗, k ∈ P c or j ∈ S∗, k ∈ Sc.
+(4.20)
+We also have (4.18) for j ∈ P ∗ ∪S∗ since P, S ⊂ Q. The lower bound (4.14) then follows
+from the formula (4.12) for λ(x, y, ˆx).
+. We recall the function 1′
+δ was defined in (3.5). By the formula (4.12) we can use (4.18)
+to obtain some C, depending on b, such that
+(4.21)
+λ(x, y, ˆx)−b ≤ C
+�
+ǫ−b +
+�
+k∈P c
+1′
+δ(x − xk) |x − xk|−b +
+�
+k∈Sc
+1′
+δ(y − xk) |y − xk|−b
++
+�
+(j,k)∈(P ∗×P c)
+∪(S∗×Sc)
+1′
+δ(xj − xk) |xj − xk|−b�
+,
+where the upper bounds in the indicator functions (3.5) can be included because 1 lies in
+the minimum (4.12) and the lower bounds follow from (4.18)-(4.20). The bound (4.15)
+then follows from the above inequality along with both (4.6) and (4.7) of Proposition
+4.1, where we choose G to be the function G(z) = 1′
+δ(z)|z|−b for z ∈ R3.
+□
+4.3. Differentiating the density matrix - some required bounds. We collect cer-
+tain results which will be used throughout this section. Let δ ≤ (4N)−1ǫ and ǫ ≤ 1 and
+suppose Φ = Φδ,ǫ is a biscaled cutoff as defined in (3.3). As usual, we denote Q = Q(Φ),
+P = P(Φ) and S = S(Φ). Let η ∈ N3
+0 and ν = (ν1, ν2) ∈ N6
+0 be arbitrary. Firstly, we
+define
+(4.22)
+Φ(η,ν)(x, y, ˆx) = Dη
+x,y,QDν1
+x,PDν2
+y,SΦ(x, y, ˆx)
+where in the notation it is implicit the clusters used are Q, P and S corresponding to Φ.
+By Lemma 3.8 and the definition of cluster derivatives (1.16) it can be shown that for
+each η and ν there exists C, independent of δ and ǫ, such that
+(4.23)
+|Φ(η,ν)(x, y, ˆx)| ≤ Cǫ−|η|�
+ǫ−|ν| + δ−|ν|Mδ(x, y, ˆx)
+�
+for all x, y ∈ R3 and ˆx ∈ R3N−3.
+
+30
+PETER HEARNSHAW
+Now take any x, y ∈ R3 with δ ≤ |x−y| ≤ 2δ and |x|, |y| ≥ ǫ, and suppose Φ(x, y, ˆx) ̸=
+0.
+Then, as a consequence of Lemma 4.2 we have both π(x, y, ˆx) and λ(x, y, ˆx) are
+positive. Therefore, by the definitions (4.9), (4.10) and (1.20), (1.21),
+(x, ˆx) ∈ Σc
+Q ∩ Σc
+P ∩ Σc
+S∗
+and
+(y, ˆx) ∈ Σc
+Q ∩ Σc
+P ∗ ∩ Σc
+S.
+(4.24)
+This allows us to apply Theorem 1.3. Indeed, for every η ∈ N3
+0, ν = (ν1, ν2) ∈ N6
+0 and
+all R > 0 there exists C, independent of our choice of x, y and ˆx, such that for k = 0, 1,
+��Dη
+QDν
+{P,S∗}∇kψ(x, ˆx)
+�� ≤ Cπ(x, y, ˆx)−|η|λ(x, y, ˆx)−|ν|f∞(x, ˆx; R),
+(4.25)
+��Dη
+QDν
+{P ∗,S}∇kψ(y, ˆx)
+�� ≤ Cπ(x, y, ˆx)−|η|λ(x, y, ˆx)−|ν|f∞(y, ˆx; R).
+(4.26)
+For convenience, we choose a bound which holds for both values of k. The functions λ
+and π are defined in (4.9) and (4.10) respectively.
+Now, let |ν| ≥ 1. By Theorem 1.3 with b = 1/2 we can write
+Dν
+{P,S∗}∇ψ(x, ˆx) = Gν
+{P,S∗}(x, ˆx) + ψ(x, ˆx)
+�
+Dν
+{P,S∗}∇Fc(x, ˆx)
+�
+(4.27)
+Dν
+{P ∗,S}∇ψ(y, ˆx) = Gν
+{P ∗,S}(y, ˆx) + ψ(y, ˆx)
+�
+Dν
+{P ∗,S}∇Fc(y, ˆx)
+�
+(4.28)
+for functions Gν
+{P,S∗} and Gν
+{P ∗,S} which obey
+��Gν
+{P,S∗}(x, ˆx)
+�� ≤ Cλ(x, y, ˆx)1/2−|ν|f∞(x, ˆx; R),
+(4.29)
+��Gν
+{P ∗,S}(y, ˆx)
+�� ≤ Cλ(x, y, ˆx)1/2−|ν|f∞(y, ˆx; R),
+(4.30)
+for some C, dependent on ν but independent of the choice of x, y and ˆx.
+By Lemma 2.3 and (2.2), for each ν ∈ N6
+0 there exists C, independent of x, y and ˆx,
+such that
+��Dν
+{P,S∗}∇Fc(x, ˆx)
+�� +
+��Dν
+{P ∗,S}∇Fc(y, ˆx)
+�� ≤ Cλ(x, y, ˆx)−|ν|.
+(4.31)
+4.4. Differentiating the density matrix - first and second derivatives. In the
+following, let l, m ∈ N3
+0 obey |l| = |m| = 1. In standard notation, by ∂l
+x1ψ we mean the
+l-partial derivative in the first R3 component of ψ. Then by differentiation under the
+integral,
+∂l
+u˜γ(u, v) =
+�
+R3N−3 ∂l
+x1ψ(u + v, ˆx)ψ(u − v, ˆx) dˆx +
+�
+R3N−3 ψ(u + v, ˆx)∂lx1ψ(u − v, ˆx) dˆx
+(4.32)
+= ˜γl,0(u, v) + ˜γ0,l(u, v),
+and similarly,
+∂l
+v˜γ(u, v) = ˜γl,0(u, v) − ˜γ0,l(u, v)
+(4.33)
+
+ONE-PARTICLE DENSITY MATRIX
+31
+for all u, v ∈ R3. The above equalities are used to obtain a formula relating second order
+u-derivatives to second order v-derivatives of ˜γ. Omitting the argument (u, v) we get
+�
+∂l+m
+u
+− ∂l+m
+v
+�
+˜γ = ∂l
+u(˜γm,0 + ˜γ0,m) − ∂l
+v(˜γm,0 − ˜γ0,m)
+=
+�
+∂l
+u + ∂l
+v
+�
+˜γ0,m +
+�
+∂l
+u − ∂l
+v
+�
+˜γm,0
+= 2(˜γl,m + ˜γm,l)
+(4.34)
+where the final equality is obtained by differentiation under the integral, as in (4.32).
+4.5. Differentiating the density matrix - general derivatives. Partial derivatives
+of γ are written as linear combinations of integrals involving cluster derivatives of ψ.
+One such integral is bounded in the following lemma. Since it is more involved than the
+other such integrals, the proof is postponed until later in the section.
+Lemma 4.4. Let δ ≤ (4N)−1ǫ and ǫ ≤ 1 and let Φ = Φδ,ǫ be an arbitrary biscaled cutoff.
+Let P = P(Φ) and S = S(Φ) obey P ∗ ∩ S∗ = ∅. For any α, β ∈ N6
+0 with |α| + |β| = 3,
+any l, m ∈ N3
+0 with |l| = |m| = 1, and any R > 0 there exists C such that
+(4.35)
+���
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xψ(x, ˆx)
+��
+Dβ
+{P ∗,S}∂m
+y ψ(y, ˆx)
+�
+Φ(x, y, ˆx) dˆx
+���
+≤ Cǫ−3 ∥ρ∥1/2
+L1(B(x,R)) ∥ρ∥1/2
+L1(B(y,R))
+for all δ ≤ |x−y| ≤ 2δ and |x|, |y| ≥ ǫ. The constant C depends on R but is independent
+of δ, ǫ.
+In part two of the following lemma the conditions on η, µ, l and m are not the most
+general, but for simplicity we restrict ourselves to these assumptions. We use notation
+of cluster derivatives of Φ from (4.22).
+Lemma 4.5. Let δ ≤ (4N)−1ǫ and ǫ ≤ 1 and Φ = Φδ,ǫ be an arbitrary biscaled cutoff.
+Let η, µ ∈ N3
+0 be arbitrary and l, m ∈ N3
+0 be such that |l|, |m| ≤ 1.
+(i) On the set of u, v such that δ/2 ≤ |v| ≤ δ and |u + v|, |u − v| ≥ ǫ, the derivative
+∂η
+u∂µ
+v ˜γl,m(u, v; Φ) is equal to a linear combination of integrals of the form
+(4.36)
+�
+R3N−3
+�
+Dχ1
+Q Dα
+{P,S∗}∂l
+x1ψ(u + v, ˆx)
+��
+Dχ2
+Q Dβ
+{P ∗,S}∂m
+x1ψ(u − v, ˆx)
+�
+·
+Φ(χ3,σ)(u + v, u − v, ˆx) dˆx
+where α, β, σ ∈ N6
+0 and χ = (χ1, χ2, χ3) ∈ N9
+0 obey |χ| = |η| and |α|+|β|+|σ| =
+|µ|.
+(ii) Furthermore, suppose either
+• |µ| ≤ 2, or
+• |µ| = 3, η = 0 and |l| = |m| = 1.
+
+32
+PETER HEARNSHAW
+Then for all R > 0 we have some C0 such that
+(4.37)
+|∂η
+u∂µ
+v ˜γl,m(u, v; Φ)| ≤ C0ǫ−|η|−|µ| ∥ρ∥1/2
+L1(B(u+v,R)) ∥ρ∥1/2
+L1(B(u−v,R))
+for all δ/2 ≤ |v| ≤ δ and |u + v|, |u − v| ≥ ǫ. The constant C0 depends on R but
+is independent of δ, ǫ.
+Proof of i). By Lemma 3.2, we need only consider Φ such that P ∗ ∩ S∗ = ∅. For each
+choice of u and v we define a u- and v-dependent change of variables for the integral
+˜γlm(u, v; Φ) defined in (4.5).
+To start, we define two vectors ˆa = (a2, . . . , aN), ˆb =
+(b2, . . . , bN) ∈ R3N−3 by
+ak =
+�
+u
+if k ∈ Q∗
+0
+if k ∈ Qc
+bk =
+
+
+
+
+
+v
+if k ∈ P ∗
+−v
+if k ∈ S∗
+0
+if k ∈ (P ∪ S)c,
+(4.38)
+and define ˆωu,v = ˆa + ˆb. We then apply a translational change of variables which allows
+us to write
+(4.39)
+˜γlm(u, v; Φ) =
+�
+R3N−3 ∂l
+x1ψ(u+v,ˆz+ ˆωu,v)∂m
+x1ψ(u − v,ˆz + ˆωu,v)Φ(u+v, u−v,ˆz+ ˆωu,v) dˆz.
+We will then apply differentiation under the integral. Beforehand, we show how such
+derivatives will act on each function within the integrand. For a function f and any
+r ∈ N3
+0 with |r| = 1 we see that by the chain rule
+∂r
+u[f(u ± v,ˆz + ˆωu,v)] = Dr
+Qf(u ± v,ˆz + ˆωu,v)
+∂r
+v[f(u + v,ˆz + ˆωu,v)] = Dr
+Pf(u + v,ˆz + ˆωu,v) − Dr
+S∗f(u + v,ˆz + ˆωu,v)
+∂r
+v[f(u − v,ˆz + ˆωu,v)] = Dr
+P ∗f(u − v,ˆz + ˆωu,v) − Dr
+Sf(u − v,ˆz + ˆωu,v).
+Applying repeatedly, we obtain for arbitrary σ, ν ∈ N3
+0,
+∂σ
+u∂ν
+v[f(u + v,ˆz + ˆωu,v)] =
+�
+τ≤ν
+cτ,ν
+�
+Dσ
+QDτ
+PDν−τ
+S∗ f(u + v,ˆz + ˆωu,v)
+�
+∂σ
+u∂ν
+v [f(u − v,ˆz + ˆωu,v)] =
+�
+τ≤ν
+cτ,ν
+�
+Dσ
+QDτ
+P ∗Dν−τ
+S
+f(u − v,ˆz + ˆωu,v)
+�
+.
+where cτ,ν = (−1)|ν|−|τ|�ν
+τ
+�
+. In a similar manner, for the cutoff we use the definitions
+(3.20)-(3.21) and (4.22) to write
+∂σ
+u∂ν
+v[Φ(u + v, u − v,ˆz + ˆωu,v)] =
+�
+τ≤ν
+cτ,νΦ(σ,τ,ν−τ)(u + v, u − v,ˆz + ˆωu,v).
+By differentiating (4.39) under the integral, applying the Leibniz rule and reversing the
+change of variables, we find that ∂η
+u∂µ
+v ˜γlm(u, v; Φ) is a linear combination of terms of the
+required form.
+
+ONE-PARTICLE DENSITY MATRIX
+33
+Proof of ii). By part (i) it suffices to prove the required bound for integrals of the form
+(4.36) with |χ| = |η| and |α| + |β| + |σ| = |µ|. Rewriting such integrals in the variables
+x = u + v and y = u − v we get
+(4.40)
+�
+R3N−3
+�
+Dχ1
+Q Dα
+{P,S∗}∂l
+x1ψ(x, ˆx)
+��
+Dχ2
+Q Dβ
+{P ∗,S}∂m
+x1ψ(y, ˆx)
+�
+Φ(χ3,σ)(x, y, ˆx) dˆx.
+Notice that the variables x and y must obey δ ≤ |x − y| ≤ 2δ and |x|, |y| ≥ ǫ. Firstly,
+we bound the above integral in the case where |α| + |β| ≤ 2 and |α| + |β| + |σ| ≤ 3 for
+any |l|, |m| ≤ 1. By (4.23), (4.25), (4.26) followed by (4.13) of Lemma 4.2 we can bound
+this integral in absolute value by some constant multiplied by
+ǫ−|χ|
+�
+supp Φ(x,y,·)
+�
+ǫ−|σ| + δ−|σ|Mδ(x, y, ˆx)
+�
+λ(x, y, ˆx)−|α|−|β|f∞(x, ˆx; R)f∞(y, ˆx; R) dˆx.
+Selective use of (4.14) of Lemma 4.2 allows us to bound this quantity by some constant
+multiplied by
+ǫ−|χ|
+�
+supp Φ(x,y,·)
+�
+ǫ−|σ|λ(x, y, ˆx)−|α|−|β| + δ−|α|−|β|−|σ|Mδ(x, y, ˆx)
+�
+f∞(x, ˆx; R)f∞(y, ˆx; R) dˆx.
+We can use (4.15) of Lemma 4.2, using that |α| + |β| ≤ 2 by assumption, and (4.8) of
+Proposition 4.1 to bound this quantity by some constant multiplied by
+ǫ−|α|−|β|−|σ|−|χ| ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+where it was used that δ ≤ 1 ≤ ǫ−1 and |α| + |β| + |σ| ≤ 3. After a return to u, v-
+variables, this proves the bound for integrals (4.36) in the case where |α| + |β| ≤ 2
+and |α| + |β| + |σ| ≤ 3. It remains to bound (4.40) in the case where |α| + |β| = 3,
+|σ| = |χ| = 0 and |l| = |m| = 1. This follows directly from Lemma 4.4.
+□
+Lemma 4.6. Take any η, µ, l, m ∈ N3
+0 as in Lemma 4.5(ii). Then for all R > 0 we have
+C such that
+(4.41) |∂η
+u∂µ
+v ˜γl,m(u, v)| ≤ C min{1, |u + v|, |u − v|}−|η|−|µ| ∥ρ∥1/2
+L1(B(u+v,R)) ∥ρ∥1/2
+L1(B(u−v,R))
+for all u, v ∈ R3 obeying 0 < |v| ≤ (4N)−1 min{1, |u + v|, |u − v|}.
+Proof. Firstly, by Lemma 3.1 there exists a finite collection of biscaled cutoffs, Φ(j),
+j = 1, . . . , J, such that
+(4.42)
+˜γl,m =
+J
+�
+j=1
+˜γl,m
+�
+· ; Φ(j)
+δ,ǫ
+�
+holds for all choices of 0 < δ ≤ (4N)−1ǫ.
+
+34
+PETER HEARNSHAW
+Let C0 be the constant from Lemma 4.5 such that (4.40) holds for each Φ(j), j =
+1, . . . , J. Fix any v0 ̸= 0 and u0 such that |v0| ≤ (4N)−1 min{1, |u0 + v0|, |u0 − v0|} and
+set δ0 = |v0| and ǫ0 = min{1, |u0 + v0|, |u0 − v0|}. Then by (4.42),
+|∂η
+u∂µ
+v ˜γl,m(u0, v0)| ≤
+J
+�
+j=1
+��∂η
+u∂µ
+v ˜γl,m
+�
+u0, v0; Φ(j)
+δ0,ǫ0
+���
+≤ JC0 min{1, |u0 + v0|, |u0 − v0|}−|η|−|µ| ∥ρ∥1/2
+L1(B(u0+v0,R)) ∥ρ∥1/2
+L1(B(u0−v0,R)) .
+Since C0 does not depend on the choice of δ0 and ǫ0, the constant JC0 does not depend
+on the choice of u0 and v0.
+□
+Proposition 4.7. For all α, β ∈ N3
+0 with |α| + |β| = 5 and all R > 0 there exists C,
+depending on R, such that
+(4.43)
+|∂α
+u∂β
+v ˜γ(u, v)| ≤ C min{1, |u + v|, |u − v|}−4 ∥ρ∥1/2
+L1(B(u+v,R)) ∥ρ∥1/2
+L1(B(u−v,R))
+for all u, v ∈ R3 obeying 0 < |v| ≤ (4N)−1 min{1, |u + v|, |u − v|}.
+Proof. First, we consider the case where |β| ≤ 3. We use (4.32) and (4.33) for when |β| ≤
+2 and |β| = 3 respectively. The bound then follows from Lemma 4.6 with |η| + |µ| = 4
+and |µ| ≤ 2. Now, consider 4 ≤ |β| ≤ 5. Take l, m ∈ N3
+0, |l| = |m| = 1 be such that
+l + m ≤ β. Then by (4.34),
+∂α
+u∂β
+v ˜γ(u, v) = ∂α+l+m
+u
+∂β−l−m
+v
+˜γ(u, v) − 2
+�
+∂α
+u∂β−l−m
+v
+˜γl,m(u, v) + ∂α
+u∂β−l−m
+v
+˜γm,l(u, v)
+�
+.
+The first term on the right-hand side has |β| − |l| − |m| ≤ 3 hence the required bound
+follows from the previous step. The remaining terms can be bounded using Lemma 4.6
+□
+The proof of our main theorem is an immediate consequence of this proposition.
+Proof of Theorem 1.1. The proof follows from Proposition 4.7 with u = (x + y)/2 and
+v = (x − y)/2, along with the definition (4.4).
+□
+4.6. Proof of Lemma 4.4. To prove Lemma 4.4, we will examine the cluster derivatives
+of ψ present in (4.35) more closely. In particular, Theorem 1.3 allows us to write such
+derivatives in terms of derivatives of Fc and a function, Gα
+P, of higher regularity near
+certain singularities. Sign cancellation allows uniform boundedness of the integral (4.35)
+as x and y approach each other, and is more easily handled via derivatives of Fc rather
+than those of ψ itself. Indeed, due to the simple formula definining Fc, it is possible
+to characterise all its cluster derivatives explicitly. A series of steps, mostly involving
+integration by parts, will complete the proof.
+To begin, we use definition (2.2) to write
+∇xFc(x, ˆx) = −Z
+2 ∇x|x| + 1
+4
+�
+2≤j≤N
+∇x|x − xj|
+(4.44)
+
+ONE-PARTICLE DENSITY MATRIX
+35
+with the formula also holding when x is replaced by y. Let P and S be arbitrary clusters
+with 1 ∈ P, S and P ∗ ∩ S∗ = ∅. Let α = (α1, α2) ∈ N6
+0, β = (β1, β2) ∈ N6
+0 and let
+l, m ∈ N3
+0 obey |l| = |m| = 1. Then,
+Dα
+{P,S∗}∂l
+x|x| =
+�
+∂α1+l
+x
+|x|
+if α2 = 0
+0
+if |α2| ≥ 1,
+(4.45)
+Dβ
+{P ∗,S}∂m
+y |y| =
+�
+∂β2+m
+y
+|y|
+if β1 = 0
+0
+if |β1| ≥ 1.
+(4.46)
+In the following, the cluster derivatives in (4.47) are understood to act with respect to
+the ordered variables (x, x2, . . . , xN) and the cluster derivatives in (4.48) are understood
+to act with respect to the ordered variables (y, x2, . . . , xN). For later convenience, on the
+right-hand side of both formulae, all derivatives in the x- or y-variable are rewritten to
+act on xj. Now assume |α|, |β| ≥ 1, then
+Dα
+{P,S∗}∂l
+x|x − xj| =
+
+
+
+
+
+
+
+
+
+(−1)|α1|+1∂α1+α2+l
+xj
+|x − xj|
+if |α2| ≥ 1 and j ∈ S∗
+0
+if |α2| ≥ 1 and j ∈ Sc
+(−1)|α1|+1∂α1+α2+l
+xj
+|x − xj|
+if α2 = 0 and j ∈ P c
+0
+if α2 = 0 and j ∈ P ∗
+(4.47)
+Dβ
+{P ∗,S}∂m
+y |y − xj| =
+
+
+
+
+
+
+
+
+
+(−1)|β2|+1∂β1+β2+m
+xj
+|y − xj|
+if |β1| ≥ 1 and j ∈ P ∗
+0
+if |β1| ≥ 1 and j ∈ P c
+(−1)|β2|+1∂β1+β2+m
+xj
+|y − xj|
+if β1 = 0 and j ∈ Sc
+0
+if β1 = 0 and j ∈ S∗.
+(4.48)
+In particular, since P ∗ ∩ S∗ = ∅, we have Dα
+{P,S∗}∂l
+x|x − xj| ≡ 0 unless j ∈ P c and
+Dβ
+{P ∗,S}∂m
+y |y − xj| ≡ 0 unless j ∈ Sc.
+We will often use the following elementary fact. For each z0 ∈ R3 and η ∈ N3
+0 there
+exists C, dependent on η but independent of z0, such that
+(4.49)
+��∂η
+z |z0 − z|
+�� ≤ C|z0 − z|1−|η|
+for all z ̸= z0.
+Therefore, by (4.12) we have for each |η| ≥ 1 some C and C′ such that
+��∂η
+xj|x − xj|
+�� +
+��∂η
+xk|y − xk|
+�� ≤ C
+�
+|x − xj|1−|η| + |y − xk|1−|η|�
+≤ C′λ(x, y, ˆx)1−|η|
+(4.50)
+for all 2 ≤ j, k ≤ N if |η| = 1, and all j ∈ P c, k ∈ Sc if |η| ≥ 2. Here, λ(x, y, ˆx) is defined
+in (4.9) using the clusters P and S.
+Lemma 4.8. Let P = P(Φ) and S = S(Φ) obey P ∗ ∩ S∗ = ∅, and take any R > 0.
+Consider |α| + |β| = 3 and |l| = |m| = 1. For |α|, |β| ≥ 1, the integral
+(4.51)
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)
+�
+Dβ
+{P ∗,S}∂m
+y Fc(y, ˆx)
+�
+ψ(y, ˆx)Φ(x, y, ˆx) dˆx,
+
+36
+PETER HEARNSHAW
+can be bounded as in (4.35). For |α| = 3, the integrals
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)∂m
+y F(y, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx,
+(4.52)
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx,
+(4.53)
+and, for |β| = 3, the integrals
+�
+R3N−3 ∂l
+xF(x, ˆx)ψ(x, ˆx)
+�
+Dβ
+{P ∗,S}∂m
+y Fc(y, ˆx)
+�
+ψ(y, ˆx)Φ(x, y, ˆx) dˆx,
+(4.54)
+�
+R3N−3 eF(x, ˆx)∂l
+xφ(x, ˆx)
+�
+Dβ
+{P ∗,S}∂m
+y Fc(y, ˆx)
+�
+ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+(4.55)
+can each be bounded as in (4.35).
+Proof. We first prove the bound for (4.51). Use of (4.44) and (4.45)-(4.48) to expand
+the integral will produce a linear combination of the following terms, where j ∈ P c and
+k ∈ Sc,
+∂α1+l
+x
+|x|∂β2+m
+y
+|y|
+�
+R3N−3 ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+if α2 = β1 = 0,
+∂α1+l
+x
+|x|
+�
+R3N−3 ∂β1+β2+m
+xk
+|y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+if α2 = 0,
+∂β2+m
+y
+|y|
+�
+R3N−3 ∂α1+α2+l
+xj
+|x − xj|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+if β1 = 0,
+�
+R3N−3 ∂α1+α2+l
+xj
+|x − xj|∂β1+β2+m
+xk
+|y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx.
+Derivatives of |x| and |y| are bounded using (4.49) and |x|, |y| ≥ ǫ. Now we bound each
+integral in absolute value. The first, second and third integrals are readily bounded by
+(4.50) and Lemma 4.2. Finally, for the fourth integral we use (4.59) of Lemma 4.9.
+Now suppose |α| = 3.
+First, we prove the bound for the integral (4.52).
+Recall
+F = Fc − Fs. Using this, along with (4.44) and (4.45)-(4.48) we can expand the integral
+
+ONE-PARTICLE DENSITY MATRIX
+37
+as linear combination of the following terms, where j ∈ P c and k ∈ {2, . . . , N},
+∂α1+l
+x
+|x|∂m
+y |y|
+�
+R3N−3 ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+if α2 = 0,
+∂α1+l
+x
+|x|
+�
+R3N−3 ∂m
+xk|y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+if α2 = 0,
+∂α1+l
+x
+|x|
+�
+R3N−3 ∂m
+xkFs(y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+if α2 = 0,
+∂m
+y |y|
+�
+R3N−3 ∂α1+α2+l
+xj
+|x − xj|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx,
+�
+R3N−3 ∂α1+α2+l
+xj
+|x − xj|∂m
+xk|y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+�
+R3N−3 ∂α1+α2+l
+xj
+|x − xj|∂m
+xkFs(y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+Derivatives of |x| and |y| are bounded using (4.49) and |x|, |y| ≥ ǫ.
+The first three
+integrals above are then readily bounded using (4.6) of Proposition 4.1 and that ∇Fs ∈
+L∞(R3N). For the fourth and sixth integral we use (4.57) of Lemma 4.9 with χ ≡ 1
+and χ(x, y, ˆx) = ∂m
+xkFs(y, ˆx) respectively. Finally, for the fifth integral we use the same
+lemma, specifically (4.59). This proves (4.52). The proof of (4.54) is similar in the case
+where |β| = 3.
+Next, using (4.44), (4.45) and (4.47) we can rewrite the integral (4.53) as a linear
+combination of the following two terms, where k ∈ P c,
+∂α1+l
+x
+|x|
+�
+R3N−3 ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx
+if α2 = 0,
+�
+R3N−3 ∂α1+α2+l
+xk
+|x − xk|ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx.
+Derivatives of |x| are bounded using (4.49) and |x| ≥ ǫ. The first integral is then bounded
+by (2.6), (2.9), (2.10) and finally (4.6) of Proposition 4.1. The second integral is bounded
+immediately from (4.69) of Lemma 4.10. This proves (4.53). The proof of (4.55) is similar
+in the case where |β| = 3.
+□
+
+38
+PETER HEARNSHAW
+Proof of Lemma 4.4. To prove the required inequality, first consider the case where
+|α|, |β| ≥ 1. We can then use both (4.27) and (4.28) to write
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xψ(x, ˆx)
+��
+Dβ
+{P ∗,S}∂m
+y ψ(y, ˆx)
+�
+Φ(x, y, ˆx) dˆx
+=
+�
+R3N−3
+�
+Gα,l
+{P,S∗}(x, ˆx)
+��
+Dβ
+{P ∗,S}∂m
+y ψ(y, ˆx)
+�
+Φ(x, y, ˆx) dˆx
++
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)
+�
+Gβ,m
+{P ∗,S}(y, ˆx)
+�
+Φ(x, y, ˆx) dˆx
++
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)
+�
+Dβ
+{P ∗,S}∂m
+y Fc(y, ˆx)
+�
+ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+We bound each of these integrals. We start with the final integral on the right-hand side
+which is just (4.51) of Lemma 4.8. Next, by using (4.25)-(4.26) and (4.29)-(4.31), the
+first and second integrals on the right-hand side can be bounded in absolute value by
+some constant multiplied by
+(4.56)
+�
+R3N−3 λ(x, y, ˆx)−5/2f∞(x, ˆx; R)f∞(y, ˆx; R)Φ(x, y, ˆx) dˆx
+≤ Cǫ−5/2 ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+where the inequality above holds for some C by (4.15) of Lemma 4.2. This proves the
+required bound when |α|, |β| ≥ 1.
+Now we consider the case where |α| = 3, and hence β = 0. We use that ∇ψ =
+ψ∇F + eF∇φ and (4.27) to give
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xψ(x, ˆx)
+�
+∂m
+y ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+=
+�
+R3N−3
+�
+Gα,l
+{P,S∗}(y, ˆx)
+�
+∂m
+y ψ(y, ˆx)Φ(x, y, ˆx) dˆx
++
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)∂m
+y F(y, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
++
+�
+R3N−3
+�
+Dα
+{P,S∗}∂l
+xFc(x, ˆx)
+�
+ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx.
+As before, the first integral on the right-hand side can be bounded in absolute value by
+some constant multiplying (4.56). The second and third integrals on the right-hand side
+are just (4.52) and (4.53) respectively. The proof of the |β| = 3 case is similar to the
+|α| = 3 case.
+□
+We now prove two lemmas which were used to prove Lemma 4.8.
+Lemma 4.9. Let P = P(Φ) and S = S(Φ) obey P ∗ ∩ S∗ = ∅, and take any R > 0.
+
+ONE-PARTICLE DENSITY MATRIX
+39
+(i) Let |η| = 4. Let χ = χ(x, y, ˆx) ∈ C∞(R3N+3) such that χ, ∇χ ∈ L∞(R3N+3) (for
+example χ ≡ 1 may be chosen). Then, for all j ∈ P c, the integral
+(4.57)
+�
+R3N−3 ∂η
+xj|x − xj|χ(x, y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx,
+and, for all k ∈ Sc, the integral
+(4.58)
+�
+R3N−3 ∂η
+xk|y − xk|χ(x, y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+can be bounded as in (4.35).
+(ii) Let |α| + |β| = 3 and |l| = |m| = 1. Then for any pair 2 ≤ j, k ≤ N such that
+j ∈ P c if |α| ≥ 1 and k ∈ Sc if |β| ≥ 1 we have that the integral
+Ij,k =
+�
+R3N−3 ∂α+l
+xj |x − xj|∂β+m
+xk
+|y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx.
+(4.59)
+can be bounded as in (4.35).
+Proof of i). Take any j ∈ P c. We bound (4.57). By a product rule for weak derivatives
+we know that
+∇xj
+�
+ψ(x, ˆx)ψ(y, ˆx)
+�
+=
+�
+∇xjψ(x, ˆx)
+�
+ψ(y, ˆx) + ψ(x, ˆx)
+�
+∇xjψ(y, ˆx)
+�
+.
+The functions χ and Φ are both smooth so are readily included in such a product rule.
+Take any multiindex τ ≤ η with |τ| = 1. Using integration by parts we get that (4.57)
+equals
+−
+�
+R3N−3 ∂η−τ
+xj |x − xj|∂τ
+xj
+�
+χ(x, y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx)
+�
+dˆx
+(4.60)
+which, using (4.50), can be bounded in absolute value by some constant, depending on χ,
+multipling the expression (4.16) which is bounded in Corollary 4.3. The proof of (4.58)
+is similar.
+Proof of ii). We first prove the case where j ̸= k, where integration by parts is particularly
+simple. Suppose |α| ≥ 1. Using a strategy similar to the proof of i), we use integration
+by parts to obtain
+Ij,k = −
+�
+R3N−3 ∂α
+xj|x − xj|∂β+m
+xk
+|y − xk|∂l
+xj
+�
+ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx)
+�
+dˆx
+(4.61)
+which can then be bounded using Corollary 4.3. The case of |β| ≥ 1 is similar except we
+apply integration by parts on the ∂m
+xk-derivative. This completes the proof where j ̸= k.
+For the remainder of the proof we consider the case where k = j. Suppose, first, that
+k ∈ (S ∪ P)c. To simplify calculations we write η = α + l and µ = β + m. Notice that
+
+40
+PETER HEARNSHAW
+|η|, |µ| ≥ 1. Therefore we can find some multiindex µ1 ≤ µ with |µ1| = 1. Integration by
+parts then gives
+Ik,k = −
+�
+R3N−3 ∂η+µ1
+xk
+|x − xk|∂µ−µ1
+xk
+|y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+−
+�
+R3N−3 ∂η
+xk|x − xk|∂µ−µ1
+xk
+|y − xk|∂µ1
+xk
+�
+ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx)
+�
+dˆx.
+(4.62)
+We leave untouched the second integral above. For the first, if |µ|−|µ1| ≥ 1 we can remove
+another first-order derivative from |y − xk| by the same procedure - using integration by
+parts to give two new terms as in (4.62). We retain the term where the derivative falls
+on ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx). Whereas on the term where the derivative falls on |x − xk|
+we repeat the procedure, so long as there remains a non-trivial derivative on |y − xk|.
+Through this process, we obtain the following formula for Ik,k. Let T = |µ|. Then write
+µ = �T
+i=1 µi for some collection |µi| = 1, where 1 ≤ i ≤ T. Furthermore, define
+µj =
+
+
+
+
+
+0
+if j = T
+µT
+if j = T − 1
+µj+1 + · · · + µT
+if j ≤ T − 2.
+Then,
+(4.63)
+Ik,k = (−1)T
+�
+R3N−3 ∂η+µ
+xk |x − xk||y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx +
+T
+�
+j=1
+(−1)jI(j)
+k,k
+where
+I(j)
+k,k =
+�
+R3N−3 ∂η+µj
+xk |y − xk|∂µj
+xk
+�
+ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx)
+�
+dˆx
+Using (4.50), for each 1 ≤ j ≤ T − 1 we can bound |I(j)
+k,k| by some constant multiplying
+the expression (4.16), which is bounded in Corollary 4.3.
+It remains to bound I(T)
+k,k ,
+along with the first integral in the formula (4.63). Starting with the latter, we begin by
+expanding |y − xk| = |x − xk| +
+�
+|y − xk| − |x − xk|
+�
+and noticing that
+(4.64)
+��|y − xk| − |x − xk|
+�� ≤ |x − y| ≤ 2δ.
+To bound the first integral in (4.63), it then suffices to bound the two integrals:
+δ
+�
+R3N−3
+��∂η+µ
+xk |x − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx)
+�� dˆx,
+(4.65)
+�
+R3N−3 ∂η+µ
+xk |x − xk||x − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx.
+(4.66)
+
+ONE-PARTICLE DENSITY MATRIX
+41
+We start with the first of these two integrals. Since k ∈ (P ∪ S)c we can use (4.50) to
+show that (4.65) is bounded by some constant multiplied by
+(4.67)
+δ
+�
+R3N−3 λ(x, y, ˆx)−4f∞(x, ˆx; R)f∞(y, ˆx; R)Φ(x, y, ˆx) dˆx
+≤ Cδ(ǫ−4 + δ−1) ∥ρ∥1/2
+L1(B(x,2R)) ∥ρ∥1/2
+L1(B(y,2R))
+where the bound holds by Lemma 4.2. We can then use the simplification δ(ǫ−4 +δ−1) ≤
+Cǫ−3 for some new constant C. Before looking at (4.66), we next bound I(T)
+k,k . By (4.64)
+we get
+��I(T)
+k,k
+�� ≤ 2δ
+�
+R3N−3
+��∂η+µj =
+
+
+
+
+
+0
+if j = 5
+σ5
+if j = 4
+σj+1 + · · · + σ5
+if 1 ≤ j ≤ 3.
+We now apply the same method used above, that is, we transfer successive first order
+derivatives via integration by parts. To begin, we apply integration by parts to transfer
+∂σ1
+xk from ∂σ
+xk|x − xk|. We leave as a remainder the term where the derivative falls on
+ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx). However, for the term where the derivative falls on |x − xk| we
+continue the procedure to now remove ∂σ2
+xk from ∂σ−σ1
+xk
+|x − xk| using integration by parts
+again. Since |σ| = 5 is odd, the result after this procedure has occured five times is
+that (4.66) is equal to minus the same integral plus remainder terms. This explains the
+
+42
+PETER HEARNSHAW
+(1/2)-factor in the following formula,
+�
+R3N−3 ∂σ
+xk|x − xk||x − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+= 1
+2
+5
+�
+j=1
+(−1)j
+�
+R3N−3 ∂σ>j
+xk |x − xk|∂σ 0. Let
+η, l, m ∈ N3
+0 obey |η| = 4 and |l| = |m| = 1. Then, for each j ∈ P c, the integral
+�
+R3N−3 ∂η
+xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx
+(4.69)
+and, for each k ∈ Sc, the integral
+�
+R3N−3 eF(x, ˆx)∂l
+xφ(x, ˆx)∂η
+xk|y − xk|ψ(y, ˆx)Φ(x, y, ˆx) dˆx
+(4.70)
+can be bounded as in (4.35).
+
+ONE-PARTICLE DENSITY MATRIX
+43
+Proof. We prove the bound for (4.69). The case of (4.70) is similar. First, take some
+function χ ∈ C∞
+c (R), 0 ≤ χ ≤ 1, with
+χ(t) =
+�
+1
+if |t| ≤ 1
+0
+if |t| ≥ 2.
+Furthermore, define χR(t) = χ(t/R) for all t ∈ R.
+It suffices to bound the following two integrals
+�
+R3N−3
+�
+1 − χR(|x − xj|)
+�
+∂η
+xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx
+(4.71)
+�
+R3N−3 χR(|x − xj|)∂η
+xk|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, ˆx)Φ(x, y, ˆx) dˆx.
+(4.72)
+First, we see that when χR(|x − xj|) ̸= 1 we have |x − xj| > R. This, along with (2.6)
+and (4.49) gives some constant C, depending on R, such that (4.71) can be bounded in
+absolute value by
+�
+R3N−6
+�
+{xj:|x−xj|>R}
+��∂η
+xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∇φ(y, ˆx)Φ(x, y, ˆx)
+�� dxjdˆx1j
+≤ C
+�
+R3N−3
+��ψ(x, ˆx)∇φ(y, ˆx)
+�� dˆx,
+which itself can be bounded using (2.9)-(2.10) by some constant multiplying (4.6) with,
+for example, the same R. The relevant bound then follows from Proposition 4.1, and
+that ǫ < 1.
+Recall the notation introduced in (1.11)-(1.14), namely we can write
+(y, x, ˆx1j) = (y, x2, . . . , xj−1, x, xj+1, . . . , xN).
+Using ∂m
+y φ(y, ˆx) = ∂m
+y φ(y, x, ˆx1j) +
+�
+∂m
+y φ(y, ˆx) − ∂m
+y φ(y, x, ˆx1j)
+�
+it follows that in order
+to bound (4.72) it suffices to bound the following two integrals,
+�
+R3N−3 χR(|x − xj|)∂η
+xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m
+y φ(y, x, ˆx1j)Φ(x, y, ˆx) dˆx,
+(4.73)
+�
+R3N−3 χR(|x − xj|)∂η
+xj|x − xj|ψ(x, ˆx)eF(y, ˆx)
+�
+∂m
+y φ(y, ˆx) − ∂m
+y φ(y, x, ˆx1j)
+�
+Φ(x, y, ˆx) dˆx.
+(4.74)
+Notice that when χR(|x − xj|) ̸= 0 we have |x − xj| < 2R. Take any θ ∈ (0, 1). Then
+since φ ∈ C1,θ(R3N), we have local boundedness and local θ-H¨older continuity of ∇φ.
+Therefore, by (2.9) and (2.10) there exists a constant C such that, when |x − xj| < 2R,
+(4.75)
+|∂m
+y φ(y, x, ˆx1j)| ≤ ∥∇φ∥L∞(B((y,ˆx),2R)) ≤ Cf∞(y, ˆx; 4R)
+(4.76)
+��∂m
+y φ(y, ˆx) − ∂m
+y φ(y, x, ˆx1j)
+�� ≤ |x − xj|θ[∇φ]θ,B((y,ˆx),2R) ≤ C|x − xj|θf∞(y, ˆx; 4R).
+
+44
+PETER HEARNSHAW
+The constant C depends on R and θ but is independent of x, y and ˆx.
+Integration by parts in the variable xj is used in (4.73) to remove a single derivative
+from ∂η
+xj|x−xj|. Since ∂m
+y φ(y, x, ˆx1j) has no dependence on xj, this process avoids taking
+a second derivative of φ. Take any τ ≤ η with |τ| = 1. Integral (4.73) can therefore be
+rewritten as
+−
+�
+R3N−3 ∂τ
+xj
+�
+χR(|x − xj|)
+�
+∂η−τ
+xj |x − xj| ψ(x, ˆx) eF(y, ˆx) ∂m
+y φ(y, x, ˆx1j) Φ(x, y, ˆx) dˆx
+−
+�
+R3N−3 χR(|x − xj|) ∂η−τ
+xj |x − xj| ∂m
+y φ(y, x, ˆx1j) ∂τ
+xj
+�
+eF(y, ˆx)ψ(x, ˆx)Φ(x, y, ˆx)
+�
+dˆx
+which, by (2.6), (4.50) and (4.75), can be bounded in absolute value by
+C
+�
+R3N−3 λ(x, y, ˆx)−2f∞(x, ˆx; 4R)f∞(y, ˆx; 4R)
+�
+Φ(x, y, ˆx) + |∇Φ(x, y, ˆx)|
+�
+dˆx.
+for some C depending on R and our choice of χ. The relevant bound then follows by
+Corollary 4.3.
+Using (2.6), (4.49), (4.50) and (4.76), the integral (4.74) can then be bounded in
+absolute value by some constant multiplied by
+�
+R3N−3 λ(x, y, ˆx)−3+θf∞(x, ˆx; 4R)f∞(y, ˆx; 4R)Φ(x, y, ˆx) dˆx.
+The relevant bound then follows by Lemma 4.2 with b = −3 + θ.
+□
+Appendix A. Second derivatives of φ
+Fix some function χ ∈ C∞
+c (R), 0 ≤ χ ≤ 1, with
+χ(t) =
+�
+1
+if |t| ≤ 1
+0
+if |t| ≥ 2.
+We also set
+(A.1)
+g(x, y) = (x · y) ln
+�
+|x|2 + |y|2�
+for x, y ∈ R3. For each x ∈ R3N we can then define the function
+(A.2)
+G(x) = K0
+�
+1≤j 0 there exists C, depending on r, R
+and b but independent of ψ, such that for any non-empty cluster P and any η ∈ N3
+0 with
+|η| = 1,
+∥Dη
+P∇φ∥L∞(B(x,rλP (x))) ≤ CλP(x)−b ∥φ∥L∞(B(x,R))
+for all x ∈ Σc
+P.
+Proof. To begin, we obtain bounds for derivatives of g(x, y) and G(x). It can be seen
+that g ∈ C1,θ(R6) for all θ ∈ [0, 1). For the second derivatives, let α, β ∈ N3
+0 obey
+|α| + |β| = 2, then there exists C such that
+|∂α
+x ∂β
+y g(x, y)| ≤
+�
+C +
+�� ln
+�
+|x|2 + |y|2���
+if |α| = |β| = 1
+C
+otherwise
+(A.5)
+for all x, y ∈ R3. It follows that
+(A.6)
+G, ∇G ∈ L∞(R3N),
+and given b > 0 there exist constants C and C′, only the latter depending on b, such
+that for any η ∈ N3
+0 with |η| = 1, and k = 1, . . . , N, we have
+|∂η
+xk∇G(y)| ≤ C
+�
+1 +
+N
+�
+l=1
+l̸=k
+χ(|yk|)χ(|yl|)
+�� ln
+�
+|yk|2 + |yl|2���
+�
+≤ C′�
+1 + |yk|−b�
+for all y = (y1, . . . , yN) ∈ R3N with yk ̸= 0. Using the above inequality for every k ∈ P
+and the definition of cluster derivatives, (1.15), we can obtain some C, depending on b,
+
+46
+PETER HEARNSHAW
+such that
+|Dη
+P∇G(y)| ≤ CλP(y)−b
+(A.7)
+for all y ∈ Σc
+P. Here, we also used that λP ≤ 1, the definition of λP in (1.21), and the
+formula (1.20). Now, take some x ∈ Σc
+P. As in Lemma 2.4, we use (1.22) to show that
+(1 − r)λP(x) ≤ λP(y) for each y ∈ B(x, rλP(x)). Therefore, for C as in (A.7), we have
+∥Dη
+P∇G∥L∞(B(x,rλP (x))) ≤ C(1 − r)−bλP(x)−b
+(A.8)
+for all x ∈ Σc
+P.
+We now in a position to consider derivatives of φ = eGφ′. Firstly, we have ∇φ =
+eGφ′∇G + eG∇φ′. And therefore the following formula holds for each η ∈ N3
+0, |η| = 1,
+Dη
+P∇φ =
+�
+Dη
+P∇G + Dη
+PG ∇G
+�
+φ + eGDη
+Pφ′ ∇G + eGDη
+PG ∇φ′ + eGDη
+P∇φ′.
+Taking the norm and using (A.6) and (A.8) we can then obtain C such that
+∥Dη
+P∇φ∥L∞(B(x,rλP (x))) ≤ C
+�
+λP(x)−b ∥φ∥L∞(B(x,rλP (x))) + ∥φ′∥W 2,∞(B(x,rλP (x)))
+�
+.
+(A.9)
+for all x ∈ Σc
+P. To the second term in the above bound we may then use Theorem
+A.1 with constant C(r, R), followed by use of (A.6) to obtain another constant C′, also
+dependent on r, R but independent of x, such that
+∥φ′∥W 2,∞(B(x,rλP (x))) ≤ C(r, R) ∥φ′∥L∞(B(x,R)) ≤ C′ ∥φ∥L∞(B(x,R)) .
+(A.10)
+Together, (A.9) and (A.10) complete the proof.
+□
+Acknowledgments. The author would like to thank A. V. Sobolev for helpful dis-
+cussions in all matters of the current work.
+References
+[1] M. Reed and B. Simon. II: Fourier Analysis, Self-Adjointness. Elsevier, 1975.
+[2] P. Hearnshaw and A.V. Sobolev. Analyticity of the one-particle density matrix. Ann. Henri.
+Poincare, 23:707–738, 2022.
+[3] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T.Ø. Sørensen. Analyticity of the
+density of electronic wavefunctions. Ark. Mat., 42:87–106, 2004.
+[4] T. Jecko. A New Proof of the Analyticity of the Electronic Density of Molecules. Lett Math Phys,
+(93):73–83, 2010.
+[5] P. Hearnshaw and A.V. Sobolev. The diagonal behaviour of the one-particle coulombic density
+matrix. 2022. arXiv, 2207.03963.
+[6] J. Cioslowski. Off-diagonal derivative discontinuities in the reduced density matrices of electronic
+systems. J. Chem. Phys, 153(154108), 2020.
+[7] J. Cioslowski. Reverse engineering in quantum chemistry: How to reveal the fifth-order off-diagonal
+cusp in the one-electron reduced density matrix without actually calculating it. Int J Quantum
+Chem, 122(8)(e26651), 2022.
+
+ONE-PARTICLE DENSITY MATRIX
+47
+[8] S. Fournais and T.Ø. Sørensen. Estimates on derivatives of coulombic wave functions and their elec-
+tron densities. Journal f¨ur die reine und angewandte Mathematik (Crelles Journal), 2021(775):1–38,
+2021.
+[9] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T.Ø. Sørensen. Sharp regularity
+results for coulombic many-electron wave functions. Comm. Math. Phys., 255:183–227, 2005.
+[10] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T.Ø. Sørensen. The electron den-
+sity is smooth away from the nuclei. Comm. Math. Phys., 228:401–415, 2002.
+[11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T.Ø. Sørensen. Electron wavefunctions and
+densities for atoms. Ann. Henri. Poincare, 2:77–100, 2001.
+[12] T. Kato. On the eigenfunctions of many-particle systems in quantum mechanics. Comm. Pure Appl.
+Math., 10:151–177, 1957.
+[13] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 2015.
+Department of Mathematics, University College London, Gower Street, London,
+WC1E 6BT UK
+Email address: peter.hearnshaw.18@ucl.ac.uk
+
diff --git a/59E1T4oBgHgl3EQfBQIH/content/tmp_files/load_file.txt b/59E1T4oBgHgl3EQfBQIH/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3273cabac1c330f5241f75f4a61274c8d8670d32
--- /dev/null
+++ b/59E1T4oBgHgl3EQfBQIH/content/tmp_files/load_file.txt
@@ -0,0 +1,2107 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf,len=2106
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='02848v1 [math-ph] 7 Jan 2023 BOUNDEDNESS OF THE FIFTH OFF-DIAGONAL DERIVATIVE FOR THE ONE-PARTICLE COULOMBIC DENSITY MATRIX PETER HEARNSHAW Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Boundedness is demonstrated for the fifth derivative of the one-particle reduced density matrix for non-relativistic Coulombic wavefunctions in the vicinity of the diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Introduction and results We consider the non-relativistic quantum systems of N ≥ 2 electrons among N0 nuclei which represents the system of an atom or molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For simplicity we restrict ourselves to the case of an atom (N0 = 1), although all results readily generalise to the molecular case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The electrons have coordinates x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN), xk ∈ R3, k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N, and the nucleus has charge Z > 0 and its position fixed at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The corresponding Schr¨odinger operator is (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1) H = −∆ + V where ∆ = �N k=1 ∆xk is the Laplacian in R3N, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∆xk refers to the Laplacian applied to the variable xk, and V is the Coulomb potential given by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2) V (x) = − N � k=1 Z |xk| + � 1≤j 0 define hb(t) = � tmin{0,5−b} if b ̸= 5 log(t−1 + 2) if b = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We denote N0 = N ∪ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For all R > 0 and α, β ∈ N3 0 with |α|, |β| ≥ 1 there exists C such that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7) |∂α x ∂β y γ(x, y)| ≤ C � 1 + |x|2−|α|−|β| + |y|2−|α|−|β| + h|α|+|β|(|x − y|) � ∥ρ∥1/2 L1(B(x,R)) ∥ρ∥1/2 L1(B(y,R)) and for all |α| ≥ 1 there exists C such that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) |∂α x γ(x, y)| + |∂α y γ(x, y)| ≤ C � 1 + |x|1−|α| + |y|1−|α| + h|α|(|x − y|) � ∥ρ∥1/2 L1(B(x,R)) ∥ρ∥1/2 L1(B(y,R)) ONE-PARTICLE DENSITY MATRIX 3 for all x, y ∈ R3 with x ̸= 0, y ̸= 0 and x ̸= y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The notation ∂α x refers to the α-partial derivative in the x variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The constant C depends on α, β, R, N and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The right- hand side is finite because ψ is normalised and hence ρ ∈ L1(R3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The bounded first derivative at the nucleus reflects local Lipschitz continuity of γ on R6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In addition, there is local boundedness of up to four derivatives at the diagonal with at worst a logarithmic singularity for the fifth derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The purpose of this current paper is to show local boundedness of the fifth derivative at the diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The existence of the fifth-order cusp at the diagonal was previously demonstrated in [6] (see also [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In this paper, quantum chemistry calculations show that for x, r ∈ R3, x ̸= 0 and small r we have Re[γ(x + r, x − r)] = γ(x, x) + C(x)|r|5 + R(x, r) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) for some functions C(x) and R(x, r), the latter having no contribution from |r|k for k = 0, 1, 3, 5 in the small |r| expansion at r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Our main result is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let ψ be an eigenfunction of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Define m(x, y) = min{1, |x|, |y|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then for all |α| + |β| = 5 and R > 0 we have C, depending on R and also on Z, N and E, such that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) |∂α x ∂β y γ(x, y)| ≤ Cm(x, y)−4 ∥ρ∥1/2 L1(B(x,R)) ∥ρ∥1/2 L1(B(y,R)) for all x, y ∈ R3 obeying 0 < |x − y| ≤ (2N)−1m(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (1) Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 naturally extends to the case of a molecule with several nuclei whose positions are fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The modifications are straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (2) The bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) naturally complements (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) for |α| + |β| ̸= 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (3) As a consequence of [5, Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1], the inequality (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) shows that γ ∈ C4,1 loc � (R3\\{0}) × (R3\\{0}) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As mentioned earlier, we use standard notation whereby x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN) ∈ R3N, xj ∈ R3, j=1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N, and where N is the number of electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In addition, define for 1 ≤ j, k ≤ N, j ̸= k, ˆxj = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xj−1, xj+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='11) ˆxjk = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xj−1, xj+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xk−1, xk+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) with obvious modifications if either j, k equals 1 or N, and if k < j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We define ˆx = ˆx1, which will be used throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Variables placed before ˆxj and ˆxjk will be placed in the removed slots as follows, for any x, y ∈ R3 we have (x, ˆxj) = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xj−1, x, xj+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='13) (x, y, ˆxjk) = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xj−1, x, xj+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xk−1, y, xk+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) In this way, x = (xj, ˆxj) = (xj, xk, ˆxjk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4 PETER HEARNSHAW We define a cluster to be any subset P ⊂ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Denote P c = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N}\\P, P ∗ = P\\{1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We will also need cluster sets, P = (P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , PM), where M ≥ 1 and P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , PM are clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First-order cluster derivatives are defined, for a non-empty cluster P, by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) Dα P = � j∈P ∂α xj for α ∈ N3 0, |α| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For P = ∅, Dα P is defined as the identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Higher order cluster derivatives, for α = (α′, α′′, α′′′) ∈ N3 0 with |α| ≥ 2, are defined by successive application of first-order cluster derivatives as follows, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16) Dα P = (De1 P )α′(De2 P )α′′(De3 P )α′′′ where e1, e2, e3 are the standard unit basis vectors of R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let P = (P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , PM) and α = (α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , αM), αj ∈ N3 0, 1 ≤ j ≤ M, then we define the multicluster derivative (often simply referred to as cluster derivative) by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='17) Dα P = Dα1 P1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' DαM PM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It can readily be seen that cluster derivatives obey the Leibniz rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Throughout, the letter C refers to a positive constant whose value is unimportant but may depend on Z, N and the eigenvalue E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Distance function notation and elementary results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For non-empty cluster P, define ΣP = � x ∈ R3N : � j∈P |xj| � l∈P m∈P c |xl − xm| = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='18) For P = ∅ we set ΣP := ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Denote Σc P = R3N\\ΣP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For each P we have ΣP ⊂ Σ where (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='19) Σ = � x ∈ R3N : � 1≤j≤N |xj| � 1≤l 0, f∞(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' u) := ∥∇u∥L∞(B(x,r)) + ∥u∥L∞(B(x,r)) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='28) for x ∈ R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The ball B(x, r) is considered in R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Largely, this notation will be used for u = ψ and in this case we have the notation, f∞(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' r) := f∞(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='29) A pointwise cluster derivative bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 we will state and prove a new pointwise bound to cluster derivatives of eigenfunctions ψ, which may itself be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It will be shown by elliptic regularity that for all α the weak cluster derivatives Dα Pψ exist in the set Σc α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It is therefore interesting to consider how such cluster derivatives behave as the set Σα is approached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Previously, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Fournais and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Ø.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sørensen have given bounds to local Lp-norms of cluster derivatives of ψ for a single cluster P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Indeed, in [8, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10] it is shown that for any multiindex 0 ̸= α ∈ N3 0, p ∈ (1, ∞] and any 0 < r < R < 1 there exists C, depending on r, R, p and α, such that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='30) ∥Dα Pψ∥Lp(B(x,rλP (x))) ≤ CλP(x)1−|α|� ∥∇ψ∥Lp(B(x,RλP (x))) + ∥ψ∥Lp(B(x,RλP (x))) � 6 PETER HEARNSHAW for all x ∈ Σc P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notice that for every x ∈ Σc P, we have B(x, rλP(x)) ⊂ Σc P by the definition of λP(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, the set ΣP is avoided when evaluating Dα Pψ in the Lp- norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The objective of the following theorem is to extend the bounds (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='30) in the case of p = ∞ and for cluster derivatives for cluster sets P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In particular, estimates are obtained which depend on the order of derivative for each of the respective clusters in P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In the following, ∇ denotes the gradient operator in R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For every cluster set P = (P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , PM), multiindex α ∈ N3M 0 and any 0 < r < R < 1 there exists C, depending on α, r and R, such that for k = 0, 1, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='31) ��Dα P∇kψ �� L∞(B(x,rλα(x))) ≤ Cλα(x)1−kλP1(x)−|α1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(x)−|αM|f∞(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) for all x ∈ Σc α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Furthermore, for each |α| ≥ 1 there exists a function Gα P : Σc α → C3N such that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='32) Dα P∇ψ = Gα P + ψDα P∇Fc and for every b ∈ [0, 1) there exists C, depending on α, r, R and b, such that (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='33) ∥Gα P∥L∞(B(x,rλα(x))) ≤ Cµα(x)bλP1(x)−|α1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(x)−|αM|f∞(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) for all x ∈ Σc α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (1) In the case of a single cluster and k = 0, the bound (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='31) reestab- lishes (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='30) in the case of p = ∞, albeit with a slightly larger radius in the L∞-norms on the right-hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (2) When k = 0 and α ̸= 0, the presence of a single power of λα(x) in the bound will cancel a single negative power of λPj(x) for j such that λPj(x) ≤ λPi(x) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M with αi ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notice that the appropriate j will depend on x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (3) The bound in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='33) is stronger than that of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='31) with k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This is because a positive power of µα(x) will partially cancel a single negative power of λPj(x) for j such that λPj(x) ≥ λPi(x) for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M with αi ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 will follow a similar strategy to that of [8, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' An additional result will be required to prove (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This result, [9], shows that ψ can be made C1,1(R3N) upon multiplication by a factor, universal in the sense that the factor depends only on N and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We will require an elliptic regularity result, stated below, which will be used in the proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Beforehand, we clarify the precise form of definitions which we will be using.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let Ω be open, θ ∈ (0, 1] and k = N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We formally define the θ-H¨older seminorms for a function f by [f]θ,Ω = sup x,y∈Ω x̸=y |f(x) − f(y)| |x − y|θ , [∇kf]θ,Ω = sup |α|=k [∂αf]θ,Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 7 The space Ck,θ(Ω) is defined as all f ∈ Ck(Ω) where [∇kf]θ,Ω′ is finite for each Ω′ compactly contained in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In addition, the space Ck,θ(Ω) is defined as all f ∈ Ck(Ω) where [∇kf]θ,Ω is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This space has a norm given by ∥f∥Ck,θ(Ω) = ∥f∥Ck(Ω) + [∇kf]θ,Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For open Ω ⊂ Rn we can consider the following elliptic equation, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='34) Lu := −∆u + c · ∇u + du = g for some c : Ω → Cn and d, g : Ω → C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The corresponding bilinear form for operator L is defined formally as L(u, χ) = � Ω � ∇u · ∇χ + (c · ∇u)χ + duχ � dx for all u ∈ H1 loc(Ω) and χ ∈ C∞ c (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We say that a function u ∈ H1 loc(Ω) is a weak solution to the equation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='34) in Ω if L(u, χ) = � Ω gχ dx for every χ ∈ C∞ c (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The following theorem is a restatement of [5, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1] ([8, Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2] is similar), with additional H¨older regularity which follows from the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let x0 ∈ Rn, R > 0 and c, d, g ∈ L∞(B(x0, R)) and u ∈ H1(B(x0, R)) be a weak solution to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='34) then for each θ ∈ [0, 1) we have u ∈ C1,θ(B(x0, R)) ∩ H2 loc(B(x0, R)), and for any r ∈ (0, R) we have (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35) ∥u∥C1,θ(B(x0,r)) ≤ C(∥u∥L2(B(x0,R)) + ∥g∥L∞(B(x0,R))) for C = C(n, K, r, R, θ) where ∥c∥L∞(B(x0,R)) + ∥d∥L∞(B(x0,R)) ≤ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 Our strategy for the proof will be to choose a suitable function F = F(x), dependent only on N and Z, such that the function e−Fψ has greater regularity than ψ itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Such a multiplicative factor is frequently called a Jastrow factor in mathematical literature, and this strategy has been used successfully in, for example, [10], [11] to elucidate reg- ularity properties of ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The function e−Fψ will solve an elliptic equation with bounded coefficients which behave suitably well under the action of cluster derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Elliptic regularity will then produce bounds to the cluster derivatives of e−Fψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Such bounds can then be used to obtain bounds to the cluster derivatives of ψ itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Jastrow factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We begin by defining the function (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1) F(x) = Fc(x) − Fs(x), 8 PETER HEARNSHAW for x ∈ R3N, where Fc(x) = −Z 2 � 1≤j≤N |xj| + 1 4 � 1≤l 0), such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) C ∥φ∥L∞(B(x,R)) ≤ ∥ψ∥L∞(B(x,R)) ≤ C′ ∥φ∥L∞(B(x,R)) for all x ∈ R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Derivatives of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Informally, our objective is to take cluster derivatives of the elliptic equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) and apply elliptic regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To do so, we require bounds to the cluster derivatives of the coefficients present in this equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This is the objective of the current section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To begin, we state and prove the following preparatory lemma involving the distances introduced in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='25) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 9 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any σ = (σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , σM) ∈ N3M 0 we have for k = 0, 1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='11) µσ(y)k−|σ| ≤ λσ(y)kλP1(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(y)−|σM| for all y ∈ R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Furthermore, let β(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , β(n) be an arbitrary collection of multiindices in N3M 0 such that β(1) + · · · + β(n) = σ then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) n � j=1 λβ(j)(y) ≤ λσ(y) for all y ∈ R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The results are trivial in the case of σ = 0 therefore we assume in the following that σ is non-zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First, observe for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M, µσ(y)−|σj| ≤ λPj(y)−|σj| µσ(y)1−|σj| ≤ λPj(y)1−|σj| if σj ̸= 0 by the definition of µσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now perform the following trivial expansion of the product, µσ(y)−|σ| = µσ(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' µσ(y)−|σM| ≤ λP1(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(y)−|σM| which proves (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='11) for k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For k = 1, consider that for each y we can find l = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M such that λσ(y) = λPl(y) and σl ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, µσ(y)1−|σ| = µσ(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' µσ(y)1−|σl| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' µσ(y)−|σM| ≤ λP1(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPl(y)1−|σl| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(y)−|σM| = λσ(y)λP1(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(y)−|σM| as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Finally we prove (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As above, take arbitrary y and a corresponding l such that λσ(y) = λPl(y) with σl ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For each 1 ≤ j ≤ n we denote the N3 0-components of β(j) as β(j) = (β(j) 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , β(j) M ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We know β(1)+· · ·+β(n) = σ so in particular, β(1) l +· · ·+β(n) l = σl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since σl ̸= 0 there exists at least one 1 ≤ r ≤ n such that β(r) l ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hence by the definition of λβ(r), λβ(r)(y) = min{λPs(y) : β(r) s ̸= 0, s = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M} ≤ λPl(y) = λσ(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The remaining factors λβ(j)(y), for j ̸= r, can each be bounded above by one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ The following lemma will be useful in proving results about taking cluster derivatives of F, as defined in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Later, we will apply it using f as the function |x| for x ∈ R3, or derivatives thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 10 PETER HEARNSHAW Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let f ∈ C∞(R3\\{0}) and k ∈ N0 be such that for each σ ∈ N3 0 there exists C such that (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='13) |∂σf(x)| ≤ C|x|k−|σ| for all x ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then for any α ̸= 0 with |α| ≥ k there exists some new C such that for any l, m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N, the weak derivatives Dα P(f(xl)) and Dα P(f(xl −xm)) are both smooth in Σc α and obey |Dα P(f(xl))|, |Dα P(f(xl − xm))| ≤ Cqα(x)k−|α| for all x ∈ Σc α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take any j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M with αj ̸= 0, then we have D αj Pj(f(xl)) ≡ 0 for each l ∈ P c j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, for Dα P(f(xl)) to not be identically zero we require that l ∈ Pj for each j with αj ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For such l we have xl ̸= 0 since x ∈ Σc α, and |xl| ≥ dPj(x) for each j with αj ̸= 0 by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, for constant C in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='13), we have |Dα P(f(xl))| = |∂α1+···+αMf(xl)| ≤ C|xl|k−|α| ≤ Cqα(x)k−|α| because |α| ≥ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Similarly, for each j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , M, with αj ̸= 0 we have D αj Pj(f(xl−xm)) ≡ 0 if either l, m ∈ Pj or l, m ∈ P c j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, for Dα P(f(xl − xm)) to not be identically zero we require that (l, m) ∈ � j : αj̸=0 � (Pj × P c j ) ∪ (P c j × Pj) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For such (l, m) we have xl ̸= xm since x ∈ Σc α and |xl − xm| ≥ √ 2 dPj(x) for each j with αj ̸= 0 by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, for some constant C′, |Dα P(f(xl − xm))| = |∂α1+···+αMf(xl − xm)| ≤ C|xl − xm|k−|α| ≤ C′qα(x)k−|α| because |α| ≥ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ The following lemma provides pointwise bounds to cluster derivatives of functions involving F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any cluster set P and any |σ| ≥ 1 there exists C, which depends on σ, such that for k = 0, 1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) ��Dσ P∇kF(y) ��, ��Dσ P∇k(eF)(y) �� ≤ Cλσ(y)1−kλP1(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(y)−|σM| (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) ��Dσ P|∇F(y)|2�� ≤ CλP1(y)−|σ1| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' λPM(y)−|σM| for all y ∈ Σc σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The bound to the first object in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) also holds when F is replaced by Fc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 11 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let τ be the function defined as τ(x) = |x| for x ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, by definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2) we can write (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16) Fc(y) = −Z 2 � 1≤j≤N τ(yj) + 1 4 � 1≤l 0 we can define the following two cutoff factors ζt = ζt(z) and θt = θt(z) by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2) ζt(z) = χ �4N|z| t � , θt(z) = 1 − ζt(z) for z ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We have the following support criteria for cutoff factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any z ∈ R3 and t > 0, ONE-PARTICLE DENSITY MATRIX 19 If ζt(z) ̸= 0 then |z| < (2N)−1t, If θt(z) ̸= 0 then |z| > (4N)−1t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let 0 < δ < (4N)−1ǫ (the use of (4N)−1 is explained in the following lemma).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We define a biscaled cutoff, which depends on δ and ǫ as parameters, as a function Φ = Φδ,ǫ(x, y, ˆx) defined by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3) Φδ,ǫ(x, y, ˆx) = � 2≤j≤N g(1) j (x − xj) � 2≤j≤N g(2) j (y − xj) � 2≤k 0, 1t(z) = 1{(4N)−1t<|z|<(2N)−1t}(z) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4) 1′ t(z) = 1{(4N)−1t<|z|<1}(z) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5) for z ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' And for each t > 0 we define the function Mt = Mt(x, y, ˆx) by Mt(x, y, ˆx) = � 2≤j≤N 1t(x − xj) + � 2≤j≤N 1t(y − xj) + � 2≤k (4N)−1ǫ ≥ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For such z we therefore have θδ(z) = 1, by the definition of θδ, which proves (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8), if we also have ζδ(z) ̸= 0, then |z| < (2N)−1δ by the support criteria for ζδ, giving a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) we need only consider z such that ζδ(z) ̸= 0, in which case |z| < (2N)−1δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This gives 4N|z|ǫ−1 < (2N)−1 and hence, by definition, ζǫ(z) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any A, B ⊂ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N} with A ∩ B = ∅ we define τA,B(x) = � j∈A ζδ(x1 − xj) � j∈B (θδζǫ)(x1 − xj) � j∈{2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=',N}\\(A∪B) θǫ(x1 − xj) and therefore � A⊂{2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=',N} B⊂{2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=',N}\\A τA,B(x) = � 2≤j≤N � ζδ(x1 − xj) + (θδζǫ)(x1 − xj) + θǫ(x1 − xj) � = 1 for all x ∈ R3N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let Ξ = {(j, k) : 2 ≤ k < l ≤ N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For each subset Y, Z ⊂ Ξ with Y ∩ Z = ∅ we define TY,Z(ˆx) = � (j,k)∈Y ζδ(xj − xk) � (j,k)∈Z (θδζǫ)(xj − xk) � (j,k) ∈ Ξ\\(Y ∪Z) θǫ(xj − xk) and therefore � Y ⊂ Ξ Z ⊂ Ξ\\Y TY,Z(ˆx) = � 2≤j δ/2 by the reverse triangle inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The case of k ∈ S∗ is analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 22 PETER HEARNSHAW .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now let k ∈ Q∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First, we consider the case where either g(1) k ̸= θǫ or g(2) k ̸= θǫ, or both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Without loss, assume g(1) k ̸= θǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then either g(1) k = ζδ or g(1) k = θδζǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hence by support criteria we have the inequalities, |x − xk| < (2N)−1ǫ, |y − xk| ≤ |x − y| + |x − xk| ≤ 2δ + (2N)−1ǫ ≤ ǫ/N, which gives the required inequality since N ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, suppose that g(1) k = g(2) k = θǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then there exist pairwise distinct j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , js ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N} with 1 ≤ s ≤ N − 2 such that fj1,j2, fj2,j3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , fjs,k ̸= θǫ and either g(1) j1 ̸= θǫ or g(2) j1 ̸= θǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As before, we see that |x − xj1|, |y − xj1| ≤ ǫ/N regardless of which (or both) of g(1) j1 and g(2) j1 are not θǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It’s also clear that by support criteria, |xj1 − xj2|, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , |xjs − xk| ≤ (2N)−1ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, by the triangle inequality, |x − xk| ≤ |x − xj1| + |xj1 − xj2| + · · · + |xjs − xk| ≤ ǫ N + ǫ(N − 2) 2N = ǫ 2, and similarly we can show |y − xk| ≤ ǫ/2, completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Factorisation of biscaled cutoffs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let Φ be given by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We can define a partial product of Φ as a function of the form (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) Φ′(x, y, ˆx) = � j∈T1 g(1) j (x − xj) � j∈T2 g(2) j (y − xj) � (k,l)∈R1 fkl(xk − xl) where T1, T2 ⊂ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N}, R1 ⊂ {(k, l) : 2 ≤ k < l ≤ N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We now define classes of partial products of Φ which corresponding to a cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let T be an arbitrary cluster with 1 ∈ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ(x, y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' T) = � j∈T ∗ g(1) j (x − xj) � j∈T ∗ g(2) j (y − xj) � k,l∈T ∗ k 0 such that for any z0 ∈ R3 we get ∂σ z |z + z0|s ≤ C|z + z0|s−|σ| for all z ∈ R3, z ̸= −z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Recall the function 1t was defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any σ ∈ N3 0 with |σ| ≥ 1 and any t > 0 there exists C, depending on σ but independent of t, such that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22) |∂σζt(z)|, |∂σθt(z)| ≤ Ct−|σ|1t(z) for all z ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 24 PETER HEARNSHAW Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Without loss we consider the case of θt, the case of ζt being similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In the following, χ(j) refers to the j-th (univariate) derivative of the function χ defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, since |σ| ≥ 1 the chain rule shows that ∂σθt(z) can be written as a sum of terms of the form (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='23) �4N t �m χ(m)�4N|z| t � ∂σ1 z |z| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∂σm z |z| where 1 ≤ m ≤ |σ|, and σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , σm ∈ N3 0 are non-zero multiindices obeying σ1 + · · · + σm = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since m ≥ 1 we have that if χ(m)(s) ̸= 0 then s ∈ (1, 2), and therefore for any term (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='23) to be non-zero we require that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='24) (4N)−1t < |z| < (2N)−1t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By the remark preceeding the current lemma, there exists C, dependent on σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , σm, such that ∂σ1 z |z| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∂σm z |z| ≤ C|z|m−|σ| ≤ C(4N)|σ|−mtm−|σ|, using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, the terms (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='23) can readily be bounded to give the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ We now give bounds for the cluster derivatives (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20)-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21) acting on cutoffs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let Φ be any biscaled cutoff and let Q = Q(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then Dα x,y,QΦ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Q) ≡ 0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='25) for all α ∈ N3 0 with |α| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By the chain rule, each function in the product (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) for Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Q) has zero deriv- ative upon action of Dα x,y,Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ Recall that the notion of partial products was defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) and the function Mt for t > 0 was defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let δ ≤ (4N)−1ǫ and Φ = Φδ,ǫ be a biscaled cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let Q = Q(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then for any multiindex α ∈ N3N+3 0 there exists C, dependent on α but independent of δ and ǫ, such that for any partial products Φ′ of Φ we have |∂αΦ′(x, y, ˆx)| ≤ � Cǫ−|α| if Φ′ = Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Q, Qc) C � ǫ−|α| + δ−|α|Mδ(x, y, ˆx) � otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='26) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5 gives bounds for the partial derivatives of the function ζδ, θδ, ζǫ, θǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Considering θδζǫ, we apply the Leibniz rule with σ ∈ N3 0, |σ| ≥ 1, to obtain ∂σ(θδζǫ)(z) = � µ≤σ �σ µ � ∂µθδ(z)∂σ−µζǫ(z) = ∂σθδ(z) + ∂σζǫ(z), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='27) ONE-PARTICLE DENSITY MATRIX 25 since, for each µ ≤ σ with µ ̸= 0 and µ ̸= σ we have ∂µθδ(z) ∂σ−µζǫ(z) ≡ 0 by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5 and the definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, to evaluate ∂αΦ′ we apply the Leibniz rule to the product (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='27) where appropriate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Differentiated cutoff factors are bounded by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22) and any remaining undifferentiated cutoff factors are bounded above by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' If Φ′ = Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Q, Qc), all cutoff factors are of the form θǫ by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4 and therefore we need only use the bounds in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22) with t = ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ The derivative Dx,y,Q acting on Φ is special in that it contributes only powers of ǫ (and not δ) to the bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This is shown in the next lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let δ ≤ (4N)−1ǫ and Φ = Φδ,ǫ be a biscaled cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let Q = Q(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any multiindices α ∈ N3 0 and σ ∈ N3N+3 0 there exists C, independent of ǫ and δ, such that |∂σDα x,y,QΦ(x, y, ˆx)| ≤ Cǫ−|α|� ǫ−|σ| + δ−|σ|Mδ(x, y, ˆx) � for all x, y, ˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First, set Φ′ = Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Q) Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Qc) and Φ′′ = Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Q, Qc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We then have Dα x,y,QΦ = Φ′ Dα x,y,QΦ′′ which follows from Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6 and that Φ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Qc) is not dependent on variables involved in the Dα x,y,Q-derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By the definition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21), the derivative Dα x,y,QΦ′′ can be written as a sum of partial derivatives of the form ∂αΦ′′ where α ∈ N3N+3 0 obeys |α| = |α|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, by the Leibniz rule and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7 there exists some constants C and C′, independent of δ and ǫ, such that |∂σ(Φ′ ∂αΦ′′)| ≤ � τ≤σ �σ τ � |∂τΦ′| |∂σ−τ+αΦ′′| ≤ C � τ≤σ (ǫ−|τ| + δ−|τ|Mδ)ǫ−|σ|+|τ|−|α| ≤ C′ǫ−|α|(ǫ−|σ| + δ−|σ|Mδ), completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 The idea of the proof is to turn partial derivatives of an integral, such as the density matrix γ(x, y) weighted with a suitable cutoff, into cluster derivatives under the inte- gral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For the density matrix we then estimate the resulting integrals involving cluster derivatives of ψ using the pointwise bounds of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 26 PETER HEARNSHAW Although Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 is stated using partial derivatives of the density matrix γ(x, y) in the x- and y-variables, it is more appropriate to consider directional derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Indeed, we define new variables u = (x + y)/2, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1) v = (x − y)/2, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2) and consider the ∂α u ∂β v -derivatives of the density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The ∂u-derivatives act along the direction parallel to the diagonal and it is found that they do not affect the non- smoothness we get at the diagonal, regardless of how many of these derivatives are taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The ∂v-derivatives act in the direction perpendicular to the diagonal and these derivatives are found to contribute to worsening the non-smoothness at the diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Consider derivatives of the form ∂α x ∂β y γ(x, y) where |α|+|β| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As discussed in [5], the case where |α| = |β| = 1 (the mixed derivatives) is particularly well-behaved in contrast to the other cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The reason behind this is that when |α| = |β| = 1, differentiation under the integral leads to both ψ factors being differentiated exactly once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The greater regularity in this case follows from the well known fact that ψ, ∇ψ ∈ L∞ loc(R3N), first proven in [12], whereas higher order derivatives of ψ do not have this locally boundedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This is used in the proof in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='34) below, it will be shown that derivatives of the form ∂σ v for |σ| = 2 can be written in terms of ∂σ u and the mixed derivatives ∂α x ∂β y γ(x, y) for some |α| = |β| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The benefit of this identity is that two v-derivatives (which act to worsen the singularity at the diagonal) have been transformed into two u-derivatives (which do not worsen the singularity) along with mixed derivatives which have good regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This method only works for two v-derivatives, and the strategy of using cluster derivatives, as described above, must be used in conjunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The difficulties encountered in the fifth derivative of the density matrix are described in a later section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Density matrix notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof will require auxiliary functions related to the density matrix which we introduce now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For l, m ∈ N3 0 with |l|, |m| ≤ 1 define, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3) γl,m(x, y) = � R3N−3 ∂l xψ(x, ˆx)∂m y ψ(y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In this notation, it is clear that γ = γ0,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any biscaled cutoff Φ, defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3), we set γl,m(x, y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) = � R3N−3 ∂l xψ(x, ˆx)∂m y ψ(y, ˆx)Φ(x, y, ˆx) dˆx, and define γ( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) = γ0,0( · ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We will consider the above functions in the variables (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It is then natural to define for all u, v ∈ R3, ˜γl,m(u, v) = γl,m(u + v, u − v), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4) ˜γl,m(u, v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) = γl,m(u + v, u − v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5) ONE-PARTICLE DENSITY MATRIX 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Integrals involving f∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The following proposition is a restatement of [5, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1] and is proven in that paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notice that the function Mt was defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) and has a slightly different form to the corresponding function used in the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Given R > 0, there exists C such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) � R3N−3 f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx ≤ C ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) for all x, y ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In addition, given G ∈ L1(R3) there exists C, independent of G, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7) � R3N−3 � |G(xj − xk)| + |G(z − xk)| + |G(xj)| � f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx ≤ C ∥G∥L1(R3) ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) for all x, y, z ∈ R3, and j, k = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N, j ̸= k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In particular, for any t > 0 there exists C, independent of t, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) � R3N−3 Mt(x, y, ˆx)f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx ≤ Ct3 ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) for all x, y ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We introduce the following quantities based on the bounded distances (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any x, y ∈ R3 and ˆx ∈ R3N−3 define λ(x, y, ˆx) = min{λP(x, ˆx), λS∗(x, ˆx), λP ∗(y, ˆx), λS(y, ˆx)}, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) π(x, y, ˆx) = min{λQ(x, ˆx), λQ(y, ˆx)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) Later, we will see that these quantities appear to negative powers when we apply Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 to clusters derivatives of ψ involving the clusters P, S and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The next lemma will give conditions for when these quantities can be bounded away from zero on the support of Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Beforehand, we consider an alternative formulae for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Recall that 1 ∈ P, S, Q by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20) we find that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='11) π(x, y, ˆx) = min{1, |x|, |y|, |xj| : j ∈ Q∗, 2−1/2|x − xk| : k ∈ Qc, 2−1/2|y − xk| : k ∈ Qc, 2−1/2|xj − xk| : j ∈ Q∗, k ∈ Qc}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In the case of P ∗ ∩ S∗ = ∅ we similarly find that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) λ(x, y, ˆx) = min{1, |x|, |y|, |xj| : j ∈ P ∗ ∪ S∗, 2−1/2|x − xk| : k ∈ P c, 2−1/2|y − xk| : k ∈ Sc, 2−1/2|xj − xk| : (j, k) ∈ (P ∗ × P c) ∪ (S∗ × Sc)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 28 PETER HEARNSHAW Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let δ ≤ (4N)−1ǫ, and ǫ ≤ 1 and let Φ = Φδ,ǫ be an arbitrary biscaled cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let x, y ∈ R3 be such that δ ≤ |x − y| ≤ 2δ, and |x|, |y| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then there exists a constant C, dependent only on N, such that π(x, y, ˆx) ≥ Cǫ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='13) λ(x, y, ˆx) ≥ Cδ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) whenever Φ(x, y, ˆx) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In addition, for all b ≥ 0 with b ̸= 3 and R > 0 there exists C, depending on b and R but independent of δ, ǫ, x and y such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) � supp Φ(x,y, · ) λ(x, y, ˆx)−bf∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx ≤ C(ǫ−b + hb(δ)) ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) where, for all t > 0, we define hb(t) = � 0 if b < 3 t3−b if b > 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The following corollary will be useful later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' There exists C, depending on R but independent of δ and ǫ, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16) 2 � r=1 � R3N−3 λ(x, y, ˆx)−2f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)|∇rΦ(x, y, ˆx)| dˆx ≤ Cǫ−3 ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) for all x, y ∈ R3 with δ ≤ |x − y| ≤ 2δ and |x|, |y| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' When r = 1 the bound for the integral is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8 and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14), the integral in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16) for r = 2 can be bounded by some constant multiplying � supp Φ(x,y, · ) � ǫ−1λ(x, y, ˆx)−2 + δ−3Mδ(x, y, ˆx) � f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx The required bound follows from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 and that ǫ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2 we need only consider Φ with P ∗ ∩ S∗ = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By the definition of the cluster Q, if j ∈ Q∗ and k ∈ Qc then fjk = θǫ in the formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3) defining Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Similarly, if k ∈ Qc then g(1) k = g(2) k = θǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using the support criteria of θǫ we therefore get |x − xk|, |y − xk|, |xj − xk| ≥ (4N)−1ǫ j ∈ Q∗, k ∈ Qc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='17) ONE-PARTICLE DENSITY MATRIX 29 In addition, if j ∈ Q∗ we get (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='18) |xj| ≥ |x| − |x − xj| ≥ ǫ/2 j ∈ Q∗ since for such j we have |x − xj| ≤ ǫ/2 by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The lower bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='13) then follows from the formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='11) for π(x, y, ˆx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In a similar way we consider the clusters P and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Indeed, let j ∈ P ∗, k ∈ P c or j ∈ S∗, k ∈ Sc, then fjk ̸= ζδ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Similarly, if k ∈ P c then g(1) k ̸= ζδ, and if k ∈ Sc then g(2) k ̸= ζδ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notice that if a cutoff factor is not ζδ then it must either be θδζǫ or θǫ, both of which are only supported away from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore by the support criteria of these factors we obtain the following inequalities, |x − xk|, |y − xl| ≥ (4N)−1δ k ∈ P c, l ∈ Sc (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='19) |xj − xk| ≥ (4N)−1δ j ∈ P ∗, k ∈ P c or j ∈ S∗, k ∈ Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20) We also have (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='18) for j ∈ P ∗ ∪S∗ since P, S ⊂ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The lower bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) then follows from the formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) for λ(x, y, ˆx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We recall the function 1′ δ was defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By the formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) we can use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='18) to obtain some C, depending on b, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21) λ(x, y, ˆx)−b ≤ C � ǫ−b + � k∈P c 1′ δ(x − xk) |x − xk|−b + � k∈Sc 1′ δ(y − xk) |y − xk|−b + � (j,k)∈(P ∗×P c) ∪(S∗×Sc) 1′ δ(xj − xk) |xj − xk|−b� , where the upper bounds in the indicator functions (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5) can be included because 1 lies in the minimum (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) and the lower bounds follow from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='18)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) then follows from the above inequality along with both (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7) of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1, where we choose G to be the function G(z) = 1′ δ(z)|z|−b for z ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Differentiating the density matrix - some required bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We collect cer- tain results which will be used throughout this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let δ ≤ (4N)−1ǫ and ǫ ≤ 1 and suppose Φ = Φδ,ǫ is a biscaled cutoff as defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As usual, we denote Q = Q(Φ), P = P(Φ) and S = S(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let η ∈ N3 0 and ν = (ν1, ν2) ∈ N6 0 be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Firstly, we define (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22) Φ(η,ν)(x, y, ˆx) = Dη x,y,QDν1 x,PDν2 y,SΦ(x, y, ˆx) where in the notation it is implicit the clusters used are Q, P and S corresponding to Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8 and the definition of cluster derivatives (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16) it can be shown that for each η and ν there exists C, independent of δ and ǫ, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='23) |Φ(η,ν)(x, y, ˆx)| ≤ Cǫ−|η|� ǫ−|ν| + δ−|ν|Mδ(x, y, ˆx) � for all x, y ∈ R3 and ˆx ∈ R3N−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 30 PETER HEARNSHAW Now take any x, y ∈ R3 with δ ≤ |x−y| ≤ 2δ and |x|, |y| ≥ ǫ, and suppose Φ(x, y, ˆx) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, as a consequence of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2 we have both π(x, y, ˆx) and λ(x, y, ˆx) are positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, by the definitions (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21), (x, ˆx) ∈ Σc Q ∩ Σc P ∩ Σc S∗ and (y, ˆx) ∈ Σc Q ∩ Σc P ∗ ∩ Σc S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='24) This allows us to apply Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Indeed, for every η ∈ N3 0, ν = (ν1, ν2) ∈ N6 0 and all R > 0 there exists C, independent of our choice of x, y and ˆx, such that for k = 0, 1, ��Dη QDν {P,S∗}∇kψ(x, ˆx) �� ≤ Cπ(x, y, ˆx)−|η|λ(x, y, ˆx)−|ν|f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='25) ��Dη QDν {P ∗,S}∇kψ(y, ˆx) �� ≤ Cπ(x, y, ˆx)−|η|λ(x, y, ˆx)−|ν|f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='26) For convenience, we choose a bound which holds for both values of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The functions λ and π are defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, let |ν| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 with b = 1/2 we can write Dν {P,S∗}∇ψ(x, ˆx) = Gν {P,S∗}(x, ˆx) + ψ(x, ˆx) � Dν {P,S∗}∇Fc(x, ˆx) � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='27) Dν {P ∗,S}∇ψ(y, ˆx) = Gν {P ∗,S}(y, ˆx) + ψ(y, ˆx) � Dν {P ∗,S}∇Fc(y, ˆx) � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='28) for functions Gν {P,S∗} and Gν {P ∗,S} which obey ��Gν {P,S∗}(x, ˆx) �� ≤ Cλ(x, y, ˆx)1/2−|ν|f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='29) ��Gν {P ∗,S}(y, ˆx) �� ≤ Cλ(x, y, ˆx)1/2−|ν|f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='30) for some C, dependent on ν but independent of the choice of x, y and ˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2), for each ν ∈ N6 0 there exists C, independent of x, y and ˆx, such that ��Dν {P,S∗}∇Fc(x, ˆx) �� + ��Dν {P ∗,S}∇Fc(y, ˆx) �� ≤ Cλ(x, y, ˆx)−|ν|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='31) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Differentiating the density matrix - first and second derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In the following, let l, m ∈ N3 0 obey |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In standard notation, by ∂l x1ψ we mean the l-partial derivative in the first R3 component of ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then by differentiation under the integral, ∂l u˜γ(u, v) = � R3N−3 ∂l x1ψ(u + v, ˆx)ψ(u − v, ˆx) dˆx + � R3N−3 ψ(u + v, ˆx)∂lx1ψ(u − v, ˆx) dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='32) = ˜γl,0(u, v) + ˜γ0,l(u, v), and similarly, ∂l v˜γ(u, v) = ˜γl,0(u, v) − ˜γ0,l(u, v) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='33) ONE-PARTICLE DENSITY MATRIX 31 for all u, v ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The above equalities are used to obtain a formula relating second order u-derivatives to second order v-derivatives of ˜γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Omitting the argument (u, v) we get � ∂l+m u − ∂l+m v � ˜γ = ∂l u(˜γm,0 + ˜γ0,m) − ∂l v(˜γm,0 − ˜γ0,m) = � ∂l u + ∂l v � ˜γ0,m + � ∂l u − ∂l v � ˜γm,0 = 2(˜γl,m + ˜γm,l) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='34) where the final equality is obtained by differentiation under the integral, as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Differentiating the density matrix - general derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Partial derivatives of γ are written as linear combinations of integrals involving cluster derivatives of ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' One such integral is bounded in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since it is more involved than the other such integrals, the proof is postponed until later in the section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let δ ≤ (4N)−1ǫ and ǫ ≤ 1 and let Φ = Φδ,ǫ be an arbitrary biscaled cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let P = P(Φ) and S = S(Φ) obey P ∗ ∩ S∗ = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For any α, β ∈ N6 0 with |α| + |β| = 3, any l, m ∈ N3 0 with |l| = |m| = 1, and any R > 0 there exists C such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35) ��� � R3N−3 � Dα {P,S∗}∂l xψ(x, ˆx) �� Dβ {P ∗,S}∂m y ψ(y, ˆx) � Φ(x, y, ˆx) dˆx ��� ≤ Cǫ−3 ∥ρ∥1/2 L1(B(x,R)) ∥ρ∥1/2 L1(B(y,R)) for all δ ≤ |x−y| ≤ 2δ and |x|, |y| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The constant C depends on R but is independent of δ, ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In part two of the following lemma the conditions on η, µ, l and m are not the most general, but for simplicity we restrict ourselves to these assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We use notation of cluster derivatives of Φ from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let δ ≤ (4N)−1ǫ and ǫ ≤ 1 and Φ = Φδ,ǫ be an arbitrary biscaled cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let η, µ ∈ N3 0 be arbitrary and l, m ∈ N3 0 be such that |l|, |m| ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (i) On the set of u, v such that δ/2 ≤ |v| ≤ δ and |u + v|, |u − v| ≥ ǫ, the derivative ∂η u∂µ v ˜γl,m(u, v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) is equal to a linear combination of integrals of the form (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='36) � R3N−3 � Dχ1 Q Dα {P,S∗}∂l x1ψ(u + v, ˆx) �� Dχ2 Q Dβ {P ∗,S}∂m x1ψ(u − v, ˆx) � Φ(χ3,σ)(u + v, u − v, ˆx) dˆx where α, β, σ ∈ N6 0 and χ = (χ1, χ2, χ3) ∈ N9 0 obey |χ| = |η| and |α|+|β|+|σ| = |µ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (ii) Furthermore, suppose either |µ| ≤ 2, or |µ| = 3, η = 0 and |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 32 PETER HEARNSHAW Then for all R > 0 we have some C0 such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='37) |∂η u∂µ v ˜γl,m(u, v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ)| ≤ C0ǫ−|η|−|µ| ∥ρ∥1/2 L1(B(u+v,R)) ∥ρ∥1/2 L1(B(u−v,R)) for all δ/2 ≤ |v| ≤ δ and |u + v|, |u − v| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The constant C0 depends on R but is independent of δ, ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2, we need only consider Φ such that P ∗ ∩ S∗ = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For each choice of u and v we define a u- and v-dependent change of variables for the integral ˜γlm(u, v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To start, we define two vectors ˆa = (a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , aN), ˆb = (b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , bN) ∈ R3N−3 by ak = � u if k ∈ Q∗ 0 if k ∈ Qc bk = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 v if k ∈ P ∗ −v if k ∈ S∗ 0 if k ∈ (P ∪ S)c, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='38) and define ˆωu,v = ˆa + ˆb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We then apply a translational change of variables which allows us to write (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='39) ˜γlm(u, v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) = � R3N−3 ∂l x1ψ(u+v,ˆz+ ˆωu,v)∂m x1ψ(u − v,ˆz + ˆωu,v)Φ(u+v, u−v,ˆz+ ˆωu,v) dˆz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We will then apply differentiation under the integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Beforehand, we show how such derivatives will act on each function within the integrand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For a function f and any r ∈ N3 0 with |r| = 1 we see that by the chain rule ∂r u[f(u ± v,ˆz + ˆωu,v)] = Dr Qf(u ± v,ˆz + ˆωu,v) ∂r v[f(u + v,ˆz + ˆωu,v)] = Dr Pf(u + v,ˆz + ˆωu,v) − Dr S∗f(u + v,ˆz + ˆωu,v) ∂r v[f(u − v,ˆz + ˆωu,v)] = Dr P ∗f(u − v,ˆz + ˆωu,v) − Dr Sf(u − v,ˆz + ˆωu,v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Applying repeatedly, we obtain for arbitrary σ, ν ∈ N3 0, ∂σ u∂ν v[f(u + v,ˆz + ˆωu,v)] = � τ≤ν cτ,ν � Dσ QDτ PDν−τ S∗ f(u + v,ˆz + ˆωu,v) � ∂σ u∂ν v [f(u − v,ˆz + ˆωu,v)] = � τ≤ν cτ,ν � Dσ QDτ P ∗Dν−τ S f(u − v,ˆz + ˆωu,v) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' where cτ,ν = (−1)|ν|−|τ|�ν τ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In a similar manner, for the cutoff we use the definitions (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20)-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22) to write ∂σ u∂ν v[Φ(u + v, u − v,ˆz + ˆωu,v)] = � τ≤ν cτ,νΦ(σ,τ,ν−τ)(u + v, u − v,ˆz + ˆωu,v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By differentiating (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='39) under the integral, applying the Leibniz rule and reversing the change of variables, we find that ∂η u∂µ v ˜γlm(u, v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ) is a linear combination of terms of the required form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 33 Proof of ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By part (i) it suffices to prove the required bound for integrals of the form (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='36) with |χ| = |η| and |α| + |β| + |σ| = |µ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Rewriting such integrals in the variables x = u + v and y = u − v we get (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='40) � R3N−3 � Dχ1 Q Dα {P,S∗}∂l x1ψ(x, ˆx) �� Dχ2 Q Dβ {P ∗,S}∂m x1ψ(y, ˆx) � Φ(χ3,σ)(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notice that the variables x and y must obey δ ≤ |x − y| ≤ 2δ and |x|, |y| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Firstly, we bound the above integral in the case where |α| + |β| ≤ 2 and |α| + |β| + |σ| ≤ 3 for any |l|, |m| ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='23), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='25), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='26) followed by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='13) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2 we can bound this integral in absolute value by some constant multiplied by ǫ−|χ| � supp Φ(x,y,·) � ǫ−|σ| + δ−|σ|Mδ(x, y, ˆx) � λ(x, y, ˆx)−|α|−|β|f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Selective use of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2 allows us to bound this quantity by some constant multiplied by ǫ−|χ| � supp Φ(x,y,·) � ǫ−|σ|λ(x, y, ˆx)−|α|−|β| + δ−|α|−|β|−|σ|Mδ(x, y, ˆx) � f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We can use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2, using that |α| + |β| ≤ 2 by assumption, and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 to bound this quantity by some constant multiplied by ǫ−|α|−|β|−|σ|−|χ| ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) where it was used that δ ≤ 1 ≤ ǫ−1 and |α| + |β| + |σ| ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' After a return to u, v- variables, this proves the bound for integrals (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='36) in the case where |α| + |β| ≤ 2 and |α| + |β| + |σ| ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It remains to bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='40) in the case where |α| + |β| = 3, |σ| = |χ| = 0 and |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This follows directly from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take any η, µ, l, m ∈ N3 0 as in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5(ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then for all R > 0 we have C such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='41) |∂η u∂µ v ˜γl,m(u, v)| ≤ C min{1, |u + v|, |u − v|}−|η|−|µ| ∥ρ∥1/2 L1(B(u+v,R)) ∥ρ∥1/2 L1(B(u−v,R)) for all u, v ∈ R3 obeying 0 < |v| ≤ (4N)−1 min{1, |u + v|, |u − v|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Firstly, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 there exists a finite collection of biscaled cutoffs, Φ(j), j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , J, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='42) ˜γl,m = J � j=1 ˜γl,m � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ(j) δ,ǫ � holds for all choices of 0 < δ ≤ (4N)−1ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 34 PETER HEARNSHAW Let C0 be the constant from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5 such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='40) holds for each Φ(j), j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Fix any v0 ̸= 0 and u0 such that |v0| ≤ (4N)−1 min{1, |u0 + v0|, |u0 − v0|} and set δ0 = |v0| and ǫ0 = min{1, |u0 + v0|, |u0 − v0|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='42), |∂η u∂µ v ˜γl,m(u0, v0)| ≤ J � j=1 ��∂η u∂µ v ˜γl,m � u0, v0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Φ(j) δ0,ǫ0 ��� ≤ JC0 min{1, |u0 + v0|, |u0 − v0|}−|η|−|µ| ∥ρ∥1/2 L1(B(u0+v0,R)) ∥ρ∥1/2 L1(B(u0−v0,R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since C0 does not depend on the choice of δ0 and ǫ0, the constant JC0 does not depend on the choice of u0 and v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For all α, β ∈ N3 0 with |α| + |β| = 5 and all R > 0 there exists C, depending on R, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='43) |∂α u∂β v ˜γ(u, v)| ≤ C min{1, |u + v|, |u − v|}−4 ∥ρ∥1/2 L1(B(u+v,R)) ∥ρ∥1/2 L1(B(u−v,R)) for all u, v ∈ R3 obeying 0 < |v| ≤ (4N)−1 min{1, |u + v|, |u − v|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First, we consider the case where |β| ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='32) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='33) for when |β| ≤ 2 and |β| = 3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The bound then follows from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6 with |η| + |µ| = 4 and |µ| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, consider 4 ≤ |β| ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take l, m ∈ N3 0, |l| = |m| = 1 be such that l + m ≤ β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='34), ∂α u∂β v ˜γ(u, v) = ∂α+l+m u ∂β−l−m v ˜γ(u, v) − 2 � ∂α u∂β−l−m v ˜γl,m(u, v) + ∂α u∂β−l−m v ˜γm,l(u, v) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The first term on the right-hand side has |β| − |l| − |m| ≤ 3 hence the required bound follows from the previous step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The remaining terms can be bounded using Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6 □ The proof of our main theorem is an immediate consequence of this proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof follows from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7 with u = (x + y)/2 and v = (x − y)/2, along with the definition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To prove Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4, we will examine the cluster derivatives of ψ present in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35) more closely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' In particular, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3 allows us to write such derivatives in terms of derivatives of Fc and a function, Gα P, of higher regularity near certain singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sign cancellation allows uniform boundedness of the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35) as x and y approach each other, and is more easily handled via derivatives of Fc rather than those of ψ itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Indeed, due to the simple formula definining Fc, it is possible to characterise all its cluster derivatives explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' A series of steps, mostly involving integration by parts, will complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To begin, we use definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2) to write ∇xFc(x, ˆx) = −Z 2 ∇x|x| + 1 4 � 2≤j≤N ∇x|x − xj| (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='44) ONE-PARTICLE DENSITY MATRIX 35 with the formula also holding when x is replaced by y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let P and S be arbitrary clusters with 1 ∈ P, S and P ∗ ∩ S∗ = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let α = (α1, α2) ∈ N6 0, β = (β1, β2) ∈ N6 0 and let l, m ∈ N3 0 obey |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, Dα {P,S∗}∂l x|x| = � ∂α1+l x |x| if α2 = 0 0 if |α2| ≥ 1, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='45) Dβ {P ∗,S}∂m y |y| = � ∂β2+m y |y| if β1 = 0 0 if |β1| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='46) In the following, the cluster derivatives in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='47) are understood to act with respect to the ordered variables (x, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN) and the cluster derivatives in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='48) are understood to act with respect to the ordered variables (y, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For later convenience, on the right-hand side of both formulae, all derivatives in the x- or y-variable are rewritten to act on xj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now assume |α|, |β| ≥ 1, then Dα {P,S∗}∂l x|x − xj| = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 (−1)|α1|+1∂α1+α2+l xj |x − xj| if |α2| ≥ 1 and j ∈ S∗ 0 if |α2| ≥ 1 and j ∈ Sc (−1)|α1|+1∂α1+α2+l xj |x − xj| if α2 = 0 and j ∈ P c 0 if α2 = 0 and j ∈ P ∗ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='47) Dβ {P ∗,S}∂m y |y − xj| = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f3 (−1)|β2|+1∂β1+β2+m xj |y − xj| if |β1| ≥ 1 and j ∈ P ∗ 0 if |β1| ≥ 1 and j ∈ P c (−1)|β2|+1∂β1+β2+m xj |y − xj| if β1 = 0 and j ∈ Sc 0 if β1 = 0 and j ∈ S∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='48) In particular, since P ∗ ∩ S∗ = ∅, we have Dα {P,S∗}∂l x|x − xj| ≡ 0 unless j ∈ P c and Dβ {P ∗,S}∂m y |y − xj| ≡ 0 unless j ∈ Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We will often use the following elementary fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For each z0 ∈ R3 and η ∈ N3 0 there exists C, dependent on η but independent of z0, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='49) ��∂η z |z0 − z| �� ≤ C|z0 − z|1−|η| for all z ̸= z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='12) we have for each |η| ≥ 1 some C and C′ such that ��∂η xj|x − xj| �� + ��∂η xk|y − xk| �� ≤ C � |x − xj|1−|η| + |y − xk|1−|η|� ≤ C′λ(x, y, ˆx)1−|η| (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50) for all 2 ≤ j, k ≤ N if |η| = 1, and all j ∈ P c, k ∈ Sc if |η| ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Here, λ(x, y, ˆx) is defined in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) using the clusters P and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let P = P(Φ) and S = S(Φ) obey P ∗ ∩ S∗ = ∅, and take any R > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Consider |α| + |β| = 3 and |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For |α|, |β| ≥ 1, the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='51) � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx) � Dβ {P ∗,S}∂m y Fc(y, ˆx) � ψ(y, ˆx)Φ(x, y, ˆx) dˆx, 36 PETER HEARNSHAW can be bounded as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For |α| = 3, the integrals � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx)∂m y F(y, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='52) � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='53) and, for |β| = 3, the integrals � R3N−3 ∂l xF(x, ˆx)ψ(x, ˆx) � Dβ {P ∗,S}∂m y Fc(y, ˆx) � ψ(y, ˆx)Φ(x, y, ˆx) dˆx, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='54) � R3N−3 eF(x, ˆx)∂l xφ(x, ˆx) � Dβ {P ∗,S}∂m y Fc(y, ˆx) � ψ(y, ˆx)Φ(x, y, ˆx) dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='55) can each be bounded as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We first prove the bound for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='51).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Use of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='44) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='45)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='48) to expand the integral will produce a linear combination of the following terms, where j ∈ P c and k ∈ Sc, ∂α1+l x |x|∂β2+m y |y| � R3N−3 ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx if α2 = β1 = 0, ∂α1+l x |x| � R3N−3 ∂β1+β2+m xk |y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx if α2 = 0, ∂β2+m y |y| � R3N−3 ∂α1+α2+l xj |x − xj|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx if β1 = 0, � R3N−3 ∂α1+α2+l xj |x − xj|∂β1+β2+m xk |y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Derivatives of |x| and |y| are bounded using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='49) and |x|, |y| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now we bound each integral in absolute value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The first, second and third integrals are readily bounded by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50) and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Finally, for the fourth integral we use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='59) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now suppose |α| = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First, we prove the bound for the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Recall F = Fc − Fs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using this, along with (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='44) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='45)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='48) we can expand the integral ONE-PARTICLE DENSITY MATRIX 37 as linear combination of the following terms, where j ∈ P c and k ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' N},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∂α1+l x |x|∂m y |y| � R3N−3 ψ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx) dˆx if α2 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∂α1+l x |x| � R3N−3 ∂m xk|y − xk|ψ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx) dˆx if α2 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∂α1+l x |x| � R3N−3 ∂m xkFs(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx) dˆx if α2 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ∂m y |y| � R3N−3 ∂α1+α2+l xj |x − xj|ψ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx) dˆx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' � R3N−3 ∂α1+α2+l xj |x − xj|∂m xk|y − xk|ψ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx) dˆx � R3N−3 ∂α1+α2+l xj |x − xj|∂m xkFs(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)ψ(y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx)Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ˆx) dˆx Derivatives of |x| and |y| are bounded using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='49) and |x|, |y| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The first three integrals above are then readily bounded using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 and that ∇Fs ∈ L∞(R3N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For the fourth and sixth integral we use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='57) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9 with χ ≡ 1 and χ(x, y, ˆx) = ∂m xkFs(y, ˆx) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Finally, for the fifth integral we use the same lemma, specifically (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This proves (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='54) is similar in the case where |β| = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Next, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='44), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='45) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='47) we can rewrite the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='53) as a linear combination of the following two terms, where k ∈ P c, ∂α1+l x |x| � R3N−3 ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx if α2 = 0, � R3N−3 ∂α1+α2+l xk |x − xk|ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Derivatives of |x| are bounded using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='49) and |x| ≥ ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The first integral is then bounded by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) and finally (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The second integral is bounded immediately from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='69) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This proves (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='53).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='55) is similar in the case where |β| = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ 38 PETER HEARNSHAW Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To prove the required inequality, first consider the case where |α|, |β| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We can then use both (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='27) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='28) to write � R3N−3 � Dα {P,S∗}∂l xψ(x, ˆx) �� Dβ {P ∗,S}∂m y ψ(y, ˆx) � Φ(x, y, ˆx) dˆx = � R3N−3 � Gα,l {P,S∗}(x, ˆx) �� Dβ {P ∗,S}∂m y ψ(y, ˆx) � Φ(x, y, ˆx) dˆx + � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx) � Gβ,m {P ∗,S}(y, ˆx) � Φ(x, y, ˆx) dˆx + � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx) � Dβ {P ∗,S}∂m y Fc(y, ˆx) � ψ(y, ˆx)Φ(x, y, ˆx) dˆx We bound each of these integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We start with the final integral on the right-hand side which is just (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='51) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Next, by using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='25)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='26) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='29)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='31), the first and second integrals on the right-hand side can be bounded in absolute value by some constant multiplied by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='56) � R3N−3 λ(x, y, ˆx)−5/2f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)Φ(x, y, ˆx) dˆx ≤ Cǫ−5/2 ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) where the inequality above holds for some C by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15) of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This proves the required bound when |α|, |β| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now we consider the case where |α| = 3, and hence β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We use that ∇ψ = ψ∇F + eF∇φ and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='27) to give � R3N−3 � Dα {P,S∗}∂l xψ(x, ˆx) � ∂m y ψ(y, ˆx)Φ(x, y, ˆx) dˆx = � R3N−3 � Gα,l {P,S∗}(y, ˆx) � ∂m y ψ(y, ˆx)Φ(x, y, ˆx) dˆx + � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx)∂m y F(y, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx + � R3N−3 � Dα {P,S∗}∂l xFc(x, ˆx) � ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As before, the first integral on the right-hand side can be bounded in absolute value by some constant multiplying (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The second and third integrals on the right-hand side are just (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='52) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='53) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof of the |β| = 3 case is similar to the |α| = 3 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ We now prove two lemmas which were used to prove Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let P = P(Φ) and S = S(Φ) obey P ∗ ∩ S∗ = ∅, and take any R > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 39 (i) Let |η| = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let χ = χ(x, y, ˆx) ∈ C∞(R3N+3) such that χ, ∇χ ∈ L∞(R3N+3) (for example χ ≡ 1 may be chosen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, for all j ∈ P c, the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='57) � R3N−3 ∂η xj|x − xj|χ(x, y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx, and, for all k ∈ Sc, the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='58) � R3N−3 ∂η xk|y − xk|χ(x, y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx can be bounded as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (ii) Let |α| + |β| = 3 and |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then for any pair 2 ≤ j, k ≤ N such that j ∈ P c if |α| ≥ 1 and k ∈ Sc if |β| ≥ 1 we have that the integral Ij,k = � R3N−3 ∂α+l xj |x − xj|∂β+m xk |y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='59) can be bounded as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take any j ∈ P c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='57).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By a product rule for weak derivatives we know that ∇xj � ψ(x, ˆx)ψ(y, ˆx) � = � ∇xjψ(x, ˆx) � ψ(y, ˆx) + ψ(x, ˆx) � ∇xjψ(y, ˆx) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The functions χ and Φ are both smooth so are readily included in such a product rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take any multiindex τ ≤ η with |τ| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using integration by parts we get that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='57) equals − � R3N−3 ∂η−τ xj |x − xj|∂τ xj � χ(x, y, ˆx)ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) � dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='60) which, using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50), can be bounded in absolute value by some constant, depending on χ, multipling the expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16) which is bounded in Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The proof of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='58) is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof of ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We first prove the case where j ̸= k, where integration by parts is particularly simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Suppose |α| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using a strategy similar to the proof of i), we use integration by parts to obtain Ij,k = − � R3N−3 ∂α xj|x − xj|∂β+m xk |y − xk|∂l xj � ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) � dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='61) which can then be bounded using Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The case of |β| ≥ 1 is similar except we apply integration by parts on the ∂m xk-derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This completes the proof where j ̸= k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For the remainder of the proof we consider the case where k = j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Suppose, first, that k ∈ (S ∪ P)c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To simplify calculations we write η = α + l and µ = β + m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Notice that 40 PETER HEARNSHAW |η|, |µ| ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore we can find some multiindex µ1 ≤ µ with |µ1| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Integration by parts then gives Ik,k = − � R3N−3 ∂η+µ1 xk |x − xk|∂µ−µ1 xk |y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx − � R3N−3 ∂η xk|x − xk|∂µ−µ1 xk |y − xk|∂µ1 xk � ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) � dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='62) We leave untouched the second integral above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For the first, if |µ|−|µ1| ≥ 1 we can remove another first-order derivative from |y − xk| by the same procedure - using integration by parts to give two new terms as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='62).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We retain the term where the derivative falls on ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Whereas on the term where the derivative falls on |x − xk| we repeat the procedure, so long as there remains a non-trivial derivative on |y − xk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Through this process, we obtain the following formula for Ik,k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let T = |µ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then write µ = �T i=1 µi for some collection |µi| = 1, where 1 ≤ i ≤ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Furthermore, define µj = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 0 if j = T µT if j = T − 1 µj+1 + · · · + µT if j ≤ T − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='63) Ik,k = (−1)T � R3N−3 ∂η+µ xk |x − xk||y − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx + T � j=1 (−1)jI(j) k,k where I(j) k,k = � R3N−3 ∂η+µj xk |y − xk|∂µj xk � ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) � dˆx Using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50), for each 1 ≤ j ≤ T − 1 we can bound |I(j) k,k| by some constant multiplying the expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='16), which is bounded in Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It remains to bound I(T) k,k , along with the first integral in the formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='63).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Starting with the latter, we begin by expanding |y − xk| = |x − xk| + � |y − xk| − |x − xk| � and noticing that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='64) ��|y − xk| − |x − xk| �� ≤ |x − y| ≤ 2δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To bound the first integral in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='63), it then suffices to bound the two integrals: δ � R3N−3 ��∂η+µ xk |x − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) �� dˆx, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='65) � R3N−3 ∂η+µ xk |x − xk||x − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='66) ONE-PARTICLE DENSITY MATRIX 41 We start with the first of these two integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since k ∈ (P ∪ S)c we can use (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50) to show that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='65) is bounded by some constant multiplied by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='67) δ � R3N−3 λ(x, y, ˆx)−4f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' R)Φ(x, y, ˆx) dˆx ≤ Cδ(ǫ−4 + δ−1) ∥ρ∥1/2 L1(B(x,2R)) ∥ρ∥1/2 L1(B(y,2R)) where the bound holds by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We can then use the simplification δ(ǫ−4 +δ−1) ≤ Cǫ−3 for some new constant C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Before looking at (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='66), we next bound I(T) k,k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='64) we get ��I(T) k,k �� ≤ 2δ � R3N−3 ��∂η+µj = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 0 if j = 5 σ5 if j = 4 σj+1 + · · · + σ5 if 1 ≤ j ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We now apply the same method used above, that is, we transfer successive first order derivatives via integration by parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To begin, we apply integration by parts to transfer ∂σ1 xk from ∂σ xk|x − xk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We leave as a remainder the term where the derivative falls on ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' However, for the term where the derivative falls on |x − xk| we continue the procedure to now remove ∂σ2 xk from ∂σ−σ1 xk |x − xk| using integration by parts again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since |σ| = 5 is odd, the result after this procedure has occured five times is that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='66) is equal to minus the same integral plus remainder terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This explains the 42 PETER HEARNSHAW (1/2)-factor in the following formula, � R3N−3 ∂σ xk|x − xk||x − xk|ψ(x, ˆx)ψ(y, ˆx)Φ(x, y, ˆx) dˆx = 1 2 5 � j=1 (−1)j � R3N−3 ∂σ>j xk |x − xk|∂σ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Let η, l, m ∈ N3 0 obey |η| = 4 and |l| = |m| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then, for each j ∈ P c, the integral � R3N−3 ∂η xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='69) and, for each k ∈ Sc, the integral � R3N−3 eF(x, ˆx)∂l xφ(x, ˆx)∂η xk|y − xk|ψ(y, ˆx)Φ(x, y, ˆx) dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='70) can be bounded as in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 43 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We prove the bound for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='69).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The case of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='70) is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' First, take some function χ ∈ C∞ c (R), 0 ≤ χ ≤ 1, with χ(t) = � 1 if |t| ≤ 1 0 if |t| ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Furthermore, define χR(t) = χ(t/R) for all t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It suffices to bound the following two integrals � R3N−3 � 1 − χR(|x − xj|) � ∂η xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='71) � R3N−3 χR(|x − xj|)∂η xk|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, ˆx)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='72) First, we see that when χR(|x − xj|) ̸= 1 we have |x − xj| > R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' This, along with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='49) gives some constant C, depending on R, such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='71) can be bounded in absolute value by � R3N−6 � {xj:|x−xj|>R} ��∂η xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∇φ(y, ˆx)Φ(x, y, ˆx) �� dxjdˆx1j ≤ C � R3N−3 ��ψ(x, ˆx)∇φ(y, ˆx) �� dˆx, which itself can be bounded using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9)-(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) by some constant multiplying (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) with, for example, the same R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The relevant bound then follows from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1, and that ǫ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Recall the notation introduced in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='11)-(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='14), namely we can write (y, x, ˆx1j) = (y, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xj−1, x, xj+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , xN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using ∂m y φ(y, ˆx) = ∂m y φ(y, x, ˆx1j) + � ∂m y φ(y, ˆx) − ∂m y φ(y, x, ˆx1j) � it follows that in order to bound (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='72) it suffices to bound the following two integrals, � R3N−3 χR(|x − xj|)∂η xj|x − xj|ψ(x, ˆx)eF(y, ˆx)∂m y φ(y, x, ˆx1j)Φ(x, y, ˆx) dˆx, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='73) � R3N−3 χR(|x − xj|)∂η xj|x − xj|ψ(x, ˆx)eF(y, ˆx) � ∂m y φ(y, ˆx) − ∂m y φ(y, x, ˆx1j) � Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='74) Notice that when χR(|x − xj|) ̸= 0 we have |x − xj| < 2R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take any θ ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Then since φ ∈ C1,θ(R3N), we have local boundedness and local θ-H¨older continuity of ∇φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) there exists a constant C such that, when |x − xj| < 2R, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='75) |∂m y φ(y, x, ˆx1j)| ≤ ∥∇φ∥L∞(B((y,ˆx),2R)) ≤ Cf∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4R) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='76) ��∂m y φ(y, ˆx) − ∂m y φ(y, x, ˆx1j) �� ≤ |x − xj|θ[∇φ]θ,B((y,ˆx),2R) ≤ C|x − xj|θf∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 44 PETER HEARNSHAW The constant C depends on R and θ but is independent of x, y and ˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Integration by parts in the variable xj is used in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='73) to remove a single derivative from ∂η xj|x−xj|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Since ∂m y φ(y, x, ˆx1j) has no dependence on xj, this process avoids taking a second derivative of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Take any τ ≤ η with |τ| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='73) can therefore be rewritten as − � R3N−3 ∂τ xj � χR(|x − xj|) � ∂η−τ xj |x − xj| ψ(x, ˆx) eF(y, ˆx) ∂m y φ(y, x, ˆx1j) Φ(x, y, ˆx) dˆx − � R3N−3 χR(|x − xj|) ∂η−τ xj |x − xj| ∂m y φ(y, x, ˆx1j) ∂τ xj � eF(y, ˆx)ψ(x, ˆx)Φ(x, y, ˆx) � dˆx which, by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='75), can be bounded in absolute value by C � R3N−3 λ(x, y, ˆx)−2f∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4R) � Φ(x, y, ˆx) + |∇Φ(x, y, ˆx)| � dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' for some C depending on R and our choice of χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The relevant bound then follows by Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='49), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='50) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='76), the integral (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='74) can then be bounded in absolute value by some constant multiplied by � R3N−3 λ(x, y, ˆx)−3+θf∞(x, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4R)f∞(y, ˆx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 4R)Φ(x, y, ˆx) dˆx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The relevant bound then follows by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2 with b = −3 + θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Second derivatives of φ Fix some function χ ∈ C∞ c (R), 0 ≤ χ ≤ 1, with χ(t) = � 1 if |t| ≤ 1 0 if |t| ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We also set (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1) g(x, y) = (x · y) ln � |x|2 + |y|2� for x, y ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For each x ∈ R3N we can then define the function (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='2) G(x) = K0 � 1≤j 0 there exists C, depending on r, R and b but independent of ψ, such that for any non-empty cluster P and any η ∈ N3 0 with |η| = 1, ∥Dη P∇φ∥L∞(B(x,rλP (x))) ≤ CλP(x)−b ∥φ∥L∞(B(x,R)) for all x ∈ Σc P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To begin, we obtain bounds for derivatives of g(x, y) and G(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It can be seen that g ∈ C1,θ(R6) for all θ ∈ [0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' For the second derivatives, let α, β ∈ N3 0 obey |α| + |β| = 2, then there exists C such that |∂α x ∂β y g(x, y)| ≤ � C + �� ln � |x|2 + |y|2��� if |α| = |β| = 1 C otherwise (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='5) for all x, y ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' It follows that (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) G, ∇G ∈ L∞(R3N), and given b > 0 there exist constants C and C′, only the latter depending on b, such that for any η ∈ N3 0 with |η| = 1, and k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , N, we have |∂η xk∇G(y)| ≤ C � 1 + N � l=1 l̸=k χ(|yk|)χ(|yl|) �� ln � |yk|2 + |yl|2��� � ≤ C′� 1 + |yk|−b� for all y = (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' , yN) ∈ R3N with yk ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Using the above inequality for every k ∈ P and the definition of cluster derivatives, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='15), we can obtain some C, depending on b, 46 PETER HEARNSHAW such that |Dη P∇G(y)| ≤ CλP(y)−b (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7) for all y ∈ Σc P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Here, we also used that λP ≤ 1, the definition of λP in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='21), and the formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Now, take some x ∈ Σc P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' As in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='4, we use (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='22) to show that (1 − r)λP(x) ≤ λP(y) for each y ∈ B(x, rλP(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Therefore, for C as in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='7), we have ∥Dη P∇G∥L∞(B(x,rλP (x))) ≤ C(1 − r)−bλP(x)−b (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) for all x ∈ Σc P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' We now in a position to consider derivatives of φ = eGφ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Firstly, we have ∇φ = eGφ′∇G + eG∇φ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' And therefore the following formula holds for each η ∈ N3 0, |η| = 1, Dη P∇φ = � Dη P∇G + Dη PG ∇G � φ + eGDη Pφ′ ∇G + eGDη PG ∇φ′ + eGDη P∇φ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Taking the norm and using (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='8) we can then obtain C such that ∥Dη P∇φ∥L∞(B(x,rλP (x))) ≤ C � λP(x)−b ∥φ∥L∞(B(x,rλP (x))) + ∥φ′∥W 2,∞(B(x,rλP (x))) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) for all x ∈ Σc P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' To the second term in the above bound we may then use Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='1 with constant C(r, R), followed by use of (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='6) to obtain another constant C′, also dependent on r, R but independent of x, such that ∥φ′∥W 2,∞(B(x,rλP (x))) ≤ C(r, R) ∥φ′∥L∞(B(x,R)) ≤ C′ ∥φ∥L∞(B(x,R)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) Together, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='9) and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='10) complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' □ Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The author would like to thank A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sobolev for helpful dis- cussions in all matters of the current work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Reed and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Simon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' II: Fourier Analysis, Self-Adjointness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Elsevier, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hearnshaw and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sobolev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Analyticity of the one-particle density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Henri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Poincare, 23:707–738, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Fournais, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='Ø.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sørensen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Analyticity of the density of electronic wavefunctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Ark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=', 42:87–106, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Jecko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' A New Proof of the Analyticity of the Electronic Density of Molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Lett Math Phys, (93):73–83, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hearnshaw and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sobolev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The diagonal behaviour of the one-particle coulombic density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' arXiv, 2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='03963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Cioslowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Off-diagonal derivative discontinuities in the reduced density matrices of electronic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Phys, 153(154108), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Cioslowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Reverse engineering in quantum chemistry: How to reveal the fifth-order off-diagonal cusp in the one-electron reduced density matrix without actually calculating it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Int J Quantum Chem, 122(8)(e26651), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' ONE-PARTICLE DENSITY MATRIX 47 [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Fournais and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='Ø.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sørensen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Estimates on derivatives of coulombic wave functions and their elec- tron densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Journal f¨ur die reine und angewandte Mathematik (Crelles Journal), 2021(775):1–38, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Fournais, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='Ø.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sørensen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sharp regularity results for coulombic many-electron wave functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=', 255:183–227, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Fournais, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='Ø.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sørensen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' The electron den- sity is smooth away from the nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=', 228:401–415, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Hoffmann-Ostenhof, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='Ø.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Sørensen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Electron wavefunctions and densities for atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Henri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Poincare, 2:77–100, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [12] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Kato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' On the eigenfunctions of many-particle systems in quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=', 10:151–177, 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Evans and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Gariepy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Measure Theory and Fine Properties of Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' CRC Press, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content=' Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK Email address: peter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='hearnshaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='18@ucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
+page_content='uk' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'}
diff --git a/6NE1T4oBgHgl3EQf6wWy/vector_store/index.faiss b/6NE1T4oBgHgl3EQf6wWy/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..115c282c21e2d130ef863c60800ac149cbb1df92
--- /dev/null
+++ b/6NE1T4oBgHgl3EQf6wWy/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c4e28e1742188d56e5a8514f3616532c4242090e4d343134b6876b4674d2eb97
+size 2293805
diff --git a/6dAzT4oBgHgl3EQff_zo/content/2301.01463v1.pdf b/6dAzT4oBgHgl3EQff_zo/content/2301.01463v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..032a0911f503eb55b677d1e26f982fae54387daf
--- /dev/null
+++ b/6dAzT4oBgHgl3EQff_zo/content/2301.01463v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:25bfb6265db425388342b503e9fc159b06da08a48ce44a40913c854925082e47
+size 830803
diff --git a/6dAzT4oBgHgl3EQff_zo/vector_store/index.faiss b/6dAzT4oBgHgl3EQff_zo/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..67030d6dc3eea7b0a5aaac23c41c6f461db76a12
--- /dev/null
+++ b/6dAzT4oBgHgl3EQff_zo/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8edaa032ecdfb89563cb158792db9d6d0ae6f890b2b50d403928132cd067ef86
+size 2228269
diff --git a/6dAzT4oBgHgl3EQff_zo/vector_store/index.pkl b/6dAzT4oBgHgl3EQff_zo/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..ce38ad8f1e7ed9f0feba9eb01812e459836ad1f5
--- /dev/null
+++ b/6dAzT4oBgHgl3EQff_zo/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:36ec39dea55f27804094278e7c191a2a40b29d585dc42615cd897b0494ae6797
+size 97626
diff --git a/6tE1T4oBgHgl3EQfBgIF/content/tmp_files/2301.02851v1.pdf.txt b/6tE1T4oBgHgl3EQfBgIF/content/tmp_files/2301.02851v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..58d2758068f38b6ffbc5198b74f8c3af72d96122
--- /dev/null
+++ b/6tE1T4oBgHgl3EQfBgIF/content/tmp_files/2301.02851v1.pdf.txt
@@ -0,0 +1,1186 @@
+1
+Comparison Between Different Designs and Realizations of
+Anomalous Reflectors
+Mostafa Movahediqomi1, Grigorii Ptitcyn1, and Sergei Tretyakov1, Fellow, IEEE
+1Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
+Metasurfaces enable efficient manipulation of electromagnetic radiation. In particular, control over plane-wave reflection is one of
+the most useful features in many applications. Extensive research has been done in the field of anomalous reflectors over the past years,
+resulting in numerous introduced geometries and several distinct design approaches. Anomalously reflecting metasurfaces designed
+using different methods show different performances in terms of reflection efficiency, angular response, frequency bandwidth, etc.
+Without a comprehensive comparison between known design approaches, it is difficult to properly select the most appropriate
+design method and the most suitable metasurface geometry. Here, we consider four main approaches that can be used to design
+anomalous reflectors within the same basic topology of the structure and study the designed metasurfaces first on the level of the
+input impedance and then consider and compare the performance of the realized structures. We cover a wide range of performance
+aspects, such as the power efficiency and losses, angular response, and the scattering pattern of finite-size structures. We anticipate
+that this study will prove useful for developing new engineering methods and designing more sophisticated structures that include
+reconfigurable elements. Furthermore, we believe that this study can be considered referential since it provides comparative physical
+insight into anomalous reflectors in general.
+Index Terms—Anomalous reflectors, diffraction grating, phase gradient, surface wave, angular response, scattering parameters,
+far-field pattern.
+I. INTRODUCTION
+Wireless communication technologies constantly progress
+towards higher operational frequencies. This progress comes
+with smaller antenna sizes and, alas, at the expense of the
+need to use highly-directive and scanning antennas. Improve-
+ment of transmitters and receivers is limited, therefore com-
+munication engineers proposed to optimize the propagation
+environment using metasurfaces and metagratings
+[1]–[14],
+and reconfigurable intelligent metasurfaces (RIS) [15]–[24].
+The latter approach has gained increasing attention recently in
+communication communities. Often, reconfigurable structures
+are designed based on conventional fixed structures with the
+addition of tunable elements. Therefore, a comparison of
+known approaches to design anomalous reflectors is timely.
+There are two fundamentally different methods to realize a
+flat surface that reflects plane waves into plane waves along
+any desired direction. One is the use of periodical structures
+(diffraction gratings) whose period is chosen accordingly to
+the required angles of incidence and reflection. The other one
+is using aperiodically loaded antenna arrays whose geometrical
+period is fixed to usually λ/2 [25]. The majority of works on
+anomalous reflectors use the first approach, and here we con-
+sider various designs of periodically modulated anomalously
+reflected boundaries.
+Perhaps, the most classical approach to manipulate the
+direction of reflection from a surface is the use of phased-array
+(reflectarray) antennas [26]–[28]. Here, the phase distribution
+at the antenna aperture is tuned so that reflections from
+all antenna array elements interfere constructively along the
+desired direction of reflection. Generalizing this principle, a
+similar approach can be realized in a planar subwavelength-
+structured metasurface if the local reflection phase is made
+nonuniform over the surface, realizing a phase-gradient re-
+flector. Using this approach one can direct the reflected wave
+at will, beating the conventional law of reflection and realizing
+so-called anomalous reflection. The main drawback of this
+method is the low efficiency at large deviations from the usual
+law of reflection [2], [29]. Impedance mismatch between the
+incident and the reflected waves becomes significant, and it
+causes more scattering into parasitic propagating modes (See
+Fig. 1).
+Theoretically, the problem of reduced efficiency at large
+deflection angles can be completely solved with the use of
+active and lossy inclusions in the metasurface [1]. Worth
+mentioning, that the average power produced by the surface
+would be zero, however, some parts of it must produce energy,
+and the other parts should absorb it, which is quite impractical.
+Another possibility is to use completely passive structures,
+where auxiliary surface waves in the near-field region are
+properly tuned [1], [3] as it is shown in Fig. 1. Optimization
+of the evanescent modes can be performed in several differ-
+ent ways: based on the optimization of the input (surface)
+impedance [5], [6], grid (sheet) impedance [7]–[9], by direct
+optimization of the whole structure [10], [11], by finding an
+analytical solution [12], [13], and finally, introducing non-
+planar (power flow-conformal) structures [14]. In this paper,
+we overview and compare some of these approaches in detail
+and discuss their differences and advantages. We repeated the
+selected design methods and compared the most important
+characteristics of these works, including power efficiency,
+angular stability, far-field radiation patterns, and frequency
+bandwidth for the infinite and finite-size structures.
+The paper is organized as follows: In Sec. II the selected
+methods for comparison will be briefly introduced and the pros
+and cons for each of them will be highlighted. Then Sec. III is
+devoted to the investigation of scattering parameters for both
+ideal and realized structures and the comparison of the power
+arXiv:2301.02851v1 [physics.app-ph] 3 Jan 2023
+
+2
+efficiency of each method. The angular response of an anoma-
+lous reflector is another important aspect that is discussed
+in Sec. IV. Here, we show the behavior of reflectors when
+they are illuminated by waves at different angles. Furthermore,
+reflection and scattering by a finite-size structure in the far
+zone is important for applications, and recently it has been
+considered in several studies. We cover this issue in Sec. V.
+Finally, conclusions are formulated in Sec. VI to finalize this
+comparison and make the advantages and drawbacks of each
+approach clear.
+II. CONSIDERED DESIGN METHODS
+To provide a fair comparison, we choose methods that can
+be realized using arrays of metallic patches or strips printed on
+a grounded dielectric substrate. We select an example required
+performance: an anomalous reflection of normally incident
+plane waves with TE polarization to the 70◦-direction, at
+8 GHz. All designs are based on the same basic platform: a
+metal patch array on a grounded dielectric substrate (Fig. 1).
+The chosen example substrate is Rogers 5880 with 2.2 per-
+mittivity, 1.575 mm thickness, and 0.0002 loss tangent. For
+all designs, we split the period into 6 sub-cells that are either
+impedance strips or shaped metal strips. The use of the same
+parameters for all designs allows a meaningful comparison of
+performance.
+The initial reference design is a phase-gradient metasur-
+face, e.g. [26]–[28], [30]. The unit cells are designed in the
+conventional locally periodical approximation so that at every
+point of the reflector the reflection phase (at normal incidence)
+from an infinite array of identical cells is as required by the
+linear phase gradient rule for the desired reflection angle. It
+means that the reflection properties of a metasurface can be
+defined by the “local reflection coefficient” which is assumed
+to be controlled by adjusting the geometrical parameters of
+the unit cells. Strong coupling between the inclusions in an
+inhomogeneous array makes this approximation rather rough
+when the deflection angle is not small.
+More advanced methods that aim at overcoming the inherent
+parasitic scattering of phase-gradient reflectors we classify
+based on the degree of use of homogenized boundary con-
+ditions:
+Method 1 (input impedance method). Here, the metasurface
+is designed at the level of the equivalent input impedance,
+also known as the impenetrable impedance boundary condition
+(IBC), see Fig. 2(a). The input impedance (Zinput) relates the
+tangential components of the electric field (Et) and magnetic
+field at the interface between the metasurface structure and
+free space: (Ht)
+Et = Zinput · ˆz × Ht |z=0+ .
+(1)
+In this method, the input impedance distribution over the
+reflector surface is optimized with the goal to channel most
+of the reflected power into the desired direction. Optimization
+algorithms vary the input impedance, ensuring zero normal
+component of the Poynting vector at every point of the surface
+so that the input impedance is purely reactive [5], [6]. When
+the desired input impedance values at every point are found,
+𝜃𝑟
+−𝜃𝑟
+Normal incident
+wave (Ei)
+Retro-reflection
+(Er0)
+Symmetry
+reflection (Er−1)
+Anomalous
+reflection (Er+1)
+Fig. 1: Concept of periodical arrays acting as anomalous
+reflectors. The case with three propagating Floquet harmonics
+is illustrated. The design goal is to suppress reflections into all
+propagating modes except the desired anomalous reflection.
+the actual geometry of the structure is determined using the lo-
+cally periodic approximation. That is, the continuous reactance
+profile is discretized, and the dimensions of each unit cell are
+optimized using periodical boundary conditions, ensuring that
+the plane-wave reflection phase (at normal incidence) from
+an infinite periodical array of this cell is the same as from
+a uniform boundary with the required input reactance at this
+point.
+Method 2 (grid impedance method). This design approach is
+based on the grid (or sheet) impedance model of a patch array
+that is also known as penetrable IBC, see Fig. 2(b). In this
+method, the impedance boundary condition is used to model
+only the array of metal patches. The grid impedance (Zgrid)
+relates the surface-averaged electric field with the difference
+between the averaged tangential magnetic fields at both sides
+of the metasheet:
+Et = Zgrid · ˆz × (Ht |z=0+ −Ht |z=0−).
+(2)
+In this method, spatial dispersion of the grounded dielectric
+layer is taken into account. The optimization process in this
+case considers a more practical structure, that treats waves
+inside the substrate in a more complete way compared to
+the first method [7]–[9]. In method 2 the locally periodical
+approximation is used to design reactive sheets in contrast
+with method 1 in which it is utilized to model the whole
+metasurface volume.
+Method 3 (non-local design) accounts for all specific geo-
+metrical and electromagnetic features of the layer, not relying
+on homogenization methods. The optimization usually starts
+from some initial settings in terms of the input impedance (for
+example, in [10] it was required that the reflector if formed
+by periodically arranged regions of receiving and re-radiating
+leaky-wave antennas), but the final steps optimize the whole
+supercell of the periodical lattice instead of individual patches
+in periodical arrays. Importantly, the normal component of
+the Poynting vector along the surface is not set to zero, cor-
+responding to the effective active-lossy behavior, although the
+overall structure remains completely passive. The drawback of
+this approach lies in the need for direct optimization, which
+
+3
+𝑍input
+𝜂0
+𝜂𝑑
+𝜂0
+𝑍grid
+PEC
+Substrate
+𝜀𝑟
+𝐄𝐭 = 𝑍grid. ො𝒛 × (𝐇𝐭ห𝑧 = 0+ − 𝐇𝐭ȁ𝑧 = 0−)
+Z= 0
+d
+X
+Z
+X
+Z
+Z= 0
+𝐄𝐭 = 𝑍input. ො𝒛 × 𝐇𝐭ห𝑧 = 0+
+(a)
+(b)
+Fig. 2: Two types of IBCs: (a) input impedance, also known as
+impenetrable IBC. The left side illustrates the conceptual struc-
+ture, and the right side shows the corresponding transmission-
+line model. (b) Grid or sheet impedance is also known as
+penetrable IBC. The conceptual structure on the left consists
+of an impedance sheet placed on top of a grounded dielectric
+substrate. The equivalent transmission-line model is shown on
+the right side.
+usually requires heavy computational facilities and might also
+become time-consuming.
+Other approaches realize perfect anomalous reflection using
+arrays of loaded wires [12], [13] or non-planar structures [14].
+However, to provide an insightful comparison, we chose only
+methods that are suitable for planar structures that can be
+realized as printed circuit boards with metallic patches. Specif-
+ically, the phase-gradient sample is designed based on the
+required tangent-profile of the input impedance, for method 1
+(impenetrable IBCs) we follow [6], paper [7] for method 2
+(penetrable IBCs), and [10] for method 3 (non-local design).
+In the following sections, the scattering properties, angular
+response, as well as far-field characteristics of test finite-size
+structures for all aforementioned methods will be investigated
+and compared in detail.
+III. SCATTERING PROPERTIES
+At first, the scattering properties of all the anomalous reflec-
+tors under study will be investigated assuming infinite period-
+ical structures. Upon plane-wave illuminations, the structures
+support surface currents that are also periodic. The Floquet
+theory defines the tangential wavenumbers of modes supported
+by the surface:
+kt = kt0 + ktn = k0 sin θi + 2πn/D,
+(3)
+Where k0 is the wavenumber in free space, θi is the angle
+of the upcoming incident wave, n is an integer number that
+denotes the index of the Floquet mode, and D is the period
+of the surface pattern, determined by D = λ/(sin θr − sin θi).
+θr is the desired reflection angle. By choosing this period,
+the tangential component of the wavenumber is fixed so that
+one of the harmonics is reflected to the desired angle. Floquet
+harmonics that satisfy criterion k0 > |kt| belong to the fast-
+wave regime in the dispersion diagram and can propagate in
+free space. Other Floquet harmonics are surface waves. The
+direction of the reflection can be calculated by the following
+formula:
+sin θr = kt/k0 = (k0 sin θi + 2πn/D)/k0.
+(4)
+For the chosen design parameters (θi = 0◦, θr = 70◦, f =
+8 GHz), the period is equal to D = 1.0642λ, and the Floquet
+expansion has three propagating harmonics (k0 > |kt|): zero
+Floquet mode (0◦), −1 Floquet mode (−70◦), and +1 Floquet
+mode (+70◦), as follows from Eq. (4). The field amplitudes
+in these modes define the efficiency of power channeling from
+one mode to another.
+1) Performance of the surface-impedance models
+Initially, the ideal impedance profile is considered when
+the period is discretized to six elements. In other words, it
+is assumed that the impedance boundary condition is applied
+straight on the surface without considering actual realization
+(Fig. 2). It is noteworthy to notice that the discretization of
+the impedance profile deteriorates performance, however, it is
+spoiled in the same way for all methods. Using such discretiza-
+tion, reasonable results can be achieved rather fast. All the
+methods except the phase gradient method use optimization,
+therefore analytical closed-form formulas for the impedance
+profiles do not exist. The list of optimized impedance values
+of each unit cell in a period is presented in Table I for
+all designed methods. For both designs based on the input
+impedance model (phase-gradient and input impedance opti-
+mization), we convert the obtained input impedance profile
+to the grid impedance by using the equivalent transmission-
+line model presented in Fig. 2. The input impedance can be
+considered as that of a shunt connection of the grid impedance
+to the transmission line modeling the grounded dielectric
+substrate. For the non-local method, a pre-final optimization
+is applied here similarly to what was done in [10]. As it
+was discussed in Sec. II, for the non-local approach we can
+assume an impedance profile using repeated receiving and re-
+radiating leaky-wave sections to mimic the ideal active-lossy
+profile. Therefore, the optimization at the level of the grid
+impedance is an initial step before the final optimization for
+the whole supercell in the real structure. Eventually, the same
+configuration for all the methods enables us to complete a fair
+comparison.
+TABLE I: The impedance profile list for each unit cell (jΩ)
+Cell1
+Cell2
+Cell3
+Cell4
+Cell5
+Cell6
+Phase
+gradient
+-97.6
+-82.1
+-51.4
++2673.9
+-145.4
+-113.4
+Input
+impedance
+-291.7
+-141.3
+-114.0
+-98.0
+-83.8
+-85.3
+Grid
+impedance
+-73.8
+-1334.0
+-112.9
+-172.6
+-91.4
+-96.7
+Non-
+local
+-81.82
+-74.74
+-49.16
+-73.50
+-75.07
+-73.06
+Performance comparison of the discretized impedance pro-
+files after optimization is made using full-wave simulators,
+CST STUDIO [31] and ANSYS HFSS [32]. As it was dis-
+cussed, there are three propagating Floquet harmonics (open
+channels) in our specific example. Therefore, we can consider
+
+4
+(a)
+(b)
+(c)
+(d)
+(e)
+(f)
+(g)
+(h)
+No diffracted modes
+No diffracted modes
+No diffracted modes
+No diffracted modes
+Fig. 3: Power distribution between three propagating modes and scattered field distribution (bottom); (a,e) for the phase gradient,
+(b,f) input impedance, (c,g) grid impedance, (d,h) non-local design method. The horizontal black lines in the scattered field
+distribution figures illustrate the location of the metasurfaces where the IBC is applied.
+these reflectors as three-port networks. Scattering parameters
+(Sn1) can be determined numerically when the input wave
+comes from Floquet port 1 and the output wave is observed
+in the port number n. Consequently, the power efficiency is
+found as squared scattering parameters (ηn = |Sn1|2) in the
+full-wave simulators. The power efficiency for each mode
+measures the fraction of power rerouted from the incident
+wave (assuming that the incident port is 1) to the propagating
+mode n.
+Figures 3 (a-d) show ratios of power rerouted to propagating
+channels n = 0, 1, and −1. In all cases, below 7.5 GHz
+diffraction modes are not allowed, therefore all the energy
+is reflected back to the normal direction. Designs based
+on the phase-gradient, input impedance, and grid impedance
+methods show broadband behavior as compared to the non-
+local approach. The phase-gradient method does not take
+evanescent modes into account, which results in the lowest
+efficiency at the operational frequency. Power distribution and
+the corresponding field amplitudes for all methods can be
+found in Table II.
+TABLE II: Amplitude/power ratio of propagating Floquet
+modes and power efficiency level at 8 GHz
+θi
+θr
+−θr
+Phase gradient
+0.33/0.11
+1.45/0.72
+0.71/0.17
+Input impedance
+0.10/0.01
+1.67/0.95
+0.34/0.04
+Grid impedance
+0.00/0.00
+1.71/1
+0.01/0.00
+Non-local
+0.1/0.01
+1.70/0.99
+0.12/0.00
+It is noteworthy to sketch the scattered electric field distri-
+butions (Fig. 3(e-h)). Efficiency for the phase-gradient method
+is only 71.8%, and, correspondingly, Fig. 3(e) shows a field
+distribution that is distorted by fields scattered into two par-
+asitic propagating channels. For the other methods, efficiency
+is nearly perfect, however, the near-field distributions are
+different due to different methods used to optimize evanescent
+modes. It is important to note that for perfect anomalous
+reflection with ideal power efficiency, the power reflected to
+the desired direction must be equal to the power of the incident
+plane wave, and, as a result, the ratio between the amplitudes
+of the reflected and incident fields for these angles should be
+larger than one |Er| = |Ei|
+�
+cos(θi)/ cos(θr) (1.71 for our
+example case) [10].
+2) Realizations as patch arrays
+The next step is to compare actual structures designed using
+the previously obtained and discussed impedance profiles. Fol-
+lowing the procedures described in the corresponding papers,
+we design supercells formed by six unit cells based on the
+rectangular shape metal patches above the grounded dielectric
+substrate (see Fig. 4 and Table III).
+The corresponding efficiencies for all the considered meth-
+ods are shown in Fig. 5. The frequency for the best per-
+formance becomes shifted for all methods, except for the
+non-local design, where optimization of the whole supercell
+is implemented. In addition to that, dispersion and losses
+deteriorate the efficiency in different ways. The absorption
+levels as well as efficiency at the design frequency (8 GHz)
+are reported in Table IV. The remained power is scattered to
+other propagating Floquet modes that are not shown in Fig. 5.
+
+Re (E/E)
+1.5
+0.8
+1
+0.5
+0.6
+0
+2
+0.4
+-0.5
+0.2
+-1
+-1.5
+0
+-0.5
+0
+0.5
+c/ DxRe (E/E)
+1.5
+0.8
+1
+0.5
+0.6
+0
+2
+0.4
+-0.5
+0.2
+-1
+1.5
+0
+-0.5
+0
+0.5
+α/DxRe (E/E.)
+1
+1.5
+0.8
+1
+0.5
+0.6
+0
+2
+0.4
+-0.5
+0.2
+-1
+1.5
+0
+-0.5
+0
+0.5
+α/DxRe (E/E)
+1.5
+0.8
+1
+0.5
+0.6
+0
+2
+0.4
+-0.5
+0.2
+-1
+1.5
+0
+-0.5
+0
+0.5
+α/Dxn=0n=-1n=+1
+0.8
+Eficiency, In
+0.6
+0.4
+0.2
+0
+7
+7.5
+8
+8.5
+9
+Frequency (GHz)n=0n=-1n=十1
+0.8
+0.6
+0.4
+0.2
+0
+7
+7.5
+8
+8.5
+9
+Frequency (GHz)n=0n=-1n=十1
+0.8
+Efficiency, n
+0.6
+0.4
+0.2
+0
+7
+7.5
+8
+8.5
+9
+Frequency (GHz)n=0n=-1n=+1
+0.8
+Eficiency, Nn
+0.6
+0.4
+0.2
+0
+7
+7.5
+8
+8.5
+9
+Frequency (GHz)5
+Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 Cell #6
+𝐷
+𝑑 =
+ൗ
+𝐷 6
+Fig. 4: The configuration of supercells utilized for the designs
+consisting of six unit cells. All the parameters of the dielectric
+substrate are given in Sec. II. The period of the array (the
+supercell size) is fixed to D = 39.9 mm, and the width of
+a single unit cell is d = D/6. The width of metal strips
+is 3.5 mm, while the strip lengths are different for different
+design methods.
+TABLE III: Lengths of metal strips for each unit cell (mm)
+Strip1
+Strip2
+Strip3
+Strip4
+Strip5
+Strip6
+Phase
+gradient
+10.8
+11.41
+13.23
+0
+9.47
+10.29
+Input
+impedance
+7.3
+9.57
+10.28
+10.78
+11.3
+11.25
+Grid
+impedance
+3.71
+10.32
+8.89
+11.03
+10.84
+11.78
+Non-
+local
+10.47
+10.91
+11.26
+12.22
+11.30
+8.88
+TABLE IV: The best-performance frequency and the corre-
+sponding efficiency versus the absorption rate and efficiency
+for the design frequency.
+Best performance
+8 GHz
+Frequency
+Efficiency
+Absorption
+Efficiency
+Phase
+gradient
+8.5 GHz
+78.2(%)
+3.9(%)
+62.7(%)
+Input
+impedance
+8.27 GHz
+86.3(%)
+3.2(%)
+56.6(%)
+Grid
+impedance
+8.2 GHz
+95.0(%)
+3.3(%)
+73.6(%)
+Non-local
+8 GHz
+96.6(%)
+3.5(%)
+96.6(%)
+IV. ANGULAR RESPONSE
+A very interesting property of anomalous reflectors which is
+often left unstudied is the angular response, i.e., performance
+of the structure for various incident angles θi, which can
+be different from the design angle of incidence. Here, we
+consider angular response for periodical arrays formed by
+repeated supercells consisting of 6 unit cells with patches
+printed on a grounded substrate and assume the periodic
+boundary condition for this analysis. To distinguish between
+the illumination angle and the incidence angle for which the
+surface was designed, we denote this design incidence angle by
+No diffracted modes
+Fig. 5: Frequency dependence of efficiency for structures
+realized with metallic rectangular patches.
+θid. Worth to note that θid together with the required reflection
+angle defines the period of the structure operating as an
+anomalous reflector for these angles. The angular response is
+studied by sweeping the incident angle θi for a fixed structure,
+designed for the angle θid. The number of propagating Floquet
+modes existing in the system is defined by the incident angle
+θi, the period of the structure D, and the frequency f (see
+Eq. (3)). The condition for the mode propagation can be
+written as follows:
+ktn < k0 → 2π
+D |n| < 2π
+λ → |n| < D
+λ ,
+(5)
+and their propagation directions can be calculated as [33], [34]:
+θtn = arctan(ktn/knn),
+(6)
+where knn is the normal component of the wavenumber for
+the nth mode, and knn =
+�
+k2
+0 − k2
+tn. If k0 > |ktn|, the
+normal component of the nth wavenumber is purely real,
+which corresponds to a propagating mode. Otherwise, the
+wavenumber is imaginary, which corresponds to a surface
+mode that propagates along the interface. Figure 6 shows that
+for this fixed operational frequency and period of the structure,
+only five propagating Floquet modes with n ∈ [−2, 2] are
+allowed in the system when the angle of incidence is changing.
+All other modes (|n| > 3) are surface modes.
+Figure 7 depicts the spatial power distribution for prop-
+agating modes versus the illumination angle at 8 GHz. At
+the angle θi = 0◦ the incident angle is equal to the design
+angle θid, therefore most of the power goes to mode +1, with
+different efficiency for each method (see Table IV). Based on
+the discussion in Refs. [33], [34], for the phase-gradient case,
+there is a retro-reflection angle (at which all the energy is
+reflected back at the angle of incidence), that can be calculated
+as θretro = arcsin[(sin θi −sin θr)/2] and is equal to −28◦ for
+the considered case. At this angle only two channels are open
+(see Fig. 6), and the angle for the other channel is −θretro.
+Ideally, 100% of the power should be scattered in the retro-
+reflection direction, however, discretization and the presence
+of losses decrease it down to 96%. Therefore, the rest of the
+power goes to the remaining channel or gets absorbed. Due
+
+Phase grad Input imp Grid impNon-local
+Efficiency, Mn
+0.5
+0
+7
+7.5
+8
+8.5
+9
+Frequency
+GHz6
+Fig. 6: Propagation angle for different Floquet modes with
+respect to the incident angle. This figure is made using Eq. 6
+when the incidence angle is swept.
+to reciprocity, the structure behaves in the same way when
+illuminated from direction −θretro. It is important to notice
+that for other design methods, retro-reflection occurs at the
+angle +70◦, when three propagating channels are open. When
+the structure is illuminated from the normal direction, most of
+the energy couples to mode n = +1, where the reflection angle
+is θr = +70◦. Therefore, channel n = −1 becomes decoupled
+from the other two, and when the structure is illuminated from
+the angle θi = −70◦, all the energy is reflected back to the
+source.
+Finally, a sweep of the incident angle reveals that the design
+method based on grid impedance is the solution that has the
+least sensitive response (see Fig. 7(c)). It means that when the
+incident angle changes between −70◦ and +70◦, the power
+couples primarily to the same modes, unlike for other methods.
+Figure 8 illustrates and reports the results of the study for
+the best performance frequency for each method. The result
+is the same for the non-local optimization approach since in
+this case, the best performance frequency matches the design
+frequency.
+V. FAR-FIELD SCATTERING FROM FINITE-SIZE
+STRUCTURES
+In the previous analysis, we considered infinite periodical
+structures excited by plane waves. Here, we study far-field
+scattering properties of finite-size structures. It is possible to
+study metasurfaces on the grid or sheet impedance levels using
+the mode-matching method for calculation of induced currents
+[7], [35] and the far-field approximation for the calculation of
+scattered fields [33], [36]. To do that, the following conditions
+have to be met:
+|r| ≫ λ,
+(7a)
+|r| ≫ L,
+(7b)
+L2/|r| ≪ λ,
+(7c)
+where |r| is the distance from the observation point to the
+center of the structure, and L is max(2a, 2b), in which a
+and b denote distances between the center of the metasur-
+face and the edges of the structure along the x and y-
+axes, respectively. Considering TE polarized incident waves
+(Ei = E0e−jk(sin θix+cos θiz)ˆy) and selecting the observation
+point in the plane of incidence (xy-plane), the normalized
+scattering pattern in spherical coordinates can be determined
+by the following expressions:
+Fr(θ) =
+1
+2 cos θi
+�
+n
+rn(θi)(cos(θrn) + cos(θ))sinc(kaefn),
+(8)
+Fsh(θ) =
+1
+2 cos θi
+(cos(θ) − cos(θi))sinc(kaef),
+(9)
+where rn(θi) are the amplitudes of excited harmonics, de-
+termined by the mode matching technique. Angle θrn shows
+the reflected angle for each harmonic, and sinc(x) is a sinc
+function. In addition, aefn and aef can be represented by
+aefn = (sin θ − sin θrn)a and aefn = (sin θ − sin θi)a, re-
+spectively. Finally, the total scattering pattern can be found as
+the sum Fsc = Fr + Fsh. Worth to mention that normalization
+is performed with respect to the maximum of the reflected
+field.
+Alternatively to the analytical approach, one can study
+finite-size structures numerically using full-wave simulators.
+The result shown in Fig. 9(a) corresponds to the analytical
+solution, and in Fig. 9(b) to the full-wave simulations. In
+both cases, the radiation pattern is calculated at 8 GHz
+for structures with the size 11.7λ × 7λ in the xy-plane.
+The discrepancy between the two radiation patterns, which
+becomes more significant for side lobes (SL), is caused by
+the neglected current distortions near the edges. Nevertheless,
+the general behavior is similar. Parameters of the patterns
+related to each method are shown in Table V.
+The beam-
+TABLE V: The normalized main lobe amplitude, the first side
+lobe amplitude in linear scale, and their directions.
+Main lobe
+Amp/angle
+corresponds to
+n=+1.
+SL Amp/angle
+corresponds to
+n=0
+SL Amp/angle
+corresponds to
+n=-1
+Phase gradient
+0.94/68◦
+0.52/-1◦
+0.49/-67◦
+Input
+impedance
+0.95/68◦
+0.45/0◦
+0.35/-67◦
+Grid
+impedance
+0.99/69◦
+0.13/-1◦
+0.33/-67◦
+Non-local
+1.00/69◦
+0.24/-2◦
+0.39/-68◦
+widths for all cases are similar and close to 9◦ (see Fig. 9).
+Moreover, as it is shown in the inset, the maximum of the
+scattered field is higher for the design methods based on grid
+impedance and non-local solution because the power efficiency
+is higher in these methods compared to the phase gradient
+design and optimization based on the input impedance. The
+most important difference corresponds to the side-lobe level
+(SLL). As it is expected, the highest side lobes occur along
+the θ = −70 and θ = 0, because there are two propagating
+Floquet harmonics along these directions.
+Figure 10 shows the scattering patterns of all the methods
+at different frequencies, where all the patterns are normalized
+
+—n=0n=-1n=+1n=-2n=+2
+50
+0
+-50
+-50
+0
+50
+Angle of incidence, :7
+(a)
+(b)
+(c)
+(d)
+Fig. 7: Power distribution among different propagating modes depending on the incident angle at frequency 8 GHz for (a)
+phase gradient, (b) input impedance optimization, (c) grid impedance optimization, and (d) non-local optimization method.
+(a)
+(b)
+(c)
+(d)
+Fig. 8: Power distribution among different propagating modes depending on the incident angle for the best-performance
+frequencies which are reported in Table IV, for (a) phase gradient, (b) input impedance optimization, (c) grid impedance
+optimization, and (d) non-local optimization method.
+
+n=0
+n=-1
+n=+1n=-2
+2n=+2
+Eficiency, Mn
+0.5
+-50
+0
+50
+Angle of incidence, :n=0
+-n=-1
+n=+1n=-2n=+2
+Efficiency, Mn
+0.5
+-50
+0
+50
+Angle of incidence, :n=0
+-n=-1
+-n=+1-n=-2
+一n=+2
+Efficiency, Mn
+0.5
+-50
+0
+50
+Angle of incidence, :n=0
+-n=-1
+n=+1n=-2
+n=+2
+Eficiency, Mn
+0.5
+-50
+0
+50
+Angle of incidence, :n=0
+-n=-1
+-n=+1
+n=-2
+n=+2
+Efficiency, Mn
+0.5
+-50
+0
+50
+Angle of incidence, :n=0n=-1n=+1n=-2n=+2
+Eficiency, Mn
+0.5
+0
+-50
+0
+50
+Angle of incidence, O:n=0
+-n=-1
+n=+1n=-2
+n=+2
+Eficiency, Nn
+0.5
+-50
+0
+50
+Angle of incidence, :n=0
+-n=-1
+-n=+1-
+-n=-2
+一n=+2
+Efficiency, Mn
+0.5
+0
+-50
+0
+50
+Angle of incidence, :8
+Fig. 9: Normalized radiation pattern in linear scale. All pat-
+terns are normalized with respect to the main lobe amplitude
+of the non-local method which has the highest gain compared
+to the other approaches. (a) analytical pattern based on the
+Huygens principle, (b) full-wave simulation in CST STUDIO.
+to the main lobe. It is important to notice that due to the
+fixed period of the structure (D = λ/(sin θr − sin θi)), by
+sweeping the frequency, the angle of reflection changes. This
+can be observed in Fig. 10. By changing the frequency, the
+scattered n = +1 Floquet harmonic scans the space from the
+desired reflection angle (+70◦) at 8 GHz to smaller angles
+at higher frequencies and larger angles at lower frequencies.
+Below 7.5 GHz there are no diffraction modes, therefore we
+plot the scattering patterns starting from 7.75 GHz, where most
+of the energy is reflected into the normal direction (see the
+blue line in Fig. 10). The red line in the figure corresponds to
+the scattering pattern at the design frequency. Eventually, the
+radiation patterns for 8.25 and 8.5 GHz are shown by yellow
+and purple lines, respectively.
+VI. CONCLUSION
+We have presented a comprehensive analysis of four main
+design methods for anomalous reflectors. In order to provide a
+meaningful comparison we chose design methods that can be
+realized within the same topology. At first, we performed an
+analysis of periodical infinite structures on the level of input
+and grid impedances. Then we proceeded to design actual
+implementations as supercells formed by six metal patches
+placed on top of a grounded dielectric substrate. Further, we
+analyzed the angular response of the designed metasurfaces
+(a)
+(b)
+(c)
+(d)
+Fig. 10: Frequency bandwidth patterns. At 7.5 GHz, which is
+not plotted here, there is no diffracted mode, and all the energy
+goes back to the specular (normal) direction. The patterns are
+plotted between 7.75 GHz to 8.5 GHz with a 0.25 GHz step.
+Designed based on (a) phase gradient, (b) input impedance
+optimization, (c) grid impedance optimization, (d) non-local
+optimization. All patterns are normalized to the main lobe
+amplitude for each case.
+and finally presented far-field radiation patterns of finite-size
+structures.
+In this work, we provide a comparative summary of the
+main features of previously introduced design methods as well
+as present an original study of a property that is frequently left
+unstudied: the angular response. This study can be considered
+referential for engineers working on reconfigurable intelligent
+surfaces, where similar design methods are utilized.
+ACKNOWLEDGMENT
+This work was supported by the European Union’s Hori-
+zon 2020 research and innovation programme under the
+Marie Skłodowska-Curie grant agreement No 956256 (project
+METAWIRELESS), and the Academy of Finland (grant
+345178).
+REFERENCES
+[1] V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. D´ıaz-Rubio, Y. Ra’di,
+and S. Tretyakov, “Perfect control of reflection and refraction using
+spatially dispersive metasurfaces,” Physical Review B, vol. 94, no. 7,
+p. 075142, 2016.
+[2] N. M. Estakhri and A. Al`u, “Wave-front transformation with gradient
+metasurfaces,” Physical Review X, vol. 6, no. 4, p. 041008, 2016.
+[3] A. Epstein and G. V. Eleftheriades, “Synthesis of passive lossless
+metasurfaces using auxiliary fields for reflectionless beam splitting and
+perfect reflection,” Physical Review Letters, vol. 117, no. 25, p. 256103,
+2016.
+[4] Y. Ra’di, D. L. Sounas, and A. Al`u, “Metagratings: Beyond the limits of
+graded metasurfaces for wave front control,” Physical Review Letters,
+vol. 119, no. 6, p. 067404, 2017.
+[5] J. Budhu and A. Grbic, “Perfectly reflecting metasurface reflectarrays:
+Mutual coupling modeling between unique elements through homog-
+enization,” IEEE Transactions on Antennas and Propagation, vol. 69,
+no. 1, pp. 122–134, 2020.
+[6] D.-H. Kwon, “Lossless scalar metasurfaces for anomalous reflection
+based on efficient surface field optimization,” IEEE Antennas and
+Wireless Propagation Letters, vol. 17, no. 7, pp. 1149–1152, 2018.
+[7] X. Wang, A. D´ıaz-Rubio, and S. A. Tretyakov, “Independent control
+of multiple channels in metasurface devices,” Physical Review Applied,
+vol. 14, no. 2, p. 024089, 2020.
+
+7.75GH 2
+8GHz
+8.25GH2
+8.5GHz0
+-30
+30
+1
+0.8
+0.6
+-60
+60
+0.4
+-90
+900
+-30
+30
+1
+0.8
+0.6
+-60
+60
+0.4
+0.2
+-90
+900
+-30
+30
+1
+0.8
+0.6
+-60
+60
+0.4
+0.2
+-90
+900
+-30
+30
+1
+0.8
+0.6
+-60
+60
+0.4
+0.2
+-90
+90-Phase grad Input imp Grid impNon-local
+Linear radiation pattern
+1
+0.9
+0.8
+68
+70
+72
+0.5
+-50
+50Linear radiation pattern
+1.05
+0.95
+0.5
+0.9
+66
+68
+70
+72
+-50
+0
+509
+[8] D.-H. Kwon, “Planar metasurface design for wide-angle refraction using
+interface field optimization,” IEEE Antennas and Wireless Propagation
+Letters, vol. 20, no. 4, pp. 428–432, 2021.
+[9] C. Yepes, M. Faenzi, S. Maci, and E. Martini, “Perfect non-specular re-
+flection with polarization control by using a locally passive metasurface
+sheet on a grounded dielectric slab,” Applied Physics Letters, vol. 118,
+no. 23, p. 231601, 2021.
+[10] A. D´ıaz-Rubio, V. S. Asadchy, A. Elsakka, and S. A. Tretyakov, “From
+the generalized reflection law to the realization of perfect anomalous
+reflectors,” Science Advances, vol. 3, no. 8, p. e1602714, 2017.
+[11] A. M. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with
+a bipartite Huygens’ metasurface,” Physical Review X, vol. 8, no. 1, p.
+011036, 2018.
+[12] O. Rabinovich and A. Epstein, “Analytical design of printed circuit
+board (PCB) metagratings for perfect anomalous reflection,” IEEE
+Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 4086–
+4095, 2018.
+[13] O. Rabinovich, I. Kaplon, J. Reis, and A. Epstein, “Experimental demon-
+stration and in-depth investigation of analytically designed anomalous
+reflection metagratings,” Physical Review B, vol. 99, no. 12, p. 125101,
+2019.
+[14] A. D´ıaz-Rubio, J. Li, C. Shen, S. A. Cummer, and S. A. Tretyakov,
+“Power flow–conformal metamirrors for engineering wave reflections,”
+Science Advances, vol. 5, no. 2, p. eaau7288, 2019.
+[15] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and
+R. Zhang, “Wireless communications through reconfigurable intelligent
+surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.
+[16] F. Liu, O. Tsilipakos, A. Pitilakis, A. C. Tasolamprou, M. S. Mir-
+moosa, N. V. Kantartzis, D.-H. Kwon, J. Georgiou, K. Kossifos, M. A.
+Antoniades et al., “Intelligent metasurfaces with continuously tunable
+local surface impedance for multiple reconfigurable functions,” Physical
+Review Applied, vol. 11, no. 4, p. 044024, 2019.
+[17] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen,
+J. De Rosny, and S. Tretyakov, “Smart radio environments empowered
+by reconfigurable intelligent surfaces: How it works, state of research,
+and the road ahead,” IEEE Journal on Selected Areas in Communica-
+tions, vol. 38, no. 11, pp. 2450–2525, 2020.
+[18] M. Di Renzo, F. H. Danufane, X. Xi, J. De Rosny, and S. Tretyakov,
+“Analytical modeling of the path-loss for reconfigurable intelligent
+surfaces–anomalous mirror or scatterer?” in 2020 IEEE 21st Interna-
+tional Workshop on Signal Processing Advances in Wireless Communi-
+cations (SPAWC).
+IEEE, 2020, pp. 1–5.
+[19] A. Pitilakis, O. Tsilipakos, F. Liu, K. M. Kossifos, A. C. Tasolamprou,
+D.-H. Kwon, M. S. Mirmoosa, D. Manessis, N. V. Kantartzis, C. Liaskos
+et al., “A multi-functional reconfigurable metasurface: Electromagnetic
+design accounting for fabrication aspects,” IEEE Transactions on An-
+tennas and Propagation, vol. 69, no. 3, pp. 1440–1454, 2020.
+[20] O. Tsilipakos, A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S.
+Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos et al.,
+“Toward intelligent metasurfaces: the progress from globally tunable
+metasurfaces to software-defined metasurfaces with an embedded net-
+work of controllers,” Advanced Optical Materials, vol. 8, no. 17, p.
+2000783, 2020.
+[21] M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis,
+J. De Rosny, D.-T. Phan-Huy, O. Simeone, R. Zhang et al., “Recon-
+figurable intelligent surfaces vs. relaying: Differences, similarities, and
+performance comparison,” IEEE Open Journal of the Communications
+Society, vol. 1, pp. 798–807, 2020.
+[22] V. Degli-Esposti, E. M. Vitucci, M. Di Renzo, and S. A. Tretyakov,
+“Reradiation and scattering from a reconfigurable intelligent surface:
+A general macroscopic model,” IEEE Transactions on Antennas and
+Propagation, vol. 70, no. 10, pp. 8691–8706, 2022.
+[23] M. Di Renzo, F. H. Danufane, and S. Tretyakov, “Communication mod-
+els for reconfigurable intelligent surfaces: From surface electromagnetics
+to wireless networks optimization,” Proceedings of the IEEE, vol. 110,
+no. 9, pp. 1164–1209, 2022.
+[24] F. H. Danufane, M. Di Renzo, J. De Rosny, and S. Tretyakov, “On
+the path-loss of reconfigurable intelligent surfaces: An approach based
+on Green’s theorem applied to vector fields,” IEEE Transactions on
+Communications, vol. 69, no. 8, pp. 5573–5592, 2021.
+[25] F. Liu, D.-H. Kwon, and S. A. Tretyakov, “Reflectarrays and metasurface
+reflectors as diffraction gratings,” arXiv preprint arXiv:2202.09029,
+2022.
+[26] D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE
+Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 645–651,
+1963.
+[27] J. Huang and J. A. Encinar, Reflectarray Antennas. John Wiley & Sons,
+2007.
+[28] P. Nayeri, F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory,
+Designs, and Applications.
+John Wiley & Sons, 2018.
+[29] V. S. Asadchy, A. Wickberg, A. D´ıaz-Rubio, and M. Wegener, “Elim-
+inating scattering loss in anomalously reflecting optical metasurfaces,”
+ACS Photonics, vol. 4, no. 5, pp. 1264–1270, 2017.
+[30] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and
+Z. Gaburro, “Light propagation with phase discontinuities: Generalized
+laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–
+337, 2011.
+[31] Dassault Syst`emes, “Cst Studio Suite, Computer Simulation Technolog
+ag.” [Online]. Available: https://www.cst.com/
+[32] ANSYS, “Ansys Hfss Software.” [Online]. Available: http://www.
+ansoft.com/products/hf/hfss/
+[33] A. D´ıaz-Rubio and S. A. Tretyakov, “Macroscopic modeling of anoma-
+lously reflecting metasurfaces: Angular response and far-field scatter-
+ing,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 10,
+pp. 6560–6571, 2021.
+[34] A. D´ıaz-Rubio and S. Tretyakov, “Angular response of anomalous reflec-
+tors: analysis and design prospects,” in 2021 15th European Conference
+on Antennas and Propagation (EuCAP).
+IEEE, 2021, pp. 1–3.
+[35] R.-B. Hwang, Periodic structures: Mode-matching approach and appli-
+cations in electromagnetic engineering.
+John Wiley & Sons, 2012.
+[36] A. D´ıaz-Rubio, S. Kosulnikov, and S. A. Tretyakov, “On the integration
+of reconfigurable intelligent surfaces in real-world environments: A
+convenient approach for estimation reflection and transmission,” IEEE
+Antennas and Propagation Magazine, vol. 64, no. 4, pp. 85–95, 2022.
+
diff --git a/6tE1T4oBgHgl3EQfBgIF/content/tmp_files/load_file.txt b/6tE1T4oBgHgl3EQfBgIF/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..dc32ed61815b7010bdd741c6d4af09cd0c3bdfe7
--- /dev/null
+++ b/6tE1T4oBgHgl3EQfBgIF/content/tmp_files/load_file.txt
@@ -0,0 +1,798 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf,len=797
+page_content='1 Comparison Between Different Designs and Realizations of Anomalous Reflectors Mostafa Movahediqomi1, Grigorii Ptitcyn1, and Sergei Tretyakov1, Fellow, IEEE 1Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland Metasurfaces enable efficient manipulation of electromagnetic radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In particular, control over plane-wave reflection is one of the most useful features in many applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Extensive research has been done in the field of anomalous reflectors over the past years, resulting in numerous introduced geometries and several distinct design approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Anomalously reflecting metasurfaces designed using different methods show different performances in terms of reflection efficiency, angular response, frequency bandwidth, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Without a comprehensive comparison between known design approaches, it is difficult to properly select the most appropriate design method and the most suitable metasurface geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Here, we consider four main approaches that can be used to design anomalous reflectors within the same basic topology of the structure and study the designed metasurfaces first on the level of the input impedance and then consider and compare the performance of the realized structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' We cover a wide range of performance aspects, such as the power efficiency and losses, angular response, and the scattering pattern of finite-size structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' We anticipate that this study will prove useful for developing new engineering methods and designing more sophisticated structures that include reconfigurable elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Furthermore, we believe that this study can be considered referential since it provides comparative physical insight into anomalous reflectors in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Index Terms—Anomalous reflectors, diffraction grating, phase gradient, surface wave, angular response, scattering parameters, far-field pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' INTRODUCTION Wireless communication technologies constantly progress towards higher operational frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' This progress comes with smaller antenna sizes and, alas, at the expense of the need to use highly-directive and scanning antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Improve- ment of transmitters and receivers is limited, therefore com- munication engineers proposed to optimize the propagation environment using metasurfaces and metagratings [1]–[14], and reconfigurable intelligent metasurfaces (RIS) [15]–[24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The latter approach has gained increasing attention recently in communication communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Often, reconfigurable structures are designed based on conventional fixed structures with the addition of tunable elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Therefore, a comparison of known approaches to design anomalous reflectors is timely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' There are two fundamentally different methods to realize a flat surface that reflects plane waves into plane waves along any desired direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' One is the use of periodical structures (diffraction gratings) whose period is chosen accordingly to the required angles of incidence and reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The other one is using aperiodically loaded antenna arrays whose geometrical period is fixed to usually λ/2 [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The majority of works on anomalous reflectors use the first approach, and here we con- sider various designs of periodically modulated anomalously reflected boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Perhaps, the most classical approach to manipulate the direction of reflection from a surface is the use of phased-array (reflectarray) antennas [26]–[28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Here, the phase distribution at the antenna aperture is tuned so that reflections from all antenna array elements interfere constructively along the desired direction of reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Generalizing this principle, a similar approach can be realized in a planar subwavelength- structured metasurface if the local reflection phase is made nonuniform over the surface, realizing a phase-gradient re- flector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Using this approach one can direct the reflected wave at will, beating the conventional law of reflection and realizing so-called anomalous reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The main drawback of this method is the low efficiency at large deviations from the usual law of reflection [2], [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Impedance mismatch between the incident and the reflected waves becomes significant, and it causes more scattering into parasitic propagating modes (See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Theoretically, the problem of reduced efficiency at large deflection angles can be completely solved with the use of active and lossy inclusions in the metasurface [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Worth mentioning, that the average power produced by the surface would be zero, however, some parts of it must produce energy, and the other parts should absorb it, which is quite impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Another possibility is to use completely passive structures, where auxiliary surface waves in the near-field region are properly tuned [1], [3] as it is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Optimization of the evanescent modes can be performed in several differ- ent ways: based on the optimization of the input (surface) impedance [5], [6], grid (sheet) impedance [7]–[9], by direct optimization of the whole structure [10], [11], by finding an analytical solution [12], [13], and finally, introducing non- planar (power flow-conformal) structures [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In this paper, we overview and compare some of these approaches in detail and discuss their differences and advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' We repeated the selected design methods and compared the most important characteristics of these works, including power efficiency, angular stability, far-field radiation patterns, and frequency bandwidth for the infinite and finite-size structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The paper is organized as follows: In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' II the selected methods for comparison will be briefly introduced and the pros and cons for each of them will be highlighted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Then Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' III is devoted to the investigation of scattering parameters for both ideal and realized structures and the comparison of the power arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='02851v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='app-ph] 3 Jan 2023 2 efficiency of each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The angular response of an anoma- lous reflector is another important aspect that is discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Here, we show the behavior of reflectors when they are illuminated by waves at different angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Furthermore, reflection and scattering by a finite-size structure in the far zone is important for applications, and recently it has been considered in several studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' We cover this issue in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Finally, conclusions are formulated in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' VI to finalize this comparison and make the advantages and drawbacks of each approach clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' CONSIDERED DESIGN METHODS To provide a fair comparison, we choose methods that can be realized using arrays of metallic patches or strips printed on a grounded dielectric substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' We select an example required performance: an anomalous reflection of normally incident plane waves with TE polarization to the 70◦-direction, at 8 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' All designs are based on the same basic platform: a metal patch array on a grounded dielectric substrate (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The chosen example substrate is Rogers 5880 with 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 per- mittivity, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='575 mm thickness, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='0002 loss tangent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' For all designs, we split the period into 6 sub-cells that are either impedance strips or shaped metal strips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The use of the same parameters for all designs allows a meaningful comparison of performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The initial reference design is a phase-gradient metasur- face, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [26]–[28], [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The unit cells are designed in the conventional locally periodical approximation so that at every point of the reflector the reflection phase (at normal incidence) from an infinite array of identical cells is as required by the linear phase gradient rule for the desired reflection angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It means that the reflection properties of a metasurface can be defined by the “local reflection coefficient” which is assumed to be controlled by adjusting the geometrical parameters of the unit cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Strong coupling between the inclusions in an inhomogeneous array makes this approximation rather rough when the deflection angle is not small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' More advanced methods that aim at overcoming the inherent parasitic scattering of phase-gradient reflectors we classify based on the degree of use of homogenized boundary con- ditions: Method 1 (input impedance method).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Here, the metasurface is designed at the level of the equivalent input impedance, also known as the impenetrable impedance boundary condition (IBC), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The input impedance (Zinput) relates the tangential components of the electric field (Et) and magnetic field at the interface between the metasurface structure and free space: (Ht) Et = Zinput · ˆz × Ht |z=0+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (1) In this method, the input impedance distribution over the reflector surface is optimized with the goal to channel most of the reflected power into the desired direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Optimization algorithms vary the input impedance, ensuring zero normal component of the Poynting vector at every point of the surface so that the input impedance is purely reactive [5], [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' When the desired input impedance values at every point are found, 𝜃𝑟 −𝜃𝑟 Normal incident wave (Ei) Retro-reflection (Er0) Symmetry reflection (Er−1) Anomalous reflection (Er+1) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1: Concept of periodical arrays acting as anomalous reflectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The case with three propagating Floquet harmonics is illustrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The design goal is to suppress reflections into all propagating modes except the desired anomalous reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' the actual geometry of the structure is determined using the lo- cally periodic approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' That is, the continuous reactance profile is discretized, and the dimensions of each unit cell are optimized using periodical boundary conditions, ensuring that the plane-wave reflection phase (at normal incidence) from an infinite periodical array of this cell is the same as from a uniform boundary with the required input reactance at this point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Method 2 (grid impedance method).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' This design approach is based on the grid (or sheet) impedance model of a patch array that is also known as penetrable IBC, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In this method, the impedance boundary condition is used to model only the array of metal patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The grid impedance (Zgrid) relates the surface-averaged electric field with the difference between the averaged tangential magnetic fields at both sides of the metasheet: Et = Zgrid · ˆz × (Ht |z=0+ −Ht |z=0−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (2) In this method, spatial dispersion of the grounded dielectric layer is taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The optimization process in this case considers a more practical structure, that treats waves inside the substrate in a more complete way compared to the first method [7]–[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In method 2 the locally periodical approximation is used to design reactive sheets in contrast with method 1 in which it is utilized to model the whole metasurface volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Method 3 (non-local design) accounts for all specific geo- metrical and electromagnetic features of the layer, not relying on homogenization methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The optimization usually starts from some initial settings in terms of the input impedance (for example, in [10] it was required that the reflector if formed by periodically arranged regions of receiving and re-radiating leaky-wave antennas), but the final steps optimize the whole supercell of the periodical lattice instead of individual patches in periodical arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Importantly, the normal component of the Poynting vector along the surface is not set to zero, cor- responding to the effective active-lossy behavior, although the overall structure remains completely passive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The drawback of this approach lies in the need for direct optimization, which 3 𝑍input 𝜂0 𝜂𝑑 𝜂0 𝑍grid PEC Substrate 𝜀𝑟 𝐄𝐭 = 𝑍grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' ො𝒛 × (𝐇𝐭ห𝑧 = 0+ − 𝐇𝐭ȁ𝑧 = 0−) Z= 0 d X Z X Z Z= 0 𝐄𝐭 = 𝑍input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' ො𝒛 × 𝐇𝐭ห𝑧 = 0+ (a) (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2: Two types of IBCs: (a) input impedance, also known as impenetrable IBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The left side illustrates the conceptual struc- ture, and the right side shows the corresponding transmission- line model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (b) Grid or sheet impedance is also known as penetrable IBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The conceptual structure on the left consists of an impedance sheet placed on top of a grounded dielectric substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The equivalent transmission-line model is shown on the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' usually requires heavy computational facilities and might also become time-consuming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Other approaches realize perfect anomalous reflection using arrays of loaded wires [12], [13] or non-planar structures [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' However, to provide an insightful comparison, we chose only methods that are suitable for planar structures that can be realized as printed circuit boards with metallic patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Specif- ically, the phase-gradient sample is designed based on the required tangent-profile of the input impedance, for method 1 (impenetrable IBCs) we follow [6], paper [7] for method 2 (penetrable IBCs), and [10] for method 3 (non-local design).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In the following sections, the scattering properties, angular response, as well as far-field characteristics of test finite-size structures for all aforementioned methods will be investigated and compared in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' SCATTERING PROPERTIES At first, the scattering properties of all the anomalous reflec- tors under study will be investigated assuming infinite period- ical structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Upon plane-wave illuminations, the structures support surface currents that are also periodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The Floquet theory defines the tangential wavenumbers of modes supported by the surface: kt = kt0 + ktn = k0 sin θi + 2πn/D, (3) Where k0 is the wavenumber in free space, θi is the angle of the upcoming incident wave, n is an integer number that denotes the index of the Floquet mode, and D is the period of the surface pattern, determined by D = λ/(sin θr − sin θi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' θr is the desired reflection angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' By choosing this period, the tangential component of the wavenumber is fixed so that one of the harmonics is reflected to the desired angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Floquet harmonics that satisfy criterion k0 > |kt| belong to the fast- wave regime in the dispersion diagram and can propagate in free space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Other Floquet harmonics are surface waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The direction of the reflection can be calculated by the following formula: sin θr = kt/k0 = (k0 sin θi + 2πn/D)/k0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (4) For the chosen design parameters (θi = 0◦, θr = 70◦, f = 8 GHz), the period is equal to D = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='0642λ, and the Floquet expansion has three propagating harmonics (k0 > |kt|): zero Floquet mode (0◦), −1 Floquet mode (−70◦), and +1 Floquet mode (+70◦), as follows from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The field amplitudes in these modes define the efficiency of power channeling from one mode to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1) Performance of the surface-impedance models Initially, the ideal impedance profile is considered when the period is discretized to six elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In other words, it is assumed that the impedance boundary condition is applied straight on the surface without considering actual realization (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It is noteworthy to notice that the discretization of the impedance profile deteriorates performance, however, it is spoiled in the same way for all methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Using such discretiza- tion, reasonable results can be achieved rather fast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' All the methods except the phase gradient method use optimization, therefore analytical closed-form formulas for the impedance profiles do not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The list of optimized impedance values of each unit cell in a period is presented in Table I for all designed methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' For both designs based on the input impedance model (phase-gradient and input impedance opti- mization), we convert the obtained input impedance profile to the grid impedance by using the equivalent transmission- line model presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The input impedance can be considered as that of a shunt connection of the grid impedance to the transmission line modeling the grounded dielectric substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' For the non-local method, a pre-final optimization is applied here similarly to what was done in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' As it was discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' II, for the non-local approach we can assume an impedance profile using repeated receiving and re- radiating leaky-wave sections to mimic the ideal active-lossy profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Therefore, the optimization at the level of the grid impedance is an initial step before the final optimization for the whole supercell in the real structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Eventually, the same configuration for all the methods enables us to complete a fair comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' TABLE I: The impedance profile list for each unit cell (jΩ) Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 Phase gradient 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 +2673.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='9 145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 Input impedance 291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='7 141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='3 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='0 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='0 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='3 Grid impedance 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 1334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='0 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='9 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='7 Non- local 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='82 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='74 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='16 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='50 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='07 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='06 Performance comparison of the discretized impedance pro- files after optimization is made using full-wave simulators, CST STUDIO [31] and ANSYS HFSS [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' As it was dis- cussed, there are three propagating Floquet harmonics (open channels) in our specific example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Therefore, we can consider 4 (a) (b) (c) (d) (e) (f) (g) (h) No diffracted modes No diffracted modes No diffracted modes No diffracted modes Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 3: Power distribution between three propagating modes and scattered field distribution (bottom);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (a,e) for the phase gradient, (b,f) input impedance, (c,g) grid impedance, (d,h) non-local design method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The horizontal black lines in the scattered field distribution figures illustrate the location of the metasurfaces where the IBC is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' these reflectors as three-port networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Scattering parameters (Sn1) can be determined numerically when the input wave comes from Floquet port 1 and the output wave is observed in the port number n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Consequently, the power efficiency is found as squared scattering parameters (ηn = |Sn1|2) in the full-wave simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The power efficiency for each mode measures the fraction of power rerouted from the incident wave (assuming that the incident port is 1) to the propagating mode n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Figures 3 (a-d) show ratios of power rerouted to propagating channels n = 0, 1, and −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In all cases, below 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 GHz diffraction modes are not allowed, therefore all the energy is reflected back to the normal direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Designs based on the phase-gradient, input impedance, and grid impedance methods show broadband behavior as compared to the non- local approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The phase-gradient method does not take evanescent modes into account, which results in the lowest efficiency at the operational frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Power distribution and the corresponding field amplitudes for all methods can be found in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' TABLE II: Amplitude/power ratio of propagating Floquet modes and power efficiency level at 8 GHz θi θr −θr Phase gradient 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='33/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='45/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='71/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='17 Input impedance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='10/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='67/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='34/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='04 Grid impedance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='00/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='71/1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='01/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='00 Non-local 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='1/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='01 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='70/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='12/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='00 It is noteworthy to sketch the scattered electric field distri- butions (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 3(e-h)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Efficiency for the phase-gradient method is only 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8%, and, correspondingly, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 3(e) shows a field distribution that is distorted by fields scattered into two par- asitic propagating channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' For the other methods, efficiency is nearly perfect, however, the near-field distributions are different due to different methods used to optimize evanescent modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It is important to note that for perfect anomalous reflection with ideal power efficiency, the power reflected to the desired direction must be equal to the power of the incident plane wave, and, as a result, the ratio between the amplitudes of the reflected and incident fields for these angles should be larger than one |Er| = |Ei| � cos(θi)/ cos(θr) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='71 for our example case) [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2) Realizations as patch arrays The next step is to compare actual structures designed using the previously obtained and discussed impedance profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Fol- lowing the procedures described in the corresponding papers, we design supercells formed by six unit cells based on the rectangular shape metal patches above the grounded dielectric substrate (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4 and Table III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The corresponding efficiencies for all the considered meth- ods are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The frequency for the best per- formance becomes shifted for all methods, except for the non-local design, where optimization of the whole supercell is implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In addition to that, dispersion and losses deteriorate the efficiency in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The absorption levels as well as efficiency at the design frequency (8 GHz) are reported in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The remained power is scattered to other propagating Floquet modes that are not shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Re (E/E) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 c/ DxRe (E/E) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 α/DxRe (E/E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=') 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 α/DxRe (E/E) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 α/Dxn=0n=-1n=+1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 Eficiency, In 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 0 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 9 Frequency (GHz)n=0n=-1n=十1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 0 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 9 Frequency (GHz)n=0n=-1n=十1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 Efficiency, n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 0 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 9 Frequency (GHz)n=0n=-1n=+1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 Eficiency, Nn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 0 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 9 Frequency (GHz)5 Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 Cell #6 𝐷 𝑑 = ൗ 𝐷 6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4: The configuration of supercells utilized for the designs consisting of six unit cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' All the parameters of the dielectric substrate are given in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The period of the array (the supercell size) is fixed to D = 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='9 mm, and the width of a single unit cell is d = D/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The width of metal strips is 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 mm, while the strip lengths are different for different design methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' TABLE III: Lengths of metal strips for each unit cell (mm) Strip1 Strip2 Strip3 Strip4 Strip5 Strip6 Phase gradient 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='41 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='23 0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='47 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='29 Input impedance 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='57 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='28 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='78 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='25 Grid impedance 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='71 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='32 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='89 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='03 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='84 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='78 Non- local 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='47 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='91 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='26 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='22 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='30 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='88 TABLE IV: The best-performance frequency and the corre- sponding efficiency versus the absorption rate and efficiency for the design frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Best performance 8 GHz Frequency Efficiency Absorption Efficiency Phase gradient 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 GHz 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2(%) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='9(%) 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='7(%) Input impedance 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='27 GHz 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='3(%) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2(%) 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6(%) Grid impedance 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 GHz 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='0(%) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='3(%) 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6(%) Non-local 8 GHz 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6(%) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5(%) 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6(%) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' ANGULAR RESPONSE A very interesting property of anomalous reflectors which is often left unstudied is the angular response, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=', performance of the structure for various incident angles θi, which can be different from the design angle of incidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Here, we consider angular response for periodical arrays formed by repeated supercells consisting of 6 unit cells with patches printed on a grounded substrate and assume the periodic boundary condition for this analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' To distinguish between the illumination angle and the incidence angle for which the surface was designed, we denote this design incidence angle by No diffracted modes Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 5: Frequency dependence of efficiency for structures realized with metallic rectangular patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' θid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Worth to note that θid together with the required reflection angle defines the period of the structure operating as an anomalous reflector for these angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The angular response is studied by sweeping the incident angle θi for a fixed structure, designed for the angle θid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The number of propagating Floquet modes existing in the system is defined by the incident angle θi, the period of the structure D, and the frequency f (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The condition for the mode propagation can be written as follows: ktn < k0 → 2π D |n| < 2π λ → |n| < D λ , (5) and their propagation directions can be calculated as [33], [34]: θtn = arctan(ktn/knn), (6) where knn is the normal component of the wavenumber for the nth mode, and knn = � k2 0 − k2 tn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' If k0 > |ktn|, the normal component of the nth wavenumber is purely real, which corresponds to a propagating mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Otherwise, the wavenumber is imaginary, which corresponds to a surface mode that propagates along the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Figure 6 shows that for this fixed operational frequency and period of the structure, only five propagating Floquet modes with n ∈ [−2, 2] are allowed in the system when the angle of incidence is changing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' All other modes (|n| > 3) are surface modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Figure 7 depicts the spatial power distribution for prop- agating modes versus the illumination angle at 8 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' At the angle θi = 0◦ the incident angle is equal to the design angle θid, therefore most of the power goes to mode +1, with different efficiency for each method (see Table IV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Based on the discussion in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [33], [34], for the phase-gradient case, there is a retro-reflection angle (at which all the energy is reflected back at the angle of incidence), that can be calculated as θretro = arcsin[(sin θi −sin θr)/2] and is equal to −28◦ for the considered case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' At this angle only two channels are open (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6), and the angle for the other channel is −θretro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Ideally, 100% of the power should be scattered in the retro- reflection direction, however, discretization and the presence of losses decrease it down to 96%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Therefore, the rest of the power goes to the remaining channel or gets absorbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Due Phase grad Input imp Grid impNon-local Efficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 9 Frequency GHz6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6: Propagation angle for different Floquet modes with respect to the incident angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' This figure is made using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6 when the incidence angle is swept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' to reciprocity, the structure behaves in the same way when illuminated from direction −θretro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It is important to notice that for other design methods, retro-reflection occurs at the angle +70◦, when three propagating channels are open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' When the structure is illuminated from the normal direction, most of the energy couples to mode n = +1, where the reflection angle is θr = +70◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Therefore, channel n = −1 becomes decoupled from the other two, and when the structure is illuminated from the angle θi = −70◦, all the energy is reflected back to the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Finally, a sweep of the incident angle reveals that the design method based on grid impedance is the solution that has the least sensitive response (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 7(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It means that when the incident angle changes between −70◦ and +70◦, the power couples primarily to the same modes, unlike for other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Figure 8 illustrates and reports the results of the study for the best performance frequency for each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The result is the same for the non-local optimization approach since in this case, the best performance frequency matches the design frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' FAR-FIELD SCATTERING FROM FINITE-SIZE STRUCTURES In the previous analysis, we considered infinite periodical structures excited by plane waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Here, we study far-field scattering properties of finite-size structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It is possible to study metasurfaces on the grid or sheet impedance levels using the mode-matching method for calculation of induced currents [7], [35] and the far-field approximation for the calculation of scattered fields [33], [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' To do that, the following conditions have to be met: |r| ≫ λ, (7a) |r| ≫ L, (7b) L2/|r| ≪ λ, (7c) where |r| is the distance from the observation point to the center of the structure, and L is max(2a, 2b), in which a and b denote distances between the center of the metasur- face and the edges of the structure along the x and y- axes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Considering TE polarized incident waves (Ei = E0e−jk(sin θix+cos θiz)ˆy) and selecting the observation point in the plane of incidence (xy-plane), the normalized scattering pattern in spherical coordinates can be determined by the following expressions: Fr(θ) = 1 2 cos θi � n rn(θi)(cos(θrn) + cos(θ))sinc(kaefn), (8) Fsh(θ) = 1 2 cos θi (cos(θ) − cos(θi))sinc(kaef), (9) where rn(θi) are the amplitudes of excited harmonics, de- termined by the mode matching technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Angle θrn shows the reflected angle for each harmonic, and sinc(x) is a sinc function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In addition, aefn and aef can be represented by aefn = (sin θ − sin θrn)a and aefn = (sin θ − sin θi)a, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Finally, the total scattering pattern can be found as the sum Fsc = Fr + Fsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Worth to mention that normalization is performed with respect to the maximum of the reflected field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Alternatively to the analytical approach, one can study finite-size structures numerically using full-wave simulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The result shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 9(a) corresponds to the analytical solution, and in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 9(b) to the full-wave simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In both cases, the radiation pattern is calculated at 8 GHz for structures with the size 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='7λ × 7λ in the xy-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The discrepancy between the two radiation patterns, which becomes more significant for side lobes (SL), is caused by the neglected current distortions near the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Nevertheless, the general behavior is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Parameters of the patterns related to each method are shown in Table V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The beam- TABLE V: The normalized main lobe amplitude, the first side lobe amplitude in linear scale, and their directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Main lobe Amp/angle corresponds to n=+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' SL Amp/angle corresponds to n=0 SL Amp/angle corresponds to n=-1 Phase gradient 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='94/68◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='52/-1◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='49/-67◦ Input impedance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='95/68◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='45/0◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='35/-67◦ Grid impedance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='99/69◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='13/-1◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='33/-67◦ Non-local 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='00/69◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='24/-2◦ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='39/-68◦ widths for all cases are similar and close to 9◦ (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Moreover, as it is shown in the inset, the maximum of the scattered field is higher for the design methods based on grid impedance and non-local solution because the power efficiency is higher in these methods compared to the phase gradient design and optimization based on the input impedance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The most important difference corresponds to the side-lobe level (SLL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' As it is expected, the highest side lobes occur along the θ = −70 and θ = 0, because there are two propagating Floquet harmonics along these directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Figure 10 shows the scattering patterns of all the methods at different frequencies, where all the patterns are normalized —n=0n=-1n=+1n=-2n=+2 50 0 50 50 0 50 Angle of incidence, :7 (a) (b) (c) (d) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 7: Power distribution among different propagating modes depending on the incident angle at frequency 8 GHz for (a) phase gradient, (b) input impedance optimization, (c) grid impedance optimization, and (d) non-local optimization method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (a) (b) (c) (d) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8: Power distribution among different propagating modes depending on the incident angle for the best-performance frequencies which are reported in Table IV, for (a) phase gradient, (b) input impedance optimization, (c) grid impedance optimization, and (d) non-local optimization method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' n=0 n=-1 n=+1n=-2 2n=+2 Eficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 0 50 Angle of incidence, :n=0 n=-1 n=+1n=-2n=+2 Efficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 0 50 Angle of incidence, :n=0 n=-1 n=+1-n=-2 一n=+2 Efficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 0 50 Angle of incidence, :n=0 n=-1 n=+1n=-2 n=+2 Eficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 0 50 Angle of incidence, :n=0 n=-1 n=+1 n=-2 n=+2 Efficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 0 50 Angle of incidence, :n=0n=-1n=+1n=-2n=+2 Eficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 50 0 50 Angle of incidence, O:n=0 n=-1 n=+1n=-2 n=+2 Eficiency, Nn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 0 50 Angle of incidence, :n=0 n=-1 n=+1- n=-2 一n=+2 Efficiency, Mn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0 50 0 50 Angle of incidence, :8 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 9: Normalized radiation pattern in linear scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' All pat- terns are normalized with respect to the main lobe amplitude of the non-local method which has the highest gain compared to the other approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' (a) analytical pattern based on the Huygens principle, (b) full-wave simulation in CST STUDIO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' to the main lobe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' It is important to notice that due to the fixed period of the structure (D = λ/(sin θr − sin θi)), by sweeping the frequency, the angle of reflection changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' This can be observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' By changing the frequency, the scattered n = +1 Floquet harmonic scans the space from the desired reflection angle (+70◦) at 8 GHz to smaller angles at higher frequencies and larger angles at lower frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Below 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 GHz there are no diffraction modes, therefore we plot the scattering patterns starting from 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='75 GHz, where most of the energy is reflected into the normal direction (see the blue line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The red line in the figure corresponds to the scattering pattern at the design frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Eventually, the radiation patterns for 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='25 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 GHz are shown by yellow and purple lines, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' CONCLUSION We have presented a comprehensive analysis of four main design methods for anomalous reflectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In order to provide a meaningful comparison we chose design methods that can be realized within the same topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' At first, we performed an analysis of periodical infinite structures on the level of input and grid impedances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Then we proceeded to design actual implementations as supercells formed by six metal patches placed on top of a grounded dielectric substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Further, we analyzed the angular response of the designed metasurfaces (a) (b) (c) (d) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 10: Frequency bandwidth patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' At 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 GHz, which is not plotted here, there is no diffracted mode, and all the energy goes back to the specular (normal) direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' The patterns are plotted between 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='75 GHz to 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 GHz with a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='25 GHz step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Designed based on (a) phase gradient, (b) input impedance optimization, (c) grid impedance optimization, (d) non-local optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' All patterns are normalized to the main lobe amplitude for each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' and finally presented far-field radiation patterns of finite-size structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' In this work, we provide a comparative summary of the main features of previously introduced design methods as well as present an original study of a property that is frequently left unstudied: the angular response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' This study can be considered referential for engineers working on reconfigurable intelligent surfaces, where similar design methods are utilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' ACKNOWLEDGMENT This work was supported by the European Union’s Hori- zon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956256 (project METAWIRELESS), and the Academy of Finland (grant 345178).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' REFERENCES [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Asadchy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Albooyeh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tcvetkova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Ra’di, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Perfect control of reflection and refraction using spatially dispersive metasurfaces,” Physical Review B, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 94, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 7, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 075142, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Estakhri and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Al`u, “Wave-front transformation with gradient metasurfaces,” Physical Review X, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 041008, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Epstein and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Eleftheriades, “Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection,” Physical Review Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 117, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 25, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 256103, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [4] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Ra’di, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Sounas, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Al`u, “Metagratings: Beyond the limits of graded metasurfaces for wave front control,” Physical Review Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 119, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 067404, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Budhu and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Grbic, “Perfectly reflecting metasurface reflectarrays: Mutual coupling modeling between unique elements through homog- enization,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 122–134, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kwon, “Lossless scalar metasurfaces for anomalous reflection based on efficient surface field optimization,” IEEE Antennas and Wireless Propagation Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1149–1152, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [7] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Independent control of multiple channels in metasurface devices,” Physical Review Applied, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 024089, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='75GH 2 8GHz 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='25GH2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5GHz0 30 30 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 60 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 90 900 30 30 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 60 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 90 900 30 30 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 60 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 90 900 30 30 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='6 60 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='2 90 90-Phase grad Input imp Grid impNon-local Linear radiation pattern 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='8 68 70 72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 50 50Linear radiation pattern 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='9 66 68 70 72 50 0 509 [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kwon, “Planar metasurface design for wide-angle refraction using interface field optimization,” IEEE Antennas and Wireless Propagation Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 428–432, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [9] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Yepes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Faenzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Maci, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Martini, “Perfect non-specular re- flection with polarization control by using a locally passive metasurface sheet on a grounded dielectric slab,” Applied Physics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 118, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 23, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 231601, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Asadchy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Elsakka, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “From the generalized reflection law to the realization of perfect anomalous reflectors,” Science Advances, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' e1602714, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Wong and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Eleftheriades, “Perfect anomalous reflection with a bipartite Huygens’ metasurface,” Physical Review X, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 011036, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [12] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Rabinovich and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Epstein, “Analytical design of printed circuit board (PCB) metagratings for perfect anomalous reflection,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4086– 4095, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [13] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Rabinovich, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kaplon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Reis, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Epstein, “Experimental demon- stration and in-depth investigation of analytically designed anomalous reflection metagratings,” Physical Review B, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 99, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 12, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 125101, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Shen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Cummer, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Power flow–conformal metamirrors for engineering wave reflections,” Science Advances, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' eaau7288, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Basar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' De Rosny, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Debbah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Alouini, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 116 753–116 773, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [16] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Liu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tsilipakos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Pitilakis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tasolamprou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Mir- moosa, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kantartzis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kwon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Georgiou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kossifos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Antoniades et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=', “Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions,” Physical Review Applied, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 044024, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Zappone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Debbah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Alouini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Yuen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' De Rosny, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communica- tions, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2450–2525, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Danufane, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Xi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' De Rosny, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Analytical modeling of the path-loss for reconfigurable intelligent surfaces–anomalous mirror or scatterer?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' in 2020 IEEE 21st Interna- tional Workshop on Signal Processing Advances in Wireless Communi- cations (SPAWC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Pitilakis, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tsilipakos, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kossifos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tasolamprou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kwon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Mirmoosa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Manessis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kantartzis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Liaskos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=', “A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects,” IEEE Transactions on An- tennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1440–1454, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [20] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tsilipakos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tasolamprou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Pitilakis, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Mirmoosa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tzarouchis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Abadal, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Taghvaee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Liaskos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=', “Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded net- work of controllers,” Advanced Optical Materials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 17, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 2000783, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Ntontin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Song, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Danufane, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Qian, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Lazarakis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' De Rosny, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Phan-Huy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Simeone, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=', “Recon- figurable intelligent surfaces vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' relaying: Differences, similarities, and performance comparison,” IEEE Open Journal of the Communications Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 798–807, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [22] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Degli-Esposti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Vitucci, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Reradiation and scattering from a reconfigurable intelligent surface: A general macroscopic model,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8691–8706, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Danufane, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Communication mod- els for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization,” Proceedings of the IEEE, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 110, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1164–1209, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [24] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Danufane, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Di Renzo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' De Rosny, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “On the path-loss of reconfigurable intelligent surfaces: An approach based on Green’s theorem applied to vector fields,” IEEE Transactions on Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 5573–5592, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [25] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kwon, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Reflectarrays and metasurface reflectors as diffraction gratings,” arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='09029, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [26] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Berry, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Malech, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kennedy, “The reflectarray antenna,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 645–651, 1963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Huang and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Encinar, Reflectarray Antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' John Wiley & Sons, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Nayeri, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Yang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Elsherbeni, Reflectarray Antennas: Theory, Designs, and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' John Wiley & Sons, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [29] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Asadchy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Wickberg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Wegener, “Elim- inating scattering loss in anomalously reflecting optical metasurfaces,” ACS Photonics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1264–1270, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [30] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Yu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Genevet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kats, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Aieta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tetienne, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Capasso, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 334, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6054, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 333– 337, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [31] Dassault Syst`emes, “Cst Studio Suite, Computer Simulation Technolog ag.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='cst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='com/ [32] ANSYS, “Ansys Hfss Software.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Available: http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' ansoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='com/products/hf/hfss/ [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Macroscopic modeling of anoma- lously reflecting metasurfaces: Angular response and far-field scatter- ing,” IEEE Transactions on Antennas and Propagation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 6560–6571, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “Angular response of anomalous reflec- tors: analysis and design prospects,” in 2021 15th European Conference on Antennas and Propagation (EuCAP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 1–3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [35] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Hwang, Periodic structures: Mode-matching approach and appli- cations in electromagnetic engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' John Wiley & Sons, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' D´ıaz-Rubio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Kosulnikov, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' Tretyakov, “On the integration of reconfigurable intelligent surfaces in real-world environments: A convenient approach for estimation reflection and transmission,” IEEE Antennas and Propagation Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 64, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
+page_content=' 85–95, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tE1T4oBgHgl3EQfBgIF/content/2301.02851v1.pdf'}
diff --git a/79AzT4oBgHgl3EQfgfxi/content/2301.01469v1.pdf b/79AzT4oBgHgl3EQfgfxi/content/2301.01469v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..1d38435f04e60f633c588989bc87963566729539
--- /dev/null
+++ b/79AzT4oBgHgl3EQfgfxi/content/2301.01469v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eaaee4096ed69de74e6753bb902de55a99b56079e90d8bcd58dbadaf56068321
+size 1890152
diff --git a/79AzT4oBgHgl3EQfgfxi/vector_store/index.faiss b/79AzT4oBgHgl3EQfgfxi/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..cb03b57344bc8eb676f1d3f642be509e3a42bca6
--- /dev/null
+++ b/79AzT4oBgHgl3EQfgfxi/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:efb384ca75f76774cebc5717974609690014e6959d8624acc30eddfaeefc0b94
+size 5111853
diff --git a/79AzT4oBgHgl3EQfgfxi/vector_store/index.pkl b/79AzT4oBgHgl3EQfgfxi/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..55bba23490b0a501e3051922b3fe77db7b5e5d10
--- /dev/null
+++ b/79AzT4oBgHgl3EQfgfxi/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b76791b9f7d6ec1864bf2d43ff5da9f0422efe595e7e4959aef5b080554e4e71
+size 170560
diff --git a/8NFQT4oBgHgl3EQfHzW5/content/2301.13250v1.pdf b/8NFQT4oBgHgl3EQfHzW5/content/2301.13250v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..e40037d99660701ec1ee8403ceefea8e7339a439
--- /dev/null
+++ b/8NFQT4oBgHgl3EQfHzW5/content/2301.13250v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a97172dd5f5c195f63022443a32b5e60ecea930d27f7bafc5e6ae39aa60ee18e
+size 1947252
diff --git a/8NFQT4oBgHgl3EQfHzW5/vector_store/index.pkl b/8NFQT4oBgHgl3EQfHzW5/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..286e0ec0800000a23df927fbfcec6ae598be8003
--- /dev/null
+++ b/8NFQT4oBgHgl3EQfHzW5/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4a6f664c55741e7ebb0d9cac85429c817f2d9c312e3b1957e45eee8519a5a07c
+size 262341
diff --git a/9tE1T4oBgHgl3EQfoARp/content/tmp_files/2301.03315v1.pdf.txt b/9tE1T4oBgHgl3EQfoARp/content/tmp_files/2301.03315v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4513078e42d2a4e1353185172f69c2d1625cdd21
--- /dev/null
+++ b/9tE1T4oBgHgl3EQfoARp/content/tmp_files/2301.03315v1.pdf.txt
@@ -0,0 +1,2721 @@
+Entangling microwaves with optical light
+Rishabh Sahu⋆,1, † Liu Qiu⋆,1, ‡ William Hease,1 Georg Arnold,1
+Yuri Minoguchi,2 Peter Rabl,2 and Johannes M. Fink1, §
+1Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
+2Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria
+(Dated: January 10, 2023)
+Entanglement is a genuine quantum mechanical property and the key resource in currently developed quantum technologies.
+Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new
+functionalities but has been hindered by the tremendous energy mismatch of ∼ 105 and the resulting mutually imposed loss and
+noise. In this work we create and verify entanglement between microwave and optical fields in a millikelvin environment. Using
+an optically pulsed superconducting electro-optical device, we deterministically prepare an itinerant microwave-optical state that
+is squeezed by 0.72+0.31
+−0.25 dB and violates the Duan-Simon separability criterion by > 5 standard deviations. This establishes
+the long-sought non-classical correlations between superconducting circuits and telecom wavelength light with wide-ranging
+implications for hybrid quantum networks in the context of modularization, scaling, sensing and cross-platform verification.
+Over the past decades we have witnessed spectacular
+progress in our capabilities to manipulate and measure
+genuine quantum mechanical properties, such as quan-
+tum superpositions and entanglement, in a variety of
+physical systems. These techniques serve now as the ba-
+sis for the development of quantum technologies, where
+the demonstration of quantum supremacy with tens of
+superconducting qubits [1], an ultra-coherent quantum
+memory with nuclear spins [2], and distributed quan-
+tum entanglement over tens of kilometers using optical
+photons [3] represent just a few of the highlights that
+have already been achieved.
+Going forward, combin-
+ing these techniques [4–6] will enable the realization of
+general-purpose quantum networks, where remote quan-
+tum nodes, capable of storing and processing quantum
+information, seamlessly communicate with each other by
+distributing entanglement over optical channels [7]. As-
+pects of this approach have already been adopted to con-
+nect and entangle various quantum platforms remotely,
+involving single atoms, ions, atomic ensembles, quantum
+dots, rare-earth ions and nitrogen-vacancy centers [8].
+However, such long-distance quantum connectivity is
+considerably more difficult to achieve with other promis-
+ing platforms, such as semiconductor spin qubits or local
+cryogenic networks of superconducting circuits [9, 10],
+where no natural interface to room temperature noise-
+resilient optical photons is available.
+To overcome this limitation, a lot of effort is cur-
+rently focused on the development of coherent quantum
+transducers between microwave and optical photons [11–
+16]. Direct noiseless conversion of a quantum state typ-
+ically relies on a beam splitter process, where a strong
+driving field mediates the conversion between weak mi-
+crowave and optical signals - a deterministic approach
+with exceptionally stringent requirements on conversion
+† rsahu@ist.ac.at
+‡ liu.qiu@ist.ac.at
+§ jfink@ist.ac.at
+⋆ These authors contributed equally to this work.
+efficiency and added classical noise that are still out of
+reach. Alternatively, the direct generation of quantum-
+correlated microwave-optical photon pairs can also be
+used as a resource for quantum teleportation and en-
+tanglement distribution in the continuous and discrete
+variable domain [17–19].
+In this paper we use an ultra-low noise cavity electro-
+optical device to generate such non-classical correlations
+in a deterministic protocol [20]. It consists of a 5 mil-
+limeter diameter, 150 µm thick lithium niobate optical
+resonator placed inside a superconducting aluminum mi-
+crowave cavity at a temperature of 7 mK, described in
+detail in Ref. [21]. As depicted in Fig. 1A, the microwave
+mode ˆae is co-localized with and electro-optically coupled
+to the optical whispering gallery modes at ωo/(2π) ≈
+193.46 THz via the Pockels effect. We match the tunable
+microwave resonance frequency ωe/(2π) to the free spec-
+tral range (FSR) of 8.799 GHz to realize a triply-resonant
+system [22, 23] with the interaction Hamiltonian,
+ˆHint = ℏg0ˆapˆa†
+eˆa†
+o + h.c.,
+(1)
+with g0 the vacuum electro-optical coupling rate, and
+ˆap (ˆao) the annihilation operator of the optical pump
+(Stokes) mode [24]. Here we have ignored the interac-
+tion with the suppressed optical anti-Stokes mode ˆat, as
+shown in Fig. 1b (see supplementary information).
+In this sideband suppressed situation, efficient two-
+mode squeezing is achieved with a strong resonant opti-
+cal pump tone, yielding the simple effective Hamiltonian,
+ˆHeff = ℏg0√¯np(ˆa†
+eˆa†
+o + ˆaeˆao), where ¯np = ⟨ˆa†
+pˆap⟩ is the
+mean intra-cavity photon number of the optical pump
+mode. Deterministic continuous-variable (CV) entangle-
+ment between the out-propagating microwave and opti-
+cal field can be generated below the parametric instability
+threshold (C < 1) in the quantum back-action dominated
+regime, where the quantum noise exceeds the microwave
+thermal noise. Here C = 4¯npg2
+0/(κeκo) is the coopera-
+tivity with the vacuum coupling rate g0/2π ≈ 37 Hz, and
+the total loss rates of the microwave and optical Stokes
+modes κe/2π ≈ 11 MHz and κo/2π ≈ 28 MHz. The re-
+quired ultra-low noise operation is achieved despite the
+arXiv:2301.03315v1 [quant-ph] 9 Jan 2023
+
+2
+!p
+^ap,in
+^ao,out
+^ae,out
+!e
+ae^
+ao^
+ao
+ap
+!p
+!p
+!e
+- FSR
+!p+ FSR
+= FSR
+= 1)
+^at
+^
+^
+ae^
+(me
+- 1)
+(mp
++ 1)
+(mp
+mp
+b
+a
+FIG. 1. Physical and conceptual mode configuration.
+a, Simulated microwave (left) and optical (right) mode dis-
+tribution with azimuthal number me = 1 and mo = 17 (for
+illustration, experimentally mo ≈ 20 000). Phase matching is
+fulfilled due to the condition mo = mp − me and entangle-
+ment is generated and verified between the out-propagating
+microwave field ˆae,out and the optical Stokes field ˆao,out. b,
+Sketch of the density of states of the relevant modes.
+Un-
+der the condition ωp − ωo = ωe the strong pump tone in ˆap
+efficiently produces entangled pairs of microwave and optical
+photons in ˆae and ˆao via spontaneous parametric downconver-
+sion. Frequency up-conversion is suppressed via hybridization
+of the anti-Stokes mode ˆat with an auxiliary mode.
+required high power optical pump due to slow heating of
+this millimeter sized device [21].
+In the following we characterize the microwave and op-
+tical output fields via the dimensionless quadrature pairs
+Xj and Pj (j = e, o for microwave and optics), which
+satisfy the canonical commutation relations [Xj, Pj] = i.
+A pair of Einstein-Podolsky-Rosen (EPR)-type opera-
+tors X+ =
+1
+√
+2 (Xe + Xo) and P− =
+1
+√
+2 (Pe − Po) are
+then constructed, and the microwave and optical output
+fields are entangled, if the variance of the joint opera-
+tors is reduced below the vacuum level, i.e.
+∆−
+EPR =
+�
+X2
++
+�
++
+�
+P 2
+−
+�
+< 1.
+This is commonly referred to as
+the Duan-Simon criterion [25, 26], which we apply to
+each near-resonant frequency component of the two-mode
+squeezed output mode (see SI).
+For efficient entanglement generation, we use a 250 ns
+long optical pump pulse (≈ 244 mW, C ≈ 0.18, ¯np ≈
+1.6 × 1010) at a 2 Hz repetition rate, cf.
+pulse 1 in
+Fig. 2a. The entangled output optical signal is filtered
+via a Fabry-Perot cavity to reject the strong pump. The
+entangled microwave output is amplified with a high-
+electron-mobility transistor amplifier. Both outputs are
+down-converted to an intermediate frequency of 40 MHz
+with two local oscillators (LO) and the four quadra-
+tures are extracted from heterodyne detection.
+Long-
+term phase stability between the two LOs is achieved via
+extracting the relative phase drift by means of a second
+phase alignment pump pulse that is applied 1 µs after
+each entanglement pulse, together with a coherent reso-
+nant microwave pulse, shown in Fig. 2(a). This generates
+a high signal-to-noise coherent optical signal via stimu-
+lated parametric down-conversion and allows for aligning
+the phase of each individual measurement.
+Figure 2b(c) shows the time-domain average power
+over one million averages for the on-resonant microwave
+(optics) signal with a spectrally under-sampled 40 MHz
+bandwidth (hence not revealing the full pulse ampli-
+tude). The two insets show the microwave (optical) signal
+from spontaneous parametric down-conversion (SPDC)
+due to pulse 1, cf. Fig. 2a, with an emission bandwidth
+of ≈ 10 MHz. The larger signals during the second half
+of the experiment are the reflected microwave pulse and
+the generated optical tone (due to pulse 2) that is used
+for LO phase alignment. The raw power measurements
+are divided by the measurement bandwidth and rescaled
+such that the off-resonant response matches the noise
+photon number Nj,add + 0.5 of the measurement setup.
+Ne,add = 13.1 ± 0.4 (2σ errors throughout the paper)
+due to loss and amplifier noise and No,add = 5.5 ± 0.2
+due to optical losses are carefully determined using noise
+thermometry of a temperature controlled 50 Ω load and
+4-port calibration, respectively (see SI). Using this pro-
+cedure ensures that the reported photon number units
+correspond to the signals at the device outputs.
+We continue the analysis in the frequency domain by
+calculating the Fourier transform of each measurement
+for three separate time intervals - before (2 µs), dur-
+ing (200 ns) and right after the entangling pump pulse
+(500 ns).
+Figure 2d shows the resulting average mi-
+crowave noise spectra for all three time intervals with
+corresponding fit curves (dashed lines) and theory (solid
+line). Before and after the pump pulse, the on-resonant
+microwave output field takes on values above the vac-
+uum level, with fitted intrinsic microwave bath occu-
+pancies ¯ne,int = 0.03 ± 0.01 and 0.09 ± 0.03, respec-
+tively. By fitting additional power dependent measure-
+ments, we independently verify that the observed noise
+floor corresponds to a waveguide bath occupancy of only
+¯ne,wg = 0.001±0.002 at the very low average pump power
+of ≈ 0.12 µW used in this experiment (see SI). The mea-
+sured noise floor therefore corresponds to the shot noise
+equivalent level Ne,add + 0.5 (gray dashed lines). Sim-
+ilarly, Fig. 2e shows the obtained average optical noise
+spectra during and after the pump, referenced to the
+measured shot noise level before the pulse. As expected,
+there is no visible increase of the optical noise level after
+the pulse.
+During the pump pulse, an approximately Lorentzian
+shaped microwave and optical power spectrum are gen-
+erated via the SPDC process. We perform a joint fit of
+the microwave and optical power spectral density during
+the pulse using a 5-mode theoretical model that includes
+
+3
+600
+400
+200
+0
+800
+1000
+13.6
+13.7
+1.5
+2.0
+2.5
+3.0
+0
+50
+100
+150
+1.5
+2.0
+2.5
+3.0
+6.05
+6.10
+!e
+!o
+!p
+!e
+!o
+Input power
+t
+Output power
+Before
+pulse
+Pulse
+1
+Entangle
+Pulse
+2
+After
+pulse
+Phase
+align
+MW
+signal
+MW
+reflection
+b
+a
+c
+0
+1
+2
+3
+t (μs)
+4
+5
+0
+1
+2
+3
+4
+5
+13.75
+14.00
+6.00
+6.25
+-20
+0
+20
+-20
+0
+20
+Before-pulse
+Theory
+In-pulse
+After-pulse
+In-pulse
+After-pulse
+Theory
+Δ!e=2π (MHz)
+Δ!o=2π (MHz)
+e
+d
+Ne,det (photons s-1 Hz-1)
+No,det (photons s-1 Hz-1)
+Ne,det (photons s-1 Hz-1)
+No,det (photons s-1 Hz-1)
+(μs)
+t
+Ne,add + 0.5
+No,add + 0.5
+FIG. 2. Measurement sequence and noise powers. a, Schematic pulse sequence of a single measurement. The optical
+pulse 1 is applied at ωp and amplifies the vacuum (and any thermal noise) in the two modes ˆae and ˆao, thus generating the
+SPDC signals. 1 µs later, a second optical pump with about 10 times lower power is applied together with a coherent microwave
+pulse at ωe. The microwave photons stimulate the optical pump to down-convert, which generates a coherent pulse in the ˆao
+mode that is used to extract slow LO phase drifts. b and c, Measured output power in the ˆae and ˆao mode in units of photons
+per second in a 1 Hz bandwidth and averaged over a million experiments. The SPDC signals are shown in the insets with
+the dashed gray lines indicating the calibrated detection noise floor Nj,add + 0.5. d, Corresponding microwave output power
+spectral density vs. ∆ωe = ω − ωe centered on resonance right before the entanglement pulse, during the pulse and right
+after the pulse, as indicated in panel a. Yellow and green dashed lines are fits to a Lorentzian function, which yields the
+microwave bath occupancies before and after the entangling pulse. Error bars represent the 2σ statistical standard error and
+the shaded regions represent the 95% confidence interval of the fit. (e), Corresponding optical output power spectral density
+vs. ∆ωo = ωo − ω during and after the entanglement pulse, both normalized to the measured noise floor before the pulse. The
+in-pulse noise spectra in panels d and e are fit jointly with theory, which yields C = 0.18 ± 0.01 and ¯ne,int = 0.07 ± 0.03.
+the effects of measurement bandwidth. In this model, the
+in-pulse microwave bath occupancy ¯ne,int = 0.07 ± 0.03
+and the cooperativity C = 0.18 ± 0.01 are the only free
+fit parameters. Here the narrowed microwave linewidth
+κe,eff/2π = 9.8 ± 1.8 MHz (taken from a Lorentzian
+fit) agrees with coherent electro-optical dynamical back-
+action [27], where κe,eff = (1 − C)κe. We conclude that
+this cavity electro-optical device is deep in the quantum
+back-action dominated regime, a prerequisite for efficient
+microwave-optics entanglement generation.
+For each frequency component the bipartite Gaussian
+state of the propagating output fields can be fully char-
+acterized by the 4 × 4 covariance matrix (CM) Vij =
+⟨δuiδuj + δujδui⟩ /2, where δui = ui − ⟨ui⟩ and u ∈
+{Xe, Pe, Xo, Po} (see SI). The diagonal elements in V cor-
+respond to the individual output field quadrature vari-
+ances in dimensionless units. These are obtained from
+the measured variances after subtracting the measured
+detection noise offsets shown in Fig. 2, i.e. Vii(∆ω) =
+Vii,meas(∆ωi) − Ni,add. The obtained CM from the data
+in Fig. 2 at ∆ω = 0 is shown in Fig. 3a in its standard
+form. It corresponds to the quantum state of the propa-
+gating modes in the coaxial line and the coupling prism
+attached to the device output, i.e. before setup losses or
+amplification incur. The non-zero off-diagonal elements
+indicate strong correlations between microwave and op-
+tical quadratures.
+The two-mode squeezed quadratures are more intu-
+itively visualized in terms of the quasi-probability Wigner
+function,
+W(u) = exp[− 1
+2uV −1uT ]
+π2�
+det(V)
+,
+(2)
+
+4
+where u = (Xe, Pe, Xo, Po). Different marginals of this
+Wigner function are shown in Fig. 3b, where the (Xe,Xo)
+and (Pe,Po) marginals show two-mode squeezing in the
+diagonal and off-diagonal directions.
+The two cross-
+quadrature marginals show a slightly different amount
+of squeezing, which is due to the statistical uncertainty
+in the measured CM.
+Figure 3c shows the amount of two-mode squeezing
+between microwave and optical photon pairs. Correla-
+tions are observed at ∆ωj = ±(ω − ωj) around the reso-
+nances due to energy conservation in the SPDC process
+(see SI). The averaged microwave quadrature variance
+(purple dots) ¯V11 = (V11+V22)/2 and the averaged optics
+quadrature variance (green dots) ¯V33 = (V33 +V44)/2 are
+shown in the top panel along with the prediction from
+our five-mode theory (solid line) and a simple fit to a
+Lorentzian function (dashed line), showing perfect agree-
+ment. Measured microwave-optical correlations (yellow
+dots) ¯V13 = (V13 − V24)/2 and the Lorentzian fit (dashed
+line) lie slightly below the theoretical prediction (solid
+line), which we assign to remaining imperfections in the
+phase stability (see SI).
+The bottom two panels of Fig. 3c show the squeezed
+and anti-squeezed joint quadrature variances ∆∓
+EPR =
+¯V11 + ¯V33 ∓ 2 ¯V13 (red and blue color respectively). We
+observe two-mode squeezing below the vacuum level, i.e.
+∆−
+EPR < 1, with a bandwidth close to the effective mi-
+crowave linewidth. The maximal on-resonant two-mode
+squeezing is ∆−
+EPR = 0.85+0.05
+−0.06 (2σ, 95% confidence) for
+∼1 million pulses with ¯V11 = 0.93, ¯V33 = 0.84 and ¯V13 =
+0.46. Hence, this deterministically generated microwave-
+optical state violates the Duan-Simon separability crite-
+rion by > 5σ. Note that this error also takes into account
+systematics in the added noise calibration used for scal-
+ing the raw data (see SI). These values correspond to a
+state purity of ρ = 1/(4
+�
+det[V ]) = 0.44 and demon-
+strate microwave-optical entanglement between output
+photons with a logarithmic negativity of EN = 0.17. The
+supplementary material contains substantial additional
+data for longer pulses and varying optical pump power,
+which corroborates the presented results and findings, al-
+beit with lower statistical significance for each individual
+pump configuration (see SI).
+Conclusions and outlook
+In conclusion, we have demonstrated deterministic
+quantum entanglement between propagating microwave
+and optical photons,thus establishing a non-classical
+communication channel between circuit quantum electro-
+dynamics and quantum photonics. Our device can read-
+ily be used for probabilistic heralding assisted protocols
+[7, 28, 29] to mitigate optical setup losses and extend the
+entanglement to room temperature fiber optics. We ex-
+pect that the pulse repetition rate can be increased by or-
+ders of magnitude with improved thermalization, higher
+microwave and optical quality factors, and electro-optic
+coupling enhancements that reduce the required pump
+power and the associated thermal load.
+Coupling effi-
+ciency improvements will allow for higher levels of two-
+mode squeezing and facilitate also deterministic entangle-
+ment distribution schemes [30], teleportation-based state
+transfer
+[20, 31] and quantum-enhanced remote detec-
+tion [32]. Being fully compatible with superconducting
+qubits in a millikelvin environment such a device will fa-
+cilitate the integration of remote superconducting quan-
+tum processors into a single coherent optical quantum
+network.
+This is not only relevant for modularization
+and scaling [33, 34], but also for efficient cross-platform
+verification of classically intractable quantum processor
+results [35].
+ACKNOWLEDGMENTS
+L.Q. acknowledges fruitful discussions with Jie Li and
+David Vitali. This work was supported by the European
+Research Council under grant agreement no.
+758053
+(ERC StG QUNNECT) and the European Union’s
+Horizon 2020 research and innovation program under
+grant agreement no. 899354 (FETopen SuperQuLAN).
+L.Q. acknowledges generous support from the ISTFEL-
+LOW programme. W.H. is the recipient of an ISTplus
+postdoctoral fellowship with funding from the European
+Union’s Horizon 2020 research and innovation program
+under the Marie Sk�lodowska-Curie grant agreement no.
+754411. G.A. is the recipient of a DOC fellowship of the
+Austrian Academy of Sciences at IST Austria. J.M.F.
+acknowledges support from the Austrian Science Fund
+(FWF) through BeyondC (F7105) and the European
+Union’s Horizon 2020 research and innovation programs
+under grant agreement No 862644 (FETopen QUAR-
+TET).
+AUTHOR CONTRIBUTIONS
+RS, WH, LQ, and GA worked on the setup. RS and
+LQ performed measurements. LQ and RS did the data
+analysis.
+LQ developed the theory with contributions
+from RS, YM and PR. RS and LQ wrote the manuscript
+with contributions from all authors. JMF supervised the
+project.
+DATA AVAILABILITY STATEMENT
+All data and code used to produce the figures in this
+manuscript will be made available on Zenodo.
+
+5
+1.0
+2.0
+0.8
+1.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+0
+2
+2
+-2
+-2
+0
+0
+-10
+-20
+10
+20
+c
+b
+(photons s-1 Hz-1)
+(MHz)
+0
+2
+-2
+2
+-2
+0
+2
+-2
+0
+2
+-2
+0
+2
+-2
+0
+2
+-2
+0
+a
+Vij
+Pe
+Pe
+Pe
+Pe
+Pe
+Po
+Po
+Po
+Po
+Po
+Xo
+Xo
+Xo
+Xo
+Xo
+Xe
+Xe
+Xe
+Xe
+Xe
+-0.5
+0.0
+0.5
+1.0
+(V11 + V22)/2
+(V33 + V44)/2
+(V13 − V24)/2
+V
+ΔEPR
+-
+ΔEPR
++
+Δω/2π
+FIG. 3. Characterization of the two-mode squeezed state. a, Measured covariance matrix Vij in its standard form plotted
+for ∆ωj = 0 based on 925000 measurements. b, Corresponding Wigner function marginals of different output quadrature pairs
+in comparison to vacuum. The contours in blue (grey) represent the 1/e fall-off from the maximum for the measured state
+(vacuum). Middle two plots show two-mode squeezing below the vacuum level in the diagonal and off-diagonal directions.
+c, Top panel, the measured average microwave output noise ¯V11 = (V11 + V22)/2 (purple), the average optical output noise
+¯V33 = (V33 + V44)/2 (green) and the average correlations ¯V13 = (V11 − V24)/2 (yellow) as a function of the measurement
+detunings. The solid lines represent the joint theory fit and the dashed lines are individual Lorentzian fits to serve as a guide
+to eye. The middle (bottom) panel shows two-mode squeezing in red (anti-squeezing in blue) calculated from the top panels
+as ∆±
+EPR = ¯V11 + ¯V33 ± 2 ¯V13. The darker color error bars represent the 2σ statistical error and the outer (faint) 2σ error bars
+also include the systematic error in calibrating the added noise of the measurement setup.
+[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
+Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
+Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
+B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
+E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
+R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
+M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
+T. S. Humble,
+S. V. Isakov,
+E. Jeffrey,
+Z. Jiang,
+D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
+A. Korotkov,
+F. Kostritsa,
+D. Landhuis,
+M. Lind-
+mark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mc-
+Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
+M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
+M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
+tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
+K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
+vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
+Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis,
+Nature 574, 505 (2019).
+[2] M. Zhong,
+M. P. Hedges,
+R. L. Ahlefeldt,
+J. G.
+Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell,
+and M. J. Sellars, Nature 517, 177 (2015).
+[3] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z.
+Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie, W.-
+J. Zhang, L.-X. You, Z. Wang, T.-Y. Chen, Q. Zhang,
+X.-H. Bao, and J.-W. Pan, Nature 578, 240 (2020).
+[4] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev.
+Mod. Phys. 85, 623 (2013).
+[5] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Pet-
+rosyan, P. Rabl, and J. Schmiedmayer, Proceedings of
+the National Academy of Sciences 112, 3866 (2015).
+[6] A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and
+Y. Nakamura, Nature Physics 16, 257 (2020).
+[7] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Na-
+ture 414, 413 (2001).
+[8] S.-H. Wei, B. Jing, X.-Y. Zhang, J.-Y. Liao, C.-Z. Yuan,
+B.-Y. Fan, C. Lyu, D.-L. Zhou, Y. Wang, G.-W. Deng,
+H.-Z. Song, D. Oblak, G.-C. Guo, and Q. Zhou, Laser &
+Photonics Reviews 16, 2100219 (2022).
+
+6
+[9] P. Magnard, S. Storz, P. Kurpiers, J. Sch¨ar, F. Marxer,
+J. L¨utolf, T. Walter, J.-C. Besse, M. Gabureac, K. Reuer,
+A. Akin, B. Royer, A. Blais, and A. Wallraff, Physical
+Review Letters 125, 260502 (2020).
+[10] Y. Zhong, H.-S. Chang, A. Bienfait, ´E. Dumur, M.-H.
+Chou, C. R. Conner, J. Grebel, R. G. Povey, H. Yan, D. I.
+Schuster, and A. N. Cleland, Nature 590, 571 (2021).
+[11] X. Han, W. Fu, C.-L. Zou, L. Jiang, and H. X. Tang,
+Optica 8, 1050 (2021).
+[12] M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter,
+Nature 588, 599 (2020).
+[13] R. Sahu, W. Hease, A. Rueda, G. Arnold, L. Qiu, and
+J. M. Fink, Nature Communications 13, 1276 (2022).
+[14] B. M. Brubaker, J. M. Kindem, M. D. Urmey, S. Mittal,
+R. D. Delaney, P. S. Burns, M. R. Vissers, K. W. Lehnert,
+and C. A. Regal, Phys. Rev. X 12, 021062 (2022).
+[15] A. Kumar, A. Suleymanzade, M. Stone, L. Taneja,
+A. Anferov, D. I. Schuster, and J. Simon, Quantum-
+limited millimeter wave to optical transduction (2022),
+arXiv:2207.10121.
+[16] M.
+J.
+Weaver,
+P.
+Duivestein,
+A.
+C.
+Bernasconi,
+S. Scharmer, M. Lemang, T. C. van Thiel, F. Hijazi,
+B. Hensen, S. Gr¨oblacher, and R. Stockill, An integrated
+microwave-to-optics interface for scalable quantum com-
+puting (2022), arXiv:2210.15702.
+[17] S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, and A. Fu-
+rusawa, Nature 500, 315 (2013).
+[18] K. G. Fedorov, M. Renger, S. Pogorzalek, R. D. Candia,
+Q. Chen, Y. Nojiri, K. Inomata, Y. Nakamura, M. Parta-
+nen, A. Marx, R. Gross, and F. Deppe, Science Advances
+7, eabk0891 (2021).
+[19] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier,
+J. Borregaard, and R. Hanson, Nature 605, 663 (2022).
+[20] A. Rueda, W. Hease, S. Barzanjeh, and J. M. Fink, npj
+Quantum Information 5, 1 (2019).
+[21] W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold,
+H. G. Schwefel, and J. M. Fink, PRX Quantum 1, 020315
+(2020).
+[22] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and
+L. Maleki, J. Opt. Soc. Am. B 20, 333 (2003).
+[23] L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong,
+S. Wang, and H. X. Tang, Science Advances 4, eaar4994
+(2018).
+[24] M. Tsang, Phys. Rev. A 81, 063837 (2010).
+[25] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys-
+ical Review Letters 84, 2722 (2000).
+[26] R. Simon, Physical Review Letters 84, 2726 (2000).
+[27] L. Qiu, R. Sahu, W. Hease, G. Arnold, and J. M. Fink,
+Coherent optical control of a superconducting microwave
+cavity via electro-optical dynamical back-action (2022),
+arXiv:2210.12443.
+[28] C. Zhong, Z. Wang, C. Zou, M. Zhang, X. Han, W. Fu,
+M. Xu, S. Shankar, M. H. Devoret, H. X. Tang, and
+L. Jiang, Physical Review Letters 124, 010511 (2020).
+[29] S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs,
+M. Lonˇcar, M. J. Reagor, and D. R. Englund, Phys. Rev.
+Lett. 127, 040503 (2021).
+[30] J. Agust´ı, Y. Minoguchi, J. M. Fink, and P. Rabl, Phys-
+ical Review A 105, 062454 (2022).
+[31] J. Wu, C. Cui, L. Fan, and Q. Zhuang, Physical Review
+Applied 16, 064044 (2021).
+[32] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H.
+Shapiro, and S. Pirandola, Physical Review Letters 114,
+080503 (2015).
+[33] S. Bravyi,
+O. Dial,
+J. M. Gambetta,
+D. Gil, and
+Z. Nazario, Journal of Applied Physics 132, 160902
+(2022).
+[34] J. Ang, G. Carini, Y. Chen, I. Chuang, M. A. DeMarco,
+S. E. Economou, A. Eickbusch, A. Faraon, K.-M. Fu,
+S. M. Girvin, M. Hatridge, A. Houck, P. Hilaire, K. Kr-
+sulich, A. Li, C. Liu, Y. Liu, M. Martonosi, D. C. McKay,
+J. Misewich, M. Ritter, R. J. Schoelkopf, S. A. Stein,
+S. Sussman, H. X. Tang, W. Tang, T. Tomesh, N. M.
+Tubman, C. Wang, N. Wiebe, Y.-X. Yao, D. C. Yost,
+and Y. Zhou, Architectures for Multinode Superconduct-
+ing Quantum Computers (2022), arXiv:2212.06167.
+[35] J. Kn¨orzer, D. Malz, and J. I. Cirac, Cross-Platform Ver-
+ification in Quantum Networks (2022), arXiv:2212.07789.
+
+Supplementary Information for: ”Entangling microwaves with optical light”
+Rishabh Sahu,1, ∗ Liu Qiu,1, ∗ William Hease,1 Georg Arnold,1 Yuri Minoguchi,2 Peter Rabl,2 and Johannes M. Fink1
+1Institute of Science and Technology Austria, am Campus 1, 3400 Klosterneuburg, Austria
+2Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria
+(Dated: January 10, 2023)
+CONTENTS
+Page
+I. Theory
+3
+A
+Covariance Matrix from Input-Output Theory
+. . . . . . . . . . . . . . . . . . . . . . . . .
+3
+1
+Quantum Langevin Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+3
+2
+Input-Output-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+4
+3
+Covariance Matrix of Filtered Output Fields . . . . . . . . . . . . . . . . . . . . . . . .
+6
+B
+Heterodyne Detection, Added Noise and Filtering . . . . . . . . . . . . . . . . . . . . . . . .
+7
+1
+Heterodyne Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+7
+2
+Realistic Measurements: Added Noise and Gain
+. . . . . . . . . . . . . . . . . . . . . .
+8
+3
+Covariance Matrix from Realistic Heterodyne Measurements
+. . . . . . . . . . . . . . . .
+9
+C
+Entanglement Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+10
+1
+Duan Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+10
+2
+Logarithmic Negativity and Purity
+. . . . . . . . . . . . . . . . . . . . . . . . . . . .
+11
+II. Experimental Setup
+11
+III. Setup Characterization and calibration
+11
+A
+Microwave added noise calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+11
+B
+Optical added noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+14
+IV. Data treatment
+15
+A
+Time-domain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+15
+B
+Pulse post-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+16
+C
+Frequency domain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+16
+D
+Joint-quadrature correlations
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+17
+V. Quadrature histogram raw data
+19
+VI. Non-classical correlations with 600 ns long optical pump pulses
+20
+VII. Error analysis
+20
+A
+Statistical error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+21
+B
+Systematic error
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+22
+References
+22
+∗ These two authors contributed equally
+arXiv:2301.03315v1 [quant-ph] 9 Jan 2023
+
+2
+Introduced in Main Text
+ˆae
+microwave mode (annihilation operator)
+me
+microwave mode azimuthal number, me = 1
+ωe
+microwave cavity frequency
+κe, κe,eff, κe,in, κe,0 microwave total loss, effective total loss, waveguide coupling and intrinsic loss rates
+¯ne,int, ¯ne,wg
+microwave intrinsic and waveguide bath occupancy
+Ne,add
+added noise in the microwave detection
+ˆao, ˆap, ˆat, ˆatm
+optical Stokes, pump, anti-Stokes, and transverse-magnetic mode (annihilation operator)
+ˆae/o,out
+microwave and optical output field from the device
+mp
+optical pump mode azimuthal number, mp ∼ 20000
+κo
+optical total loss rate
+No,add
+added noise in the optical detection
+¯np
+mean photon number of the optical pump mode
+g0
+electro-optical vacuum coupling rate
+g
+photon enhanced electro-optical coupling rate (g = √¯npg0})
+C
+cooperativity ( C = 4g2/κeκo )
+Xe,Pe
+quadratures of the microwave output field
+Xo,Po
+quadratures of the optical Stokes output field
+V
+covariance matrix of the bipartite Gaussian state, Vij = ⟨∆ui∆uj + ∆uj∆ui⟩ /2, where
+∆ui = ui − ⟨ui⟩ and u ∈ {Xe, Pe, Xo, Po}.
+Nii,add
+added noise in the quadrature variances measurements, N11,add = N22,add = Ne,add,
+N33,add = N44,add = No,add
+Vii,meas
+diagonal covariance matrix elements from the calibrated measurement record, Vii
+=
+Vii,meas − Nii,add
+V11,V22, ¯V11
+quadrature variances of the microwave output field, ¯V11 = V11+V22
+2
+V33,V44, ¯V33
+quadrature variances of the optical Stokes output field, ¯V33 = V33+V44
+2
+V13,V24, ¯V13
+cross-correlation between microwave and optical quadratures, ¯V13 = V13−V24
+2
+∆∓
+EPR
+squeezed and anti-squeezed joint quadrature variance between microwave and optical output
+field, ∆∓
+EPR = ¯V11 + ¯V33 ∓ ¯V13
+Introduced in Supplementary Information
+J
+coupling rate between the optical anti-Stokes mode and TM mode
+ˆae/o,in
+input field (noise) operator for the microwave and optical mode
+ˆae/o,0
+noise operator for the microwave and optical intrinsic loss
+ηj
+external cavity coupling efficiency of individual mode, j ∈ (e, o, p, t)
+G(ω)
+spectral filter of the output field
+ˆA(Ω)
+Fourier transform of operator ˆA(t), ˆA(Ω) =
+�
+dt eiΩt ˆA(t), ˆA†(Ω) =
+�
+dt ˆA†(t)eiΩt = [ ˆA(−Ω)]†
+ˆX(ωn)
+X quadrature of the output spectral mode, ˆX(ωn) =
+1
+√
+2
+� ∞
+−∞ dω G(ωn − ω)ˆaout(ω) + h.c.
+ˆP(ωn)
+P quadrature of the output spectral mode, ˆP(ωn) =
+1
+√
+2i
+� ∞
+−∞ dω G(ωn − ω)ˆaout(ω) + h.c.
+S ˆ
+A ˆ
+B(Ω)
+Two-time correlation of two operators, S ˆ
+A ˆ
+B(Ω) =
+1
+√
+2π
+� ∞
+−∞
+�
+ˆA(t) ˆB(t′)
+�
+eiΩtdt
+∆LO
+local oscillator and signal frequency difference in heterodyne measurement, ∆LO = ωLO−ωsig
+Iout(t), Iout(ω)
+unitless output field in the equivelant heterodyne detection
+SII(ω)
+double-sided noise spectrum of the output field in the equivelant heterodyne detection
+Gdet(ω)
+frequency dependent detection gain in the heterodyne detection
+ˆIX/P,det(ωn)
+detected output photocurrent quadratures in heterodyne detection, including detection gain
+ˆIX/P,out(ωn)
+unitless output field quadratures from Iout including added noise
+D(ω)
+covariance matrix of the detected quadratures from the heterodyne measurement record
+Vmeas(ω)
+covariance matrix of the total measured output field quadratures including added noise
+ˆX+(ω)
+joint quadrature of ˆXe(ω) and ˆXo(−ω), ˆX+(ω) = ( ˆXe(ω) + ˆXo(−ω))/
+√
+2
+ˆP−(ω)
+joint quadrature of ˆPe(ω) and ˆPo(−ω), ˆP−(ω) = ( ˆPe(ω) − ˆPo(−ω))/
+√
+2
+EN
+logarithm negativity
+ρ
+state purity
+
+3
+I.
+THEORY
+A.
+Covariance Matrix from Input-Output Theory
+1.
+Quantum Langevin Equations
+Our cavity electro-optical (CEO) device consists of a millimeter-sized lithium niobate optical resonator in a 3-D
+superconducting microwave cavity at mK temperature [1]. The Pockels effect in lithium niobate allows for direct
+coupling between the microwave and optical whispering gallery modes with maximal field overlap. The optical free
+spectral range (FSR) matches the microwave cavity frequency, with microwave azimuthal mode number me = 1. As
+shown in Fig. 1 in the main text, resonant three-wave mixing between the microwave mode (ˆae) and three adjacent
+transverse-electric (TE) optical modes, i.e. Stokes (ˆao), pump (ˆap), and anti-Stokes (ˆat) mode, arises via the cavity
+enhanced electro-optical interaction [2, 3]. In addition, the anti-Stokes mode is coupled to a transverse-magnetic (TM)
+optical mode (ˆatm) of orthogonal polarization and similar frequency at rate of J [4]. This results in a total interaction
+Hamiltonian,
+ˆHI/ℏ = g0(ˆa†
+pˆaeˆao + ˆa†
+pˆa†
+eˆat) + Jˆatˆa†
+tm + h.c.,
+(1)
+with g0 the vacuum electro-optical coupling rate.
+For efficient entanglement generation, we drive the pump mode strongly with a short coherent input pulse ¯ap,in(t)
+at frequency ωp [1], which results in a time-dependent mean intra-cavity field of the pump mode ¯ap(t),
+˙¯ap =
+�
+i∆p − κp
+2
+�
+¯ap + √ηpκp¯ap,in,
+(2)
+where the pump tone is detuned from the pump mode by ∆p = ωp − ωo,p, with κp and ηp as the pump mode loss rate
+and external coupling efficiency. In our experiments, we actively lock the laser frequency to the pump mode resonance,
+with ∆p = 0.
+The presence of the strong pump field results in an effective interaction Hamiltonian,
+ˆHI,eff/ℏ = g(ˆaeˆao + ˆaeˆa†
+t) + Jˆatˆa†
+tm + h.c.,
+(3)
+with multiphoton coupling rate g = ¯apg0. This includes the two-mode-squeezing (TMS) interaction between the
+Stokes and microwave mode, and beam-splitter (BS) interaction between the anti-Stokes mode and microwave mode,
+resulting in scattered Stokes and anti-Stokes sidebands that are located on the lower and upper side of the pump
+tone by Ωe away. Microwave-optics entanglement between the microwave and optical Stokes output field can be
+achieved via spontaneous parametric down-conversion (SPDC) process due to TMS interaction [5], which is further
+facilitated by the suppressed anti-Stokes scattering due to the strong coupling between anti-Stokes and TM modes.
+We can obtain the full dynamics of the intracavity fluctuation field in the rotating frame of the scattered sidebands
+and microwave resonance, which can be described by the quantum Langevin equations (QLE),
+˙ˆae = −κe
+2 ˆae − igˆa†
+o − ig∗ˆat + √ηeκeδˆae,in +
+�
+(1 − ηe) κeδˆae,0,
+(4)
+˙ˆao =
+�
+iδo − κo
+2
+�
+ˆao − igˆa†
+e + √ηoκoδˆao,in +
+�
+(1 − ηo) κoδˆao,0,
+(5)
+˙ˆat =
+�
+iδt − κt
+2
+�
+ˆat − ig∗ˆae − iJˆatm + √κtδˆat,vac,
+(6)
+˙ˆatm =
+�
+iδtm − κtm
+2
+�
+ˆatm − iJˆat + √κtmδˆatm,vac,
+(7)
+with κj the total loss rate of the individual mode where j ∈ (e, o, t, tm), and ηk the external coupling efficiency
+of the input field where k ∈ (e, o). We note that, the optical light is only coupled to the TE modes via efficient
+prism coupling, with effective mode overlap Λ factor included in ηo for simplicity [1]. δj corresponds to the frequency
+difference between mode j and scattered sidebands, with δo = ωo,p − ωe − ωo and δt/tm = ωo,p + ωe − ωt/tm, which
+are mostly given by FSR and ωe mismatch, with additional contributions from optical mode dispersion and residual
+optical mode coupling. We note that, for resonant pumping, we have δo = −δt in the case of absent optical mode
+dispersion and residual mode coupling. In our experiments, we tune the microwave frequency to match the optical
+FSR, i.e. ωe = ωo,p − ωo.
+
+4
+The equation of motion of all relevant modes may be represented more economically in the form
+˙v(t) = M(t)v(t) + Kfin(t),
+(8)
+where we define the vectors of mode and noise operators
+v = (ˆae, ˆa†
+e, ˆao, ˆa†
+o, ˆat, ˆa†
+t, ˆatm, ˆa†
+tm)⊤,
+fin = (δˆae,0, δˆa†
+e,0, δˆae,in, δˆa†
+e,in, δˆao,0, δˆa†
+o,0, δˆao,in, δˆa†
+o,in, δˆat,vac, δˆa†
+t,vac, δˆatm,vac, δˆa†
+tm,vac)⊤,
+(9)
+as well as the matrices that encode the deterministic part of the QLE,
+M(t) =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+− κe
+2
+0
+0
+−ig(t)
+−ig∗(t)
+0
+0
+0
+0
+− κe
+2
++ig∗(t)
+0
+0
+ig(t)
+0
+0
+0
+−ig(t) iδo − κo
+2
+0
+0
+0
+0
+0
+ig∗(t)
+0
+0
+−iδo − κo
+2
+0
+0
+0
+0
+−ig(t)
+0
+0
+0
+iδt − κt
+2
+0
+−iJ
+0
+0
+ig∗(t)
+0
+0
+0
+−iδt − κt
+2
+0
+iJ
+0
+0
+0
+0
+−iJ
+0
+iδtm − κtm
+2
+0
+0
+0
+0
+0
+0
+iJ
+0
+−iδtm − κtm
+2
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(10)
+and
+K =
+�
+�
+�
+�
+�
+(1 − ηe)κe √ηeκe
+0
+0
+0
+0
+0
+0
+�
+(1 − ηo)κo √ηoκo
+0
+0
+0
+0
+0
+0
+√κt
+0
+0
+0
+0
+0
+0
+√κtm
+�
+�
+�
+� ⊗ 12,
+(11)
+which keeps track on which modes the noise acts.
+2.
+Input-Output-Theory
+In the experiment the pump field is turned on at t = 0 and kept on until τpulse. For the optical pump pulse with
+length τpulse =250 ns (600 ns, see main text), we reject a certain τdelay = 50 ns (100 ns) from the beginning of pulse
+data. Since κpτdelay ≳ 1 we may assume that after τdelay the system has approached its steady state and especially
+that the pump mode is in its steady state. Consequently we may assume that g(t > τdelay) ≃ g is constant over time.
+One important figure of merit is the multiphoton cooperativity C = 4g2/κoκe, a measure for coherent coupling versus
+the microwave and optical dissipation. Efficient entanglement generation can be achieved with complete anti-Stokes
+scattering suppression, while below the parametric instability threshold, i.e. C < 1.
+The output fields of the CEO device are
+fout(t) = (ˆae,out(t), ˆa†
+e,out(t), ˆao,out(t), ˆa†
+o,out(t))⊤,
+(12)
+which consist of a contribution which was entangled via the coherent interactions v and a contribution which has
+not interacted with the device fin. The output field fout will then propagate to the measurement device and is most
+economically represented within the framework of input-output theory [6],
+fout(t) = Lfin(t) − Nv(t),
+(13)
+where we define the matrices
+N = (NJ, 04),
+with
+NJ = Diag(√ηeκe, √ηeκe, √ηoκo, √ηoκo),
+(14)
+and
+L =
+�
+0 1 0 0 0 0
+0 0 0 1 0 0
+�
+⊗ 12.
+(15)
+As all modes have reached steady state, the correlations in the output field may be obtained by going to Fourier
+
+5
+domain. Here we commit to following convention of the Fourier transformation
+ˆA(ω) =
+1
+√
+2π
+� ∞
+−∞
+dω eiωt ˆA(t),
+(16)
+with the hermitian conjugate
+( ˆA(ω))† = A†(−ω).
+(17)
+Note that in this convention e.g. [ae(ω), a†
+e(ω′)] = δ(ω + ω′) are canonical pairs.
+In our experiments, we focus on the correlations between the output propagating spectral modes of frequencies
+ωe + ∆ωe and ωo − ∆ωo respectively for microwave and optical fields [7, 8]. We note that, due to energy conservation
+in the SPDC process, we only focus on microwave and optical photon pairs around resonances with anti-correlated
+frequencies, i.e. ∆ωe = ∆ωo = ∆ω. For this reason, we focus on the following vector of output fields in the rotating
+frame,
+fout(ω) = (ˆae,out(ω), ˆa†
+e,out(−ω), ˆao,out(−ω), ˆa†
+o,out(ω))⊤,
+(18)
+in the Fourier domain. From Eq. (8) we obtain
+v(ω) = [iωO − M]−1 · K
+�
+��
+�
+=S(ω)
+·fin(ω),
+(19)
+with
+O = Diag(1, −1, 1, 1) ⊗ σz.
+(20)
+Here we defined the vector of modes
+v(ω) = (ˆae(ω), ˆa†
+e(−ω), ˆao(−ω), ˆa†
+o(ω), ˆat(ω), ˆa†
+t(−ω), ˆatm(ω), ˆa†
+tm(−ω))⊤,
+(21)
+as well as the vector of input fields
+fin(ω) = (δˆae,0(ω), δˆa†
+e,0(−ω), δˆae,in(ω), δˆa†
+e,in(−ω), δˆao,0(−ω), δˆa†
+o,0(ω), δˆao,in(−ω), δˆa†
+o,in(ω),
+δˆat,vac(ω), δˆa†
+t,vac(−ω), δˆatm,vac(ω), δˆa†
+tm,vac(−ω))⊤
+(22)
+in the Fourier domain.
+The output fields (see Eq. (13)) of the CEO device are straight forwardly obtained since in the Fourier domain
+Eq. (13) is algebraic,
+fout(ω) = Lfin(ω) + Nv(ω) = (L + N · [iωO − M]−1 · K)fin(ω).
+(23)
+The input noise operator correlations are given by,
+⟨fin(ω)f †
+in(ω′)⟩ = Dδ(ω + ω′),
+(24)
+with
+D = Diag(¯ne,int + 1, ¯ne,int
+�
+��
+�
+bath:e
+, ¯ne,wg + 1, ¯ne,wg
+�
+��
+�
+waveguide:e
+, 1, 0
+����
+bath:o
+,
+1, 0
+����
+detector:o
+, 1, 0
+����
+bath:t
+,
+1, 0
+����
+bath:tm
+).
+(25)
+We note that, in our experiments, the microwave waveguide remains in the ground state, with ¯ne,wg = 0. The spectral
+correlations of different output field can be simply obtained analytically from
+⟨fout(ω)f †
+out(ω′)⟩ = S(ω)DS†(−ω)
+�
+��
+�
+˜
+Cff†(ω)
+δ(ω + ω′).
+(26)
+
+6
+Here we implicitly define the 4 × 4 matrix of output mode correlations with a single entry reading
+⟨ˆaout(ω)ˆbout(ω′)⟩ = ˜Cab(ω)δ(ω + ω′),
+(27)
+where the operators ˆaout(ω),ˆbout(ω) were chosen from components of fout(ω) in Eq. (16).
+3.
+Covariance Matrix of Filtered Output Fields
+We will now consider a situation where we define output field modes from a windowed Fourier transformation. Below
+we will then show that these are indeed the experimentally observed signals. We start by defining the (dimensionless)
+hermitian output field quadrature pair [8],
+ˆXα(ωn) =
+1
+√
+2T
+� T/2
+−T/2
+dτ eiωnτˆaα,out(τ) + h.c.,
+(28)
+ˆPα(ωn) =
+1
+√
+2Ti
+� T/2
+−T/2
+dτ eiωnτˆaα,out(τ) + h.c.,
+(29)
+which meets the canonical commutation relation [ ˆXα(ωn), ˆPβ(ωm)] = iδnmδαβ where α = e, o. Due to the finite
+window of the Fourier transformation, the frequencies ωn = 2π
+T n becomes discrete. The quadrature modes at discrete
+frequencies ωn can now be rewritten in terms of the (dimensionful) output fields fout(ω) from Eq. (23), which are
+defined in the continuous Fourier domain. Therefore the quadrature operators may be obtained by convolution with
+the a filter function G(ω)
+ˆXα(ωn) =
+1
+√
+2
+� ∞
+−∞
+dω G(ωn − ω)ˆaα,out(ω) + h.c.
+(30)
+ˆPα(ωn) =
+1
+√
+2i
+� ∞
+−∞
+dω G(ωn − ω)ˆaα,out(ω) + h.c.
+(31)
+Here the filter is
+G(ω) =
+1
+√
+2π
+� ∞
+−∞
+dτ eiωτ 1[0,T ](τ)
+√
+T
+=
+�
+2
+πT
+sin(ωT/2)
+ω
+,
+(32)
+which is obtained from a Fourier transformation of the unit function 1[−T/2,T/2](t) = 1(0) for |t| ≤ T/2 (|t| > T/2).
+A bipartite Gaussian state is characterized by the 4 × 4 covariance matrix (CM),
+VAB(ωn) = 1
+2⟨{δ ˆA(ωn), δ ˆB(ωn)}⟩.
+(33)
+Here we defined δ ˆA = ˆA − ⟨ ˆA⟩ an operator with zero mean ⟨δ ˆA⟩ = 0 and the quadratures from
+ˆA(ωn), ˆB(ωn) ∈ { ˆXe(ωn), ˆPe(ωn), ˆXo(−ωn), ˆPo(−ωn)}
+(34)
+and we also introduced the anti-commutator { ˆA, ˆB} = ˆA ˆB + ˆB ˆA. Note that the two-mode squeezing interaction
+results in correlation between frequency reversed pairs on the microwave ωn and the optical side −ωn. Since in our
+setting all first moments ⟨ ˆA⟩ = 0 the evaluation of the covariance matrix in Eq. (33) boils down to computing spectral
+correlations which are rewritten as
+⟨ ˆA(ωn) ˆB(ωn)⟩ =
+� ∞
+−∞
+dω
+� ∞
+−∞
+dω′ G(ωn − ω)G(ωn − ω′)⟨ ˆA(ω) ˆB(ω′)⟩
+=
+� ∞
+−∞
+dω
+� ∞
+−∞
+dω′ G(ωn − ω)G(−ωn − ω′)CAB(ω)δ(ω + ω′)
+=
+� ∞
+−∞
+dω F(ωn − ω)CAB(ω),
+(35)
+
+7
+where we used the property G(−ω) = G(ω) and defined the effective filter F(ω) = G(ω)2. Similar to Eq. (26), we
+defined the quadrature correlations
+CAB(ω) = (C(ω))AB = 1
+2
+�
+U ˜Cff †(ω)U † + (U ˜Cff †(ω)U †)⊤�
+AB .
+(36)
+Here the unitary matrix U = u ⊕ u, with
+u =
+1
+√
+2
+�
+1
+1
+−i i
+�
+,
+(37)
+corresponds to a rotation of the mode operators into quadrature operators ( ˆXα, ˆPα)⊤ = u · (ˆaα,out, ˆa†
+α,out)⊤. The
+covariance matrix of the quadrature modes at the discrete frequencies ωn is then obtained exactly by
+VAB(ωn) =
+� ∞
+−∞
+dω F(ωn − ω)CAB(ω),
+(38)
+where the quadrature correlations are convolved with an appropriate filter.
+B.
+Heterodyne Detection, Added Noise and Filtering
+1.
+Heterodyne Measurement
+Here we discuss the quadrature extractions from the equivalent linear measurement, e.g.
+balanced heterodyne
+detection, with excess added noise [9]. In the heterodyne detection, the output field ˆaoute−iωjt (j ∈ e, o) is mixed with
+a strong coherent local oscillator field ˆaLO(t) = αLOe−iωLOt at a 50:50 beam-splitter, where the output field from the
+two ports are sent to a balanced photo-detector, which results in a photon current that is proportional to
+ˆIout(t) = e−i∆LOtˆaout + ˆa†
+outei∆LOt,
+(39)
+in the limit of strong LO (αLO ≫ 1) with ∆LO = ωLO − ωj. We consider finite measurement interval of time T, on
+which we compute the windowed Fourier transformation of ˆIout(t),
+ˆIout(ωn) =
+1
+√
+T
+� T
+0
+dτ eiωnτ ˆIout(τ) =
+1
+√
+T
+� T
+0
+dτ eiωnτ(e−i∆LOτˆaout(τ) + ei∆LOτˆa†
+out(τ))
+= aout(ωn − ∆LO) + a†
+out(ωn + ∆LO),
+(40)
+where in a slight abuse of notation we define the dimensionless output fields aout(ωn). The reason why we are explicitly
+working the windowed Fourier transformation is, that despite being in a steady state during the measurement (see
+Sec. I B), the Fourier transformed data has a rather broad bandwidth (δωn = 2π
+T ∼ 5MHz for a 200 ns time window)
+due to the relatively short time of data collection T = τpulse−τdelay = 200 ns (especially for 250 ns optical pump pulse).
+In the limit of long measurement times T → ∞, the bandwidth will tend to zero and the following discussion as well
+as the results in Eq. (38) will coincide with standard Input-Output treatment in the continuous Fourier domain. In
+our experiments, we extract the quadratures of microwave and optical output field, by decomposing the heterodyne
+current spectra, in their real and imaginary parts which yields
+ˆIout(ωn) =
+1
+√
+2( ˆX(ωn − ∆LO) + ˆX(−ωn − ∆LO)
+�
+��
+�
+ˆIX,out(ωn)
++i [ ˆP(ωn − ∆LO) − ˆP(−ωn − ∆LO)]
+�
+��
+�
+ˆIP,out(ωn)
+),
+(41)
+where we define the quadrature output fields ˆaout(ωn) = ( ˆX(ωn) + i ˆP(ωn))/
+√
+2, in the same way as in Eq. (28-29).
+So far we have treated the photon current which result from a heterodyne measurement in terms of a time dependent
+hermitian operator ˆIout(t).
+In an actual experiment the heterodyne current is a real scalar I(t) quantity which
+fluctuates in time and between different experimental runs. Taking taking the (fast) Fourier transform of this current
+and decomposing it in its real and imaginary parts then yields I(ωn) = IX(ωn) + iIP (ωn). The theory of continuous
+measurements and quantum trajectories [10, 11] tells us how to connect the measured scalar currents with the current
+
+8
+operators from input-output theory [6]
+IA(ωn)IB(ωm) = 1
+2⟨{ˆIA,out(ωn), ˆIB,out(ωm)}⟩,
+(42)
+where we define the statistical average · · · over many experimental runs.
+2.
+Realistic Measurements: Added Noise and Gain
+For the vacuum, the noise spectral density for both quadratures, are obtained by
+SAA(ωn) = ⟨ ˆA(ωn) ˆA(ωn)⟩vac = 1
+2,
+(43)
+for the hermitian operator ˆA = ˆX, ˆP. Note that due to the discreteness of the Fourier domain we do not have a Dirac
+delta as opposed to Eq. (27). The noise spectrum of the heterodyne current is defined by SII(ω) ≡ I(ωn)I(ωn) =
+⟨ˆIout(ωn)ˆIout(ωn)⟩, where
+SII(ωn) = 1
+2 (SXX (ωn − ∆LO) + SP P (ωn − ∆LO) + SXX (ωn + ∆LO) + SP P (ωn + ∆LO)) .
+(44)
+Focusing on the part of the spectrum located around ∆LO,
+SII(ωn + ∆LO) = 1
+2 (SXX (ωn) + SP P (ωn) + 1) ,
+(45)
+assuming ∆LO ≫ κe, κo. This indicates the simultaneous quadratures measurements and added shot noise in the
+heterodyne measurements, even without experimental imperfections.
+So far we have focused on the ideal theory
+of the measurement and disregarded additional unknown sources of noise as well as the connection to the actually
+measured quantities. In practice, the decomposed measured quadratures contain additional uncorrelated excess noise,
+e.g. due to the added noise in the amplification or due to propagation losses [12]. We model this by phenomenologically
+adding another uncorrelated noise process from an independent thermal reservoir and then multiplying by a gain factor
+which converts the number of measured photons to the actually monitored voltage. To illustrate this we focus again
+on a single output port, and with the added noise current ˆIX/P,add(ωn) and the frequency dependent calibration gain
+Gdet(ωn), where
+ˆIX,det(ωn) =
+�
+Gdet(ωn)(ˆIX,add(ωn) + ˆIX,out(ωn)),
+(46)
+ˆIP,det(ωn) =
+�
+Gdet(ωn)(ˆIP,add(ωn) + ˆIP,out(ωn)).
+(47)
+We thus obtain the detected heterodyne noise spectral density,
+SII,det(ωn + ∆LO) =Gdet(ωn + ∆LO)[SXX (ωn) + SP P (ωn)
++ 1 + SIXIX,add(ωn + ∆LO) + SIP IP ,add(ωn + ∆LO)
+�
+��
+�
+=2Nadd
+],
+(48)
+where we define the spectra of the added noise SIOIO,add(ωn) = ⟨ˆIO,add(ωn)ˆIO,add(ωn)⟩.
+The added noise Nadd
+includes the excess vacuum noise from heterodyne measurement and the additional uncorrelated noise. Note that here
+the factor 1
+2 was absorbed in the detections gains. The gain Gdet(ωn) can be simply obtained on both microwave and
+optical side, from the cold measurements (optical pump off) with a known background. We note that, Eq. (48) lays
+the foundation of microwave and optical calibrations in our CEO device.
+In our experiments, we place the LO on opposite sites around the mode resonances, i.e.,
+∆LO,e = −ΩIF,
+∆LO,o = ΩIF,
+(49)
+where ΩIF > 0 is the intermediate frequency for down-mixing. The heterodyne output field can be obtained similar
+
+9
+to Eq. (40),
+ˆIout,e(ωn + ΩIF) =
+1
+√
+2[( ˆXe(−ωn) + ˆXe(ωn + 2ΩIF) + i(− ˆPe(−ωn) + ˆPe(ωn + 2ΩIF))],
+ˆIout,o(ωn + ΩIF) =
+1
+√
+2[ ˆXo(−ωn − 2ΩIF) + ˆXo(ωn) + i(− ˆPo(−ωn − 2ΩIF) + ˆPo(ωn))],
+(50)
+with noise spectrum given by,
+SII,e(ωn + ΩIF) = 1
+2(SXeXe (−ωn) + SPePe (−ωn)) + Ne,add,
+SII,o(ωn + ΩIF) = 1
+2(SXoXo (ωn) + SPoPo (ωn)) + No,add.
+(51)
+We note that, Eq. (50) is adopted for field quadrature extraction (including the added noise) from the heterodyne
+measurement, which reveals correlations in the quadrature histogram [cf. Fig.4 in the main text]. Despite of the
+reversed sign in the expected field quaduratures, microwave and optical output photons appear at the same frequency
+in the noise spectrum, i.e. ωn + ΩIF [cf. Fig.2 d,e in the main text].
+3.
+Covariance Matrix from Realistic Heterodyne Measurements
+Here we briefly explain the procedure of the covariance matrix reconstruction from the heterodyne measurements.
+The cross correlations of the detected heterodyne current spectra can be obtained via,
+DAB(ωn) = δIA,det(ωn + ΩIF)δIB,det(ωn + ΩIF),
+(52)
+where we define the centered current δIO,det = IO,det − IO,det, with
+IO,det(ωn) ∈ {IXe,det(ωn), IPe,det(ωn), IXo,det(ωn), IPo,det(ωn)}.
+(53)
+Similar to Eq. (42)), we can obtain
+DAB(ωn) = 1
+2⟨{δ ˆIA,det(ωn + ΩIF), δ ˆIB,det(ωn + ΩIF)}⟩
+=
+�
+GA,det(ωn + ΩIF))GB,det(ωn + ΩIF))
+�1
+2⟨{δ ˆA(ωn), δ ˆB(ωn)}⟩
+�
+��
+�
+=VAB(ωn)
++NAB,add
+�
+,
+(54)
+where we define the diagonal added noise matrix NAB,add = (Nadd)AB = NA,addδAB with the calibrated added noise
+Nadd and detection gain GA,det.
+This equation establishes how the covariance matrix of the qudrature operators [cf.
+Eq. (38)] is reconstruced from heterodyne measurements, and how they can be compared with the results from idealized
+standard input-output theory Eq. (33). For simplicity, in the main text we define the total measured covariance matrix
+including the added noise as,
+VAB,meas(ωn) = DAB(ωn)/
+�
+GA,det(ωn + ΩIF))GB,det(ωn + ΩIF)),
+(55)
+with VAB,meas(ωn) = VAB(ωn) + NAB,add.
+We note that, in principle the location of both LOs can be arbitrary. As evident in Eq. 54, our choice of the LO
+configuration, i.e. ∆LO,e = −∆LO,o = −ΩIF, offers a simple solution to the quantification of the broadband quantum
+correlations, considering the limited detection bandwidth, frequency dependent gain, or microwave cavity frequency
+shift, which may result in the loss of quantum correlations during quadrature extractions in heterodyne measurements
+due to imperfect frequency matching.
+
+10
+C.
+Entanglement Detection
+1.
+Duan Criterion
+We will now discuss how show that the photons outgoing microwave and optical photons are indeed inseparable
+or entangled. Our starting point is the covariance matrix which we defined in Eq. (33) and measured as outline in
+Eq. (54). The experimentally measured covariance matrix is of the form
+V =
+�
+Ve
+Veo
+Veo
+Vo
+�
+=
+�
+�
+�
+�
+V11
+0
+˜V13
+˜V14
+0
+V11
+˜V14 − ˜V13
+˜V13
+˜V14
+V33
+0
+˜V14 − ˜V13
+0
+V33
+�
+�
+�
+� .
+(56)
+Since there is no single mode squeezing we have V22 = V11 and V44 = V33.
+For simplicity we have omitted the
+frequency argument ωn of component. What we describe in the following will have to be repeated for every frequency
+component. The off-diagonal part in the covariance matrix which encodes the two-mode squeezing can be written as
+Veo ≃ V13(sin(θ)σx + cos(θ)σz),
+(57)
+where we define V13 = ( ˜V 2
+14 + ˜V 2
+13)1/2 and the mixing angle tan(θ) = ˜V14/ ˜V13. In our experimental setting ˜V14 maybe
+non zero e.g. due to small finite detunings δo. For the detection of inseparability, we employ the criterion introduced
+by Duan, Gidke, Cirac and Zoller [13]. This criterion states that if one can find local operations Uloc = Ue ⊗ Uo such
+that the joint amplitude variance of ˆX+ = ( ˆXe + ˆXo)/
+√
+2 break the inequality,
+∆X2
++ = ⟨U †
+loc ˆX2
++Uloc⟩ < 1/2,
+(58)
+then the state is inseparable and, thus it must be concluded that it is entangled.
+In this setting, it is enough to choose the local operations Uloc = UeUo to be a passive phase rotation on the optical
+mode only, with Ue = 1 and Uo = e−iϕˆa†
+oˆao, and phase rotation angle ϕ. In the space of covariance matrices, this
+corresponds to the (symplectic) transformation Sϕ = 12 ⊕ Rϕ, where we define the rotation matrix,
+Rϕ =
+�
+cos (ϕ)
+sin (ϕ)
+− sin (ϕ) cos (ϕ)
+�
+.
+(59)
+The local rotation of the phase V (ϕ) = SϕV S⊤
+ϕ will act on the off diagonal part of the covariance matrix as,
+Vea(ϕ) = V13(cos(θ − ϕ)σz + sin(θ − ϕ)σx).
+(60)
+With these local rotations the joint amplitude variance becomes
+∆X2
++(ϕ) = ⟨( ˆXe + ˆXo cos(ϕ) + ˆPo sin(ϕ))2⟩/2 = V11 + V33 + 2V13 cos(θ − ϕ).
+(61)
+We can similarly define the joint quadrature ˆP− = ( ˆPe − ˆPo)/
+√
+2, where ∆P 2
+−(ϕ) = ∆X2
++(ϕ). The variance of the
+joint quadratures ∆X2
++(ϕ) and ∆P 2
+−(ϕ) is minimized at the angle ϕ− = θ − π
+∆−
+EPR = ∆X2
++(ϕ−) + ∆P 2
+−(ϕ−) = 2(V11 + V33 − 2V13),
+(62)
+which corresponds to the two-mode squeezing of microwave and optical output field, and the microwave-optics entan-
+glement. In addition, the joint quadrature variance is maximized at the angle ϕ+ = θ and we obtain
+∆+
+EPR = ∆X2
++(ϕ+) + ∆P 2
+−(ϕ+) = 2(V11 + V33 + 2V13),
+(63)
+which corresponds to the anti-squeezing.
+
+11
+2.
+Logarithmic Negativity and Purity
+A mixed entangled state can be quantified by the logarithmic negativity,
+EN = max [0, − log (2ζ−)] ,
+(64)
+where ζ− is the smaller symplectic eigenvalue of the partially time reverse covariance matrix and can be obtained
+analytically
+ζ2
+− = S −
+�
+S2 − 4det(V )
+2
+(65)
+where we defined the Seralian invariant S = det(Ve) + detVo + 2det(Veo). Furthermore the purity of a bipartite
+Gaussian state is given by
+ρ =
+1
+4
+�
+det(V )
+,
+(66)
+with ρ = 1 for a pure state i. e. the vacuum state.
+II.
+EXPERIMENTAL SETUP
+The experimental setup is shown and described in SI Fig. 1. The laser is split into three parts, including an optical
+pulsed pump at frequency ωp, a continuous signal at ωp −FSR for the 4-port calibration (cf. SI III), and a continuous
+local oscillator (LO) at ωp − FSR + ΩIF for the optical heterodyne detection. The optical signal and pump pulse are
+sent to the optical resonator of the electro-optical device (DUT) and the reflected light (with pump pulse rejected
+by a filter cavity) is combined on a 50:50 beam splitter with the optical local oscillator with subsequent balanced
+photodetection.
+Microwave input signals are attenuated at different temperature stages of the dilution refrigerator (4 K: 20 dB,
+800 mK: 10 dB, 10 mK: 20 dB), and sent to the coupling port of the microwave cavity of the DUT. The reflected
+microwave signal is amplified and can then either be mixed with a microwave local oscillator of frequency FSR − ΩIF
+and subsequently digitized, or directly measured by a vector network analyzer or a spectrum analyzer.
+We note that, the optical LO is on the right side of optical mode, while the microwave LO is on the left side of the
+microwave mode, with ΩIF/2π = 40MHz. More details are in the caption of Supplementary Fig. 1.
+III.
+SETUP CHARACTERIZATION AND CALIBRATION
+In the main manuscript, we show results from two different sets of optical modes shown in Fig. 2.
+The main
+difference between these mode sets is the amount of suppression of the anti-Stokes scattering rate compared to Stokes
+scattering rate given by scattering ratio S, which depends on the mode hybridisation of the anti-Stokes mode [5, 14].
+The first set of optical mode (Fig. 2a) from which we show most of our main results (main text Fig. 2, 3 and 5a) has
+S =−10.3 dB on-resonance with an effective FSR = 8.799 GHz. The last power sweep shown in main text Fig. 5b
+is measured with a second set of optical modes with a lower S =−3.1 dB and a different effective FSR = 8.791 GHz
+(Fig. 2b). Despite it being the same optical resonator, the FSR for the second set of optical modes is slightly different,
+because of partial hybridisation of the optical pump mode which alters the working FSR between the optical pump
+and signal mode, see Fig. 2.
+In the following, we carefully calibrate the added noise due to the microwave detection chain at both these working
+FSRs (since microwave mode is parked at the working FSR). The added noise can be slightly different depending
+on frequency of measurement due to impedance mismatch and reflections between components in the microwave
+detection.
+A.
+Microwave added noise calibration
+In the following, we carefully calibrate the slightly different added noise in the microwave detection chain at both
+frequencies.The impedance mismatch and reflections between components in the microwave detection chain can vary
+
+12
+Dilution refrigerator
+Microwave preparation
+Optics preparation
+Optics and microwave detection
+MC1
+MS2
+MS3
+C1
+C2
+C3
+C5
+C4
+10mK
+800mK
+4K
+300K
+DC Microwave signal
+(FSR)
+DC Optical signal
+(193.5 THz - FSR)
+Optical pump
+(193.5 THz)
+Coherent optical signal
+(193.5 THz - FSR)
+Optical LO
+(193.5 THz -FSR - ωlo)
+Microwave LO
+(FSR + ωlo)
+IF
+(ωlo)
+RF lines
+DUT
+VNA
+SA
+DIGITIZER
+LNA
+RTA2
+RTA1
+Q
+I
+1
+1
+2
+90
+10
+1
+1
+2
+3
+3
+4
+PC1
+S3
+S4
+MS1
+DDG
+25
+75
+BPD
+Laser
+Lock control
+1550 nm
+SSB
+VOA1
+99
+1
+EDFA1
+EDFA2
+AOM1
+AOM2
+PC2
+PD2
+PD3
+PD4
+F3
+F1
+F2
+PD1
+S1
+S2
+ΩLO
+OSA
+PM
+HEMT
+Supplementary Fig. 1. Experimental setup for two-mode squeezing measurements. A tunable laser at frequency ωp
+is initially divided equally in two parts, i.e. the optical pump and the optical signal together with the optical local oscillator
+(LO). Light from the optical pump path is pulsed via an acousto-optic modulator (AOM1) which produces ns-pulses and shapes
+them for amplification via an Erbium-doped fiber amplifier (EDFA). The output from the EDFA is first filtered in time via
+AOM2 to remove the amplified spontaneous emission (ASE) noise and later in frequency via filter F1 (∼50 MHz linewidth with
+15 GHz FSR) to remove any noise at the optical signal frequency (the reflected power is rejected by circulator C3). The filter
+F1 is locked to the transmitted power by taking 1% of the filter transmission measured via photodiode PD3. The polarization
+of the final output is controlled via polarization controller PC1 before being mixed with the optical signal via a 90-10 beam
+splitter and sent to the dilution refrigerator (DR). The 10% output from the beam splitter is monitored on a fast detector PD2
+to measure the optical pump pulse power. The other half of the laser is again divided into two parts - 25% for the optical signal
+and 75% for the optical LO. The signal part is sent first to a variable optical attenuator VOA1 to control the power and then
+to a single sideband modulator SSB which produces the optical signal frequency at ωp − FSR and suppresses the tones at ωp
+and ωp + FSR. 1% of the optical signal is used to monitor the SSB suppression ratio via an optical spectrum analyzer OSA
+and 99% is sent to the DR after being polarization controlled via PC2. The optical LO is produced via a phase modulator PM
+and detuned by ωIF/2π = 40 MHz. As the PM produces many sidebands, the undesired sidebands are suppressed via filter F3
+(∼50 MHz linewidth with 15 GHz FSR), reflection is rejected by circulator C5. F3 is temperature-stabilized and locked to the
+transmitted power similar to F1. The optical LO is also amplified via EDFA2 before the optical balanced heterodyne. In the
+DR, the light is focused via a gradient-index (GRIN) lens on the surface of the prism and coupled to the optical whispering
+gallery mode resonator (WGMR) via evanescent coupling. Polarization controllers PC1 and PC2 are adjusted to efficiently
+couple to the TE modes of the optical WGMR. The output light is sent in a similar fashion to the collection grin lens. Outside
+the DR, the optical pump is filtered via filter F2 (similar to F3). The reflected light from F2 is redirected via C4 to be measured
+with PD1 which produces the lock signal for the laser to be locked to optical WGMR. The filtered signal is finally mixed with
+the optical LO and measured with a high speed balanced photo-diode BPD (400 MHz). The electrical signal from the BPD is
+amplified via RTA1 before getting digitized. On the microwave side, the signal is sent from the microwave source S3 which is
+connected to the DDG for accurately timed pulse generation (or from the VNA for microwave mode spectroscopy) to the fridge
+input line via the microwave combiner (MC1). The input line is attenuated with attenuators distributed between 4 K and 10 mK
+accumulating to 50 dB in order to suppress room temperature microwave noise. Circulator C1 and C2 shield the reflected tone
+from the input signal and lead it to the amplified output line. The output line is amplified at 4 K by a HEMT-amplifier and
+then at room temperature again with a low noise amplifier (LNA). The output line is connected to switch MS1 and MS2, to
+select between an ESA, a VNA or a digitizer measurement via manual downconversion using MW LO S4 (40 MHz detuned).
+Lastly, microwave switch MS3 allows to swap the device under test (DUT) for a temperature T50 Ω controllable load, which
+serves as a broad band noise source in order to calibrate the microwave output line’s total gain and added noise.
+the added noise slightly as a function of frequency. This added noise and corresponding gain due to a series of amplifiers
+
+13
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+a
+b
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+|Soo|2
+|Soo|2
+ωp
++FSR
+ωp
+-FSR
+ωp
+ωp
++FSR
+ωp
+-FSR
+ωp
+Supplementary Fig. 2. Optical mode spectra in reflection. Normalized reflection intensity |Soo|2 spectra of optical modes
+ˆao, ˆap and ˆat in red, green and blue respectively. a (b) shows the optical mode spectra of the first (second) set of modes with
+the anti-Stokes and Stokes scattering ratio S = −10.3 dB (−3.1 dB). The dashed line marks the effective FSR between the
+pump mode ˆap and the optical mode ˆao. The participation anti-Stokes optical mode ˆat is suppressed for this effective FSR as
+marked by the dashed line over the blue mode.
+and cable losses in the microwave detection chain is calibrated using a combination of a 50 Ω load, a thermometer
+and a resistive heater that are thermally connected. The microwave detection chain is identical for the signals from
+the 50 Ω load and the microwave cavity reflection, except for a small difference in cable length which we adjust for.
+To calibrate the detection chain, we heat the 50 Ω load with the resistive heater and record the amplified noise
+spectrum P50Ω(ω) as a function of temperature of 50 Ω load T50Ω. The output noise detected over a bandwidth B,
+P50Ω, as a function of T50Ω is given as,
+P50Ω = ℏωeGB
+�1
+2 coth
+�
+ℏωe
+2kBT50Ω
+�
++ Ne,add
+�
+,
+(67)
+with ωe the center microwave frequency, Ne,add (G) the added noise (gain) of the microwave detection chain, and kB
+the Boltzmann constant.
+A bandwidth of 11 MHz is selected around the region of interest to calculate Ne,add and G. For ωe = 8.799 GHz, we
+show the detected noise Ne,det = P50Ω/(ℏωeGB) as a function of T50Ω in SI Fig. 3 along with a fit using Eq. 67, with
+two fitting parameters G and Ne,add. We note that, at T50Ω = 0 K, Ne,det = Ne,add + 0.5. Table 1 (third row) shows
+the obtained added noise and gain for two frequencies of interest, i.e. ωe/2π = 8.799 GHz and ωe/2π = 8.791 GHz.
+Next, we consider the difference in cable losses between the 50 Ω load and the microwave cavity, which are in-
+dependently determined by measuring the microwave reflection from the microwave cavity and from the microwave
+switch directly before it. Including the cable losses, the effective added noise increases while the gain decreases for
+the reflected microwave detection, shown in Table 1 (fourth row).
+Finally, we consider an additional error due to the temperature sensor inaccuracy of 2.5%. Although this does not
+change the final Ne,add and G, it increases the uncertainty as shown in Table 1 (fifth row). The error calculated in
+this section contributes to the systematic error reported in the main text.
+
+14
+Supplementary Tab. 1. The added noise and gain in microwave detection chain (1σ errors shown)
+8.799 GHz
+8.791 GHz
+Detection Chain
+Ne,add
+G (dB)
+Ne,add
+G (dB)
+50Ω load
+(with fitting error)
+11.74 ± 0.08 66.67 ± 0.02 11.76 ± 0.09 66.72 ± 0.03
+MW cavity
+(including cable loss)
+13.09 ± 0.09 66.20 ± 0.02 13.16 ± 0.10 66.23 ± 0.03
+MW cavity
+(including temperature sensor uncertainty) 13.09 ± 0.33 66.20 ± 0.12 13.16 ± 0.34 66.23 ± 0.12
+0
+0.5
+1.0
+1.5
+13
+12
+14
+15
+16
+Experiment
+Fit
+(K)
+Tf
+Ne,det (photons s-1 Hz-1)
+Supplementary Fig. 3. Characterization of the added noise in the microwave detection chain. Measured output
+noise from a 50 Ω calibration load as a function of its temperature Tf. The measured noise is plotted in units of photons as
+N 50Ω
+det = P50Ω/(ℏωeGB). The dashed line at the bottom represents the fitted vacuum noise level in addition to the added noise.
+The red line and shaded region represents the fit and the 95% confidence interval around it.
+B.
+Optical added noise
+Optical added noise is calculated via 4-port calibration of our device [14]. In this calibration, we measure the
+coherent response of our device through its 4 ports - optical input/output and microwave input/output. Sending
+an optical (or microwave) signal to the DUT in combination with a strong pump leads to stimulated parametric
+down-conversion (StPDC) process, which generates an amplified microwave (optical) coherent signal. We measure the
+4 S-parameters of our device - microwave reflection (S11), optics reflection (S22), microwave to optics transmission
+(S21) and optics to microwave transmission (S12). The mean transduction efficiency between microwave and optics
+of the DUT is then calculated as,
+η =
+�
+S12S21
+S11S22
+.
+(68)
+We use the transduction efficiency and Ne,add in the microwave detection chain from Sec. III A to calculate the
+optical added noise. Ne,add is firstly used to calculate the effective microwave detection gain (different from the one
+in Sec. III A, because the microwave detection line used for the 4-port calibration uses analog downconversion and
+digitization, while the thermal calibration uses SA, see Fig. 1). The microwave gain, along with the (off-resonant)
+microwave reflection measurement, is used to calculate the microwave input loss.
+We can obtain the microwave
+signal power at the DUT, which allows us to calculate the output optical power of the DUT using the transduction
+efficiency. In conjunction with the measured output power at the end of the detection chain, the losses in the optical
+detection path and hence, the effective added noise with respect to the optical port of the DUT can be calculated.
+The calculated optical added noise is No,add = 5.54 ± 0.21(7.42 ± 0.22) for ωe = 8.799 GHz (8.791 GHz).
+
+15
+IV.
+DATA TREATMENT
+In this section, we describe all the steps for the data treatment in detail, which includes the time domain analysis
+(Sec. IV A), the pulse post-selection due to setup drift (Sec. IV B), the frequency domain analysis (Sec. IV C), and
+the quadrature correlations (Sec. IV D).
+A.
+Time-domain analysis
+Both microwave and optical signals are detected via heterodyne detection by mixing with a strong local oscillator
+that is ∼40 MHz detuned from respective mode resonance. The output heterodyne signals are digitized using a digitizer
+at 1 GigaSamples/second. First, we digitally downconvert the digitized data at ωIF = 40 MHz. This yields the two
+quadratures IXe/o,det(t) and IPe/o,det(t) of the microwave or optical output signal record with 40 MHz resolution
+bandwidth (using 25 ns time resolution).
+Supplementary Fig.
+4 shows the calibrated output power (I2
+Xe/o,out +
+I2
+Pe/o,out) [cf.
+Eq. 50] and the phase (arctan(IXe/o,out/IPe/o,out)) from a single pulse sequence.
+This includes the
+stochastic SPDC signals from a strong pump pulse, and the coherent StPDC signal from a weaker pump pulse
+together with a coherent microwave signal for calibration purposes. The SPDC signal produced by the first strong
+pulse is labeled by the shaded region for one single pulse, and the averaged output power over many pulses is shown
+in main text Fig. 2. The coherent microwave reflection and stimulated parametric downconverted optical signal are
+adopted to obtain the phases during the pulse. We record this measured phase in both signal outputs during the
+second optical pump pulse for phase-drift correction in later post processing.
+0
+1
+2
+3
+4
+5
+0
+1
+2
+3
+4
+5
+1.0
+0
+200
+400
+0
+50
+100
+150
+200
+600
+800
+1000
+1200
+0.5
+0.0
+0.5
+-1.0
+1.0
+0.5
+0.0
+0.5
+-1.0
+a
+b
+(µs)
+Phase (rad/π)
+Phase (rad/π)
+ (photons/s/Hz)
+Ne,
+ (photons/s/Hz)
+No,
+t
+(µs)
+t
+Supplementary Fig. 4. Downconverted output signal for a single measured pulse sequence. a (b) show the measured
+microwave (optical) output signal downconverted at 40 MHz. The shaded part in each case shows the region of the SPDC
+signal (the first optical pump pulse). For a single pulse, the SNR of a SPDC signal is too small to be seen. However, during
+the second optical pump pulse, a coherent response is seen in both signal outputs where the phase can be measured with high
+SNR for each single shot.
+In order to determine the accuracy of a phase correction for the first pump pulse based on the phase measurement
+during the second pump pulse, we send a continuous microwave signal during both pump pulses and recorded the
+phase of the converted optical pulse during the first and the second optical pump pulse. Supplementary Fig. 5 shows
+the phase difference between the first and second optical pump pulse for 2500 trials along with a normal distribution
+fit.
+The fit variance for the distribution is 0.17 rad.
+On a similar set of model data, applying a random phase
+variation of 0.17 rad results in about 1.5-2.0% loss of correlations [cf. Sec. IV D], whereas, we observe about 6-8% loss
+of correlations in the experiments. The imperfection in phase correction does not completely explain the decreased
+quantum correlations, which might be due to other experimental instabilities, especially the optical pump laser lock.
+
+16
+0.0
+0.2
+0.4
+0.6
+0.8
+0.0
+0.2
+-0.2
+0.4
+-0.4
+0.6
+-0.6
+1.0
+Probability density
+Phase difference (radians)
+Supplementary Fig. 5. Accuracy of phase correction scheme. The histogram shows the difference in the measured phase
+between the first and second optical pump pulse. Since we correct the phase in the first pump pulse based on the measured
+optical phase of the second optical pump pulse, the difference shows the limitations of this method. The grey dashed line is a
+normal distribution fit with variance 0.17 rad.
+B.
+Pulse post-selection
+In our experiments, we use three temperature-stabilized optical filters, which may drift slowly in time. Two of
+them are used in the optical heterodyne detection. In the signal path, one filter (F2 in Fig.1) is used to filter the
+optical signal while reject the strong optical pump. In the LO path, one filter (F3 in Fig.1) is used to obtain a clean
+optical LO tone, which is genearted by an electro-optic phase modulator (which produces multiple sidebands) and
+then amplified using an EDFA (which produces excess amplified spontaneous emissions).
+The slow filter drifts can be identified from the amplitude of the coherent optical signal produced via stimulated
+parametric downconversion during the second optical pump pulse, which drops due to either the decreased transmission
+after F2 or the reduced LO power after the F3. This is evident in the histogram of the converted optical power during
+the second optical pump pulse as shown in Fig. 6a. The histogram is not symmetric and has a tail at the lower end.
+To filter out the instances of drifted heterodyne detection, we select a threshold (in this case marked by a dashed
+line in Fig 6) and remove all pulses below the selected threshold along with 20 neighboring pulses (10 s in total time)
+before and after such instance. These numbers are chosen according to the filter drift and the filter temperature lock
+time-scales. After such filtering, usually about 10% of the data is removed and the histogram of the converted optical
+power during the second optical pump pulse becomes symmetric as shown in Fig. 6b.
+C.
+Frequency domain analysis
+As already mentioned in the main text, with the help of time-domain analysis, we select three different time-snippets
+to analyze the data in the frequency domain - before-pulse, on-pulse and post-pulse defined with respect to the first
+optical pump pulse. The main challenge in processing the data in frequency domain is the proper normalization of
+the measured output spectrum [cf. Eq. 48]. The microwave reflection baseline is not flat because of slight impedance
+mismatches between different components in the microwave detection chain, with similar optical heterodyne shot noise
+floor due to the frequency dependent balanced detector gain. In addition, we observe slight shift of a few millivolts each
+time in the digitizer measurements when a new measurement is launched and the digitizer is reinitialized. Combined
+with the fact that the amplifier gain in the microwave detection chain as well as the optical heterodyne gain (due to
+optical LO power drift) may drift over a long time, an in-situ calibration of vacuum noise level is needed.
+In case of microwave, we need to first correct for the microwave reflection baseline distortion from impedance
+mismatch and then correct for the signal level shift caused by the digitizer. For the distorted baseline, we separately
+measure the microwave output spectrum when the microwave cavity is in its ground state (thermalized to 7 mK at
+mixing chamber). This measurement is shown in Supplementary Fig 4a (gray) along with the measured before-pulse
+(cyan), on-pulse (purple) and after-pulse microwave noise spectrum (orange). Dividing the measured spectra with
+the cold cavity spectrum reveals a flat baseline Lorentzian noise spectra, however with an offset due to the digitizer
+drift. To correct for this offset, we perform an in-situ vacuum noise calibration using the off-resonance (waveguide)
+noise in the before-pulse microwave noise spectrum. An independent measurement of the microwave waveguide noise
+as a function of the average optical pump power (averaged over the full duty cycle) is shown in Supplementary Fig
+
+17
+50
+0
+100
+150
+200
+0.00
+0.01
+0.02
+50
+0
+100
+150
+200
+0.00
+0.01
+0.02
+a
+b
+Optics quanta (photons s-1 Hz-1)
+Optics quanta (photons s-1 Hz-1)
+Count (Normalized)
+Count (Normalized)
+Supplementary Fig. 6. Histogram of the converted optical power. The measured coherent optical power during the
+second optical pump pulse depends on the optical heterodyne gain and the received optical signal power. Both of these values
+can drift depending on the experimental setup’s stability. a shows the normalized histogram of this measured optical power
+over all the collected pulses. The histogram has a tail on the lower end owing to the times when the heterodyne setup drifted.
+Filtering the points which do not meet a selected threshold (shown by the grey dashed line in a), we remove the instances where
+the setup had drifted and the optical heterodyne detection efficiency was compromised. The same histogram after removing
+such points is shown in b.
+8. The error bars (2σ deviation) result from the microwave detection chain gain and the measurement instrument
+drift. The power law fit reveals that the microwave waveguide noise grows almost linearly with average optical pump
+power, and only deviates significantly from 0 for optical pump power >3 µW. As we work with average optical pump
+powers of ≪1 µW, we can safely assume the microwave waveguide noise to be zero. Therefore, we use the off-resonant
+waveguide noise for before-pulse microwave noise spectrum as an in-situ vacuum noise calibration.
+In case of optics, the optical detection is shot-noise limited, and the excess LO noise at the optical signal frequency
+is suppressed by more than 40 dB using filter F1 in Fig.1. We use the before-pulse optical noise spectrum as the
+vacuum noise level and normalize the optical on-pulse spectrum directly with the before-pulse in-situ calibration.
+Supplementary Fig 4b shows noise spectrum (without normalization) of the optical off-pulse (cyan), on-pulse (green),
+and the after-pulse (yellow). The signal during the optical pump pulse is clearly visible, and the noise level is identical
+before and after the optical pulse.
+The normalized noise spectra for both microwave and optics are shown in main text Fig. 2d and 2e., where we can
+obtain the normalization gain [cf. Eq. 48].
+D.
+Joint-quadrature correlations
+The detected output quadratures including excess added noise, i.e.
+ˆIXe,out(∆ω),
+ˆIPe,out(∆ω),
+ˆIXo,out(∆ω),
+ˆIPo,out(∆ω), can be obtained from the real and imagrinary parts in the discret Fourier transform of the photocurrent
+by normalizing to the detection gain [cf. Eq. 50].
+Similar to Sec. I C 1, we can define the joint detected quadratures, by applying phase rotation on the optical ones,
+ˆIX,+(∆ω, φ) =
+ˆIXe,out(∆ω) +
+�
+ˆIXo,out(∆ω) cos φ − ˆIPo,out(∆ω) sin φ
+�
+√
+2
+,
+ˆIP,−(∆ω, φ) =
+ˆIPe,out(∆ω) −
+�
+ˆIXo,out(∆ω) sin φ + ˆIPo,out(∆ω) cos φ
+�
+√
+2
+.
+(69)
+To verify the non-classical correlation between the unitless quadrature variables for output microwave and optics
+field, i.e.
+ˆXe(∆ω) & ˆXo(−∆ω) and ˆPe(∆ω) & ˆPo(−∆ω), we can calculate the phase dependent joint quadrature
+
+18
+40
+20
+60
+59
+60
+61
+0.30
+0.32
+0.16
+0.18
+0.20
+0.22
+0.24
+0.26
+0.28
+62
+63
+64
+65
+a
+b
+ (MHz)
+40
+20
+60
+MW output (nW/2MHz)
+Opt output (µW/2MHz)
+Off-pulse
+In-pulse
+Off-pulse
+In-pulse
+After-pulse
+After-pulse
+Cold cavity
+ω/2π
+ (MHz)
+ω/2π
+Supplementary Fig. 7.
+Spectra of output signals.
+The microwave reflection baseline is not flat due to an impedance
+mismatch between different components in the microwave detection chain.
+As a result, the output power measured from
+amplified vacuum noise (from the cold microwave cavity) is not flat (shown in gray in a). Additionally, the digitizer in our
+setup has a different noise level each time it is started. As a result, the cold cavity baseline has an extra offset with respect to
+all other measurements. a also shows the measured output spectra for time region before (during, after) the first optical pulse
+shown in cyan (purple, orange). Similarly, b shows the output spectra for the optical output before (during, after) the first
+optical pulse in cyan (green, orange).
+100
+101
+0.0
+0.2
+0.4
+Experiment
+0.01Pavg
+0.97
+Pavg (µW)
+Wavegide noise (photons/s/Hz)
+Supplementary Fig. 8. Microwave waveguide noise as a function of the average optical pump power. The error bars
+represent 2σ error. The solid line is a power law fit. We find the power law is actually quite close to a linear function.
+variance [cf. Eq. 61],
+�
+ˆX2
++(∆ω, φ)
+�
+=
+�
+ˆI2
+X,+(∆ω, φ)
+�
+− Ne,add + No,add
+2
+,
+�
+ˆP 2
+−(∆ω, φ)
+�
+=
+�
+ˆI2
+P,−(∆ω, φ)
+�
+− Ne,add + No,add
+2
+.
+(70)
+For ∆ω = 0, we plot the joint quadrature variance as a function of local oscillator phase in Fig. 9 (a). The shaded
+region represent the 2σ statistical error in the calculated joint quadrature variances. We note that, the statistical 1σ
+error of the variance for a Gaussian distributed data is given by
+√
+2σ2/
+√
+N − 1, where N is the length of the dataset.
+The obtained resonant ∆EPR(0, φ) is shown in Fig. 9(b). The minimum and maximum of ∆EPR(φ) over the local
+oscillator phase are defined as min[∆EPR] = ∆−
+EPR and max[∆EPR] = ∆+
+EPR. ∆−
+EPR < 1 indicates non-classical joint
+correlations and squeezing below vacuum levels.
+
+19
+-1.0
+-0.5
+0.0
+0.5
+1.0
+0.5
+1.0
+1.0
+2.0
+1.5
+2.5
+a
+b
+Quanta
+Phase (rad/π)
+-1.0
+-0.5
+0.0
+0.5
+1.0
+Phase (rad/π)
+ΔEPR
+X+
+P+
+Supplementary Fig. 9. Joint quadrature correlations and ∆EPR.
+a. Joint quadratures at resonance X+(∆ω = 0) and
+P+(∆ω = 0) are plotted as a function of the local oscillator phase φ. b. ∆EPR as a function of φ. The shaded region in both
+plots represents the 2σ statistical error.
+The broadband phase that minimizes ∆EPR(∆ω, φ), i.e. φmin(∆ω), reveals the difference in arrival times (group
+delay) between the microwave and optical signal output (Supplementary Fig. 10a). After fixing the inferred time delay
+between the in-pulse arrival time of the microwave and optical signal, φmin becomes independent of frequency detuning
+from the mode resonances. Thus, we adjust for the differences in arrival times by ensuring that the slope of φmin with
+respect to detuning ∆ω is minimized for all datasets we analyze, utilizing the broadband quantum correlations.
+-1.0
+-0.5
+0.0
+0.5
+1.0
+a
+b
+0
+-20
+-30
+-10
+20
+10
+30
+(MHz)
+-1.0
+-0.5
+0.0
+0.5
+1.0
+0
+-20
+-30
+-10
+20
+10
+30
+ (rad/π)
+φ
+ (rad/π)
+φ
+∆ω/2π
+(MHz)
+∆ω/2π
+Supplementary Fig. 10. Effect of time delay between the microwave and optics signals. The plots show the local
+oscillator phase φmin which minimizes ∆EPR(∆ω, φ) as a function of detuning frequency ∆ω. a (b) shows the case when the
+time difference of arrival between the microwave and optics signals was 25 ns (≈ 0 ns). The solid lines are the linear fit to the
+experimental data.
+V.
+QUADRATURE HISTOGRAM RAW DATA
+Fig. 11 shows the normalized difference of the two-variable quadrature histograms obtained during and before the
+optical pump pulse based on the data shown in Figs. 2 and 3 of main text. These unprocessed histograms directly
+show the phase insensitive amplification in each channel as well as the correlations in (Xe,Xo) and (Pe,Po). Note
+however that - in contrast to the analysis in the main text - taking this difference does not lead to a valid phase space
+representation since also the vacuum noise of 0.5 together with the output noise of 0.026 ± 0.011 photons (due to the
+residual microwave bath occupancy right before the pulse) are subtracted, hence the negative values.
+
+20
+20
+10
+0
+-10
+-20
+20
+10
+0
+-10
+-20
+20
+10
+0
+-10
+-20
+1.0
+0.5
+-1.0
+-0.5
+0.0
+10
+0
+-10
+10
+0
+-10
+10
+0
+-10
+-20
+-10
+0
+10
+-10
+0
+10
+-10
+0
+10
+-10
+0
+10
+20
+-20
+-10
+0
+10
+20
+-20
+-10
+0
+10
+20
+Pe
+Pe
+Pe
+Po
+Po
+Po
+Xo
+Xo
+Xo
+Xe
+Xe
+Xe
+Supplementary Fig. 11. Quadrature histogram raw data. Normalized difference of the two-variable quadrature histograms
+obtained during and before the optical pump pulse based on the data shown in Figs. 2 and 3 of the main text.
+VI.
+NON-CLASSICAL CORRELATIONS WITH 600 ns LONG OPTICAL PUMP PULSES
+Before experimenting with 250 ns long optical pump pulses, we used 600 ns long optical pump pulses. A sample
+measurement with a 600 ns is shown in Fig. 12a similar to Fig. 3c of main text. Compared to 250 ns long pulses, the
+main difference lies in the fact that ∆−
+EPR in the middle panel exhibits a double-dip shape because the correlations
+¯V13 have a wider bandwidth than the emitted noise spectra ( ¯V11 and ¯V33), which are narrowed due to dynamical back-
+action [5]. Since in the measurement the correlations don’t clearly overwhelm the emitted noise, interference between
+two Lorentzian functions of different widths (dashed line) leads to the specific shape of ∆−
+EPR. Theory confirms this
+even though the shown theory curve (solid red line) does not exhibit the specific line-shape due to higher expected
+correlations compared to the experimentally observed values. These results indicate that ¯ne,int due to a 600 ns optical
+pump pulse is large enough to prevent a clear observation of squeezing over the full bandwidth below the vacuum
+level (∆−
+EPR < 1). As a result, we switched to 250 ns optical pump pulses with higher statistics as shown in the main
+text.
+We also repeated the measurement with 600 ns long pulses with different optical pump powers. Fig. 12b shows the
+measured pump power dependence with each data point based on 170000-412500 individual measurements each with
+a 2 Hz repetition rate. The microwave mode thermal bath occupancy ¯ne,int changes little as a function of the peak
+optical pump power at the device and is approximated with a constant function (solid maroon line in the top panel).
+The on-resonance mean CM elements scale with cooperativity and are in excellent agreement with theory (solid lines)
+based on the ¯ne,int. The on-resonance squeezing ∆−
+EPR does not change significantly with cooperativity since both
+excess noise and correlations scale together with cooperativity. The anti-squeezing ∆+
+EPR scales up with cooperativity
+as expected. All but one measured mean values are below the vacuum level and three power settings show a > 2σ
+significance for entanglement. Note that this power sweep was conducted on a different set of optical modes with a
+different amount of anti-Stokes sideband suppression (see section III).
+VII.
+ERROR ANALYSIS
+The covariance matrix of the output field quadratures V (ω) can be directly calculated from the extracted microwave
+and optical quadratures from frequency domain analysis [cf. Eq. 54] We simply rotate the optical quadratures with the
+phase that minimized the joint quadrature variance, and obtain the covariance matrix in the normal form. We note
+that, the error in calculating the covariance matrix comes from two sources - the statistical error due to finite number
+of pulses, and the systematic error in the vacuum noise level calibration. The detailed error analysis is described in
+the following subsections. We note that, the uncertainty in all the reported numbers in the main text corresponds to
+2 standard deviation.
+
+21
+0
+-10
+-20
+1.0
+2.0
+3.0
+4.0
+0.8
+1.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.2
+1.0
+1.4
+10
+20
+a
+b
+Interpolation
+In-pulse
+After-pulse
+Before-pulse
+0.1
+0.0
+1.0
+0.5
+0.0
+0.8
+1.0
+1.0
+2.0
+3.0
+0.2
+0.3
+140
+160
+180
+200
+220
+240
+Optical pump power (mW)
+0.10
+0.12
+0.14
+0.16
+0.18
+0.20
+0.22
+Cooperativity
+(V11 + V22)/2
+(V33 + V44)/2
+(V13 − V24)/2
+(V11 + V22)/2
+(V33 + V44)/2
+(V13 − V24)/2
+V
+(photons s-1 Hz-1)
+(photons s-1 Hz-1)
+(MHz)
+V
+ΔEPR
+-
+ΔEPR
++
+ΔEPR
+-
+¯ne,int
+ΔEPR
++
+Δω/2π
+Supplementary Fig. 12. Non-classical correlations vs. optical pump power for 600 ns long pump pulses. a, Top
+panel, the average microwave output noise ¯V11 (purple), the optical output noise ¯V33 (green) and correlations ¯V13 (yellow) as
+a function detuning based on 412500 measurements with a 2 Hz repetition rate. The solid lines represent the joint theory
+with fit parameters C = 0.22 and in-pulse microwave thermal bath occupancy ¯ne,int = 0.19 ± 0.03. The dashed lines are
+individual Lorentzian fits to serve as a guide to the eye. ∆−
+EPR (∆+
+EPR) in the middle (bottom) panel shown in red (blue) color
+are calculated from the top panel data and fits as described in the main text. The darker color error bars represent the 2σ
+statistical error and the outer (faint) error bars also include systematic errors. b, Power dependence of CM elements. The
+top panel shows the microwave mode thermal bath occupancy ¯ne,int for before-pulse, after-pulse and in-pulse regimes (marked
+in Fig. 2A) as a function of the peak optical pump power at the device and the corresponding cooperativity. The in-pulse
+¯ne,int is obtained by the joint theory fit and approximated with a constant function (solid line). The middle panel shows
+the on-resonance mean CM elements based on the ¯ne,int from the top panel. The bottom two panels show the on-resonance
+squeezing ∆−
+EPR and anti-squeezing ∆+
+EPR calculated from the middle panel along with theory (solid lines). The darker color
+error bars represent the 2σ statistical error and the outer (faint) error bars also include systematic errors. All measured mean
+values are below the vacuum level and three power settings show a > 2σ significance for entanglement.
+A.
+Statistical error
+The error in the calculation of bivariate variances comes from the statistical uncertainties, arising from finite number
+of observations of a random sample. This error is the major component of our total error in diagonal covariance matrix
+elements. The error in calculating the variance of a sample distribution sampled from a Gaussian variable follows the
+Chi-squared distribution and is given as,
+Var(σ2) =
+2σ2
+N − 1,
+(71)
+where, σ2 is the variance of sample distribution and N is its size.
+In addition, the error in the covariance from a bivariate variable is given by the Wishart distribution [15]. For a
+general bivariate covariance matrix Σ given as,
+Σ =
+�
+σ2
+11
+ρσ11σ22
+ρσ11σ22
+σ2
+22
+�
+,
+(72)
+
+22
+the variance of the covariance matrix is given by,
+Var(Σ) =
+1
+N − 1
+�
+2σ4
+11
+(1 + ρ2)σ2
+11σ2
+22
+(1 + ρ2)σ2
+11σ2
+22
+2σ4
+22
+�
+.
+(73)
+B.
+Systematic error
+Although, the systematic error in our measurements are not as significant, they still are a noticeable source of
+error. Here the error in calculating the covariance matrix results form the error in the estimation of the vacuum
+noise levels. More specifically, the error in determining the added noise due to the microwave and optical detection
+chain, as discussed in Sec. III. Propagating these systematic errors through the covariance matrix analysis is non-
+trivial, since calculating the error in variance of erroneous quantities is challenging. Therefore, we use a worst-case
+scenario approach to calculate the total error including the statistical error and the systematic error. We repeat
+the full analysis, including the statistical errors, for the lower and upper bound of the uncertainty range from the
+systematic errors for the microwave and optical added noise levels. Repeating the analysis expands the error bars in
+the calculated quantities. We take the extremum of all the error bars from all the repetitions of analysis to get the
+total error bar. We show both statistical error and the total error in the main text.
+REFERENCES
+[1] W. Hease, A. Rueda, R. Sahu, M. Wulf, G. Arnold, H. G. Schwefel, and J. M. Fink, PRX Quantum 1, 020315 (2020).
+[2] M. Tsang, Phys. Rev. A 81, 063837 (2010).
+[3] M. Tsang, Phys. Rev. A 84, 043845 (2011).
+[4] A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter,
+G. Leuchs, and H. G. L. Schwefel, Optica 3, 597 (2016).
+[5] L. Qiu, R. Sahu, W. Hease, G. Arnold, and J. M. Fink, arXiv:2210.12443 (2022).
+[6] C. W. Gardiner and M. J. Collett, Physical Review A 31, 3761 (1985).
+[7] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
+[8] S. Zippilli, G. D. Giuseppe, and D. Vitali, New Journal of Physics 17, 043025 (2015).
+[9] M. P. da Silva, D. Bozyigit, A. Wallraff, and A. Blais, Physical Review A 82, 043804 (2010).
+[10] D. Walls and G. Milburn, Quantum optics (Springer Verlag, Berlin, 1994).
+[11] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
+[12] C. M. Caves, Physical Review D 26, 1817 (1982).
+[13] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Physical Review Letters 84, 2722 (2000).
+[14] R. Sahu, W. Hease, A. Rueda, G. Arnold, L. Qiu, and J. M. Fink, Nature Communications 13, 1276 (2022).
+[15] J. Wishart, Biometrika 20A, 32 (1928).
+
diff --git a/9tE1T4oBgHgl3EQfoARp/content/tmp_files/load_file.txt b/9tE1T4oBgHgl3EQfoARp/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c78327c9d30d2270580637dbb634aceb447fea92
--- /dev/null
+++ b/9tE1T4oBgHgl3EQfoARp/content/tmp_files/load_file.txt
@@ -0,0 +1,2275 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf,len=2274
+page_content='Entangling microwaves with optical light Rishabh Sahu⋆,1, † Liu Qiu⋆,1, ‡ William Hease,1 Georg Arnold,1 Yuri Minoguchi,2 Peter Rabl,2 and Johannes M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink1, § 1Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria 2Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria (Dated: January 10, 2023) Entanglement is a genuine quantum mechanical property and the key resource in currently developed quantum technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities but has been hindered by the tremendous energy mismatch of ∼ 105 and the resulting mutually imposed loss and noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In this work we create and verify entanglement between microwave and optical fields in a millikelvin environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Using an optically pulsed superconducting electro-optical device, we deterministically prepare an itinerant microwave-optical state that is squeezed by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='72+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='31 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='25 dB and violates the Duan-Simon separability criterion by > 5 standard deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This establishes the long-sought non-classical correlations between superconducting circuits and telecom wavelength light with wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing and cross-platform verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Over the past decades we have witnessed spectacular progress in our capabilities to manipulate and measure genuine quantum mechanical properties, such as quan- tum superpositions and entanglement, in a variety of physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' These techniques serve now as the ba- sis for the development of quantum technologies, where the demonstration of quantum supremacy with tens of superconducting qubits [1], an ultra-coherent quantum memory with nuclear spins [2], and distributed quan- tum entanglement over tens of kilometers using optical photons [3] represent just a few of the highlights that have already been achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Going forward, combin- ing these techniques [4–6] will enable the realization of general-purpose quantum networks, where remote quan- tum nodes, capable of storing and processing quantum information, seamlessly communicate with each other by distributing entanglement over optical channels [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As- pects of this approach have already been adopted to con- nect and entangle various quantum platforms remotely, involving single atoms, ions, atomic ensembles, quantum dots, rare-earth ions and nitrogen-vacancy centers [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' However, such long-distance quantum connectivity is considerably more difficult to achieve with other promis- ing platforms, such as semiconductor spin qubits or local cryogenic networks of superconducting circuits [9, 10], where no natural interface to room temperature noise- resilient optical photons is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' To overcome this limitation, a lot of effort is cur- rently focused on the development of coherent quantum transducers between microwave and optical photons [11– 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Direct noiseless conversion of a quantum state typ- ically relies on a beam splitter process, where a strong driving field mediates the conversion between weak mi- crowave and optical signals - a deterministic approach with exceptionally stringent requirements on conversion † rsahu@ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='at ‡ liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='qiu@ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='at § jfink@ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='at ⋆ These authors contributed equally to this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' efficiency and added classical noise that are still out of reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Alternatively, the direct generation of quantum- correlated microwave-optical photon pairs can also be used as a resource for quantum teleportation and en- tanglement distribution in the continuous and discrete variable domain [17–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In this paper we use an ultra-low noise cavity electro- optical device to generate such non-classical correlations in a deterministic protocol [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' It consists of a 5 mil- limeter diameter, 150 µm thick lithium niobate optical resonator placed inside a superconducting aluminum mi- crowave cavity at a temperature of 7 mK, described in detail in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1A, the microwave mode ˆae is co-localized with and electro-optically coupled to the optical whispering gallery modes at ωo/(2π) ≈ 193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='46 THz via the Pockels effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We match the tunable microwave resonance frequency ωe/(2π) to the free spec- tral range (FSR) of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='799 GHz to realize a triply-resonant system [22, 23] with the interaction Hamiltonian, ˆHint = ℏg0ˆapˆa† eˆa† o + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', (1) with g0 the vacuum electro-optical coupling rate, and ˆap (ˆao) the annihilation operator of the optical pump (Stokes) mode [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Here we have ignored the interac- tion with the suppressed optical anti-Stokes mode ˆat, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1b (see supplementary information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In this sideband suppressed situation, efficient two- mode squeezing is achieved with a strong resonant opti- cal pump tone, yielding the simple effective Hamiltonian, ˆHeff = ℏg0√¯np(ˆa† eˆa† o + ˆaeˆao), where ¯np = ⟨ˆa† pˆap⟩ is the mean intra-cavity photon number of the optical pump mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Deterministic continuous-variable (CV) entangle- ment between the out-propagating microwave and opti- cal field can be generated below the parametric instability threshold (C < 1) in the quantum back-action dominated regime, where the quantum noise exceeds the microwave thermal noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Here C = 4¯npg2 0/(κeκo) is the coopera- tivity with the vacuum coupling rate g0/2π ≈ 37 Hz, and the total loss rates of the microwave and optical Stokes modes κe/2π ≈ 11 MHz and κo/2π ≈ 28 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The re- quired ultra-low noise operation is achieved despite the arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03315v1 [quant-ph] 9 Jan 2023 2 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='p ^ap,in ^ao,out ^ae,out !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e ae^ ao^ ao ap !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='p !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='p !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e FSR !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='p+ FSR = FSR = 1) ^at ^ ^ ae^ (me 1) (mp + 1) (mp mp b a FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Physical and conceptual mode configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a, Simulated microwave (left) and optical (right) mode dis- tribution with azimuthal number me = 1 and mo = 17 (for illustration, experimentally mo ≈ 20 000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Phase matching is fulfilled due to the condition mo = mp − me and entangle- ment is generated and verified between the out-propagating microwave field ˆae,out and the optical Stokes field ˆao,out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' b, Sketch of the density of states of the relevant modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Un- der the condition ωp − ωo = ωe the strong pump tone in ˆap efficiently produces entangled pairs of microwave and optical photons in ˆae and ˆao via spontaneous parametric downconver- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Frequency up-conversion is suppressed via hybridization of the anti-Stokes mode ˆat with an auxiliary mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' required high power optical pump due to slow heating of this millimeter sized device [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the following we characterize the microwave and op- tical output fields via the dimensionless quadrature pairs Xj and Pj (j = e, o for microwave and optics), which satisfy the canonical commutation relations [Xj, Pj] = i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A pair of Einstein-Podolsky-Rosen (EPR)-type opera- tors X+ = 1 √ 2 (Xe + Xo) and P− = 1 √ 2 (Pe − Po) are then constructed, and the microwave and optical output fields are entangled, if the variance of the joint opera- tors is reduced below the vacuum level, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆− EPR = � X2 + � + � P 2 − � < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This is commonly referred to as the Duan-Simon criterion [25, 26], which we apply to each near-resonant frequency component of the two-mode squeezed output mode (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For efficient entanglement generation, we use a 250 ns long optical pump pulse (≈ 244 mW, C ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='18, ¯np ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 × 1010) at a 2 Hz repetition rate, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' pulse 1 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The entangled output optical signal is filtered via a Fabry-Perot cavity to reject the strong pump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The entangled microwave output is amplified with a high- electron-mobility transistor amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Both outputs are down-converted to an intermediate frequency of 40 MHz with two local oscillators (LO) and the four quadra- tures are extracted from heterodyne detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Long- term phase stability between the two LOs is achieved via extracting the relative phase drift by means of a second phase alignment pump pulse that is applied 1 µs after each entanglement pulse, together with a coherent reso- nant microwave pulse, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This generates a high signal-to-noise coherent optical signal via stimu- lated parametric down-conversion and allows for aligning the phase of each individual measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Figure 2b(c) shows the time-domain average power over one million averages for the on-resonant microwave (optics) signal with a spectrally under-sampled 40 MHz bandwidth (hence not revealing the full pulse ampli- tude).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The two insets show the microwave (optical) signal from spontaneous parametric down-conversion (SPDC) due to pulse 1, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2a, with an emission bandwidth of ≈ 10 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The larger signals during the second half of the experiment are the reflected microwave pulse and the generated optical tone (due to pulse 2) that is used for LO phase alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The raw power measurements are divided by the measurement bandwidth and rescaled such that the off-resonant response matches the noise photon number Nj,add + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 of the measurement setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ne,add = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 (2σ errors throughout the paper) due to loss and amplifier noise and No,add = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 due to optical losses are carefully determined using noise thermometry of a temperature controlled 50 Ω load and 4-port calibration, respectively (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Using this pro- cedure ensures that the reported photon number units correspond to the signals at the device outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We continue the analysis in the frequency domain by calculating the Fourier transform of each measurement for three separate time intervals - before (2 µs), dur- ing (200 ns) and right after the entangling pump pulse (500 ns).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Figure 2d shows the resulting average mi- crowave noise spectra for all three time intervals with corresponding fit curves (dashed lines) and theory (solid line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Before and after the pump pulse, the on-resonant microwave output field takes on values above the vac- uum level, with fitted intrinsic microwave bath occu- pancies ¯ne,int = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' By fitting additional power dependent measure- ments, we independently verify that the observed noise floor corresponds to a waveguide bath occupancy of only ¯ne,wg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='001±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='002 at the very low average pump power of ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='12 µW used in this experiment (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The mea- sured noise floor therefore corresponds to the shot noise equivalent level Ne,add + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 (gray dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sim- ilarly, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2e shows the obtained average optical noise spectra during and after the pump, referenced to the measured shot noise level before the pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As expected, there is no visible increase of the optical noise level after the pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' During the pump pulse, an approximately Lorentzian shaped microwave and optical power spectrum are gen- erated via the SPDC process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We perform a joint fit of the microwave and optical power spectral density during the pulse using a 5-mode theoretical model that includes 3 600 400 200 0 800 1000 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0 50 100 150 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='05 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='10 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='o !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='p !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='o Input power t Output power Before pulse Pulse 1 Entangle Pulse 2 After pulse Phase align MW signal MW reflection b a c 0 1 2 3 t (μs) 4 5 0 1 2 3 4 5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='75 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='00 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='00 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='25 20 0 20 20 0 20 Before-pulse Theory In-pulse After-pulse In-pulse After-pulse Theory Δ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e=2π (MHz) Δ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='o=2π (MHz) e d Ne,det (photons s-1 Hz-1) No,det (photons s-1 Hz-1) Ne,det (photons s-1 Hz-1) No,det (photons s-1 Hz-1) (μs) t Ne,add + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 No,add + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Measurement sequence and noise powers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a, Schematic pulse sequence of a single measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The optical pulse 1 is applied at ωp and amplifies the vacuum (and any thermal noise) in the two modes ˆae and ˆao, thus generating the SPDC signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1 µs later, a second optical pump with about 10 times lower power is applied together with a coherent microwave pulse at ωe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The microwave photons stimulate the optical pump to down-convert, which generates a coherent pulse in the ˆao mode that is used to extract slow LO phase drifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' b and c, Measured output power in the ˆae and ˆao mode in units of photons per second in a 1 Hz bandwidth and averaged over a million experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The SPDC signals are shown in the insets with the dashed gray lines indicating the calibrated detection noise floor Nj,add + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' d, Corresponding microwave output power spectral density vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆ωe = ω − ωe centered on resonance right before the entanglement pulse, during the pulse and right after the pulse, as indicated in panel a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yellow and green dashed lines are fits to a Lorentzian function, which yields the microwave bath occupancies before and after the entangling pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Error bars represent the 2σ statistical standard error and the shaded regions represent the 95% confidence interval of the fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (e), Corresponding optical output power spectral density vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆ωo = ωo − ω during and after the entanglement pulse, both normalized to the measured noise floor before the pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The in-pulse noise spectra in panels d and e are fit jointly with theory, which yields C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='01 and ¯ne,int = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' the effects of measurement bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In this model, the in-pulse microwave bath occupancy ¯ne,int = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03 and the cooperativity C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='18 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='01 are the only free fit parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Here the narrowed microwave linewidth κe,eff/2π = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 MHz (taken from a Lorentzian fit) agrees with coherent electro-optical dynamical back- action [27], where κe,eff = (1 − C)κe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We conclude that this cavity electro-optical device is deep in the quantum back-action dominated regime, a prerequisite for efficient microwave-optics entanglement generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For each frequency component the bipartite Gaussian state of the propagating output fields can be fully char- acterized by the 4 × 4 covariance matrix (CM) Vij = ⟨δuiδuj + δujδui⟩ /2, where δui = ui − ⟨ui⟩ and u ∈ {Xe, Pe, Xo, Po} (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The diagonal elements in V cor- respond to the individual output field quadrature vari- ances in dimensionless units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' These are obtained from the measured variances after subtracting the measured detection noise offsets shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vii(∆ω) = Vii,meas(∆ωi) − Ni,add.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The obtained CM from the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2 at ∆ω = 0 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3a in its standard form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' It corresponds to the quantum state of the propa- gating modes in the coaxial line and the coupling prism attached to the device output, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' before setup losses or amplification incur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The non-zero off-diagonal elements indicate strong correlations between microwave and op- tical quadratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The two-mode squeezed quadratures are more intu- itively visualized in terms of the quasi-probability Wigner function, W(u) = exp[− 1 2uV −1uT ] π2� det(V) , (2) 4 where u = (Xe, Pe, Xo, Po).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Different marginals of this Wigner function are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3b, where the (Xe,Xo) and (Pe,Po) marginals show two-mode squeezing in the diagonal and off-diagonal directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The two cross- quadrature marginals show a slightly different amount of squeezing, which is due to the statistical uncertainty in the measured CM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Figure 3c shows the amount of two-mode squeezing between microwave and optical photon pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Correla- tions are observed at ∆ωj = ±(ω − ωj) around the reso- nances due to energy conservation in the SPDC process (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The averaged microwave quadrature variance (purple dots) ¯V11 = (V11+V22)/2 and the averaged optics quadrature variance (green dots) ¯V33 = (V33 +V44)/2 are shown in the top panel along with the prediction from our five-mode theory (solid line) and a simple fit to a Lorentzian function (dashed line), showing perfect agree- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Measured microwave-optical correlations (yellow dots) ¯V13 = (V13 − V24)/2 and the Lorentzian fit (dashed line) lie slightly below the theoretical prediction (solid line), which we assign to remaining imperfections in the phase stability (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The bottom two panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3c show the squeezed and anti-squeezed joint quadrature variances ∆∓ EPR = ¯V11 + ¯V33 ∓ 2 ¯V13 (red and blue color respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We observe two-mode squeezing below the vacuum level, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆− EPR < 1, with a bandwidth close to the effective mi- crowave linewidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The maximal on-resonant two-mode squeezing is ∆− EPR = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='85+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='05 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='06 (2σ, 95% confidence) for ∼1 million pulses with ¯V11 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='93, ¯V33 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='84 and ¯V13 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hence, this deterministically generated microwave- optical state violates the Duan-Simon separability crite- rion by > 5σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Note that this error also takes into account systematics in the added noise calibration used for scal- ing the raw data (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' These values correspond to a state purity of ρ = 1/(4 � det[V ]) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='44 and demon- strate microwave-optical entanglement between output photons with a logarithmic negativity of EN = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The supplementary material contains substantial additional data for longer pulses and varying optical pump power, which corroborates the presented results and findings, al- beit with lower statistical significance for each individual pump configuration (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Conclusions and outlook In conclusion, we have demonstrated deterministic quantum entanglement between propagating microwave and optical photons,thus establishing a non-classical communication channel between circuit quantum electro- dynamics and quantum photonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Our device can read- ily be used for probabilistic heralding assisted protocols [7, 28, 29] to mitigate optical setup losses and extend the entanglement to room temperature fiber optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We ex- pect that the pulse repetition rate can be increased by or- ders of magnitude with improved thermalization, higher microwave and optical quality factors, and electro-optic coupling enhancements that reduce the required pump power and the associated thermal load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Coupling effi- ciency improvements will allow for higher levels of two- mode squeezing and facilitate also deterministic entangle- ment distribution schemes [30], teleportation-based state transfer [20, 31] and quantum-enhanced remote detec- tion [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Being fully compatible with superconducting qubits in a millikelvin environment such a device will fa- cilitate the integration of remote superconducting quan- tum processors into a single coherent optical quantum network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This is not only relevant for modularization and scaling [33, 34], but also for efficient cross-platform verification of classically intractable quantum processor results [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ACKNOWLEDGMENTS L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' acknowledges fruitful discussions with Jie Li and David Vitali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This work was supported by the European Research Council under grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 758053 (ERC StG QUNNECT) and the European Union’s Horizon 2020 research and innovation program under grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 899354 (FETopen SuperQuLAN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' acknowledges generous support from the ISTFEL- LOW programme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk�lodowska-Curie grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 754411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F7105) and the European Union’s Horizon 2020 research and innovation programs under grant agreement No 862644 (FETopen QUAR- TET).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' AUTHOR CONTRIBUTIONS RS, WH, LQ, and GA worked on the setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' RS and LQ performed measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' LQ and RS did the data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' LQ developed the theory with contributions from RS, YM and PR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' RS and LQ wrote the manuscript with contributions from all authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' JMF supervised the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' DATA AVAILABILITY STATEMENT All data and code used to produce the figures in this manuscript will be made available on Zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0 2 2 2 2 0 0 10 20 10 20 c b (photons s-1 Hz-1) (MHz) 0 2 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 a Vij Pe Pe Pe Pe Pe Po Po Po Po Po Xo Xo Xo Xo Xo Xe Xe Xe Xe Xe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 (V11 + V22)/2 (V33 + V44)/2 (V13 − V24)/2 V ΔEPR ΔEPR + Δω/2π FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Characterization of the two-mode squeezed state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a, Measured covariance matrix Vij in its standard form plotted for ∆ωj = 0 based on 925000 measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' b, Corresponding Wigner function marginals of different output quadrature pairs in comparison to vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The contours in blue (grey) represent the 1/e fall-off from the maximum for the measured state (vacuum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Middle two plots show two-mode squeezing below the vacuum level in the diagonal and off-diagonal directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' c, Top panel, the measured average microwave output noise ¯V11 = (V11 + V22)/2 (purple), the average optical output noise ¯V33 = (V33 + V44)/2 (green) and the average correlations ¯V13 = (V11 − V24)/2 (yellow) as a function of the measurement detunings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The solid lines represent the joint theory fit and the dashed lines are individual Lorentzian fits to serve as a guide to eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The middle (bottom) panel shows two-mode squeezing in red (anti-squeezing in blue) calculated from the top panels as ∆± EPR = ¯V11 + ¯V33 ± 2 ¯V13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The darker color error bars represent the 2σ statistical error and the outer (faint) 2σ error bars also include the systematic error in calibrating the added noise of the measurement setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arute, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arya, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Babbush, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bacon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bardin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Barends, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Biswas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Boixo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Brandao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Buell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Burkett, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chiaro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Collins, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Courtney, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Dunsworth, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Farhi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Foxen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fowler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gidney, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Giustina, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Graff, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Guerin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Habegger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Harrigan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hartmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ho, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hoffmann, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Humble, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Isakov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jeffrey, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jiang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kafri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kechedzhi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kelly, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Klimov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Knysh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Korotkov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kostritsa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Landhuis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lind- mark, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lucero, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lyakh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mandr`a, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mc- Clean, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' McEwen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Megrant, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Michielsen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mohseni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mutus, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Naaman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Neeley, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Neill, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Niu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ostby, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Petukhov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Platt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Quin- tana, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rieffel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Roushan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rubin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sank, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Satzinger, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Smelyanskiy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sung, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tre- vithick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vainsencher, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Villalonga, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' White, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yeh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zalcman, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Neven, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Martinis, Nature 574, 505 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hedges, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ahlefeldt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bartholomew, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Beavan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wittig, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Longdell, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sellars, Nature 517, 177 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ma, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Luo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jing, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sun, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zheng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Xie, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='- J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' You, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pan, Nature 578, 240 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Xiang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ashhab, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' You, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Nori, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 85, 623 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kurizki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bertet, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kubo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mølmer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pet- rosyan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rabl, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schmiedmayer, Proceedings of the National Academy of Sciences 112, 3866 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Clerk, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lehnert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bertet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Petta, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Nakamura, Nature Physics 16, 257 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Duan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lukin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cirac, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zoller, Na- ture 414, 413 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wei, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jing, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Liao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yuan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lyu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Deng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Song, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Oblak, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Guo, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhou, Laser & Photonics Reviews 16, 2100219 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 6 [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Magnard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Storz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kurpiers, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sch¨ar, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Marxer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L¨utolf, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Walter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Besse, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gabureac, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Reuer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Akin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Royer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Blais, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wallraff, Physical Review Letters 125, 260502 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [10] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bienfait, ´E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Dumur, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Conner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Grebel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Povey, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schuster, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cleland, Nature 590, 571 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [11] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jiang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tang, Optica 8, 1050 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mirhosseini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sipahigil, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kalaee, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Painter, Nature 588, 599 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sahu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rueda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arnold, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Qiu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, Nature Communications 13, 1276 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [14] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Brubaker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kindem, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Urmey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mittal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Delaney, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Burns, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vissers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lehnert, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Regal, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' X 12, 021062 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kumar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Suleymanzade, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Stone, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Taneja, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Anferov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schuster, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Simon, Quantum- limited millimeter wave to optical transduction (2022), arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='10121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Weaver, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Duivestein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bernasconi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Scharmer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lemang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' van Thiel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hijazi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hensen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gr¨oblacher, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Stockill, An integrated microwave-to-optics interface for scalable quantum com- puting (2022), arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='15702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Takeda, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mizuta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fuwa, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' van Loock, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fu- rusawa, Nature 500, 315 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fedorov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Renger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pogorzalek, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Candia, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Nojiri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Inomata, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Nakamura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Parta- nen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Marx, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gross, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Deppe, Science Advances 7, eabk0891 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hermans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pompili, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Beukers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Baier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Borregaard, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hanson, Nature 605, 663 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rueda, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Barzanjeh, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, npj Quantum Information 5, 1 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [21] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rueda, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sahu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wulf, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arnold, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schwefel, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, PRX Quantum 1, 020315 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [22] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ilchenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Savchenkov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Matsko, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Maleki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' B 20, 333 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [23] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cheng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tang, Science Advances 4, eaar4994 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tsang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A 81, 063837 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [25] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Duan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Giedke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cirac, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zoller, Phys- ical Review Letters 84, 2722 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Simon, Physical Review Letters 84, 2726 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [27] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Qiu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sahu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arnold, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action (2022), arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='12443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [28] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Shankar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Devoret, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jiang, Physical Review Letters 124, 010511 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [29] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Krastanov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Raniwala, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Holzgrafe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Jacobs, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lonˇcar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Reagor, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Englund, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 127, 040503 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Agust´ı, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Minoguchi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rabl, Phys- ical Review A 105, 062454 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [31] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cui, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fan, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhuang, Physical Review Applied 16, 064044 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Barzanjeh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Guha, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Weedbrook, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vitali, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Shapiro, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pirandola, Physical Review Letters 114, 080503 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bravyi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Dial, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gambetta, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gil, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Nazario, Journal of Applied Physics 132, 160902 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Carini, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Chuang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' DeMarco, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Economou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eickbusch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Faraon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Girvin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hatridge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Houck, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hilaire, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kr- sulich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Martonosi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' McKay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Misewich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ritter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schoelkopf, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Stein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sussman, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tomesh, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tubman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wiebe, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Yost, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zhou, Architectures for Multinode Superconduct- ing Quantum Computers (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='06167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Kn¨orzer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Malz, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cirac, Cross-Platform Ver- ification in Quantum Networks (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='07789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Supplementary Information for: ”Entangling microwaves with optical light” Rishabh Sahu,1, ∗ Liu Qiu,1, ∗ William Hease,1 Georg Arnold,1 Yuri Minoguchi,2 Peter Rabl,2 and Johannes M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink1 1Institute of Science and Technology Austria, am Campus 1, 3400 Klosterneuburg, Austria 2Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria (Dated: January 10, 2023) CONTENTS Page I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Theory 3 A Covariance Matrix from Input-Output Theory .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3 1 Quantum Langevin Equations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3 2 Input-Output-Theory .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 4 3 Covariance Matrix of Filtered Output Fields .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 6 B Heterodyne Detection, Added Noise and Filtering .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 7 1 Heterodyne Measurement .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 7 2 Realistic Measurements: Added Noise and Gain .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 8 3 Covariance Matrix from Realistic Heterodyne Measurements .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 9 C Entanglement Detection .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 10 1 Duan Criterion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 10 2 Logarithmic Negativity and Purity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 11 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Experimental Setup 11 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Setup Characterization and calibration 11 A Microwave added noise calibration .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 11 B Optical added noise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 14 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Data treatment 15 A Time-domain analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 15 B Pulse post-selection .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 16 C Frequency domain analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 16 D Joint-quadrature correlations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 17 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Quadrature histogram raw data 19 VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Non-classical correlations with 600 ns long optical pump pulses 20 VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Error analysis 20 A Statistical error .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 21 B Systematic error .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 22 References 22 ∗ These two authors contributed equally arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03315v1 [quant-ph] 9 Jan 2023 2 Introduced in Main Text ˆae microwave mode (annihilation operator) me microwave mode azimuthal number,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' me = 1 ωe microwave cavity frequency κe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' κe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='eff,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' κe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' κe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 microwave total loss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' effective total loss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' waveguide coupling and intrinsic loss rates ¯ne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='int,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯ne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='wg microwave intrinsic and waveguide bath occupancy Ne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add added noise in the microwave detection ˆao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆap,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆat,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆatm optical Stokes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' pump,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' anti-Stokes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' and transverse-magnetic mode (annihilation operator) ˆae/o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='out microwave and optical output field from the device mp optical pump mode azimuthal number,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' mp ∼ 20000 κo optical total loss rate No,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add added noise in the optical detection ¯np mean photon number of the optical pump mode g0 electro-optical vacuum coupling rate g photon enhanced electro-optical coupling rate (g = √¯npg0}) C cooperativity ( C = 4g2/κeκo ) Xe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='Pe quadratures of the microwave output field Xo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='Po quadratures of the optical Stokes output field V covariance matrix of the bipartite Gaussian state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vij = ⟨∆ui∆uj + ∆uj∆ui⟩ /2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' where ∆ui = ui − ⟨ui⟩ and u ∈ {Xe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Xo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Po}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Nii,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add added noise in the quadrature variances measurements,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' N11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add = N22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add = Ne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' N33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add = N44,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add = No,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add Vii,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='meas diagonal covariance matrix elements from the calibrated measurement record,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vii = Vii,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='meas − Nii,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='add V11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='V22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯V11 quadrature variances of the microwave output field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯V11 = V11+V22 2 V33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='V44,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯V33 quadrature variances of the optical Stokes output field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯V33 = V33+V44 2 V13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='V24,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯V13 cross-correlation between microwave and optical quadratures,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ¯V13 = V13−V24 2 ∆∓ EPR squeezed and anti-squeezed joint quadrature variance between microwave and optical output field,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆∓ EPR = ¯V11 + ¯V33 ∓ ¯V13 Introduced in Supplementary Information J coupling rate between the optical anti-Stokes mode and TM mode ˆae/o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in input field (noise) operator for the microwave and optical mode ˆae/o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 noise operator for the microwave and optical intrinsic loss ηj external cavity coupling efficiency of individual mode,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' j ∈ (e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' t) G(ω) spectral filter of the output field ˆA(Ω) Fourier transform of operator ˆA(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆA(Ω) = � dt eiΩt ˆA(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆA†(Ω) = � dt ˆA†(t)eiΩt = [ ˆA(−Ω)]† ˆX(ωn) X quadrature of the output spectral mode,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆX(ωn) = 1 √ 2 � ∞ −∞ dω G(ωn − ω)ˆaout(ω) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆP(ωn) P quadrature of the output spectral mode, ˆP(ωn) = 1 √ 2i � ∞ −∞ dω G(ωn − ω)ˆaout(ω) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' S ˆ A ˆ B(Ω) Two-time correlation of two operators,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' S ˆ A ˆ B(Ω) = 1 √ 2π � ∞ −∞ � ˆA(t) ˆB(t′) � eiΩtdt ∆LO local oscillator and signal frequency difference in heterodyne measurement,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆LO = ωLO−ωsig Iout(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Iout(ω) unitless output field in the equivelant heterodyne detection SII(ω) double-sided noise spectrum of the output field in the equivelant heterodyne detection Gdet(ω) frequency dependent detection gain in the heterodyne detection ˆIX/P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='det(ωn) detected output photocurrent quadratures in heterodyne detection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' including detection gain ˆIX/P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='out(ωn) unitless output field quadratures from Iout including added noise D(ω) covariance matrix of the detected quadratures from the heterodyne measurement record Vmeas(ω) covariance matrix of the total measured output field quadratures including added noise ˆX+(ω) joint quadrature of ˆXe(ω) and ˆXo(−ω),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆX+(ω) = ( ˆXe(ω) + ˆXo(−ω))/ √ 2 ˆP−(ω) joint quadrature of ˆPe(ω) and ˆPo(−ω),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆP−(ω) = ( ˆPe(ω) − ˆPo(−ω))/ √ 2 EN logarithm negativity ρ state purity 3 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' THEORY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Covariance Matrix from Input-Output Theory 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Quantum Langevin Equations Our cavity electro-optical (CEO) device consists of a millimeter-sized lithium niobate optical resonator in a 3-D superconducting microwave cavity at mK temperature [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The Pockels effect in lithium niobate allows for direct coupling between the microwave and optical whispering gallery modes with maximal field overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The optical free spectral range (FSR) matches the microwave cavity frequency, with microwave azimuthal mode number me = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1 in the main text, resonant three-wave mixing between the microwave mode (ˆae) and three adjacent transverse-electric (TE) optical modes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Stokes (ˆao), pump (ˆap), and anti-Stokes (ˆat) mode, arises via the cavity enhanced electro-optical interaction [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In addition, the anti-Stokes mode is coupled to a transverse-magnetic (TM) optical mode (ˆatm) of orthogonal polarization and similar frequency at rate of J [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This results in a total interaction Hamiltonian, ˆHI/ℏ = g0(ˆa† pˆaeˆao + ˆa† pˆa† eˆat) + Jˆatˆa† tm + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', (1) with g0 the vacuum electro-optical coupling rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For efficient entanglement generation, we drive the pump mode strongly with a short coherent input pulse ¯ap,in(t) at frequency ωp [1], which results in a time-dependent mean intra-cavity field of the pump mode ¯ap(t), ˙¯ap = � i∆p − κp 2 � ¯ap + √ηpκp¯ap,in, (2) where the pump tone is detuned from the pump mode by ∆p = ωp − ωo,p, with κp and ηp as the pump mode loss rate and external coupling efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In our experiments, we actively lock the laser frequency to the pump mode resonance, with ∆p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The presence of the strong pump field results in an effective interaction Hamiltonian, ˆHI,eff/ℏ = g(ˆaeˆao + ˆaeˆa† t) + Jˆatˆa† tm + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', (3) with multiphoton coupling rate g = ¯apg0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This includes the two-mode-squeezing (TMS) interaction between the Stokes and microwave mode, and beam-splitter (BS) interaction between the anti-Stokes mode and microwave mode, resulting in scattered Stokes and anti-Stokes sidebands that are located on the lower and upper side of the pump tone by Ωe away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Microwave-optics entanglement between the microwave and optical Stokes output field can be achieved via spontaneous parametric down-conversion (SPDC) process due to TMS interaction [5], which is further facilitated by the suppressed anti-Stokes scattering due to the strong coupling between anti-Stokes and TM modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We can obtain the full dynamics of the intracavity fluctuation field in the rotating frame of the scattered sidebands and microwave resonance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' which can be described by the quantum Langevin equations (QLE),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˙ˆae = −κe 2 ˆae − igˆa† o − ig∗ˆat + √ηeκeδˆae,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in + � (1 − ηe) κeδˆae,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (4) ˙ˆao = � iδo − κo 2 � ˆao − igˆa† e + √ηoκoδˆao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in + � (1 − ηo) κoδˆao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (5) ˙ˆat = � iδt − κt 2 � ˆat − ig∗ˆae − iJˆatm + √κtδˆat,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='vac,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (6) ˙ˆatm = � iδtm − κtm 2 � ˆatm − iJˆat + √κtmδˆatm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='vac,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (7) with κj the total loss rate of the individual mode where j ∈ (e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' tm),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' and ηk the external coupling efficiency of the input field where k ∈ (e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' o).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, the optical light is only coupled to the TE modes via efficient prism coupling, with effective mode overlap Λ factor included in ηo for simplicity [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δj corresponds to the frequency difference between mode j and scattered sidebands, with δo = ωo,p − ωe − ωo and δt/tm = ωo,p + ωe − ωt/tm, which are mostly given by FSR and ωe mismatch, with additional contributions from optical mode dispersion and residual optical mode coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, for resonant pumping, we have δo = −δt in the case of absent optical mode dispersion and residual mode coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In our experiments, we tune the microwave frequency to match the optical FSR, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ωe = ωo,p − ωo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 4 The equation of motion of all relevant modes may be represented more economically in the form ˙v(t) = M(t)v(t) + Kfin(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (8) where we define the vectors of mode and noise operators v = (ˆae,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆa† e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆa† o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆat,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆa† t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆatm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆa† tm)⊤,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' fin = (δˆae,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆa† e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆae,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆa† e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆa† o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆa† o,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='in,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆat,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='vac,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆa† t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='vac,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆatm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='vac,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' δˆa† tm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='vac)⊤,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (9) as well as the matrices that encode the deterministic part of the QLE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M(t) = � � � � � � � � � � � − κe 2 0 0 −ig(t) −ig∗(t) 0 0 0 0 − κe 2 +ig∗(t) 0 0 ig(t) 0 0 0 −ig(t) iδo − κo 2 0 0 0 0 0 ig∗(t) 0 0 −iδo − κo 2 0 0 0 0 −ig(t) 0 0 0 iδt − κt 2 0 −iJ 0 0 ig∗(t) 0 0 0 −iδt − κt 2 0 iJ 0 0 0 0 −iJ 0 iδtm − κtm 2 0 0 0 0 0 0 iJ 0 −iδtm − κtm 2 � � � � � � � � � � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (10) and K = � � � � � (1 − ηe)κe √ηeκe 0 0 0 0 0 0 � (1 − ηo)κo √ηoκo 0 0 0 0 0 0 √κt 0 0 0 0 0 0 √κtm � � � � ⊗ 12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (11) which keeps track on which modes the noise acts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Input-Output-Theory In the experiment the pump field is turned on at t = 0 and kept on until τpulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For the optical pump pulse with length τpulse =250 ns (600 ns, see main text), we reject a certain τdelay = 50 ns (100 ns) from the beginning of pulse data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Since κpτdelay ≳ 1 we may assume that after τdelay the system has approached its steady state and especially that the pump mode is in its steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Consequently we may assume that g(t > τdelay) ≃ g is constant over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' One important figure of merit is the multiphoton cooperativity C = 4g2/κoκe, a measure for coherent coupling versus the microwave and optical dissipation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Efficient entanglement generation can be achieved with complete anti-Stokes scattering suppression, while below the parametric instability threshold, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output fields of the CEO device are fout(t) = (ˆae,out(t), ˆa† e,out(t), ˆao,out(t), ˆa† o,out(t))⊤, (12) which consist of a contribution which was entangled via the coherent interactions v and a contribution which has not interacted with the device fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output field fout will then propagate to the measurement device and is most economically represented within the framework of input-output theory [6], fout(t) = Lfin(t) − Nv(t), (13) where we define the matrices N = (NJ, 04), with NJ = Diag(√ηeκe, √ηeκe, √ηoκo, √ηoκo), (14) and L = � 0 1 0 0 0 0 0 0 0 1 0 0 � ⊗ 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (15) As all modes have reached steady state, the correlations in the output field may be obtained by going to Fourier 5 domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Here we commit to following convention of the Fourier transformation ˆA(ω) = 1 √ 2π � ∞ −∞ dω eiωt ˆA(t), (16) with the hermitian conjugate ( ˆA(ω))† = A†(−ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (17) Note that in this convention e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [ae(ω), a† e(ω′)] = δ(ω + ω′) are canonical pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In our experiments, we focus on the correlations between the output propagating spectral modes of frequencies ωe + ∆ωe and ωo − ∆ωo respectively for microwave and optical fields [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, due to energy conservation in the SPDC process, we only focus on microwave and optical photon pairs around resonances with anti-correlated frequencies, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆ωe = ∆ωo = ∆ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For this reason, we focus on the following vector of output fields in the rotating frame, fout(ω) = (ˆae,out(ω), ˆa† e,out(−ω), ˆao,out(−ω), ˆa† o,out(ω))⊤, (18) in the Fourier domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (8) we obtain v(ω) = [iωO − M]−1 · K � �� � =S(ω) fin(ω), (19) with O = Diag(1, −1, 1, 1) ⊗ σz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (20) Here we defined the vector of modes v(ω) = (ˆae(ω), ˆa† e(−ω), ˆao(−ω), ˆa† o(ω), ˆat(ω), ˆa† t(−ω), ˆatm(ω), ˆa† tm(−ω))⊤, (21) as well as the vector of input fields fin(ω) = (δˆae,0(ω), δˆa† e,0(−ω), δˆae,in(ω), δˆa† e,in(−ω), δˆao,0(−ω), δˆa† o,0(ω), δˆao,in(−ω), δˆa† o,in(ω), δˆat,vac(ω), δˆa† t,vac(−ω), δˆatm,vac(ω), δˆa† tm,vac(−ω))⊤ (22) in the Fourier domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output fields (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (13)) of the CEO device are straight forwardly obtained since in the Fourier domain Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (13) is algebraic, fout(ω) = Lfin(ω) + Nv(ω) = (L + N · [iωO − M]−1 · K)fin(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (23) The input noise operator correlations are given by, ⟨fin(ω)f † in(ω′)⟩ = Dδ(ω + ω′), (24) with D = Diag(¯ne,int + 1, ¯ne,int � �� � bath:e , ¯ne,wg + 1, ¯ne,wg � �� � waveguide:e , 1, 0 ���� bath:o , 1, 0 ���� detector:o , 1, 0 ���� bath:t , 1, 0 ���� bath:tm ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (25) We note that, in our experiments, the microwave waveguide remains in the ground state, with ¯ne,wg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The spectral correlations of different output field can be simply obtained analytically from ⟨fout(ω)f † out(ω′)⟩ = S(ω)DS†(−ω) � �� � ˜ Cff†(ω) δ(ω + ω′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (26) 6 Here we implicitly define the 4 × 4 matrix of output mode correlations with a single entry reading ⟨ˆaout(ω)ˆbout(ω′)⟩ = ˜Cab(ω)δ(ω + ω′), (27) where the operators ˆaout(ω),ˆbout(ω) were chosen from components of fout(ω) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Covariance Matrix of Filtered Output Fields We will now consider a situation where we define output field modes from a windowed Fourier transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Below we will then show that these are indeed the experimentally observed signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We start by defining the (dimensionless) hermitian output field quadrature pair [8], ˆXα(ωn) = 1 √ 2T � T/2 −T/2 dτ eiωnτˆaα,out(τ) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', (28) ˆPα(ωn) = 1 √ 2Ti � T/2 −T/2 dτ eiωnτˆaα,out(τ) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', (29) which meets the canonical commutation relation [ ˆXα(ωn), ˆPβ(ωm)] = iδnmδαβ where α = e, o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Due to the finite window of the Fourier transformation, the frequencies ωn = 2π T n becomes discrete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The quadrature modes at discrete frequencies ωn can now be rewritten in terms of the (dimensionful) output fields fout(ω) from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (23), which are defined in the continuous Fourier domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Therefore the quadrature operators may be obtained by convolution with the a filter function G(ω) ˆXα(ωn) = 1 √ 2 � ∞ −∞ dω G(ωn − ω)ˆaα,out(ω) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (30) ˆPα(ωn) = 1 √ 2i � ∞ −∞ dω G(ωn − ω)ˆaα,out(ω) + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (31) Here the filter is G(ω) = 1 √ 2π � ∞ −∞ dτ eiωτ 1[0,T ](τ) √ T = � 2 πT sin(ωT/2) ω , (32) which is obtained from a Fourier transformation of the unit function 1[−T/2,T/2](t) = 1(0) for |t| ≤ T/2 (|t| > T/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A bipartite Gaussian state is characterized by the 4 × 4 covariance matrix (CM), VAB(ωn) = 1 2⟨{δ ˆA(ωn), δ ˆB(ωn)}⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (33) Here we defined δ ˆA = ˆA − ⟨ ˆA⟩ an operator with zero mean ⟨δ ˆA⟩ = 0 and the quadratures from ˆA(ωn), ˆB(ωn) ∈ { ˆXe(ωn), ˆPe(ωn), ˆXo(−ωn), ˆPo(−ωn)} (34) and we also introduced the anti-commutator { ˆA, ˆB} = ˆA ˆB + ˆB ˆA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Note that the two-mode squeezing interaction results in correlation between frequency reversed pairs on the microwave ωn and the optical side −ωn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Since in our setting all first moments ⟨ ˆA⟩ = 0 the evaluation of the covariance matrix in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (33) boils down to computing spectral correlations which are rewritten as ⟨ ˆA(ωn) ˆB(ωn)⟩ = � ∞ −∞ dω � ∞ −∞ dω′ G(ωn − ω)G(ωn − ω′)⟨ ˆA(ω) ˆB(ω′)⟩ = � ∞ −∞ dω � ∞ −∞ dω′ G(ωn − ω)G(−ωn − ω′)CAB(ω)δ(ω + ω′) = � ∞ −∞ dω F(ωn − ω)CAB(ω), (35) 7 where we used the property G(−ω) = G(ω) and defined the effective filter F(ω) = G(ω)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Similar to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (26), we defined the quadrature correlations CAB(ω) = (C(ω))AB = 1 2 � U ˜Cff †(ω)U † + (U ˜Cff †(ω)U †)⊤� AB .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (36) Here the unitary matrix U = u ⊕ u, with u = 1 √ 2 � 1 1 −i i � , (37) corresponds to a rotation of the mode operators into quadrature operators ( ˆXα, ˆPα)⊤ = u · (ˆaα,out, ˆa† α,out)⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The covariance matrix of the quadrature modes at the discrete frequencies ωn is then obtained exactly by VAB(ωn) = � ∞ −∞ dω F(ωn − ω)CAB(ω), (38) where the quadrature correlations are convolved with an appropriate filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Heterodyne Detection, Added Noise and Filtering 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Heterodyne Measurement Here we discuss the quadrature extractions from the equivalent linear measurement, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' balanced heterodyne detection, with excess added noise [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the heterodyne detection, the output field ˆaoute−iωjt (j ∈ e, o) is mixed with a strong coherent local oscillator field ˆaLO(t) = αLOe−iωLOt at a 50:50 beam-splitter, where the output field from the two ports are sent to a balanced photo-detector, which results in a photon current that is proportional to ˆIout(t) = e−i∆LOtˆaout + ˆa† outei∆LOt, (39) in the limit of strong LO (αLO ≫ 1) with ∆LO = ωLO − ωj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We consider finite measurement interval of time T, on which we compute the windowed Fourier transformation of ˆIout(t), ˆIout(ωn) = 1 √ T � T 0 dτ eiωnτ ˆIout(τ) = 1 √ T � T 0 dτ eiωnτ(e−i∆LOτˆaout(τ) + ei∆LOτˆa† out(τ)) = aout(ωn − ∆LO) + a† out(ωn + ∆LO), (40) where in a slight abuse of notation we define the dimensionless output fields aout(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The reason why we are explicitly working the windowed Fourier transformation is, that despite being in a steady state during the measurement (see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I B), the Fourier transformed data has a rather broad bandwidth (δωn = 2π T ∼ 5MHz for a 200 ns time window) due to the relatively short time of data collection T = τpulse−τdelay = 200 ns (especially for 250 ns optical pump pulse).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the limit of long measurement times T → ∞, the bandwidth will tend to zero and the following discussion as well as the results in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (38) will coincide with standard Input-Output treatment in the continuous Fourier domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In our experiments, we extract the quadratures of microwave and optical output field, by decomposing the heterodyne current spectra, in their real and imaginary parts which yields ˆIout(ωn) = 1 √ 2( ˆX(ωn − ∆LO) + ˆX(−ωn − ∆LO) � �� � ˆIX,out(ωn) +i [ ˆP(ωn − ∆LO) − ˆP(−ωn − ∆LO)] � �� � ˆIP,out(ωn) ), (41) where we define the quadrature output fields ˆaout(ωn) = ( ˆX(ωn) + i ˆP(ωn))/ √ 2, in the same way as in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (28-29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' So far we have treated the photon current which result from a heterodyne measurement in terms of a time dependent hermitian operator ˆIout(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In an actual experiment the heterodyne current is a real scalar I(t) quantity which fluctuates in time and between different experimental runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Taking taking the (fast) Fourier transform of this current and decomposing it in its real and imaginary parts then yields I(ωn) = IX(ωn) + iIP (ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The theory of continuous measurements and quantum trajectories [10, 11] tells us how to connect the measured scalar currents with the current 8 operators from input-output theory [6] IA(ωn)IB(ωm) = 1 2⟨{ˆIA,out(ωn), ˆIB,out(ωm)}⟩, (42) where we define the statistical average · · · over many experimental runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Realistic Measurements: Added Noise and Gain For the vacuum, the noise spectral density for both quadratures, are obtained by SAA(ωn) = ⟨ ˆA(ωn) ˆA(ωn)⟩vac = 1 2, (43) for the hermitian operator ˆA = ˆX, ˆP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Note that due to the discreteness of the Fourier domain we do not have a Dirac delta as opposed to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The noise spectrum of the heterodyne current is defined by SII(ω) ≡ I(ωn)I(ωn) = ⟨ˆIout(ωn)ˆIout(ωn)⟩, where SII(ωn) = 1 2 (SXX (ωn − ∆LO) + SP P (ωn − ∆LO) + SXX (ωn + ∆LO) + SP P (ωn + ∆LO)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (44) Focusing on the part of the spectrum located around ∆LO, SII(ωn + ∆LO) = 1 2 (SXX (ωn) + SP P (ωn) + 1) , (45) assuming ∆LO ≫ κe, κo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This indicates the simultaneous quadratures measurements and added shot noise in the heterodyne measurements, even without experimental imperfections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' So far we have focused on the ideal theory of the measurement and disregarded additional unknown sources of noise as well as the connection to the actually measured quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In practice, the decomposed measured quadratures contain additional uncorrelated excess noise, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' due to the added noise in the amplification or due to propagation losses [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We model this by phenomenologically adding another uncorrelated noise process from an independent thermal reservoir and then multiplying by a gain factor which converts the number of measured photons to the actually monitored voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' To illustrate this we focus again on a single output port, and with the added noise current ˆIX/P,add(ωn) and the frequency dependent calibration gain Gdet(ωn), where ˆIX,det(ωn) = � Gdet(ωn)(ˆIX,add(ωn) + ˆIX,out(ωn)), (46) ˆIP,det(ωn) = � Gdet(ωn)(ˆIP,add(ωn) + ˆIP,out(ωn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (47) We thus obtain the detected heterodyne noise spectral density, SII,det(ωn + ∆LO) =Gdet(ωn + ∆LO)[SXX (ωn) + SP P (ωn) + 1 + SIXIX,add(ωn + ∆LO) + SIP IP ,add(ωn + ∆LO) � �� � =2Nadd ], (48) where we define the spectra of the added noise SIOIO,add(ωn) = ⟨ˆIO,add(ωn)ˆIO,add(ωn)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The added noise Nadd includes the excess vacuum noise from heterodyne measurement and the additional uncorrelated noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Note that here the factor 1 2 was absorbed in the detections gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The gain Gdet(ωn) can be simply obtained on both microwave and optical side, from the cold measurements (optical pump off) with a known background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (48) lays the foundation of microwave and optical calibrations in our CEO device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In our experiments, we place the LO on opposite sites around the mode resonances, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', ∆LO,e = −ΩIF, ∆LO,o = ΩIF, (49) where ΩIF > 0 is the intermediate frequency for down-mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The heterodyne output field can be obtained similar 9 to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (40), ˆIout,e(ωn + ΩIF) = 1 √ 2[( ˆXe(−ωn) + ˆXe(ωn + 2ΩIF) + i(− ˆPe(−ωn) + ˆPe(ωn + 2ΩIF))], ˆIout,o(ωn + ΩIF) = 1 √ 2[ ˆXo(−ωn − 2ΩIF) + ˆXo(ωn) + i(− ˆPo(−ωn − 2ΩIF) + ˆPo(ωn))], (50) with noise spectrum given by, SII,e(ωn + ΩIF) = 1 2(SXeXe (−ωn) + SPePe (−ωn)) + Ne,add, SII,o(ωn + ΩIF) = 1 2(SXoXo (ωn) + SPoPo (ωn)) + No,add.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (51) We note that, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (50) is adopted for field quadrature extraction (including the added noise) from the heterodyne measurement, which reveals correlations in the quadrature histogram [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 in the main text].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Despite of the reversed sign in the expected field quaduratures, microwave and optical output photons appear at the same frequency in the noise spectrum, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ωn + ΩIF [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 d,e in the main text].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Covariance Matrix from Realistic Heterodyne Measurements Here we briefly explain the procedure of the covariance matrix reconstruction from the heterodyne measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The cross correlations of the detected heterodyne current spectra can be obtained via, DAB(ωn) = δIA,det(ωn + ΩIF)δIB,det(ωn + ΩIF), (52) where we define the centered current δIO,det = IO,det − IO,det, with IO,det(ωn) ∈ {IXe,det(ωn), IPe,det(ωn), IXo,det(ωn), IPo,det(ωn)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (53) Similar to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (42)), we can obtain DAB(ωn) = 1 2⟨{δ ˆIA,det(ωn + ΩIF), δ ˆIB,det(ωn + ΩIF)}⟩ = � GA,det(ωn + ΩIF))GB,det(ωn + ΩIF)) �1 2⟨{δ ˆA(ωn), δ ˆB(ωn)}⟩ � �� � =VAB(ωn) +NAB,add � , (54) where we define the diagonal added noise matrix NAB,add = (Nadd)AB = NA,addδAB with the calibrated added noise Nadd and detection gain GA,det.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This equation establishes how the covariance matrix of the qudrature operators [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (38)] is reconstruced from heterodyne measurements, and how they can be compared with the results from idealized standard input-output theory Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For simplicity, in the main text we define the total measured covariance matrix including the added noise as, VAB,meas(ωn) = DAB(ωn)/ � GA,det(ωn + ΩIF))GB,det(ωn + ΩIF)), (55) with VAB,meas(ωn) = VAB(ωn) + NAB,add.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, in principle the location of both LOs can be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As evident in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 54, our choice of the LO configuration, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆LO,e = −∆LO,o = −ΩIF, offers a simple solution to the quantification of the broadband quantum correlations, considering the limited detection bandwidth, frequency dependent gain, or microwave cavity frequency shift, which may result in the loss of quantum correlations during quadrature extractions in heterodyne measurements due to imperfect frequency matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Entanglement Detection 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Duan Criterion We will now discuss how show that the photons outgoing microwave and optical photons are indeed inseparable or entangled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Our starting point is the covariance matrix which we defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (33) and measured as outline in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The experimentally measured covariance matrix is of the form V = � Ve Veo Veo Vo � = � � � � V11 0 ˜V13 ˜V14 0 V11 ˜V14 − ˜V13 ˜V13 ˜V14 V33 0 ˜V14 − ˜V13 0 V33 � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (56) Since there is no single mode squeezing we have V22 = V11 and V44 = V33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For simplicity we have omitted the frequency argument ωn of component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' What we describe in the following will have to be repeated for every frequency component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The off-diagonal part in the covariance matrix which encodes the two-mode squeezing can be written as Veo ≃ V13(sin(θ)σx + cos(θ)σz), (57) where we define V13 = ( ˜V 2 14 + ˜V 2 13)1/2 and the mixing angle tan(θ) = ˜V14/ ˜V13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In our experimental setting ˜V14 maybe non zero e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' due to small finite detunings δo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For the detection of inseparability, we employ the criterion introduced by Duan, Gidke, Cirac and Zoller [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This criterion states that if one can find local operations Uloc = Ue ⊗ Uo such that the joint amplitude variance of ˆX+ = ( ˆXe + ˆXo)/ √ 2 break the inequality, ∆X2 + = ⟨U † loc ˆX2 +Uloc⟩ < 1/2, (58) then the state is inseparable and, thus it must be concluded that it is entangled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In this setting, it is enough to choose the local operations Uloc = UeUo to be a passive phase rotation on the optical mode only, with Ue = 1 and Uo = e−iϕˆa† oˆao, and phase rotation angle ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the space of covariance matrices, this corresponds to the (symplectic) transformation Sϕ = 12 ⊕ Rϕ, where we define the rotation matrix, Rϕ = � cos (ϕ) sin (ϕ) − sin (ϕ) cos (ϕ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (59) The local rotation of the phase V (ϕ) = SϕV S⊤ ϕ will act on the off diagonal part of the covariance matrix as, Vea(ϕ) = V13(cos(θ − ϕ)σz + sin(θ − ϕ)σx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (60) With these local rotations the joint amplitude variance becomes ∆X2 +(ϕ) = ⟨( ˆXe + ˆXo cos(ϕ) + ˆPo sin(ϕ))2⟩/2 = V11 + V33 + 2V13 cos(θ − ϕ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (61) We can similarly define the joint quadrature ˆP− = ( ˆPe − ˆPo)/ √ 2, where ∆P 2 −(ϕ) = ∆X2 +(ϕ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The variance of the joint quadratures ∆X2 +(ϕ) and ∆P 2 −(ϕ) is minimized at the angle ϕ− = θ − π ∆− EPR = ∆X2 +(ϕ−) + ∆P 2 −(ϕ−) = 2(V11 + V33 − 2V13), (62) which corresponds to the two-mode squeezing of microwave and optical output field, and the microwave-optics entan- glement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In addition, the joint quadrature variance is maximized at the angle ϕ+ = θ and we obtain ∆+ EPR = ∆X2 +(ϕ+) + ∆P 2 −(ϕ+) = 2(V11 + V33 + 2V13), (63) which corresponds to the anti-squeezing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 11 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Logarithmic Negativity and Purity A mixed entangled state can be quantified by the logarithmic negativity, EN = max [0, − log (2ζ−)] , (64) where ζ− is the smaller symplectic eigenvalue of the partially time reverse covariance matrix and can be obtained analytically ζ2 − = S − � S2 − 4det(V ) 2 (65) where we defined the Seralian invariant S = det(Ve) + detVo + 2det(Veo).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Furthermore the purity of a bipartite Gaussian state is given by ρ = 1 4 � det(V ) , (66) with ρ = 1 for a pure state i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' the vacuum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' EXPERIMENTAL SETUP The experimental setup is shown and described in SI Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The laser is split into three parts, including an optical pulsed pump at frequency ωp, a continuous signal at ωp −FSR for the 4-port calibration (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' SI III), and a continuous local oscillator (LO) at ωp − FSR + ΩIF for the optical heterodyne detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The optical signal and pump pulse are sent to the optical resonator of the electro-optical device (DUT) and the reflected light (with pump pulse rejected by a filter cavity) is combined on a 50:50 beam splitter with the optical local oscillator with subsequent balanced photodetection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Microwave input signals are attenuated at different temperature stages of the dilution refrigerator (4 K: 20 dB, 800 mK: 10 dB, 10 mK: 20 dB), and sent to the coupling port of the microwave cavity of the DUT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The reflected microwave signal is amplified and can then either be mixed with a microwave local oscillator of frequency FSR − ΩIF and subsequently digitized, or directly measured by a vector network analyzer or a spectrum analyzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, the optical LO is on the right side of optical mode, while the microwave LO is on the left side of the microwave mode, with ΩIF/2π = 40MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' More details are in the caption of Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' SETUP CHARACTERIZATION AND CALIBRATION In the main manuscript, we show results from two different sets of optical modes shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The main difference between these mode sets is the amount of suppression of the anti-Stokes scattering rate compared to Stokes scattering rate given by scattering ratio S, which depends on the mode hybridisation of the anti-Stokes mode [5, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The first set of optical mode (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2a) from which we show most of our main results (main text Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2, 3 and 5a) has S =−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='3 dB on-resonance with an effective FSR = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='799 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The last power sweep shown in main text Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 5b is measured with a second set of optical modes with a lower S =−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1 dB and a different effective FSR = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='791 GHz (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Despite it being the same optical resonator, the FSR for the second set of optical modes is slightly different, because of partial hybridisation of the optical pump mode which alters the working FSR between the optical pump and signal mode, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the following, we carefully calibrate the added noise due to the microwave detection chain at both these working FSRs (since microwave mode is parked at the working FSR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The added noise can be slightly different depending on frequency of measurement due to impedance mismatch and reflections between components in the microwave detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Microwave added noise calibration In the following, we carefully calibrate the slightly different added noise in the microwave detection chain at both frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='The impedance mismatch and reflections between components in the microwave detection chain can vary 12 Dilution refrigerator Microwave preparation Optics preparation Optics and microwave detection MC1 MS2 MS3 C1 C2 C3 C5 C4 10mK 800mK 4K 300K DC Microwave signal (FSR) DC Optical signal (193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 THz - FSR) Optical pump (193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 THz) Coherent optical signal (193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 THz - FSR) Optical LO (193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 THz -FSR - ωlo) Microwave LO (FSR + ωlo) IF (ωlo) RF lines DUT VNA SA DIGITIZER LNA RTA2 RTA1 Q I 1 1 2 90 10 1 1 2 3 3 4 PC1 S3 S4 MS1 DDG 25 75 BPD Laser Lock control 1550 nm SSB VOA1 99 1 EDFA1 EDFA2 AOM1 AOM2 PC2 PD2 PD3 PD4 F3 F1 F2 PD1 S1 S2 ΩLO OSA PM HEMT Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Experimental setup for two-mode squeezing measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A tunable laser at frequency ωp is initially divided equally in two parts, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' the optical pump and the optical signal together with the optical local oscillator (LO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Light from the optical pump path is pulsed via an acousto-optic modulator (AOM1) which produces ns-pulses and shapes them for amplification via an Erbium-doped fiber amplifier (EDFA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output from the EDFA is first filtered in time via AOM2 to remove the amplified spontaneous emission (ASE) noise and later in frequency via filter F1 (∼50 MHz linewidth with 15 GHz FSR) to remove any noise at the optical signal frequency (the reflected power is rejected by circulator C3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The filter F1 is locked to the transmitted power by taking 1% of the filter transmission measured via photodiode PD3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The polarization of the final output is controlled via polarization controller PC1 before being mixed with the optical signal via a 90-10 beam splitter and sent to the dilution refrigerator (DR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The 10% output from the beam splitter is monitored on a fast detector PD2 to measure the optical pump pulse power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The other half of the laser is again divided into two parts - 25% for the optical signal and 75% for the optical LO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The signal part is sent first to a variable optical attenuator VOA1 to control the power and then to a single sideband modulator SSB which produces the optical signal frequency at ωp − FSR and suppresses the tones at ωp and ωp + FSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1% of the optical signal is used to monitor the SSB suppression ratio via an optical spectrum analyzer OSA and 99% is sent to the DR after being polarization controlled via PC2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The optical LO is produced via a phase modulator PM and detuned by ωIF/2π = 40 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As the PM produces many sidebands, the undesired sidebands are suppressed via filter F3 (∼50 MHz linewidth with 15 GHz FSR), reflection is rejected by circulator C5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' F3 is temperature-stabilized and locked to the transmitted power similar to F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The optical LO is also amplified via EDFA2 before the optical balanced heterodyne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the DR, the light is focused via a gradient-index (GRIN) lens on the surface of the prism and coupled to the optical whispering gallery mode resonator (WGMR) via evanescent coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Polarization controllers PC1 and PC2 are adjusted to efficiently couple to the TE modes of the optical WGMR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output light is sent in a similar fashion to the collection grin lens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Outside the DR, the optical pump is filtered via filter F2 (similar to F3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The reflected light from F2 is redirected via C4 to be measured with PD1 which produces the lock signal for the laser to be locked to optical WGMR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The filtered signal is finally mixed with the optical LO and measured with a high speed balanced photo-diode BPD (400 MHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The electrical signal from the BPD is amplified via RTA1 before getting digitized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' On the microwave side, the signal is sent from the microwave source S3 which is connected to the DDG for accurately timed pulse generation (or from the VNA for microwave mode spectroscopy) to the fridge input line via the microwave combiner (MC1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The input line is attenuated with attenuators distributed between 4 K and 10 mK accumulating to 50 dB in order to suppress room temperature microwave noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Circulator C1 and C2 shield the reflected tone from the input signal and lead it to the amplified output line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output line is amplified at 4 K by a HEMT-amplifier and then at room temperature again with a low noise amplifier (LNA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output line is connected to switch MS1 and MS2, to select between an ESA, a VNA or a digitizer measurement via manual downconversion using MW LO S4 (40 MHz detuned).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Lastly, microwave switch MS3 allows to swap the device under test (DUT) for a temperature T50 Ω controllable load, which serves as a broad band noise source in order to calibrate the microwave output line’s total gain and added noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' the added noise slightly as a function of frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This added noise and corresponding gain due to a series of amplifiers 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 a b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 |Soo|2 |Soo|2 ωp +FSR ωp FSR ωp ωp +FSR ωp FSR ωp Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Optical mode spectra in reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Normalized reflection intensity |Soo|2 spectra of optical modes ˆao, ˆap and ˆat in red, green and blue respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a (b) shows the optical mode spectra of the first (second) set of modes with the anti-Stokes and Stokes scattering ratio S = −10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='3 dB (−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1 dB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The dashed line marks the effective FSR between the pump mode ˆap and the optical mode ˆao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The participation anti-Stokes optical mode ˆat is suppressed for this effective FSR as marked by the dashed line over the blue mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' and cable losses in the microwave detection chain is calibrated using a combination of a 50 Ω load, a thermometer and a resistive heater that are thermally connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The microwave detection chain is identical for the signals from the 50 Ω load and the microwave cavity reflection, except for a small difference in cable length which we adjust for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' To calibrate the detection chain, we heat the 50 Ω load with the resistive heater and record the amplified noise spectrum P50Ω(ω) as a function of temperature of 50 Ω load T50Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output noise detected over a bandwidth B, P50Ω, as a function of T50Ω is given as, P50Ω = ℏωeGB �1 2 coth � ℏωe 2kBT50Ω � + Ne,add � , (67) with ωe the center microwave frequency, Ne,add (G) the added noise (gain) of the microwave detection chain, and kB the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A bandwidth of 11 MHz is selected around the region of interest to calculate Ne,add and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For ωe = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='799 GHz, we show the detected noise Ne,det = P50Ω/(ℏωeGB) as a function of T50Ω in SI Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3 along with a fit using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 67, with two fitting parameters G and Ne,add.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, at T50Ω = 0 K, Ne,det = Ne,add + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Table 1 (third row) shows the obtained added noise and gain for two frequencies of interest, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ωe/2π = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='799 GHz and ωe/2π = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='791 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Next, we consider the difference in cable losses between the 50 Ω load and the microwave cavity, which are in- dependently determined by measuring the microwave reflection from the microwave cavity and from the microwave switch directly before it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Including the cable losses, the effective added noise increases while the gain decreases for the reflected microwave detection, shown in Table 1 (fourth row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Finally, we consider an additional error due to the temperature sensor inaccuracy of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Although this does not change the final Ne,add and G, it increases the uncertainty as shown in Table 1 (fifth row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The error calculated in this section contributes to the systematic error reported in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 14 Supplementary Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The added noise and gain in microwave detection chain (1σ errors shown) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='799 GHz 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='791 GHz Detection Chain Ne,add G (dB) Ne,add G (dB) 50Ω load (with fitting error) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='74 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='08 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='67 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='02 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='76 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='09 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='72 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03 MW cavity (including cable loss) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='09 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='02 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='10 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03 MW cavity (including temperature sensor uncertainty) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='33 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='20 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='12 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='34 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='23 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='12 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 13 12 14 15 16 Experiment Fit (K) Tf Ne,det (photons s-1 Hz-1) Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Characterization of the added noise in the microwave detection chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Measured output noise from a 50 Ω calibration load as a function of its temperature Tf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The measured noise is plotted in units of photons as N 50Ω det = P50Ω/(ℏωeGB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The dashed line at the bottom represents the fitted vacuum noise level in addition to the added noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The red line and shaded region represents the fit and the 95% confidence interval around it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Optical added noise Optical added noise is calculated via 4-port calibration of our device [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In this calibration, we measure the coherent response of our device through its 4 ports - optical input/output and microwave input/output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sending an optical (or microwave) signal to the DUT in combination with a strong pump leads to stimulated parametric down-conversion (StPDC) process, which generates an amplified microwave (optical) coherent signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We measure the 4 S-parameters of our device - microwave reflection (S11), optics reflection (S22), microwave to optics transmission (S21) and optics to microwave transmission (S12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The mean transduction efficiency between microwave and optics of the DUT is then calculated as, η = � S12S21 S11S22 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (68) We use the transduction efficiency and Ne,add in the microwave detection chain from Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' III A to calculate the optical added noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Ne,add is firstly used to calculate the effective microwave detection gain (different from the one in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' III A, because the microwave detection line used for the 4-port calibration uses analog downconversion and digitization, while the thermal calibration uses SA, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The microwave gain, along with the (off-resonant) microwave reflection measurement, is used to calculate the microwave input loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We can obtain the microwave signal power at the DUT, which allows us to calculate the output optical power of the DUT using the transduction efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In conjunction with the measured output power at the end of the detection chain, the losses in the optical detection path and hence, the effective added noise with respect to the optical port of the DUT can be calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The calculated optical added noise is No,add = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='21(7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='42 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='22) for ωe = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='799 GHz (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='791 GHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 15 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' DATA TREATMENT In this section, we describe all the steps for the data treatment in detail, which includes the time domain analysis (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' IV A), the pulse post-selection due to setup drift (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' IV B), the frequency domain analysis (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' IV C), and the quadrature correlations (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' IV D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Time-domain analysis Both microwave and optical signals are detected via heterodyne detection by mixing with a strong local oscillator that is ∼40 MHz detuned from respective mode resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The output heterodyne signals are digitized using a digitizer at 1 GigaSamples/second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' First, we digitally downconvert the digitized data at ωIF = 40 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This yields the two quadratures IXe/o,det(t) and IPe/o,det(t) of the microwave or optical output signal record with 40 MHz resolution bandwidth (using 25 ns time resolution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 4 shows the calibrated output power (I2 Xe/o,out + I2 Pe/o,out) [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 50] and the phase (arctan(IXe/o,out/IPe/o,out)) from a single pulse sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This includes the stochastic SPDC signals from a strong pump pulse, and the coherent StPDC signal from a weaker pump pulse together with a coherent microwave signal for calibration purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The SPDC signal produced by the first strong pulse is labeled by the shaded region for one single pulse, and the averaged output power over many pulses is shown in main text Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The coherent microwave reflection and stimulated parametric downconverted optical signal are adopted to obtain the phases during the pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We record this measured phase in both signal outputs during the second optical pump pulse for phase-drift correction in later post processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 0 1 2 3 4 5 0 1 2 3 4 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0 200 400 0 50 100 150 200 600 800 1000 1200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 a b (µs) Phase (rad/π) Phase (rad/π) (photons/s/Hz) Ne, (photons/s/Hz) No, t (µs) t Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Downconverted output signal for a single measured pulse sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a (b) show the measured microwave (optical) output signal downconverted at 40 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The shaded part in each case shows the region of the SPDC signal (the first optical pump pulse).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For a single pulse, the SNR of a SPDC signal is too small to be seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' However, during the second optical pump pulse, a coherent response is seen in both signal outputs where the phase can be measured with high SNR for each single shot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In order to determine the accuracy of a phase correction for the first pump pulse based on the phase measurement during the second pump pulse, we send a continuous microwave signal during both pump pulses and recorded the phase of the converted optical pulse during the first and the second optical pump pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 5 shows the phase difference between the first and second optical pump pulse for 2500 trials along with a normal distribution fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The fit variance for the distribution is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='17 rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' On a similar set of model data, applying a random phase variation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='17 rad results in about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0% loss of correlations [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' IV D], whereas, we observe about 6-8% loss of correlations in the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The imperfection in phase correction does not completely explain the decreased quantum correlations, which might be due to other experimental instabilities, especially the optical pump laser lock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 Probability density Phase difference (radians) Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Accuracy of phase correction scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The histogram shows the difference in the measured phase between the first and second optical pump pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Since we correct the phase in the first pump pulse based on the measured optical phase of the second optical pump pulse, the difference shows the limitations of this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The grey dashed line is a normal distribution fit with variance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='17 rad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Pulse post-selection In our experiments, we use three temperature-stabilized optical filters, which may drift slowly in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Two of them are used in the optical heterodyne detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the signal path, one filter (F2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1) is used to filter the optical signal while reject the strong optical pump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In the LO path, one filter (F3 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1) is used to obtain a clean optical LO tone, which is genearted by an electro-optic phase modulator (which produces multiple sidebands) and then amplified using an EDFA (which produces excess amplified spontaneous emissions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The slow filter drifts can be identified from the amplitude of the coherent optical signal produced via stimulated parametric downconversion during the second optical pump pulse, which drops due to either the decreased transmission after F2 or the reduced LO power after the F3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This is evident in the histogram of the converted optical power during the second optical pump pulse as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 6a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The histogram is not symmetric and has a tail at the lower end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' To filter out the instances of drifted heterodyne detection, we select a threshold (in this case marked by a dashed line in Fig 6) and remove all pulses below the selected threshold along with 20 neighboring pulses (10 s in total time) before and after such instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' These numbers are chosen according to the filter drift and the filter temperature lock time-scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' After such filtering, usually about 10% of the data is removed and the histogram of the converted optical power during the second optical pump pulse becomes symmetric as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 6b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Frequency domain analysis As already mentioned in the main text, with the help of time-domain analysis, we select three different time-snippets to analyze the data in the frequency domain - before-pulse, on-pulse and post-pulse defined with respect to the first optical pump pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The main challenge in processing the data in frequency domain is the proper normalization of the measured output spectrum [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The microwave reflection baseline is not flat because of slight impedance mismatches between different components in the microwave detection chain, with similar optical heterodyne shot noise floor due to the frequency dependent balanced detector gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In addition, we observe slight shift of a few millivolts each time in the digitizer measurements when a new measurement is launched and the digitizer is reinitialized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Combined with the fact that the amplifier gain in the microwave detection chain as well as the optical heterodyne gain (due to optical LO power drift) may drift over a long time, an in-situ calibration of vacuum noise level is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In case of microwave, we need to first correct for the microwave reflection baseline distortion from impedance mismatch and then correct for the signal level shift caused by the digitizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For the distorted baseline, we separately measure the microwave output spectrum when the microwave cavity is in its ground state (thermalized to 7 mK at mixing chamber).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This measurement is shown in Supplementary Fig 4a (gray) along with the measured before-pulse (cyan), on-pulse (purple) and after-pulse microwave noise spectrum (orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Dividing the measured spectra with the cold cavity spectrum reveals a flat baseline Lorentzian noise spectra, however with an offset due to the digitizer drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' To correct for this offset, we perform an in-situ vacuum noise calibration using the off-resonance (waveguide) noise in the before-pulse microwave noise spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' An independent measurement of the microwave waveguide noise as a function of the average optical pump power (averaged over the full duty cycle) is shown in Supplementary Fig 17 50 0 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='02 50 0 100 150 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='02 a b Optics quanta (photons s-1 Hz-1) Optics quanta (photons s-1 Hz-1) Count (Normalized) Count (Normalized) Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Histogram of the converted optical power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The measured coherent optical power during the second optical pump pulse depends on the optical heterodyne gain and the received optical signal power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Both of these values can drift depending on the experimental setup’s stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a shows the normalized histogram of this measured optical power over all the collected pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The histogram has a tail on the lower end owing to the times when the heterodyne setup drifted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Filtering the points which do not meet a selected threshold (shown by the grey dashed line in a), we remove the instances where the setup had drifted and the optical heterodyne detection efficiency was compromised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The same histogram after removing such points is shown in b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The error bars (2σ deviation) result from the microwave detection chain gain and the measurement instrument drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The power law fit reveals that the microwave waveguide noise grows almost linearly with average optical pump power, and only deviates significantly from 0 for optical pump power >3 µW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As we work with average optical pump powers of ≪1 µW, we can safely assume the microwave waveguide noise to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Therefore, we use the off-resonant waveguide noise for before-pulse microwave noise spectrum as an in-situ vacuum noise calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In case of optics, the optical detection is shot-noise limited, and the excess LO noise at the optical signal frequency is suppressed by more than 40 dB using filter F1 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We use the before-pulse optical noise spectrum as the vacuum noise level and normalize the optical on-pulse spectrum directly with the before-pulse in-situ calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Supplementary Fig 4b shows noise spectrum (without normalization) of the optical off-pulse (cyan), on-pulse (green), and the after-pulse (yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The signal during the optical pump pulse is clearly visible, and the noise level is identical before and after the optical pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The normalized noise spectra for both microwave and optics are shown in main text Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2d and 2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=', where we can obtain the normalization gain [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Joint-quadrature correlations The detected output quadratures including excess added noise, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆIXe,out(∆ω), ˆIPe,out(∆ω), ˆIXo,out(∆ω), ˆIPo,out(∆ω), can be obtained from the real and imagrinary parts in the discret Fourier transform of the photocurrent by normalizing to the detection gain [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Similar to Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I C 1, we can define the joint detected quadratures, by applying phase rotation on the optical ones, ˆIX,+(∆ω, φ) = ˆIXe,out(∆ω) + � ˆIXo,out(∆ω) cos φ − ˆIPo,out(∆ω) sin φ � √ 2 , ˆIP,−(∆ω, φ) = ˆIPe,out(∆ω) − � ˆIXo,out(∆ω) sin φ + ˆIPo,out(∆ω) cos φ � √ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (69) To verify the non-classical correlation between the unitless quadrature variables for output microwave and optics field, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ˆXe(∆ω) & ˆXo(−∆ω) and ˆPe(∆ω) & ˆPo(−∆ω), we can calculate the phase dependent joint quadrature 18 40 20 60 59 60 61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='28 62 63 64 65 a b (MHz) 40 20 60 MW output (nW/2MHz) Opt output (µW/2MHz) Off-pulse In-pulse Off-pulse In-pulse After-pulse After-pulse Cold cavity ω/2π (MHz) ω/2π Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Spectra of output signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The microwave reflection baseline is not flat due to an impedance mismatch between different components in the microwave detection chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As a result, the output power measured from amplified vacuum noise (from the cold microwave cavity) is not flat (shown in gray in a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Additionally, the digitizer in our setup has a different noise level each time it is started.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As a result, the cold cavity baseline has an extra offset with respect to all other measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a also shows the measured output spectra for time region before (during, after) the first optical pulse shown in cyan (purple, orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Similarly, b shows the output spectra for the optical output before (during, after) the first optical pulse in cyan (green, orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 100 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 Experiment 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='01Pavg 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='97 Pavg (µW) Wavegide noise (photons/s/Hz) Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Microwave waveguide noise as a function of the average optical pump power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The error bars represent 2σ error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The solid line is a power law fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We find the power law is actually quite close to a linear function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' variance [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 61], � ˆX2 +(∆ω, φ) � = � ˆI2 X,+(∆ω, φ) � − Ne,add + No,add 2 , � ˆP 2 −(∆ω, φ) � = � ˆI2 P,−(∆ω, φ) � − Ne,add + No,add 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (70) For ∆ω = 0, we plot the joint quadrature variance as a function of local oscillator phase in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 9 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The shaded region represent the 2σ statistical error in the calculated joint quadrature variances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, the statistical 1σ error of the variance for a Gaussian distributed data is given by √ 2σ2/ √ N − 1, where N is the length of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The obtained resonant ∆EPR(0, φ) is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 9(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The minimum and maximum of ∆EPR(φ) over the local oscillator phase are defined as min[∆EPR] = ∆− EPR and max[∆EPR] = ∆+ EPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆− EPR < 1 indicates non-classical joint correlations and squeezing below vacuum levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 a b Quanta Phase (rad/π) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 Phase (rad/π) ΔEPR X+ P+ Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Joint quadrature correlations and ∆EPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Joint quadratures at resonance X+(∆ω = 0) and P+(∆ω = 0) are plotted as a function of the local oscillator phase φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆EPR as a function of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The shaded region in both plots represents the 2σ statistical error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The broadband phase that minimizes ∆EPR(∆ω, φ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' φmin(∆ω), reveals the difference in arrival times (group delay) between the microwave and optical signal output (Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 10a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' After fixing the inferred time delay between the in-pulse arrival time of the microwave and optical signal, φmin becomes independent of frequency detuning from the mode resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Thus, we adjust for the differences in arrival times by ensuring that the slope of φmin with respect to detuning ∆ω is minimized for all datasets we analyze, utilizing the broadband quantum correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 a b 0 20 30 10 20 10 30 (MHz) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0 20 30 10 20 10 30 (rad/π) φ (rad/π) φ ∆ω/2π (MHz) ∆ω/2π Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Effect of time delay between the microwave and optics signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The plots show the local oscillator phase φmin which minimizes ∆EPR(∆ω, φ) as a function of detuning frequency ∆ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a (b) shows the case when the time difference of arrival between the microwave and optics signals was 25 ns (≈ 0 ns).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The solid lines are the linear fit to the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' QUADRATURE HISTOGRAM RAW DATA Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 11 shows the normalized difference of the two-variable quadrature histograms obtained during and before the optical pump pulse based on the data shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2 and 3 of main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' These unprocessed histograms directly show the phase insensitive amplification in each channel as well as the correlations in (Xe,Xo) and (Pe,Po).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Note however that - in contrast to the analysis in the main text - taking this difference does not lead to a valid phase space representation since also the vacuum noise of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 together with the output noise of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='026 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='011 photons (due to the residual microwave bath occupancy right before the pulse) are subtracted, hence the negative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 20 20 10 0 10 20 20 10 0 10 20 20 10 0 10 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 10 0 10 10 0 10 10 0 10 20 10 0 10 10 0 10 10 0 10 10 0 10 20 20 10 0 10 20 20 10 0 10 20 Pe Pe Pe Po Po Po Xo Xo Xo Xe Xe Xe Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Quadrature histogram raw data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Normalized difference of the two-variable quadrature histograms obtained during and before the optical pump pulse based on the data shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2 and 3 of the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' NON-CLASSICAL CORRELATIONS WITH 600 ns LONG OPTICAL PUMP PULSES Before experimenting with 250 ns long optical pump pulses, we used 600 ns long optical pump pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A sample measurement with a 600 ns is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 12a similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 3c of main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Compared to 250 ns long pulses, the main difference lies in the fact that ∆− EPR in the middle panel exhibits a double-dip shape because the correlations ¯V13 have a wider bandwidth than the emitted noise spectra ( ¯V11 and ¯V33), which are narrowed due to dynamical back- action [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Since in the measurement the correlations don’t clearly overwhelm the emitted noise, interference between two Lorentzian functions of different widths (dashed line) leads to the specific shape of ∆− EPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Theory confirms this even though the shown theory curve (solid red line) does not exhibit the specific line-shape due to higher expected correlations compared to the experimentally observed values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' These results indicate that ¯ne,int due to a 600 ns optical pump pulse is large enough to prevent a clear observation of squeezing over the full bandwidth below the vacuum level (∆− EPR < 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' As a result, we switched to 250 ns optical pump pulses with higher statistics as shown in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We also repeated the measurement with 600 ns long pulses with different optical pump powers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 12b shows the measured pump power dependence with each data point based on 170000-412500 individual measurements each with a 2 Hz repetition rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The microwave mode thermal bath occupancy ¯ne,int changes little as a function of the peak optical pump power at the device and is approximated with a constant function (solid maroon line in the top panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The on-resonance mean CM elements scale with cooperativity and are in excellent agreement with theory (solid lines) based on the ¯ne,int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The on-resonance squeezing ∆− EPR does not change significantly with cooperativity since both excess noise and correlations scale together with cooperativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The anti-squeezing ∆+ EPR scales up with cooperativity as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' All but one measured mean values are below the vacuum level and three power settings show a > 2σ significance for entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Note that this power sweep was conducted on a different set of optical modes with a different amount of anti-Stokes sideband suppression (see section III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ERROR ANALYSIS The covariance matrix of the output field quadratures V (ω) can be directly calculated from the extracted microwave and optical quadratures from frequency domain analysis [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 54] We simply rotate the optical quadratures with the phase that minimized the joint quadrature variance, and obtain the covariance matrix in the normal form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, the error in calculating the covariance matrix comes from two sources - the statistical error due to finite number of pulses, and the systematic error in the vacuum noise level calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The detailed error analysis is described in the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We note that, the uncertainty in all the reported numbers in the main text corresponds to 2 standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 21 0 10 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='4 10 20 a b Interpolation In-pulse After-pulse Before-pulse 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='3 140 160 180 200 220 240 Optical pump power (mW) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='22 Cooperativity (V11 + V22)/2 (V33 + V44)/2 (V13 − V24)/2 (V11 + V22)/2 (V33 + V44)/2 (V13 − V24)/2 V (photons s-1 Hz-1) (photons s-1 Hz-1) (MHz) V ΔEPR ΔEPR + ΔEPR ¯ne,int ΔEPR + Δω/2π Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Non-classical correlations vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' optical pump power for 600 ns long pump pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' a, Top panel, the average microwave output noise ¯V11 (purple), the optical output noise ¯V33 (green) and correlations ¯V13 (yellow) as a function detuning based on 412500 measurements with a 2 Hz repetition rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The solid lines represent the joint theory with fit parameters C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='22 and in-pulse microwave thermal bath occupancy ¯ne,int = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='19 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The dashed lines are individual Lorentzian fits to serve as a guide to the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' ∆− EPR (∆+ EPR) in the middle (bottom) panel shown in red (blue) color are calculated from the top panel data and fits as described in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The darker color error bars represent the 2σ statistical error and the outer (faint) error bars also include systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' b, Power dependence of CM elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The top panel shows the microwave mode thermal bath occupancy ¯ne,int for before-pulse, after-pulse and in-pulse regimes (marked in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 2A) as a function of the peak optical pump power at the device and the corresponding cooperativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The in-pulse ¯ne,int is obtained by the joint theory fit and approximated with a constant function (solid line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The middle panel shows the on-resonance mean CM elements based on the ¯ne,int from the top panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The bottom two panels show the on-resonance squeezing ∆− EPR and anti-squeezing ∆+ EPR calculated from the middle panel along with theory (solid lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The darker color error bars represent the 2σ statistical error and the outer (faint) error bars also include systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' All measured mean values are below the vacuum level and three power settings show a > 2σ significance for entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Statistical error The error in the calculation of bivariate variances comes from the statistical uncertainties, arising from finite number of observations of a random sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' This error is the major component of our total error in diagonal covariance matrix elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' The error in calculating the variance of a sample distribution sampled from a Gaussian variable follows the Chi-squared distribution and is given as, Var(σ2) = 2σ2 N − 1, (71) where, σ2 is the variance of sample distribution and N is its size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' In addition, the error in the covariance from a bivariate variable is given by the Wishart distribution [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' For a general bivariate covariance matrix Σ given as, Σ = � σ2 11 ρσ11σ22 ρσ11σ22 σ2 22 � , (72) 22 the variance of the covariance matrix is given by, Var(Σ) = 1 N − 1 � 2σ4 11 (1 + ρ2)σ2 11σ2 22 (1 + ρ2)σ2 11σ2 22 2σ4 22 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' (73) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Systematic error Although, the systematic error in our measurements are not as significant, they still are a noticeable source of error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Here the error in calculating the covariance matrix results form the error in the estimation of the vacuum noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' More specifically, the error in determining the added noise due to the microwave and optical detection chain, as discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Propagating these systematic errors through the covariance matrix analysis is non- trivial, since calculating the error in variance of erroneous quantities is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Therefore, we use a worst-case scenario approach to calculate the total error including the statistical error and the systematic error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We repeat the full analysis, including the statistical errors, for the lower and upper bound of the uncertainty range from the systematic errors for the microwave and optical added noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Repeating the analysis expands the error bars in the calculated quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We take the extremum of all the error bars from all the repetitions of analysis to get the total error bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' We show both statistical error and the total error in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' REFERENCES [1] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rueda, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sahu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wulf, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arnold, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schwefel, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, PRX Quantum 1, 020315 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tsang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A 81, 063837 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Tsang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' A 84, 043845 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rueda, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sedlmeir, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Collodo, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vogl, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Stiller, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schunk, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Strekalov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Marquardt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Painter, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Leuchs, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Schwefel, Optica 3, 597 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Qiu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sahu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arnold, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='12443 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Gardiner and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Collett, Physical Review A 31, 3761 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Braunstein and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' van Loock, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' 77, 513 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zippilli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Giuseppe, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Vitali, New Journal of Physics 17, 043025 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' da Silva, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Bozyigit, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wallraff, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Blais, Physical Review A 82, 043804 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Walls and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Milburn, Quantum optics (Springer Verlag, Berlin, 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wiseman and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Caves, Physical Review D 26, 1817 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Duan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Giedke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Cirac, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Zoller, Physical Review Letters 84, 2722 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Sahu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Hease, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Rueda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Arnold, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Qiu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Fink, Nature Communications 13, 1276 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
+page_content=' Wishart, Biometrika 20A, 32 (1928).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE1T4oBgHgl3EQfoARp/content/2301.03315v1.pdf'}
diff --git a/A9E0T4oBgHgl3EQfxwJo/vector_store/index.pkl b/A9E0T4oBgHgl3EQfxwJo/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..e4640345d5ec9df3442cae1206e0fce705113945
--- /dev/null
+++ b/A9E0T4oBgHgl3EQfxwJo/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:09b40978fd6a169475dfc391ec2a89acbcd9e4a0a498ac699f71eb173935f728
+size 199457
diff --git a/DtA0T4oBgHgl3EQfAv-e/content/2301.01967v1.pdf b/DtA0T4oBgHgl3EQfAv-e/content/2301.01967v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..ba37668a25fce21c742c74b5f18f35300c19d372
--- /dev/null
+++ b/DtA0T4oBgHgl3EQfAv-e/content/2301.01967v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d897738a452dedd508eaa6d1c264043546bf3eb2804c76e7351b134760dbd049
+size 216633
diff --git a/DtA0T4oBgHgl3EQfAv-e/vector_store/index.faiss b/DtA0T4oBgHgl3EQfAv-e/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..b4cb67cf5f81c0414265f5d42389f2558be7683b
--- /dev/null
+++ b/DtA0T4oBgHgl3EQfAv-e/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b157b11bdc3a281c051d3afecbea1b65b0d845e0c3cd572ed77e516e168707db
+size 3407917
diff --git a/DtA0T4oBgHgl3EQfAv-e/vector_store/index.pkl b/DtA0T4oBgHgl3EQfAv-e/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..871db6073b2e65c22a5abb8e1a2e05de11137cf2
--- /dev/null
+++ b/DtA0T4oBgHgl3EQfAv-e/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c53514db0525f10c1538ae9819375724852b69c0a00f6e6f7eb3d166a95a7c1c
+size 136377
diff --git a/E9A0T4oBgHgl3EQfBP8f/vector_store/index.faiss b/E9A0T4oBgHgl3EQfBP8f/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..69d463d8ad66cb995c8a6a7cdfe4b0b9b0d2d70e
--- /dev/null
+++ b/E9A0T4oBgHgl3EQfBP8f/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1ed0024ee9852849c926a74405a9982713c752eea910b96687af39823b1160ad
+size 8388653
diff --git a/H9FKT4oBgHgl3EQfdS4O/content/tmp_files/2301.11819v1.pdf.txt b/H9FKT4oBgHgl3EQfdS4O/content/tmp_files/2301.11819v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..21d9def7e3124e1dd83df05cc2d595e28964c9fc
--- /dev/null
+++ b/H9FKT4oBgHgl3EQfdS4O/content/tmp_files/2301.11819v1.pdf.txt
@@ -0,0 +1,3085 @@
+Boltzmann equation and its cosmological applications
+Seishi Enomoto∗, Yu-Hang Su, Man-Zhu Zheng, and Hong-Hao Zhang†
+School of Physics, Sun Yat-sen University, Guangzhou 510275, China
+Abstract
+We review the derivation of the Boltzmann equation and its cosmological applica-
+tions. Our paper derives the Boltzmann equation by the language of quantum field
+theory without any assumption of the finite temperature system. We also introduce
+two examples of cosmological applications, dark matter abundance and baryogenesis,
+with techniques in their calculations.
+1
+Introduction
+The early Universe, composed of hot plasma, evolves in time while maintaining thermal
+equilibrium at most epochs, and thus the evolution is described simply by thermodynam-
+ics. The cosmologically important events, therefore, are focused on the various turning
+epochs in which some particle species depart from the thermal bath as seen in, e.g., Big
+Bang nucleosynthesis (BBN) and recombination confirmed by both the theory and obser-
+vations, and the dark matter (DM) relic abundance and the baryogenesis scenario derived
+from some hypotheses. Qualitatively, the turning epochs can be estimated by comparing
+the reaction rate and the spatial expansion rate of the Universe, but more quantitative
+treatment to ensure accurate predictions is required by the present cosmological obser-
+vations. The Boltzmann equation is a powerful tool for following the out-of-equilibrium
+dynamics in detail, and can describe the evolution of the particle distribution due to the
+spatial expansion and the momentum exchanges through interactions. Since the Boltz-
+mann equation provides the abstract relation between the macroscopic and the microscopic
+evolution of the particle distributions, it is applicable to various situations, and hence, the
+solving equations differ for each system.
+The most successful application of the Boltzmann equation is for the theory of BBN
+[1, 2, 3, 4, 5, 6, 7] (see also, e.g., [8, 9, 10]), which describes how the initial protons and
+neutrons form the light elements at the final. As the result, the abundances of the light
+elements are predicted, and they are well consistent with the present observations. The
+other well-motivated and formulated example is the Kompaneets equation [11, 12], which
+is derived from the Boltzmann equation in the photon-electron system. The evolution
+equation is applied to the various analysis in cosmological or astronomical situations,
+e.g., the last scattering surface in the recombination epoch, the Sunyaev-Zel’dovich effect
+[13, 14, 15, 16] that is a distortion of the cosmic microwave background radiation by hot
+electrons in galaxies, etc.
+On the other side, exploring Beyond the Standard Model (BSM), there are many
+studies on the DM candidate realizing the present density parameter through the relic
+abundance, which can be predicted using the Boltzmann equation.
+The most famous
+and simple scenario for DM candidates is described by weakly interacting massive par-
+ticles (WIMPs) [17, 18], but the current observation requires a more extended scenario
+or the other mechanism, e.g., feebly interacting massive particles (FIMPs) [19], strongly
+interacting massive particles (SIMPs) [20], processing into forbidden channels [21, 22], co-
+annihilations [21], co-scattering [23, 24], zombie [25, 26], and inverse decays [27, 28], etc.
+∗seishi@mail.sysy.edu.cn
+†zhh98@mail.sysu.edu.cn
+1
+arXiv:2301.11819v1 [hep-ph] 27 Jan 2023
+
+(See also [29] for their summarized analysis.) The more complicated models are consid-
+ered, the more technical treatment in the Boltzmann equation is required. As the other
+topic for exploring BSM with the Boltzmann equation, there are also many studies for
+baryogenesis scenarios explaining the origin of (baryonic) matter-antimatter asymmetry
+in our Universe, e.g., GUT baryogenesis [30, 31, 32], leptogenesis [33], electroweak baryo-
+genesis [34, 35], and Affleck-Dine baryogenesis [36, 37], etc. The analysis tends to be more
+complicated than the case of DM abundance and requires more technical treatment.
+The studies using the Boltzmann equation have been more popular and important as
+some approaches to confirm the current physics in detail and explore BSM in the early
+Universe. We aim to provide a clearer understanding of the Boltzmann equation and its
+techniques with some cosmological examples. This paper is organized as follows. First,
+we derive the Boltzmann equation by the language of the quantum field theory in section
+2. Next, we demonstrate application examples how the Boltzmann equation is applied for
+the DM abundance in section 3 and the baryogenesis scenario in section 4 with simple toy
+models. Finally, we summarize our discussion in section 5.
+2
+Boltzmann equation
+The Boltzmann equation is a quite powerful tool to describe the evolution of particles in
+Cosmology. Although the equation is applicable to various situations, the used formulae
+are also dependent on the circumstance. In this section, we derive the evolution formula
+of the distribution function f = f(xµ, pµ) from the basic statement
+L[f] = C[f]
+(1)
+where L and C are called the Liouville operator and the collision operator, respectively.
+The Liouville operator describes the variation of the distribution of a particle along a
+dynamical parameter, and the collision operator describes the source of the variation
+through the microscopic processes.
+2.1
+Liouville operator
+We define the Liouville operator to describe the variation of the distribution along the
+geodesic line parametrized by the affine parameter λ. Using the momentum relations
+pµ = dxµ
+dλ ,
+pµpµ = m2
+(2)
+where pµ is a four-momentum and m is the mass, and the geodesic equation
+0 = dpµ
+dλ + Γµ
+νρpνpρ
+(3)
+where Γµ
+νρ is the affine connection, the Liouville operator can be written as
+L[f] ≡
+df
+dλ
+����
+geodesic line
+=
+dxµ
+dλ ∂µf + dpµ
+dλ
+∂f
+∂pµ
+(4)
+=
+pµ∂µf − Γµ
+νρpνpρ ∂f
+∂pµ .
+(5)
+In the FLRW space-time, gµν = diag(1, −a2, −a2, −a2) where a = a(t) is the scale
+factor, the distribution function is spatially homogeneous and isotropic: f = f(t, E).
+Then the concrete representation of the Liouville operator term can be written as
+L[f] = E ˙f − H|⃗p|2 ∂f
+∂E
+(6)
+2
+
+where H = ˙a/a is the Hubble parameter and (⃗p)i ≡ api is the physical momentum.
+2.2
+Collision operator
+We define the collision operator C[f] as the variation rate by the microscopic processes:
+C[f] ≡
+df
+dλ
+����
+microscopic process
+=
+E df
+dt
+����
+microscopic process
+.
+(7)
+In order to evaluate the variation of the distribution function, we assume the followings.
+First, the process can be described by the quantum field theory. Second, the microscopic
+process can be evaluated on the Minkowski space since the gravitational effect is already
+evaluated in the Liouville operator part.
+With the above assumption, the distribution function f can be regarded as the expec-
+tation value of all possible occupation numbers with their probabilities, as we will see later.
+Also the probabilities can be evaluated by the quantum field theory on the flat space. To
+derive the concrete representation of (7), we need to construct the corresponding quantum
+state and then evaluate the transition probability.
+2.2.1
+Eigenstate for occupation number
+At first, we construct a multi-particle state |{n}⟩ in order to include all information about
+the particle occupations. We impose |{n}⟩ to be the eigenstate satisfying
+ˆna(⃗k)|{n}⟩ = na(⃗k)|{n}⟩,
+⟨{n}|{n}⟩ = 1,
+(8)
+where ˆna(⃗k) and na(⃗k) are the occupation operator and its corresponding occupation
+number for species a ∈ {n} in the unit phase space, respectively. Here the occupation
+operator is defined by
+ˆna(⃗k) ≡ 1
+V a(a)†
+⃗k
+a(a)
+⃗k ,
+(9)
+where V ≡
+�
+d3x = (2π)3δ3(⃗k = 0) is a volume of the system, and a(a)
+⃗k
+is an annihilation
+operator for species a which satisfies
+[a(a)
+⃗k , a(b)†
+⃗p
+] = δab · (2π)3δ3(⃗k − ⃗p),
+(others) = 0.
+(10)
+In the case of the fermionic species, the commutation relations are replaced with the anti-
+commutation relations. Then one can obtain the representation of the eigenstate |{n}⟩
+by
+|{n}⟩ ≡
+�
+a∈{n}
+�
+��
+⃗p
+1
+√na! ·
+√
+V na (a(a)†
+⃗p
+)na
+�
+� |0⟩.
+(11)
+Note that the occupation number na(⃗k) must be an integer.
+Furthermore, it is convenient to define the increased/decreased state from |{n}⟩ for
+3
+
+later discussion. We define them by1
+|{n};⃗k(+1)
+a
+⟩ =
+1
+√1 ± na
+√
+V
+a(a)†
+⃗k
+|{n}⟩,
+( + : bosons,
+− : fermions ) ,
+(14)
+|{n};⃗k(−1)
+a
+⟩ =
+1
+√na
+√
+V
+a(a)
+⃗k |{n}⟩.
+(15)
+The coefficients are chosen to be unit vectors
+⟨{n};⃗k(±1)
+a
+|{n};⃗k(±1)
+a
+⟩ = 1.
+(16)
+These increased/decreased states also become the eigenstate of the occupation operator:
+ˆna(⃗k)|{n};⃗k(+1)
+a
+⟩ =
+�
+1 ± na(⃗k)
+�
+|{n};⃗k(+1)
+a
+⟩,
+( + : bosons,
+− : fermions ) ,
+(17)
+ˆna(⃗k)|{n};⃗k(−1)
+a
+⟩ = ±
+�
+na(⃗k) − 1
+�
+|{n};⃗k(−1)
+a
+⟩,
+( + : bosons,
+− : fermions ) .
+(18)
+2.2.2
+Transition probability
+Using the eigenstates discussed in the previous section, let us consider the transition
+probability of the process
+A, B, · · · → X, Y, · · ·
+(19)
+in the background in which other particles ({n}) exist.
+For simplicity, we consider a
+case that each species in the process are different. Taking the initial state as |{n}⟩ in
+order to begin the given occupation numbers, the final state through the process (19)
+can be represented as |{n};⃗k(−1)
+A
+,⃗k(−1)
+B
+, · · · ,⃗k(+1)
+X
+,⃗k(+1)
+Y
+, · · · ⟩. The probability from the
+infinite past (in-state) to the infinite future (out-state) on the background particles can
+be evaluated by2
+P(A, B, · · · → X, Y, · · · ){n}
+=
+�
+a=A,B,··· ,X,Y,···
+�
+V
+�
+d3⃗ka
+(2π)3
+�
+ga
+�
+×
+���⟨{n};⃗k(−1)
+A
+,⃗k(−1)
+B
+, · · · ,⃗k(+1)
+X
+,⃗k(+1)
+Y
+, · · · | ˆS|{n}⟩
+���
+2
+(20)
+where ga denotes the internal degrees of freedom for species a, and ˆS is the S-matrix oper-
+ator. The S-matrix element describing the process (19) without the background particles
+can be represented by the invariant scattering amplitude as
+inv⟨kX, kY , · · · | ˆS|kA, kB, · · · ⟩inv
+=
+iM(kA, kB, · · · → kX, kY , · · · )
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · )(21)
+1For the bosonic state, the N-increased/decreased state can be defined by
+|{n};⃗k(+N)
+a
+⟩
+=
+�
+na!
+(na + N)!
+1
+V N · (a(a)†
+⃗k
+)N|{n}⟩,
+(12)
+|{n};⃗k(−N)
+a
+⟩
+=
+�
+(na − 1)!
+(na + N − 1)!
+1
+V N · (a(a)
+⃗k )N|{n}⟩.
+(13)
+2If the initial or the final state includes N of the same species, the extra factor
+1
+N! for each duplicated
+species is needed.
+4
+
+where
+|ka, kb, · · · ⟩inv ≡
+�
+2Eka2Ekb · · · a†
+⃗kaa†
+⃗kb · · · |0⟩
+(22)
+is a Lorentz invariant particle state. The representation (21) indicates that the S-matrix
+operator includes
+ˆS
+⊃
+�
+a=A,B,··· ,X,Y,···
+��
+d3⃗k′
+a
+(2π)3
+1
+�
+2E′a
+�
+ga
+�
+× a†
+⃗k′
+Xa†
+⃗k′
+Y · · · a⃗k′
+Aa⃗k′
+B · · ·
+×iM(k′
+A, k′
+B, · · · → k′
+X, k′
+Y , · · · ) · (2π)4δ4(k′
+A + k′
+B + · · · − k′
+X − k′
+Y − · · · ).(23)
+Using the above expression, the S-matrix element on the particle background can be
+written as
+⟨{n};⃗k(−1)
+A
+,⃗k(−1)
+B
+, · · ·⃗k(+1)
+X
+,⃗k(+1)
+Y
+, · · · | ˆS|{n}⟩
+(24)
+=
+�
+a=A,B,··· ,X,Y,···
+��
+d3⃗k′
+a
+(2π)3
+1
+�
+2E′
+A
+�
+ga
+�
+×iM(k′
+A, k′
+B, · · · → k′
+X, k′
+Y , · · · ) · (2π)4δ4(k′
+A + k′
+B + · · · − k′
+X − k′
+Y − · · · )
+×⟨{n};⃗k(−1)
+A
+,⃗k(−1)
+B
+, · · ·⃗k(+1)
+X
+,⃗k(+1)
+Y
+, · · · |a†
+⃗k′
+Xa†
+⃗k′
+Y · · · a⃗k′
+Aa⃗k′
+B · · · |{n}⟩
+(25)
+=
+1
+√2EAV · 2EBV · · · · 2EXV · 2EY V · · · ·
+×iM(kA, kB, · · · → kX, kY , · · · ) · (2π)4δ4(kA + kB + · · · − kX − kY − · · · )
+×
+�
+nAnB · · · (1 ± nX)(1 ± nY ) · · ·
+(26)
+where +/− is for bosonic/fermionic particles of the produced species X, Y, · · · . As substi-
+tuting the above form into (20), one can obtain
+P(A, B, · · · → X, Y, · · · ){n}
+=
+�
+a=A,B··· ,X,Y,···
+��
+d3⃗ka
+(2π)3
+1
+2Eka
+�
+ga
+�
+× |M(kA, kB, · · · → kX, kY , · · · )|2
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) · V T
+×nAnB · · · (1 ± nX)(1 ± nY ) · · ·
+(27)
+where T =
+�
+dt = 2πδ(E = 0) is the transition time scale.
+Although the expression of the probability is derived, the result (27) is constructed by
+the exact information of quanta represented by the microscopic occupation numbers per a
+unit phase space na that is an integer. Since it is impossible to know the exact quantum
+state, the statistical average should be considered. The probability to realize the state
+|{n}⟩ can be represented by
+P{n} ≡
+�
+a∈{n}
+�
+⃗k
+p(na(⃗k)),
+∞
+�
+na=0
+p(na(⃗k)) = 1
+(28)
+where p(na(⃗k)) is a probability to be the occupation na on the momentum ⃗k. Multiplying
+(28) into (27) and summing over by each occupation numbers3, we can obtained the
+3This procedure is equivalent to
+|{n}⟩⟨{n}| →
+�
+{n}
+P{n}|{n}⟩⟨{n}|
+(29)
+in (20), that is, the initial state is considered by the density operator.
+5
+
+statistical probability as
+⟨P(A, B, · · · → X, Y, · · · ){n}⟩
+≡
+�
+{n}
+P{n} · P(A, B, · · · → X, Y, · · · ){n}
+=
+�
+a=A,B,··· ,X,Y,···
+��
+d3⃗ka
+(2π)3
+1
+2Ea
+�
+ga
+�
+× |M(kA, kB, · · · → kX, kY , · · · )|2
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) · V T
+×fAfB · · · (1 ± fX)(1 ± fY ) · · ·
+(30)
+where we denoted
+fa ≡
+∞
+�
+na=0
+p(na(⃗k)) na(⃗k).
+(31)
+The important thing is that the expectation value fa can be interpreted as the distribution
+function even though the exact forms of both the probability p(na(⃗k)) and the relating
+occupation na(⃗k) are unknown.
+Using the result of the total probability (30), one can also define the partial probability,
+as an example, for the species A of the momentum ⃗kA by
+pA(A, B, · · · → X, Y, · · · )
+≡
+d⟨P(A, B, · · · → X, Y, · · · ){n}⟩
+V d3⃗kA
+(2π)3
+�
+gA
+(32)
+=
+T
+2EA
+�
+a̸=A
+��
+d3⃗ka
+(2π)3
+1
+2Ea
+�
+ga
+�
+× |M(kA, kB, · · · → kX, kY , · · · )|2
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · )
+×fAfB · · · (1 ± fX)(1 ± fY ) · · · .
+(33)
+2.2.3
+Expression of collision term
+The variation of the distribution ∆f through the microscopic process can be evaluated by
+∆fφ ∼
+�
+all processes
+∆Nφ · [−pφ(φ, A, B, · · · → X, Y, · · · ) + pφ(X, Y, · · · → φ, A, B, · · · )] (34)
+where φ is the focusing species, ∆Nφ is a changing number of the quantum φ in the process
+φ, A, B, · · · ↔ X, Y, · · · (∆Nφ = 1 in this case), and pφ is the partial transition probability
+6
+
+for φ derived in (33). Finally, the collision term can be evaluated as
+C[fφ]
+∼
+Eφ
+∆fφ
+∆t
+����
+microscopic process
+(35)
+=
+−1
+2
+�
+all processes
+�
+a̸=φ
+��
+d3⃗ka
+(2π)3
+1
+2Ea
+�
+ga
+�
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · )
+×∆Nφ
+�
+|M(kφ, kA, kB, · · · → kX, kY , · · · )|2
+×fφfAfB · · · (1 ± fX)(1 ± fY ) · · ·
+− |M(kX, kY , · · · → kφ, kA, kB, · · · )|2
+×fXfY · · · (1 ± fφ)(1 ± fA)(1 ± fB) · · · ] .
+(36)
+In the above derivation, we set ∆t = T. We derived the above result with the single-particle
+state for all species for simplicity. In the case of including the N-duplicated species in
+φ, A, B, · · · or X, Y, · · · , one needs to multiply an extra factor 1/N! for the species.
+Note that all the squared amplitudes in (36) must be regarded as the subtracted state
+in which the contribution of on-shell particles in the intermediate processes is subtracted
+in order to avoid the double-counting of the processes. Such a situation will be faced in
+which the leading contributions of the amplitude consist of the loop diagrams or higher
+order of couplings, e.g., the baryogenesis scenario as we discuss later.
+2.3
+Full and integrated Boltzmann equation
+Eqs. (6) and (36) lead the full Boltzmann equation for a species φ on the FLRW space-time
+as
+˙fφ − H |⃗kφ|2
+Eφ
+∂fφ
+∂Eφ
+=
+− 1
+2Eφ
+�
+all processes
+�
+a̸=φ
+��
+d3⃗ka
+(2π)3
+1
+2Ea
+�
+ga
+�
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · )
+×∆Nφ
+�
+|M(kφ, kA, kB, · · · → kX, kY , · · · )|2
+×fφfAfB · · · (1 ± fX)(1 ± fY ) · · ·
+− |M(kX, kY , · · · → kφ, kA, kB, · · · )|2
+×fXfY · · · (1 ± fφ)(1 ± fA)(1 ± fB) · · · ] .(37)
+Eqs. (37) for all species describe the detail evolution of the distribution functions, but
+they are not useful to solve because of a lot of variables. To simplify the equations, the
+integrated Boltzmann equation is useful and convenient. The momentum integral of the
+left hand side of (37) leads
+�
+d3⃗kφ
+(2π)3
+�
+gφ
+(LHS of (37))
+=
+˙nφ + 3Hnφ
+(38)
+where
+nφ ≡
+�
+d3⃗kφ
+(2π)3
+�
+gφ
+fφ
+(39)
+7
+
+is the number density of φ. Note in the integration (38) that the variables t and |⃗k| =
+√
+E2 − m2 are independent and a property of the total derivative
+�
+d3⃗k
+(2π)3
+|⃗k|2
+E
+∂
+∂E (· · · ) =
+�
+d3⃗k
+(2π)3 ⃗k · ∂
+∂⃗k
+(· · · ) = −3
+�
+d3⃗k
+(2π)3 (· · · )
+(40)
+is used. As the result, the number of the dynamical variables are reduced from (#species)×(#t)×
+(#E) to (#species)×(#t), while the right hand side of the integrated (37) still includes
+the E-dependent distribution functions. An useful approximation is to apply the Maxwell-
+Boltzmann similarity distribution4
+fa, fMB
+a
+≪ 1
+and
+fa(t, Ea) ∼
+na(t)
+nMB
+a
+(t)fMB
+a
+(t, Ea),
+(41)
+where
+fMB
+a
+= exp
+�
+−Ea − µa
+Ta
+�
+,
+nMB
+a
+=
+�
+d3⃗kφ
+(2π)3
+�
+gφ
+fMB
+a
+(42)
+are the Maxwell-Boltzmann distribution and its number density, respectively. Supposing
+the identical temperature for all species Tφ = TA = · · · ≡ T, and substituting (41) into
+the right hand side of (38) and assuming the chemical equilibrium
+µφ + µA + µB + · · · = µX + µY + · · ·
+(43)
+where µa is the chemical potential of species a, one can obtain the integrated Boltzmann
+equation as
+˙nφ + 3Hnφ
+=
+�
+d3⃗kφ
+(2π)3
+�
+gφ
+(RHS of (37))
+=
+−
+�
+all processes
+∆Nφ [nφnAnB · · · × ⟨R(φ, A, B, · · · → X, Y, · · · )⟩
+−nMB
+φ
+nMB
+A nMB
+B
+· · ·
+nXnY · · ·
+nMB
+X nMB
+Y
+· · · × ⟨R(¯φ, ¯A, ¯B, · · · → ¯X, ¯Y , · · · )⟩
+�
+(44)
+where the bar “ ¯ ” denotes its anti-particle state,
+R(A, B, · · · → X, Y, · · · )
+≡
+1
+2EA2EB · · ·
+� d3kX
+(2π)3
+d3kY
+(2π)3 · · ·
+1
+2EX2EY · · ·
+×
+�
+gA,gB,··· ,gX,gY ,··· |M(kA, kB · · · → kX, kY , · · · )|2
+�
+gA,gB,···
+×(2π)4δ4(kA + kB + · · · − kX − kY − · · · )
+(45)
+is a reaction rate integrated over the final state, and
+⟨R(A, B, · · · → X, Y, · · · )⟩
+≡
+1
+nMB
+A nMB
+B
+· · ·
+�
+d3kA
+(2π)3
+d3kB
+(2π)3 · · · fMB
+A
+fMB
+B
+· · ·
+×
+�
+gA,gB,···
+R(A, B, · · · → X, Y, · · · ) (46)
+4The well-used approximation fa ∼
+na
+nMB
+a
+f MB
+a
+can be justified in the case that species a is in the kinetic
+equilibrium through interacting with the thermal bath. See appendix A for detail. The case in deviating
+from the kinetic equilibrium is discussed in section 2.4.
+8
+
+is the thermally averaged reaction rate by the Maxwell-Boltzmann distributions of the
+species appearing in the initial state. We used the property of the CPT-invariance of the
+amplitude
+M(X, Y, · · · → A, B, · · · ) = M( ¯A, ¯B, · · · → ¯X, ¯Y , · · · )
+(47)
+to derive the last term in (44).
+Although eq. (44) describing the evolution of number densities is obtained by integra-
+tion of (37) directly, in general, the other evolution equations of the statistical quantities
+Qa(t) ≡
+�
+d3⃗ka
+(2π)3
+�
+ga
+fa(⃗ka)qa(t, Ea)
+(48)
+can also be derived through the same procedure with the corresponding coefficient qa(t, Ea),
+e.g., the energy density Q = ρ for q = Ea, and the pressure Q = P for q = |⃗k|2/3Ea. Such
+equations help to extract more detailed thermodynamic variables, e.g., to determine the
+independent temperatures for each species, as we will see in the next subsection.
+2.4
+Temperature parameter
+The integrated Boltzmann equation (44) is quite useful and can be applied to many
+situations. However, it might not be suitable for some situations in which the kinetic
+equilibrium is highly violated because the formula is based on the approximation by the
+Maxwell-Boltzmann similarity distribution, which is justified by the kinetic equilibrium of
+the target particles with the thermal bath as discussed in appendix A. Although to obtain
+the most appropriate solution is to solve the full Boltzmann equation, it takes a lot of
+costs to the calculation. In this section, we introduce an alternative method based on the
+integrated Boltzmann equation.
+Instead of using the similarity distribution (41), we introduce more generalized simi-
+9
+
+larity distribution by5 6
+fa(t, Ea) ∼ na(t)
+nneq
+a
+(t)fneq
+a
+(t, Ea),
+fneq
+a
+(t, Ea) ≡ exp
+�
+−Ea − µa
+Ta(t)
+�
+.
+(54)
+Here nneq
+a
+is the number density evaluated by the “non-equilibrium” Maxwell-Boltzmann
+distribution fneq
+a
+that is parametrized by the temperature parameter Ta(t). In general, the
+temperature parameter is independent of the thermal bath temperature T(t).
+Especially as the property of the Maxwell-Boltzmann distribution form, the tempera-
+ture parameter can be expressed by the ratio of the pressure and the number density
+Ta =
+P neq
+a
+nneq
+a
+=
+Pa
+na
+(55)
+because of
+P neq
+a
+=
+�
+d3⃗k
+(2π)3
+�
+ga
+fneq
+a
+|⃗ka|2
+3Ea
+=
+�
+d3⃗k
+(2π)3
+�
+ga
+Ta
+3
+�
+−⃗pa ·
+∂
+∂⃗pa
+�
+fneq
+a
+=
+Ta
+�
+d3⃗p
+(2π)3
+�
+ga
+fneq
+a
+= nneq
+a
+Ta
+(56)
+and
+Pa =
+�
+d3⃗k
+(2π)3
+�
+ga
+fa
+|⃗ka|2
+3Ea
+= na
+nneq
+a
+�
+d3⃗p
+(2π)3
+�
+ga
+fneq
+a
+|⃗ka|2
+3Ea
+= na
+nneq
+a
+P neq
+a
+.
+(57)
+Therefore, the evolution equation for the temperature parameter can be derived from the
+pressure’s one which can be constructed from the original full Boltzmann equation (37)
+multiplied by |⃗ka|2/3Ea.
+After the integration by the momentum, one can obtain the
+5The normalization factor na(t)/nneq
+a
+(t) can be regarded as a corresponding quantity to the chemical
+potential parameter ˜µa(t):
+na(t)
+nneq
+a
+(t)
+=
+exp
+� ˜µa(t) − µa
+Ta(t)
+�
+.
+(49)
+6In the case of the Bose-Einstein/Fermi-Dirac type distribution
+fa(t, Ea) =
+�
+e(Ea−˜µa(t))/Ta(t) ∓ 1
+�−1
+( − : boson,
++ : fermion)
+(50)
+where Ta(t) and ˜µa(t) are the temperature and the chemical potential parameters respectively, the tem-
+perature parameter can be represented as
+˜Ta(t) =
+1
+ρa(t) + Pa(t)
+�
+d3⃗ka
+(2π)3
+⃗k2
+a
+3 fa(t, Ea) (1 ± fa(t, Ea))
+( + : boson,
+− : fermion)
+(51)
+with energy density ρa and pressure Pa evaluated by (50). The above representation is consistent with (55)
+in the nonrelativistic limit: fa ≪ 1, Ea ∼ ma, and ρa ∼ mana ≫ Pa. The chemical potential parameter
+can be obtained by
+˜µa(t) = ρa(t) + pa(t) − Ta(t)sa(t)
+na(t)
+(52)
+where sa(t) is the entropy density defined by
+sa(t) =
+�
+d3⃗ka
+(2π)3 [±(1 ± fa) ln(1 ± fa) − fa ln fa] .
+( + : boson,
+− : fermion)
+(53)
+10
+
+coupled equations for species φ as
+˙nφ + 3Hnφ
+= −
+�
+all processes
+∆Nφ [nφnAnB · · · × ⟨R(φ, A, B, · · · → X, Y, · · · )⟩neq
+−nXnY · · · × ⟨R(X, Y, · · · → φ, A, B, · · · )⟩neq] ,
+(58)
+nφ ˙Tφ + Hnφ
+�
+2Tφ −
+�
+|⃗kφ|4
+3E3
+φ
+�neq�
+= −
+�
+all processes
+∆Nφ
+�
+nφnAnB · · · ×
+��
+|⃗kφ|2
+3Eφ
+− Tφ
+�
+R(φ, A, B, · · · → X, Y, · · · )
+�neq
+−nXnY · · · ×
+�
+⟨RTφ(X, Y, · · · → φ, A, B, · · · )⟩neq
+−Tφ⟨R(X, Y, · · · → φ, A, B, · · · )⟩neq)] ,
+(59)
+where R is a rate defined in (45) and
+RTφ(X, Y, · · · → φ, A, B, · · · )
+=
+1
+2EX2EY · · ·
+�
+d3⃗kφ
+(2π)3
+d3⃗kA
+(2π)3
+d3⃗kB
+(2π)3 · · ·
+×
+�
+gφ,gA,gB,··· ,gX,gY ,··· |M(kX, kY , · · · → kφ, kA, kB, · · · )|2
+�
+gX,gY ,···
+· |⃗kφ|2
+3Eφ
+×(2π)4δ4(kφ + kA + kB + · · · − kX − kY − · · · )
+(60)
+is a “temperature weighted” rate, and
+�
+|⃗kφ|4
+3E3
+φ
+�neq
+=
+1
+nneq
+φ
+�
+d3⃗kφ
+(2π)3
+�
+gφ
+fneq
+φ
+· |⃗kφ|4
+3E3
+φ
+,
+(61)
+⟨R(a, b, · · · → i, j, · · · )⟩neq
+=
+1
+nneq
+a
+nneq
+b
+· · ·
+�
+d3⃗ka
+(2π)3
+d3⃗kb
+(2π)3 · · ·
+�
+ga,gb,···
+×fneq
+a
+fneq
+b
+· · · R(a, b, · · · → i, j, · · · ),
+(62)
+are the thermally averaged quantities by the non-equilibrium distribution fneq including
+only the initial species a, b, · · · , not the final species i, j, · · · . Solving the coupled equations
+(58) and (59) for all the species can be expected to obtain more accurate results than
+the former integrated Boltzmann equation (44). Following the evolution in practice, the
+combined quantity
+y =
+mφTφ
+s2/3
+∝
+Tφ
+T 2
+(63)
+instead of the solo Tφ, where s is the entropy density, is convenient for the non-relativistic
+φ because of the asymptotic behavior Tφ(t) ∝ a(t)−2 ∝ T(t)2 after freezing out.
+3
+Application to DM abundance
+One of the cosmological application of the Boltzmann equation is for the estimation of the
+DM abundance. Because DM is stable, the main process changing the particle number is
+not decay/inverse-decay but the 2-2 annihilation/creation scatterings
+χ, ¯χ ↔ ψ, ¯ψ
+(64)
+11
+
+where χ is a DM and ψ are a standard model particle. Since the rate in the 2-2 scattering
+can be represented by the annihilation cross section as
+R(χ, ¯χ → ψ, ¯ψ) = σv
+(65)
+where v is the Møller velocity7 for the pair of the DM particles, the dynamics can be solve
+as the annihilation cross section is given. Assuming the symmetric DM nχ = n¯χ and the
+thermal distribution for the standard model particles nψ = n ¯ψ = nMB
+ψ , the Boltzmann
+equation (44) for the DM leads a simple form
+˙nχ + 3Hnχ = −
+�
+n2
+χ − (nMB
+χ
+)2�
+⟨σv⟩.
+(67)
+Instead of the particle number to follow its evolution by time, it is convenient to use the
+yield Yχ ≡ nχ/s with a dynamical variable x ≡ mχ/T, where s = 2π2
+45 heff(T)T 3 is the
+entropy density and heff(T) ∼ 100 for T ≳ 100 GeV is the effective degrees of freedom
+defined by the entropy density. In the case of no creation/annihilation process, the yield
+Yχ becomes a constant since the number and the entropy in the comoving volume is
+conserved. With these variables, the Boltzmann equation (67) can be represented as
+Y ′
+χ = −(1 + δh)s⟨σv⟩
+xH
+�
+Y 2
+χ − (Y MB
+χ
+)2�
+(68)
+where we denote ′ ≡ d/dx, and
+δh ≡
+T
+3heff
+dheff
+dT .
+(69)
+Since the adiabatic parameter δh tends to be negligible in the almost era of the thermal
+history8, we set δh = 0 in the later discussion for simplicity. Moreover, we denote
+Y MB
+χ
+≡
+nMB
+χ
+s
+∼
+gχ
+heff
+45
+25/2π7/2 x3/2e−x
+(x ≫ 1),
+(70)
+where gχ is the degrees of freedom for the DM particle.
+3.1
+Relic abundance in freeze-out
+As a simple and reasonable setup, we assume that the DM particles χ are in thermal
+equilibrium initially. Then, the dynamics described by (68) can be explained as follow. At
+first, the system is in the thermal equilibrium due to the stronger scattering effect than
+the spatial expansion9, but the yield has a small deviation from the thermal value due to
+7The definition with the 4-momenta is given by
+v12 =
+�
+(k1 · k2)2 − m2
+1m2
+2
+k0
+1k0
+2
+,
+(66)
+which can be identical to the relative velocity only in case of the parallel 3-momenta; ⃗k1 · ⃗k2 = ±|⃗k1||⃗k2|.
+8If the DM mass scale is around O(10) GeV, the freeze-out occurs around the QCD transition scale
+T ∼ O(100) MeV, in which |δh| ∼ O(1). Thus, there is a few percent level contribution from the adiabatic
+parameter δh even in the WIMP model. See Refs. [38, 39, 40, 41, 42, 43, 44, 45] for the determination of
+that parameter in detail.
+9If the interaction rate becomes lower than the Hubble rate at the relativistic regime x ≲ 1, the
+abundance freezes out with the massless abundance (hot relic):
+Y∞ ∼ Yhot = 45ζ(3)
+2π4
+gχ
+heff(Tf )
+×
+�
+1
+(boson)
+3/4
+(fermion)
+(71)
+where ζ(3) = 1.202 · · · .
+12
+
+the expansion effect as
+Yχ ∼ Y MB
+χ
++ ∆(x),
+∆(x) =
+xH
+s⟨σv⟩
+−Y ′
+χ
+Y MB
+χ
++ Y ∼
+xH
+2s⟨σv⟩ ≪ Y MB
+χ
+(72)
+as long as nMB⟨σv⟩ ≫ xH. The deviation ∆ continues growing in later time, and finally
+the evolution of the yield freezes out because the expansion rate exceeds the scattering
+rate. The freeze-out occurs when ∆(xf) = cY MB(xf), c ∼ O(1). The freeze-out time
+x = xf and the final abundance Y∞ = Y (x = ∞) can be estimated by [8, 46]
+xf
+=
+ln
+�
+c(c + 2)
+√
+90
+(2π)3
+gχ
+�
+geff(Tf)mχMplσn
+�
+−
+�
+n + 1
+2
+�
+ln xf,
+(73)
+=
+ln
+�
+c(c + 2)
+√
+90
+(2π)3
+gχ
+�
+geff(Tf)mχMplσn
+�
+−
+�
+n + 1
+2
+�
+ln
+�
+ln
+�
+c(c + 2)
+√
+90
+(2π)3
+gχ
+�
+geff(Tf)mχMplσn
+��
++ · · · ,
+(74)
+Y∞
+=
+(n + 1)
+�
+45
+π
+gχ
+�
+geff(Tf)
+xn+1
+f
+Mplmχσn
+(75)
+where Mpl = 1.22 × 1019 GeV is the Planck mass, geff(T) is the effective degrees of
+freedom defined by the energy density ρ = π2
+30geff(T)T 4, and Tf = mχ/xf is the freeze-
+out temperature. In the derivation of the analytic results (73) and (75), the temperature
+dependence of the cross section is approximated by the most dominant part as
+⟨σv⟩ = σnx−n,
+(76)
+where σn is a constant10.
+Especially, n = 0 and 1 correspond to s-wave and p-wave
+scattering, respectively.
+Although a numerical factor c still has uncertainty, choosing
+c(c + 2) = n + 1 leads to better analysis for the final abundance Y∞ within 5% accuracy
+for xf ≳ 3 [8].
+As an example, let us consider a WIMP model. Choosing the parameters as mχ = 120
+GeV, n = 1, σn = α2
+W
+m2χ , αW =
+1
+30, gχ = 2, heff = geff = 90, one can obtain the analytic
+results
+xf = 23.2,
+Y∞ = 3.81 × 10−12.
+(77)
+The actual evolution is depicted in Figure 1.
+Finally, we need to mention the validity of the approximated results (73) and (75).
+Their behaviors can deviate easily if the master equation (67) includes the significant ex-
+tra processes by other species or the singular behavior of the cross sections. Especially it
+is known some exceptional cases; (i) mutual annihilations of multiple species (coannihi-
+lations), (ii) annihilations into heaver states (forbidden channels), (iii) annihilations near
+a pole in the cross section [21], and (iv) simultaneous chemical and kinetic decoupling
+(coscattering) [23]. In these cases, the analysis should be performed more carefully. See
+[21, 22, 23, 24, 47, 48, 49] as their example cases, and also [50, 51, 52] as examples of the
+evaluation with the temperature parameter.
+10See also Appendix B for the actual analysis of the thermally averaged cross section.
+13
+
+ 1x10-13
+ 1x10-12
+ 1x10-11
+ 1x10-10
+ 1x10-9
+ 1x10-8
+ 15
+ 20
+ 25
+ 30
+ 35
+ 40
+ 45
+Yχ
+YχMB
+Ylow
+Yhigh
+Y
+x
+Evolution of yields
+Figure 1: The numerical plots of the evolution for each yield with parameters mχ = 120
+GeV, n = 1, σn = α2
+W
+m2χ , αW =
+1
+30, gχ = 2, heff = geff = 90. The red and the blue lines
+show the actual evolution of Yχ and the thermal yield Y MB
+χ
+, respectively. The dashed
+lines of green and purple show the approximated solutions Ylow ≡ Y MB
+χ
++ ∆ and Yhigh ≡
+Y∞
+�
+1 − Y∞
+n+1
+s⟨σv⟩
+H
+�−1
+, respectively.
+3.2
+Constraint on relic abundance
+The relic abundance for the stable particles through the freeze-out of their annihilation
+processes, as similar to χ particles discussed in the above, are restricted by the cosmological
+observation results. An useful parameter relating to the relic abundance is the density
+parameter defined by
+Ωχ ≡
+ρχ
+3M2
+pl
+8π H2
+∼ 16π3
+135
+heff(T)T 3
+M2
+plH2
+· mχYχ.
+(78)
+Since the yield maintains the constant after the freeze-out unless the additional entropy
+production occurs in the later era, one can estimate the present density parameter of
+χ with the present values. The current observation through the the Cosmic Microwave
+Background [53] provides T0 = 2.726 K, heff(T0) = 3.91, H0 = 100h2 km/s/Mpc, h =
+0.677, therefore one can estimate to
+Ωχ,now ∼
+mχYχ
+3.64h2 × 10−9 GeV.
+(79)
+Because the present density parameter for the cold matter component is observed as
+Ωch2 = 0.119 and it must be larger than the χ’s component, one can obtain a bound as
+mχYχ < 4.36 × 10−10 GeV.
+(80)
+The set of parameters shown in (77) is seemingly suitable for the above constraint with
+a bit of the modification.
+However, that would fail by taking into account the direct
+detections of the DM that focuses on the process of χ, ψ ↔ χ, ψ, where ψ is a standard
+model particle. If the annihilation process occurs through a similar interaction to the
+14
+
+electroweak gauge interaction, the cross section for χ-ψ elastic scattering also relates to
+the same gauge interaction. One can estimate σχψ→χψ ∼ G2
+F m2
+χ ∼ 10−36 cm2, but it is
+already excluded by the direct detection [54].
+3.3
+Relic abundance in freeze-in
+The discussion and the result in the previous subsections are based on the freeze-out
+scenario in which the DM particles are in thermal equilibrium initially. However, it is not
+satisfied if the interaction between the DM particles and the thermal bath is too small,
+so-called FIMP (feebly interacting massive particle) scenario [19, 55]. In this situation,
+the yield of DM evolves from zero through the thermal production from the thermal bath.
+Although the DM never reaches the thermal equilibrium, the yield freezes in with a non-
+thermal yield at last.
+We discuss here the relic abundance by the freeze-in scenario in two cases of the pair-
+creation of DM by (1) scattering from thermal scattering and (2) decay from a heavier
+particle.
+3.3.1
+Pair-creation by scattering
+In the case that DM-pair (χ¯χ) is produced by thermal pair particles (ψ ¯ψ), the Boltzmann
+equation is given by (68) as
+Y ′
+χ
+∼
+s⟨σv⟩
+xH (Y MB
+χ
+)2,
+(81)
+where we approximated Yχ ≪ Y MB
+χ
+and the adiabatic degrees δh ∼ 0 until the freezing-in.
+For simplicity, we consider the simple interaction described by
+Lint = λ(χ†χ)(ψ†ψ).
+(82)
+where χ is the bosonic DM, ψi labeled i are the massless bosons in the thermal bath, and
+y is a coupling constant. The thermally averaged cross section is given by
+⟨σv⟩
+=
+g2
+χg2
+ψ
+(nMB
+χ
+)2
+λ2
+(2π)5 T
+� ∞
+4m2χ
+ds
+�
+s − 4m2χ K1(√s/T).
+(83)
+where gχ and gψ are the degrees of freedom for each species. Therefore, one can estimate
+the final yield at x = mχ/T = ∞ as
+Yχ(∞)
+∼
+� ∞
+0
+dx s⟨σv⟩
+xH (Y MB
+χ
+)2
+(84)
+=
+3π2
+128 · g2
+χg2
+ψ
+λ2
+(2π)5 ·
+m4
+χ
+H(T = mχ) s(T = mχ).
+(85)
+This result implies that the yield freezing occurs around the earlier stage x ∼ O(1) because
+(85) can be regarded as Yχ(∞) ∼
+nMB
+χ
+⟨σv⟩
+H
+Y MB
+χ
+���
+x∼1.
+Applying the obtained relic abundance (85) to the relation of the present density
+parameter (79), one can obtain the required strength of the coupling as
+λ = 1.0 × 10−12 ·
+1
+gχgψ
+·
+�geff(T = mχ)
+100
+�1/4 �heff(T = mχ)
+100
+�1/2
+·
+�Ωχ,nowh2
+0.119
+�1/2
+. (86)
+15
+
+3.3.2
+Pair-creation by decay
+The other possible freeze-in scenario is due to the pair production from a heavier particle:
+σ → χ¯χ [19, 56]. The original Boltzmann equation for DM is given by
+dYχ
+dxσ
+=
+(1 + δh)Γσ→χ¯χ
+xσH
+K1(xσ)
+K2(xσ)
+�
+Yσ −
+� Yχ
+Y MB
+χ
+�2
+Y MB
+σ
+�
+(87)
+∼
+Γσ→χ¯χ
+xσH
+K1(xσ)
+K2(xσ)Y MB
+σ
+(88)
+where Γσ→χ¯χ is a decay constant and xσ ≡ mσ/T. We also approximated Yσ ∼ Y MB
+σ
+,
+Yχ ≪ Y MB
+χ
+, and δh ∼ 0 in the second line. Therefore, the final yield can be estimated as
+Yχ(∞)
+∼
+� ∞
+0
+dxσ
+Γσ→χ¯χ
+xσH
+K1(xσ)
+K2(xσ)Y MB
+σ
+(89)
+=
+3gσ
+4π ·
+Γσ→χ¯χ
+H(T = mσ)
+m3
+σ
+s(T = mσ).
+(90)
+where gσ is the degrees of freedom for σ. If the decay constant can be represented by the
+coupling constant y as
+Γσ→χ¯χ = gχ · y2
+8πmσ,
+(91)
+the required magnitude of the coupling with the relation formula to the density parameter
+(79) can be estimated as
+y2 ∼ 2.7 × 10−24 · mσ
+mχ
+·
+1
+gσgχ
+·
+�geff(T = mσ)
+100
+�1/2 heff(T = mσ)
+100
+· Ωχ,nowh2
+0.119
+.
+(92)
+4
+Application to baryogenesis
+The other popular application of the Boltzmann equation in cosmology is the baryogenesis
+scenario that describes the dynamical evolution of the baryon number in the Universe from
+zero at the beginning to the non-zero at present. The present abundance of the baryons
+can be estimated from (79). Replacing χ’s mass mχ into the nucleon mass mN = 939
+MeV and using the present density parameter for the baryon Ωbh2 = 0.0224 [53], one can
+obtain
+YB,now = 8.69 × 10−11.
+(93)
+There are three conditions suggested by A. D. Sakharov [57] in order to develop the
+baryon abundance from YB = 0 to non-zero: (1) baryon number (B) violation, (2) C
+and CP violation, (3) non-equilibrium condition. Their brief reasons are as follows. The
+B violation is trivial by definition. If the baryon number violating processes conserve
+C or CP, their anti-particle processes happen with the same rate.
+As the result, the
+net baryon number is always zero.
+Even if the processes violate the baryon number,
+C and CP, the thermal equilibrium reduces the baryon asymmetry due to their inverse
+processes. Especially, the Boltzmann equation provides a powerful tool to quantify the
+third condition.
+To see how to construct the Boltzmann equations for the baryogenesis, let us consider
+with a toy model11 as shown in Table 1. The model includes Majorana-type of chiral
+11Replacing X, ψ, φ into the right-handed neutrino, left-handed neutrino, Higgs doublet in the standard
+model, respectively, one can obtain the type-I seesaw model that can realize the well-known leptogenesis
+scenario [33]. However, the correspondence is not complete: the type-I seesaw model includes the gauge
+interactions that induces ∆L = 1 scattering process.
+16
+
+Species
+Particle statistic
+#B
+Xa
+Chiral fermion (Majorana)
+−
+ψi
+Chiral fermion
+b
+φ
+Complex scalar
+0
+Process
+∆B
+Xa → ψi, φ
+b
+Xa → ¯ψi, ¯φ
+−b
+ψi, ψj → ¯φ, ¯φ
+−2b
+ψi, φ → ¯ψj, ¯φ
+−2b
+Table 1: Left: the matter contents and their baryon number. All the anti-particles have
+the opposite sign of the baryon number. Right: Possible processes up to the 4-body B-
+violating interactions and their variation of the baryon number. The bar (¯) on each species
+denotes the anti-particle. In addition to the shown processes here, their inverse processes
+are also possible. Although there are elastic scatterings Xa, ψi, → Xb, ψj, Xa, φ → Xb, φ,
+and ψi, φ → ψj, φ, we omited them because they do not change the baryon number.
+fermions Xa for a = 1, · · · , NX, baryonic chiral fermions ψi for i = 1, · · · , Nψ with the
+common baryon number b, and a non-baryonic complex scalar φ.
+For simplicity, the
+baryonic fermions ψi and the scalar φ are massless and they are always in the thermal
+equilibrium. Because Xa are the Majorana fermion, Xa and ¯Xa can be identified. Thus,
+once we set the fundamental interaction to provide a decay/inverse-decay processes Xa ↔
+ψi, φ, their anti-particle processes Xa ↔ ¯ψi, ¯φ also exist. These 3-body interactions also
+induce the B-violating 2-2 scatterings exchanging Xa fermions.
+4.1
+Mean net baryon number
+At first, we consider only the decay processes for simplicity. This situation is realized
+when Xa particles start to decay after the scattering processes freeze out. Here we define
+the mean net baryon number by
+ϵa
+=
+�
+f
+∆Bf
+�
+rXa→f − r ¯
+Xa→ ¯f
+�
+(94)
+where the summation runs for all decay processes, ∆Bf and rXa→f are the generated
+baryon number through the process of Xa → f and its branching ratio, respectively. The
+physical meaning of the mean net baryon number ϵa is an average of the produced baryon
+number by a single quantum of Xa. In the case of our toy model, this quantity can be
+represented as
+ϵa
+=
+b
+�
+i
+�
+rXa→ψi,φ − rXa→ ¯ψi,¯φ
+�
+(95)
+This result reflect the requirements of B-violation and C, CP violation.
+If the decay
+processes are B-conserving b = 0 or C, CP conserving processes rXa→ψi,φ = rXa→ ¯ψi,¯φ, the
+mean net baryon number is vanished.
+Supposing that only a single flavour X1 survives and all of X1 particles decay into
+the baryonic fermions ψi, the generated baryon number can be estimated by YB ∼ ϵ1YX1.
+Especially, the baryon abundance can be maximized if X1 particles are the hot relic YX1 ∼
+Yhot ∼
+45
+2π4
+gX1
+heff(Tf):
+YB ∼ 45
+2π4 ·
+ϵ1gX1
+heff(Tf),
+(96)
+where gX1 = 2 is the degrees of freedom of the Majorana-type fermion X1.
+17
+
+4.2
+Boltzmann equations in baryogenesis scenario
+Although we considered quite simplified situation in the previous subsection, in reality,
+the situation is more complicated since the system includes the dynamical decay/inverse
+decay and scattering processes. In order to quantify the actual evolution of the baryon
+abundance including the scattering effects, we need to construct the Boltzmann equations
+in this system and solve them.
+For simplicity, we suppose again that only a single flavour X1 affects to the evolu-
+tion of the net baryon number.
+Using the definition of the net baryon density nB =
+b �
+i
+�
+nψi − n ¯ψi
+�
+, the evolution of the system including the processes in Table 1 are de-
+scribed by12
+˙nX1 + 3HnX1
+=
+−
+�MX1
+EX1
+�
+ΓX1(nX1 − nMB
+X1 ) + · · · ,
+(97)
+˙nB + 3HnB
+=
+ϵ1
+�MX1
+EX1
+�
+ΓX1
+�
+nX1 − nMB
+X1
+�
+− 2ΓS nB + · · · ,
+(98)
+where MX1 (EX1) is the mass (energy) of X1, ΓX1 ∼ �
+i
+�
+ΓX1→ψiφ + ΓX1→ ¯ψi,¯φ
+�
+is the
+total width of X1 and
+ϵ1 ≡ b ·
+�
+i
+�
+ΓX1→ψiφ − ΓX1→ ¯ψi,¯φ
+�
+ΓX1
+(99)
+is the mean net baryon number corresponding to (95), and
+ΓS
+=
+nMB
+φ
+⟨σψφ→ ¯ψ ¯φv⟩ + nMB
+ψ ⟨σψψ→¯φ¯φv⟩
+(100)
+is the reaction rates through the B-violating scatterings up to the tree level. The omitted
+parts “· · · ” denote the sub-leading processes in terms of the order of couplings. Eq. (97)
+describes the dissipation of Xa, and it converts to the baryon with the rate ϵa and flows
+into the baryon sector. However, the produced baryons also wash themselves out through
+the B-violating scattering processes due to the last term in (98). Therefore, the smaller
+B-violating scattering effect is favored for remaining the more net baryons as long as Xa
+can be thermalized enough at the initial.
+To solve the equations of motion (97) and (98), it is convenient to use the yields
+YX1 = nX1/s, YB = nB/s and the variable x = MX1/T as
+Y ′
+X1
+=
+−γD(YX1 − Y MB
+X1 ),
+(101)
+Y ′
+B
+=
+ϵ1γD(YX1 − Y MB
+X1 ) − 2γSYB,
+(102)
+where
+Y MB
+X1
+=
+nMB
+X1
+s
+=
+45
+4π4
+gX1
+heff
+x2K2(x),
+(103)
+γD
+=
+1
+x · ΓX1
+H(T)
+�mX1
+EX1
+�
+=
+�
+45
+4π3geff
+Mpl
+MX1
+· K1(x)
+K2(x)
+ΓX1
+T ,
+(104)
+γS
+=
+1
+x ·
+ΓS
+H(T)
+=
+�
+45
+4π3geff
+Mpl
+MX1
+· ΓS(T)
+T
+,
+(105)
+with the n-th order of the modified Bessel function Kn(x). We assumed the adiabatic evo-
+lution of the relativistic degrees h′
+eff/heff ∼ 0 to obtain (101) and (102). The dimensionless
+12See appendix B for the treatment of the thermally averaged quantities. And also see Appendix C for
+the detail of the derivation of the equations, especially, the treatment of the real intermediate state (RIS)
+to avoid the double-counting.
+18
+
+parameters γD,S are the reaction rates normalized by the Hubble parameter. In general,
+γD is proportional to x2 (x1) at the limit of x ≪ 1 (x ≫ 1), whereas the behavior of γS
+depends on the detail of the interaction as we will see its concrete form with an example
+model later.
+Eqs.(101) and (102) can provide the analytic form of YB as
+YB(∞)
+=
+−ϵ1
+� ∞
+0
+dx Y ′
+X1(x) exp
+�
+−2
+� ∞
+x
+dx′ γS(x′)
+�
+(106)
+Especially in the weakly scattering case,
+� ∞
+0 dx γS ≲ 1, one can approximate the above
+result as
+YB(∞)
+∼
+−ϵ1
+� ∞
+0
+dx Y ′
+X1(x) = ϵ1Yhot.
+(107)
+The physical interpretation is that the whole X1 particles existing from the beginning
+can convert to the net baryons without any wash-out process in this case. Hence the
+approximated result does not depend on the detail of the decay process γD. The result
+(107) is consistent with the former estimation in (96). On the other hand, the strongly
+scattering case causes the wash-out process significantly, and thus the final net baryon
+abundance is strongly suppressed from the result of (107).
+To see the concrete evolution dynamics, we consider the following interaction
+Lint
+=
+−
+�
+a,i
+yaiφXaψi + (h.c.)
+(108)
+with the Yukawa coupling yai and the two-component spinors Xa and ψi. This interaction
+leads the concrete representation of the decay width and the scattering rate as
+ΓX1
+=
+˜αMX1,
+(109)
+ΓS
+=
+T · 8˜α2
+πgψ
+˜γS(x)
+(110)
+where we denoted
+˜α
+=
+�
+i
+gψigφ
+|y1i|2
+32π ,
+(111)
+˜γS
+=
+1
+8
+� ∞
+0
+dz K1(z)
+�
+2
+�
+z4
+z2 + x2 +
+x2z2
+z2 + 2x2 ln
+�
+1 + z2
+x2
+��
++
+x2z4
+(z2 − x2)2 + ˜α2x4 + 2
+�
+z2 − x2 ln
+�
+1 + z2
+x2
+��
++
+4x2(z2 − x2)
+(z2 − x2)2 + ˜α2x4
+�
+z2 −
+�
+z2 + x2�
+ln
+�
+1 + z2
+x2
+���
+(112)
+∼
+�
+1
+(x ≪ 1)
+8/x2
+(x ≫ 1) ,
+(113)
+and gψ ≡ �
+i gψi = Nψgψi. Here gψi and gφ are the degrees of freedom of the chiral fermion
+ψi and the scalar φ, not including their anti-particle state. The asymptotic behaviors for
+each reaction rate are governed by
+γD(x) ∝
+� x2
+(x ≪ 1)
+x1
+(x ≫ 1) ,
+γS(x) ∝
+� (constant)
+(x ≪ 1)
+x−2
+(x ≫ 1) .
+(114)
+19
+
+1e-06
+1e-04
+1e-02
+1e+00
+1e+02
+1e+04
+1e+06
+ 0.01
+ 0.1
+ 1
+ 10
+ 100
+For decays (γD)
+For scatterings (γS)
+MX1 = 1016 GeV
+MX1 = 1015 GeV
+MX1 = 1014 GeV
+MX1 = 1013 GeV
+MX1 = 1013 GeV
+MX1 = 1014 GeV
+MX1 = 1015 GeV
+MX1 = 1016 GeV
+γ = Γ/xH
+x = MX1/T
+Evolution of rate of reactions
+1e-12
+1e-10
+1e-08
+1e-06
+1e-04
+1e-02
+1e+00
+ 0.01
+ 0.1
+ 1
+ 10
+ 100
+MX1 = 1016 GeV
+MX1 = 1015 GeV
+MX1 = 1014 GeV
+MX1 = 1013 GeV
+Analytic (hot relic decay)
+YB/ε1
+x = MX1/T
+Evolution of YB/ε1
+Figure 2: The numerical plots of the evolution of the interaction rates (upper) and YB/ϵ1
+(lower) for each mass of X. The numerical parameters are chosen as gX1 = 2, gψi = gφ = 1,
+Nψ = 3, ˜α = 0.01, heff = geff = 100, and assumed the thermal distribution for X1 and
+YB = 0 at the initial.
+The solid lines in red, yellow, green, and blue correspond to
+MX1 = 1016, 1015, 1014, and 1013 GeV, respectively. In the upper figure, “For decays” and
+“For scatterings” depict γD(x) and γS(x), respectively. In the lower figure, the dashed
+line in purple shows the approximated solution (96) due to the decay of the hot relic,
+YB/ϵ1 ∼ Yhot = 45
+2π ·
+gX1
+heff .
+20
+
+The actual behavior of γD and γS with concrete parameters are shown in the upper side
+of Figure 2. The asymptotic behaviors at x ≪ 1 and x ≫ 1 are consistent with (114). The
+enhancement structures for each γS seen around x ∼ O(1) are induced by the resonant
+process through the on-shell s-channel shown in (112).
+The lower side in Figure 2 shows the evolution of YB/ϵ1, which is the numerical result
+from the coupled equations (101) and (102). The result shows that the heavier mass of X
+can generate more the net baryon number because the reaction rates are reduced for the
+heavier case, and hence the generated baryons can avoid the wash-out process. Especially,
+the plot for MX1 = 1016 GeV leads the close result to the hot relic approximation (107),
+whereas the plot for MX1 = 1013 GeV shows the dumping by the wash-out effect at the
+late stage. The milder decrease at the middle stage is caused by the decay of X particles
+that supplies the net baryons to compensate for the wash-out effect.
+Finally, the obtained yield of the net baryon number YB should be compared with
+the current bound (93), YB,now ∼ 10−10. Since the mean net baryon number can roughly
+be estimated by ϵ1 ∼ ˜α2 sin2 θCP where θCP is a CP phase in the considered model, one
+can obtain the constraint from the current observation as YB,now/ϵ1 ≳ 10−10/˜α2 ∼ 10−6,
+where we used ˜α = 0.01. Therefore, one can find that MX1 ≳ 1014 GeV is allowed by
+compared with the lower plot in Figure 2.
+5
+Summary
+In this paper we have demonstrated the derivation of the Boltzmann equation from the
+microscopic point of view with the quantum field theory, in which the transition probabil-
+ity has been constructed with the statistically averaged quantum states. Although both
+results of the full and the integrated Boltzmann equation (37) and (44) are consistent with
+the well-known results, our derivation ensures that especially the full Boltzmann equation
+is widely applicable even in the non-equilibrium state since the derivation does not as-
+sume any distribution type nor the temperature of the system. Especially the integrated
+Boltzmann equation (44) is quite convenient and applicable for wide situations. In the
+particular case that the kinetic equilibrium cannot be ensured, the coupled equations with
+the temperature parameter (58) and (59) are better for following the dynamics.
+As the application examples of the (integrated) Boltzmann equation in cosmology, we
+have reviewed two cases, the relic abundance of the DM and the baryogenesis scenario.
+For the former case, we have shown the Boltzmann equation and its analysis. The analytic
+results (73) and (75) are quite helpful for estimating the final relic abundance of the DM
+and its freeze-out epoch. For the latter case, we have derived the Boltzmann equation
+with a specific model and show the numerical analysis. The final net baryon number can
+be estimated by the analytic result (107) in the case of the weakly interacting system,
+whereas that is strongly suppressed by the wash-out effect in the case of the strongly
+interacting system.
+The Boltzmann equation is a powerful tool for following the evolution of the particle
+number or other thermal quantities, and thus it will be applied for many more situations
+in future and will open a new frontier of the current physics. We hope this paper helps
+you to use the Boltzmann equation and its techniques thoughtfully.
+Acknowledgment
+We thank Chengfeng Cai, Yi-Lei Tang, and Masato Yamanaka for useful discussions and
+comments. This work is supported in part by the National Natural Science Foundation of
+21
+
+China under Grant No. 12275367, and the Sun Yat-Sen University Science Foundation.
+A
+Validity of the Maxwell-Boltzmann similarity approxi-
+mation
+Although the approximation of the distribution function by the Maxwell Boltzmann simi-
+larity distribution is used well in many situations, such approximation is not always valid.
+In this appendix, we show that the approximation is valid if the focusing species is in the
+kinetic equilibrium through interacting with the thermal bath.
+Let us consider the situation of the particle number conserving process a(k1)+b(k2) ↔
+a(k3)+b(k4), where a and b denote the particle species. If this process happens fast enough
+and the species b maintains the thermal distribution, the condition of the detailed balance
+leads
+0
+=
+fa(t, E1)fMB
+b
+(t, E2) − fa(t, E3)fMB
+b
+(t, E4)
+(115)
+=
+� fa(t, E1)
+fMB
+a
+(t, E1) −
+fa(t, E3)
+fMB
+a
+(t, E3)
+�
+fMB
+a
+(t, E1)fMB
+b
+(t, E2),
+(116)
+where we assumed the common temperature to the thermal bath and the energy conserva-
+tion law: fMB
+a
+(t, E1)fMB
+b
+(t, E2) = fMB
+a
+(t, E3)fMB
+b
+(t, E4). Because the above relation must
+be satisfied by arbitrary energy, one can obtain
+fa(t, E)
+fMB
+a
+(t, E)
+= C(t)
+(117)
+where C(t) is a function which is dependent on time but independent of the energy.
+The function C(t) can be determined by integrating over the momentum of fa(t, E) =
+C(t)fMB
+a
+(t, E1), i.e., na(t) = C(t)nMB
+a
+(t). Finally, one can obtain the desired form of the
+distribution:
+fa(t, E) = C(t)fMB
+a
+(t, E) =
+na(t)
+nMB
+a
+(t)fMB
+a
+(t, E).
+(118)
+B
+Formulae for thermal average by Boltzmann-Maxwell dis-
+tribution
+In this section, we summarize the convenient formulae used in the various thermally av-
+eraged quantities by the Maxwell-Boltzmann distribution, especially for number density,
+decay rate, and cross section.
+B.1
+Number density and modified Bessel function
+The number density with the Maxwell-Boltzmann distribution is given by
+nMB
+=
+g
+�
+d3k
+(2π)3 fMB
+(119)
+=
+g
+2π2 m2TK2(m/T)eµ/T
+(120)
+=
+g ×
+�
+�
+�
+�
+�
+�
+�
+1
+π2 T 3eµ/T + · · ·
+(T ≫ m)
+�mT
+2π
+�3/2
+e−(m−µ)/T
+�
+1 + 15T
+8m + · · ·
+�
+(T ≪ m)
+,
+(121)
+22
+
+where Kn is the n-th order of the modified Bessel function given by
+Kn(x)
+=
+� ∞
+0
+dθ e−x cosh θ cosh nθ
+(122)
+=
+�
+�
+�
+�
+�
+�
+�
+Γ(n)
+2
+�2
+x
+�n
++ · · ·
+(0 < x ≪ √1 + n)
+� π
+2x e−x
+�
+1 + 4n2 − 1
+8x
++ · · ·
+�
+(x ≫ 1)
+(123)
+Especially, the following relations are helpful in analysis:
+Kn(x)
+=
+x
+2n (Kn+1(x) − Kn−1(x)) ,
+(124)
+d
+dx (xnKn(x))
+=
+−xnKn−1(x).
+(125)
+B.2
+Thermally averaged decay rate
+The rate defined in (45) for the single initial species relates to the decay rate, R(A →
+X, Y, · · · ) = mA
+2EA ΓA→X,Y,···, where
+ΓA→X,Y,···
+=
+1
+2mA
+� d3kX
+(2π)3
+d3kY
+(2π)3 · · ·
+1
+2EX2EY
+· · ·
+×(2π)4δ4(kA − kX − kY − · · · )
+× 1
+gA
+�
+gA,gX,gY ,···
+|M(A → X, Y, · · · )|2
+(126)
+is the partial width for the process A → X, Y, · · · . The factor mA/EA in R corresponds to
+the inverse Lorentz gamma factor describing the life-time dilation. The thermal average
+of the rate is given by
+⟨R(A → X, Y, · · · )⟩
+=
+1
+2ΓA→X,Y,···
+�mA
+EA
+�
+,
+(127)
+�mA
+EA
+�
+=
+gA
+nMB
+A
+�
+d3kA
+(2π)3
+mA
+EA
+fMB
+A
+(128)
+=
+K1(mA/T)
+K2(mA/T)
+(129)
+=
+�
+�
+�
+mA
+2T + · · ·
+(T ≫ mA)
+1 − 3T
+2mA
++ · · ·
+(T ≪ mA)
+.
+(130)
+B.3
+Thermal averaged cross section
+The rate averaged by the initial 2-species relates to the scattering rate,
+R(A, B → X, Y, · · · )
+=
+σv
+(131)
+=
+1
+2EA2EB
+� d3kX
+(2π)3
+d3kY
+(2π)3 · · ·
+1
+2EX2EY
+· · ·
+×(2π)4δ4(kA + kB − kX − kY − · · · )
+×
+1
+gAgB
+�
+gA,gB,gX,gY ,···
+|M(A → X, Y, · · · )|2,
+(132)
+23
+
+where σ = σ(s) is the cross section for the process A, B → X, Y, · · · dependent on the
+Mandelstam variable s = (kA + kB)2, and v is the Møller velocity
+v =
+�
+(kA · kB)2 − m2
+Am2
+B
+EAEB
+=
+�
+(s − (mA + mB)2)(s − (mA − mB)2)
+2EAEB
+.
+(133)
+The thermal average of the rate can be obtained by
+⟨R(A, B → X, Y, · · · )⟩
+=
+⟨σv⟩
+(134)
+=
+gAgB
+nMB
+A nMB
+B
+�
+d3kA
+(2π)3
+d3kB
+(2π)3 σv · fMB
+A
+fMB
+B
+(135)
+=
+gAgB
+nMB
+A nMB
+B
+� ∞
+0
+d|⃗kA| d|⃗kB|
+� π
+0
+dθ ·
+1
+4π2
+|⃗kA|2|⃗kB|2 sin θ
+EAEB
+×σ(s) ·
+�
+(s − (mA + mB)2)(s − (mA − mB)2)
+× exp
+�
+−EA + EB
+T
++ µA + µB
+T
+�
+,
+(136)
+where the integral variable θ denotes the angle between ⃗kA and ⃗kB, i.e., ⃗kA · ⃗kB =
+|⃗kA||⃗kB| cos θ.
+In order to perform the integral in (136), it is convenient to change the integral variables
+(|⃗kA|, |⃗kB|, θ) to (E+, E−, s), where E± ≡ EA ± EB [39]. The Jacobian is given by
+�����
+∂(|⃗kA|, |⃗kB|, θ)
+∂(E+, E−, s)
+�����
+=
+EAEB
+4|⃗kA|2|⃗kB|2 sin θ
+.
+(137)
+The integral region can be obtained from the expression of the Mandelstam variable,
+s = m2
+A + m2
+B + 2
+�
+EAEB + |⃗kA||⃗kB| cos θ
+�
+,
+(138)
+which leads
+(s − m2
+A − m2
+B − 2EAEB)2 ≤ 4|⃗kA|2|⃗kB|2 = 4(E2
+A − m2
+A)(E2
+B − m2
+B).
+(139)
+The above inequality is equivalent to
+�
+E− − m2
+A − m2
+B
+s
+E+
+�2
+≤ (E2
++ − s)
+�
+1 − (mA + mB)2
+s
+� �
+1 − (mA − mB)2
+s
+�
+(140)
+Therefore, the integral region can be obtained as
+e− ≤ E− ≤ e+,
+(141)
+E+ ≥ √s,
+(142)
+s ≥ (mA + mB)2,
+(143)
+where
+e± ≡ m2
+A − m2
+B
+s
+E+ ±
+�
+(E2
++ − s)
+�
+1 − (mA + mB)2
+s
+� �
+1 − (mA − mB)2
+s
+�
+.
+(144)
+24
+
+Using the above results, the integral (136) can be performed as
+⟨σv⟩
+=
+gAgB
+nMB
+A nMB
+B
+1
+2(2π)4 e(µA+µB)/T
+×
+� ∞
+(mA+mB)2 ds · σ(s) · (s − (mA + mB)2)(s − (mA − mB)2)
+× T
+√sK1(√s/T)
+(145)
+=
+1
+4m2
+Am2
+BT
+� ∞
+mA+mB
+d√s · σ(s) · (s − (mA + mB)2)
+×(s − (mA − mB)2) ·
+K1(√s/T)
+K2(mA/T)K2(mB/T),
+(146)
+where we used the representation of the number density (120).
+Especially in the case of the non-relativistic limit, mA, mB ≫ T, it is convenient to
+use the representation13
+�
+σv(s)
+≡
+σ(s) · vNR(s),
+vNR(s) ≡
+�
+s − (mA + mB)2
+mAmB
+(147)
+and the replacement of the integral variable s to y defined by
+√s
+=
+mA + mB + Ty.
+(148)
+Since the integral parameter y corresponds to ⃗k2/mT naively, we can expect that the
+significant integral interval is on y ≲ O(1). Then (146) can be approximated as
+⟨σv⟩
+∼
+2
+√π
+�
+1 − 15T
+8mA
+− 15T
+8mB
++
+3T
+8(mA + mB) + · · ·
+�
+×
+� ∞
+0
+dy ·
+�
+(�
+σv)0 + Ty · (�
+σv)′
+0 + · · ·
+�
+×e−y · √y
+�
+1 + Ty
+2mA
++ Ty
+2mB
+−
+Ty
+4(mA + mB) + · · ·
+�
+(149)
+=
+(�
+σv)0 + 3
+2T
+�
+−3
+4
+� 1
+mA
++
+1
+mB
+�
+(�
+σv)0 + (�
+σv)′
+0
+�
++ O(T 2),
+(150)
+where we used the asymptotic expansion (123) and the Taylor series around √s = mA +
+mB,
+�
+σv = (�
+σv)0 + (√s − mA − mB) · (�
+σv)′
+0 + · · ·
+(151)
+(�
+σv)0 ≡ �
+σv(√s = mA + mB),
+(�
+σv)′
+0 ≡
+d �
+σv
+d√s
+����√s=mA+mB
+.
+(152)
+C
+Derivation of the Boltzmann equations in baryogenesis
+scenario
+In this section, we demonstrate the derivation of the Boltzmann equation in the baryoge-
+nesis scenario with the processes listed in Table 1. Indeed, the straightforward derivation
+13The Lorentz-invariant “velocity” vNR behaves as vNR ∼
+���
+⃗kA
+mA −
+⃗kB
+mB
+��� at the non-relativistic limit. Note
+that
+lim
+vNR→0 �
+σv remains non-zero (s-wave contribution) in general.
+25
+
+of the Boltzmann equations leads to the over-counting problem in the amplitudes. For
+example, once a contribution of the decay/inverse-decay process X ↔ ψ, φ is included
+in the Boltzmann equation, the straightforward contribution from the scattering process
+¯ψ, ¯φ ↔ ψ, φ is over-counted because such process can be divided into ¯ψ, ¯φ ↔ X and
+X ↔ ψ, φ if the intermediate state X is on-shell. Therefore, in general, one must regard
+the straightforward contribution in the scattering processes as the subtracted state of the
+real intermediated state (RIS) from the full contribution [8, 58]:
+|M|2
+Boltzmann eq.
+=
+|M|2
+subtracted ≡ |M|2
+full − |M|2
+RIS.
+In a case of the scattering process ¯ψ, ¯φ → ψ, φ, the full amplitude part can be represented
+as
+iM( ¯ψ, ¯φ → ψ, φ)full
+∼
+iM(X → ψ, φ) ·
+i
+s − M2
+X + iMXΓX
+· iM( ¯ψ, ¯φ → X) (153)
+where s is the Mandelstam variable, MX and ΓX are X’s mass and total decay width,
+respectively. On the other hand, the RIS part can be evaluated as the limit of the narrow
+width by
+��M( ¯ψ, ¯φ → ψ, φ)
+��2
+RIS
+=
+lim
+ΓX→0
+��M( ¯ψ, ¯φ → ψ, φ)
+��2
+full
+(154)
+=
+lim
+ΓX→0 |M(X → ψ, φ)|2
+1
+(s − M2
+X)2 + (MXΓX)2 |M( ¯ψ, ¯φ → X)|2
+∼
+|M(X → ψ, φ)|2 ·
+π
+MXΓX
+δ(s − M2
+X) · |M( ¯ψ, ¯φ → X)|2.
+(155)
+In the last line, the narrow width approximation is applied. Since the contribution of both
+amplitudes in (155) is the order of ΓX, the RIS contribution is also the order of ΓX in
+total. Therefore, RIS part in the scattering process contributes to the decay/inverse-decay
+process.
+Taking into account the above notice, we derive the Boltzmann equation. For simplic-
+ity, we suppose that only a single flavour X1 affects to the evolution of the net baryon
+number. Because of no scattering processes associated with Xa, the equation governing
+nXa is simply written as
+˙nX1 + 3HnX1
+=
+� d3kX1
+(2π)3
+d3kψi
+(2π)3
+d3kφ
+(2π)3
+1
+2EX12Eψi2Eφ
+(2π)4δ4(kX1 − kψi − kφ)
+× 1
+gX1
+�
+gX1,gψi,gφ
+�
+−fX1|M(X1 → ψiφ)|2 + fψifφ|M(ψiφ → X1)|2
+−fX1|M(X1 → ¯ψi ¯φ)|2 + f ¯ψif¯φ|M( ¯ψi ¯φ → X1)|2�
++ · · ·
+(156)
+=
+−
+�
+i
+⟨ΓX1⟩(nX1 − nMB
+X1 ) + · · ·
+(157)
+where
+ΓX1
+=
+ΓX1→ψiφ + ΓX1→ ¯ψi ¯φ + · · ·
+(158)
+is the total decay width of X1 and
+⟨ΓX1⟩
+≡
+1
+nMB
+X1
+�
+gX1
+� d3kX1
+(2π)3
+MX1
+EX1
+ΓX1fMB
+X1
+(159)
+=
+ΓX1 · K1(MX1/T)
+K2(MX1/T)
+∼ ΓX1 ×
+� MX1/2T
+(MX1 ≪ T)
+1
+(MX1 ≫ T)
+(160)
+26
+
+is the thermally averaged width, Kn(x) is the modified Bessel function. To derive (157),
+we assumed the universal distributions for ψi (fψi ∼
+1
+Nψ fψ, fψ ≡ �
+i fψi) and ignored the
+chemical potentials in the thermal distributions (fMB
+ψ
+= fMB
+¯ψ
+, fMB
+φ
+= fMB
+¯φ
+). Besides,
+we assumed φ is always in the thermal equilibrium (fφ = fMB
+φ
+).
+On the other hand,
+ψi’s equation should be derived with the consideration of the subtracted state in some
+scattering processes to avoid the over-counting of the decay/inverse-decay processes:
+˙nψ + 3Hnψ
+=
+�
+i
+� d3kX1
+(2π)3
+d3kψi
+(2π)3
+d3kφ
+(2π)3
+1
+2EX12Eψi2Eφ
+(2π)4δ4(kX1 − kψi − kφ)
+×
+�
+gX1,gψi,gφ
+�
+fX1|M(X1 → ψiφ)|2 − fψifφ|M(ψiφ → X1)|2�
++
+�
+i,j
+� d3kψi
+(2π)3
+d3kψj
+(2π)3
+d3kφ1
+(2π)3
+d3kφ2
+(2π)3
+1
+2Eψi2Eψj2Eφ12Eφ2
+�
+gψi,gψj ,gφ1,gφ2
+×
+�
+(2π)4δ4(kψi + kψj − kφ1 − kφ2)
+×
+�
+−fψifψj|M(ψiψj → ¯φ1 ¯φ2)|2 + f¯φ1f¯φ2|M(¯φ1 ¯φ2 → ψiψj)|2�
++(2π)4δ4(kψi + kφ1 − kψj − kφ2)
+×
+�
+−fψifφ1|M(ψiφ1 → ¯ψj ¯φ2)|2
+sub + f ¯ψjf¯φ2|M( ¯ψj ¯φ2 → ψiφ1)|2
+sub
+��
++ · · ·
+(161)
+=
+�
+nX1⟨ΓX1→ψφ⟩ − nMB
+X1
+nψ
+nMB
+ψ
+⟨ΓX1→ ¯ψ ¯φ⟩
+�
+−(nψ)2⟨σψψ→¯φ¯φv⟩ + (nMB
+ψ )2⟨σ ¯ψ ¯ψ→φφv⟩
+−nMB
+φ
+�
+nψ⟨σψφ→ ¯ψ ¯φv⟩ − n ¯ψ⟨σ ¯ψ ¯φ→ψφv⟩
+�
++
+�
+nψ
+nMB
+ψ
+⟨(ΓX1→ ¯ψ ¯φ)2⟩
+ΓX1
+− n ¯ψ
+nMB
+ψ
+⟨(ΓX1→ψφ)2⟩
+ΓX1
+�
+nMB
+X1
++ · · ·
+(162)
+where we used the notations nψ ≡ �
+i nψi, ΓXa→ψφ ≡ �
+i ΓXa→ψiφ, and
+⟨σψφ→ ¯ψ ¯φv⟩
+≡
+1
+nMB
+ψ nMB
+φ
+· gψgφ
+� d3kψi
+(2π)3
+d3kφ
+(2π)3 σψφ→ ¯ψ ¯φv · fMB
+ψi fMB
+φ
+(163)
+⟨σψψ→¯φ¯φv⟩
+≡
+1
+(nMB
+ψ )2 · g2
+ψ
+� d3kψi
+(2π)3
+d3kψj
+(2π)3 σψψ→¯φ¯φv · fMB
+ψi fMB
+ψj
+(164)
+with gψ ≡ �
+i gψi are the thermally averaged cross sections.
+The fourth line in (162)
+corresponds to the RIS contribution that makes the thermal balance to the first line,
+while the processes in the third line includes the resonant structure as seen in (153). With
+the expression of the net baryon number density nB = b(nψ − n ¯ψ), one can finally obtain
+the equation for the net baryons using (162) as
+˙nB + 3HnB
+=
+ϵ1⟨ΓX1⟩
+�
+nX1 − nMB
+X1
+�
+−nMB
+φ
+�
+2bnMB
+ψ
+�
+⟨σψφ→ ¯ψ ¯φv⟩ − ⟨σ ¯ψ ¯φ→ψφv⟩
+�
++nB
+�
+⟨σψiφ→ ¯ψ ¯φv⟩ + ⟨σ ¯ψi ¯φ→ψφv⟩
+��
+−nMB
+ψ
+�
+2bnMB
+ψ
+�
+⟨σψψ→¯φ¯φv⟩ − ⟨σ ¯ψ ¯ψ→φφv⟩
+�
++nB
+�
+⟨σψψ→¯φ¯φv⟩ + ⟨σ ¯ψ ¯ψ→φφv⟩
+��
++ · · · .
+(165)
+27
+
+where ϵ1 is the mean net number defined in (99), and we used the approximation
+nψ + n ¯ψ ∼ 2nMB
+ψ
+≫ |nB| = b|nψ − n ¯ψ|.
+(166)
+Note that the tree level contribution of cross sections and their anti-state are same in
+general. Therefore, the terms in second and the fourth lines in (165) are cancelled in the
+leading order, respectively.
+References
+[1] R. A. Alpher, H. Bethe and G. Gamow, “The origin of chemical elements,” Phys. Rev.
+73, 803-804 (1948) doi:10.1103/PhysRev.73.803
+[2] C. Hayashi, “Proton-Neutron Concentration Ratio in the Expanding Universe at the
+Stages preceding the Formation of the Elements,” Prog. Theor. Phys. 5, no.2, 224-235
+(1950) doi:10.1143/ptp/5.2.224
+[3] R. A. Alpher, J. W. Follin and R. C. Herman, “Physical Conditions in the
+Initial Stages of the Expanding Universe,”
+Phys. Rev. 92,
+1347-1361 (1953)
+doi:10.1103/PhysRev.92.1347
+[4] G. R. Burbidge, ”Nuclear Energy Generation and Dissipation in Galaxies,” Pub. As-
+tron. Soc. Pacific 70, 83 (1958) doi:10.1086/127179
+[5] F. Hoyle and R. J. Tayler, “The Mystery of the Cosmic Helium Abundance,” Nature
+203, 1108 (1964) doi:10.1038/2031108a0
+[6] Y. b. Zeldovich, “Survey of Modern Cosmology,” Adv. Astron. Astrophys. 3, 241-379
+(1965) doi:10.1016/b978-1-4831-9921-4.50011-9
+[7] P. J. E. Peebles, “Primeval Helium Abundance and the Primeval Fireball,” Phys.
+Rev. Lett. 16, no.10, 410-413 (1966) doi:10.1103/physrevlett.16.410; P. J. E. Peebles,
+“Primordial Helium Abundance and the Primordial Fireball. 2,” Astrophys. J. 146,
+542-552 (1966) doi:10.1086/148918
+[8] E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69, 1-547 (1990)
+doi:10.1201/9780429492860
+[9] S. Weinberg, “Cosmology,” Oxford University Press, 544p (2008).
+[10] R. H. Cyburt, B. D. Fields, K. A. Olive and T. H. Yeh, Rev. Mod. Phys. 88, 015004
+(2016) doi:10.1103/RevModPhys.88.015004 [arXiv:1505.01076 [astro-ph.CO]].
+[11] A. S. Kompaneets, ”The Establishment of Thermal Equilibrium between Quanta and
+Electrons,” Zh. Eksp. Teor. Fiz. 31, 876 (1956); Sov. Phys. JETP 4, 730 (1957).
+[12] R. Weymann, ”Diffusion Approximation for a Photon Gas Interacting with a Plasma
+via the Compton Effect,” Phys. Fluids, 8, 2112 (1965) doi:10.1063/1.1761165
+[13] R. A. Sunyaev, and Y. B. Zeldovich, ”Distortions of the background radiation spec-
+trum,” Nature 223, 721 (1969) doi:10.1038/223721a0
+[14] Y. B. Zeldovich and R. A. Sunyaev, “The Interaction of Matter and Radiation in a
+Hot-Model Universe,” Astrophys. Space Sci. 4, 301 (1969) doi:10.1007/BF00661821
+28
+
+[15] R. Sunyaev, and Y. B. Zeldovich, ”The Spectrum of Primordial Radiation, its Distor-
+tions and their Significance,” Comments Astrophys. and Space Physics 2, 66 (1970).
+[16] R. Sunyaev, and Y. B. Zeldovich, ”The Observations of Relic Radiation as a Test of
+the Nature of X-Ray Radiation from the Clusters of Galaxies,” Comments Astrophys.
+and Space Physics 4, 173 (1972).
+[17] B. W. Lee and S. Weinberg, “Cosmological Lower Bound on Heavy Neutrino Masses,”
+Phys. Rev. Lett. 39, 165-168 (1977) doi:10.1103/PhysRevLett.39.165
+[18] R. J. Scherrer and M. S. Turner, “On the Relic, Cosmic Abundance of Stable Weakly
+Interacting Massive Particles,” Phys. Rev. D 33, 1585 (1986) [erratum: Phys. Rev. D
+34, 3263 (1986)] doi:10.1103/PhysRevD.33.1585
+[19] L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, “Freeze-In Produc-
+tion of FIMP Dark Matter,” JHEP 03, 080 (2010) doi:10.1007/JHEP03(2010)080
+[arXiv:0911.1120 [hep-ph]].
+[20] Y. Hochberg, E. Kuflik, T. Volansky and J. G. Wacker, “Mechanism for Thermal
+Relic Dark Matter of Strongly Interacting Massive Particles,” Phys. Rev. Lett. 113,
+171301 (2014) doi:10.1103/PhysRevLett.113.171301 [arXiv:1402.5143 [hep-ph]].
+[21] K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances,”
+Phys. Rev. D 43, 3191-3203 (1991) doi:10.1103/PhysRevD.43.3191
+[22] R. T. D’Agnolo and J. T. Ruderman, “Light Dark Matter from Forbidden Chan-
+nels,” Phys. Rev. Lett. 115, no.6, 061301 (2015) doi:10.1103/PhysRevLett.115.061301
+[arXiv:1505.07107 [hep-ph]].
+[23] R. T. D’Agnolo, D. Pappadopulo and J. T. Ruderman, “Fourth Exception in
+the Calculation of Relic Abundances,” Phys. Rev. Lett. 119, no.6, 061102 (2017)
+doi:10.1103/PhysRevLett.119.061102 [arXiv:1705.08450 [hep-ph]].
+[24] H. Kim and E. Kuflik, “Superheavy Thermal Dark Matter,” Phys. Rev. Lett. 123,
+no.19, 191801 (2019) doi:10.1103/PhysRevLett.123.191801 [arXiv:1906.00981 [hep-
+ph]].
+[25] A. Berlin, “WIMPs with GUTs:
+Dark Matter Coannihilation with a Lighter
+Species,” Phys. Rev. Lett. 119, 121801 (2017) doi:10.1103/PhysRevLett.119.121801
+[arXiv:1704.08256 [hep-ph]].
+[26] E. D. Kramer, E. Kuflik, N. Levi, N. J. Outmezguine and J. T. Ruderman, “Heavy
+Thermal Dark Matter from a New Collision Mechanism,” Phys. Rev. Lett. 126, no.8,
+081802 (2021) doi:10.1103/PhysRevLett.126.081802 [arXiv:2003.04900 [hep-ph]].
+[27] M. Garny, J. Heisig, B. L¨ulf and S. Vogl, “Coannihilation without chemical equi-
+librium,” Phys. Rev. D 96, no.10, 103521 (2017) doi:10.1103/PhysRevD.96.103521
+[arXiv:1705.09292 [hep-ph]].
+[28] R. Frumkin, Y. Hochberg, E. Kuflik and H. Murayama, “Thermal Dark Matter from
+Freezeout of Inverse Decays,” [arXiv:2111.14857 [hep-ph]].
+[29] R. Frumkin, E. Kuflik, I. Lavie and T. Silverwater, “Roadmap to Thermal Dark
+Matter Beyond the WIMP Unitarity Bound,” [arXiv:2207.01635 [hep-ph]].
+29
+
+[30] M. Yoshimura, “Unified Gauge Theories and the Baryon Number of the Universe,”
+Phys. Rev. Lett. 41, 281-284 (1978) [erratum:
+Phys. Rev. Lett. 42, 746 (1979)]
+doi:10.1103/PhysRevLett.41.281; M. Yoshimura, “Origin of Cosmological Baryon
+Asymmetry,” Phys. Lett. B 88, 294-298 (1979) doi:10.1016/0370-2693(79)90471-4
+[31] S. Weinberg, “Cosmological Production of Baryons,” Phys. Rev. Lett. 42, 850-
+853 (1979) doi:10.1103/PhysRevLett.42.850; D. V. Nanopoulos and S. Weinberg,
+“Mechanisms for Cosmological Baryon Production,” Phys. Rev. D 20, 2484 (1979)
+doi:10.1103/PhysRevD.20.2484
+[32] S. Dimopoulos and L. Susskind, “On the Baryon Number of the Universe,” Phys. Rev.
+D 18, 4500-4509 (1978) doi:10.1103/PhysRevD.18.4500; D. Toussaint, S. B. Treiman,
+F. Wilczek and A. Zee, “Matter - Antimatter Accounting, Thermodynamics, and Black
+Hole Radiation,” Phys. Rev. D 19, 1036-1045 (1979) doi:10.1103/PhysRevD.19.1036
+[33] M. Fukugita and T. Yanagida, “Baryogenesis Without Grand Unification,” Phys.
+Lett. B 174, 45-47 (1986) doi:10.1016/0370-2693(86)91126-3
+[34] A. G. Cohen, D. B. Kaplan and A. E. Nelson, “WEAK SCALE BARYOGENESIS,”
+Phys. Lett. B 245, 561-564 (1990) doi:10.1016/0370-2693(90)90690-8; A. G. Cohen,
+D. B. Kaplan and A. E. Nelson, “Baryogenesis at the weak phase transition,” Nucl.
+Phys. B 349, 727-742 (1991) doi:10.1016/0550-3213(91)90395-E
+[35] V. A. Rubakov and M. E. Shaposhnikov, “Electroweak baryon number nonconserva-
+tion in the early universe and in high-energy collisions,” Usp. Fiz. Nauk 166, 493-537
+(1996) doi:10.1070/PU1996v039n05ABEH000145 [arXiv:hep-ph/9603208 [hep-ph]].
+[36] I. Affleck and M. Dine, “A New Mechanism for Baryogenesis,” Nucl. Phys. B 249,
+361-380 (1985) doi:10.1016/0550-3213(85)90021-5
+[37] M. Dine, L. Randall and S. D. Thomas, “Baryogenesis from flat directions of the su-
+persymmetric standard model,” Nucl. Phys. B 458, 291-326 (1996) doi:10.1016/0550-
+3213(95)00538-2 [arXiv:hep-ph/9507453 [hep-ph]].
+[38] M. Srednicki, R. Watkins and K. A. Olive, Nucl. Phys. B 310, 693 (1988)
+doi:10.1016/0550-3213(88)90099-5
+[39] P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved anal-
+ysis,” Nucl. Phys. B 360, 145-179 (1991) doi:10.1016/0550-3213(91)90438-4
+[40] M. Hindmarsh and O. Philipsen, “WIMP dark matter and the QCD equation of
+state,” Phys. Rev. D 71, 087302 (2005) doi:10.1103/PhysRevD.71.087302 [arXiv:hep-
+ph/0501232 [hep-ph]].
+[41] M. Drees, F. Hajkarim and E. R. Schmitz, “The Effects of QCD Equation of State
+on the Relic Density of WIMP Dark Matter,” JCAP 06, 025 (2015) doi:10.1088/1475-
+7516/2015/06/025 [arXiv:1503.03513 [hep-ph]].
+[42] M. Laine and M. Meyer, “Standard Model thermodynamics across the elec-
+troweak
+crossover,”
+JCAP
+07,
+035
+(2015)
+doi:10.1088/1475-7516/2015/07/035
+[arXiv:1503.04935 [hep-ph]].
+[43] S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Ko-
+vacs, S. W. Mages, A. Pasztor and F. Pittler, et al. “Calculation of the axion mass
+based on high-temperature lattice quantum chromodynamics,” Nature 539, no.7627,
+69-71 (2016) doi:10.1038/nature20115 [arXiv:1606.07494 [hep-lat]].
+30
+
+[44] K. Saikawa and S. Shirai, “Primordial gravitational waves, precisely: The role of
+thermodynamics in the Standard Model,” JCAP 05, 035 (2018) doi:10.1088/1475-
+7516/2018/05/035 [arXiv:1803.01038 [hep-ph]].
+[45] K. Saikawa and S. Shirai, “Precise WIMP Dark Matter Abundance and Standard
+Model Thermodynamics,” JCAP 08, 011 (2020) doi:10.1088/1475-7516/2020/08/011
+[arXiv:2005.03544 [hep-ph]].
+[46] J. M. Cline, K. Kainulainen, P. Scott and C. Weniger, “Update on scalar singlet dark
+matter,” Phys. Rev. D 88, 055025 (2013) [erratum: Phys. Rev. D 92, no.3, 039906
+(2015)] doi:10.1103/PhysRevD.88.055025 [arXiv:1306.4710 [hep-ph]].
+[47] N. Arkani-Hamed, A. Delgado and G. F. Giudice, Nucl. Phys. B 741, 108-130 (2006)
+doi:10.1016/j.nuclphysb.2006.02.010 [arXiv:hep-ph/0601041 [hep-ph]].
+[48] S. Tulin, H. B. Yu and K. M. Zurek, Phys. Rev. D 87, no.3, 036011 (2013)
+doi:10.1103/PhysRevD.87.036011 [arXiv:1208.0009 [hep-ph]].
+[49] A. Ibarra,
+A. Pierce,
+N. R. Shah and S. Vogl,
+“Anatomy of Coannihila-
+tion
+with
+a
+Scalar
+Top
+Partner,”
+Phys.
+Rev.
+D
+91,
+no.9,
+095018
+(2015)
+doi:10.1103/PhysRevD.91.095018 [arXiv:1501.03164 [hep-ph]].
+[50] T. Bringmann and S. Hofmann, “Thermal decoupling of WIMPs from first prin-
+ciples,” JCAP 04, 016 (2007) [erratum: JCAP 03, E02 (2016)] doi:10.1088/1475-
+7516/2007/04/016 [arXiv:hep-ph/0612238 [hep-ph]].
+[51] T. Bringmann, “Particle Models and the Small-Scale Structure of Dark Matter,”
+New J. Phys. 11, 105027 (2009) doi:10.1088/1367-2630/11/10/105027 [arXiv:0903.0189
+[astro-ph.CO]].
+[52] T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, “Early kinetic decoupling
+of dark matter: when the standard way of calculating the thermal relic density fails,”
+Phys. Rev. D 96, no.11, 115010 (2017) [erratum: Phys. Rev. D 101, no.9, 099901
+(2020)] doi:10.1103/PhysRevD.96.115010 [arXiv:1706.07433 [astro-ph.CO]].
+[53] N. Aghanim et al. [Planck], “Planck 2018 results. I. Overview and the cosmo-
+logical legacy of Planck,” Astron. Astrophys. 641, A1 (2020) doi:10.1051/0004-
+6361/201833880 [arXiv:1807.06205 [astro-ph.CO]].
+[54] L. Roszkowski, E. M. Sessolo and S. Trojanowski, “WIMP dark matter candidates
+and searches—current status and future prospects,” Rept. Prog. Phys. 81, no.6, 066201
+(2018) doi:10.1088/1361-6633/aab913 [arXiv:1707.06277 [hep-ph]].
+[55] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, Int. J. Mod.
+Phys. A 32, no.27, 1730023 (2017) doi:10.1142/S0217751X1730023X [arXiv:1706.07442
+[hep-ph]].
+[56] X. Chu, T. Hambye and M. H. G. Tytgat, JCAP 05, 034 (2012) doi:10.1088/1475-
+7516/2012/05/034 [arXiv:1112.0493 [hep-ph]].
+[57] A.
+D.
+Sakharov,
+“Violation
+of
+CP
+Invariance,
+C
+asymmetry,
+and
+baryon
+asymmetry
+of
+the
+universe,”
+Pisma
+Zh.
+Eksp.
+Teor.
+Fiz.
+5,
+32-35
+(1967)
+doi:10.1070/PU1991v034n05ABEH002497
+[58] W. Buchmuller, P. Di Bari and M. Plumacher, Annals Phys. 315, 305-351 (2005)
+doi:10.1016/j.aop.2004.02.003 [arXiv:hep-ph/0401240 [hep-ph]].
+31
+
diff --git a/H9FKT4oBgHgl3EQfdS4O/content/tmp_files/load_file.txt b/H9FKT4oBgHgl3EQfdS4O/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..820f3c3199bdebf620bc4863fada62e425334fa7
--- /dev/null
+++ b/H9FKT4oBgHgl3EQfdS4O/content/tmp_files/load_file.txt
@@ -0,0 +1,1162 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf,len=1161
+page_content='Boltzmann equation and its cosmological applications Seishi Enomoto∗, Yu-Hang Su, Man-Zhu Zheng, and Hong-Hao Zhang† School of Physics, Sun Yat-sen University, Guangzhou 510275, China Abstract We review the derivation of the Boltzmann equation and its cosmological applica- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Our paper derives the Boltzmann equation by the language of quantum field theory without any assumption of the finite temperature system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We also introduce two examples of cosmological applications, dark matter abundance and baryogenesis, with techniques in their calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 1 Introduction The early Universe, composed of hot plasma, evolves in time while maintaining thermal equilibrium at most epochs, and thus the evolution is described simply by thermodynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The cosmologically important events, therefore, are focused on the various turning epochs in which some particle species depart from the thermal bath as seen in, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', Big Bang nucleosynthesis (BBN) and recombination confirmed by both the theory and obser- vations, and the dark matter (DM) relic abundance and the baryogenesis scenario derived from some hypotheses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Qualitatively, the turning epochs can be estimated by comparing the reaction rate and the spatial expansion rate of the Universe, but more quantitative treatment to ensure accurate predictions is required by the present cosmological obser- vations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The Boltzmann equation is a powerful tool for following the out-of-equilibrium dynamics in detail, and can describe the evolution of the particle distribution due to the spatial expansion and the momentum exchanges through interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Since the Boltz- mann equation provides the abstract relation between the macroscopic and the microscopic evolution of the particle distributions, it is applicable to various situations, and hence, the solving equations differ for each system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The most successful application of the Boltzmann equation is for the theory of BBN [1, 2, 3, 4, 5, 6, 7] (see also, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', [8, 9, 10]), which describes how the initial protons and neutrons form the light elements at the final.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As the result, the abundances of the light elements are predicted, and they are well consistent with the present observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The other well-motivated and formulated example is the Kompaneets equation [11, 12], which is derived from the Boltzmann equation in the photon-electron system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The evolution equation is applied to the various analysis in cosmological or astronomical situations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', the last scattering surface in the recombination epoch, the Sunyaev-Zel’dovich effect [13, 14, 15, 16] that is a distortion of the cosmic microwave background radiation by hot electrons in galaxies, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' On the other side, exploring Beyond the Standard Model (BSM), there are many studies on the DM candidate realizing the present density parameter through the relic abundance, which can be predicted using the Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The most famous and simple scenario for DM candidates is described by weakly interacting massive par- ticles (WIMPs) [17, 18], but the current observation requires a more extended scenario or the other mechanism, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', feebly interacting massive particles (FIMPs) [19], strongly interacting massive particles (SIMPs) [20], processing into forbidden channels [21, 22], co- annihilations [21], co-scattering [23, 24], zombie [25, 26], and inverse decays [27, 28], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ∗seishi@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='sysy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='cn †zhh98@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='sysu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='cn 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='11819v1 [hep-ph] 27 Jan 2023 (See also [29] for their summarized analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=') The more complicated models are consid- ered, the more technical treatment in the Boltzmann equation is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As the other topic for exploring BSM with the Boltzmann equation, there are also many studies for baryogenesis scenarios explaining the origin of (baryonic) matter-antimatter asymmetry in our Universe, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', GUT baryogenesis [30, 31, 32], leptogenesis [33], electroweak baryo- genesis [34, 35], and Affleck-Dine baryogenesis [36, 37], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The analysis tends to be more complicated than the case of DM abundance and requires more technical treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The studies using the Boltzmann equation have been more popular and important as some approaches to confirm the current physics in detail and explore BSM in the early Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We aim to provide a clearer understanding of the Boltzmann equation and its techniques with some cosmological examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' First, we derive the Boltzmann equation by the language of the quantum field theory in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Next, we demonstrate application examples how the Boltzmann equation is applied for the DM abundance in section 3 and the baryogenesis scenario in section 4 with simple toy models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Finally, we summarize our discussion in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2 Boltzmann equation The Boltzmann equation is a quite powerful tool to describe the evolution of particles in Cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although the equation is applicable to various situations, the used formulae are also dependent on the circumstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In this section, we derive the evolution formula of the distribution function f = f(xµ, pµ) from the basic statement L[f] = C[f] (1) where L and C are called the Liouville operator and the collision operator, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The Liouville operator describes the variation of the distribution of a particle along a dynamical parameter, and the collision operator describes the source of the variation through the microscopic processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 Liouville operator We define the Liouville operator to describe the variation of the distribution along the geodesic line parametrized by the affine parameter λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Using the momentum relations pµ = dxµ dλ , pµpµ = m2 (2) where pµ is a four-momentum and m is the mass, and the geodesic equation 0 = dpµ dλ + Γµ νρpνpρ (3) where Γµ νρ is the affine connection, the Liouville operator can be written as L[f] ≡ df dλ ���� geodesic line = dxµ dλ ∂µf + dpµ dλ ∂f ∂pµ (4) = pµ∂µf − Γµ νρpνpρ ∂f ∂pµ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (5) In the FLRW space-time, gµν = diag(1, −a2, −a2, −a2) where a = a(t) is the scale factor, the distribution function is spatially homogeneous and isotropic: f = f(t, E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Then the concrete representation of the Liouville operator term can be written as L[f] = E ˙f − H|⃗p|2 ∂f ∂E (6) 2 where H = ˙a/a is the Hubble parameter and (⃗p)i ≡ api is the physical momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2 Collision operator We define the collision operator C[f] as the variation rate by the microscopic processes: C[f] ≡ df dλ ���� microscopic process = E df dt ���� microscopic process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (7) In order to evaluate the variation of the distribution function, we assume the followings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' First, the process can be described by the quantum field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Second, the microscopic process can be evaluated on the Minkowski space since the gravitational effect is already evaluated in the Liouville operator part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' With the above assumption, the distribution function f can be regarded as the expec- tation value of all possible occupation numbers with their probabilities, as we will see later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Also the probabilities can be evaluated by the quantum field theory on the flat space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' To derive the concrete representation of (7), we need to construct the corresponding quantum state and then evaluate the transition probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 Eigenstate for occupation number At first, we construct a multi-particle state |{n}⟩ in order to include all information about the particle occupations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We impose |{n}⟩ to be the eigenstate satisfying ˆna(⃗k)|{n}⟩ = na(⃗k)|{n}⟩, ⟨{n}|{n}⟩ = 1, (8) where ˆna(⃗k) and na(⃗k) are the occupation operator and its corresponding occupation number for species a ∈ {n} in the unit phase space, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Here the occupation operator is defined by ˆna(⃗k) ≡ 1 V a(a)† ⃗k a(a) ⃗k , (9) where V ≡ � d3x = (2π)3δ3(⃗k = 0) is a volume of the system, and a(a) ⃗k is an annihilation operator for species a which satisfies [a(a) ⃗k , a(b)† ⃗p ] = δab · (2π)3δ3(⃗k − ⃗p), (others) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (10) In the case of the fermionic species, the commutation relations are replaced with the anti- commutation relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Then one can obtain the representation of the eigenstate |{n}⟩ by |{n}⟩ ≡ � a∈{n} � �� ⃗p 1 √na!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · √ V na (a(a)† ⃗p )na � � |0⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (11) Note that the occupation number na(⃗k) must be an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Furthermore, it is convenient to define the increased/decreased state from |{n}⟩ for 3 later discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We define them by1 |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(+1) a ⟩ = 1 √1 ± na √ V a(a)† ⃗k |{n}⟩, ( + : bosons, − : fermions ) , (14) |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) a ⟩ = 1 √na √ V a(a) ⃗k |{n}⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (15) The coefficients are chosen to be unit vectors ⟨{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(±1) a |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(±1) a ⟩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (16) These increased/decreased states also become the eigenstate of the occupation operator: ˆna(⃗k)|{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(+1) a ⟩ = � 1 ± na(⃗k) � |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(+1) a ⟩, ( + : bosons, − : fermions ) , (17) ˆna(⃗k)|{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) a ⟩ = ± � na(⃗k) − 1 � |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) a ⟩, ( + : bosons, − : fermions ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (18) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2 Transition probability Using the eigenstates discussed in the previous section, let us consider the transition probability of the process A, B, · · · → X, Y, · · · (19) in the background in which other particles ({n}) exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For simplicity, we consider a case that each species in the process are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Taking the initial state as |{n}⟩ in order to begin the given occupation numbers, the final state through the process (19) can be represented as |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) A ,⃗k(−1) B , · · · ,⃗k(+1) X ,⃗k(+1) Y , · · · ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The probability from the infinite past (in-state) to the infinite future (out-state) on the background particles can be evaluated by2 P(A, B, · · · → X, Y, · · · ){n} = � a=A,B,··· ,X,Y,··· � V � d3⃗ka (2π)3 � ga � × ���⟨{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) A ,⃗k(−1) B , · · · ,⃗k(+1) X ,⃗k(+1) Y , · · · | ˆS|{n}⟩ ��� 2 (20) where ga denotes the internal degrees of freedom for species a, and ˆS is the S-matrix oper- ator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The S-matrix element describing the process (19) without the background particles can be represented by the invariant scattering amplitude as inv⟨kX, kY , · · · | ˆS|kA, kB, · · · ⟩inv = iM(kA, kB, · · · → kX, kY , · · · ) ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · )(21) 1For the bosonic state, the N-increased/decreased state can be defined by |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(+N) a ⟩ = � na!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (na + N)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 1 V N · (a(a)† ⃗k )N|{n}⟩, (12) |{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−N) a ⟩ = � (na − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (na + N − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 1 V N · (a(a) ⃗k )N|{n}⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (13) 2If the initial or the final state includes N of the same species, the extra factor 1 N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' for each duplicated species is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 4 where |ka, kb, · · · ⟩inv ≡ � 2Eka2Ekb · · · a† ⃗kaa† ⃗kb · · · |0⟩ (22) is a Lorentz invariant particle state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The representation (21) indicates that the S-matrix operator includes ˆS ⊃ � a=A,B,··· ,X,Y,··· �� d3⃗k′ a (2π)3 1 � 2E′a � ga � × a† ⃗k′ Xa† ⃗k′ Y · · · a⃗k′ Aa⃗k′ B · · · ×iM(k′ A, k′ B, · · · → k′ X, k′ Y , · · · ) · (2π)4δ4(k′ A + k′ B + · · · − k′ X − k′ Y − · · · ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (23) Using the above expression, the S-matrix element on the particle background can be written as ⟨{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) A ,⃗k(−1) B , · · ·⃗k(+1) X ,⃗k(+1) Y , · · · | ˆS|{n}⟩ (24) = � a=A,B,··· ,X,Y,··· �� d3⃗k′ a (2π)3 1 � 2E′ A � ga � ×iM(k′ A, k′ B, · · · → k′ X, k′ Y , · · · ) · (2π)4δ4(k′ A + k′ B + · · · − k′ X − k′ Y − · · · ) ×⟨{n};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⃗k(−1) A ,⃗k(−1) B , · · ·⃗k(+1) X ,⃗k(+1) Y , · · · |a† ⃗k′ Xa† ⃗k′ Y · · · a⃗k′ Aa⃗k′ B · · · |{n}⟩ (25) = 1 √2EAV · 2EBV · · · · 2EXV · 2EY V · · · · ×iM(kA, kB, · · · → kX, kY , · · · ) · (2π)4δ4(kA + kB + · · · − kX − kY − · · · ) × � nAnB · · · (1 ± nX)(1 ± nY ) · · · (26) where +/− is for bosonic/fermionic particles of the produced species X, Y, · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As substi- tuting the above form into (20), one can obtain P(A, B, · · · → X, Y, · · · ){n} = � a=A,B··· ,X,Y,··· �� d3⃗ka (2π)3 1 2Eka � ga � × |M(kA, kB, · · · → kX, kY , · · · )|2 ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) · V T ×nAnB · · · (1 ± nX)(1 ± nY ) · · · (27) where T = � dt = 2πδ(E = 0) is the transition time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although the expression of the probability is derived, the result (27) is constructed by the exact information of quanta represented by the microscopic occupation numbers per a unit phase space na that is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Since it is impossible to know the exact quantum state, the statistical average should be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The probability to realize the state |{n}⟩ can be represented by P{n} ≡ � a∈{n} � ⃗k p(na(⃗k)), ∞ � na=0 p(na(⃗k)) = 1 (28) where p(na(⃗k)) is a probability to be the occupation na on the momentum ⃗k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Multiplying (28) into (27) and summing over by each occupation numbers3, we can obtained the 3This procedure is equivalent to |{n}⟩⟨{n}| → � {n} P{n}|{n}⟩⟨{n}| (29) in (20), that is, the initial state is considered by the density operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 5 statistical probability as ⟨P(A, B, · · · → X, Y, · · · ){n}⟩ ≡ � {n} P{n} · P(A, B, · · · → X, Y, · · · ){n} = � a=A,B,··· ,X,Y,··· �� d3⃗ka (2π)3 1 2Ea � ga � × |M(kA, kB, · · · → kX, kY , · · · )|2 ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) · V T ×fAfB · · · (1 ± fX)(1 ± fY ) · · · (30) where we denoted fa ≡ ∞ � na=0 p(na(⃗k)) na(⃗k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (31) The important thing is that the expectation value fa can be interpreted as the distribution function even though the exact forms of both the probability p(na(⃗k)) and the relating occupation na(⃗k) are unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Using the result of the total probability (30), one can also define the partial probability, as an example, for the species A of the momentum ⃗kA by pA(A, B, · · · → X, Y, · · · ) ≡ d⟨P(A, B, · · · → X, Y, · · · ){n}⟩ V d3⃗kA (2π)3 � gA (32) = T 2EA � a̸=A �� d3⃗ka (2π)3 1 2Ea � ga � × |M(kA, kB, · · · → kX, kY , · · · )|2 ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) ×fAfB · · · (1 ± fX)(1 ± fY ) · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (33) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3 Expression of collision term The variation of the distribution ∆f through the microscopic process can be evaluated by ∆fφ ∼ � all processes ∆Nφ · [−pφ(φ, A, B, · · · → X, Y, · · · ) + pφ(X, Y, · · · → φ, A, B, · · · )] (34) where φ is the focusing species, ∆Nφ is a changing number of the quantum φ in the process φ, A, B, · · · ↔ X, Y, · · · (∆Nφ = 1 in this case), and pφ is the partial transition probability 6 for φ derived in (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Finally, the collision term can be evaluated as C[fφ] ∼ Eφ ∆fφ ∆t ���� microscopic process (35) = −1 2 � all processes � a̸=φ �� d3⃗ka (2π)3 1 2Ea � ga � ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) ×∆Nφ � |M(kφ, kA, kB, · · · → kX, kY , · · · )|2 ×fφfAfB · · · (1 ± fX)(1 ± fY ) · · · − |M(kX, kY , · · · → kφ, kA, kB, · · · )|2 ×fXfY · · · (1 ± fφ)(1 ± fA)(1 ± fB) · · · ] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (36) In the above derivation, we set ∆t = T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We derived the above result with the single-particle state for all species for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the case of including the N-duplicated species in φ, A, B, · · · or X, Y, · · · , one needs to multiply an extra factor 1/N!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' for the species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Note that all the squared amplitudes in (36) must be regarded as the subtracted state in which the contribution of on-shell particles in the intermediate processes is subtracted in order to avoid the double-counting of the processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Such a situation will be faced in which the leading contributions of the amplitude consist of the loop diagrams or higher order of couplings, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', the baryogenesis scenario as we discuss later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3 Full and integrated Boltzmann equation Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (6) and (36) lead the full Boltzmann equation for a species φ on the FLRW space-time as ˙fφ − H |⃗kφ|2 Eφ ∂fφ ∂Eφ = − 1 2Eφ � all processes � a̸=φ �� d3⃗ka (2π)3 1 2Ea � ga � ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) ×∆Nφ � |M(kφ, kA, kB, · · · → kX, kY , · · · )|2 ×fφfAfB · · · (1 ± fX)(1 ± fY ) · · · − |M(kX, kY , · · · → kφ, kA, kB, · · · )|2 ×fXfY · · · (1 ± fφ)(1 ± fA)(1 ± fB) · · · ] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (37) Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (37) for all species describe the detail evolution of the distribution functions, but they are not useful to solve because of a lot of variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' To simplify the equations, the integrated Boltzmann equation is useful and convenient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The momentum integral of the left hand side of (37) leads � d3⃗kφ (2π)3 � gφ (LHS of (37)) = ˙nφ + 3Hnφ (38) where nφ ≡ � d3⃗kφ (2π)3 � gφ fφ (39) 7 is the number density of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Note in the integration (38) that the variables t and |⃗k| = √ E2 − m2 are independent and a property of the total derivative � d3⃗k (2π)3 |⃗k|2 E ∂ ∂E (· · · ) = � d3⃗k (2π)3 ⃗k · ∂ ∂⃗k (· · · ) = −3 � d3⃗k (2π)3 (· · · ) (40) is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As the result, the number of the dynamical variables are reduced from (#species)×(#t)× (#E) to (#species)×(#t), while the right hand side of the integrated (37) still includes the E-dependent distribution functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' An useful approximation is to apply the Maxwell- Boltzmann similarity distribution4 fa, fMB a ≪ 1 and fa(t, Ea) ∼ na(t) nMB a (t)fMB a (t, Ea), (41) where fMB a = exp � −Ea − µa Ta � , nMB a = � d3⃗kφ (2π)3 � gφ fMB a (42) are the Maxwell-Boltzmann distribution and its number density, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Supposing the identical temperature for all species Tφ = TA = · · · ≡ T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and substituting (41) into the right hand side of (38) and assuming the chemical equilibrium µφ + µA + µB + · · · = µX + µY + · · · (43) where µa is the chemical potential of species a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' one can obtain the integrated Boltzmann equation as ˙nφ + 3Hnφ = � d3⃗kφ (2π)3 � gφ (RHS of (37)) = − � all processes ∆Nφ [nφnAnB · · · × ⟨R(φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩ −nMB φ nMB A nMB B · · nXnY · · · nMB X nMB Y · · × ⟨R(¯φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ¯A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ¯B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → ¯X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ¯Y ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩ � (44) where the bar “ ¯ ” denotes its anti-particle state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' R(A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ) ≡ 1 2EA2EB · · · � d3kX (2π)3 d3kY (2π)3 · · · 1 2EX2EY · · · × � gA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· |M(kA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' kB · · · → kX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' kY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )|2 � gA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· ×(2π)4δ4(kA + kB + · · · − kX − kY − · · · ) (45) is a reaction rate integrated over the final state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and ⟨R(A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩ ≡ 1 nMB A nMB B · · � d3kA (2π)3 d3kB (2π)3 · · · fMB A fMB B · · × � gA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· R(A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ) (46) 4The well-used approximation fa ∼ na nMB a f MB a can be justified in the case that species a is in the kinetic equilibrium through interacting with the thermal bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' See appendix A for detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The case in deviating from the kinetic equilibrium is discussed in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 8 is the thermally averaged reaction rate by the Maxwell-Boltzmann distributions of the species appearing in the initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We used the property of the CPT-invariance of the amplitude M(X, Y, · · · → A, B, · · · ) = M( ¯A, ¯B, · · · → ¯X, ¯Y , · · · ) (47) to derive the last term in (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (44) describing the evolution of number densities is obtained by integra- tion of (37) directly, in general, the other evolution equations of the statistical quantities Qa(t) ≡ � d3⃗ka (2π)3 � ga fa(⃗ka)qa(t, Ea) (48) can also be derived through the same procedure with the corresponding coefficient qa(t, Ea), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', the energy density Q = ρ for q = Ea, and the pressure Q = P for q = |⃗k|2/3Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Such equations help to extract more detailed thermodynamic variables, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', to determine the independent temperatures for each species, as we will see in the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='4 Temperature parameter The integrated Boltzmann equation (44) is quite useful and can be applied to many situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' However, it might not be suitable for some situations in which the kinetic equilibrium is highly violated because the formula is based on the approximation by the Maxwell-Boltzmann similarity distribution, which is justified by the kinetic equilibrium of the target particles with the thermal bath as discussed in appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although to obtain the most appropriate solution is to solve the full Boltzmann equation, it takes a lot of costs to the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In this section, we introduce an alternative method based on the integrated Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Instead of using the similarity distribution (41), we introduce more generalized simi- 9 larity distribution by5 6 fa(t, Ea) ∼ na(t) nneq a (t)fneq a (t, Ea), fneq a (t, Ea) ≡ exp � −Ea − µa Ta(t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (54) Here nneq a is the number density evaluated by the “non-equilibrium” Maxwell-Boltzmann distribution fneq a that is parametrized by the temperature parameter Ta(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In general, the temperature parameter is independent of the thermal bath temperature T(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially as the property of the Maxwell-Boltzmann distribution form,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' the tempera- ture parameter can be expressed by the ratio of the pressure and the number density Ta = P neq a nneq a = Pa na (55) because of P neq a = � d3⃗k (2π)3 � ga fneq a |⃗ka|2 3Ea = � d3⃗k (2π)3 � ga Ta 3 � −⃗pa · ∂ ∂⃗pa � fneq a = Ta � d3⃗p (2π)3 � ga fneq a = nneq a Ta (56) and Pa = � d3⃗k (2π)3 � ga fa |⃗ka|2 3Ea = na nneq a � d3⃗p (2π)3 � ga fneq a |⃗ka|2 3Ea = na nneq a P neq a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (57) Therefore, the evolution equation for the temperature parameter can be derived from the pressure’s one which can be constructed from the original full Boltzmann equation (37) multiplied by |⃗ka|2/3Ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' After the integration by the momentum, one can obtain the 5The normalization factor na(t)/nneq a (t) can be regarded as a corresponding quantity to the chemical potential parameter ˜µa(t): na(t) nneq a (t) = exp � ˜µa(t) − µa Ta(t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (49) 6In the case of the Bose-Einstein/Fermi-Dirac type distribution fa(t, Ea) = � e(Ea−˜µa(t))/Ta(t) ∓ 1 �−1 ( − : boson, + : fermion) (50) where Ta(t) and ˜µa(t) are the temperature and the chemical potential parameters respectively, the tem- perature parameter can be represented as ˜Ta(t) = 1 ρa(t) + Pa(t) � d3⃗ka (2π)3 ⃗k2 a 3 fa(t, Ea) (1 ± fa(t, Ea)) ( + : boson, − : fermion) (51) with energy density ρa and pressure Pa evaluated by (50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The above representation is consistent with (55) in the nonrelativistic limit: fa ≪ 1, Ea ∼ ma, and ρa ∼ mana ≫ Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The chemical potential parameter can be obtained by ˜µa(t) = ρa(t) + pa(t) − Ta(t)sa(t) na(t) (52) where sa(t) is the entropy density defined by sa(t) = � d3⃗ka (2π)3 [±(1 ± fa) ln(1 ± fa) − fa ln fa] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ( + : boson,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' − : fermion) (53) 10 coupled equations for species φ as ˙nφ + 3Hnφ = − � all processes ∆Nφ [nφnAnB · · · × ⟨R(φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩neq −nXnY · · · × ⟨R(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩neq] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (58) nφ ˙Tφ + Hnφ � 2Tφ − � |⃗kφ|4 3E3 φ �neq� = − � all processes ∆Nφ � nφnAnB · · · × �� |⃗kφ|2 3Eφ − Tφ � R(φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ) �neq −nXnY · · · × � ⟨RTφ(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩neq −Tφ⟨R(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩neq)] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (59) where R is a rate defined in (45) and RTφ(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → φ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ) = 1 2EX2EY · · · � d3⃗kφ (2π)3 d3⃗kA (2π)3 d3⃗kB (2π)3 · · · × � gφ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· |M(kX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' kY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → kφ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' kA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' kB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )|2 � gX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· |⃗kφ|2 3Eφ ×(2π)4δ4(kφ + kA + kB + · · · − kX − kY − · · · ) (60) is a “temperature weighted” rate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and � |⃗kφ|4 3E3 φ �neq = 1 nneq φ � d3⃗kφ (2π)3 � gφ fneq φ |⃗kφ|4 3E3 φ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (61) ⟨R(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )⟩neq = 1 nneq a nneq b · · � d3⃗ka (2π)3 d3⃗kb (2π)3 · · · � ga,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gb,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· ×fneq a fneq b · · R(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · → i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (62) are the thermally averaged quantities by the non-equilibrium distribution fneq including only the initial species a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' not the final species i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Solving the coupled equations (58) and (59) for all the species can be expected to obtain more accurate results than the former integrated Boltzmann equation (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Following the evolution in practice, the combined quantity y = mφTφ s2/3 ∝ Tφ T 2 (63) instead of the solo Tφ, where s is the entropy density, is convenient for the non-relativistic φ because of the asymptotic behavior Tφ(t) ∝ a(t)−2 ∝ T(t)2 after freezing out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 3 Application to DM abundance One of the cosmological application of the Boltzmann equation is for the estimation of the DM abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Because DM is stable, the main process changing the particle number is not decay/inverse-decay but the 2-2 annihilation/creation scatterings χ, ¯χ ↔ ψ, ¯ψ (64) 11 where χ is a DM and ψ are a standard model particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Since the rate in the 2-2 scattering can be represented by the annihilation cross section as R(χ, ¯χ → ψ, ¯ψ) = σv (65) where v is the Møller velocity7 for the pair of the DM particles, the dynamics can be solve as the annihilation cross section is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Assuming the symmetric DM nχ = n¯χ and the thermal distribution for the standard model particles nψ = n ¯ψ = nMB ψ , the Boltzmann equation (44) for the DM leads a simple form ˙nχ + 3Hnχ = − � n2 χ − (nMB χ )2� ⟨σv⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (67) Instead of the particle number to follow its evolution by time, it is convenient to use the yield Yχ ≡ nχ/s with a dynamical variable x ≡ mχ/T, where s = 2π2 45 heff(T)T 3 is the entropy density and heff(T) ∼ 100 for T ≳ 100 GeV is the effective degrees of freedom defined by the entropy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the case of no creation/annihilation process, the yield Yχ becomes a constant since the number and the entropy in the comoving volume is conserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' With these variables, the Boltzmann equation (67) can be represented as Y ′ χ = −(1 + δh)s⟨σv⟩ xH � Y 2 χ − (Y MB χ )2� (68) where we denote ′ ≡ d/dx, and δh ≡ T 3heff dheff dT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (69) Since the adiabatic parameter δh tends to be negligible in the almost era of the thermal history8, we set δh = 0 in the later discussion for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Moreover, we denote Y MB χ ≡ nMB χ s ∼ gχ heff 45 25/2π7/2 x3/2e−x (x ≫ 1), (70) where gχ is the degrees of freedom for the DM particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 Relic abundance in freeze-out As a simple and reasonable setup, we assume that the DM particles χ are in thermal equilibrium initially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Then, the dynamics described by (68) can be explained as follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' At first, the system is in the thermal equilibrium due to the stronger scattering effect than the spatial expansion9, but the yield has a small deviation from the thermal value due to 7The definition with the 4-momenta is given by v12 = � (k1 · k2)2 − m2 1m2 2 k0 1k0 2 , (66) which can be identical to the relative velocity only in case of the parallel 3-momenta;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ⃗k1 · ⃗k2 = ±|⃗k1||⃗k2|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 8If the DM mass scale is around O(10) GeV, the freeze-out occurs around the QCD transition scale T ∼ O(100) MeV, in which |δh| ∼ O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Thus, there is a few percent level contribution from the adiabatic parameter δh even in the WIMP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' See Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [38, 39, 40, 41, 42, 43, 44, 45] for the determination of that parameter in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 9If the interaction rate becomes lower than the Hubble rate at the relativistic regime x ≲ 1, the abundance freezes out with the massless abundance (hot relic): Y∞ ∼ Yhot = 45ζ(3) 2π4 gχ heff(Tf ) × � 1 (boson) 3/4 (fermion) (71) where ζ(3) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='202 · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 12 the expansion effect as Yχ ∼ Y MB χ + ∆(x), ∆(x) = xH s⟨σv⟩ −Y ′ χ Y MB χ + Y ∼ xH 2s⟨σv⟩ ≪ Y MB χ (72) as long as nMB⟨σv⟩ ≫ xH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The deviation ∆ continues growing in later time, and finally the evolution of the yield freezes out because the expansion rate exceeds the scattering rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The freeze-out occurs when ∆(xf) = cY MB(xf), c ∼ O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The freeze-out time x = xf and the final abundance Y∞ = Y (x = ∞) can be estimated by [8, 46] xf = ln � c(c + 2) √ 90 (2π)3 gχ � geff(Tf)mχMplσn � − � n + 1 2 � ln xf, (73) = ln � c(c + 2) √ 90 (2π)3 gχ � geff(Tf)mχMplσn � − � n + 1 2 � ln � ln � c(c + 2) √ 90 (2π)3 gχ � geff(Tf)mχMplσn �� + · · · , (74) Y∞ = (n + 1) � 45 π gχ � geff(Tf) xn+1 f Mplmχσn (75) where Mpl = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='22 × 1019 GeV is the Planck mass, geff(T) is the effective degrees of freedom defined by the energy density ρ = π2 30geff(T)T 4, and Tf = mχ/xf is the freeze- out temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the derivation of the analytic results (73) and (75), the temperature dependence of the cross section is approximated by the most dominant part as ⟨σv⟩ = σnx−n, (76) where σn is a constant10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially, n = 0 and 1 correspond to s-wave and p-wave scattering, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although a numerical factor c still has uncertainty, choosing c(c + 2) = n + 1 leads to better analysis for the final abundance Y∞ within 5% accuracy for xf ≳ 3 [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As an example, let us consider a WIMP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Choosing the parameters as mχ = 120 GeV, n = 1, σn = α2 W m2χ , αW = 1 30, gχ = 2, heff = geff = 90, one can obtain the analytic results xf = 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2, Y∞ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='81 × 10−12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (77) The actual evolution is depicted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Finally, we need to mention the validity of the approximated results (73) and (75).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Their behaviors can deviate easily if the master equation (67) includes the significant ex- tra processes by other species or the singular behavior of the cross sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially it is known some exceptional cases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (i) mutual annihilations of multiple species (coannihi- lations), (ii) annihilations into heaver states (forbidden channels), (iii) annihilations near a pole in the cross section [21], and (iv) simultaneous chemical and kinetic decoupling (coscattering) [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In these cases, the analysis should be performed more carefully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' See [21, 22, 23, 24, 47, 48, 49] as their example cases, and also [50, 51, 52] as examples of the evaluation with the temperature parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 10See also Appendix B for the actual analysis of the thermally averaged cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 13 1x10-13 1x10-12 1x10-11 1x10-10 1x10-9 1x10-8 15 20 25 30 35 40 45 Yχ YχMB Ylow Yhigh Y x Evolution of yields Figure 1: The numerical plots of the evolution for each yield with parameters mχ = 120 GeV, n = 1, σn = α2 W m2χ , αW = 1 30, gχ = 2, heff = geff = 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The red and the blue lines show the actual evolution of Yχ and the thermal yield Y MB χ , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The dashed lines of green and purple show the approximated solutions Ylow ≡ Y MB χ + ∆ and Yhigh ≡ Y∞ � 1 − Y∞ n+1 s⟨σv⟩ H �−1 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2 Constraint on relic abundance The relic abundance for the stable particles through the freeze-out of their annihilation processes, as similar to χ particles discussed in the above, are restricted by the cosmological observation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' An useful parameter relating to the relic abundance is the density parameter defined by Ωχ ≡ ρχ 3M2 pl 8π H2 ∼ 16π3 135 heff(T)T 3 M2 plH2 mχYχ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (78) Since the yield maintains the constant after the freeze-out unless the additional entropy production occurs in the later era, one can estimate the present density parameter of χ with the present values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The current observation through the the Cosmic Microwave Background [53] provides T0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='726 K, heff(T0) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='91, H0 = 100h2 km/s/Mpc, h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='677, therefore one can estimate to Ωχ,now ∼ mχYχ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='64h2 × 10−9 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (79) Because the present density parameter for the cold matter component is observed as Ωch2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='119 and it must be larger than the χ’s component, one can obtain a bound as mχYχ < 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='36 × 10−10 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (80) The set of parameters shown in (77) is seemingly suitable for the above constraint with a bit of the modification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' However, that would fail by taking into account the direct detections of the DM that focuses on the process of χ, ψ ↔ χ, ψ, where ψ is a standard model particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' If the annihilation process occurs through a similar interaction to the 14 electroweak gauge interaction, the cross section for χ-ψ elastic scattering also relates to the same gauge interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' One can estimate σχψ→χψ ∼ G2 F m2 χ ∼ 10−36 cm2, but it is already excluded by the direct detection [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3 Relic abundance in freeze-in The discussion and the result in the previous subsections are based on the freeze-out scenario in which the DM particles are in thermal equilibrium initially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' However, it is not satisfied if the interaction between the DM particles and the thermal bath is too small, so-called FIMP (feebly interacting massive particle) scenario [19, 55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In this situation, the yield of DM evolves from zero through the thermal production from the thermal bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although the DM never reaches the thermal equilibrium, the yield freezes in with a non- thermal yield at last.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We discuss here the relic abundance by the freeze-in scenario in two cases of the pair- creation of DM by (1) scattering from thermal scattering and (2) decay from a heavier particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 Pair-creation by scattering In the case that DM-pair (χ¯χ) is produced by thermal pair particles (ψ ¯ψ), the Boltzmann equation is given by (68) as Y ′ χ ∼ s⟨σv⟩ xH (Y MB χ )2, (81) where we approximated Yχ ≪ Y MB χ and the adiabatic degrees δh ∼ 0 until the freezing-in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For simplicity, we consider the simple interaction described by Lint = λ(χ†χ)(ψ†ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (82) where χ is the bosonic DM, ψi labeled i are the massless bosons in the thermal bath, and y is a coupling constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The thermally averaged cross section is given by ⟨σv⟩ = g2 χg2 ψ (nMB χ )2 λ2 (2π)5 T � ∞ 4m2χ ds � s − 4m2χ K1(√s/T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (83) where gχ and gψ are the degrees of freedom for each species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, one can estimate the final yield at x = mχ/T = ∞ as Yχ(∞) ∼ � ∞ 0 dx s⟨σv⟩ xH (Y MB χ )2 (84) = 3π2 128 · g2 χg2 ψ λ2 (2π)5 · m4 χ H(T = mχ) s(T = mχ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (85) This result implies that the yield freezing occurs around the earlier stage x ∼ O(1) because (85) can be regarded as Yχ(∞) ∼ nMB χ ⟨σv⟩ H Y MB χ ��� x∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Applying the obtained relic abundance (85) to the relation of the present density parameter (79), one can obtain the required strength of the coupling as λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='0 × 10−12 · 1 gχgψ �geff(T = mχ) 100 �1/4 �heff(T = mχ) 100 �1/2 �Ωχ,nowh2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='119 �1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (86) 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2 Pair-creation by decay The other possible freeze-in scenario is due to the pair production from a heavier particle: σ → χ¯χ [19, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The original Boltzmann equation for DM is given by dYχ dxσ = (1 + δh)Γσ→χ¯χ xσH K1(xσ) K2(xσ) � Yσ − � Yχ Y MB χ �2 Y MB σ � (87) ∼ Γσ→χ¯χ xσH K1(xσ) K2(xσ)Y MB σ (88) where Γσ→χ¯χ is a decay constant and xσ ≡ mσ/T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We also approximated Yσ ∼ Y MB σ , Yχ ≪ Y MB χ , and δh ∼ 0 in the second line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, the final yield can be estimated as Yχ(∞) ∼ � ∞ 0 dxσ Γσ→χ¯χ xσH K1(xσ) K2(xσ)Y MB σ (89) = 3gσ 4π · Γσ→χ¯χ H(T = mσ) m3 σ s(T = mσ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (90) where gσ is the degrees of freedom for σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' If the decay constant can be represented by the coupling constant y as Γσ→χ¯χ = gχ · y2 8πmσ, (91) the required magnitude of the coupling with the relation formula to the density parameter (79) can be estimated as y2 ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='7 × 10−24 · mσ mχ 1 gσgχ �geff(T = mσ) 100 �1/2 heff(T = mσ) 100 Ωχ,nowh2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='119 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (92) 4 Application to baryogenesis The other popular application of the Boltzmann equation in cosmology is the baryogenesis scenario that describes the dynamical evolution of the baryon number in the Universe from zero at the beginning to the non-zero at present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The present abundance of the baryons can be estimated from (79).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Replacing χ’s mass mχ into the nucleon mass mN = 939 MeV and using the present density parameter for the baryon Ωbh2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='0224 [53], one can obtain YB,now = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='69 × 10−11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (93) There are three conditions suggested by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sakharov [57] in order to develop the baryon abundance from YB = 0 to non-zero: (1) baryon number (B) violation, (2) C and CP violation, (3) non-equilibrium condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Their brief reasons are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The B violation is trivial by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' If the baryon number violating processes conserve C or CP, their anti-particle processes happen with the same rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As the result, the net baryon number is always zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Even if the processes violate the baryon number, C and CP, the thermal equilibrium reduces the baryon asymmetry due to their inverse processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially, the Boltzmann equation provides a powerful tool to quantify the third condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' To see how to construct the Boltzmann equations for the baryogenesis, let us consider with a toy model11 as shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The model includes Majorana-type of chiral 11Replacing X, ψ, φ into the right-handed neutrino, left-handed neutrino, Higgs doublet in the standard model, respectively, one can obtain the type-I seesaw model that can realize the well-known leptogenesis scenario [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' However, the correspondence is not complete: the type-I seesaw model includes the gauge interactions that induces ∆L = 1 scattering process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 16 Species Particle statistic #B Xa Chiral fermion (Majorana) − ψi Chiral fermion b φ Complex scalar 0 Process ∆B Xa → ψi, φ b Xa → ¯ψi, ¯φ −b ψi, ψj → ¯φ, ¯φ −2b ψi, φ → ¯ψj, ¯φ −2b Table 1: Left: the matter contents and their baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' All the anti-particles have the opposite sign of the baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Right: Possible processes up to the 4-body B- violating interactions and their variation of the baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The bar (¯) on each species denotes the anti-particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In addition to the shown processes here, their inverse processes are also possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although there are elastic scatterings Xa, ψi, → Xb, ψj, Xa, φ → Xb, φ, and ψi, φ → ψj, φ, we omited them because they do not change the baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' fermions Xa for a = 1, · · · , NX, baryonic chiral fermions ψi for i = 1, · · · , Nψ with the common baryon number b, and a non-baryonic complex scalar φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For simplicity, the baryonic fermions ψi and the scalar φ are massless and they are always in the thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Because Xa are the Majorana fermion, Xa and ¯Xa can be identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Thus, once we set the fundamental interaction to provide a decay/inverse-decay processes Xa ↔ ψi, φ, their anti-particle processes Xa ↔ ¯ψi, ¯φ also exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' These 3-body interactions also induce the B-violating 2-2 scatterings exchanging Xa fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 Mean net baryon number At first, we consider only the decay processes for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' This situation is realized when Xa particles start to decay after the scattering processes freeze out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Here we define the mean net baryon number by ϵa = � f ∆Bf � rXa→f − r ¯ Xa→ ¯f � (94) where the summation runs for all decay processes, ∆Bf and rXa→f are the generated baryon number through the process of Xa → f and its branching ratio, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The physical meaning of the mean net baryon number ϵa is an average of the produced baryon number by a single quantum of Xa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the case of our toy model, this quantity can be represented as ϵa = b � i � rXa→ψi,φ − rXa→ ¯ψi,¯φ � (95) This result reflect the requirements of B-violation and C, CP violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' If the decay processes are B-conserving b = 0 or C, CP conserving processes rXa→ψi,φ = rXa→ ¯ψi,¯φ, the mean net baryon number is vanished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Supposing that only a single flavour X1 survives and all of X1 particles decay into the baryonic fermions ψi, the generated baryon number can be estimated by YB ∼ ϵ1YX1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially, the baryon abundance can be maximized if X1 particles are the hot relic YX1 ∼ Yhot ∼ 45 2π4 gX1 heff(Tf): YB ∼ 45 2π4 · ϵ1gX1 heff(Tf), (96) where gX1 = 2 is the degrees of freedom of the Majorana-type fermion X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2 Boltzmann equations in baryogenesis scenario Although we considered quite simplified situation in the previous subsection, in reality, the situation is more complicated since the system includes the dynamical decay/inverse decay and scattering processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In order to quantify the actual evolution of the baryon abundance including the scattering effects, we need to construct the Boltzmann equations in this system and solve them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For simplicity, we suppose again that only a single flavour X1 affects to the evolu- tion of the net baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Using the definition of the net baryon density nB = b � i � nψi − n ¯ψi � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' the evolution of the system including the processes in Table 1 are de- scribed by12 ˙nX1 + 3HnX1 = − �MX1 EX1 � ΓX1(nX1 − nMB X1 ) + · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (97) ˙nB + 3HnB = ϵ1 �MX1 EX1 � ΓX1 � nX1 − nMB X1 � − 2ΓS nB + · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (98) where MX1 (EX1) is the mass (energy) of X1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ΓX1 ∼ � i � ΓX1→ψiφ + ΓX1→ ¯ψi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='¯φ � is the total width of X1 and ϵ1 ≡ b · � i � ΓX1→ψiφ − ΓX1→ ¯ψi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='¯φ � ΓX1 (99) is the mean net baryon number corresponding to (95),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and ΓS = nMB φ ⟨σψφ→ ¯ψ ¯φv⟩ + nMB ψ ⟨σψψ→¯φ¯φv⟩ (100) is the reaction rates through the B-violating scatterings up to the tree level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The omitted parts “· · · ” denote the sub-leading processes in terms of the order of couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (97) describes the dissipation of Xa, and it converts to the baryon with the rate ϵa and flows into the baryon sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' However, the produced baryons also wash themselves out through the B-violating scattering processes due to the last term in (98).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, the smaller B-violating scattering effect is favored for remaining the more net baryons as long as Xa can be thermalized enough at the initial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' To solve the equations of motion (97) and (98),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' it is convenient to use the yields YX1 = nX1/s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' YB = nB/s and the variable x = MX1/T as Y ′ X1 = −γD(YX1 − Y MB X1 ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (101) Y ′ B = ϵ1γD(YX1 − Y MB X1 ) − 2γSYB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (102) where Y MB X1 = nMB X1 s = 45 4π4 gX1 heff x2K2(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (103) γD = 1 x · ΓX1 H(T) �mX1 EX1 � = � 45 4π3geff Mpl MX1 K1(x) K2(x) ΓX1 T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (104) γS = 1 x · ΓS H(T) = � 45 4π3geff Mpl MX1 ΓS(T) T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (105) with the n-th order of the modified Bessel function Kn(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We assumed the adiabatic evo- lution of the relativistic degrees h′ eff/heff ∼ 0 to obtain (101) and (102).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The dimensionless 12See appendix B for the treatment of the thermally averaged quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' And also see Appendix C for the detail of the derivation of the equations, especially, the treatment of the real intermediate state (RIS) to avoid the double-counting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 18 parameters γD,S are the reaction rates normalized by the Hubble parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In general, γD is proportional to x2 (x1) at the limit of x ≪ 1 (x ≫ 1), whereas the behavior of γS depends on the detail of the interaction as we will see its concrete form with an example model later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (101) and (102) can provide the analytic form of YB as YB(∞) = −ϵ1 � ∞ 0 dx Y ′ X1(x) exp � −2 � ∞ x dx′ γS(x′) � (106) Especially in the weakly scattering case, � ∞ 0 dx γS ≲ 1, one can approximate the above result as YB(∞) ∼ −ϵ1 � ∞ 0 dx Y ′ X1(x) = ϵ1Yhot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (107) The physical interpretation is that the whole X1 particles existing from the beginning can convert to the net baryons without any wash-out process in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hence the approximated result does not depend on the detail of the decay process γD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The result (107) is consistent with the former estimation in (96).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' On the other hand, the strongly scattering case causes the wash-out process significantly, and thus the final net baryon abundance is strongly suppressed from the result of (107).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' To see the concrete evolution dynamics, we consider the following interaction Lint = − � a,i yaiφXaψi + (h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=') (108) with the Yukawa coupling yai and the two-component spinors Xa and ψi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' This interaction leads the concrete representation of the decay width and the scattering rate as ΓX1 = ˜αMX1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (109) ΓS = T · 8˜α2 πgψ ˜γS(x) (110) where we denoted ˜α = � i gψigφ |y1i|2 32π ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (111) ˜γS = 1 8 � ∞ 0 dz K1(z) � 2 � z4 z2 + x2 + x2z2 z2 + 2x2 ln � 1 + z2 x2 �� + x2z4 (z2 − x2)2 + ˜α2x4 + 2 � z2 − x2 ln � 1 + z2 x2 �� + 4x2(z2 − x2) (z2 − x2)2 + ˜α2x4 � z2 − � z2 + x2� ln � 1 + z2 x2 ��� (112) ∼ � 1 (x ≪ 1) 8/x2 (x ≫ 1) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (113) and gψ ≡ � i gψi = Nψgψi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Here gψi and gφ are the degrees of freedom of the chiral fermion ψi and the scalar φ, not including their anti-particle state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The asymptotic behaviors for each reaction rate are governed by γD(x) ∝ � x2 (x ≪ 1) x1 (x ≫ 1) , γS(x) ∝ � (constant) (x ≪ 1) x−2 (x ≫ 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (114) 19 1e-06 1e-04 1e-02 1e+00 1e+02 1e+04 1e+06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 1 10 100 For decays (γD) For scatterings (γS) MX1 = 1016 GeV MX1 = 1015 GeV MX1 = 1014 GeV MX1 = 1013 GeV MX1 = 1013 GeV MX1 = 1014 GeV MX1 = 1015 GeV MX1 = 1016 GeV γ = Γ/xH x = MX1/T Evolution of rate of reactions 1e-12 1e-10 1e-08 1e-06 1e-04 1e-02 1e+00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 1 10 100 MX1 = 1016 GeV MX1 = 1015 GeV MX1 = 1014 GeV MX1 = 1013 GeV Analytic (hot relic decay) YB/ε1 x = MX1/T Evolution of YB/ε1 Figure 2: The numerical plots of the evolution of the interaction rates (upper) and YB/ϵ1 (lower) for each mass of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The numerical parameters are chosen as gX1 = 2, gψi = gφ = 1, Nψ = 3, ˜α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01, heff = geff = 100, and assumed the thermal distribution for X1 and YB = 0 at the initial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The solid lines in red, yellow, green, and blue correspond to MX1 = 1016, 1015, 1014, and 1013 GeV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the upper figure, “For decays” and “For scatterings” depict γD(x) and γS(x), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the lower figure, the dashed line in purple shows the approximated solution (96) due to the decay of the hot relic, YB/ϵ1 ∼ Yhot = 45 2π · gX1 heff .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 20 The actual behavior of γD and γS with concrete parameters are shown in the upper side of Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The asymptotic behaviors at x ≪ 1 and x ≫ 1 are consistent with (114).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The enhancement structures for each γS seen around x ∼ O(1) are induced by the resonant process through the on-shell s-channel shown in (112).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The lower side in Figure 2 shows the evolution of YB/ϵ1, which is the numerical result from the coupled equations (101) and (102).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The result shows that the heavier mass of X can generate more the net baryon number because the reaction rates are reduced for the heavier case, and hence the generated baryons can avoid the wash-out process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially, the plot for MX1 = 1016 GeV leads the close result to the hot relic approximation (107), whereas the plot for MX1 = 1013 GeV shows the dumping by the wash-out effect at the late stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The milder decrease at the middle stage is caused by the decay of X particles that supplies the net baryons to compensate for the wash-out effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Finally, the obtained yield of the net baryon number YB should be compared with the current bound (93), YB,now ∼ 10−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Since the mean net baryon number can roughly be estimated by ϵ1 ∼ ˜α2 sin2 θCP where θCP is a CP phase in the considered model, one can obtain the constraint from the current observation as YB,now/ϵ1 ≳ 10−10/˜α2 ∼ 10−6, where we used ˜α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, one can find that MX1 ≳ 1014 GeV is allowed by compared with the lower plot in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 5 Summary In this paper we have demonstrated the derivation of the Boltzmann equation from the microscopic point of view with the quantum field theory, in which the transition probabil- ity has been constructed with the statistically averaged quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Although both results of the full and the integrated Boltzmann equation (37) and (44) are consistent with the well-known results, our derivation ensures that especially the full Boltzmann equation is widely applicable even in the non-equilibrium state since the derivation does not as- sume any distribution type nor the temperature of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially the integrated Boltzmann equation (44) is quite convenient and applicable for wide situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In the particular case that the kinetic equilibrium cannot be ensured, the coupled equations with the temperature parameter (58) and (59) are better for following the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As the application examples of the (integrated) Boltzmann equation in cosmology, we have reviewed two cases, the relic abundance of the DM and the baryogenesis scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For the former case, we have shown the Boltzmann equation and its analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The analytic results (73) and (75) are quite helpful for estimating the final relic abundance of the DM and its freeze-out epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For the latter case, we have derived the Boltzmann equation with a specific model and show the numerical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The final net baryon number can be estimated by the analytic result (107) in the case of the weakly interacting system, whereas that is strongly suppressed by the wash-out effect in the case of the strongly interacting system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The Boltzmann equation is a powerful tool for following the evolution of the particle number or other thermal quantities, and thus it will be applied for many more situations in future and will open a new frontier of the current physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' We hope this paper helps you to use the Boltzmann equation and its techniques thoughtfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Acknowledgment We thank Chengfeng Cai, Yi-Lei Tang, and Masato Yamanaka for useful discussions and comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' This work is supported in part by the National Natural Science Foundation of 21 China under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 12275367, and the Sun Yat-Sen University Science Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A Validity of the Maxwell-Boltzmann similarity approxi- mation Although the approximation of the distribution function by the Maxwell Boltzmann simi- larity distribution is used well in many situations, such approximation is not always valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In this appendix, we show that the approximation is valid if the focusing species is in the kinetic equilibrium through interacting with the thermal bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Let us consider the situation of the particle number conserving process a(k1)+b(k2) ↔ a(k3)+b(k4), where a and b denote the particle species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' If this process happens fast enough and the species b maintains the thermal distribution, the condition of the detailed balance leads 0 = fa(t, E1)fMB b (t, E2) − fa(t, E3)fMB b (t, E4) (115) = � fa(t, E1) fMB a (t, E1) − fa(t, E3) fMB a (t, E3) � fMB a (t, E1)fMB b (t, E2), (116) where we assumed the common temperature to the thermal bath and the energy conserva- tion law: fMB a (t, E1)fMB b (t, E2) = fMB a (t, E3)fMB b (t, E4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Because the above relation must be satisfied by arbitrary energy, one can obtain fa(t, E) fMB a (t, E) = C(t) (117) where C(t) is a function which is dependent on time but independent of the energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The function C(t) can be determined by integrating over the momentum of fa(t, E) = C(t)fMB a (t, E1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', na(t) = C(t)nMB a (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Finally, one can obtain the desired form of the distribution: fa(t, E) = C(t)fMB a (t, E) = na(t) nMB a (t)fMB a (t, E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (118) B Formulae for thermal average by Boltzmann-Maxwell dis- tribution In this section, we summarize the convenient formulae used in the various thermally av- eraged quantities by the Maxwell-Boltzmann distribution, especially for number density, decay rate, and cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1 Number density and modified Bessel function The number density with the Maxwell-Boltzmann distribution is given by nMB = g � d3k (2π)3 fMB (119) = g 2π2 m2TK2(m/T)eµ/T (120) = g × � � � � � � � 1 π2 T 3eµ/T + · · · (T ≫ m) �mT 2π �3/2 e−(m−µ)/T � 1 + 15T 8m + · · · � (T ≪ m) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (121) 22 where Kn is the n-th order of the modified Bessel function given by Kn(x) = � ∞ 0 dθ e−x cosh θ cosh nθ (122) = � � � � � � � Γ(n) 2 �2 x �n + · · · (0 < x ≪ √1 + n) � π 2x e−x � 1 + 4n2 − 1 8x + · · · � (x ≫ 1) (123) Especially,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' the following relations are helpful in analysis: Kn(x) = x 2n (Kn+1(x) − Kn−1(x)) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (124) d dx (xnKn(x)) = −xnKn−1(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (125) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2 Thermally averaged decay rate The rate defined in (45) for the single initial species relates to the decay rate, R(A → X, Y, · · · ) = mA 2EA ΓA→X,Y,···, where ΓA→X,Y,··· = 1 2mA � d3kX (2π)3 d3kY (2π)3 · · · 1 2EX2EY · · ×(2π)4δ4(kA − kX − kY − · · · ) × 1 gA � gA,gX,gY ,··· |M(A → X, Y, · · · )|2 (126) is the partial width for the process A → X, Y, · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The factor mA/EA in R corresponds to the inverse Lorentz gamma factor describing the life-time dilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The thermal average of the rate is given by ⟨R(A → X, Y, · · · )⟩ = 1 2ΓA→X,Y,··· �mA EA � , (127) �mA EA � = gA nMB A � d3kA (2π)3 mA EA fMB A (128) = K1(mA/T) K2(mA/T) (129) = � � � mA 2T + · · · (T ≫ mA) 1 − 3T 2mA + · · · (T ≪ mA) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (130) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3 Thermal averaged cross section The rate averaged by the initial 2-species relates to the scattering rate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' R(A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · ) = σv (131) = 1 2EA2EB � d3kX (2π)3 d3kY (2π)3 · · · 1 2EX2EY · · ×(2π)4δ4(kA + kB − kX − kY − · · · ) × 1 gAgB � gA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='··· |M(A → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · )|2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (132) 23 where σ = σ(s) is the cross section for the process A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B → X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' · · · dependent on the Mandelstam variable s = (kA + kB)2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and v is the Møller velocity v = � (kA · kB)2 − m2 Am2 B EAEB = � (s − (mA + mB)2)(s − (mA − mB)2) 2EAEB .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (133) The thermal average of the rate can be obtained by ⟨R(A, B → X, Y, · · · )⟩ = ⟨σv⟩ (134) = gAgB nMB A nMB B � d3kA (2π)3 d3kB (2π)3 σv · fMB A fMB B (135) = gAgB nMB A nMB B � ∞ 0 d|⃗kA| d|⃗kB| � π 0 dθ · 1 4π2 |⃗kA|2|⃗kB|2 sin θ EAEB ×σ(s) · � (s − (mA + mB)2)(s − (mA − mB)2) × exp � −EA + EB T + µA + µB T � , (136) where the integral variable θ denotes the angle between ⃗kA and ⃗kB, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=', ⃗kA · ⃗kB = |⃗kA||⃗kB| cos θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In order to perform the integral in (136), it is convenient to change the integral variables (|⃗kA|, |⃗kB|, θ) to (E+, E−, s), where E± ≡ EA ± EB [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The Jacobian is given by ����� ∂(|⃗kA|, |⃗kB|, θ) ∂(E+, E−, s) ����� = EAEB 4|⃗kA|2|⃗kB|2 sin θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (137) The integral region can be obtained from the expression of the Mandelstam variable, s = m2 A + m2 B + 2 � EAEB + |⃗kA||⃗kB| cos θ � , (138) which leads (s − m2 A − m2 B − 2EAEB)2 ≤ 4|⃗kA|2|⃗kB|2 = 4(E2 A − m2 A)(E2 B − m2 B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (139) The above inequality is equivalent to � E− − m2 A − m2 B s E+ �2 ≤ (E2 + − s) � 1 − (mA + mB)2 s � � 1 − (mA − mB)2 s � (140) Therefore, the integral region can be obtained as e− ≤ E− ≤ e+, (141) E+ ≥ √s, (142) s ≥ (mA + mB)2, (143) where e± ≡ m2 A − m2 B s E+ ± � (E2 + − s) � 1 − (mA + mB)2 s � � 1 − (mA − mB)2 s � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (144) 24 Using the above results, the integral (136) can be performed as ⟨σv⟩ = gAgB nMB A nMB B 1 2(2π)4 e(µA+µB)/T × � ∞ (mA+mB)2 ds · σ(s) · (s − (mA + mB)2)(s − (mA − mB)2) × T √sK1(√s/T) (145) = 1 4m2 Am2 BT � ∞ mA+mB d√s · σ(s) · (s − (mA + mB)2) ×(s − (mA − mB)2) · K1(√s/T) K2(mA/T)K2(mB/T), (146) where we used the representation of the number density (120).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Especially in the case of the non-relativistic limit, mA, mB ≫ T, it is convenient to use the representation13 � σv(s) ≡ σ(s) · vNR(s), vNR(s) ≡ � s − (mA + mB)2 mAmB (147) and the replacement of the integral variable s to y defined by √s = mA + mB + Ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (148) Since the integral parameter y corresponds to ⃗k2/mT naively, we can expect that the significant integral interval is on y ≲ O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Then (146) can be approximated as ⟨σv⟩ ∼ 2 √π � 1 − 15T 8mA − 15T 8mB + 3T 8(mA + mB) + · · · � × � ∞ 0 dy · � (� σv)0 + Ty · (� σv)′ 0 + · · · � ×e−y · √y � 1 + Ty 2mA + Ty 2mB − Ty 4(mA + mB) + · · · � (149) = (� σv)0 + 3 2T � −3 4 � 1 mA + 1 mB � (� σv)0 + (� σv)′ 0 � + O(T 2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (150) where we used the asymptotic expansion (123) and the Taylor series around √s = mA + mB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' � σv = (� σv)0 + (√s − mA − mB) · (� σv)′ 0 + · · · (151) (� σv)0 ≡ � σv(√s = mA + mB),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (� σv)′ 0 ≡ d � σv d√s ����√s=mA+mB .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (152) C Derivation of the Boltzmann equations in baryogenesis scenario In this section, we demonstrate the derivation of the Boltzmann equation in the baryoge- nesis scenario with the processes listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Indeed, the straightforward derivation 13The Lorentz-invariant “velocity” vNR behaves as vNR ∼ ��� ⃗kA mA − ⃗kB mB ��� at the non-relativistic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Note that lim vNR→0 � σv remains non-zero (s-wave contribution) in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 25 of the Boltzmann equations leads to the over-counting problem in the amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For example, once a contribution of the decay/inverse-decay process X ↔ ψ, φ is included in the Boltzmann equation, the straightforward contribution from the scattering process ¯ψ, ¯φ ↔ ψ, φ is over-counted because such process can be divided into ¯ψ, ¯φ ↔ X and X ↔ ψ, φ if the intermediate state X is on-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, in general, one must regard the straightforward contribution in the scattering processes as the subtracted state of the real intermediated state (RIS) from the full contribution [8, 58]: |M|2 Boltzmann eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' = |M|2 subtracted ≡ |M|2 full − |M|2 RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' In a case of the scattering process ¯ψ, ¯φ → ψ, φ, the full amplitude part can be represented as iM( ¯ψ, ¯φ → ψ, φ)full ∼ iM(X → ψ, φ) · i s − M2 X + iMXΓX iM( ¯ψ, ¯φ → X) (153) where s is the Mandelstam variable, MX and ΓX are X’s mass and total decay width, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' On the other hand, the RIS part can be evaluated as the limit of the narrow width by ��M( ¯ψ, ¯φ → ψ, φ) ��2 RIS = lim ΓX→0 ��M( ¯ψ, ¯φ → ψ, φ) ��2 full (154) = lim ΓX→0 |M(X → ψ, φ)|2 1 (s − M2 X)2 + (MXΓX)2 |M( ¯ψ, ¯φ → X)|2 ∼ |M(X → ψ, φ)|2 · π MXΓX δ(s − M2 X) · |M( ¯ψ, ¯φ → X)|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (155) In the last line, the narrow width approximation is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Since the contribution of both amplitudes in (155) is the order of ΓX, the RIS contribution is also the order of ΓX in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, RIS part in the scattering process contributes to the decay/inverse-decay process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Taking into account the above notice, we derive the Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' For simplic- ity, we suppose that only a single flavour X1 affects to the evolution of the net baryon number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Because of no scattering processes associated with Xa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' the equation governing nXa is simply written as ˙nX1 + 3HnX1 = � d3kX1 (2π)3 d3kψi (2π)3 d3kφ (2π)3 1 2EX12Eψi2Eφ (2π)4δ4(kX1 − kψi − kφ) × 1 gX1 � gX1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gψi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gφ � −fX1|M(X1 → ψiφ)|2 + fψifφ|M(ψiφ → X1)|2 −fX1|M(X1 → ¯ψi ¯φ)|2 + f ¯ψif¯φ|M( ¯ψi ¯φ → X1)|2� + · · · (156) = − � i ⟨ΓX1⟩(nX1 − nMB X1 ) + · · · (157) where ΓX1 = ΓX1→ψiφ + ΓX1→ ¯ψi ¯φ + · · · (158) is the total decay width of X1 and ⟨ΓX1⟩ ≡ 1 nMB X1 � gX1 � d3kX1 (2π)3 MX1 EX1 ΓX1fMB X1 (159) = ΓX1 · K1(MX1/T) K2(MX1/T) ∼ ΓX1 × � MX1/2T (MX1 ≪ T) 1 (MX1 ≫ T) (160) 26 is the thermally averaged width,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kn(x) is the modified Bessel function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' To derive (157), we assumed the universal distributions for ψi (fψi ∼ 1 Nψ fψ, fψ ≡ � i fψi) and ignored the chemical potentials in the thermal distributions (fMB ψ = fMB ¯ψ , fMB φ = fMB ¯φ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Besides, we assumed φ is always in the thermal equilibrium (fφ = fMB φ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' On the other hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ψi’s equation should be derived with the consideration of the subtracted state in some scattering processes to avoid the over-counting of the decay/inverse-decay processes: ˙nψ + 3Hnψ = � i � d3kX1 (2π)3 d3kψi (2π)3 d3kφ (2π)3 1 2EX12Eψi2Eφ (2π)4δ4(kX1 − kψi − kφ) × � gX1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gψi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gφ � fX1|M(X1 → ψiφ)|2 − fψifφ|M(ψiφ → X1)|2� + � i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='j � d3kψi (2π)3 d3kψj (2π)3 d3kφ1 (2π)3 d3kφ2 (2π)3 1 2Eψi2Eψj2Eφ12Eφ2 � gψi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gψj ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gφ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='gφ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='× ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='(2π)4δ4(kψi + kψj − kφ1 − kφ2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='× ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='−fψifψj|M(ψiψj → ¯φ1 ¯φ2)|2 + f¯φ1f¯φ2|M(¯φ1 ¯φ2 → ψiψj)|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='+(2π)4δ4(kψi + kφ1 − kψj − kφ2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='× ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='−fψifφ1|M(ψiφ1 → ¯ψj ¯φ2)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='sub + f ¯ψjf¯φ2|M( ¯ψj ¯φ2 → ψiφ1)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='sub ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='+ · · · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='(161) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nX1⟨ΓX1→ψφ⟩ − nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='X1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nψ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='ψ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⟨ΓX1→ ¯ψ ¯φ⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='−(nψ)2⟨σψψ→¯φ¯φv⟩ + (nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='ψ )2⟨σ ¯ψ ¯ψ→φφv⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='−nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='φ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nψ⟨σψφ→ ¯ψ ¯φv⟩ − n ¯ψ⟨σ ¯ψ ¯φ→ψφv⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nψ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='ψ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⟨(ΓX1→ ¯ψ ¯φ)2⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='ΓX1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='− n ¯ψ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='ψ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='⟨(ΓX1→ψφ)2⟩ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='ΓX1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='X1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='+ · · · ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='(162) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='where we used the notations nψ ≡ � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='i nψi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' ΓXa→ψφ ≡ � i ΓXa→ψiφ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and ⟨σψφ→ ¯ψ ¯φv⟩ ≡ 1 nMB ψ nMB φ gψgφ � d3kψi (2π)3 d3kφ (2π)3 σψφ→ ¯ψ ¯φv · fMB ψi fMB φ (163) ⟨σψψ→¯φ¯φv⟩ ≡ 1 (nMB ψ )2 · g2 ψ � d3kψi (2π)3 d3kψj (2π)3 σψψ→¯φ¯φv · fMB ψi fMB ψj (164) with gψ ≡ � i gψi are the thermally averaged cross sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' The fourth line in (162) corresponds to the RIS contribution that makes the thermal balance to the first line, while the processes in the third line includes the resonant structure as seen in (153).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' With the expression of the net baryon number density nB = b(nψ − n ¯ψ), one can finally obtain the equation for the net baryons using (162) as ˙nB + 3HnB = ϵ1⟨ΓX1⟩ � nX1 − nMB X1 � −nMB φ � 2bnMB ψ � ⟨σψφ→ ¯ψ ¯φv⟩ − ⟨σ ¯ψ ¯φ→ψφv⟩ � +nB � ⟨σψiφ→ ¯ψ ¯φv⟩ + ⟨σ ¯ψi ¯φ→ψφv⟩ �� −nMB ψ � 2bnMB ψ � ⟨σψψ→¯φ¯φv⟩ − ⟨σ ¯ψ ¯ψ→φφv⟩ � +nB � ⟨σψψ→¯φ¯φv⟩ + ⟨σ ¯ψ ¯ψ→φφv⟩ �� + · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (165) 27 where ϵ1 is the mean net number defined in (99), and we used the approximation nψ + n ¯ψ ∼ 2nMB ψ ≫ |nB| = b|nψ − n ¯ψ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' (166) Note that the tree level contribution of cross sections and their anti-state are same in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Therefore, the terms in second and the fourth lines in (165) are cancelled in the leading order, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' References [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Alpher, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Bethe and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Gamow, “The origin of chemical elements,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 73, 803-804 (1948) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='803 [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hayashi, “Proton-Neutron Concentration Ratio in the Expanding Universe at the Stages preceding the Formation of the Elements,” Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2, 224-235 (1950) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1143/ptp/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='224 [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Alpher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Follin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Herman, “Physical Conditions in the Initial Stages of the Expanding Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 92, 1347-1361 (1953) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1347 [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Burbidge, ”Nuclear Energy Generation and Dissipation in Galaxies,” Pub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' As- tron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Pacific 70, 83 (1958) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1086/127179 [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hoyle and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Tayler, “The Mystery of the Cosmic Helium Abundance,” Nature 203, 1108 (1964) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1038/2031108a0 [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zeldovich, “Survey of Modern Cosmology,” Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 3, 241-379 (1965) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/b978-1-4831-9921-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='50011-9 [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Peebles, “Primeval Helium Abundance and the Primeval Fireball,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='10, 410-413 (1966) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/physrevlett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='410;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Peebles, “Primordial Helium Abundance and the Primordial Fireball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 2,” Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 146, 542-552 (1966) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1086/148918 [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kolb and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Turner, “The Early Universe,” Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 69, 1-547 (1990) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1201/9780429492860 [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Weinberg, “Cosmology,” Oxford University Press, 544p (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Cyburt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fields, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Olive and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Yeh, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 88, 015004 (2016) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='015004 [arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01076 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kompaneets, ”The Establishment of Thermal Equilibrium between Quanta and Electrons,” Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 31, 876 (1956);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' JETP 4, 730 (1957).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Weymann, ”Diffusion Approximation for a Photon Gas Interacting with a Plasma via the Compton Effect,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fluids, 8, 2112 (1965) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1761165 [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sunyaev, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zeldovich, ”Distortions of the background radiation spec- trum,” Nature 223, 721 (1969) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1038/223721a0 [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zeldovich and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sunyaev, “The Interaction of Matter and Radiation in a Hot-Model Universe,” Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 4, 301 (1969) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1007/BF00661821 28 [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sunyaev, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zeldovich, ”The Spectrum of Primordial Radiation, its Distor- tions and their Significance,” Comments Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and Space Physics 2, 66 (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sunyaev, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zeldovich, ”The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies,” Comments Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' and Space Physics 4, 173 (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [17] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lee and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Weinberg, “Cosmological Lower Bound on Heavy Neutrino Masses,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 39, 165-168 (1977) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='165 [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Scherrer and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Turner, “On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 33, 1585 (1986) [erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 34, 3263 (1986)] doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1585 [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hall, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Jedamzik, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' March-Russell and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' West, “Freeze-In Produc- tion of FIMP Dark Matter,” JHEP 03, 080 (2010) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1007/JHEP03(2010)080 [arXiv:0911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1120 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hochberg, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kuflik, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Volansky and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Wacker, “Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 113, 171301 (2014) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='171301 [arXiv:1402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='5143 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Griest and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Seckel, “Three exceptions in the calculation of relic abundances,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 43, 3191-3203 (1991) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3191 [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D’Agnolo and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Ruderman, “Light Dark Matter from Forbidden Chan- nels,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 115, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='6, 061301 (2015) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='061301 [arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='07107 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D’Agnolo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Pappadopulo and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Ruderman, “Fourth Exception in the Calculation of Relic Abundances,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 119, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='6, 061102 (2017) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='061102 [arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='08450 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kim and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kuflik, “Superheavy Thermal Dark Matter,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 123, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='19, 191801 (2019) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='191801 [arXiv:1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='00981 [hep- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Berlin, “WIMPs with GUTs: Dark Matter Coannihilation with a Lighter Species,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 119, 121801 (2017) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='121801 [arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='08256 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [26] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kramer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kuflik, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Levi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Outmezguine and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Ruderman, “Heavy Thermal Dark Matter from a New Collision Mechanism,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 126, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='8, 081802 (2021) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='081802 [arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='04900 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Garny, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Heisig, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' L¨ulf and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Vogl, “Coannihilation without chemical equi- librium,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 96, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='10, 103521 (2017) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='103521 [arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='09292 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Frumkin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hochberg, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kuflik and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Murayama, “Thermal Dark Matter from Freezeout of Inverse Decays,” [arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='14857 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [29] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Frumkin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kuflik, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lavie and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Silverwater, “Roadmap to Thermal Dark Matter Beyond the WIMP Unitarity Bound,” [arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01635 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 29 [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Yoshimura, “Unified Gauge Theories and the Baryon Number of the Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 41, 281-284 (1978) [erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 42, 746 (1979)] doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='281;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Yoshimura, “Origin of Cosmological Baryon Asymmetry,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 88, 294-298 (1979) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0370-2693(79)90471-4 [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Weinberg, “Cosmological Production of Baryons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 42, 850- 853 (1979) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='850;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Nanopoulos and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Weinberg, “Mechanisms for Cosmological Baryon Production,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 20, 2484 (1979) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2484 [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Dimopoulos and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Susskind, “On the Baryon Number of the Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 18, 4500-4509 (1978) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='4500;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Toussaint, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Treiman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Wilczek and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zee, “Matter - Antimatter Accounting, Thermodynamics, and Black Hole Radiation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 19, 1036-1045 (1979) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1036 [33] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fukugita and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Yanagida, “Baryogenesis Without Grand Unification,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 174, 45-47 (1986) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0370-2693(86)91126-3 [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Cohen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kaplan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Nelson, “WEAK SCALE BARYOGENESIS,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 245, 561-564 (1990) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0370-2693(90)90690-8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Cohen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kaplan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Nelson, “Baryogenesis at the weak phase transition,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 349, 727-742 (1991) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0550-3213(91)90395-E [35] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rubakov and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Shaposhnikov, “Electroweak baryon number nonconserva- tion in the early universe and in high-energy collisions,” Usp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Nauk 166, 493-537 (1996) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1070/PU1996v039n05ABEH000145 [arXiv:hep-ph/9603208 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [36] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Affleck and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Dine, “A New Mechanism for Baryogenesis,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 249, 361-380 (1985) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0550-3213(85)90021-5 [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Dine, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Randall and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Thomas, “Baryogenesis from flat directions of the su- persymmetric standard model,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 458, 291-326 (1996) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0550- 3213(95)00538-2 [arXiv:hep-ph/9507453 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Srednicki, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Watkins and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Olive, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 310, 693 (1988) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0550-3213(88)90099-5 [39] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Gondolo and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Gelmini, “Cosmic abundances of stable particles: Improved anal- ysis,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 360, 145-179 (1991) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/0550-3213(91)90438-4 [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hindmarsh and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Philipsen, “WIMP dark matter and the QCD equation of state,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 71, 087302 (2005) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='087302 [arXiv:hep- ph/0501232 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [41] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Drees, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hajkarim and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Schmitz, “The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter,” JCAP 06, 025 (2015) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1475- 7516/2015/06/025 [arXiv:1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='03513 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Laine and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Meyer, “Standard Model thermodynamics across the elec- troweak crossover,” JCAP 07, 035 (2015) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1475-7516/2015/07/035 [arXiv:1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='04935 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Borsanyi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fodor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Guenther, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kampert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Katz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kawanai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Ko- vacs, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Mages, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Pasztor and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Pittler, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' “Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,” Nature 539, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='7627, 69-71 (2016) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1038/nature20115 [arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='07494 [hep-lat]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 30 [44] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Saikawa and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Shirai, “Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model,” JCAP 05, 035 (2018) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1475- 7516/2018/05/035 [arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='01038 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [45] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Saikawa and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Shirai, “Precise WIMP Dark Matter Abundance and Standard Model Thermodynamics,” JCAP 08, 011 (2020) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1475-7516/2020/08/011 [arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='03544 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [46] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Cline, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Kainulainen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Scott and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Weniger, “Update on scalar singlet dark matter,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 88, 055025 (2013) [erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 92, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3, 039906 (2015)] doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='055025 [arXiv:1306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='4710 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [47] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Arkani-Hamed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Delgado and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Giudice, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B 741, 108-130 (2006) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='nuclphysb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='010 [arXiv:hep-ph/0601041 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [48] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Tulin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Yu and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Zurek, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 87, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='3, 036011 (2013) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='036011 [arXiv:1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='0009 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [49] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Ibarra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Pierce, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Shah and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Vogl, “Anatomy of Coannihila- tion with a Scalar Top Partner,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 91, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='9, 095018 (2015) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='095018 [arXiv:1501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='03164 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [50] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Bringmann and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hofmann, “Thermal decoupling of WIMPs from first prin- ciples,” JCAP 04, 016 (2007) [erratum: JCAP 03, E02 (2016)] doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1475- 7516/2007/04/016 [arXiv:hep-ph/0612238 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [51] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Bringmann, “Particle Models and the Small-Scale Structure of Dark Matter,” New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 11, 105027 (2009) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1367-2630/11/10/105027 [arXiv:0903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='0189 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [52] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Binder, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Bringmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Gustafsson and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hryczuk, “Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 96, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='11, 115010 (2017) [erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D 101, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='9, 099901 (2020)] doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='115010 [arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='07433 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [53] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [Planck], “Planck 2018 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Overview and the cosmo- logical legacy of Planck,” Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 641, A1 (2020) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1051/0004- 6361/201833880 [arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='06205 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [54] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Roszkowski, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sessolo and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Trojanowski, “WIMP dark matter candidates and searches—current status and future prospects,” Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='6, 066201 (2018) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1361-6633/aab913 [arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='06277 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [55] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Bernal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Heikinheimo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Tenkanen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Tuominen and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Vaskonen, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' A 32, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='27, 1730023 (2017) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1142/S0217751X1730023X [arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='07442 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [56] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Chu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Hambye and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Tytgat, JCAP 05, 034 (2012) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1088/1475- 7516/2012/05/034 [arXiv:1112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='0493 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' [57] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 5, 32-35 (1967) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1070/PU1991v034n05ABEH002497 [58] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Buchmuller, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Di Bari and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' Plumacher, Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 315, 305-351 (2005) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='aop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content='003 [arXiv:hep-ph/0401240 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
+page_content=' 31' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9FKT4oBgHgl3EQfdS4O/content/2301.11819v1.pdf'}
diff --git a/J9AyT4oBgHgl3EQfTffD/content/2301.00108v1.pdf b/J9AyT4oBgHgl3EQfTffD/content/2301.00108v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..dfdf3082890a0eb5463b9f160d95eb8a0eb2356d
--- /dev/null
+++ b/J9AyT4oBgHgl3EQfTffD/content/2301.00108v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f1313f6ba4c02324cf8b97e29d5dbd0530eaa8361c482b10efb1db23b6b99f70
+size 1578357
diff --git a/J9AyT4oBgHgl3EQfTffD/vector_store/index.pkl b/J9AyT4oBgHgl3EQfTffD/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..1a77876176a0ee07cff82d7fb7110eb0e48f75fa
--- /dev/null
+++ b/J9AyT4oBgHgl3EQfTffD/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:67e974f393d5d8730d98f0cf2d769992699c0ad022d9b60d25af7c7c8e82a215
+size 184125
diff --git a/JdAyT4oBgHgl3EQf5_qu/vector_store/index.faiss b/JdAyT4oBgHgl3EQf5_qu/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..7a4fb49440f8b53f68874a8ff82d82e1c43df212
--- /dev/null
+++ b/JdAyT4oBgHgl3EQf5_qu/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c645420660f18ebbebf1b0c19f47d9e2d5c84dd18a31042e8d4a7acadab81987
+size 2621485
diff --git a/JdFLT4oBgHgl3EQfKC80/content/2301.12006v1.pdf b/JdFLT4oBgHgl3EQfKC80/content/2301.12006v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..d565b69c6ac425a202c587392de686c291a2aca2
--- /dev/null
+++ b/JdFLT4oBgHgl3EQfKC80/content/2301.12006v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:19f1df68066fdfbd375477ed87180e41ea51a3e4e4bb6a6e00ce86cf04567536
+size 1372136
diff --git a/JdFLT4oBgHgl3EQfKC80/vector_store/index.faiss b/JdFLT4oBgHgl3EQfKC80/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..ace069e004062e64c17ad7804eb3a305b9b5420c
--- /dev/null
+++ b/JdFLT4oBgHgl3EQfKC80/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:17b05359f32adb4635e0b0dde2d13e7fda87e1a518485de76079aebea7e8067d
+size 2490413
diff --git a/JdFLT4oBgHgl3EQfKC80/vector_store/index.pkl b/JdFLT4oBgHgl3EQfKC80/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..5ec6c1f97a934100b2b0e2cc98eb9c59d9ae42c7
--- /dev/null
+++ b/JdFLT4oBgHgl3EQfKC80/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d188fb7ec334a2485f62448cce2fb47e2dae6d42beb50b494301aba1cae148e4
+size 94048
diff --git a/LNFQT4oBgHgl3EQfUDZM/content/2301.13295v1.pdf b/LNFQT4oBgHgl3EQfUDZM/content/2301.13295v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..398c0a271e8fc82566019fc9c29d4d0bb89910c6
--- /dev/null
+++ b/LNFQT4oBgHgl3EQfUDZM/content/2301.13295v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1829e1f1dfa16123cb345fbd5d3c561df6f288b9d1b7740aa2e69a2f5467cc9d
+size 8414338
diff --git a/LNFQT4oBgHgl3EQfUDZM/vector_store/index.faiss b/LNFQT4oBgHgl3EQfUDZM/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..81de0743a70a423aa922c9895776acc1e5c12c89
--- /dev/null
+++ b/LNFQT4oBgHgl3EQfUDZM/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3daae55082809ee4b5f57238e4c2fed9a7506cdc07f9de9df382403ca6297453
+size 14811181
diff --git a/MtFLT4oBgHgl3EQfNS8Q/content/tmp_files/2301.12019v1.pdf.txt b/MtFLT4oBgHgl3EQfNS8Q/content/tmp_files/2301.12019v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..47a6a597622a0fc75d22ccfe1fef19723f4a5e22
--- /dev/null
+++ b/MtFLT4oBgHgl3EQfNS8Q/content/tmp_files/2301.12019v1.pdf.txt
@@ -0,0 +1,2350 @@
+A Greedy Sensor Selection Algorithm for
+Hyperparameterized Linear Bayesian Inverse Problems
+Nicole Aretza, Peng Chenb, Denise D. Degenc, Karen Veroyd
+aOden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E 24th St,
+Austin, TX 78712, USA
+bSchool of Computational Science and Engineering, Georgia Institute of Technology, 756 W Peachtree St
+NW, Atlanta, GA 30308, USA
+cComputational Geoscience, Geothermics, and Reservoir Geophysics, RWTH Aachen University,
+Mathieustr. 30, 52074 Aachen, Germany
+dCenter for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer
+Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
+Abstract
+We consider optimal sensor placement for a family of linear Bayesian inverse prob-
+lems characterized by a deterministic hyper-parameter. The hyper-parameter describes
+distinct configurations in which measurements can be taken of the observed physical
+system. To optimally reduce the uncertainty in the system’s model with a single set of
+sensors, the initial sensor placement needs to account for the non-linear state changes
+of all admissible configurations. We address this requirement through an observabil-
+ity coefficient which links the posteriors’ uncertainties directly to the choice of sensors.
+We propose a greedy sensor selection algorithm to iteratively improve the observability
+coefficient for all configurations through orthogonal matching pursuit. The algorithm
+allows explicitly correlated noise models even for large sets of candidate sensors, and
+remains computationally efficient for high-dimensional forward models through model
+order reduction. We demonstrate our approach on a large-scale geophysical model
+of the Perth Basin, and provide numerical studies regarding optimality and scalability
+with regard to classic optimal experimental design utility functions.
+1. Introduction
+In the Bayesian approach to inverse problems (c.f. [1]), the uncertainty in a param-
+eter is described via a probability distribution. With Bayes’ Theorem, the prior belief in
+a parameter is updated when new information is revealed such that the posterior distri-
+bution describes the parameter with improved certainty. Bayes’ posterior is optimal in
+the sense that it is the unique minimizer of the sum of the relative entropy between the
+posterior and the prior, and the mean squared error between the model prediction and
+the experimental data. The noise model drives, along with the measurements, how the
+posterior’s uncertainty is reduced in comparison to the prior. A critical aspect – espe-
+arXiv:2301.12019v1 [math.NA] 27 Jan 2023
+
+cially for expensive experimental data1 – is how to select the measurements to improve
+the posterior’s credibility best. The selection of adequate sensors meeting individual
+applications’ needs is, therefore, a big goal of the optimal experimental design (OED)
+research field and its surrounding community. We refer to the literature (e.g., [3, 4, 5])
+for introductions.
+The analysis and algorithm presented in this work significantly extend our initial
+ideas presented in [6] in which we seek to generalize the 3D-VAR stability results
+from [7] to the probabilistic Bayesian setting. Our proposed algorithm is directly re-
+lated to the orthogonal matching pursuit (OMP) algorithm [8, 9] for the parameterized-
+background data-weak (PBDW) method and the empirical interpolation method (EIM)
+([10, 11]). Closely related OED methods for linear Bayesian inverse problems over
+partial differential equations (PDEs) include [12, 13, 14, 15, 16, 17], mostly for A- and
+D-OED and uncorrelated noise. In recent years, these methods have also been extended
+to non-linear Bayesian inverse problems, e.g., [18, 19, 20, 21, 22], while an advance to
+correlated noise has been made in [23]. In particular, [21, 22] use similar algorithmic
+approaches to this work by applying a greedy algorithm to maximize the expected in-
+formation gain. Common strategies for dealing with the high dimensions imposed by
+the PDE model use the framework in [24] for discretization, combined with parameter
+reduction methods (e.g., [25, 26, 27, 28, 29, 30, 31]) and model order reduction (MOR)
+methods for uncertainty quantification (UQ) problems (e.g., [32, 33, 34, 35, 36]).
+In this paper, we consider inverse problem settings, in which a deterministic hyper-
+parameter describes anticipated system configurations such as material properties or
+loading conditions. Each configuration changes the model non-linearly, so we obtain
+a family of possible posterior distributions for any measurement data. Supposing data
+can only be obtained with a single set of sensors regardless of the system’s configu-
+ration, the OED task becomes to reduce the uncertainty in each posterior uniformly
+over all hyper-parameters. This task is challenging for high-dimensional models since
+1) each configuration requires its own computationally expensive model solve, and 2)
+for large sets of admissible measurements, the comparison between sensors requires
+the inversion of the associated, possibly dense noise covariance matrix. By building
+upon [6], this paper addresses both challenges and proposes in detail a sensor selection
+algorithm that remains efficient even for correlated noise models.
+The main contributions are as follows: First, we identify an observability coeffi-
+cient as a link between the sensor choice and the maximum eigenvalue of each poste-
+rior distribution. We also provide an analysis of its sensitivity to model approximations.
+Second, we decompose the noise covariance matrix for any observation operator to al-
+low fast computation of the observability gain under expansion with additional sensors.
+Third, we propose a sensor selection algorithm that iteratively constructs an observa-
+tion operator from a large set of sensors to increase the observability coefficient over
+all hyper-parameters. The algorithm is applicable to correlated noise models, and re-
+quires, through the efficient use of MOR techniques, only a single full-order model
+1For instance, for projects harvesting geothermal energy, the development costs (e.g., drilling, stimula-
+tion, and tests) take up 50 − 70% of the total budget ([2]). As each borehole can cost several million dollars,
+it is essential to plan their location carefully.
+2
+
+evaluation per selected sensor.
+While the main idea and derivation of the observability coefficient are similar to
+[6], this work additionally features 1) an analysis of the observability coefficient re-
+garding model approximations, 2) explicit computational details for treating correlated
+noise models, and 3) a comprehensive discussion of the individual steps in the sen-
+sor selection algorithm. Moreover, the proposed method is tested using a large-scale
+geophysical model of the Perth Basin.
+This paper is structured as follows: In Section 2 we introduce the hyper-parameterized
+inverse problem setting, including all assumptions for the prior distribution, the noise
+model, and the forward model. In Section 3, we then establish and analyze the con-
+nection between the observability coefficient and the posterior uncertainty.
+We fi-
+nally propose our sensor selection algorithm in Section 4 which exploits the presented
+analysis to choose sensors that improve the observability coefficient even in a hyper-
+parameterized setting. We demonstrate the applicability and scalability of our approach
+on a high-dimensional geophysical model in Section 5 before concluding in Section 6.
+2. Problem setting
+Let X be a Hilbert space with inner product ⟨·, ·⟩X and induced norm ∥x∥2
+X :=
+⟨x, x⟩X. We consider the problem of identifying unknown states xtrue(θ) ∈ X of a single
+physical system under changeable configurations θ from noisy measurements
+d(θ) ≈ [ℓ1(xtrue(θ)), . . . , ℓK(xtrue(θ))]T ∈ RK.
+The measurements are obtained by a set of K unique sensors (or experiments) ℓ1, . . . , ℓK ∈
+X′. Our goal is to choose these sensors from a large sensor library L ⊂ X′ of options
+in a way that optimizes how much information is gained from their measurements for
+any configurations θ.
+Hyper-parameterized forward model
+We consider the unknown state xtrue to be uniquely characterized by two sources of
+information:
+• an unknown parameter utrue ∈ RM describing uncertainties in the governing
+physical laws, and
+• a hyper-parameter (or configuration2) θ ∈ P ⊂ Rp describing dependencies on
+controllable configurations under which the system may be observed (such as
+material properties or loading conditions) where P is a given compact set en-
+closing all possible configurations.
+For any given u ∈ RM and θ ∈ P, we let xθ(u) ∈ X be the solution of an abstract model
+equation Mθ(xθ(u); u) = 0 and assume that the map u → xθ(u) is well-defined, linear,
+2We call θ interchangeably hyper-parameter or configuration to either stress its role in the mathematical
+model or physical interpretation.
+3
+
+and uniformly continuous in u, i.e.
+∃ ¯η > 0 :
+η(θ) := sup
+u∈RM
+∥xθ(u)∥X
+∥u∥Σ−1
+pr
+< ¯η
+∀ θ ∈ P.
+(1)
+Remark 1. Although we assumed that utrue lies in the Euclidean space RM, any other
+linear space can be considered via an affine transformation onto an appropriate basis
+(see [12, 37]). For infinite-dimensional spaces, we first discretize with appropriate
+treatment of the adjoint operator (c.f. [24]).
+Remark 2. By keeping the model equation general, we stress the applicability of our
+approach to a wide range of problems. For instance, time-dependent states can be
+treated by choosing X as a Bochner space or its discretization (c.f. [38]). We also
+do not formally restrict the dimension of X, though any implementation relies on the
+ability to compute xθ(u) with sufficient accuracy. To this end, we note that the analysis
+in Section 3.2 can be applied to determine how discretization errors affect the observ-
+ability criterion in the sensor selection.
+Following a probabilistic approach to inverse problems, we express the initial un-
+certainty in utrue = utrue(θ) of any xtrue = xθ(utrue) in configuration θ through a random
+variable u with Gaussian prior µpr = N
+�
+upr, Σpr
+�
+, where upr ∈ RM is the prior mean
+and Σpr ∈ RM×M is a symmetric positive definite (s.p.d.) covariance matrix. The latter
+defines the inner product ⟨·, ·⟩Σ−1
+pr and its induced norm ∥ · ∥Σ−1
+pr through
+⟨u, v⟩Σ−1
+pr := uTΣ−1
+pr ˜u,
+∥u∥2
+Σ−1
+pr := ⟨u, u⟩Σ−1
+pr ,
+∀ u, v ∈ RM.
+(2)
+With these definitions, the probability density function (pdf) for µpr is
+πpr(u) =
+1
+�
+(2π)M det Σpr
+exp
+�
+−1
+2∥u − upr∥2
+Σ−1
+pr
+�
+.
+For simplicity, we assume {utrue(θ)}θ∈P to be independent realizations of u such that
+we may consider the same prior for all θ without accounting for a possible history of
+measurements at different configurations.
+Sensor library and noise model
+For taking measurements of the unknown states {xtrue(θ)}θ, we call any linear func-
+tional ℓ ∈ X′ a sensor, and its application to a state x ∈ X its measurement ℓ(x) ∈ R.
+We model experimental measurements dℓ ∈ R of the actual physical state xtrue as
+dℓ = ℓ(xtrue) + εℓ where εℓ ∼ N(0, cov(εℓ, εℓ)) is a Gaussian random variable. We
+permit noise in different sensor measurements to be correlated with a known covari-
+ance function cov. In a slight overload of notation, we write cov : L × L → R,
+cov(ℓi, ℓj) := cov(εℓi, εℓj) as a symmetric bilinear form over the sensor library. Any
+ordered subset S = {ℓ1, . . . , ℓK} ⊂ L of sensors can then form a (linear and continuous)
+observation operator through
+L := [ℓ1, . . . , ℓK]T : X → RK,
+Lx := [ℓ1(x), . . . , ℓK(x)]T .
+4
+
+The experimental measurements of L have the form
+d = �ℓ1(xtrue) + εℓ1, . . . , ℓK(xtrue) + εℓK
+�T = Lxtrue + ε
+with
+ε = �εℓ1, . . . , εℓK
+�T ∼ N(0, σ2ΣL),
+(3)
+where σ2ΣL is the noise covariance matrix defined through
+ΣL ∈ RK×K,
+such that
+�
+σ2ΣL
+�
+i, j := cov(ℓj, ℓi) = cov(εℓj, εℓi)
+(4)
+with an auxiliary scaling parameter3 σ2 > 0. We assume that the library L and the noise
+covariance function cov have been chosen such that ΣL is s.p.d. for any combination
+of sensors in L. This assumption gives rise to the L-dependent inner product and its
+induced norm
+�
+d, ˜d
+�
+Σ−1
+L := dTΣ−1
+L ˜d,
+∥d∥2
+Σ−1
+L := ⟨d, d⟩Σ−1
+L ,
+∀ d, ˜d ∈ RK.
+(5)
+Measured with respect to this norm, the largest observation of any (normalized) state
+is thus
+γL := sup
+∥x∥X=1
+∥Lx∥Σ−1
+L = sup
+x∈X
+∥Lx∥Σ−1
+L
+∥x∥X
+.
+(6)
+We show in Section 4.1 that γL increases under expansion of L with additional sensors
+despite the change in norm, and is therefore bounded by γL ≤ γL.
+We also define the parameter-to-observable map
+GL,θ : RM → RK,
+such that
+GL,θ (u) := Lxθ(u).
+(7)
+With the assumptions above – in particular the linearity and uniform continuity (1) of
+x in u – the map GL,θ is linear and uniformly bounded in u. We let GL,θ ∈ RK×M
+denote its matrix representation with respect to the unit basis {em}M
+m=1. The likelihood
+of d ∈ RK obtained through the observation operator L for the parameter u ∈ RM and
+the system configuration θ is then
+ΦL
+�
+d
+��� u, θ
+�
+:=
+1
+�
+2K det ΣL
+exp
+�
+− 1
+2σ2
+���d − GL,θ (u)
+���2
+Σ−1
+L
+�
+.
+Note that GL,θ and GL,θ may depend non-linearly on θ.
+Posterior distribution
+Once noisy measurement data d ≈ Lxtrue(θ) is available, Bayes’ theorem yields the
+posterior pdf as
+πL,θ
+post(u | d) =
+1
+Z(θ) exp
+�
+− 1
+2σ2
+���GL,θ (u) − d
+���2
+Σ−1
+L − 1
+2∥u − upr∥2
+Σ−1
+pr
+�
+∝ πpr(u)·ΦL
+�
+d
+��� u, θ
+�
+,
+(8)
+3We introduce σ2 here as an additional variable to ease the discussion of scaling in Section 13. However,
+we can set σ2 = 1 without loss of generality (w.l.o.g.).
+5
+
+with normalization constant
+Z(θ) :=
+�
+Rp exp
+�
+− 1
+2σ2
+���GL,θ (u) − d
+���2
+Σ−1
+L
+�
+dµpr.
+Due to the linearity of the parameter-to-observable map, the posterior measure µL,θ
+post is
+a Gaussian
+µL,θ
+post = N(uL,θ
+post(d), ΣL,θ
+post)
+with known (c.f. [1]) mean and covariance matrix
+uL,θ
+post(d) = ΣL,θ
+post
+� 1
+σ2 GT
+L,θΣ−1
+L d + Σ−1
+pr upr
+�
+∈ RM,
+(9)
+ΣL,θ
+post =
+� 1
+σ2 GT
+L,θΣ−1
+L GL,θ + Σ−1
+pr
+�−1
+∈ RM×M.
+(10)
+The posterior µL,θ
+post thus depends not only on the choice of sensors, but also on the con-
+figuration θ under which their measurements were obtained. Therefore, to decrease the
+uncertainty in all possible posteriors with a single, θ-independent observation operator
+L, the construction of L should account for all admissible configurations θ ∈ P under
+which xtrue may be observed.
+Remark 3. The linearity of xθ(u) in u is a strong assumption that dictates the Gaussian
+posterior. However, in combination with the hyper-parameter θ, our setting here can
+be re-interpreted as the Laplace-approximation for a non-linear state map θ �→ x(θ)
+(c.f. [39, 21, 40]). The sensor selection presented here is then an intermediary step for
+OED over non-linear forward models.
+3. The Observability Coefficient
+In this section, we characterize how the choice of sensors in the observation op-
+erator L and its associated noise covariance matrix ΣL influence the uncertainty in the
+posteriors µL,θ
+post, θ ∈ P. We identify an observability coefficient that bounds the eigen-
+values of the posterior covariance matrices ΣL,θ
+post, θ ∈ P with respect to L, and facilitates
+the sensor selection algorithm presented in Section 4.
+3.1. Eigenvalues of the Posterior Covariance Matrix
+The uncertainty in the posterior πL,θ
+post for any configuration θ ∈ P is uniquely char-
+acterized by the posterior covariance matrix ΣL,θ
+post, which is in turn connected to the
+observation operator L through the parameter-to-observable map GL,θ and the noise co-
+variance matrix ΣL. To measure the uncertainty in ΣL,θ
+post, the OED literature suggests a
+variety of different utility functions to be minimized over L in order to optimize the sen-
+sor choice. Many of these utility functions can be expressed in terms of the eigenvalues
+6
+
+λθ,1
+L ≥ · · · ≥ λθ,M
+L
+> 0 of ΣL,θ
+post, e.g.,
+A-OED:
+trace(ΣL,θ
+post) =
+M
+�
+m=1
+λθ,m
+L
+(mean variance)
+D-OED:
+det(ΣL,θ
+post) =
+M
+�
+m=1
+λθ,m
+L
+(volume)
+E-OED:
+λmax(ΣL,θ
+post) = λθ,1
+L
+(spectral radius).
+In practice, the choice of the utility function is dictated by the application. In E-optimal
+experimental design (E-OED), for instance, posteriors whose uncertainty ellipsoids
+stretch out into any one direction are avoided, whereas D-OED minimizes the overall
+volume of the uncertainty ellipsoid regardless of the uncertainty in any one parameter
+direction. We refer to [3] for a detailed introduction and other OED criteria.
+Considering the hyper-parameterized setting where each configuration θ influences
+the posterior uncertainty, we seek to choose a single observation operator L such that
+the selected utility function remains small for all configurations θ ∈ P, e.g., for E-OED,
+minimizing
+min
+ℓ1,...,ℓK∈L max
+θ∈P λmax(ΣL,θ
+post)
+such that
+L = [ℓ1, . . . , ℓK]T
+guarantees that the longest axis of each posterior covariance matrix ΣL,θ
+post for any θ ∈ P
+has the same guaranteed upper bound. The difficulty here is that the minimization over
+P necessitates repeated, cost-intensive model evaluations to compute the utility func-
+tion for many different configurations θ. In the following, we therefore introduce an
+upper bound to the posterior eigenvalues that can be optimized through an observabil-
+ity criterion with far fewer model solves. The bound’s optimization indirectly reduces
+the different utility functions through the posterior eigenvalues.
+Recalling that ΣL,θ
+post is s.p.d., let {ψm}M
+m=1 be an orthonormal eigenvector basis of
+ΣL,θ
+post, i.e. ψT
+mψn = δm,n and
+ΣL,θ
+postψm = λθ,m
+L ψm
+m = 1, . . . , M.
+(11)
+Using the representation (10), any eigenvalue λθ,m
+L
+can be written in the form
+1
+λθ,m
+L
+= ψT
+m
+�
+ΣL,θ
+post
+�−1 ψm = ψT
+m
+� 1
+σ2 GT
+L,θΣ−1
+L GL,θ + Σ−1
+pr
+�
+ψm = 1
+σ2
+���GL,θ (ψm)
+���2
+Σ−1
+L + ∥ψm∥2
+Σ−1
+pr .
+(12)
+Since ψm depends implicitly on L and θ through (11), we cannot use this representation
+directly to optimize over L. To take out the dependency on ψm, we bound ∥ψm∥2
+Σ−1
+pr ≥
+1
+λmax
+pr
+in terms of the maximum eigenvalue of the prior covariance matrix Σpr. Likewise, we
+define
+βG(θ) := inf
+u∈RM
+���GL,θ (u)
+���Σ−1
+L
+∥u∥Σ−1
+pr
+= inf
+u∈RM
+∥Lxθ(u)∥Σ−1
+L
+∥u∥Σ−1
+pr
+,
+(13)
+7
+
+as the minimum ratio between an observation for a parameter u relative to the prior’s
+covariance norm. From (12) and (13) we obtain the upper bound
+λθ,m
+L
+=
+�����������
+1
+σ2
+���GL,θ (ψm)
+���2
+Σ−1
+L
+∥ψm∥2
+Σ−1
+pr
++ 1
+�����������
+−1
+∥ψm∥−2
+Σ−1
+pr ≤
+� 1
+σ2 βG(θ)2 + 1
+�−1
+λmax
+pr .
+Geometrically, this bound means that the radius λθ,1
+L of the outer ball around the pos-
+terior uncertainty ellipsoid is smaller than that of the prior uncertainty ellipsoid by at
+least the factor
+� 1
+σ2 βG(θ)2 + 1
+�−1. By choosing L to maximize minθ βG(θ), we therefore
+minimize this outer ball containing all uncertainty ellipsoids (i.e., for any θ ∈ P). As
+expected, the influence of L is strongest when the measurement noise is small such that
+data can be trusted (σ2 ≪ 1), and diminishes with increasing noise levels (σ2 ≫ 1).
+3.2. Parameter Restriction
+An essential property of βG(θ) is that βG(θ) = 0 if K < M, i.e., the number of sen-
+sors in L is smaller than the number of parameter dimensions. In this case, βG(θ) cannot
+distinguish between sensors during the first M − 1 steps of an iterative algorithm, or in
+general when less than a total of M sensors are supposed to be chosen. For medium-
+dimensional parameter spaces (M ∈ O(10)), we mitigate this issue by restricting u to
+the subspace span{ϕ1, . . . , ϕmin{K,M}} ⊂ RM spanned by the first min{K, M} eigenvec-
+tors of Σpr corresponding to its largest eigenvalues, i.e., the subspace with the largest
+prior uncertainty. For high-dimensional parameter spaces or when the model Mθ has a
+non-trivial null-space, we bound βG(θ) further
+βG(θ) = inf
+u∈RM
+∥Lxθ(u)∥Σ−1
+L
+∥xθ(u)∥X
+∥xθ(u)∥X
+∥u∥Σ−1
+pr
+≥ inf
+x∈Wθ
+∥Lx∥Σ−1
+L
+∥x∥X
+inf
+u∈RM
+∥xθ(u)∥X
+∥u∥Σ−1
+pr
+= βL|W(θ) η(θ)
+(14)
+where we define the linear space Wθ of all achievable states
+Wθ := {xθ(u) ∈ X : u ∈ RM}
+and the coefficients
+βL|W(θ) := inf
+x∈Wθ
+∥Lx∥Σ−1
+L
+∥x∥X
+,
+η(θ) := inf
+u∈RM
+∥xθ(u)∥X
+∥u∥Σ−1
+pr
+.
+(15)
+The value of η(θ) describes the minimal state change that a parameter u can achieve
+relative to its prior-induced norm ∥u∥Σ−1
+pr . It can filter out parameter directions that have
+little influence on the states xθ(u). In contrast, the observability coefficient βL|W(θ)
+depends on the prior only implicitly via Wθ; it quantifies the minimum amount of
+information (measured with respect to the noise model) that can be obtained on any
+state in Wθ relative to its norm. Future work will investigate how to optimally restrict
+the parameter space based on η(θ) before choosing sensors that maximize βL|W(θ).
+Existing parameter reduction approaches in a similar context include [28, 41, 42, 27].
+In this work, however, we solely focus on the maximization of βG(θ) and, by extension,
+βL|W(θ) and henceforth assume that M is sufficiently small and η := infθ∈P η(θ) > 0 is
+bounded away from zero.
+8
+
+3.3. Observability under model approximations
+To optimize the observability coefficient βG(θ) or βL|W(θ), it must be computed for
+many different configurations θ ∈ P. The accumulating computational cost motivates
+the use of reduced-order surrogate models, which typically yield considerable com-
+putational savings versus the original full-order model. However, this leads to errors
+in the state approximation. In the following, we thus quantify the influence of state
+approximation error on the observability coefficients βG(θ) and βL|W(θ). An analysis
+of the change in posterior distributions when the entire model Mθ is substituted in the
+inverse problem can be found in [1].
+Suppose a reduced-order surrogate model ˜
+Mθ(˜xθ(u); u) = 0 is available that yields
+for any configuration θ ∈ P and parameter u ∈ RM a unique solution ˜xθ(u) ∈ X such
+that
+∥xθ(u) − ˜xθ(u)∥X ≤ εθ ∥xθ(u)∥X
+with accuracy
+0 ≤ εθ ≤ ε < 1.
+(16)
+Analogously to (13) and (15), we define the reduced-order observability coefficients
+˜βG(θ) := inf
+u∈RM
+∥L˜xθ(u)∥Σ−1
+L
+∥u∥Σ−1
+pr
+,
+˜βL|W(θ) := inf
+u∈RM
+∥L˜xθ(u)∥Σ−1
+L
+∥˜xθ(u)∥X
+(17)
+to quantify the smallest observations of the surrogate states. For many applications,
+it is possible to choose a reduced-order model whose solution can be computed at a
+significantly reduced cost such that ˜βG(θ) and ˜βL|W(θ) are much cheaper to compute
+than their full-order counterparts βG(θ) and βL|W(θ). Since the construction of such a
+surrogate model depends strongly on the application itself, we refer to the literature
+(e.g., [43, 44, 45, 46, 47]) for tangible approaches.
+Recalling the definition of γL in (6), we start by bounding how closely the surrogate
+observability coefficient ˜βL|W(θ) approximates the full-order βL|W(θ).
+Proposition 1. Let η(θ) > 0 hold, and let ˜xθ(u) ∈ X be an approximation to xθ(u) such
+that (16) holds for all θ ∈ P, u ∈ RM. Then
+(1 − εθ) ˜βL|W(θ) − γLεθ ≤ βL|W(θ) ≤ (1 + εθ) ˜βL|W(θ) + γLεθ.
+(18)
+Proof. Let u ∈ RM \ {0} be arbitrary. Using (16) and the (reversed) triangle inequality,
+we obtain the bound
+∥˜xθ(u)∥X
+∥xθ(u)∥X
+≥ ∥xθ(u)∥X − ∥xθ(u) − ˜xθ(u)∥X
+∥xθ(u)∥X
+≥ 1 − εθ.
+(19)
+Note here that η(θ) > 0 implies ∥xθ(u)∥X > 0 so the quotient is indeed well defined.
+The ratio of observation to state can now be bounded from below by
+∥Lxθ(u)∥Σ−1
+L
+∥xθ(u)∥X
+≥
+∥L˜xθ(u)∥Σ−1
+L
+∥xθ(u)∥X
+−
+∥L(xθ(u) − ˜xθ(u))∥Σ−1
+L
+∥xθ(u)∥X
+≥ ∥˜xθ(u)∥X
+∥xθ(u)∥X
+∥L˜xθ(u)∥Σ−1
+L
+∥˜xθ(u)∥X
+− γL
+∥xθ(u) − ˜xθ(u)∥X
+∥xθ(u)∥X
+≥ (1 − εθ)
+∥L˜xθ(u)∥Σ−1
+L
+∥˜xθ(u)∥X
+− γLεθ
+≥ (1 − εθ)˜βL|W(θ) − γLεθ,
+9
+
+where we have applied the reverse triangle inequality, definition (6), the bounds (16),
+(19), and definition (17) of ˜βL|W(θ). Since u is arbitrary, the lower bound in (18) follows
+from definition (13) of βL|W(θ). The upper bound in (18) follows analogously.
+For the observability of the parameter-to-observable map GL,θ and its approxima-
+tion u �→ L˜xθ(u), we obtain a similar bound. It uses the norm η(θ) of xθ : u �→ xθ(u) as
+a map from the parameter to the state space, see (1).
+Proposition 2. Let ˜xθ(u) ∈ X be an approximation to xθ(u) such that (16) holds for all
+θ ∈ P, u ∈ RM. Then
+˜βG(θ) − γLη(θ)εθ ≤ βG(θ) ≤ ˜βG(θ) + γLη(θ)εθ.
+(20)
+Proof. Let u ∈ RM \ {0} be arbitrary. Then
+∥Lxθ(u)∥Σ−1
+L ≥ ∥L˜xθ(u)∥Σ−1
+L − ∥L(xθ(u) − ˜xθ(u))∥Σ−1
+L
+≥ ∥L˜xθ(u)∥Σ−1
+L − γL ∥xθ(u) − ˜xθ(u)∥X
+≥ ∥L˜xθ(u)∥Σ−1
+L − γLεθ ∥xθ(u)∥X
+≥ ∥L˜xθ(u)∥Σ−1
+L − γLεθη(θ)∥u∥Σ−1
+pr ,
+where we have used the reverse triangle inequality, followed by (6), (16), and (1). We
+divide by ∥u∥Σ−1
+pr and take the infimum over u to obtain
+βG(θ) = inf
+u∈RM
+∥Lxθ(u)∥Σ−1
+L
+∥u∥Σ−1
+pr
+≥ inf
+u∈RM
+∥L˜xθ(u)∥Σ−1
+L
+∥u∥Σ−1
+pr
+− γL η(θ) εθ = ˜βG(θ) − γL η(θ) εθ.
+The upper bound in (20) follows analogously.
+If εθ is sufficiently small, Propositions 1 and 2 justify employing the surrogates
+˜βL|W(θ) and ˜βG(θ) instead of the original full-order observability coefficients βL|W(θ)
+and βG(θ). This substitution becomes especially necessary when the computation of
+xθ(u) is too expensive to evaluate βL|W(θ) or βG(θ) repeatedly for different configura-
+tions θ.
+Another approximation step in our sensor selection algorithm relies on the identifi-
+cation of a parameter direction v ∈ RM with comparatively small observability, i.e.
+∥Lxθ(v)∥Σ−1
+L
+∥v∥Σ−1
+pr
+≈ inf
+u∈RM
+∥Lxθ(u)∥Σ−1
+L
+∥u∥Σ−1
+pr
+= βG(θ)
+or
+∥Lxθ(v)∥Σ−1
+L
+∥xθ(v)∥X
+≈ inf
+x∈Wθ
+∥Lx∥Σ−1
+L
+∥x∥X
+= βL|W(θ).
+The ideal choice would be the infimizer of respectively βG(θ) or βL|W(θ), but its compu-
+tation involves M full-order model evaluations (c.f. Section 4.2). To avoid these costly
+computations, we instead choose v as the infimizer of the respective reduced-order
+observability coefficient. This choice is justified for small εθ < 1 by the following
+proposition:
+10
+
+Proposition 3. Let η(θ) > 0 hold, and let ˜xθ(u) ∈ X be an approximation to xθ(u) such
+that (16) holds for all θ ∈ P, u ∈ RM. Suppose v ∈ arg infu∈RM ∥u∥−1
+Σ−1
+pr ∥L˜xθ(u)∥Σ−1
+L , then
+βG(θ) ≤
+∥Lxθ(v)∥Σ−1
+L
+∥v∥Σ−1
+pr
+≤ βG(θ) + 2γLη(θ)εθ.
+(21)
+Likewise, if v ∈ arg infu∈RM ∥˜xθ(u)∥−1
+X ∥L˜xθ(u)∥Σ−1
+L , then
+βL|W(θ) ≤
+∥Lxθ(v)∥Σ−1
+L
+∥xθ(v)∥X
+≤ 1 + εθ
+1 − εθ
+�βL|W(θ) + γLεθ
+� + γLεθ.
+(22)
+Proof. For both (21) and (22) the lower bound follows directly from definitions (13)
+and (15). To prove the upper bound in (21), let v ∈ arg infu∈RM ∥u∥−1
+Σ−1
+pr ∥L˜xθ(u)∥Σ−1
+L .
+Following the same steps as in the proof of Proposition 2, we can then bound
+∥Lxθ(v)∥Σ−1
+L
+∥v∥Σ−1
+pr
+≤
+∥L˜xθ(v)∥Σ−1
+L
+∥v∥Σ−1
+pr
++
+∥L(xθ(v) − ˜xθ(v))∥Σ−1
+L
+∥v∥Σ−1
+pr
+≤ ˜βG(θ) + γLη(θ)εθ.
+The upper bound in (21) then follows with Proposition 2.
+To prove the upper bound in (22), let v ∈ arg infu∈RM ∥˜xθ(u)∥−1
+X ∥L˜xθ(u)∥Σ−1
+L . Then
+∥Lxθ(v)∥Σ−1
+L
+∥xθ(v)∥X
+≤
+∥L˜xθ(v)∥Σ−1
+L
+∥˜xθ(v)∥X
+∥˜xθ(v)∥X
+∥xθ(v)∥X
++
+∥L(xθ(v) − ˜xθ(v))∥Σ−1
+L
+∥xθ(v)∥X
+≤ (1 + ε) ˜βL|W(θ) + γLεθ.
+The result then follows with Proposition 1.
+4. Sensor selection
+In the following, we present a sensor selection algorithm that iteratively increases
+the minimal observability coefficient minθ∈P βG(θ) and thereby decreases the upper
+bound for the eigenvalues of the posterior covariance matrix for all admissible system
+configurations θ ∈ P. The iterative approach is relatively easy to implement, allows a
+simple way of dealing with combinatorial restrictions, and can deal with large4 sensor
+libraries.
+4.1. Cholesky decomposition
+The covariance function cov connects an observation operator L to its observabil-
+ity coefficients βG(θ) and βL|W(θ) through the noise covariance matrix ΣL. Its inverse
+enters the norm ∥·∥Σ−1
+L and the posterior covariance matrix ΣL,θ
+post. The inversion poses
+a challenge when the noise is correlated, i.e., when ΣL is not diagonal, as even the
+expansion of L with a single sensor ℓ ∈ L changes each entry of Σ−1
+L . In naive compu-
+tations of the observability coefficients and the posterior covariance matrix, this leads
+4For instance, in Section 5.3 we apply the presented algorithm to a library with KL = 11, 045 available
+sensor positions.
+11
+
+Algorithm 1: CholeskyExpansion
+Input: observation operator L = [ℓ1, . . . , ℓK]T, noise covariance matrix ΣL,
+Cholesky matrix CL, new sensor ℓ ∈ X′
+L ← [ℓ1, . . . , ℓK, ℓ]T
+// operator expansion
+if K = 0 then
+ΣL ← (cov(ℓ, ℓ)) , CL ←
+� √cov(ℓ, ℓ)
+�
+∈ R1×1
+// first sensor
+else
+v ← [cov(ℓ1, ℓ), . . . , cov(ℓK, ℓ)]T ∈ RK
+// matrix expansion
+w ← C−1
+L v ∈ RK, s ← cov(ℓ, ℓ), c ← s − wTw ∈ R
+ΣL ←
+� ΣL
+v
+vT
+s
+�
+, CL ←
+� CL
+0
+wT
+c
+�
+∈ R(K+1)×(K+1)
+return L, ΣL, CL
+to M dense linear system solves of order O((K + 1)3) each time the observation oper-
+ator is expanded. In the following, we therefore expound on how Σ−1
+L changes under
+expansion of L to exploit its structure when comparing potential sensor choices.
+Suppose L = [ℓ1, . . . , ℓK]T has already been chosen with sensors ℓk ∈ X′, but shall
+be expanded by another sensor ℓ to
+[L, ℓ] := [ℓ1, . . . , ℓK, ℓ]T : X → RK+1.
+Following definition (4), the noise covariance matrix Σ[L,ℓ] of the expanded operator
+[L, ℓ] has the form
+Σ[L,ℓ] =
+� ΣL
+vL,ℓ
+vT
+L,ℓ
+vℓ,ℓ
+�
+=
+� CL
+0
+cT
+L,ℓ
+cℓ,ℓ
+� � CT
+L
+cL,ℓ
+0
+cℓ,ℓ
+�
+,
+where CLCT
+L = ΣL ∈ RK×K is the Cholesky decomposition of the s.p.d. noise covariance
+matrix ΣL for the original observation operator L, and vL,ℓ, cL,ℓ ∈ RK, vℓ,ℓ, cℓ,ℓ ∈ R are
+defined through
+�vL,ℓ
+�
+i := cov(ℓi, ℓ),
+cL,ℓ := C−1
+L vL,ℓ,
+vℓ,ℓ := cov(ℓ, ℓ),
+cℓ,ℓ :=
+�
+vℓ,ℓ − cT
+L,ℓcL,ℓ.
+Note that Σ[L,ℓ] is s.p.d. by the assumptions posed on cov in Section 2; consequently,
+cℓ,ℓ is well-defined and strictly positive. With this factorization, the expanded Cholesky
+matrix C[L,ℓ] with C[L,ℓ]CT
+[L,ℓ] = Σ[L,ℓ] can be computed in O(K2), dominated by the
+linear system solve with the triangular CL for obtaining cL,ℓ. It is summarized in Algo-
+rithm 1 for later use in the sensor selection algorithm.
+Using the Cholesky decomposition, the inverse of Σ[L,ℓ] factorizes to
+Σ−1
+[L,ℓ] =
+� CT
+L
+cL,ℓ
+0
+cℓ,ℓ
+�−1 � CL
+0
+cT
+L,ℓ
+cℓ,ℓ
+�−1
+=
+� C−T
+L
+rL,ℓ
+0
+1/cℓ,ℓ
+� � C−1
+L
+0
+rT
+L,ℓ
+1/cℓ,ℓ
+�
+,
+12
+
+Algorithm 2: ObservabilityGain
+Input: observation operator L = [ℓ1, . . . , ℓK]T, Cholesky matrix CL, sensor
+candidate ℓ ∈ X′, state x ∈ X
+d ← Lx, z ← C−1
+L d
+// preparation
+if K = 0 then
+return ℓ(xK)2/cov(ℓ, ℓ)
+// one sensor only
+else
+v ← [cov(ℓ1, ℓ), . . . , cov(ℓK, ℓ)]T ∈ RK
+// general case
+w ← C−1
+L v ∈ RK
+return (ℓ(xK)−wT z)
+2
+cov(ℓ,ℓ)−wT w
+where
+rL,ℓ := − 1
+cℓ,ℓ
+C−T
+L cL,ℓ = − 1
+cℓ,ℓ
+C−T
+L C−1
+L vL,ℓ = − 1
+cℓ,ℓ
+Σ−1
+L vL,ℓ.
+For an arbitrary state x ∈ X, the norm of the extended observation [L, ℓ](x) =
+�
+LxT, ℓ(x)
+�T ∈
+RK+1 in the corresponding norm ∥·∥Σ−1
+[L,ℓ] is hence connected to the original observation
+Lx ∈ RK in the original norm ∥·∥Σ−1
+L via
+∥ [L, ℓ](x) ∥2
+Σ−1
+[L,ℓ] =
+� Lx
+ℓ(x)
+�T � ΣL
+vL,ℓ
+vT
+L,ℓ
+vℓ,ℓ
+�−1 � Lx
+ℓ(x)
+�
+=
+� Lx
+ℓ(x)
+�T � C−T
+L
+rL,ℓ
+0
+1/cℓ,ℓ
+� � C−1
+L
+0
+rT
+L,ℓ
+1/cℓ,ℓ
+� � Lx
+ℓ(x)
+�
+=
+�
+C−1
+L Lx
+rT
+L,ℓLx + ℓ(x)/cℓ,ℓ
+�T �
+C−1
+L Lx
+rT
+L,ℓLx + ℓ(x)/cℓ,ℓ
+�
+= (Lx)TC−T
+L C−1
+L Lx + (rT
+L,ℓLx + ℓ(x)/cℓ,ℓ)2
+= ∥Lx∥2
+Σ−1
+L + (rT
+L,ℓLx + ℓK+1(x)/cℓ,ℓ)2
+≥ ∥Lx∥2
+Σ−1
+L .
+(23)
+We conclude from this result that the norm ∥Lx∥Σ−1
+L of any observation, and therefore
+also the continuity coefficient γL defined in (6), is increasing under expansion of L
+despite the change in norms. For any configuration θ, the observability coefficients
+βG(θ) and βL|W(θ) are thus non-decreasing when sensors are selected iteratively.
+Given a state x ∈ X and an observation operator L, we can determine the sen-
+sor ℓK+1 ∈ L that increases the observation of x the most by comparing the increase
+(rT
+L,ℓLx + ℓ(x)/cℓ,ℓ)2 for all ℓ ∈ L. Algorithm 2 summarizes the computation of this
+observability gain for use in the sensor selection algorithm (see Section 4.3). Its gen-
+eral runtime is determined by K + 1 sensor evaluations and two linear solves with the
+triangular Cholesky matrix CL in O(K2). When called with the same L and the same
+13
+
+state x for different candidate sensors ℓ, the preparation step must only be performed
+once, which reduces the runtime to one sensor evaluation and one linear system solve
+in all subsequent calls. Compared to computing ∥ [L, ℓ](x) ∥2
+Σ−1
+[L,ℓ] for all KL candidate
+sensors in the library L, we save O(KLK2).
+4.2. Computation of the observability coefficient
+We next discuss the computation of the observability coefficient βG(θ) for a given
+configuration θ and observation operator L.
+Let Σpr = UTDprU be the eigenvalue decomposition of the s.p.d. prior covariance
+matrix with U = �ϕ1, . . . , ϕM
+� ∈ RM×M, ϕ j ∈ RM orthonormal in the Euclidean inner
+product, and Dpr = diag(λ1
+pr, . . . , λM
+pr) a diagonal matrix containing the eigenvalues
+λ1
+pr ≥ · · · ≥ λM
+pr > 0 in decreasing order. Using the eigenvector basis {ϕm}M
+m=1, we define
+the matrix
+M(θ) := �Lxθ(ϕ1), . . . , Lxθ(ϕM)� ∈ RK×M
+(24)
+featuring all observations of the associated states xθ(ϕ j) for the configuration θ. The
+observability coefficient βG(θ) can then be computed as the square root of the minimum
+eigenvalue λmin of the generalized eigenvalue problem
+M(θ)TC−T
+L C−1
+L M(θ)umin = λminD−1
+pr umin.
+(25)
+Note that (25) has M real, non-negative eigenvalues because the matrix on the left is
+symmetric positive semi-definite, and Dpr is s.p.d. (c.f. [48]). The eigenvector umin
+contains the basis coefficients in the eigenvector basis {ϕm}M
+m=1 of the “worst-case” pa-
+rameter, i.e. the infimizer of βG(θ).
+Remark 4. For computing βL|W(θ), we exchange the right-hand side matrix D−1
+pr in
+(25) with the X-inner-product matrix for the states xθ(ϕ1), . . . , xθ(ϕM).
+The solution of the eigenvalue problem can be computed in O(M3), with an addi-
+tional O(MK2 + M2K) for the computation of the left-hand side matrix in (25). The
+dominating cost is hidden in M(θ) since it requires KM sensor observations and K full-
+order model solves. To reduce the computational cost, we therefore approximate βG(θ)
+with ˜βG(θ) by exchanging the full-order states xθ(ϕ j) in (24) with their reduced-order
+approximations ˜xθ(ϕ j). The procedure is summarized in Algorithm 3.
+Remark 5. If K < M, Algorithm 3 restricts the parameter space, as discussed in Sec-
+tion 3.2, to the span of the first K eigenvectors ϕ1, . . . , ϕK encoding the least certain
+directions in the prior. A variation briefly discussed in [8] in the context of the PBDW
+method to prioritize the least certain parameters even further is to only expand the
+parameter space once the observability coefficient on the subspace surpasses a prede-
+termined threshold.
+4.3. Sensor selection
+In our sensor selection algorithm, we iteratively expand the observation operator
+L and thereby increase the observability coefficient L for all θ ∈ P. Although this
+14
+
+Algorithm 3: SurrogateObservability
+Input: configuration θ ∈ P, observation operator L = [ℓ1, . . . , ℓK]T with
+K > 0, Cholesky matrix CL
+N ← min{M, K}
+// parameter restriction
+M ← �L˜xθ(ϕ1), . . . , L˜xθ(ϕN)�, S ←
+��
+xθ(ϕi), xθ(ϕ j)
+�
+X
+�N
+i, j=1 // matrix setup
+Find (λmin, umin) of
+�
+C−1
+L M
+�T �
+C−1
+L M
+�
+umin = λminSumin
+// eigenvalue
+problem
+return
+√
+λmin, umin
+procedure cannot guarantee finding the maximum observability over all sensor com-
+binations, the underlying greedy searches are well-established in practice, and can be
+shown to perform with exponentially decreasing error rates in closely related settings,
+see [49, 8, 50, 51, 52]. In each iteration, the algorithm performs two main steps:
+• A greedy search over a training set Ξtrain ⊂ P to identify the configuration
+θ ∈ Ξtrain for which the observability coefficient βG(θ) is minimal;
+• A data-matching step to identify the sensor in the library that maximizes the
+observation of the “worst-case” parameter at the selected configuration θ.
+The procedure is summarized in Algorithm 4. It terminates when Kmax ≤ KL sensors
+have been selected.5 In the following, we explain its computational details.
+Preparations
+In order to increase βG(θ) uniformly over the hyper-parameter domain P, we con-
+sider a finite training set, Ξtrain ⊂ P, that is chosen to be fine enough to capture the θ-
+dependent variations in xθ(u). We assume a reduced-order model is available such that
+we can compute approximations ˜xθ(ϕm) ≈ xθ(ϕm) for each θ ∈ Ξtrain and 1 ≤ m ≤ M
+within an acceptable computation time while guaranteeing the accuracy requirement
+(16). If necessary, the two criteria can be balanced via adaptive training domains (e.g.,
+[53, 54]).
+Remark 6. If storage allows (e.g., with projection-based surrogate models), we only
+compute the surrogate states once and avoid unnecessary re-computations when up-
+dating the surrogate observability coefficients ˜βG(θ) in each iteration.
+As a first “worst-case” parameter direction, u0, we choose the vector ϕ1 with the
+largest prior uncertainty. Likewise, we choose the “worst-case” configuration θK ∈ P
+as the one for which the corresponding state ˜xθ(ϕ1) is the largest.
+5This termination criterion can easily be adapted to prescribe a minimum value of the observability
+coefficient. This value should be chosen with respect to the observability βG(L) achieved with the entire
+sensor library.
+15
+
+Algorithm 4: SensorSelection
+Input: sensor library L ⊂ X′, training set Ξtrain ⊂ P, maximum number of
+sensors Kmax ≤ |KL|, surrogate model ˜
+Mθ, covariance function
+cov : L × L → R
+Compute Σpr = �ϕ1, . . . , ϕM
+�T Dpr
+�ϕ1, . . . , ϕM
+�
+// eigenvalue
+decomposition
+For all θ ∈ Ξtrain, 1 ≤ m ≤ M, compute ˜xθ(ϕm)
+// preparation
+K ← 0, θ0 ← arg maxθ∈Ξtrain ∥˜xθ(ϕ1)∥X, u0 ← ϕ1
+// initialization
+while K < Kmax do
+Solve full-order equation MθK(xK, uK) for xK
+// "worst-case" state
+ℓK+1 ← arg maxℓ∈L ObservabilityGain(L, CL, ℓ)
+// sensor
+selection
+L, ΣL, CL ← CholeskyExpansion(L, ΣL, CL, ℓK+1)
+// expansion
+K ← K + 1
+for θ ∈ Ξtrain do
+˜βL|W(θ), umin(θ) ← SurrogateObservability(θ, L, CL) // update
+coefficients
+θK ← arg minθ∈Ξtrain ˜βL|W(θ)
+// greedy step
+uK ← �min{M,K}
+m=1
+[umin(θK)]m ϕm
+return L, CL
+Data-matching step
+In each iteration, we first compute the full-order state xK = xθK(uK) at the “worst-
+case” parameter uK and configuration θK. We then choose the sensor ℓK+1 which most
+improves the observation of the “worst-case” state xK under the expanded observation
+operator [LT, ℓK+1]T and its associated norm. We thereby iteratively approximate the
+information that would be obtained by measuring with all sensors in the library L. For
+fixed θK and in combination with selecting x to have the smallest observability in Wθ,
+we arrive at an algorithm similar to worst-case orthogonal matching pursuit (c.f. [8, 9])
+but generalized to deal with the covariance function cov in the noise model (3).
+Remark 7. We use the full-order state xθK(uK) rather than its reduced-order approxi-
+mation in order to avoid training on local approximation inaccuracies in the reduced-
+order model. Here, by using the “worst-case” parameter direction uK, we only require
+a single full-order solve per iteration instead of the M required for setting up the entire
+posterior covariance matrix ΣL,θ
+post.
+Greedy step
+We train the observation operator L on all configurations θ ∈ Ξtrain by varying for
+which θ the “worst-case” state is computed. Specifically, we follow a greedy approach
+16
+
+where, in iteration K, we choose the minimizer θK of βG(θ) over the training domain
+Ξtrain, i.e., the configuration for which the current observation operator L is the least
+advantageous. The corresponding “worst-case” parameter uK is the parameter direction
+for which the least significant observation is achieved. By iteratively increasing the
+observability at the “worst-case” parameters and hyper-parameters, we increase the
+minimum of βG(θ) throughout the training domain.
+Remark 8. Since the computation of ˜βG(θ) requires as many reduced-order model
+solves as needed for the posterior covariance matrix over the surrogate model, it is
+possible to directly target an (approximated) OED utility function in the greedy step
+in place of ˜βL|W(θ) without major concessions in the computational efficiency. The
+OMP step can then still be performed for the “worst-case” parameter with only one
+full-order model solve, though its benefit for the utility function should be evaluated
+carefully.
+Runtime
+Assuming the dominating computational restriction is the model evaluation to solve
+for xθ(u) – as is usually the case for PDE models – then the runtime of each iteration in
+Algorithm 4 is determined by one full-order model evaluation, and KL sensor measure-
+ments of the full-order state. Compared to computed the posterior covariance matrix
+for the chosen configuration, the OMP step saves N − 1 full-order model solves.
+The other main factor in the runtime of Algorithm 4 is the |Ξtrain|M reduced-order
+model evaluations with KL sensor evaluations each that need to be performed in each
+iteration (unless they can be pre-computed). The parameter dimension M not only en-
+ters as a scaling factor, but also affects the cost of the reduced-order model itself since
+larger values of M generally require larger or more complicated reduced-order models
+to achieve the desired accuracy (16). In turn, the computational cost of the reduced-
+order model indicates how large Ξtrain may be chosen for a given computational budget.
+While some cost can be saved through adaptive training sets and models, overall, this
+connection to M stresses the need for an adequate initial parameter reduction as dis-
+cussed in Section 3.2.
+5. Numerical Results
+We numerically confirm the validity of our sensor selection approach using a geo-
+physical model of a section of the Perth Basin in Western Australia. The basin has
+raised interest in the geophysics community due to its high potential for geothermal
+energy, e.g., [55, 56, 57, 58, 59]. We focus on a subsection that spans an area of
+63 km × 70 km and reaches 19 km below the surface. The model was introduced in
+[60] and the presented section of the model was discussed extensively in the context
+of MOR in [61, 62]. In particular, the subsurface temperature distribution is described
+through a steady-state heat conduction problem with different subdomains for the geo-
+logical layers, and local measurements may be obtained through boreholes. The bore-
+hole locations need to be chosen carefully due to their high costs (typically several
+million dollars, [63]), which in turn motivates our application of Algorithm 4. For
+demonstration purposes, we make the following simplifications to our test model: 1)
+17
+
+Figure 1: Schematic overview of the Perth Basin section including (merged) geological layers, depths for
+potential measurements, and configuration range for thermal conductivity θ on each subdomain. The bounds
+are obtained from the reference values (c.f. [60, 61]) with a ±50% margin. Adapted from [61].
+We neglect radiogenic heat production; 2) we merge geological layers with similar
+conductive behaviors; and 3) we scale the prior to emphasize the influence of different
+sensor measurements on the posterior. All computations were performed in Python
+3.7 on a computer with a 2.3 GHz Quad-Core Intel Core i5 processor and 16 GB of
+RAM. The code will be available in a public GitHub repository for another geophysical
+test problem.6
+5.1. Model Description
+We model the temperature distribution xθ with the steady-state PDE
+−∇ (θ∇xθ) = 0
+in Ω := (0, 0.2714) × (0, 0.9) × (0, 1) ⊂ R3,
+(26)
+where the domain Ω is a non-dimensionalized representation of the basin, and θ : Ω →
+R>0 the local thermal conductivity. The section comprises three main geological layers
+Ω = �
+i=1,2,3 Ωi, each characterized by different rock properties, i.e. thermal conductiv-
+ity θ|Ωi ≡ θi shown in Figure 1. We consider the position of the geological layers to be
+fixed as these are often determined beforehand by geological and geophysical surveys
+but allow the thermal conductivity to vary. In a slight abuse of notation, this lets us
+identify the field θ with the vector
+θ = (θ1, θ2, θ3) ∈ P := [0.453, 1.360] × [0.448, 1.343] × [0.360, 1.081].
+in the hyper-parameter domain P.
+We impose zero-Dirichlet boundary conditions at the surface7, and zero-Neumann
+(“no-flow”) boundary conditions at the lateral faces of the domain. The remaining
+boundary ΓIn corresponds to an area spanning 63 km × 70 km area in the Perth basin
+19 km below the surface. At this depth, local variations in the heat flux have mostly
+stabilized which makes modeling possible, but since most boreholes – often originat-
+ing from hydrocarbon exploration – are found in the uppermost 2 km we treat it as
+6The Perth Basin Model is available upon request from the third author.
+7Non-zero Dirichlet boundary conditions obtained from satellite data could be considered via a lifting
+function and an affine transformation of the measurement data (see [62]).
+18
+
+Geology
+Thermal Conductivity
+Creteaous-
+2
+with 1 E [0.453,1.360], [0refl1 = 0.9065
+-380 m
+Yarragadee
+Eneabba-
+-760 m
+0.2
+with 02 E [0.448,1.343], [0rerl2 = 0.9855
+Lesueur
+D.1
+-1140 m
+Permian
+.
+with 3 E [0.360,1.081], [0refl3 = 0.7205
+0.2
+Basement
+-1520 m
+0.4
+0.6
+-1900 m
+= 0.2443
+0.8
+X1uncertain. Specifically, we model it as a Neumann boundary condition
+n · ∇xθ = u · p
+a.e. on ΓIn := {0} × [0, 0.9] × [0, 1]
+where n : ΓIn → R3 is the outward pointing unit normal on Ω, p : ΓIn → R5 is a vector
+composed of quadratic, L2(ΓIn)-orthonormal polynomials on the basal boundary that
+vary either in north-south or east-west direction, and u ∼ πpr = N(upr, Σpr) is a random
+variable. The prior is chosen such that the largest uncertainty is attributed to a constant
+entry in p, and the quadratic terms are treated as the most certain with prior zero. This
+setup reflects typical geophysical boundary conditions, where it is most common to
+assume a constant Neumann heat flux (e.g., [61]), and sometimes a linear one (e.g.,
+[60]). With the quadratic functions, we allow an additional degree of freedom than
+typically considered.
+The problem is discretized using a linear finite element (FE) basis of dimension
+132,651. The underlying mesh was created with GemPy ([64]) and MOOSE ([65]).
+Since the FE matrices decouple in θ, we precompute and store an affine decomposition
+using DwarfElephant ([61]). Given a configuration θ and a coefficient vector u for the
+heat flux at ΓIn, the computation of a full-order solution xθ(u) ∈ X then takes 2.96 s on
+average. We then exploit the affine decomposition further to construct a reduced basis
+(RB) surrogate model via a greedy algorithm (c.f. [49, 66]). Using the inner product8
+⟨x, φ⟩X :=
+�
+Ω ∇x · ∇φdΩ and an a posteriori error bound ∆(θ), we prescribe the relative
+target accuracy
+max
+u∈RM
+∥xθ(u) − ˜xθ(u)∥X
+∥˜xθ(u)∥X
+≤ max
+u∈RM
+∆(θ)
+∥˜xθ(u)∥X
+< ε := 1e − 4
+(27)
+to be reached for 511,000 consecutively drawn, uniformly distributed samples of θ.
+The training phase and final computational performance of the RB surrogate model are
+summarized in Figure 2. The speedup of the surrogate model (approximately a factor
+of 3,000 without error bounds) justifies its offline training time, with computational
+savings expected already after 152 approximations of βG(θ).
+For taking measurements, we consider a 47 × 47 grid over the surface to represent
+possible drilling sites. At each, a single point evaluation9 of the basin’s temperature
+distribution may be made at any one of five possible depths as shown in Figure 1. In
+total, we obtain a set L ⊂ Ω of 11, 045 admissible points for measurements. We model
+the noise covariance between sensors ℓχ, ℓ˜χ ∈ L at points χ, ˜χ ∈ Ω via
+cov(ℓχ, ℓ˜χ) := a + b − y(h)
+with the exponential variogram model
+y(h) := a + (b − a)
+�3
+2 max{h
+c, 1} − 1
+2 max{h
+c, 1}3
+�
+8Note that ⟨·, ·⟩X is indeed an inner product due to the Dirichlet boundary conditions.
+9Point evaluations are standard for geophysical models because a borehole (diameter approximately 1 m)
+is very small compared to the size of the model.
+19
+
+0
+10
+20
+30
+40
+50
+RB dimension
+10
+3
+10
+2
+10
+1
+100
+norm of the error
+max relative error bound
+true relative error
+Reduced-order model
+RB dimension
+83
+training time
+37.58 min
+training accuracy
+1e-4
+RB solve
+0.97 ms
+�→ speedup
+3,058
+RB error bound
+4.78 ms
+�→ speedup
+515
+Figure 2: Training of the RB surrogate model for the Perth Basin section. On the left: Maximum relative
+error bound (27) in the course of the greedy algorithm, computed over the training set Ξtrain together with the
+true relative error at the corresponding configuration θ. On the right: Performance pointers for the obtained
+RB model after (27) was reached; online computation times and speedups are averages computed over 1000
+randomly drawn configurations θ.
+where h2 := (χ2 − ˜χ2)2 + (χ3 − ˜χ3)2 is the horizontal distance between the points and
+a := 2.2054073480730403
+(sill)
+b := 1.6850672040263555
+(nugget)
+c := 20.606782733391228
+(range)
+The covariance function was computed via kriging (c.f. [67]) from the existing mea-
+surements [68]. With this covariance function, the noise between measurements at any
+two sensor locations is increasingly correlated the closer they are on the horizontal
+plane. Note that for any subset of sensor locations, the associated noise covariance ma-
+trix remains regular as long as each sensor is placed at a distinct drilling location. We
+choose this experimental setup because measurements in typical geothermal data sets
+are often made at the bottom of a borehole (“bottom hole temperature measurements”)
+within the first 2 km below the surface.
+5.2. Restricted Library
+To test the feasibility of the observability coefficient for sensor selection, we first
+consider a small sensor library (denoted as L5×5 below) with 25 drilling locations po-
+sitioned on a 5 × 5 grid. We consider the problem of choosing 8 pair-wise different,
+unordered sensor locations out of the given 25 positions; this is a combinatorial prob-
+lem with 1,081,575 possible combinations.
+Sensor selection
+We run Algorithm 4, using the RB surrogate model and a training set Ξtrain ⊂ P
+with 512,000 configurations on an 80 × 80 × 80 regular grid on P. When new sensors
+are chosen, the surrogate observability coefficient ˜βG(θ) increases monotonously with
+a strong incline just after the initial M = 5 sensors, followed by a visible stagnation
+(see Figure 3a) as is often observed for similar OMP-based sensor selection algorithms
+20
+
+5
+6
+7
+8
+number of sensors
+10
+4
+10
+3
+10
+2
+10
+1
+observability coefficient
+mean observability coefficient
+min observability coefficient
+improvement with next sensor
+observability coefficient, fixed config.
+(a) Observability during sensor selection
+0.00
+0.02
+0.04
+0.06
+0.08
+0.10
+0.12
+0.14
+observability coefficient
+0.0
+2.5
+5.0
+7.5
+10.0
+12.5
+15.0
+17.5
+max. observability
+A-OED
+D-OED
+E-OED
+proposal
+proposal, fixed
+(b) Histogram of βG(θref)
+Figure 3: Observability coefficient for different methods when choosing 8 out of 25 sensor locations. Left:
+Minimum and mean over θ of ˜βG(θ) as well as βG(θref) obtained in the course of running Algorithm 4 once
+for 512,000 configurations and once for the training set {θref}. Right: Distribution of βG(θref) over all possible
+sensor combinations with indicators for the A-, D-, and E-optimal choices, the combination with maximum
+observability, and the sensors chosen by the Algorithm 4 with Ξtrain-training (“proposal”, purple, marked
+“x”) and θref-training (“proposal, fixed”, turquoise, marked “+”). Note that the height of the indicator line
+was chosen solely for readability.
+(e.g., [8, 69, 70, 7]). Algorithm 4 terminates in 7.93 min with a minimum reduced-order
+observability of ˜βG(θ) = 7.3227e-2 and an average of 1.0995e-1. At the reference
+configuration θref, the full-order observability coefficient is βG(θref) = 1.0985, slightly
+below the reduced-order average. We call this training procedure “Ξtrain-training” here-
+after and denote the chosen sensors as “Ξtrain-trained sensor set” in the subsequent text
+and as “proposal” in the plots.
+In order to get an accurate understanding of how the surrogate model ˜xθ(u) and the
+large configuration training set Ξtrain influence the sensor selection, we run Algorithm 4
+again, this time restricted on the full-order FE model xθref(u) at only the reference con-
+figuration θref. The increase in βG(θref) in the course of the algorithm is shown in Fig-
+ure 3a. The curve starts significantly above the average for Ξtrain-training, presumably
+because conflicting configurations cannot occur, e.g., when one sensor would signifi-
+cantly increase the observability at one configuration but cause little change in another.
+However, in the stagnation phase, the curve comes closer to the average achieved with
+Ξtrain-training. The computation finishes within 12.53 s, showing that the long runtime
+before can be attributed to the size of Ξtrain. The final observability coefficient with 8
+sensors is βG(θref) = 1.2647e-1, above the average over ˜βG(θ) achieved training on
+Ξtrain. We call this training procedure “θref-training” hereafter, and the sensor configu-
+ration “θref-trained” in the text or “proposal, fixed config.” in the plots.
+Comparison at the reference configuration
+For comparing the performance of the Ξtrain- and θref-trained sensor combinations,
+we compute – at the reference configuration θref – all 1,081,575 posterior covariance
+matrices Σθref,L
+post for all unordered combinations L of 8 distinct sensors in the sensor li-
+brary L5×5. For each matrix, we compute the trace (A-OED criterion), the determinant
+(D-OED criterion), the maximum eigenvalue (E-OED criterion), and the observability
+coefficient βG(θref). This lets us identify the A-, D-, and E-optimal sensor combina-
+21
+
+0
+0.05
+0.1
+0.15
+0.2
+Observability Coefficient
+10
+0.25
+100
+100.25
+100.5
+100.75
+101.0
+101.25
+101.5
+101.75
+posterior trace
+A-optimal sensor combination
+proposal
+proposal, fixed configuration
+maximum observability coefficient
+all 25 sensors
+best
+sensor selection
+0.587 %
+proposal
+0.022 %
+proposal, fixed config.
+1.778 %
+max. observability
+Figure 4: Distribution of trace(ΣL,θ
+post) for θ = θref over all 1,081,575 combinations for choosing 8 out of the
+25 sensor locations. On the left: distribution of trace(ΣL,θ
+post) against the observability coefficient βG(θref).
+Note that the marginal distribution of the horizontal axis is provided in Figure 3b. On the right: histogram
+of trace(ΣL,θ
+post) (marginal distribution for the plot on the left) with for the different sensor combinations (in
+percent out of 1,081,575 combinations). The plots include markers for the A-optimal sensor choice, the
+sensors chosen by Algorithm 4 with Ξtrain-training (“proposal”) and with {θref}-training (“proposal, fixed
+configuration”), the sensor combination with maximum observability βG(θref), and when all 25 sensors are
+included.
+tions. The total runtime for these computations is 4 min – well above the 12.53 s of
+θref-training. The (almost) 8 min for Ξtrain-training remain reasonable considering it is
+trained on |Ξtrain| = 512, 000 configurations and not only θref.
+A histogram for the distribution of βG(θref) is given in Figure 3b with markers for
+the values of the A-, D-, and E-optimal choices and the Ξtrain- and θref-trained ob-
+servation operators. Out of these five, the D-optimal choice has the smallest value,
+since the posterior determinant is influenced less by the maximum posterior eigenvalue
+and hence the observability coefficient. In contrast, both the A- and E-optimal sen-
+sor choices are among the 700 combinations with the largest βG(θref) (this corresponds
+to the top 0.065%). The θref-trained sensors have similar observability and are even
+among the top 500 combinations. For the Ξtrain- trained sensors, the observability co-
+efficient is smaller, presumably because Ξtrain-training is not as optimized for θref. Still,
+it ranks among the top 0.705 % of sensor combinations with the largest observability.
+In order to visualize the connection between the observability coefficient βG(θref)
+and the classic A-, D-, and E-OED criteria, we plot the distribution of the posterior
+covariance matrix’s trace, determinant, and maximum eigenvalue over all sensor com-
+binations against βG(θ) in Figures 4, 5, 6. Overall we observe a strong correlation
+between the respective OED criteria and βG(θref): It is the most pronounced in Figure
+6 for E-optimality, and the least pronounced for D-optimality in Figure 5. For all OED
+22
+
+0
+0.05
+0.1
+0.15
+0.2
+Observability Coefficient
+10
+5
+10
+4
+10
+3
+10
+2
+10
+1
+100
+101
+Posterior determinant
+D-optimal sensor combination
+proposal
+proposal, fixed configuration
+maximum observability coefficient
+all 25 sensors
+best
+sensor selection
+0.252 %
+proposal
+0.081 %
+proposal, fixed config.
+12.923 %
+max. observability
+Figure 5: Distribution of the posterior determinant det(ΣL,θ
+post) for θ = θref. See Figure 4 for details about the
+plot structure.
+0
+0.05
+0.1
+0.15
+0.2
+Observability Coefficient
+10
+0.5
+100
+100.5
+101
+101.5
+maximum posterior eigenvalue
+E-optimal sensor combination
+proposal
+proposal, fixed configuration
+maximum observability coefficient
+all 25 sensors
+best
+sensor selection
+1.679 %
+proposal
+0.001 %
+proposal, fixed config.
+4.080 %
+max. observability
+Figure 6: Distribution of the maximum eigenvalue of the posterior covariance matrix ΣL,θ
+post for θ = θref. See
+Figure 4 for details about the plot structure. Note that the θref-trained sensor combination has the 101-st
+smallest maximum posterior eigenvalue among all 1,081,575 possibilities.
+23
+
+design criterion
+training
+pctl
+A-OED
+D-OED
+E-OED
+θref
+Ξtrain
+99-th
+3.5835
+81.8508
+1.1724
+2.2223
+9.2512
+95-th
+2.2747
+26.8430
+0.3601
+0.7846
+4.0374
+75-th
+0.5141
+3.8600
+0.0532
+0.1419
+0.8106
+50-th
+0.1527
+1.4641
+0.0159
+0.0438
+0.2354
+25-th
+0.0414
+0.3669
+0.0035
+0.0068
+0.0621
+Figure 7: Ranking in βG(θref) of the A-, D-, E- optimal and the θref- and Ξtrain-trained sensor choices for
+all possible combinations of choosing 8 unordered sensors in the library. Left: Boxplots obtained over 200
+random sensor libraries. Right: worst-case ranking (in percent) of the corresponding percentiles (“pctl”).
+criteria, the correlation becomes stronger for smaller scaling factors σ2 and weakens
+for large σ2 when the prior is prioritized (plots not shown). This behavior aligns with
+the discussion in Section 3.1 that βG(θ) primarily targets the largest posterior eigenvalue
+and is most decisive for priors with higher uncertainty.
+Comparison for different libraries
+We finally evaluate the influence of the library L5×5 on our results. To this end,
+we randomly select 200 sets of new measurement positions, each consisting of 25
+drilling locations with an associated drilling depth. For each library, we run Algorithm
+4 to choose 8 sensors, once with Ξtrain-training on the surrogate model, and once with
+the full-order model at θref only. For comparison, we then consider in each library
+each possible combination of choosing 8 unordered sensor sets and compute the trace,
+determinant, and maximum eigenvalue of the associated posterior covariance matrix at
+the reference configuration θref together with its observability coefficient. This lets us
+identify the A-, D-, and E-optimal sensor combinations.
+Figure 7 shows how βG(θref) is distributed over the 200 libraries, with percentiles
+provided in the adjacent table. For 75% of the libraries, the A- and E-optimal, and the
+Ξtrain- and θref-trained sensor choices rank among the top 1% of combinations with the
+largest observability. Due to its non-optimized training for θref, the Ξtrain-trained sensor
+set performs slightly worse than what is achieved with θref-training, but still yields
+a comparatively large value for βG(θref). In contrast, overall, the D-optimal sensor
+choices have smaller observability coefficients, presumably because the minimization
+of the posterior determinant is influenced less by the maximum posterior eigenvalue.
+The ranking of the Ξtrain- and θref-trained sensor configurations in terms of the pos-
+terior covariance matrix’s trace, determinant, and maximum eigenvalue over the 200
+libraries is given in Figure 8. Both perform well and lie for 75% of the libraries within
+the top 1% of combinations. As the ranking is performed for the configuration param-
+eter θref, the θref-trained sensor combination performs better, remaining in 95% of the
+libraries within the top 5% of sensor combinations.
+24
+
+A-OED
+D-OED
+E-OED
+obs. coef.
+100
+101
+102
+103
+104
+105
+106
+ranking
+proposal, flexible configuration
+opt.
+top 10
+0.01%
+0.1%
+1%
+5%
+25%
+100%
+percentile
+pctl
+A-OED
+D-OED
+E-OED
+βG(θref)
+99-th
+3.9240
+6.2372
+10.8391
+9.2512
+95-th
+1.9093
+3.1544
+4.5583
+4.0374
+75-th
+0.3083
+0.7718
+0.9185
+0.8106
+50-th
+0.0664
+0.2361
+0.2763
+0.2354
+25-th
+0.0177
+0.0536
+0.0596
+0.0621
+A-OED
+D-OED
+E-OED
+obs. coef.
+100
+101
+102
+103
+104
+105
+106
+ranking
+proposal, fixed configuration
+opt.
+top 10
+0.01%
+0.1%
+1%
+5%
+25%
+100%
+percentile
+pctl
+A-OED
+D-OED
+E-OED
+βG(θref)
+99-th
+2.5261
+2.9752
+11.1534
+2.2223
+95-th
+1.0134
+1.8324
+2.8458
+0.7846
+75-th
+0.1155
+0.4698
+0.3549
+0.1419
+50-th
+0.0224
+0.1212
+0.0687
+0.0438
+25-th
+0.0041
+0.0181
+0.0138
+0.0068
+Figure 8: Ranking of the posterior covariance matrix Σθref,L
+post
+in terms of the A-, D-, E-OED criteria and
+the observability coefficient βG(θref) when the observation operator GL,θ is chosen with Algorithm 4 and
+Ξtrain-training (top) or θref-training (bottom). The ranking is obtained by comparing all possible unordered
+combinations of 8 sensors in each sensor library. On the left: Boxplots of the ranking over 200 sensor
+libraries; on the right: ranking (in percent) among different percentiles.
+25
+
+(a) upmost layer, Ξtrain-training
+(b) upmost layer, θref-training
+(c) lowest layer, Ξtrain-training
+(d) lowest layer, θref-training
+Figure 9: Sensor positions chosen by Algorithm 4 from a grid of 47 × 47 available horizontal positions
+with available 5 depths each, though only the lowest (bottom) and upmost (top) layers were chosen. The
+underlying plot shows cuts through the full-order solution xθ(u) at θ = θref. Left: Ξtrain-training with the
+RB surrogate model on a training set Ξtrain ⊂ P with 10,000 random configurations; runtime 14.19 s for 10
+sensors. Right: θref-training with full-order model at reference parameter; runtime 15.85 s for 10 sensors.
+5.3. Unrestricted Library
+We next verify the scalability of Algorithm 4 to large sensor libraries by permitting
+all 2,209 drilling locations, at each of which at most one measurement may be taken
+at any of the 5 available measurement depths. Choosing 10 unordered sensors yields
+approximately 7.29e+33 possible combinations. Using the RB surrogate model from
+before, we run Algorithm 4 once on a training grid Ξtrain ⊂ P consisting of 10,000
+randomly chosen configurations using only the surrogate model (runtime 14.19 s), and
+once on the reference configuration θref using the full-order model (runtime 15.85 s) for
+comparison. We terminate the algorithm whenever 10 sensors are selected. Compared
+to the training time on L5×5 before, the results confirm that the size of the library itself
+has little influence on the overall runtime but that the full-order computations and the
+size of Ξtrain relative to the surrogate compute dominate.
+The sensors chosen by the two runs of Algorithm 4 are shown in Figure 9. They
+share many structural similarities:
+• Depth: Despite the availability of 5 measurement depths, sensors have only been
+chosen on the lowest and the upmost layers with 5 sensors each. The lower sen-
+sors were chosen first (with one exception, sensor 3 in θref-training), presumably
+26
+
+z
+1
+0.8
+0.6
+0.4
+0.2
+0
+0.9
+0.9
+P
+9
+0.8
+0.8
+Temperature
+0.7
+0.7
+0.18
+0.6
+0.6
+10
+0.16
+0.5
+-0.5
+Y
+Y
+0.4
+-0.4
+E0.14
+0.3
+0.3
+E0.12
+0.2
+0.2
+4
+E0.10
+0.1
+0.1
+0
+0.8
+0.6
+0.4
+0.2
+1
+0
+zz
+1
+0.8
+0.6
+0.4
+0.2
+0
+0.9
+0.9
+P
+0.8
+0.8
+Temperature
+0.7
+0.7
+0.18
+0.6
+0.6
+0.16
+0.5
+-0.5
+Y
+5.2
+6
+Y
+0.4
+-0.4
+E0.14
+0.3
+0.3
+E0.12
+0.2
+-0.2
+E0.10
+9
+0.1
+0.1
+8
+0
+0.8
+0.6
+0.4
+0.2
+1
+0
+zz
+1
+0.8
+0.6
+0.4
+0.2
+0
+0.9
+0.9
+3
+0.8
+-0.8
+Temperature
+0.7
+0.7
+0.91
+0.6
+0.6
+6
+0.81
+0.5
+-0.5
+Y
+Y
+0.4-
+0.4
+E0.71
+0.3
+-0.3
+E0.61
+0.2
+0.2
+E0.50
+0.1
+0.1
+-0
+-0
+0.8
+0.6
+0.4
+0.2
+0
+1
+zz
+1
+0.8
+0.6
+0.4
+0.2
+0
+0.9
+0.9
+0.8
+0.8
+Temperature
+0.7
+0.7
+0.91
+0.6
+0.6
+0.81
+0.5
+-0.5
+5
+Y
++
+Y
+0.4
+0.4
+E0.71
+0.3
+0.3
+E0.61
+0.2
+0.2
+2
+E0.50
+3
+0.1
+0.1
+-0
+-0
+0.8
+0.6
+0.4
+0.2
+0
+1
+zbecause the lower layer is closer to the uncertain Neumann boundary condition
+and therefore yields larger measurement values.
+• Pairing Each sensor on the lowest layer has a counterpart on the upmost layer
+that has almost the same position on the horizontal plane. This pairing targets
+noise sensitivity: With the prescribed error covariance function, the noise in two
+measurements is increasingly correlated the closer the measurements lie horizon-
+tally, independent of their depth coordinate. Choosing a reference measurement
+near the zero-Dirichlet boundary at the surface helps filter out noise terms in the
+lower measurement.
+• Organization On each layer, the sensors are spread out evenly and approxi-
+mately aligned in 3 rows and 3 columns. The alignment helps distinguish be-
+tween the constant, linear, and quadratic parts of the uncertain Neumann flux
+function in north-south and east-west directions.
+Figure 10 (left side) shows the increase in the observability coefficients ˜βG(θ) (for
+Ξtrain-training) and βG(θref) (for θref-training) over the number of chosen sensors. We
+again observe a strong initial incline followed by stagnation for the Ξtrain-trained sen-
+sors, whereas the curve for θref-training already starts at a large value to remain then
+almost constant. The latter is explained by the positions of the first 5 sensors in Fig-
+ure 9 (right), as they are already spaced apart in both directions for the identification of
+quadratic polynomials. In contrast, for Ξtrain-training, the “3 rows, 3 columns” structure
+is only completed after the sixth sensor (c.f. Figure 9, left). With 6 sensors, the observ-
+ability coefficients in both training schemes have already surpassed the final observ-
+ability coefficients with 8 sensors in the previous training on the smaller library L5×5.
+The final observability coefficients at the reference parameter θref are βG(θref) = 0.4042
+for θref-training, and βG(θref) = 0.3595 for Ξtrain-training.
+As a final experiment, we compare the eigenvalues of the posterior covariance ma-
+trix ΣL,θref
+post for the Ξtrain- and θref-trained sensors against 50,000 sets of 10 random sen-
+sors each. We confirm that all 50,000 sensor combinations comply with the combina-
+torial restrictions. Boxplots of the eigenvalues are provided in Figure 10 (right side).
+The eigenvalues of the posterior covariance matrix with sensors chosen by Algorithm
+4 are smaller10 than all posterior eigenvalues for the random sensor combinations.
+6. Conclusion
+In this work, we analyzed the connection between the observation operator and
+the eigenvalues of the posterior covariance matrix in the inference of an uncertain pa-
+rameter via Bayesian inversion for a linear, hyper-parameterized forward model. We
+identified an observability coefficient whose maximization decreases the uncertainty in
+the posterior probability distribution for all hyper-parameters. To this end, we proposed
+10Here we compare the largest eigenvalue of one matrix to the largest eigenvalue of another, the second
+largest to the second largest, and so on.
+27
+
+5
+6
+7
+8
+9
+10
+number of sensors
+10
+3
+10
+2
+10
+1
+100
+observability coefficient
+mean observability coefficient
+min observability coefficient
+improvement with next sensor
+observability coefficient, fixed config.
+1
+2
+3
+4
+5
+posterior eigenvalue (largest to smallest)
+10
+3
+10
+2
+10
+1
+100
+101
+random combinations with 10 sensors each
+proposal
+proposal, fixed config
+Figure 10: Left: Observabity coefficients during sensor selection with Ξtrain- and θref-training for a library
+with 11,045 measurement positions and combinatorial restrictions. Shown are 1) the minimum and mean
+surrogate observability coefficient ˜βG(θ) over a training set with 10,000 random configurations with final
+values minθ ˜βG(θ) = 0.4160 and meanθ ˜βG(θ) = 0.6488, and 2) the full-order observability coefficient βG(θref)
+when training on the reference parameter θref alone (final value βG(θref) = 0.4042). Right: Boxplots for the
+5 eigenvalues of the posterior covariance matrix ΣL,θ
+post over 50,000 sets of 10 sensors chosen uniformly from
+a 5 × 47 × 47 grid with imposed combinatorial restrictions. The eigenvalues are compared according to their
+order from largest to smallest. Indicated are also the eigenvalues for the Ξtrain-trained (purple, “x”-marker)
+and θref-trained (turquoise, “+”-marker) sensors from Figure 9.
+a sensor selection algorithm that expands an observation operator iteratively to guaran-
+tee a uniformly large observability coefficient for all hyper-parameters. Computational
+feasibility is retained through a reduced-order model in the greedy step and an OMP
+search for the next sensor that only requires a single full-order model evaluation. The
+validity of the approach was demonstrated on a large-scale heat conduction problem
+over a section of the Perth Basin in Western Australia. Future extensions of this work
+are planned to address 1) high-dimensional parameter spaces through parameter reduc-
+tion techniques, 2) the combination with the PBDW inf-sup-criterion to inform sensors
+by functionalanalytic means in addition to the noise covariance, and 3) the expansion
+to non-linear models through a Laplace approximation.
+Acknowledgments
+We would like to thank Tan Bui-Thanh, Youssef Marzouk, Francesco Silva, An-
+drew Stuart, Dariusz Ucinski, and Keyi Wu for very helpful discussions, and Florian
+Wellmann at the Institute for Computational Geoscience, Geothermics and Reservoir
+Geophysics at RWTH Aachen University for providing the Perth Basin Model. This
+work was supported by the Excellence Initiative of the German federal and state gov-
+ernments and the German Research Foundation through Grants GSC 111 and 33849990/GRK2379
+(IRTG Modern Inverse Problems). This project has also received funding from the
+European Research Council (ERC) under the European Union’s Horizon 2020 re-
+search and innovation programme (grant agreement n° 818473), the US Department
+of Energy (grant DE-SC0021239), and the US Air Force Office of Scientific Research
+(grant FA9550-21-1-0084). Peng Chen is partially supported by the NSF grant DMS
+#2245674.
+28
+
+References
+[1] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta numerica 19 (2010)
+451–559.
+[2] I. Stober, K. Bucher, Geothermie, Springer, 2012.
+[3] D. Ucinski, Optimal measurement methods for distributed parameter system iden-
+tification, CRC press, 2004.
+[4] V. B. Melas, Functional approach to optimal experimental design, volume 184,
+Springer Science & Business Media, 2006.
+[5] L. Pronzato, Optimal experimental design and some related control problems,
+Automatica 44 (2008) 303–325.
+[6] N. Aretz-Nellesen, P. Chen, M. A. Grepl, K. Veroy, A sequential sensor selection
+strategy for hyper-parameterized linear Bayesian inverse problems, in: Numerical
+Mathematics and Advanced Applications ENUMATH 2019, Springer, 2021, pp.
+489–497.
+[7] N. Aretz-Nellesen, M. A. M. Grepl, K. Veroy, 3D-VAR for parameterized partial
+differential equations: a certified reduced basis approach, Advances in Computa-
+tional Mathematics 45 (2019) 2369–2400.
+[8] P. Binev, A. Cohen, O. Mula, J. Nichols, Greedy algorithms for optimal measure-
+ments selection in state estimation using reduced models, SIAM/ASA Journal on
+Uncertainty Quantification 6 (2018) 1101–1126.
+[9] Y. Maday, A. T. Patera, J. D. Penn, M. Yano, A parameterized-background data-
+weak approach to variational data assimilation: formulation, analysis, and appli-
+cation to acoustics, International Journal for Numerical Methods in Engineering
+102 (2015) 933–965.
+[10] M. Barrault, Y. Maday, N. C. Nguyen, A. T. Patera, An ‘empirical interpola-
+tion’method: application to efficient reduced-basis discretization of partial differ-
+ential equations, Comptes Rendus Mathematique 339 (2004) 667–672.
+[11] Y. Maday, O. Mula, A generalized empirical interpolation method: application
+of reduced basis techniques to data assimilation, in: Analysis and numerics of
+partial differential equations, Springer, 2013, pp. 221–235.
+[12] A. Alexanderian, P. J. Gloor, O. Ghattas, On Bayesian A-and D-optimal experi-
+mental designs in infinite dimensions, Bayesian Analysis 11 (2016) 671–695.
+[13] A. Alexanderian, N. Petra, G. Stadler, O. Ghattas, A-optimal design of experi-
+ments for infinite-dimensional Bayesian linear inverse problems with regularized
+\ell 0-sparsification, SIAM Journal on Scientific Computing 36 (2014) A2122–
+A2148.
+29
+
+[14] A. Attia, A. Alexanderian, A. K. Saibaba, Goal-oriented optimal design of ex-
+periments for large-scale Bayesian linear inverse problems, Inverse Problems 34
+(2018) 095009.
+[15] A. Alexanderian, A. K. Saibaba, Efficient D-optimal design of experiments for
+infinite-dimensional Bayesian linear inverse problems, SIAM Journal on Scien-
+tific Computing 40 (2018) A2956–A2985.
+[16] A. Alexanderian, N. Petra, G. Stadler, I. Sunseri, Optimal design of large-scale
+Bayesian linear inverse problems under reducible model uncertainty: good to
+know what you don’t know, SIAM/ASA Journal on Uncertainty Quantification 9
+(2021) 163–184.
+[17] K. Wu, P. Chen, O. Ghattas, An efficient method for goal-oriented linear bayesian
+optimal experimental design: Application to optimal sensor placement, arXiv
+preprint arXiv:2102.06627, to appear in SIAM/AMS Journal on Uncertainty
+Quantification (2022).
+[18] A. Alexanderian, Optimal experimental design for infinite-dimensional Bayesian
+inverse problems governed by PDEs: a review, Inverse Problems (2021).
+[19] A. Alexanderian, N. Petra, G. Stadler, O. Ghattas, A fast and scalable method
+for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear
+inverse problems, SIAM Journal on Scientific Computing 38 (2016) A243–A272.
+[20] X. Huan, Y. M. Marzouk, Simulation-based optimal Bayesian experimental de-
+sign for nonlinear systems, Journal of Computational Physics 232 (2013) 288–
+317.
+[21] K. Wu, P. Chen, O. Ghattas, A fast and scalable computational framework for
+large-scale and high-dimensional Bayesian optimal experimental design, arXiv
+preprint arXiv:2010.15196, to appear in SIAM Journal on Scientific Computing
+(2022).
+[22] K. Wu, T. O’Leary-Roseberry, P. Chen, O. Ghattas, Derivative-informed pro-
+jected neural network for large-scale Bayesian optimal experimental design,
+arXiv preprint arXiv:2201.07925, to appear in Journal of Scientific Computing
+(2022).
+[23] A. Attia, E. Constantinescu, Optimal experimental design for inverse problems
+in the presence of observation correlations,
+arXiv preprint arXiv:2007.14476
+(2020).
+[24] T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler, A computational framework for
+infinite-dimensional Bayesian inverse problems Part I: The linearized case, with
+application to global seismic inversion, SIAM Journal on Scientific Computing
+35 (2013) A2494–A2523.
+30
+
+[25] T. Cui, Y. Marzouk, K. Willcox, Scalable posterior approximations for large-scale
+Bayesian inverse problems via likelihood-informed parameter and state reduction,
+Journal of Computational Physics 315 (2016) 363–387.
+[26] M. T. Parente, J. Wallin, B. Wohlmuth, Generalized bounds for active subspaces,
+Electronic Journal of Statistics 14 (2020) 917–943.
+[27] C. Lieberman, K. Willcox, O. Ghattas, Parameter and state model reduction for
+large-scale statistical inverse problems, SIAM Journal on Scientific Computing
+32 (2010) 2523–2542.
+[28] P. Chen, O. Ghattas, Hessian-based sampling for high-dimensional model reduc-
+tion, International Journal for Uncertainty Quantification 9 (2019).
+[29] P. Chen, K. Wu, J. Chen, T. O’Leary-Roseberry, O. Ghattas,
+Projected Stein
+variational Newton: A fast and scalable Bayesian inference method in high di-
+mensions, NeurIPS (2019). Https://arxiv.org/abs/1901.08659.
+[30] P. Chen, O. Ghattas, Projected Stein variational gradient descent, in: Advances
+in Neural Information Processing Systems, 2020.
+[31] O. Zahm, T. Cui, K. Law, A. Spantini, Y. Marzouk, Certified dimension reduction
+in nonlinear Bayesian inverse problems, Mathematics of Computation 91 (2022)
+1789–1835.
+[32] E. Qian, M. Grepl, K. Veroy, K. Willcox, A certified trust region reduced basis ap-
+proach to PDE-constrained optimization, SIAM Journal on Scientific Computing
+39 (2017) S434–S460.
+[33] P. Chen, Model order reduction techniques for uncertainty quantification prob-
+lems, Technical Report, 2014.
+[34] P. Chen, A. Quarteroni, G. Rozza, Reduced basis methods for uncertainty quan-
+tification, SIAM/ASA Journal on Uncertainty Quantification 5 (2017) 813–869.
+[35] T. O’Leary-Roseberry, U. Villa, P. Chen, O. Ghattas, Derivative-informed pro-
+jected neural networks for high-dimensional parametric maps governed by PDEs,
+Computer Methods in Applied Mechanics and Engineering 388 (2022) 114199.
+[36] T. O’Leary-Roseberry, P. Chen, U. Villa, O. Ghattas, Derivate informed neu-
+ral operator: An efficient framework for high-dimensional parametric derivative
+learning, arXiv:2206.10745 (2022).
+[37] G. Da Prato, An introduction to infinite-dimensional analysis, Springer Science
+& Business Media, 2006.
+[38] C. Schwab, R. Stevenson, Space-time adaptive wavelet methods for parabolic
+evolution problems, Mathematics of Computation 78 (2009) 1293–1318.
+31
+
+[39] Q. Long, M. Scavino, R. Tempone, S. Wang, Fast estimation of expected informa-
+tion gains for Bayesian experimental designs based on Laplace approximations,
+Computer Methods in Applied Mechanics and Engineering 259 (2013) 24–39.
+[40] N. Aretz, Data Assimilation and Sensor selection for Configurable Forward Mod-
+els: Challenges and Opportunities for Model Order Reduction Methods, Ph.D.
+thesis, RWTH Aachen University, 2022.
+[41] T. Cui, Y. M. Marzouk, K. E. Willcox,
+Data-driven model reduction for the
+Bayesian solution of inverse problems, International Journal for Numerical Meth-
+ods in Engineering 102 (2015) 966–990.
+[42] T. Bui-Thanh, K. Willcox, O. Ghattas, Model reduction for large-scale systems
+with high-dimensional parametric input space, SIAM Journal on Scientific Com-
+puting 30 (2008) 3270–3288.
+[43] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction
+methods for parametric dynamical systems, SIAM review 57 (2015) 483–531.
+[44] W. H. A. Schilders, H. A. Van der Vorst, J. Rommes, Model order reduction:
+theory, research aspects and applications, volume 13, Springer, 2008.
+[45] J. S. Hesthaven, G. Rozza, B. Stamm, Certified reduced basis methods for
+parametrized partial differential equations, volume 590, Springer, 2016.
+[46] A. Quarteroni, A. Manzoni, F. Negri, Reduced basis methods for partial differen-
+tial equations: an introduction, volume 92, Springer, 2015.
+[47] B. Haasdonk, Reduced basis methods for parametrized PDEs–a tutorial introduc-
+tion for stationary and instationary problems, Model reduction and approxima-
+tion: theory and algorithms 15 (2017) 65.
+[48] G. H. Golub, C. F. Van Loan, Matrix computations, volume 3, JHU press, 2013.
+[49] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Con-
+vergence rates for greedy algorithms in reduced basis methods, SIAM journal on
+mathematical analysis 43 (2011) 1457–1472.
+[50] A. Cohen, W. Dahmen, R. DeVore, J. Fadili, O. Mula, J. Nichols, Optimal re-
+duced model algorithms for data-based state estimation, SIAM Journal on Nu-
+merical Analysis 58 (2020) 3355–3381.
+[51] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, G. Turinici,
+A pri-
+ori convergence of the greedy algorithm for the parametrized reduced basis
+method, ESAIM: Mathematical Modelling and Numerical Analysis-Mod´elisation
+Math´ematique et Analyse Num´erique 46 (2012) 595–603.
+[52] J. Jagalur-Mohan, Y. M. Marzouk,
+Batch greedy maximization of non-
+submodular functions: Guarantees and applications to experimental design., J.
+Mach. Learn. Res. 22 (2021) 251–252.
+32
+
+[53] J. L. Eftang, A. T. Patera, E. M. Rønquist, An” hp” certified reduced basis method
+for parametrized elliptic partial differential equations, SIAM Journal on Scientific
+Computing 32 (2010) 3170–3200.
+[54] J. L. Eftang, D. J. Knezevic, A. T. Patera, An hp certified reduced basis method for
+parametrized parabolic partial differential equations, Mathematical and Computer
+Modelling of Dynamical Systems 17 (2011) 395–422.
+[55] K. Regenauer-Lieb, F. Horowitz,
+The Perth Basin geothermal opportunity,
+Petroleum in Western Australia 3 (2007).
+[56] S. Corbel, O. Schilling, F. G. Horowitz, L. B. Reid, H. A. Sheldon, N. E. Timms,
+P. Wilkes, Identification and geothermal influence of faults in the Perth metropoli-
+tan area, Australia, in: Thirty-seventh workshop on geothermal reservoir engi-
+neering, Stanford, CA, 2012.
+[57] H. A. Sheldon, B. Florio, M. G. Trefry, L. B. Reid, L. P. Ricard, K. A. R. Ghori,
+The potential for convection and implications for geothermal energy in the Perth
+Basin, Western Australia, Hydrogeology Journal 20 (2012) 1251–1268.
+[58] O. Schilling, H. A. Sheldon, L. B. Reid, S. Corbel, Hydrothermal models of the
+Perth metropolitan area, Western Australia: implications for geothermal energy,
+Hydrogeology Journal 21 (2013) 605–621.
+[59] M. Pujol, L. P. Ricard, G. Bolton, 20 years of exploitation of the Yarragadee
+aquifer in the Perth Basin of Western Australia for direct-use of geothermal heat,
+Geothermics 57 (2015) 39–55.
+[60] J. F. Wellmann, L. B. Reid, Basin-scale geothermal model calibration: Experi-
+ence from the Perth Basin, Australia, Energy Procedia 59 (2014) 382–389.
+[61] D. Degen, K. Veroy, F. Wellmann, Certified reduced basis method in geosciences,
+Computational Geosciences 24 (2020) 241–259.
+[62] D. M. Degen, Application of the reduced basis method in geophysical sim-
+ulations: concepts, implementation, advantages, and limitations, Dissertation,
+RWTH Aachen University, 2020. doi:10.18154/RWTH-2020-12042.
+[63] M. Bauer, W. Freeden, H. Jacobi, T. Neu, Handbuch Tiefe Geothermie, Springer,
+2014.
+[64] M. de la Varga, A. Schaaf, F. Wellmann, GemPy 1.0: open-source stochastic
+geological modeling and inversion, Geoscientific Model Development 12 (2019)
+1–32.
+[65] C. J. Permann, D. R. Gaston, D. Andrˇs, R. W. Carlsen, F. Kong, A. D. Lindsay,
+J. M. Miller, J. W. Peterson, A. E. Slaughter, R. H. Stogner, MOOSE: Enabling
+massively parallel multiphysics simulation, SoftwareX 11 (2020) 100430.
+33
+
+[66] W. Dahmen, C. Plesken, G. Welper, Double greedy algorithms: reduced basis
+methods for transport dominated problems, ESAIM: Mathematical Modelling
+and Numerical Analysis-Mod´elisation Math´ematique et Analyse Num´erique 48
+(2014) 623–663.
+[67] N. Cressie, The origins of kriging, Mathematical geology 22 (1990) 239–252.
+[68] F. L. Holgate, E. J. Gerner, OzTemp Well temperature data, Geoscience Australia
+http://www. ga. gov. au Catalogue (2010).
+[69] Y. Maday, T. Anthony, J. D. Penn, M. Yano, PBDW state estimation: Noisy
+observations; configuration-adaptive background spaces; physical interpretations,
+ESAIM: Proceedings and Surveys 50 (2015) 144–168.
+[70] T. Taddei, Model order reduction methods for data assimilation: state estimation
+and structural health monitoring, Ph.D. thesis, Massachusetts Institute of Tech-
+nology, 2017.
+34
+
diff --git a/MtFLT4oBgHgl3EQfNS8Q/content/tmp_files/load_file.txt b/MtFLT4oBgHgl3EQfNS8Q/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..484fcad063af68a2c8d20937e732de632f0f04aa
--- /dev/null
+++ b/MtFLT4oBgHgl3EQfNS8Q/content/tmp_files/load_file.txt
@@ -0,0 +1,1336 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf,len=1335
+page_content='A Greedy Sensor Selection Algorithm for Hyperparameterized Linear Bayesian Inverse Problems Nicole Aretza, Peng Chenb, Denise D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Degenc, Karen Veroyd aOden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E 24th St, Austin, TX 78712, USA bSchool of Computational Science and Engineering, Georgia Institute of Technology, 756 W Peachtree St NW, Atlanta, GA 30308, USA cComputational Geoscience, Geothermics, and Reservoir Geophysics, RWTH Aachen University, Mathieustr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 30, 52074 Aachen, Germany dCenter for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands Abstract We consider optimal sensor placement for a family of linear Bayesian inverse prob- lems characterized by a deterministic hyper-parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The hyper-parameter describes distinct configurations in which measurements can be taken of the observed physical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To optimally reduce the uncertainty in the system’s model with a single set of sensors, the initial sensor placement needs to account for the non-linear state changes of all admissible configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We address this requirement through an observabil- ity coefficient which links the posteriors’ uncertainties directly to the choice of sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We propose a greedy sensor selection algorithm to iteratively improve the observability coefficient for all configurations through orthogonal matching pursuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The algorithm allows explicitly correlated noise models even for large sets of candidate sensors, and remains computationally efficient for high-dimensional forward models through model order reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We demonstrate our approach on a large-scale geophysical model of the Perth Basin, and provide numerical studies regarding optimality and scalability with regard to classic optimal experimental design utility functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Introduction In the Bayesian approach to inverse problems (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [1]), the uncertainty in a param- eter is described via a probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' With Bayes’ Theorem, the prior belief in a parameter is updated when new information is revealed such that the posterior distri- bution describes the parameter with improved certainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Bayes’ posterior is optimal in the sense that it is the unique minimizer of the sum of the relative entropy between the posterior and the prior, and the mean squared error between the model prediction and the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The noise model drives, along with the measurements, how the posterior’s uncertainty is reduced in comparison to the prior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A critical aspect – espe- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='12019v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='NA] 27 Jan 2023 cially for expensive experimental data1 – is how to select the measurements to improve the posterior’s credibility best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The selection of adequate sensors meeting individual applications’ needs is, therefore, a big goal of the optimal experimental design (OED) research field and its surrounding community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We refer to the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [3, 4, 5]) for introductions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The analysis and algorithm presented in this work significantly extend our initial ideas presented in [6] in which we seek to generalize the 3D-VAR stability results from [7] to the probabilistic Bayesian setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Our proposed algorithm is directly re- lated to the orthogonal matching pursuit (OMP) algorithm [8, 9] for the parameterized- background data-weak (PBDW) method and the empirical interpolation method (EIM) ([10, 11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Closely related OED methods for linear Bayesian inverse problems over partial differential equations (PDEs) include [12, 13, 14, 15, 16, 17], mostly for A- and D-OED and uncorrelated noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In recent years, these methods have also been extended to non-linear Bayesian inverse problems, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [18, 19, 20, 21, 22], while an advance to correlated noise has been made in [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In particular, [21, 22] use similar algorithmic approaches to this work by applying a greedy algorithm to maximize the expected in- formation gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Common strategies for dealing with the high dimensions imposed by the PDE model use the framework in [24] for discretization, combined with parameter reduction methods (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [25, 26, 27, 28, 29, 30, 31]) and model order reduction (MOR) methods for uncertainty quantification (UQ) problems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [32, 33, 34, 35, 36]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In this paper, we consider inverse problem settings, in which a deterministic hyper- parameter describes anticipated system configurations such as material properties or loading conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Each configuration changes the model non-linearly, so we obtain a family of possible posterior distributions for any measurement data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Supposing data can only be obtained with a single set of sensors regardless of the system’s configu- ration, the OED task becomes to reduce the uncertainty in each posterior uniformly over all hyper-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This task is challenging for high-dimensional models since 1) each configuration requires its own computationally expensive model solve, and 2) for large sets of admissible measurements, the comparison between sensors requires the inversion of the associated, possibly dense noise covariance matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' By building upon [6], this paper addresses both challenges and proposes in detail a sensor selection algorithm that remains efficient even for correlated noise models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The main contributions are as follows: First, we identify an observability coeffi- cient as a link between the sensor choice and the maximum eigenvalue of each poste- rior distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We also provide an analysis of its sensitivity to model approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Second, we decompose the noise covariance matrix for any observation operator to al- low fast computation of the observability gain under expansion with additional sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Third, we propose a sensor selection algorithm that iteratively constructs an observa- tion operator from a large set of sensors to increase the observability coefficient over all hyper-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The algorithm is applicable to correlated noise models, and re- quires, through the efficient use of MOR techniques, only a single full-order model 1For instance, for projects harvesting geothermal energy, the development costs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', drilling, stimula- tion, and tests) take up 50 − 70% of the total budget ([2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' As each borehole can cost several million dollars, it is essential to plan their location carefully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 2 evaluation per selected sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' While the main idea and derivation of the observability coefficient are similar to [6], this work additionally features 1) an analysis of the observability coefficient re- garding model approximations, 2) explicit computational details for treating correlated noise models, and 3) a comprehensive discussion of the individual steps in the sen- sor selection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Moreover, the proposed method is tested using a large-scale geophysical model of the Perth Basin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This paper is structured as follows: In Section 2 we introduce the hyper-parameterized inverse problem setting, including all assumptions for the prior distribution, the noise model, and the forward model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In Section 3, we then establish and analyze the con- nection between the observability coefficient and the posterior uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We fi- nally propose our sensor selection algorithm in Section 4 which exploits the presented analysis to choose sensors that improve the observability coefficient even in a hyper- parameterized setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We demonstrate the applicability and scalability of our approach on a high-dimensional geophysical model in Section 5 before concluding in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Problem setting Let X be a Hilbert space with inner product ⟨·, ·⟩X and induced norm ∥x∥2 X := ⟨x, x⟩X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We consider the problem of identifying unknown states xtrue(θ) ∈ X of a single physical system under changeable configurations θ from noisy measurements d(θ) ≈ [ℓ1(xtrue(θ)), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK(xtrue(θ))]T ∈ RK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The measurements are obtained by a set of K unique sensors (or experiments) ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK ∈ X′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Our goal is to choose these sensors from a large sensor library L ⊂ X′ of options in a way that optimizes how much information is gained from their measurements for any configurations θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Hyper-parameterized forward model We consider the unknown state xtrue to be uniquely characterized by two sources of information: an unknown parameter utrue ∈ RM describing uncertainties in the governing physical laws, and a hyper-parameter (or configuration2) θ ∈ P ⊂ Rp describing dependencies on controllable configurations under which the system may be observed (such as material properties or loading conditions) where P is a given compact set en- closing all possible configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For any given u ∈ RM and θ ∈ P, we let xθ(u) ∈ X be the solution of an abstract model equation Mθ(xθ(u);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' u) = 0 and assume that the map u → xθ(u) is well-defined, linear, 2We call θ interchangeably hyper-parameter or configuration to either stress its role in the mathematical model or physical interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 3 and uniformly continuous in u, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ∃ ¯η > 0 : η(θ) := sup u∈RM ∥xθ(u)∥X ∥u∥Σ−1 pr < ¯η ∀ θ ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (1) Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Although we assumed that utrue lies in the Euclidean space RM, any other linear space can be considered via an affine transformation onto an appropriate basis (see [12, 37]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For infinite-dimensional spaces, we first discretize with appropriate treatment of the adjoint operator (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [24]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' By keeping the model equation general, we stress the applicability of our approach to a wide range of problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For instance, time-dependent states can be treated by choosing X as a Bochner space or its discretization (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [38]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We also do not formally restrict the dimension of X, though any implementation relies on the ability to compute xθ(u) with sufficient accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To this end, we note that the analysis in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 can be applied to determine how discretization errors affect the observ- ability criterion in the sensor selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Following a probabilistic approach to inverse problems, we express the initial un- certainty in utrue = utrue(θ) of any xtrue = xθ(utrue) in configuration θ through a random variable u with Gaussian prior µpr = N � upr, Σpr � , where upr ∈ RM is the prior mean and Σpr ∈ RM×M is a symmetric positive definite (s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=') covariance matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The latter defines the inner product ⟨·, ·⟩Σ−1 pr and its induced norm ∥ · ∥Σ−1 pr through ⟨u, v⟩Σ−1 pr := uTΣ−1 pr ˜u, ∥u∥2 Σ−1 pr := ⟨u, u⟩Σ−1 pr , ∀ u, v ∈ RM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (2) With these definitions, the probability density function (pdf) for µpr is πpr(u) = 1 � (2π)M det Σpr exp � −1 2∥u − upr∥2 Σ−1 pr � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For simplicity, we assume {utrue(θ)}θ∈P to be independent realizations of u such that we may consider the same prior for all θ without accounting for a possible history of measurements at different configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sensor library and noise model For taking measurements of the unknown states {xtrue(θ)}θ, we call any linear func- tional ℓ ∈ X′ a sensor, and its application to a state x ∈ X its measurement ℓ(x) ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We model experimental measurements dℓ ∈ R of the actual physical state xtrue as dℓ = ℓ(xtrue) + εℓ where εℓ ∼ N(0, cov(εℓ, εℓ)) is a Gaussian random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We permit noise in different sensor measurements to be correlated with a known covari- ance function cov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In a slight overload of notation, we write cov : L × L → R, cov(ℓi, ℓj) := cov(εℓi, εℓj) as a symmetric bilinear form over the sensor library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Any ordered subset S = {ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK} ⊂ L of sensors can then form a (linear and continuous) observation operator through L := [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK]T : X → RK, Lx := [ℓ1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK(x)]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 4 The experimental measurements of L have the form d = �ℓ1(xtrue) + εℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK(xtrue) + εℓK �T = Lxtrue + ε with ε = �εℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , εℓK �T ∼ N(0, σ2ΣL), (3) where σ2ΣL is the noise covariance matrix defined through ΣL ∈ RK×K, such that � σ2ΣL � i, j := cov(ℓj, ℓi) = cov(εℓj, εℓi) (4) with an auxiliary scaling parameter3 σ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We assume that the library L and the noise covariance function cov have been chosen such that ΣL is s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' for any combination of sensors in L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This assumption gives rise to the L-dependent inner product and its induced norm � d, ˜d � Σ−1 L := dTΣ−1 L ˜d, ∥d∥2 Σ−1 L := ⟨d, d⟩Σ−1 L , ∀ d, ˜d ∈ RK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (5) Measured with respect to this norm, the largest observation of any (normalized) state is thus γL := sup ∥x∥X=1 ∥Lx∥Σ−1 L = sup x∈X ∥Lx∥Σ−1 L ∥x∥X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (6) We show in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 that γL increases under expansion of L with additional sensors despite the change in norm, and is therefore bounded by γL ≤ γL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We also define the parameter-to-observable map GL,θ : RM → RK, such that GL,θ (u) := Lxθ(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (7) With the assumptions above – in particular the linearity and uniform continuity (1) of x in u – the map GL,θ is linear and uniformly bounded in u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We let GL,θ ∈ RK×M denote its matrix representation with respect to the unit basis {em}M m=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The likelihood of d ∈ RK obtained through the observation operator L for the parameter u ∈ RM and the system configuration θ is then ΦL � d ��� u, θ � := 1 � 2K det ΣL exp � − 1 2σ2 ���d − GL,θ (u) ���2 Σ−1 L � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Note that GL,θ and GL,θ may depend non-linearly on θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Posterior distribution Once noisy measurement data d ≈ Lxtrue(θ) is available, Bayes’ theorem yields the posterior pdf as πL,θ post(u | d) = 1 Z(θ) exp � − 1 2σ2 ���GL,θ (u) − d ���2 Σ−1 L − 1 2∥u − upr∥2 Σ−1 pr � ∝ πpr(u)·ΦL � d ��� u, θ � , (8) 3We introduce σ2 here as an additional variable to ease the discussion of scaling in Section 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' However, we can set σ2 = 1 without loss of generality (w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 5 with normalization constant Z(θ) := � Rp exp � − 1 2σ2 ���GL,θ (u) − d ���2 Σ−1 L � dµpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Due to the linearity of the parameter-to-observable map, the posterior measure µL,θ post is a Gaussian µL,θ post = N(uL,θ post(d), ΣL,θ post) with known (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [1]) mean and covariance matrix uL,θ post(d) = ΣL,θ post � 1 σ2 GT L,θΣ−1 L d + Σ−1 pr upr � ∈ RM, (9) ΣL,θ post = � 1 σ2 GT L,θΣ−1 L GL,θ + Σ−1 pr �−1 ∈ RM×M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (10) The posterior µL,θ post thus depends not only on the choice of sensors, but also on the con- figuration θ under which their measurements were obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Therefore, to decrease the uncertainty in all possible posteriors with a single, θ-independent observation operator L, the construction of L should account for all admissible configurations θ ∈ P under which xtrue may be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The linearity of xθ(u) in u is a strong assumption that dictates the Gaussian posterior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' However, in combination with the hyper-parameter θ, our setting here can be re-interpreted as the Laplace-approximation for a non-linear state map θ �→ x(θ) (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [39, 21, 40]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The sensor selection presented here is then an intermediary step for OED over non-linear forward models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The Observability Coefficient In this section, we characterize how the choice of sensors in the observation op- erator L and its associated noise covariance matrix ΣL influence the uncertainty in the posteriors µL,θ post, θ ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We identify an observability coefficient that bounds the eigen- values of the posterior covariance matrices ΣL,θ post, θ ∈ P with respect to L, and facilitates the sensor selection algorithm presented in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Eigenvalues of the Posterior Covariance Matrix The uncertainty in the posterior πL,θ post for any configuration θ ∈ P is uniquely char- acterized by the posterior covariance matrix ΣL,θ post, which is in turn connected to the observation operator L through the parameter-to-observable map GL,θ and the noise co- variance matrix ΣL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To measure the uncertainty in ΣL,θ post, the OED literature suggests a variety of different utility functions to be minimized over L in order to optimize the sen- sor choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Many of these utility functions can be expressed in terms of the eigenvalues 6 λθ,1 L ≥ · · · ≥ λθ,M L > 0 of ΣL,θ post, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', A-OED: trace(ΣL,θ post) = M � m=1 λθ,m L (mean variance) D-OED: det(ΣL,θ post) = M � m=1 λθ,m L (volume) E-OED: λmax(ΣL,θ post) = λθ,1 L (spectral radius).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In practice, the choice of the utility function is dictated by the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In E-optimal experimental design (E-OED), for instance, posteriors whose uncertainty ellipsoids stretch out into any one direction are avoided, whereas D-OED minimizes the overall volume of the uncertainty ellipsoid regardless of the uncertainty in any one parameter direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We refer to [3] for a detailed introduction and other OED criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Considering the hyper-parameterized setting where each configuration θ influences the posterior uncertainty, we seek to choose a single observation operator L such that the selected utility function remains small for all configurations θ ∈ P, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', for E-OED, minimizing min ℓ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=',ℓK∈L max θ∈P λmax(ΣL,θ post) such that L = [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK]T guarantees that the longest axis of each posterior covariance matrix ΣL,θ post for any θ ∈ P has the same guaranteed upper bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The difficulty here is that the minimization over P necessitates repeated, cost-intensive model evaluations to compute the utility func- tion for many different configurations θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In the following, we therefore introduce an upper bound to the posterior eigenvalues that can be optimized through an observabil- ity criterion with far fewer model solves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The bound’s optimization indirectly reduces the different utility functions through the posterior eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Recalling that ΣL,θ post is s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', let {ψm}M m=1 be an orthonormal eigenvector basis of ΣL,θ post, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ψT mψn = δm,n and ΣL,θ postψm = λθ,m L ψm m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (11) Using the representation (10), any eigenvalue λθ,m L can be written in the form 1 λθ,m L = ψT m � ΣL,θ post �−1 ψm = ψT m � 1 σ2 GT L,θΣ−1 L GL,θ + Σ−1 pr � ψm = 1 σ2 ���GL,θ (ψm) ���2 Σ−1 L + ∥ψm∥2 Σ−1 pr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (12) Since ψm depends implicitly on L and θ through (11), we cannot use this representation directly to optimize over L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To take out the dependency on ψm, we bound ∥ψm∥2 Σ−1 pr ≥ 1 λmax pr in terms of the maximum eigenvalue of the prior covariance matrix Σpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Likewise, we define βG(θ) := inf u∈RM ���GL,θ (u) ���Σ−1 L ∥u∥Σ−1 pr = inf u∈RM ∥Lxθ(u)∥Σ−1 L ∥u∥Σ−1 pr , (13) 7 as the minimum ratio between an observation for a parameter u relative to the prior’s covariance norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' From (12) and (13) we obtain the upper bound λθ,m L = ����������� 1 σ2 ���GL,θ (ψm) ���2 Σ−1 L ∥ψm∥2 Σ−1 pr + 1 ����������� −1 ∥ψm∥−2 Σ−1 pr ≤ � 1 σ2 βG(θ)2 + 1 �−1 λmax pr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Geometrically, this bound means that the radius λθ,1 L of the outer ball around the pos- terior uncertainty ellipsoid is smaller than that of the prior uncertainty ellipsoid by at least the factor � 1 σ2 βG(θ)2 + 1 �−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' By choosing L to maximize minθ βG(θ), we therefore minimize this outer ball containing all uncertainty ellipsoids (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', for any θ ∈ P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' As expected, the influence of L is strongest when the measurement noise is small such that data can be trusted (σ2 ≪ 1), and diminishes with increasing noise levels (σ2 ≫ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Parameter Restriction An essential property of βG(θ) is that βG(θ) = 0 if K < M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', the number of sen- sors in L is smaller than the number of parameter dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In this case, βG(θ) cannot distinguish between sensors during the first M − 1 steps of an iterative algorithm, or in general when less than a total of M sensors are supposed to be chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For medium- dimensional parameter spaces (M ∈ O(10)), we mitigate this issue by restricting u to the subspace span{ϕ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ϕmin{K,M}} ⊂ RM spanned by the first min{K, M} eigenvec- tors of Σpr corresponding to its largest eigenvalues, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', the subspace with the largest prior uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For high-dimensional parameter spaces or when the model Mθ has a non-trivial null-space, we bound βG(θ) further βG(θ) = inf u∈RM ∥Lxθ(u)∥Σ−1 L ∥xθ(u)∥X ∥xθ(u)∥X ∥u∥Σ−1 pr ≥ inf x∈Wθ ∥Lx∥Σ−1 L ∥x∥X inf u∈RM ∥xθ(u)∥X ∥u∥Σ−1 pr = βL|W(θ) η(θ) (14) where we define the linear space Wθ of all achievable states Wθ := {xθ(u) ∈ X : u ∈ RM} and the coefficients βL|W(θ) := inf x∈Wθ ∥Lx∥Σ−1 L ∥x∥X , η(θ) := inf u∈RM ∥xθ(u)∥X ∥u∥Σ−1 pr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (15) The value of η(θ) describes the minimal state change that a parameter u can achieve relative to its prior-induced norm ∥u∥Σ−1 pr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' It can filter out parameter directions that have little influence on the states xθ(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In contrast, the observability coefficient βL|W(θ) depends on the prior only implicitly via Wθ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' it quantifies the minimum amount of information (measured with respect to the noise model) that can be obtained on any state in Wθ relative to its norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Future work will investigate how to optimally restrict the parameter space based on η(θ) before choosing sensors that maximize βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Existing parameter reduction approaches in a similar context include [28, 41, 42, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In this work, however, we solely focus on the maximization of βG(θ) and, by extension, βL|W(θ) and henceforth assume that M is sufficiently small and η := infθ∈P η(θ) > 0 is bounded away from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Observability under model approximations To optimize the observability coefficient βG(θ) or βL|W(θ), it must be computed for many different configurations θ ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The accumulating computational cost motivates the use of reduced-order surrogate models, which typically yield considerable com- putational savings versus the original full-order model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' However, this leads to errors in the state approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In the following, we thus quantify the influence of state approximation error on the observability coefficients βG(θ) and βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' An analysis of the change in posterior distributions when the entire model Mθ is substituted in the inverse problem can be found in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Suppose a reduced-order surrogate model ˜ Mθ(˜xθ(u);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' u) = 0 is available that yields for any configuration θ ∈ P and parameter u ∈ RM a unique solution ˜xθ(u) ∈ X such that ∥xθ(u) − ˜xθ(u)∥X ≤ εθ ∥xθ(u)∥X with accuracy 0 ≤ εθ ≤ ε < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (16) Analogously to (13) and (15), we define the reduced-order observability coefficients ˜βG(θ) := inf u∈RM ∥L˜xθ(u)∥Σ−1 L ∥u∥Σ−1 pr , ˜βL|W(θ) := inf u∈RM ∥L˜xθ(u)∥Σ−1 L ∥˜xθ(u)∥X (17) to quantify the smallest observations of the surrogate states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For many applications, it is possible to choose a reduced-order model whose solution can be computed at a significantly reduced cost such that ˜βG(θ) and ˜βL|W(θ) are much cheaper to compute than their full-order counterparts βG(θ) and βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Since the construction of such a surrogate model depends strongly on the application itself, we refer to the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [43, 44, 45, 46, 47]) for tangible approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Recalling the definition of γL in (6), we start by bounding how closely the surrogate observability coefficient ˜βL|W(θ) approximates the full-order βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Let η(θ) > 0 hold, and let ˜xθ(u) ∈ X be an approximation to xθ(u) such that (16) holds for all θ ∈ P, u ∈ RM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Then (1 − εθ) ˜βL|W(θ) − γLεθ ≤ βL|W(θ) ≤ (1 + εθ) ˜βL|W(θ) + γLεθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (18) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Let u ∈ RM \\ {0} be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Using (16) and the (reversed) triangle inequality, we obtain the bound ∥˜xθ(u)∥X ∥xθ(u)∥X ≥ ∥xθ(u)∥X − ∥xθ(u) − ˜xθ(u)∥X ∥xθ(u)∥X ≥ 1 − εθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (19) Note here that η(θ) > 0 implies ∥xθ(u)∥X > 0 so the quotient is indeed well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The ratio of observation to state can now be bounded from below by ∥Lxθ(u)∥Σ−1 L ∥xθ(u)∥X ≥ ∥L˜xθ(u)∥Σ−1 L ∥xθ(u)∥X − ∥L(xθ(u) − ˜xθ(u))∥Σ−1 L ∥xθ(u)∥X ≥ ∥˜xθ(u)∥X ∥xθ(u)∥X ∥L˜xθ(u)∥Σ−1 L ∥˜xθ(u)∥X − γL ∥xθ(u) − ˜xθ(u)∥X ∥xθ(u)∥X ≥ (1 − εθ) ∥L˜xθ(u)∥Σ−1 L ∥˜xθ(u)∥X − γLεθ ≥ (1 − εθ)˜βL|W(θ) − γLεθ, 9 where we have applied the reverse triangle inequality, definition (6), the bounds (16), (19), and definition (17) of ˜βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Since u is arbitrary, the lower bound in (18) follows from definition (13) of βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The upper bound in (18) follows analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For the observability of the parameter-to-observable map GL,θ and its approxima- tion u �→ L˜xθ(u), we obtain a similar bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' It uses the norm η(θ) of xθ : u �→ xθ(u) as a map from the parameter to the state space, see (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Let ˜xθ(u) ∈ X be an approximation to xθ(u) such that (16) holds for all θ ∈ P, u ∈ RM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Then ˜βG(θ) − γLη(θ)εθ ≤ βG(θ) ≤ ˜βG(θ) + γLη(θ)εθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (20) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Let u ∈ RM \\ {0} be arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Then ∥Lxθ(u)∥Σ−1 L ≥ ∥L˜xθ(u)∥Σ−1 L − ∥L(xθ(u) − ˜xθ(u))∥Σ−1 L ≥ ∥L˜xθ(u)∥Σ−1 L − γL ∥xθ(u) − ˜xθ(u)∥X ≥ ∥L˜xθ(u)∥Σ−1 L − γLεθ ∥xθ(u)∥X ≥ ∥L˜xθ(u)∥Σ−1 L − γLεθη(θ)∥u∥Σ−1 pr , where we have used the reverse triangle inequality, followed by (6), (16), and (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We divide by ∥u∥Σ−1 pr and take the infimum over u to obtain βG(θ) = inf u∈RM ∥Lxθ(u)∥Σ−1 L ∥u∥Σ−1 pr ≥ inf u∈RM ∥L˜xθ(u)∥Σ−1 L ∥u∥Σ−1 pr − γL η(θ) εθ = ˜βG(θ) − γL η(θ) εθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The upper bound in (20) follows analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' If εθ is sufficiently small, Propositions 1 and 2 justify employing the surrogates ˜βL|W(θ) and ˜βG(θ) instead of the original full-order observability coefficients βL|W(θ) and βG(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This substitution becomes especially necessary when the computation of xθ(u) is too expensive to evaluate βL|W(θ) or βG(θ) repeatedly for different configura- tions θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Another approximation step in our sensor selection algorithm relies on the identifi- cation of a parameter direction v ∈ RM with comparatively small observability, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ∥Lxθ(v)∥Σ−1 L ∥v∥Σ−1 pr ≈ inf u∈RM ∥Lxθ(u)∥Σ−1 L ∥u∥Σ−1 pr = βG(θ) or ∥Lxθ(v)∥Σ−1 L ∥xθ(v)∥X ≈ inf x∈Wθ ∥Lx∥Σ−1 L ∥x∥X = βL|W(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The ideal choice would be the infimizer of respectively βG(θ) or βL|W(θ), but its compu- tation involves M full-order model evaluations (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To avoid these costly computations, we instead choose v as the infimizer of the respective reduced-order observability coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This choice is justified for small εθ < 1 by the following proposition: 10 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Let η(θ) > 0 hold, and let ˜xθ(u) ∈ X be an approximation to xθ(u) such that (16) holds for all θ ∈ P, u ∈ RM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Suppose v ∈ arg infu∈RM ∥u∥−1 Σ−1 pr ∥L˜xθ(u)∥Σ−1 L , then βG(θ) ≤ ∥Lxθ(v)∥Σ−1 L ∥v∥Σ−1 pr ≤ βG(θ) + 2γLη(θ)εθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (21) Likewise, if v ∈ arg infu∈RM ∥˜xθ(u)∥−1 X ∥L˜xθ(u)∥Σ−1 L , then βL|W(θ) ≤ ∥Lxθ(v)∥Σ−1 L ∥xθ(v)∥X ≤ 1 + εθ 1 − εθ �βL|W(θ) + γLεθ � + γLεθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (22) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For both (21) and (22) the lower bound follows directly from definitions (13) and (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To prove the upper bound in (21), let v ∈ arg infu∈RM ∥u∥−1 Σ−1 pr ∥L˜xθ(u)∥Σ−1 L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Following the same steps as in the proof of Proposition 2, we can then bound ∥Lxθ(v)∥Σ−1 L ∥v∥Σ−1 pr ≤ ∥L˜xθ(v)∥Σ−1 L ∥v∥Σ−1 pr + ∥L(xθ(v) − ˜xθ(v))∥Σ−1 L ∥v∥Σ−1 pr ≤ ˜βG(θ) + γLη(θ)εθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The upper bound in (21) then follows with Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To prove the upper bound in (22), let v ∈ arg infu∈RM ∥˜xθ(u)∥−1 X ∥L˜xθ(u)∥Σ−1 L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Then ∥Lxθ(v)∥Σ−1 L ∥xθ(v)∥X ≤ ∥L˜xθ(v)∥Σ−1 L ∥˜xθ(v)∥X ∥˜xθ(v)∥X ∥xθ(v)∥X + ∥L(xθ(v) − ˜xθ(v))∥Σ−1 L ∥xθ(v)∥X ≤ (1 + ε) ˜βL|W(θ) + γLεθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The result then follows with Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sensor selection In the following, we present a sensor selection algorithm that iteratively increases the minimal observability coefficient minθ∈P βG(θ) and thereby decreases the upper bound for the eigenvalues of the posterior covariance matrix for all admissible system configurations θ ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The iterative approach is relatively easy to implement, allows a simple way of dealing with combinatorial restrictions, and can deal with large4 sensor libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cholesky decomposition The covariance function cov connects an observation operator L to its observabil- ity coefficients βG(θ) and βL|W(θ) through the noise covariance matrix ΣL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Its inverse enters the norm ∥·∥Σ−1 L and the posterior covariance matrix ΣL,θ post.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The inversion poses a challenge when the noise is correlated, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', when ΣL is not diagonal, as even the expansion of L with a single sensor ℓ ∈ L changes each entry of Σ−1 L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In naive compu- tations of the observability coefficients and the posterior covariance matrix, this leads 4For instance, in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 we apply the presented algorithm to a library with KL = 11, 045 available sensor positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 11 Algorithm 1: CholeskyExpansion Input: observation operator L = [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK]T, noise covariance matrix ΣL, Cholesky matrix CL, new sensor ℓ ∈ X′ L ← [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK, ℓ]T // operator expansion if K = 0 then ΣL ← (cov(ℓ, ℓ)) , CL ← � √cov(ℓ, ℓ) � ∈ R1×1 // first sensor else v ← [cov(ℓ1, ℓ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , cov(ℓK, ℓ)]T ∈ RK // matrix expansion w ← C−1 L v ∈ RK, s ← cov(ℓ, ℓ), c ← s − wTw ∈ R ΣL ← � ΣL v vT s � , CL ← � CL 0 wT c � ∈ R(K+1)×(K+1) return L, ΣL, CL to M dense linear system solves of order O((K + 1)3) each time the observation oper- ator is expanded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In the following, we therefore expound on how Σ−1 L changes under expansion of L to exploit its structure when comparing potential sensor choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Suppose L = [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK]T has already been chosen with sensors ℓk ∈ X′, but shall be expanded by another sensor ℓ to [L, ℓ] := [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK, ℓ]T : X → RK+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Following definition (4), the noise covariance matrix Σ[L,ℓ] of the expanded operator [L, ℓ] has the form Σ[L,ℓ] = � ΣL vL,ℓ vT L,ℓ vℓ,ℓ � = � CL 0 cT L,ℓ cℓ,ℓ � � CT L cL,ℓ 0 cℓ,ℓ � , where CLCT L = ΣL ∈ RK×K is the Cholesky decomposition of the s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' noise covariance matrix ΣL for the original observation operator L, and vL,ℓ, cL,ℓ ∈ RK, vℓ,ℓ, cℓ,ℓ ∈ R are defined through �vL,ℓ � i := cov(ℓi, ℓ), cL,ℓ := C−1 L vL,ℓ, vℓ,ℓ := cov(ℓ, ℓ), cℓ,ℓ := � vℓ,ℓ − cT L,ℓcL,ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Note that Σ[L,ℓ] is s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' by the assumptions posed on cov in Section 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' consequently, cℓ,ℓ is well-defined and strictly positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' With this factorization, the expanded Cholesky matrix C[L,ℓ] with C[L,ℓ]CT [L,ℓ] = Σ[L,ℓ] can be computed in O(K2), dominated by the linear system solve with the triangular CL for obtaining cL,ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' It is summarized in Algo- rithm 1 for later use in the sensor selection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Using the Cholesky decomposition, the inverse of Σ[L,ℓ] factorizes to Σ−1 [L,ℓ] = � CT L cL,ℓ 0 cℓ,ℓ �−1 � CL 0 cT L,ℓ cℓ,ℓ �−1 = � C−T L rL,ℓ 0 1/cℓ,ℓ � � C−1 L 0 rT L,ℓ 1/cℓ,ℓ � , 12 Algorithm 2: ObservabilityGain Input: observation operator L = [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK]T, Cholesky matrix CL, sensor candidate ℓ ∈ X′, state x ∈ X d ← Lx, z ← C−1 L d // preparation if K = 0 then return ℓ(xK)2/cov(ℓ, ℓ) // one sensor only else v ← [cov(ℓ1, ℓ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , cov(ℓK, ℓ)]T ∈ RK // general case w ← C−1 L v ∈ RK return (ℓ(xK)−wT z) 2 cov(ℓ,ℓ)−wT w where rL,ℓ := − 1 cℓ,ℓ C−T L cL,ℓ = − 1 cℓ,ℓ C−T L C−1 L vL,ℓ = − 1 cℓ,ℓ Σ−1 L vL,ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For an arbitrary state x ∈ X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' the norm of the extended observation [L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ℓ](x) = � LxT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ℓ(x) �T ∈ RK+1 in the corresponding norm ∥·∥Σ−1 [L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ] is hence connected to the original observation Lx ∈ RK in the original norm ∥·∥Σ−1 L via ∥ [L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ℓ](x) ∥2 Σ−1 [L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ] = � Lx ℓ(x) �T � ΣL vL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ vT L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ vℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ �−1 � Lx ℓ(x) � = � Lx ℓ(x) �T � C−T L rL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ 0 1/cℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ � � C−1 L 0 rT L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ 1/cℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ � � Lx ℓ(x) � = � C−1 L Lx rT L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓLx + ℓ(x)/cℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ �T � C−1 L Lx rT L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓLx + ℓ(x)/cℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ � = (Lx)TC−T L C−1 L Lx + (rT L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓLx + ℓ(x)/cℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ)2 = ∥Lx∥2 Σ−1 L + (rT L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓLx + ℓK+1(x)/cℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='ℓ)2 ≥ ∥Lx∥2 Σ−1 L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (23) We conclude from this result that the norm ∥Lx∥Σ−1 L of any observation, and therefore also the continuity coefficient γL defined in (6), is increasing under expansion of L despite the change in norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For any configuration θ, the observability coefficients βG(θ) and βL|W(θ) are thus non-decreasing when sensors are selected iteratively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Given a state x ∈ X and an observation operator L, we can determine the sen- sor ℓK+1 ∈ L that increases the observation of x the most by comparing the increase (rT L,ℓLx + ℓ(x)/cℓ,ℓ)2 for all ℓ ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Algorithm 2 summarizes the computation of this observability gain for use in the sensor selection algorithm (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Its gen- eral runtime is determined by K + 1 sensor evaluations and two linear solves with the triangular Cholesky matrix CL in O(K2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' When called with the same L and the same 13 state x for different candidate sensors ℓ, the preparation step must only be performed once, which reduces the runtime to one sensor evaluation and one linear system solve in all subsequent calls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Compared to computing ∥ [L, ℓ](x) ∥2 Σ−1 [L,ℓ] for all KL candidate sensors in the library L, we save O(KLK2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Computation of the observability coefficient We next discuss the computation of the observability coefficient βG(θ) for a given configuration θ and observation operator L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Let Σpr = UTDprU be the eigenvalue decomposition of the s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' prior covariance matrix with U = �ϕ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ϕM � ∈ RM×M, ϕ j ∈ RM orthonormal in the Euclidean inner product, and Dpr = diag(λ1 pr, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , λM pr) a diagonal matrix containing the eigenvalues λ1 pr ≥ · · · ≥ λM pr > 0 in decreasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Using the eigenvector basis {ϕm}M m=1, we define the matrix M(θ) := �Lxθ(ϕ1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , Lxθ(ϕM)� ∈ RK×M (24) featuring all observations of the associated states xθ(ϕ j) for the configuration θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The observability coefficient βG(θ) can then be computed as the square root of the minimum eigenvalue λmin of the generalized eigenvalue problem M(θ)TC−T L C−1 L M(θ)umin = λminD−1 pr umin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (25) Note that (25) has M real, non-negative eigenvalues because the matrix on the left is symmetric positive semi-definite, and Dpr is s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [48]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The eigenvector umin contains the basis coefficients in the eigenvector basis {ϕm}M m=1 of the “worst-case” pa- rameter, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' the infimizer of βG(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For computing βL|W(θ), we exchange the right-hand side matrix D−1 pr in (25) with the X-inner-product matrix for the states xθ(ϕ1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , xθ(ϕM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The solution of the eigenvalue problem can be computed in O(M3), with an addi- tional O(MK2 + M2K) for the computation of the left-hand side matrix in (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The dominating cost is hidden in M(θ) since it requires KM sensor observations and K full- order model solves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To reduce the computational cost, we therefore approximate βG(θ) with ˜βG(θ) by exchanging the full-order states xθ(ϕ j) in (24) with their reduced-order approximations ˜xθ(ϕ j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The procedure is summarized in Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' If K < M, Algorithm 3 restricts the parameter space, as discussed in Sec- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2, to the span of the first K eigenvectors ϕ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ϕK encoding the least certain directions in the prior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A variation briefly discussed in [8] in the context of the PBDW method to prioritize the least certain parameters even further is to only expand the parameter space once the observability coefficient on the subspace surpasses a prede- termined threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sensor selection In our sensor selection algorithm, we iteratively expand the observation operator L and thereby increase the observability coefficient L for all θ ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Although this 14 Algorithm 3: SurrogateObservability Input: configuration θ ∈ P, observation operator L = [ℓ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ℓK]T with K > 0, Cholesky matrix CL N ← min{M, K} // parameter restriction M ← �L˜xθ(ϕ1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , L˜xθ(ϕN)�, S ← �� xθ(ϕi), xθ(ϕ j) � X �N i, j=1 // matrix setup Find (λmin, umin) of � C−1 L M �T � C−1 L M � umin = λminSumin // eigenvalue problem return √ λmin, umin procedure cannot guarantee finding the maximum observability over all sensor com- binations, the underlying greedy searches are well-established in practice, and can be shown to perform with exponentially decreasing error rates in closely related settings, see [49, 8, 50, 51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In each iteration, the algorithm performs two main steps: A greedy search over a training set Ξtrain ⊂ P to identify the configuration θ ∈ Ξtrain for which the observability coefficient βG(θ) is minimal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A data-matching step to identify the sensor in the library that maximizes the observation of the “worst-case” parameter at the selected configuration θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The procedure is summarized in Algorithm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' It terminates when Kmax ≤ KL sensors have been selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 In the following, we explain its computational details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Preparations In order to increase βG(θ) uniformly over the hyper-parameter domain P, we con- sider a finite training set, Ξtrain ⊂ P, that is chosen to be fine enough to capture the θ- dependent variations in xθ(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We assume a reduced-order model is available such that we can compute approximations ˜xθ(ϕm) ≈ xθ(ϕm) for each θ ∈ Ξtrain and 1 ≤ m ≤ M within an acceptable computation time while guaranteeing the accuracy requirement (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' If necessary, the two criteria can be balanced via adaptive training domains (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [53, 54]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' If storage allows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', with projection-based surrogate models), we only compute the surrogate states once and avoid unnecessary re-computations when up- dating the surrogate observability coefficients ˜βG(θ) in each iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' As a first “worst-case” parameter direction, u0, we choose the vector ϕ1 with the largest prior uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Likewise, we choose the “worst-case” configuration θK ∈ P as the one for which the corresponding state ˜xθ(ϕ1) is the largest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 5This termination criterion can easily be adapted to prescribe a minimum value of the observability coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This value should be chosen with respect to the observability βG(L) achieved with the entire sensor library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 15 Algorithm 4: SensorSelection Input: sensor library L ⊂ X′, training set Ξtrain ⊂ P, maximum number of sensors Kmax ≤ |KL|, surrogate model ˜ Mθ, covariance function cov : L × L → R Compute Σpr = �ϕ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' , ϕM �T Dpr �ϕ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ϕM � // eigenvalue decomposition For all θ ∈ Ξtrain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 1 ≤ m ≤ M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' compute ˜xθ(ϕm) // preparation K ← 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' θ0 ← arg maxθ∈Ξtrain ∥˜xθ(ϕ1)∥X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' u0 ← ϕ1 // initialization while K < Kmax do Solve full-order equation MθK(xK,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' uK) for xK // "worst-case" state ℓK+1 ← arg maxℓ∈L ObservabilityGain(L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' CL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ℓ) // sensor selection L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ΣL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' CL ← CholeskyExpansion(L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ΣL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' CL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ℓK+1) // expansion K ← K + 1 for θ ∈ Ξtrain do ˜βL|W(θ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' umin(θ) ← SurrogateObservability(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' CL) // update coefficients θK ← arg minθ∈Ξtrain ˜βL|W(θ) // greedy step uK ← �min{M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='K} m=1 [umin(θK)]m ϕm return L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' CL Data-matching step In each iteration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' we first compute the full-order state xK = xθK(uK) at the “worst- case” parameter uK and configuration θK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We then choose the sensor ℓK+1 which most improves the observation of the “worst-case” state xK under the expanded observation operator [LT, ℓK+1]T and its associated norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We thereby iteratively approximate the information that would be obtained by measuring with all sensors in the library L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For fixed θK and in combination with selecting x to have the smallest observability in Wθ, we arrive at an algorithm similar to worst-case orthogonal matching pursuit (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [8, 9]) but generalized to deal with the covariance function cov in the noise model (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We use the full-order state xθK(uK) rather than its reduced-order approxi- mation in order to avoid training on local approximation inaccuracies in the reduced- order model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Here, by using the “worst-case” parameter direction uK, we only require a single full-order solve per iteration instead of the M required for setting up the entire posterior covariance matrix ΣL,θ post.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Greedy step We train the observation operator L on all configurations θ ∈ Ξtrain by varying for which θ the “worst-case” state is computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Specifically, we follow a greedy approach 16 where, in iteration K, we choose the minimizer θK of βG(θ) over the training domain Ξtrain, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', the configuration for which the current observation operator L is the least advantageous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The corresponding “worst-case” parameter uK is the parameter direction for which the least significant observation is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' By iteratively increasing the observability at the “worst-case” parameters and hyper-parameters, we increase the minimum of βG(θ) throughout the training domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Remark 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Since the computation of ˜βG(θ) requires as many reduced-order model solves as needed for the posterior covariance matrix over the surrogate model, it is possible to directly target an (approximated) OED utility function in the greedy step in place of ˜βL|W(θ) without major concessions in the computational efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The OMP step can then still be performed for the “worst-case” parameter with only one full-order model solve, though its benefit for the utility function should be evaluated carefully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Runtime Assuming the dominating computational restriction is the model evaluation to solve for xθ(u) – as is usually the case for PDE models – then the runtime of each iteration in Algorithm 4 is determined by one full-order model evaluation, and KL sensor measure- ments of the full-order state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Compared to computed the posterior covariance matrix for the chosen configuration, the OMP step saves N − 1 full-order model solves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The other main factor in the runtime of Algorithm 4 is the |Ξtrain|M reduced-order model evaluations with KL sensor evaluations each that need to be performed in each iteration (unless they can be pre-computed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The parameter dimension M not only en- ters as a scaling factor, but also affects the cost of the reduced-order model itself since larger values of M generally require larger or more complicated reduced-order models to achieve the desired accuracy (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In turn, the computational cost of the reduced- order model indicates how large Ξtrain may be chosen for a given computational budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' While some cost can be saved through adaptive training sets and models, overall, this connection to M stresses the need for an adequate initial parameter reduction as dis- cussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Numerical Results We numerically confirm the validity of our sensor selection approach using a geo- physical model of a section of the Perth Basin in Western Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The basin has raised interest in the geophysics community due to its high potential for geothermal energy, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [55, 56, 57, 58, 59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We focus on a subsection that spans an area of 63 km × 70 km and reaches 19 km below the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The model was introduced in [60] and the presented section of the model was discussed extensively in the context of MOR in [61, 62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In particular, the subsurface temperature distribution is described through a steady-state heat conduction problem with different subdomains for the geo- logical layers, and local measurements may be obtained through boreholes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The bore- hole locations need to be chosen carefully due to their high costs (typically several million dollars, [63]), which in turn motivates our application of Algorithm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For demonstration purposes, we make the following simplifications to our test model: 1) 17 Figure 1: Schematic overview of the Perth Basin section including (merged) geological layers, depths for potential measurements, and configuration range for thermal conductivity θ on each subdomain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The bounds are obtained from the reference values (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [60, 61]) with a ±50% margin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Adapted from [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We neglect radiogenic heat production;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 2) we merge geological layers with similar conductive behaviors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' and 3) we scale the prior to emphasize the influence of different sensor measurements on the posterior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' All computations were performed in Python 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 on a computer with a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The code will be available in a public GitHub repository for another geophysical test problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Model Description We model the temperature distribution xθ with the steady-state PDE −∇ (θ∇xθ) = 0 in Ω := (0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2714) × (0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9) × (0, 1) ⊂ R3, (26) where the domain Ω is a non-dimensionalized representation of the basin, and θ : Ω → R>0 the local thermal conductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The section comprises three main geological layers Ω = � i=1,2,3 Ωi, each characterized by different rock properties, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' thermal conductiv- ity θ|Ωi ≡ θi shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We consider the position of the geological layers to be fixed as these are often determined beforehand by geological and geophysical surveys but allow the thermal conductivity to vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In a slight abuse of notation, this lets us identify the field θ with the vector θ = (θ1, θ2, θ3) ∈ P := [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='453, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='360] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='448, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='343] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='360, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='081].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' in the hyper-parameter domain P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We impose zero-Dirichlet boundary conditions at the surface7, and zero-Neumann (“no-flow”) boundary conditions at the lateral faces of the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The remaining boundary ΓIn corresponds to an area spanning 63 km × 70 km area in the Perth basin 19 km below the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' At this depth, local variations in the heat flux have mostly stabilized which makes modeling possible, but since most boreholes – often originat- ing from hydrocarbon exploration – are found in the uppermost 2 km we treat it as 6The Perth Basin Model is available upon request from the third author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 7Non-zero Dirichlet boundary conditions obtained from satellite data could be considered via a lifting function and an affine transformation of the measurement data (see [62]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 18 Geology Thermal Conductivity Creteaous- 2 with 1 E [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='453,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='360], [0refl1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9065 380 m Yarragadee Eneabba- 760 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 with 02 E [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='448,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='343], [0rerl2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9855 Lesueur D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 1140 m Permian .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' with 3 E [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='360,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='081], [0refl3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7205 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 Basement 1520 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 1900 m = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2443 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 X1uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Specifically, we model it as a Neumann boundary condition n · ∇xθ = u · p a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' on ΓIn := {0} × [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9] × [0, 1] where n : ΓIn → R3 is the outward pointing unit normal on Ω, p : ΓIn → R5 is a vector composed of quadratic, L2(ΓIn)-orthonormal polynomials on the basal boundary that vary either in north-south or east-west direction, and u ∼ πpr = N(upr, Σpr) is a random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The prior is chosen such that the largest uncertainty is attributed to a constant entry in p, and the quadratic terms are treated as the most certain with prior zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This setup reflects typical geophysical boundary conditions, where it is most common to assume a constant Neumann heat flux (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [61]), and sometimes a linear one (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [60]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' With the quadratic functions, we allow an additional degree of freedom than typically considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The problem is discretized using a linear finite element (FE) basis of dimension 132,651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The underlying mesh was created with GemPy ([64]) and MOOSE ([65]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Since the FE matrices decouple in θ, we precompute and store an affine decomposition using DwarfElephant ([61]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Given a configuration θ and a coefficient vector u for the heat flux at ΓIn, the computation of a full-order solution xθ(u) ∈ X then takes 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='96 s on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We then exploit the affine decomposition further to construct a reduced basis (RB) surrogate model via a greedy algorithm (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [49, 66]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Using the inner product8 ⟨x, φ⟩X := � Ω ∇x · ∇φdΩ and an a posteriori error bound ∆(θ), we prescribe the relative target accuracy max u∈RM ∥xθ(u) − ˜xθ(u)∥X ∥˜xθ(u)∥X ≤ max u∈RM ∆(θ) ∥˜xθ(u)∥X < ε := 1e − 4 (27) to be reached for 511,000 consecutively drawn, uniformly distributed samples of θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The training phase and final computational performance of the RB surrogate model are summarized in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The speedup of the surrogate model (approximately a factor of 3,000 without error bounds) justifies its offline training time, with computational savings expected already after 152 approximations of βG(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For taking measurements, we consider a 47 × 47 grid over the surface to represent possible drilling sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' At each, a single point evaluation9 of the basin’s temperature distribution may be made at any one of five possible depths as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In total, we obtain a set L ⊂ Ω of 11, 045 admissible points for measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We model the noise covariance between sensors ℓχ, ℓ˜χ ∈ L at points χ, ˜χ ∈ Ω via cov(ℓχ, ℓ˜χ) := a + b − y(h) with the exponential variogram model y(h) := a + (b − a) �3 2 max{h c, 1} − 1 2 max{h c, 1}3 � 8Note that ⟨·, ·⟩X is indeed an inner product due to the Dirichlet boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 9Point evaluations are standard for geophysical models because a borehole (diameter approximately 1 m) is very small compared to the size of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 19 0 10 20 30 40 50 RB dimension 10 3 10 2 10 1 100 norm of the error max relative error bound true relative error Reduced-order model RB dimension 83 training time 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='58 min training accuracy 1e-4 RB solve 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='97 ms �→ speedup 3,058 RB error bound 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='78 ms �→ speedup 515 Figure 2: Training of the RB surrogate model for the Perth Basin section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' On the left: Maximum relative error bound (27) in the course of the greedy algorithm, computed over the training set Ξtrain together with the true relative error at the corresponding configuration θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' On the right: Performance pointers for the obtained RB model after (27) was reached;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' online computation times and speedups are averages computed over 1000 randomly drawn configurations θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' where h2 := (χ2 − ˜χ2)2 + (χ3 − ˜χ3)2 is the horizontal distance between the points and a := 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2054073480730403 (sill) b := 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6850672040263555 (nugget) c := 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='606782733391228 (range) The covariance function was computed via kriging (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [67]) from the existing mea- surements [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' With this covariance function, the noise between measurements at any two sensor locations is increasingly correlated the closer they are on the horizontal plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Note that for any subset of sensor locations, the associated noise covariance ma- trix remains regular as long as each sensor is placed at a distinct drilling location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We choose this experimental setup because measurements in typical geothermal data sets are often made at the bottom of a borehole (“bottom hole temperature measurements”) within the first 2 km below the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Restricted Library To test the feasibility of the observability coefficient for sensor selection, we first consider a small sensor library (denoted as L5×5 below) with 25 drilling locations po- sitioned on a 5 × 5 grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We consider the problem of choosing 8 pair-wise different, unordered sensor locations out of the given 25 positions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' this is a combinatorial prob- lem with 1,081,575 possible combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sensor selection We run Algorithm 4, using the RB surrogate model and a training set Ξtrain ⊂ P with 512,000 configurations on an 80 × 80 × 80 regular grid on P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' When new sensors are chosen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' the surrogate observability coefficient ˜βG(θ) increases monotonously with a strong incline just after the initial M = 5 sensors,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' followed by a visible stagnation (see Figure 3a) as is often observed for similar OMP-based sensor selection algorithms 20 5 6 7 8 number of sensors 10 4 10 3 10 2 10 1 observability coefficient mean observability coefficient min observability coefficient improvement with next sensor observability coefficient,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' fixed config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (a) Observability during sensor selection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='14 observability coefficient 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' observability A-OED D-OED E-OED proposal proposal, fixed (b) Histogram of βG(θref) Figure 3: Observability coefficient for different methods when choosing 8 out of 25 sensor locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Left: Minimum and mean over θ of ˜βG(θ) as well as βG(θref) obtained in the course of running Algorithm 4 once for 512,000 configurations and once for the training set {θref}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Right: Distribution of βG(θref) over all possible sensor combinations with indicators for the A-, D-, and E-optimal choices, the combination with maximum observability, and the sensors chosen by the Algorithm 4 with Ξtrain-training (“proposal”, purple, marked “x”) and θref-training (“proposal, fixed”, turquoise, marked “+”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Note that the height of the indicator line was chosen solely for readability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', [8, 69, 70, 7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Algorithm 4 terminates in 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='93 min with a minimum reduced-order observability of ˜βG(θ) = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3227e-2 and an average of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0995e-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' At the reference configuration θref, the full-order observability coefficient is βG(θref) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0985, slightly below the reduced-order average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We call this training procedure “Ξtrain-training” here- after and denote the chosen sensors as “Ξtrain-trained sensor set” in the subsequent text and as “proposal” in the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In order to get an accurate understanding of how the surrogate model ˜xθ(u) and the large configuration training set Ξtrain influence the sensor selection, we run Algorithm 4 again, this time restricted on the full-order FE model xθref(u) at only the reference con- figuration θref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The increase in βG(θref) in the course of the algorithm is shown in Fig- ure 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The curve starts significantly above the average for Ξtrain-training, presumably because conflicting configurations cannot occur, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', when one sensor would signifi- cantly increase the observability at one configuration but cause little change in another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' However, in the stagnation phase, the curve comes closer to the average achieved with Ξtrain-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The computation finishes within 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='53 s, showing that the long runtime before can be attributed to the size of Ξtrain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The final observability coefficient with 8 sensors is βG(θref) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2647e-1, above the average over ˜βG(θ) achieved training on Ξtrain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We call this training procedure “θref-training” hereafter, and the sensor configu- ration “θref-trained” in the text or “proposal, fixed config.” in the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Comparison at the reference configuration For comparing the performance of the Ξtrain- and θref-trained sensor combinations, we compute – at the reference configuration θref – all 1,081,575 posterior covariance matrices Σθref,L post for all unordered combinations L of 8 distinct sensors in the sensor li- brary L5×5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For each matrix, we compute the trace (A-OED criterion), the determinant (D-OED criterion), the maximum eigenvalue (E-OED criterion), and the observability coefficient βG(θref).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This lets us identify the A-, D-, and E-optimal sensor combina- 21 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 Observability Coefficient 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='25 100 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='25 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='75 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='25 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='75 posterior trace A-optimal sensor combination proposal proposal, fixed configuration maximum observability coefficient all 25 sensors best sensor selection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='587 % proposal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='022 % proposal, fixed config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='778 % max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' observability Figure 4: Distribution of trace(ΣL,θ post) for θ = θref over all 1,081,575 combinations for choosing 8 out of the 25 sensor locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' On the left: distribution of trace(ΣL,θ post) against the observability coefficient βG(θref).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Note that the marginal distribution of the horizontal axis is provided in Figure 3b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' On the right: histogram of trace(ΣL,θ post) (marginal distribution for the plot on the left) with for the different sensor combinations (in percent out of 1,081,575 combinations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The plots include markers for the A-optimal sensor choice, the sensors chosen by Algorithm 4 with Ξtrain-training (“proposal”) and with {θref}-training (“proposal, fixed configuration”), the sensor combination with maximum observability βG(θref), and when all 25 sensors are included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The total runtime for these computations is 4 min – well above the 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='53 s of θref-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The (almost) 8 min for Ξtrain-training remain reasonable considering it is trained on |Ξtrain| = 512, 000 configurations and not only θref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A histogram for the distribution of βG(θref) is given in Figure 3b with markers for the values of the A-, D-, and E-optimal choices and the Ξtrain- and θref-trained ob- servation operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Out of these five, the D-optimal choice has the smallest value, since the posterior determinant is influenced less by the maximum posterior eigenvalue and hence the observability coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In contrast, both the A- and E-optimal sen- sor choices are among the 700 combinations with the largest βG(θref) (this corresponds to the top 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='065%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The θref-trained sensors have similar observability and are even among the top 500 combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For the Ξtrain- trained sensors, the observability co- efficient is smaller, presumably because Ξtrain-training is not as optimized for θref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Still, it ranks among the top 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='705 % of sensor combinations with the largest observability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In order to visualize the connection between the observability coefficient βG(θref) and the classic A-, D-, and E-OED criteria, we plot the distribution of the posterior covariance matrix’s trace, determinant, and maximum eigenvalue over all sensor com- binations against βG(θ) in Figures 4, 5, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Overall we observe a strong correlation between the respective OED criteria and βG(θref): It is the most pronounced in Figure 6 for E-optimality, and the least pronounced for D-optimality in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For all OED 22 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 Observability Coefficient 10 5 10 4 10 3 10 2 10 1 100 101 Posterior determinant D-optimal sensor combination proposal proposal, fixed configuration maximum observability coefficient all 25 sensors best sensor selection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='252 % proposal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='081 % proposal, fixed config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='923 % max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' observability Figure 5: Distribution of the posterior determinant det(ΣL,θ post) for θ = θref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' See Figure 4 for details about the plot structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 Observability Coefficient 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 100 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 101 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 maximum posterior eigenvalue E-optimal sensor combination proposal proposal, fixed configuration maximum observability coefficient all 25 sensors best sensor selection 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='679 % proposal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='001 % proposal, fixed config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='080 % max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' observability Figure 6: Distribution of the maximum eigenvalue of the posterior covariance matrix ΣL,θ post for θ = θref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' See Figure 4 for details about the plot structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Note that the θref-trained sensor combination has the 101-st smallest maximum posterior eigenvalue among all 1,081,575 possibilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 23 design criterion training pctl A-OED D-OED E-OED θref Ξtrain 99-th 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5835 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8508 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1724 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2223 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2512 95-th 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2747 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8430 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3601 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7846 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0374 75-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5141 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0532 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1419 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8106 50-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1527 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0159 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0438 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2354 25-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0414 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3669 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0621 Figure 7: Ranking in βG(θref) of the A-, D-, E- optimal and the θref- and Ξtrain-trained sensor choices for all possible combinations of choosing 8 unordered sensors in the library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Left: Boxplots obtained over 200 random sensor libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Right: worst-case ranking (in percent) of the corresponding percentiles (“pctl”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' criteria, the correlation becomes stronger for smaller scaling factors σ2 and weakens for large σ2 when the prior is prioritized (plots not shown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This behavior aligns with the discussion in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 that βG(θ) primarily targets the largest posterior eigenvalue and is most decisive for priors with higher uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Comparison for different libraries We finally evaluate the influence of the library L5×5 on our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To this end, we randomly select 200 sets of new measurement positions, each consisting of 25 drilling locations with an associated drilling depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For each library, we run Algorithm 4 to choose 8 sensors, once with Ξtrain-training on the surrogate model, and once with the full-order model at θref only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For comparison, we then consider in each library each possible combination of choosing 8 unordered sensor sets and compute the trace, determinant, and maximum eigenvalue of the associated posterior covariance matrix at the reference configuration θref together with its observability coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This lets us identify the A-, D-, and E-optimal sensor combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Figure 7 shows how βG(θref) is distributed over the 200 libraries, with percentiles provided in the adjacent table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' For 75% of the libraries, the A- and E-optimal, and the Ξtrain- and θref-trained sensor choices rank among the top 1% of combinations with the largest observability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Due to its non-optimized training for θref, the Ξtrain-trained sensor set performs slightly worse than what is achieved with θref-training, but still yields a comparatively large value for βG(θref).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In contrast, overall, the D-optimal sensor choices have smaller observability coefficients, presumably because the minimization of the posterior determinant is influenced less by the maximum posterior eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The ranking of the Ξtrain- and θref-trained sensor configurations in terms of the pos- terior covariance matrix’s trace, determinant, and maximum eigenvalue over the 200 libraries is given in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Both perform well and lie for 75% of the libraries within the top 1% of combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' As the ranking is performed for the configuration param- eter θref, the θref-trained sensor combination performs better, remaining in 95% of the libraries within the top 5% of sensor combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 24 A-OED D-OED E-OED obs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 100 101 102 103 104 105 106 ranking proposal, flexible configuration opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' top 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='01% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1% 1% 5% 25% 100% percentile pctl A-OED D-OED E-OED βG(θref) 99-th 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9240 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2372 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8391 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2512 95-th 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9093 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1544 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5583 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0374 75-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7718 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9185 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8106 50-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0664 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2361 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2763 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2354 25-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0177 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0596 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0621 A-OED D-OED E-OED obs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 100 101 102 103 104 105 106 ranking proposal, fixed configuration opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' top 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='01% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1% 1% 5% 25% 100% percentile pctl A-OED D-OED E-OED βG(θref) 99-th 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5261 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9752 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1534 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2223 95-th 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0134 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8324 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8458 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7846 75-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1155 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4698 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3549 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1419 50-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0224 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1212 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0687 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0438 25-th 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0041 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0181 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0138 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0068 Figure 8: Ranking of the posterior covariance matrix Σθref,L post in terms of the A-, D-, E-OED criteria and the observability coefficient βG(θref) when the observation operator GL,θ is chosen with Algorithm 4 and Ξtrain-training (top) or θref-training (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The ranking is obtained by comparing all possible unordered combinations of 8 sensors in each sensor library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' On the left: Boxplots of the ranking over 200 sensor libraries;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' on the right: ranking (in percent) among different percentiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 25 (a) upmost layer, Ξtrain-training (b) upmost layer, θref-training (c) lowest layer, Ξtrain-training (d) lowest layer, θref-training Figure 9: Sensor positions chosen by Algorithm 4 from a grid of 47 × 47 available horizontal positions with available 5 depths each, though only the lowest (bottom) and upmost (top) layers were chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The underlying plot shows cuts through the full-order solution xθ(u) at θ = θref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Left: Ξtrain-training with the RB surrogate model on a training set Ξtrain ⊂ P with 10,000 random configurations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' runtime 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='19 s for 10 sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Right: θref-training with full-order model at reference parameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' runtime 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='85 s for 10 sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Unrestricted Library We next verify the scalability of Algorithm 4 to large sensor libraries by permitting all 2,209 drilling locations, at each of which at most one measurement may be taken at any of the 5 available measurement depths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Choosing 10 unordered sensors yields approximately 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='29e+33 possible combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Using the RB surrogate model from before, we run Algorithm 4 once on a training grid Ξtrain ⊂ P consisting of 10,000 randomly chosen configurations using only the surrogate model (runtime 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='19 s), and once on the reference configuration θref using the full-order model (runtime 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='85 s) for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We terminate the algorithm whenever 10 sensors are selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Compared to the training time on L5×5 before, the results confirm that the size of the library itself has little influence on the overall runtime but that the full-order computations and the size of Ξtrain relative to the surrogate compute dominate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The sensors chosen by the two runs of Algorithm 4 are shown in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' They share many structural similarities: Depth: Despite the availability of 5 measurement depths, sensors have only been chosen on the lowest and the upmost layers with 5 sensors each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The lower sen- sors were chosen first (with one exception, sensor 3 in θref-training), presumably 26 z 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 P 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 Temperature 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 Y Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 4 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 1 0 zz 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 P 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 Temperature 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 Y 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 6 Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='10 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 1 0 zz 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 Temperature 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 Y Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0 1 zz 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 Temperature 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='5 5 Y + Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 2 E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='50 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='1 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='2 0 1 zbecause the lower layer is closer to the uncertain Neumann boundary condition and therefore yields larger measurement values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Pairing Each sensor on the lowest layer has a counterpart on the upmost layer that has almost the same position on the horizontal plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This pairing targets noise sensitivity: With the prescribed error covariance function, the noise in two measurements is increasingly correlated the closer the measurements lie horizon- tally, independent of their depth coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Choosing a reference measurement near the zero-Dirichlet boundary at the surface helps filter out noise terms in the lower measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Organization On each layer, the sensors are spread out evenly and approxi- mately aligned in 3 rows and 3 columns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The alignment helps distinguish be- tween the constant, linear, and quadratic parts of the uncertain Neumann flux function in north-south and east-west directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Figure 10 (left side) shows the increase in the observability coefficients ˜βG(θ) (for Ξtrain-training) and βG(θref) (for θref-training) over the number of chosen sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We again observe a strong initial incline followed by stagnation for the Ξtrain-trained sen- sors, whereas the curve for θref-training already starts at a large value to remain then almost constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The latter is explained by the positions of the first 5 sensors in Fig- ure 9 (right), as they are already spaced apart in both directions for the identification of quadratic polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' In contrast, for Ξtrain-training, the “3 rows, 3 columns” structure is only completed after the sixth sensor (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Figure 9, left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' With 6 sensors, the observ- ability coefficients in both training schemes have already surpassed the final observ- ability coefficients with 8 sensors in the previous training on the smaller library L5×5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The final observability coefficients at the reference parameter θref are βG(θref) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4042 for θref-training, and βG(θref) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='3595 for Ξtrain-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' As a final experiment, we compare the eigenvalues of the posterior covariance ma- trix ΣL,θref post for the Ξtrain- and θref-trained sensors against 50,000 sets of 10 random sen- sors each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We confirm that all 50,000 sensor combinations comply with the combina- torial restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Boxplots of the eigenvalues are provided in Figure 10 (right side).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The eigenvalues of the posterior covariance matrix with sensors chosen by Algorithm 4 are smaller10 than all posterior eigenvalues for the random sensor combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Conclusion In this work, we analyzed the connection between the observation operator and the eigenvalues of the posterior covariance matrix in the inference of an uncertain pa- rameter via Bayesian inversion for a linear, hyper-parameterized forward model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' We identified an observability coefficient whose maximization decreases the uncertainty in the posterior probability distribution for all hyper-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' To this end, we proposed 10Here we compare the largest eigenvalue of one matrix to the largest eigenvalue of another, the second largest to the second largest, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 27 5 6 7 8 9 10 number of sensors 10 3 10 2 10 1 100 observability coefficient mean observability coefficient min observability coefficient improvement with next sensor observability coefficient, fixed config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 1 2 3 4 5 posterior eigenvalue (largest to smallest) 10 3 10 2 10 1 100 101 random combinations with 10 sensors each proposal proposal, fixed config Figure 10: Left: Observabity coefficients during sensor selection with Ξtrain- and θref-training for a library with 11,045 measurement positions and combinatorial restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Shown are 1) the minimum and mean surrogate observability coefficient ˜βG(θ) over a training set with 10,000 random configurations with final values minθ ˜βG(θ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4160 and meanθ ˜βG(θ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='6488, and 2) the full-order observability coefficient βG(θref) when training on the reference parameter θref alone (final value βG(θref) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='4042).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Right: Boxplots for the 5 eigenvalues of the posterior covariance matrix ΣL,θ post over 50,000 sets of 10 sensors chosen uniformly from a 5 × 47 × 47 grid with imposed combinatorial restrictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The eigenvalues are compared according to their order from largest to smallest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Indicated are also the eigenvalues for the Ξtrain-trained (purple, “x”-marker) and θref-trained (turquoise, “+”-marker) sensors from Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' a sensor selection algorithm that expands an observation operator iteratively to guaran- tee a uniformly large observability coefficient for all hyper-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Computational feasibility is retained through a reduced-order model in the greedy step and an OMP search for the next sensor that only requires a single full-order model evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' The validity of the approach was demonstrated on a large-scale heat conduction problem over a section of the Perth Basin in Western Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Future extensions of this work are planned to address 1) high-dimensional parameter spaces through parameter reduc- tion techniques, 2) the combination with the PBDW inf-sup-criterion to inform sensors by functionalanalytic means in addition to the noise covariance, and 3) the expansion to non-linear models through a Laplace approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Acknowledgments We would like to thank Tan Bui-Thanh, Youssef Marzouk, Francesco Silva, An- drew Stuart, Dariusz Ucinski, and Keyi Wu for very helpful discussions, and Florian Wellmann at the Institute for Computational Geoscience, Geothermics and Reservoir Geophysics at RWTH Aachen University for providing the Perth Basin Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This work was supported by the Excellence Initiative of the German federal and state gov- ernments and the German Research Foundation through Grants GSC 111 and 33849990/GRK2379 (IRTG Modern Inverse Problems).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 re- search and innovation programme (grant agreement n° 818473), the US Department of Energy (grant DE-SC0021239), and the US Air Force Office of Scientific Research (grant FA9550-21-1-0084).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Peng Chen is partially supported by the NSF grant DMS #2245674.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 28 References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stuart, Inverse problems: a Bayesian perspective, Acta numerica 19 (2010) 451–559.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [2] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stober, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Bucher, Geothermie, Springer, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ucinski, Optimal measurement methods for distributed parameter system iden- tification, CRC press, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [4] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Melas, Functional approach to optimal experimental design, volume 184, Springer Science & Business Media, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Pronzato, Optimal experimental design and some related control problems, Automatica 44 (2008) 303–325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Aretz-Nellesen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Grepl, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Veroy, A sequential sensor selection strategy for hyper-parameterized linear Bayesian inverse problems, in: Numerical Mathematics and Advanced Applications ENUMATH 2019, Springer, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 489–497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [7] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Aretz-Nellesen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Grepl, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Veroy, 3D-VAR for parameterized partial differential equations: a certified reduced basis approach, Advances in Computa- tional Mathematics 45 (2019) 2369–2400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Binev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cohen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Mula, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Nichols, Greedy algorithms for optimal measure- ments selection in state estimation using reduced models, SIAM/ASA Journal on Uncertainty Quantification 6 (2018) 1101–1126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Maday, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Patera, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Penn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Yano, A parameterized-background data- weak approach to variational data assimilation: formulation, analysis, and appli- cation to acoustics, International Journal for Numerical Methods in Engineering 102 (2015) 933–965.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Barrault, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Maday, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Nguyen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Patera, An ‘empirical interpola- tion’method: application to efficient reduced-basis discretization of partial differ- ential equations, Comptes Rendus Mathematique 339 (2004) 667–672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Maday, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Mula, A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, in: Analysis and numerics of partial differential equations, Springer, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 221–235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Gloor, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, On Bayesian A-and D-optimal experi- mental designs in infinite dimensions, Bayesian Analysis 11 (2016) 671–695.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Petra, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stadler, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, A-optimal design of experi- ments for infinite-dimensional Bayesian linear inverse problems with regularized \\ell 0-sparsification, SIAM Journal on Scientific Computing 36 (2014) A2122– A2148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 29 [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Attia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Saibaba, Goal-oriented optimal design of ex- periments for large-scale Bayesian linear inverse problems, Inverse Problems 34 (2018) 095009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Saibaba, Efficient D-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems, SIAM Journal on Scien- tific Computing 40 (2018) A2956–A2985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Petra, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stadler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sunseri, Optimal design of large-scale Bayesian linear inverse problems under reducible model uncertainty: good to know what you don’t know, SIAM/ASA Journal on Uncertainty Quantification 9 (2021) 163–184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, An efficient method for goal-oriented linear bayesian optimal experimental design: Application to optimal sensor placement, arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='06627, to appear in SIAM/AMS Journal on Uncertainty Quantification (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: a review, Inverse Problems (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Alexanderian, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Petra, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stadler, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems, SIAM Journal on Scientific Computing 38 (2016) A243–A272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [20] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Huan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Marzouk, Simulation-based optimal Bayesian experimental de- sign for nonlinear systems, Journal of Computational Physics 232 (2013) 288– 317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, A fast and scalable computational framework for large-scale and high-dimensional Bayesian optimal experimental design, arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='15196, to appear in SIAM Journal on Scientific Computing (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' O’Leary-Roseberry, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Derivative-informed pro- jected neural network for large-scale Bayesian optimal experimental design, arXiv preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='07925, to appear in Journal of Scientific Computing (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Attia, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Constantinescu, Optimal experimental design for inverse problems in the presence of observation correlations, arXiv preprint arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='14476 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [24] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Bui-Thanh, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Martin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stadler, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion, SIAM Journal on Scientific Computing 35 (2013) A2494–A2523.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 30 [25] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cui, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Marzouk, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Willcox, Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction, Journal of Computational Physics 315 (2016) 363–387.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Parente, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wallin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wohlmuth, Generalized bounds for active subspaces, Electronic Journal of Statistics 14 (2020) 917–943.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [27] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Lieberman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Willcox, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM Journal on Scientific Computing 32 (2010) 2523–2542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Hessian-based sampling for high-dimensional model reduc- tion, International Journal for Uncertainty Quantification 9 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' O’Leary-Roseberry, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Projected Stein variational Newton: A fast and scalable Bayesian inference method in high di- mensions, NeurIPS (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='org/abs/1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='08659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [30] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Projected Stein variational gradient descent, in: Advances in Neural Information Processing Systems, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [31] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Zahm, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cui, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Law, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Spantini, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Marzouk, Certified dimension reduction in nonlinear Bayesian inverse problems, Mathematics of Computation 91 (2022) 1789–1835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [32] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Qian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Grepl, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Veroy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Willcox, A certified trust region reduced basis ap- proach to PDE-constrained optimization, SIAM Journal on Scientific Computing 39 (2017) S434–S460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [33] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, Model order reduction techniques for uncertainty quantification prob- lems, Technical Report, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [34] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Quarteroni, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Rozza, Reduced basis methods for uncertainty quan- tification, SIAM/ASA Journal on Uncertainty Quantification 5 (2017) 813–869.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [35] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' O’Leary-Roseberry, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Villa, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Derivative-informed pro- jected neural networks for high-dimensional parametric maps governed by PDEs, Computer Methods in Applied Mechanics and Engineering 388 (2022) 114199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [36] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' O’Leary-Roseberry, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Chen, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Villa, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Derivate informed neu- ral operator: An efficient framework for high-dimensional parametric derivative learning, arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='10745 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [37] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Da Prato, An introduction to infinite-dimensional analysis, Springer Science & Business Media, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [38] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Schwab, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, Mathematics of Computation 78 (2009) 1293–1318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 31 [39] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Long, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Scavino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Tempone, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wang, Fast estimation of expected informa- tion gains for Bayesian experimental designs based on Laplace approximations, Computer Methods in Applied Mechanics and Engineering 259 (2013) 24–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [40] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Aretz, Data Assimilation and Sensor selection for Configurable Forward Mod- els: Challenges and Opportunities for Model Order Reduction Methods, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' thesis, RWTH Aachen University, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [41] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cui, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Marzouk, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Willcox, Data-driven model reduction for the Bayesian solution of inverse problems, International Journal for Numerical Meth- ods in Engineering 102 (2015) 966–990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [42] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Bui-Thanh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Willcox, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space, SIAM Journal on Scientific Com- puting 30 (2008) 3270–3288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [43] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Benner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Gugercin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM review 57 (2015) 483–531.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [44] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Schilders, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Van der Vorst, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Rommes, Model order reduction: theory, research aspects and applications, volume 13, Springer, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [45] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Hesthaven, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Rozza, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stamm, Certified reduced basis methods for parametrized partial differential equations, volume 590, Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Quarteroni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Manzoni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Negri, Reduced basis methods for partial differen- tial equations: an introduction, volume 92, Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [47] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Haasdonk, Reduced basis methods for parametrized PDEs–a tutorial introduc- tion for stationary and instationary problems, Model reduction and approxima- tion: theory and algorithms 15 (2017) 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [48] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Golub, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Van Loan, Matrix computations, volume 3, JHU press, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [49] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Binev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cohen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Dahmen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' DeVore, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Petrova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wojtaszczyk, Con- vergence rates for greedy algorithms in reduced basis methods, SIAM journal on mathematical analysis 43 (2011) 1457–1472.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [50] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cohen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Dahmen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' DeVore, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Fadili, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Mula, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Nichols, Optimal re- duced model algorithms for data-based state estimation, SIAM Journal on Nu- merical Analysis 58 (2020) 3355–3381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [51] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Buffa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Maday, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Patera, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Prud’homme, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Turinici, A pri- ori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM: Mathematical Modelling and Numerical Analysis-Mod´elisation Math´ematique et Analyse Num´erique 46 (2012) 595–603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Jagalur-Mohan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Marzouk, Batch greedy maximization of non- submodular functions: Guarantees and applications to experimental design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 22 (2021) 251–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 32 [53] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Eftang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Patera, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Rønquist, An” hp” certified reduced basis method for parametrized elliptic partial differential equations, SIAM Journal on Scientific Computing 32 (2010) 3170–3200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [54] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Eftang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Knezevic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Patera, An hp certified reduced basis method for parametrized parabolic partial differential equations, Mathematical and Computer Modelling of Dynamical Systems 17 (2011) 395–422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [55] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Regenauer-Lieb, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Horowitz, The Perth Basin geothermal opportunity, Petroleum in Western Australia 3 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [56] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Corbel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Schilling, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Horowitz, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Reid, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sheldon, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Timms, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wilkes, Identification and geothermal influence of faults in the Perth metropoli- tan area, Australia, in: Thirty-seventh workshop on geothermal reservoir engi- neering, Stanford, CA, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [57] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sheldon, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Florio, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Trefry, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Reid, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ricard, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ghori, The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia, Hydrogeology Journal 20 (2012) 1251–1268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [58] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Schilling, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Sheldon, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Reid, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Corbel, Hydrothermal models of the Perth metropolitan area, Western Australia: implications for geothermal energy, Hydrogeology Journal 21 (2013) 605–621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [59] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Pujol, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Ricard, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Bolton, 20 years of exploitation of the Yarragadee aquifer in the Perth Basin of Western Australia for direct-use of geothermal heat, Geothermics 57 (2015) 39–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [60] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wellmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Reid, Basin-scale geothermal model calibration: Experi- ence from the Perth Basin, Australia, Energy Procedia 59 (2014) 382–389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [61] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Degen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Veroy, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wellmann, Certified reduced basis method in geosciences, Computational Geosciences 24 (2020) 241–259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [62] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Degen, Application of the reduced basis method in geophysical sim- ulations: concepts, implementation, advantages, and limitations, Dissertation, RWTH Aachen University, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='18154/RWTH-2020-12042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [63] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Bauer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Freeden, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Jacobi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Neu, Handbuch Tiefe Geothermie, Springer, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [64] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' de la Varga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Schaaf, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Wellmann, GemPy 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='0: open-source stochastic geological modeling and inversion, Geoscientific Model Development 12 (2019) 1–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [65] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Permann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Gaston, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Andrˇs, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Carlsen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Kong, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Lindsay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Miller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Peterson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Slaughter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Stogner, MOOSE: Enabling massively parallel multiphysics simulation, SoftwareX 11 (2020) 100430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 33 [66] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Dahmen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Plesken, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Welper, Double greedy algorithms: reduced basis methods for transport dominated problems, ESAIM: Mathematical Modelling and Numerical Analysis-Mod´elisation Math´ematique et Analyse Num´erique 48 (2014) 623–663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [67] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Cressie, The origins of kriging, Mathematical geology 22 (1990) 239–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [68] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Holgate, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Gerner, OzTemp Well temperature data, Geoscience Australia http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' ga.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' au Catalogue (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [69] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Maday, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Anthony, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Penn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Yano, PBDW state estimation: Noisy observations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' configuration-adaptive background spaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' physical interpretations, ESAIM: Proceedings and Surveys 50 (2015) 144–168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' [70] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' Taddei, Model order reduction methods for data assimilation: state estimation and structural health monitoring, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' thesis, Massachusetts Institute of Tech- nology, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
+page_content=' 34' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFLT4oBgHgl3EQfNS8Q/content/2301.12019v1.pdf'}
diff --git a/N9E1T4oBgHgl3EQfZwR9/content/2301.03154v1.pdf b/N9E1T4oBgHgl3EQfZwR9/content/2301.03154v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..86b559c9452cd6107f320941ebac39740acc677d
--- /dev/null
+++ b/N9E1T4oBgHgl3EQfZwR9/content/2301.03154v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:312be263e02093f05972b5a53c930d052a8778e87fee51ec15d97297c74d8177
+size 166949
diff --git a/N9E1T4oBgHgl3EQfZwR9/vector_store/index.faiss b/N9E1T4oBgHgl3EQfZwR9/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..636caca3ea70ef5c8b61bf327353ccce10d1acdd
--- /dev/null
+++ b/N9E1T4oBgHgl3EQfZwR9/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a9201c41859ca8f972badcc0e07a17087d6a9c29b1cfb573edec82d87e3cc738
+size 2555949
diff --git a/N9E1T4oBgHgl3EQfZwR9/vector_store/index.pkl b/N9E1T4oBgHgl3EQfZwR9/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..7122c64f78fd25da3128a91c18e99b38c7624eb5
--- /dev/null
+++ b/N9E1T4oBgHgl3EQfZwR9/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c1bc24de603c0b8958fdbc503ae315a2bd1a0b20c3fc61ce22c5a03b43de38dc
+size 89767
diff --git a/OtE1T4oBgHgl3EQfaASJ/content/tmp_files/2301.03157v1.pdf.txt b/OtE1T4oBgHgl3EQfaASJ/content/tmp_files/2301.03157v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e8330fcf5eea74c4fc060499d57e436be9ed0662
--- /dev/null
+++ b/OtE1T4oBgHgl3EQfaASJ/content/tmp_files/2301.03157v1.pdf.txt
@@ -0,0 +1,957 @@
+1
+
+The progression of visual search in multiple item displays: First relational, then
+feature-based.
+
+Zachary Hamblin-Frohman, Koralalage Don Raveen Amarasekera & Stefanie I.
+Becker
+
+School of Psychology, The University of Queensland, Brisbane, Australia.
+
+
+
+
+2
+
+Abstract
+It is well-known that visual attention can be tuned in a context-dependent manner to
+elementary features, such as searching for all redder items or the reddest item, supporting a
+relational theory of visual attention. However, in previous studies, the conditions were often
+conducive for relational search, allowing successfully selecting the target relationally on 50%
+of trials or more. Moreover, the search displays were often only sparsely populated and
+presented repeatedly, rendering it possible that relational search was based on context
+learning and not spontaneous. The present study tested the shape of the attentional tuning
+function in 36-item search displays, when the target never had a maximal feature value (e.g.,
+was never the reddest or yellowest item), and when only the target colour but not the context
+colour was known. The first fixations on a trial showed that these displays still reliably
+evoked relational search, even when participants had no advance information about the
+context and no on-task training. Context learning further strengthened relational tuning on
+subsequent trials, but was not necessary for relational search. Analysing the progression of
+visual search within a singe trial showed that attention is first guided to the relationally
+maximal item (e.g., reddest), then the next-maximal (e.g., next-reddest) item, and so forth,
+before attention can hone in on target-matching features. In sum, the results support two
+tenets of the relational account, that information about the dominant feature in a display can
+be rapidly extracted and used to guide attention to the relatively best-matching features.
+
+
+
+3
+
+Introduction
+It is well-known that we cannot consciously process all objects in a visual scene at once.
+To address this, visual attention selects objects for in-depth processing, often guiding our
+gaze to relevant parts in a scene (e.g., Deubel & Schneider, 1996). Much effort has been
+devoted to determine which items in a scene will be attended first, and more generally, to
+identify the processes involved in creating our rich mental representation of the visual
+environment (for a review, see Carrasco, 2011; Wolfe, 2021).
+To date, it is widely accepted that attention can be guided by both, bottom-up, stimulus-
+driven processes and top-down, goal-driven processes (e.g., Wolfe, 2020). For example,
+attention can be reflexively drawn to visually salient events such as a bright flash, a
+movement, or the sudden appearance of an object (e.g., Theeuwes, 2004, 2013), or it can be
+top-down tuned to select items with certain attributes (e.g., colours: red, green) to help goal-
+related behaviours such as finding a friend in a crowd (e.g., Desimone & Duncan, 1995;
+Wolfe, 1994, 2021) . Correspondingly, current models of visual attention typically include
+both a bottom-up and a top-down component to predict which items in a visual scene will be
+selected first (e.g., Wolfe, 1994, 2021). Top-down tuning is typically modelled as an increase
+or decrease in the firing rate of sensory neurons in response to specific stimulus attributes
+(e.g., red, green; Navalpakkam & Itti, 2007; Yu, Hanks & Geng, 2022). For example, when
+looking for an orange in a fruit basket, we would tune attention to orange, which increases the
+output of neurons that respond to orange and prioritises colour-matching items for selection.
+
+It is commonly assumed that attention is tuned to the feature value that a person is looking
+for (e.g., particular shade of orange; e.g., Duncan & Humphreys, 1989; Navalpakkam & Itti,
+2007). However, to date, there are also several accounts of non-veridical tuning.
+Navalpakkam and Itti (2007) noted that tuning attention to the exact target feature value
+would not be beneficial when the target is very similar to surrounding irrelevant non-target
+
+4
+
+items, as tuning attention to, for example, orange, would also boost the response gain of red-
+orange or yellow-orange, leading to a poor signal-to-noise ratio (SNR). They proposed that
+attention would be tuned to a feature value that is slightly shifted away from similar
+nontargets, to increase the SNR (e.g., to yellow-orange, when an orange target is presented
+among red-orange items; Navalpakkam & Itti, 2007). According to their optimal tuning
+account, attention is always tuned to the feature value that maximises the ability to
+discriminate the target from the non-targets (i.e., maximise the SNR). Thus, attention would
+only be tuned to the exact target feature value when the target is presented alone or among
+dissimilar other items. In less discriminable cases, attention should be shifted to a slightly
+exaggerated target feature value. In line with this idea, a perceptual probe task revealed that a
+slightly shifted non-target colour was likely to be mistaken for the target when the target was
+consistently embedded among similar featured non-targets in a prior visual search. For
+example, if an orange target was always presented among similar, yellow-orange nontargets
+in a visual search task, participants would pick a slightly redder (red-orange) colour as the
+target colour in intermixed probe trials (Navalpakkam & Itti, 2007; see also Geng et al., 2017;
+Scolari et al., 2012).
+Another account of non-veridical tuning is the Relational Account, which proposes that
+attention may not at all be tuned to a specific feature value. As noted by Becker (2010),
+tuning attention to a particular feature value may not be beneficial in natural environments, as
+specific feature values such as the size, shape and colour of objects vary a lot with differences
+in distance, perspective and shading. To allow efficient selection of the targets in these noisy
+environments, attention could be tuned in a context-dependent manner to objects, biasing
+attention to a feature that the target has relative to the other items in the context (e.g., redder,
+larger, darker; Becker, 2010). For example, when searching for an orange in a fruit basket,
+the visual system would quickly assess the distribution of colours in the visual scene to
+
+5
+
+determine the dominant colours, and tune attention to the relative colour that would best
+discriminate the target from the dominant coloured non-target items. Thus, attention would be
+tuned to all redder items or the reddest item when the fruit basket (or visual scene) contains
+many yellow or green objects, and tune attention to all yellower items or the yellowest item
+when the fruit basket (or visual scene) contains many red objects. As a consequence of this
+very broad tuning, the item that maximally fulfils the relevant feature relationship will be
+selected first (e.g., reddest or yellowest item). Hence, when attention is tuned to all redder
+items, the reddest item in the visual field will be selected first, followed by the next-reddest,
+and so forth.
+In line with this prediction, several visual search studies showed that when an orange
+target is presented among mostly yellow(er) items, a red irrelevant distractor was more likely
+to be attended first than the target, even when it was quite dissimilar from the target,
+suggesting that attention was biased to all redder items, or the reddest item (e.g., Becker,
+2010; Becker et al., 2013; Hamblin-Frohman & Becker, 2021; York & Becker, 2020).
+Selection of the distractor was reflected both in higher response times (RT) to the target, as
+well as in a high proportion of first eye movements to the red distractor. Several studies also
+included a visually salient distractor with a dissimilar colour (e.g., blue), but found no or only
+very weak effects of saliency, ruling out that selection of the relatively matching (e.g., red)
+distractor was mediated by bottom-up, stimulus-driven processes (e.g., Martin & Becker,
+2018; York & Becker, 2020).
+
+Both optimal tuning and the relational account propose that attention can be tuned to
+features in a non-veridical manner but propose very different underlying mechanisms.
+Subsequent studies combined the two paradigms to determine whether attention is tuned to
+all relatively matching features or an optimally shifted feature value (see Figure 1 for an
+illustration of the different accounts).
+
+6
+
+
+Figure 1. Overview of different theoretical tuning functions to tune attention to the target in
+the example display (left), which shows an orange target (T) among yellow-orange and
+yellow non-targets (NT). The standard view (2nd from left) is that attention would be tuned to
+the target colour (T). According to Optimal Tuning (3rd from left), attention would be tuned
+to a slightly exaggerated, ‘optimal’ target feature value that is shifted away from the
+nontargets, to increase the SNR (optimal colour; O). According to the Relational Account
+(right), attention would be tuned to the relative colour of the target, that the target has relative
+to the other items in the surround (here: redder), which can include vastly dissimilar colours
+(relatively matching colour, R).
+
+The results of two studies showed that attention is biased to all relatively matching items,
+indicating that early visual selection (i.e., which item is selected first) follows the predictions
+of the relational account. However, target identification judgements were skewed towards the
+slightly shifted feature value, showing that perceptual decision-making (i.e., decisions about
+whether a selected item is the target or not) is best described by the optimal tuning account
+(Hamblin-Frohman & Becker, 2021; Yu et al., 2022). Thus, visual attention can be tuned
+rather broadly towards the target’s relative feature, leading to frequent selection of very
+dissimilar colours that only share the target’s relative colour, whereas perceptual decision-
+making is tuned rather sharply towards an exaggerated target feature value, so that only very
+similar colours are mistaken for the target colour.
+Despite the progress in describing the attentional tuning function, there are still significant
+knowledge gaps. First, one important claim of the relational account is that the visual system
+quickly assesses the dominant feature in a scene and biases attention to the relative feature
+that discriminates the target from the (dominant feature in the) context. However, this fast,
+automatic evaluation of the context has never been tested, as the target and non-targets were
+
+Standard Tuning
+ExampleDisplay
+Optimal Tuning
+(and Optimal Tuning
+Relational Tuning
+(similar nontargets)
+dissimilarnontargets)
+NT
+NT
+R
+NTNT
+R
+NT
+NT
+R7
+
+typically repeated numerous times in previous studies, and the reported selection behaviour
+was based on average trial performance (e.g., Becker, 2010). This leaves open the possibility
+that the target’s discriminative relative feature must be learnt, or that the visual system adapts
+weight settings over consecutive trials in a trial-and-error fashion to bias attention to the
+relative feature – which is very different from the claim that attention can be biased to
+relative features instantly, with the first glance.
+Second and relatedly, the boundary conditions for tuning to relative features are currently
+not clear. Previous work has shown that attention will be tuned to the relative target colour
+when the target is the reddest (or greenest / yellowest / bluest) item in the display on ≥50% of
+the trials, including when the target always has the same feature and could be found by tuning
+attention to the exact feature value (e.g., Becker et al., 2013). Relational search was also
+observed across different feature dimensions (e.g., colour, size, brightness, shape), and across
+different search tasks such as pop-out search (e.g., Becker et al., 2014), feature search (e.g.,
+Becker et al., 2013) and conjunction search (e.g., Becker et al., 2017). However, it is
+currently unknown if we would observe relational search when the target is never the reddest
+(or greenest / yellowest / bluest) item in the display, but differs from the majority of non-
+target items in one direction (e.g., redder).
+Previous studies have shown that we can enforce tuning to a specific feature value; for
+example, by presenting a target among equal numbers of flanking nontarget colours, such as
+presenting an orange target among three yellow and three red nontargets (Becker et al.,
+2014). As the target is neither the reddest nor the yellowest item, attention cannot be tuned to
+the relative feature but needs to be tuned to the target’s feature value in these displays (e.g.,
+Becker, Harris, Venini & Retell, 2014; Harris, Remington & Becker, 2013; Schoenhammer et
+al., 2016; but see Becker et al., 2013).
+
+8
+
+Given the ability to tune attention to specific feature values, it is unknown whether
+participants would adopt a relational search or feature-specific search when the target is never
+the reddest item in the visual field, yet differs from a majority of items in a single direction
+(e.g., redder). With that, it is currently unclear whether relational search is indeed based on a
+mechanism assessing the dominant feature in the visual field, or whether it is only adopted
+when relational search allows localising the target successfully on a large proportion of trials
+(i.e., through statistical learning).
+Third, previous work on characterising the attentional tuning function is also limited in
+that the studies typically used fairly sparse displays, of four to eight items (e.g., Becker, 2010;
+Hamblin-Frohman & Becker, 2021, Navalpakkam & Itti, 2007; Yu et al., 2022). The results
+typically showed that visually salient items (e.g., a red item among blue-green stimuli) did
+not attract attention, or attracted attention only very weakly (e.g., Gaspelin et al., 2015;
+Martin & Becker, 2018; York & Becker, 2020). These results were taken to show that strong
+capture by relational items was not mediated by saliency, and that bottom-up saliency may
+modulate attention to a lesser extent than assumed in current models (e.g., Theeuwes, 2013;
+Wolfe, 1994). However, Wang and Theeuwes (2020) argued that item salience is drastically
+weakened in sparse displays. If this is correct, previous studies on attentional tuning may
+have overestimated the role of tuning to relative features and/or underestimated the role of
+bottom-up saliency effects in guiding attention. Thus, it is still an open question whether
+previous results would generalise to more realistic search settings, such as search displays
+containing a larger number of search items.
+Aims
+The aim of the present study was to test some of the untested assumptions of the relational
+account in more realistic search settings. To that end, the search displays always contained
+thirty-six items, one of which was a saliently different distractor. This allowed assessing
+
+9
+
+possible contributions of bottom-up saliency effects to visual selection in more realistic
+search conditions with potentially stronger saliency effects.
+To assess how attention is guided with versus without training on the task, we created four
+blocked conditions in which the search colours varied (bluer, greener, yellower and redder
+target; see Fig. 2). Participants completed ten trials in each block, and then switched to a
+different search colour. Prior to each block, participants were only informed about the exact
+target colour (teal or orange), but not about the colour of the non-target items or the target’s
+relative colour (redder, yellower, greener, or bluer). Thus, analysing the first trial of each
+block allows assessing how attention was tuned to the target under conditions of uncertainty
+and in the absence of training effects.
+
+Example Display
+
+
+
+
+
+
+
+
+ Overview of Conditions
+
+
+Figure 2. Left: Example of a visual search display. Search displays consisted of three target-
+coloured items (here: orange) presented among 29 nontarget coloured items that could have
+two different colours (here: yellow-orange or yellow). Participants were instructed to search
+for a target-coloured item (here: orange) that contained the letter u or m, and to report
+whether the target contained the u or m (whereas the other orange items contained the letters
+w or m). To assess how attention was guided in search, we assessed eye movements to items
+with a relationally matching colour (here: red), optimal colour (here: red-orange), and a
+saliently different colour (here: violet). Right: Colours used to create the four blocked
+conditions. The target could be teal or orange, and the teal target could be presented among
+other green-ish non-targets (bluer target), blue-ish non-targets (greener target), while the
+orange target could be among red-ish non-targets (yellower target) or yellow-ish non-targets
+(redder target). Prior to a mini-block of 10 trials, participants were informed of the target
+colour, but not of the colour of the non-targets, which determined whether the target would
+be relationally redder/yellower or greener/bluer than the non-targets.
+
+mBluer
+R
+0
+T
+NT
+NT
+S
+NT
+NT
+T
+0
+R
+Greener
+Yellower
+R
+0
+T
+NT
+NT
+S
+NT
+NT
+T
+0
+R
+Redder10
+
+Deviating from previous studies, the search displays always contained all possible
+distractor colours, allowing a more fine-grained measurement of distractor effects and an
+assessment of possible boundary conditions for relational tuning. For example, in the redder
+target condition, an orange target was presented among 29 yellow-orange and yellow
+nontargets, one distractor with a relatively matching colour (red), two distractors with an
+optimal colour; i.e., an exaggerated target colour that was slightly shifted away from the
+nontarget colours (red-orange), two distractors with the target colour (orange), and a saliently
+different distractor with an unrelated colour (e.g., a blue; see Figure 2). These displays allows
+assessing how attention is tuned to the target when the target differs from the majority of non-
+targets in a single direction (redder) but is never the relationally maximal item (e.g., reddest,
+bluest, greenest or yellowest item) in the display.
+To assess how attention was tuned to the target, we measured eye movements to each of
+the different item types (target and distractors). Specifically, to tap into early processes of
+visual selection, we analysed the first eye movements on a trial, which are not influenced by
+prior fixations or search processes.
+If attention is tuned to the exact target colour, we would expect a large proportion of first
+eye movements on the target-coloured items (orange, teal), regardless of the context colour,
+and only few eye movements on the differently coloured distractors (optimal, relational). On
+the other hand, if attention is tuned to the optimal colour, we would expect most first eye
+movements on the optimal colour and a decrease in selecting distractors with other-than-
+optimal colours. According to the relational account, we would expect most first eye
+movements directed towards the distractor that best matches the relative colour of the target,
+viz., the distractor that is the reddest, yellowest, greenest, bluest in the visual field, followed
+by the optimal distractor (as this is the next-maximal, e.g., next-reddest item), and the target-
+coloured distractors.
+
+11
+
+Moreover, if relational search is based on a fast, automatic assessment of the dominant
+colour in the display, we would expect to see these results immediately in the first trial of
+each block, prior to learning and knowledge of the relative values.
+If the salient distractor automatically captures attention in these multiple-item displays
+(e.g., Wang & Theeuwes, 2020), we would expect a large proportion of first eye movements
+on the salient distractor. Moreover, if participants can learn to ignore or inhibit the distractor,
+we would expect this saliency-effect to decrease with training (i.e., over the course of a
+block; e.g., Gaspelin & Luck, 2018; Hamblin-Frohman et al., 2022).
+Method
+Participants. To estimate the required sample size, we examined the ability to detect
+relational vs. feature-specific search in the first fixations on distractors in previous work
+(Becker, Harris, Venini & Retell, 2014). The weakest effect was the feature-specific effect
+(t(14) = 2.5, p = .024 in search for a redder target; t(14) = 2.5, p = .027 in search for a
+yellower target; Becker et al., 2014; Exp. 3). The BUCSS tool suggested a target sample size
+of N=32 for the present study, to achieve a power of 85% (with 50% assurance; Anderson et
+al., 2017).
+Thirty-four paid participants from the University of Queensland participated in the
+experiment. Two participants were excluded for having a low search accuracy (< 70%),
+leaving 32 in the final analysis (M age =23.1 years (SD = 1.9), 24 female). The study was
+approved by the University of Queensland ethics board, and all procedures were in line with
+the Declaration of Helsinki.
+Apparatus. Stimuli were presented on a 21-inch CRT monitor with a refresh rate of 85Hz.
+A chin and headrest were used to hold the participant’s heads 600mm from the screen. Gaze
+location was measured by an SR-Research Eyelink-1000 eye tracker at 500Hz sampling rate.
+The experiment was controlled by Python’s PsychoPy (Peirce, 2007).
+
+12
+
+Stimuli. All stimuli were presented against a grey background. Each search array
+contained thirty-six coloured circles (radius: 0.48°) arranged in a six-by-six grid format (see
+Figure 2). Stimulus locations were initially selected to have a 4.96° horizontal separation and
+4.30° vertical separation (centre-to-centre), which varied because the location of all non-
+target stimuli (NT) was randomly jittered by ± 1.43° horizontally and vertically on each trial.
+The relevant distractors (relational, optimal, target-similar and salient) and the target were not
+jittered to retain precise eye tracking data and to ensure that these stimuli were never too
+close to each other. The location of all items was randomly chosen on each trial, with the
+restriction that the items of interest could never appear in the corner and corner-adjacent
+positions of the search array (as these positions were too far from fixation), and never in the
+central four (3.82° from fixation) positions (as these were too close to fixation).
+Each coloured circle contained a letter, either ‘u’, ‘n’, ‘m’ or ‘w’ (height: 0.29°). The
+target stimulus always contained a ‘u’ or ‘m’. The distractor items of interest never contained
+the target response characters (u/m). Colours were selected from an equiluminant (30 ±
+2cd/m2) RGB colour set (see Figure 2). There were two potential target colours, orange
+(RGB: [227, 124,52]) and teal (RGB: [56,171,146]), that alternated between blocks. The
+orange target could either appear among a set of redder non-targets, creating a yellower target
+condition, or among yellower non-targets, creating a redder target condition. The teal target
+could be presented either among greener or bluer non-targets, creating bluer or greener target
+conditions, respectively. Each trial contained the same amount of distractor and non-target
+items: One distractor with a relationally matching colour (R), two distractors with an optimal
+colour (O), two target-matching distractors (T), and a salient distractor (S) that always had a
+colour from the opposite side of colour space (e.g., a pink distractor for when the target was
+teal). The stimuli were always presented among 29 non-target items that were selected from
+two other colours (e.g., two blue-ish colours; see Fig. 2).
+
+13
+
+Design. The colours of the target, distractors and non-targets were always repeated within
+a mini-block of 10 trials, and mini-blocks alternated between orange and teal targets, with the
+direction of search (redder/yellower or greener/bluer condition) determined randomly at the
+start of each block. Participants completed 64 mini-blocks, for a total of 640 trials. The first
+four blocks were treated as practice trials, leaving 600 trials for the final analysis.
+Procedure. Prior to the experiment, participants were instructed to locate the target-
+coloured stimuli containing the character u or m and respond with the corresponding
+keyboard key as quickly and accurately as possible. Moreover, prior to each mini-block,
+participants were shown the colour of the upcoming visual search target (either orange or
+teal). Importantly, no information about the colour of the non-targets was provided; hence
+participants did not know the relative colour of the target prior to the first trial (i.e., whether it
+was redder/yellower or greener/bluer).
+To ensure stable and accurate eye tracking, participants were calibrated with a randomised
+9-point calibration at the beginning of the experiment and whenever the fixation control
+failed. The fixation control was implemented prior to each trial, with participants maintaining
+fixation for 650ms on the central fixation cross. If gaze remained within 2.0° from the centre,
+the search array was presented until a manual keypress response (u, m) was recorded. If an
+incorrect response was returned, error feedback was displayed. After each trial, a blank grey
+screen was presented for 750ms, and the next trial commenced again with the fixation
+control.
+Results
+Overall, accuracy on the letter identification task was high (>90%). Trials with incorrect
+responses were excluded from all analyses (6.6% of trials). The average response time (RT)
+was 2,207.7ms (SD = 1,919.4ms). Trials that were more than 2.5 standard deviations above
+the mean RT (rounded to 7,000ms) were excluded from all analyses (1.9% of trials).
+
+14
+
+Proportion of First Fixations on Each Item on Trials 1 - 10
+
+Figure 3. The proportion of first fixations directed towards the target, or any of the distractors
+of interest (target-matching, optimal, relational or salient), depicted as a function of trial
+repetition. The relational and optimal distractors attracted the highest proportions of first
+fixations and showed a linear increase over the ten trials. The target and the target-matching
+distractor received more first fixations than the saliently different item, and also displayed a
+linear increase in fixations. The salient item was selected least frequently and showed a linear
+decrease in first fixations.
+
+First Fixations: Training Effects. To assess whether attentional priorities changed with
+experience, we analysed the probability of fixating on each of the differently coloured
+distractors as a function of trial repetition (see Fig. 3). The probability of fixating on each
+differently coloured distractor was computed by dividing the proportion of trials in which a
+given distractor was fixated (as the first item) by the number of distractors present on the trial
+(e.g., as there were two optimal-coloured stimuli, the proportion of first fixations on an
+optimal coloured stimulus was divided by two). The proportion of first fixations on the target
+stimulus and the target-matching distractor did not differ from each other, F(1, 31) = 0.95, p
+= .337, and did not interact with trial repetition, F(9, 279) = 1.16, p = .321. This shows that
+
+14
+Target
+TMatch
+(%) suo!1e
+Optimal
+12
+Relational
+Salient
+10ortion of First Fix
+8
+6
+42
+P
+0
+T1
+T2
+T3
+T4
+Te
+T7
+T:
+Tg
+T10
+Ts
+Trial Repetition15
+
+attention was not guided to the target item based on the contained response-related character,
+and thus the data were collapsed across the target and target-coloured distractor.
+A 4 (Item Type: Target-Matching, Optimal, Relational, Salient) x 10 (Trial Repetition: T1
+to T10) repeated measures analysis of variance (ANOVA) was computed over the
+probabilities of fixating on each differently coloured item. The results showed a main effect
+of item type, F(3, 93) = 53.5.47, p < .001, ƞ2p = 0.63, trial repetition, F(9, 279) = 4.42, p <
+.001, ƞ2p = 0.13, as well as a significant interaction, F(27, 837) = 2.46, p < .001, ƞ2p = 0.07.
+Pairwise t-tests showed that both the relational and optimal items attracted more first eye
+movements than the target-coloured items (relational: t(31) = 5.33, p < .001, BF10 = 2500.17,
+optimal: t(31) = 6.61, p < .001, BF10 = 7.24 * 104). In turn, the target-coloured items received
+more first saccades than the saliently different item, t(31) = 3.96, p < .001, BF10 = 71.41.
+Optimal and relational items did not differ, t(31) = 1.07, p = .294, BF10 = 0.32.
+To investigate possible linear trends that may reflect learning or adaptation effects, we
+next examined the slopes of first fixation locations separately for each of the differently
+coloured items across the ten trials. The linear trends for all four item types differed
+significantly from zero. The relational item had the steepest positive slope, β = 0.33, t(31) =
+4.38, p < .001, followed by the optimal item, β = 0.18, t(31) = 2.87, p = .007, and the target-
+matching item, β = 0.09, t(31) = 2.36, p = .025, reflecting that selection increased for all of
+these items over the course of the block. Thus, the first fixations in a trial show relational
+tuning, which increased slightly and remained dominant across all trials in the block. Finally,
+the saliently different item showed a significant reduction in visual selection across blocks, β
+= -0.11, t(31) = 2.08, p = .046.
+First Fixations: Initial Guidance on T1. We next analysed the eye movement behaviour
+on the first trial of the block, where participants were unaware of the relative colour of the
+
+16
+
+target (redder/yellower or greener/bluer), and only knew the exact target colour (orange or
+teal; see Fig. 3, T1).
+Paired-samples t-tests revealed that first saccade proportions on T1 were lower for the
+target colour than both the optimal, t(31) = 4.34, p < .001, BF10 = 185.7, and relational
+distractors, t(31) = 2.50, p = .018, BF10 = 2.71. Optimal and relational distractors did not
+significantly differ from each other, t(31) = 1.59, p = .123, BF10 = 0.58. The salient item did
+not differ significantly from the target-coloured item, t(31) = 0.88, p = .388, BF10 = 0.27. The
+finding that relational search was conducted on trial 1 shows that experience or prior
+knowledge is not necessary for relational search, and supports the hypothesis that the visual
+system can quickly assess the dominant colour in the visual field and tune attention to the
+relative colour of the target.
+Fixation Progression.
+The results above suggest that search was initially (on the first trial) relational and that this
+relational guidance was maintained and increased across repeated trials. To assess whether
+the same trends may be found within a single trial, we analysed the first five fixations in each
+trial to reveal how attentional guidance developed within an individual trial (see Figure 4).
+On average participants made 4.58 fixations per trial. We included all trials in this data set,
+including those where the task was completed within the first five fixations (which resulted in
+1.7% missing data for F2, F3: 7.4%, F4: 17.5%, and F5: 30.6%).
+The first fixation (F1), now collapsed over trial repetition, followed the same results
+pattern as previously described, with the relational and optimal stimuli attracting a higher
+proportion of first fixations than the target and the target-matching distractor (all ps < .001).
+For F2 results began to deviate from relational guidance. The target stimulus was now more
+likely to be fixated than any other item (ps < .010). The target-matching distractors were now
+equally likely to be fixated as the optimal distractors, t(31) = 0.14, p = .888, BF10 = 0.19, and
+
+17
+
+the optimal distractors were now more likely to be fixated than the relational item, t(31) =
+4.32, p < .001, BF10 = 178.09. From F3 onwards fixation patterns remained consistent: Now
+the target-matching distractors were more likely to be fixated than the optimal distractor (all
+ps < .001), and the optimal distractor was more likely to be fixated than the relational
+distractor (all ps < .001). Finally, fixations on the salient item were highest on F1 than at any
+other point in the trial (all ps < .001) and were significantly lower than all other stimuli of
+interest across all fixations (ps < .004).
+
+First Five Fixations in a Trial
+Figure 4. The first five fixations (F1 to F5) in a trial show how search progressed during a
+trial. The first fixation (F1) displayed relational search, with the relational and optimal
+distractors being selected more frequently than the target and target-matching distractor. The
+second fixation (F2) showed a shift to more feature-specific guidance: The target was now the
+most likely to be fixated, followed by the target-matching and optimal distractors, with fewer
+fixations on the relational distractor. With the third fixation (F3), the target-matching
+distractor was now more likely to be fixated than optimal or relational distractors. From this
+point onwards, fixation proportions seem to be dictated by target-feature similarity. The
+salient item was most frequently fixated on F1 then dropped off in subsequent fixations.
+
+
+24
+Target
+-T_Match
+Optimal
+(%) suo
+20
+Relational
+Salientoportion of Fixati
+8P
+4
+0
+F1
+F2
+F3
+F4
+Fs
+Fixation18
+
+In sum, the results are in line with the hypothesis that (in relational search) participants
+will first select the relationally maximal item (e.g., reddest), followed by the optimal (e.g.,
+next-reddest) item, and the target-coloured items. Another way of describing these results is
+that attention was always initially guided to the relatively matching items, with feature-
+specific tuning developing only after the first (few) fixation(s), perhaps by inhibiting the
+more extreme colours that were selected first.
+
+First Saccade Latencies. We next analysed the saccade latencies, that is, the time from
+the onset of the search display to the onset of the first saccade in a trial, to assess the time-
+course of attentional deployment using the first saccade in a trial. This analysis was collapsed
+over trials, with the first trial being excluded (due to longer saccadic latencies).1 Figure 5
+shows the distributions of saccadic latencies separately for each item type (i.e., the proportion
+of trials where saccadic latencies ranged from 125ms – 150ms, 150 – 175ms, etc.).
+To analyse the data statistically, we fed the average saccade latencies of the first saccades in a
+trial into a one-way (Item Type: Target, Optimal, Relational, Salient) repeated-measures
+ANOVA. The results showed a significant effect of item type F(3,93) = 53.01, p < .001, ƞ2p =
+0.63. Two-tailed comparisons revealed that latencies were shorter for the salient item (M =
+217.6ms) than both the relational (M = 237.5ms) and optimal item (M = 240.9ms), all ts>
+8.18, ps < .001, BF10 > 3.98 x 106. Saccades to target-matching items (M = 252.0ms) were
+slower than to the relational and optimal items, ts(31) = 4.35, ps < .001, BF10 > 191.72, while
+relational and optimal items did not differ, t(31) = 1.26, p = .218, BF10 = 0.39. Thus, the more
+dissimilar the stimuli were from the target item, the shorter their saccadic latencies were.
+
+
+1 Saccade latencies on T1 were longer than in all other trial repetitions (all ps < .001), but
+there was no repetition by item type interaction (p = .650) or any linear trends for the
+individual items after excluding the first trial (ps > .235).
+
+19
+
+ Distribution of First Saccade Latencies
+
+Figure 5. The distribution of saccade latencies, which was derived by sorting saccades to
+each stimulus type into 25ms latency bins and depicting the proportions of trials within each
+bin separately for each item type. The results showed a higher proportion of short-latency
+saccades to the saliently different distractor than to the other distractors. Moreover, there was
+a higher proportion of saccades with long latencies to target-matching items (pooled over
+target and target-coloured distractor), producing differences between the target-coloured
+items and the other distractors in the tail end of the distribution.
+
+Figure 5 shows that the distribution of saccadic latencies and reveals that differences in the
+average saccade latencies were due to saccades to salient distractor being initiated
+significantly earlier than to all other items. By contrast, the longer saccade latencies for the
+target and target-matching distractors were due to a higher proportion of saccades with longer
+latencies.
+Distractor Dwell Times. As in previous studies, we also examined the mean dwell times
+on each of the distractors, measured as the time spent fixating on each of the different item
+types. The target-matching stimuli were examined independently from the actual target (M =
+162.9ms), and results were collapsed over trial repetition.
+0
+5
+10
+15
+20
+25
+30
+125ms 150ms 175ms 200ms 225ms 250ms 275ms 300ms 325ms 350ms
+Proportions
+Saccade Latency (25ms Brackets)
+Target-Matching
+Optimal
+Relational
+Salient
+
+20
+
+The one-way (Distractor Type: Target-Matching, Optimal, Relational, Salient) repeated-
+measures ANOVA revealed significant differences between the item types, F(3,93) = 40.50,
+p < .001, ƞ2p = 0.57. Planned two-tailed comparisons showed that dwell times for the target-
+matching (M = 173.0ms) and optimal distractors (M = 171.4ms) were longest and did not
+differ from each other, t(31) = 0.92, p = .363, BF10 = 0.28. Dwell times were significantly
+shorter for the relational distractor (M = 166.4ms) than the optimal distractor, t(31) = 5.74, p
+< .001, BF10 = 7312.78, and target matching distractors, t(31) = 3.21, p = .003, BF10 = 11.99.
+The relational distractor had longer dwell times than the salient item (M = 152.5ms), t(31) =
+6.26, p < .001, BF10 = 2.90 * 104. In sum, dwell times increased with similarity to the target
+colour, indicating that longer dwell times were needed to identify the items as distractors as
+they became more similar to the target.
+General Discussion
+
+The current study revealed that relational effects may be more pervasive than previously
+assumed. This was the first study to examine attentional tuning functions in the absence of
+target contextual knowledge and in displays containing numerous items. The relatively
+matching distractors attracted the first saccade, including on the first trial in a mini-block,
+when participants only knew the colour of the target but not its relative contextual colour.
+These results show that relational/contextual information can be quickly extracted from a
+visual scene, in line with the tenets of the relational account. Previous studies have already
+shown that information about the statistical properties of a visual scene can be rapidly
+extracted (e.g., feature averaging, Chong & Treisman, 2005a, b; Choo & Franconeri, 2010;
+Joo et al., 2009; gist processing, Oliva & Torralba, 2006; see also Thorpe, Fize & Marlot,
+1996). The present study extends on this research by showing that this information can be
+used to bias attention to the relative features of the target, prior to executing the first eye
+movement. In other words, relational guidance does not require learning of the context or
+
+21
+
+knowledge of the relative target feature, but can be executed with the first glance at a novel
+scene.
+
+The current results also revealed that relational guidance is more ubiquitous than
+previously thought. In particular, we found relational guidance even when the target never
+had a relationally maximal value – that is, when it was never the reddest, greenest, bluest or
+yellowest item in the display. In every trial there were relationally better-matching distractors
+(one relatively matching distractor and two optimal distractors), which frustrated selecting the
+target with the first eye movement (in relational search). Yet, we reliably found that
+participants searched relationally. This reveals that the visual system is indeed sensitive to the
+dominant feature in the display, and initiates relational search as soon as the target differs
+from most of the display items in a linear fashion. Furthermore, participants continued to
+search relationally over as many as ten successive trials, even though relational guidance
+reliably resulted in selecting one of the more extreme distractors first. This means that
+relational guidance is more readily applied and more persistent than previously thought (e.g.,
+Becker et al., 2014).
+
+The results of the present study also provided evidence for selection proceeding in the way
+as laid out in the relational account, with the most extreme, relatively matching item being
+selected first (e.g., reddest), followed by the next most extreme, relatively matching item (i.e.,
+next reddest item), and so forth, until the target is selected. As shown in Figure 3, the first
+saccade in a trial was most likely to select the most extreme, relatively matching item,
+whereas later saccades were more likely to select target-matching items and the probability
+for selecting extreme items declined after the second fixation.
+The mechanism responsible for achieving this order of selection has never been specified
+in the relational account. Other theories have proposed a memory-based, ‘inhibitory tagging’
+mechanism to explain how search proceeds to the next item (e.g., Klein, 2000).
+
+22
+
+Correspondingly, it is possible that selection of target-matching items emerged during the
+trial due to selection and subsequent inhibition of relatively matching, more extreme
+distractors. Inhibitory tagging could be either location-based (i.e., inhibiting selected
+nontarget locations during the trial), or feature-based (i.e., inhibiting a non-target or distractor
+colour after selection; e.g., Bichot & Schall, 2002). If inhibitory tagging is responsible for the
+selection sequence in the present study, it is perhaps more likely to be feature-based
+inhibition rather than location-based inhibition: Selection of the target and target-matching
+distractors commenced earlier than would be expected on the basis of location-based
+inhibition. Specifically, as there were three relatively matching or optimal distractors in the
+display, selection of these distractors should have declined after the 3rd fixation, but we
+observed the decline after the 2nd fixation, which corresponds to the number of different
+colours in these distractors. Also, selection of the target and target-matching items showed a
+steep increase after only one fixation, which seems too early for location-based inhibition,
+and indicates that the colour(s) rather than the locations of the more extreme distractors may
+have been inhibited.
+Alternatively, it is possible that, after the first fixation, attention was tuned to the exact
+feature value of the target, swiftly switching from originally relational search to a more
+feature-specific search (or target template; e.g., Duncan & Humphreys, 1989). We currently
+consider this unlikely, as an attentional bias usually automatically carries over to the next trial
+to influence selection (i.e., intertrial priming; Maljkovic & Nakayama, 1994), and the first
+eye movements never showed evidence of a feature-specific bias.
+Inhibition of a distractor feature can also carry over to the next trial to influence selection,
+but the effects are weaker than effects of target guidance (e.g., Chang & Egeth, 2019;
+Hamblin-Frohman et al., 2022). This could explain that relational guidance was somewhat
+attenuated, as the relatively matching distractor mostly did not differ significantly from the
+
+23
+
+optimal distractor, but was still clearly visible (as both the relatively matching and optimal
+distractors were selected more frequently than the target-matching distractors; see Fig. 3).
+However, the somewhat attenuated effect of the relatively matching distractor could also be
+due to difficulties distinguishing the optimal and relatively matching distractor in the far
+periphery (e.g., Noorlander et al., 1983), or to the fact that there was only one relatively
+matching, extreme distractor and two optimal distractors. Further studies are necessary to
+estimate the magnitude of the attenuation and clarify the mechanism that allows narrowing
+search to target-matching items after the first fixation(s).
+A fourth interesting finding relates to the salient item, which had a very dissimilar colour
+compared to the other items and hence, had the largest bottom-up feature contrast. Wang and
+Theeuwes (2020) proposed that experiments with sparse displays may underestimate bottom-
+up saliency effects (see also Rangelov et al., 2017). The displays of the present study
+contained the largest number of items tested for fine-grained attentional tuning (36 items), yet
+we found only very weak effects for the salient item, which further declined over trials 1 – 10
+(see Fig. 3). Given the low proportion of first fixations on the salient item, we cannot claim
+that the salient item significantly attracted attention.2 Even in the densely populated displays,
+top-down tuning to the (relative) target feature led to significantly higher selection rates of
+the corresponding distractors than bottom-up saliency, indicating that top-down processes
+dominate attentional guidance over bottom-up saliency, contrary to bottom-up selection
+views (e.g., Theeuwes, 2004; Wang & Theeuwes, 2020).
+These results also rule out an alternative explanation of the results. Proponents of feature-
+based theories (e.g., Guided Search 2.0; Wolfe, 1994) may argue that the results could be due
+
+2 Comparing the proportion of first fixations on the salient item to the proportion of fixations
+on the non-salient non-target items (omitting the corner positions and central positions that
+never contained a distractor) revealed that the salient item was actually selected less
+frequently than the non-salient non-targets (p=.03).
+
+24
+
+to a combination of top-down, feature-specific tuning to the target and bottom-up processes,
+as the more extreme distractors (optimal and relatively matching distractors) may have been
+similar enough to the target to be subject to (broad) top-down tuning and were simultaneously
+more salient than the target, leading to higher selection rates. Contrary to this contention, we
+found a very different results pattern for the salient distractor compared to the other
+distractors, both in the trial analysis (which showed an increase in capture by extreme and
+target-similar distractors over trials and a decrease for the salient distractor; see Fig. 3), and
+in the time-course analysis (which showed shorter latencies of saccades to the salient
+distractor than for all other distractors; see Fig. 5). These findings suggest that the more
+extreme (and more salient) relatively matching and optimal distractors attracted attention and
+the gaze in the same manner as the target-similar (less salient) distractor, viz., due to top-
+down tuning and not bottom-up saliency, whereas the effects of the salient distractor were
+due to bottom-up, stimulus-driven processes.
+Admittedly, it is notoriously difficult to distinguish between combined top-down/bottom-
+up theories, optimal tuning and the relational account, especially in standard visual search
+experiments with a distractor, as the theories make quite similar predictions. However, the
+relational account has been extensively tested against these other theories in previous
+experiments using the spatial cueing paradigm (e.g., Becker et al., 2013) and visual search
+with relatively matching distractors that were very dissimilar from the target (York & Becker,
+2020) or whose similarity / saliency varied systematically (Hamblin-Frohman & Becker,
+2021; Yu et al., 2022). The results unequivocally supported the relational account and
+showed that early selection cannot be explained by optimal tuning or the combined saliency
+and similarity to the target.
+Previous studies testing the relational account against the standard, feature-based theories
+moreover revealed that tuning to relations was a default search mode applied across a wide
+
+25
+
+range of different tasks that would have allowed locating the target by tuning to its specific
+feature value (e.g., when the target was always repeated). The present study extends on these
+findings, by showing that attention is tuned to relative features even when the target is never
+the relatively reddest, bluest, greenest or yellowest item in the display. In conditions such as
+the present experiment, a feature-specific guidance mechanism may be the most efficient
+search method for the current display, as it would have reduced competition for attention to
+only target-similar distractors (i.e., two other items) by excluding relatively matching and
+optimal distractors. Participants chose relational tuning over feature-specific tuning even
+though, on the first trial of each block, they were only given information about the exact
+feature-value of the target stimulus. The instructional prompts mentioning only the target
+colour should have primed participants to initiate a guided search for the exact target colour.
+Yet, participants consistently engaged in relational search and also did not learn to use
+feature-specific tuning over the course of ten (identical) trials. As shown in Figure 3, linear
+trends for first eye movements were stronger for the relational and the optimal distractors
+compared to the target-matching items, suggesting that the relational effect became stronger
+over the course of the block rather than weaker.
+
+Collectively, these results show that participants can be quite reluctant to tune attention to
+the specific feature value of the target. We can only speculate why this may be the case.
+Previous studies have shown that feature-specific tuning results in delays in selecting the
+target, as well as longer dwell times on target-similar distractors, compared to tuning to
+relations (in identical displays; Becker et al., 2014; Martin & Becker, 2018). This suggests
+that tuning attention to exact feature values may cause delays in selection as well as decision-
+making (about whether the selected item is the target), rendering search less efficient.
+While this question warrants further research, the present study clearly showed that tuning
+to relative features occurs in more densely populated, 36-item displays; in the absence of
+
+26
+
+knowledge of the relative feature of the target, and in the absence of any training. This
+demonstrates the existence of a mechanism capable of extracting the dominant feature in a
+visual scene and using that information to tune attention to the relative feature of a target.
+This renders it likely that relational search is the default search mode in everyday situations.
+
+
+
+27
+
+Author note.
+This research was supported by Australian Research Council (ARC) grant DP210103430
+to SIB.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+28
+
+
+References
+Becker, S. I. (2010). The role of target-distractor relationships in guiding attention and the
+eyes in visual search. Journal of Experimental Psychology. General, 139(2), 247–265.
+https://doi.org/10.1037/a0018808
+Becker, S. I. (2013). Simply shapely: Relative, not absolute shapes are primed in pop-out
+search. Attention, Perception, and Psychophysics, 75(5), 845–861.
+https://doi.org/10.3758/S13414-013-0433-1/FIGURES/4
+Becker, S. I., Folk, C. L., & Remington, R. W. (2013). Attentional Capture Does Not
+Depend on Feature Similarity, but on Target-Nontarget Relations. Psychological Science,
+24(5), 634–647. https://doi.org/10.1177/0956797612458528
+Becker, S. I., Harris, A. M., Venini, D., & Retell, J. D. (2014). Visual search for color and
+shape: When is the gaze guided by feature relationships, when by feature values? Journal of
+Experimental Psychology: Human Perception and Performance, 40(1), 264–291.
+https://doi.org/10.1037/a0033489
+Becker, S. I., Harris, A. M., York, A., & Choi, J. (2017). Conjunction search is relational:
+Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human
+Perception and Performance, 43(10), 1828. https://doi.org/10.1037/XHP0000371
+Becker, S. I., Valuch, C., & Ansorge, U. (2014). Color priming in pop-out search depends
+on the relative color of the target. Frontiers in Psychology, 5.
+https://doi.org/10.3389/fpsyg.2014.00289
+Bichot, N. P., & Schall, J. D. (2002). Priming in Macaque Frontal Cortex during Popout
+Visual Search: Feature-Based Facilitation and Location-Based Inhibition of Return. Journal
+of Neuroscience, 22(11), 4675–4685. https://doi.org/10.1523/JNEUROSCI.22-11-
+04675.2002
+
+29
+
+Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–
+1525. https://doi.org/10.1016/J.VISRES.2011.04.012
+Chang, S., & Egeth, H. E. (2019). Enhancement and Suppression Flexibly Guide
+Attention. Psychological Science, 30(12), 1724–1732.
+https://doi.org/10.1177/0956797619878813
+Chong, S. C., & Treisman, A. (2005a). Attentional spread in the statistical processing of
+visual displays. Perception & Psychophysics, 67(1), 1–13.
+https://doi.org/10.3758/BF03195009
+Chong, S. C., & Treisman, A. (2005b). Statistical processing: computing the average size
+in perceptual groups. Vision Research, 45(7), 891–900.
+https://doi.org/10.1016/j.visres.2004.10.004
+Choo, H., & Franconeri, S. L. (2010). Objects with reduced visibility still contribute to
+size averaging. Attention, Perception, & Psychophysics, 72(1), 86–99.
+https://doi.org/10.3758/APP.72.1.86
+Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention.
+Annual Review of Neuroscience, 18(1), 193–222.
+https://doi.org/10.1146/annurev.ne.18.030195.001205
+Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition:
+Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.
+https://doi.org/10.1016/0042-6989(95)00294-4
+Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity.
+Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295X.96.3.433
+Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient
+distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3–4),
+227–246. https://doi.org/10.1080/13506285.2019.1600090
+
+30
+
+Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct Evidence for Active Suppression
+of Salient-but-Irrelevant Sensory Inputs. Psychological Science, 26(11), 1740–1750.
+https://doi.org/10.1177/0956797615597913
+Gaspelin, N., & Luck, S. J. (2018). The Role of Inhibition in Avoiding Distraction by
+Salient Stimuli. Trends in Cognitive Sciences, 22(1), 79–92.
+https://doi.org/10.1016/J.TICS.2017.11.001
+Gaspelin, N., Margett-Jordan, T., Ruthruff, E., Gaspelin, N., Margett-Jordan, T., &
+Ruthruff, E. (2015). Susceptible to distraction: Children lack top-down control over spatial
+attention capture. Psychon Bull Rev, 22, 461–468. https://doi.org/10.3758/s13423-014-0708-
+0
+Geng, J. J., di Quattro, N. E., & Helm, J. (2017). Distractor probability changes the shape
+of the attentional template. Journal of Experimental Psychology: Human Perception and
+Performance, 43(12), 1993. https://doi.org/10.1037/XHP0000430
+Hamblin-Frohman, Z., & Becker, S. I. (2021). The attentional template in high and low
+similarity search: Optimal tuning or tuning to relations? Cognition, 212, 104732.
+https://doi.org/10.1016/j.cognition.2021.104732
+Hamblin-Frohman, Z., Chang, S., Egeth, H., & Becker, S. I. (2022). Eye movements
+reveal the contributions of early and late processes of enhancement and suppression to the
+guidance of visual search. Attention, Perception, and Psychophysics, 84(6), 1913–1924.
+https://doi.org/10.3758/S13414-022-02536-W/FIGURES/4
+Joo, S. J., Shin, K., Chong, S. C., & Blake, R. (2009). On the nature of the stimulus
+information necessary for estimating mean size of visual arrays. Journal of Vision, 9(9), 7–7.
+https://doi.org/10.1167/9.9.7
+Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.
+https://doi.org/10.1016/S1364-6613(00)01452-2
+
+31
+
+Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory
+& Cognition, 22(6), 657–672. https://doi.org/10.3758/BF03209251/METRICS
+Martin, A., & Becker, S. I. (2018). How feature relationships influence attention and
+awareness: Evidence from eye movements and EEG. Journal of Experimental Psychology:
+Human Perception and Performance, 44(12), 1865. https://doi.org/10.1037/XHP0000574
+Navalpakkam, V., & Itti, L. (2007). Search Goal Tunes Visual Features Optimally.
+Neuron, 53(4), 605–617. https://doi.org/10.1016/J.NEURON.2007.01.018
+Noorlander, C., Koenderink, J. J., den Olden, R. J., & Edens, B. W. (1983). Sensitivity to
+spatiotemporal colour contrast in the peripheral visual field. Vision Research, 23(1), 1–11.
+https://doi.org/10.1016/0042-6989(83)90035-4
+Oliva, A., & Torralba, A. (2006). Chapter 2 Building the gist of a scene: the role of global
+image features in recognition (pp. 23–36). https://doi.org/10.1016/S0079-6123(06)55002-2
+Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of
+Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/J.JNEUMETH.2006.11.017
+Schönhammer, J. G., Grubert, A., Kerzel, D., & Becker, S. I. (2016). Attentional guidance
+by relative features: Behavioral and electrophysiological evidence. Psychophysiology, 53(7),
+1074–1083. https://doi.org/10.1111/psyp.12645
+Scolari, M., Byers, A., & Serences, J. T. (2012). Optimal Deployment of Attentional Gain
+during Fine Discriminations. Journal of Neuroscience, 32(22), 7723–7733.
+https://doi.org/10.1523/JNEUROSCI.5558-11.2012
+Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture.
+Psychonomic Bulletin & Review, 11(1), 65–70. https://doi.org/10.3758/BF03206462
+Theeuwes, J. (2013). Feature-based attention: it is all bottom-up priming. Philosophical
+Transactions of the Royal Society B: Biological Sciences, 368(1628).
+https://doi.org/10.1098/RSTB.2013.0055
+
+32
+
+Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system.
+Nature, 381(6582), 520–522. https://doi.org/10.1038/381520a0
+Wang, B., & Theeuwes, J. (2020). Salience determines attentional orienting in visual
+selection. Journal of Experimental Psychology: Human Perception and Performance, 46(10),
+1051–1057. https://doi.org/10.1037/xhp0000796
+Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic
+Bulletin & Review, 1(2), 202–238. https://doi.org/10.3758/BF03200774/METRICS
+Wolfe, J. M. (2020). Visual Search: How Do We Find What We Are Looking For? Annual
+Review of Vision Science, 6(1), 539–562. https://doi.org/10.1146/annurev-vision-091718-
+015048
+Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic
+Bulletin & Review 2021 28:4, 28(4), 1060–1092. https://doi.org/10.3758/S13423-020-01859-
+9
+York, A., & Becker, S. I. (2020). Top-down modulation of gaze capture: Feature
+similarity, optimal tuning, or tuning to relative features? Journal of Vision, 20(4), 6–6.
+https://doi.org/10.1167/JOV.20.4.6
+Yu, X., Hanks, T. D., & Geng, J. J. (2022). Attentional Guidance and Match Decisions
+Rely on Different Template Information During Visual Search. Psychological Science, 33(1),
+105–120.
+https://doi.org/10.1177/09567976211032225/ASSET/IMAGES/LARGE/10.1177_095679762
+11032225-FIG2.JPEG
+
+
+
diff --git a/OtE1T4oBgHgl3EQfaASJ/content/tmp_files/load_file.txt b/OtE1T4oBgHgl3EQfaASJ/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..20c0832b4afaa8002a141cd92e1a0e25929a3301
--- /dev/null
+++ b/OtE1T4oBgHgl3EQfaASJ/content/tmp_files/load_file.txt
@@ -0,0 +1,1019 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf,len=1018
+page_content='1 The progression of visual search in multiple item displays: First relational, then feature-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Zachary Hamblin-Frohman, Koralalage Don Raveen Amarasekera & Stefanie I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Becker School of Psychology, The University of Queensland, Brisbane, Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 2 Abstract It is well-known that visual attention can be tuned in a context-dependent manner to elementary features, such as searching for all redder items or the reddest item, supporting a relational theory of visual attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, in previous studies, the conditions were often conducive for relational search, allowing successfully selecting the target relationally on 50% of trials or more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Moreover, the search displays were often only sparsely populated and presented repeatedly, rendering it possible that relational search was based on context learning and not spontaneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The present study tested the shape of the attentional tuning function in 36-item search displays, when the target never had a maximal feature value (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', was never the reddest or yellowest item), and when only the target colour but not the context colour was known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The first fixations on a trial showed that these displays still reliably evoked relational search, even when participants had no advance information about the context and no on-task training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Context learning further strengthened relational tuning on subsequent trials, but was not necessary for relational search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Analysing the progression of visual search within a singe trial showed that attention is first guided to the relationally maximal item (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', reddest), then the next-maximal (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', next-reddest) item, and so forth, before attention can hone in on target-matching features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In sum, the results support two tenets of the relational account, that information about the dominant feature in a display can be rapidly extracted and used to guide attention to the relatively best-matching features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3 Introduction It is well-known that we cannot consciously process all objects in a visual scene at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To address this, visual attention selects objects for in-depth processing, often guiding our gaze to relevant parts in a scene (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Deubel & Schneider, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Much effort has been devoted to determine which items in a scene will be attended first, and more generally, to identify the processes involved in creating our rich mental representation of the visual environment (for a review, see Carrasco, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Wolfe, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To date, it is widely accepted that attention can be guided by both, bottom-up, stimulus- driven processes and top-down, goal-driven processes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Wolfe, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' For example, attention can be reflexively drawn to visually salient events such as a bright flash, a movement, or the sudden appearance of an object (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Theeuwes, 2004, 2013), or it can be top-down tuned to select items with certain attributes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', colours: red, green) to help goal- related behaviours such as finding a friend in a crowd (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Desimone & Duncan, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Wolfe, 1994, 2021) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Correspondingly, current models of visual attention typically include both a bottom-up and a top-down component to predict which items in a visual scene will be selected first (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Wolfe, 1994, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Top-down tuning is typically modelled as an increase or decrease in the firing rate of sensory neurons in response to specific stimulus attributes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', red, green;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Navalpakkam & Itti, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Yu, Hanks & Geng, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' For example, when looking for an orange in a fruit basket, we would tune attention to orange, which increases the output of neurons that respond to orange and prioritises colour-matching items for selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' It is commonly assumed that attention is tuned to the feature value that a person is looking for (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', particular shade of orange;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Duncan & Humphreys, 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Navalpakkam & Itti, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, to date, there are also several accounts of non-veridical tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Navalpakkam and Itti (2007) noted that tuning attention to the exact target feature value would not be beneficial when the target is very similar to surrounding irrelevant non-target 4 items, as tuning attention to, for example, orange, would also boost the response gain of red- orange or yellow-orange, leading to a poor signal-to-noise ratio (SNR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' They proposed that attention would be tuned to a feature value that is slightly shifted away from similar nontargets, to increase the SNR (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', to yellow-orange, when an orange target is presented among red-orange items;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Navalpakkam & Itti, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' According to their optimal tuning account, attention is always tuned to the feature value that maximises the ability to discriminate the target from the non-targets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', maximise the SNR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, attention would only be tuned to the exact target feature value when the target is presented alone or among dissimilar other items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In less discriminable cases, attention should be shifted to a slightly exaggerated target feature value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In line with this idea, a perceptual probe task revealed that a slightly shifted non-target colour was likely to be mistaken for the target when the target was consistently embedded among similar featured non-targets in a prior visual search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' For example, if an orange target was always presented among similar, yellow-orange nontargets in a visual search task, participants would pick a slightly redder (red-orange) colour as the target colour in intermixed probe trials (Navalpakkam & Itti, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see also Geng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Scolari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Another account of non-veridical tuning is the Relational Account, which proposes that attention may not at all be tuned to a specific feature value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' As noted by Becker (2010), tuning attention to a particular feature value may not be beneficial in natural environments, as specific feature values such as the size, shape and colour of objects vary a lot with differences in distance, perspective and shading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To allow efficient selection of the targets in these noisy environments, attention could be tuned in a context-dependent manner to objects, biasing attention to a feature that the target has relative to the other items in the context (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', redder, larger, darker;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Becker, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' For example, when searching for an orange in a fruit basket, the visual system would quickly assess the distribution of colours in the visual scene to 5 determine the dominant colours, and tune attention to the relative colour that would best discriminate the target from the dominant coloured non-target items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, attention would be tuned to all redder items or the reddest item when the fruit basket (or visual scene) contains many yellow or green objects, and tune attention to all yellower items or the yellowest item when the fruit basket (or visual scene) contains many red objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' As a consequence of this very broad tuning, the item that maximally fulfils the relevant feature relationship will be selected first (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', reddest or yellowest item).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Hence, when attention is tuned to all redder items, the reddest item in the visual field will be selected first, followed by the next-reddest, and so forth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In line with this prediction, several visual search studies showed that when an orange target is presented among mostly yellow(er) items, a red irrelevant distractor was more likely to be attended first than the target, even when it was quite dissimilar from the target, suggesting that attention was biased to all redder items, or the reddest item (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Hamblin-Frohman & Becker, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' York & Becker, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Selection of the distractor was reflected both in higher response times (RT) to the target, as well as in a high proportion of first eye movements to the red distractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Several studies also included a visually salient distractor with a dissimilar colour (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', blue), but found no or only very weak effects of saliency, ruling out that selection of the relatively matching (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', red) distractor was mediated by bottom-up, stimulus-driven processes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Martin & Becker, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' York & Becker, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Both optimal tuning and the relational account propose that attention can be tuned to features in a non-veridical manner but propose very different underlying mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Subsequent studies combined the two paradigms to determine whether attention is tuned to all relatively matching features or an optimally shifted feature value (see Figure 1 for an illustration of the different accounts).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 6 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Overview of different theoretical tuning functions to tune attention to the target in the example display (left), which shows an orange target (T) among yellow-orange and yellow non-targets (NT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The standard view (2nd from left) is that attention would be tuned to the target colour (T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' According to Optimal Tuning (3rd from left), attention would be tuned to a slightly exaggerated, ‘optimal’ target feature value that is shifted away from the nontargets, to increase the SNR (optimal colour;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' O).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' According to the Relational Account (right), attention would be tuned to the relative colour of the target, that the target has relative to the other items in the surround (here: redder), which can include vastly dissimilar colours (relatively matching colour, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results of two studies showed that attention is biased to all relatively matching items, indicating that early visual selection (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', which item is selected first) follows the predictions of the relational account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, target identification judgements were skewed towards the slightly shifted feature value, showing that perceptual decision-making (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', decisions about whether a selected item is the target or not) is best described by the optimal tuning account (Hamblin-Frohman & Becker, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, visual attention can be tuned rather broadly towards the target’s relative feature, leading to frequent selection of very dissimilar colours that only share the target’s relative colour, whereas perceptual decision- making is tuned rather sharply towards an exaggerated target feature value, so that only very similar colours are mistaken for the target colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Despite the progress in describing the attentional tuning function, there are still significant knowledge gaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' First, one important claim of the relational account is that the visual system quickly assesses the dominant feature in a scene and biases attention to the relative feature that discriminates the target from the (dominant feature in the) context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, this fast, automatic evaluation of the context has never been tested, as the target and non-targets were Standard Tuning ExampleDisplay Optimal Tuning (and Optimal Tuning Relational Tuning (similar nontargets) dissimilarnontargets) NT NT R NTNT R NT NT R7 typically repeated numerous times in previous studies, and the reported selection behaviour was based on average trial performance (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This leaves open the possibility that the target’s discriminative relative feature must be learnt, or that the visual system adapts weight settings over consecutive trials in a trial-and-error fashion to bias attention to the relative feature – which is very different from the claim that attention can be biased to relative features instantly, with the first glance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Second and relatedly, the boundary conditions for tuning to relative features are currently not clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Previous work has shown that attention will be tuned to the relative target colour when the target is the reddest (or greenest / yellowest / bluest) item in the display on ≥50% of the trials, including when the target always has the same feature and could be found by tuning attention to the exact feature value (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Relational search was also observed across different feature dimensions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', colour, size, brightness, shape), and across different search tasks such as pop-out search (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2014), feature search (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2013) and conjunction search (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, it is currently unknown if we would observe relational search when the target is never the reddest (or greenest / yellowest / bluest) item in the display, but differs from the majority of non- target items in one direction (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', redder).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Previous studies have shown that we can enforce tuning to a specific feature value;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' for example, by presenting a target among equal numbers of flanking nontarget colours, such as presenting an orange target among three yellow and three red nontargets (Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' As the target is neither the reddest nor the yellowest item, attention cannot be tuned to the relative feature but needs to be tuned to the target’s feature value in these displays (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker, Harris, Venini & Retell, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Harris, Remington & Becker, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Schoenhammer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' but see Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 8 Given the ability to tune attention to specific feature values, it is unknown whether participants would adopt a relational search or feature-specific search when the target is never the reddest item in the visual field, yet differs from a majority of items in a single direction (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', redder).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' With that, it is currently unclear whether relational search is indeed based on a mechanism assessing the dominant feature in the visual field, or whether it is only adopted when relational search allows localising the target successfully on a large proportion of trials (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', through statistical learning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Third, previous work on characterising the attentional tuning function is also limited in that the studies typically used fairly sparse displays, of four to eight items (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Hamblin-Frohman & Becker, 2021, Navalpakkam & Itti, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results typically showed that visually salient items (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', a red item among blue-green stimuli) did not attract attention, or attracted attention only very weakly (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Gaspelin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Martin & Becker, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' York & Becker, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' These results were taken to show that strong capture by relational items was not mediated by saliency, and that bottom-up saliency may modulate attention to a lesser extent than assumed in current models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Theeuwes, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Wolfe, 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, Wang and Theeuwes (2020) argued that item salience is drastically weakened in sparse displays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' If this is correct, previous studies on attentional tuning may have overestimated the role of tuning to relative features and/or underestimated the role of bottom-up saliency effects in guiding attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, it is still an open question whether previous results would generalise to more realistic search settings, such as search displays containing a larger number of search items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Aims The aim of the present study was to test some of the untested assumptions of the relational account in more realistic search settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To that end, the search displays always contained thirty-six items, one of which was a saliently different distractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This allowed assessing 9 possible contributions of bottom-up saliency effects to visual selection in more realistic search conditions with potentially stronger saliency effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To assess how attention is guided with versus without training on the task, we created four blocked conditions in which the search colours varied (bluer, greener, yellower and redder target;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Participants completed ten trials in each block, and then switched to a different search colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Prior to each block, participants were only informed about the exact target colour (teal or orange), but not about the colour of the non-target items or the target’s relative colour (redder, yellower, greener, or bluer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, analysing the first trial of each block allows assessing how attention was tuned to the target under conditions of uncertainty and in the absence of training effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Example Display Overview of Conditions Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Left: Example of a visual search display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Search displays consisted of three target- coloured items (here: orange) presented among 29 nontarget coloured items that could have two different colours (here: yellow-orange or yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Participants were instructed to search for a target-coloured item (here: orange) that contained the letter u or m, and to report whether the target contained the u or m (whereas the other orange items contained the letters w or m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To assess how attention was guided in search, we assessed eye movements to items with a relationally matching colour (here: red), optimal colour (here: red-orange), and a saliently different colour (here: violet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Right: Colours used to create the four blocked conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The target could be teal or orange, and the teal target could be presented among other green-ish non-targets (bluer target), blue-ish non-targets (greener target), while the orange target could be among red-ish non-targets (yellower target) or yellow-ish non-targets (redder target).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Prior to a mini-block of 10 trials, participants were informed of the target colour, but not of the colour of the non-targets, which determined whether the target would be relationally redder/yellower or greener/bluer than the non-targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' mBluer R 0 T NT NT S NT NT T 0 R Greener Yellower R 0 T NT NT S NT NT T 0 R Redder10 Deviating from previous studies, the search displays always contained all possible distractor colours, allowing a more fine-grained measurement of distractor effects and an assessment of possible boundary conditions for relational tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' For example, in the redder target condition, an orange target was presented among 29 yellow-orange and yellow nontargets, one distractor with a relatively matching colour (red), two distractors with an optimal colour;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', an exaggerated target colour that was slightly shifted away from the nontarget colours (red-orange), two distractors with the target colour (orange), and a saliently different distractor with an unrelated colour (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', a blue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' These displays allows assessing how attention is tuned to the target when the target differs from the majority of non- targets in a single direction (redder) but is never the relationally maximal item (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', reddest, bluest, greenest or yellowest item) in the display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To assess how attention was tuned to the target, we measured eye movements to each of the different item types (target and distractors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Specifically, to tap into early processes of visual selection, we analysed the first eye movements on a trial, which are not influenced by prior fixations or search processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' If attention is tuned to the exact target colour, we would expect a large proportion of first eye movements on the target-coloured items (orange, teal), regardless of the context colour, and only few eye movements on the differently coloured distractors (optimal, relational).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' On the other hand, if attention is tuned to the optimal colour, we would expect most first eye movements on the optimal colour and a decrease in selecting distractors with other-than- optimal colours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' According to the relational account, we would expect most first eye movements directed towards the distractor that best matches the relative colour of the target, viz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', the distractor that is the reddest, yellowest, greenest, bluest in the visual field, followed by the optimal distractor (as this is the next-maximal, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', next-reddest item), and the target- coloured distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 11 Moreover, if relational search is based on a fast, automatic assessment of the dominant colour in the display, we would expect to see these results immediately in the first trial of each block, prior to learning and knowledge of the relative values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' If the salient distractor automatically captures attention in these multiple-item displays (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Wang & Theeuwes, 2020), we would expect a large proportion of first eye movements on the salient distractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Moreover, if participants can learn to ignore or inhibit the distractor, we would expect this saliency-effect to decrease with training (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', over the course of a block;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Gaspelin & Luck, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Hamblin-Frohman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Method Participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To estimate the required sample size, we examined the ability to detect relational vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' feature-specific search in the first fixations on distractors in previous work (Becker, Harris, Venini & Retell, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The weakest effect was the feature-specific effect (t(14) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='024 in search for a redder target;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' t(14) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='027 in search for a yellower target;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The BUCSS tool suggested a target sample size of N=32 for the present study, to achieve a power of 85% (with 50% assurance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Anderson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thirty-four paid participants from the University of Queensland participated in the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Two participants were excluded for having a low search accuracy (< 70%), leaving 32 in the final analysis (M age =23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1 years (SD = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='9), 24 female).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The study was approved by the University of Queensland ethics board, and all procedures were in line with the Declaration of Helsinki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Apparatus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Stimuli were presented on a 21-inch CRT monitor with a refresh rate of 85Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' A chin and headrest were used to hold the participant’s heads 600mm from the screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Gaze location was measured by an SR-Research Eyelink-1000 eye tracker at 500Hz sampling rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The experiment was controlled by Python’s PsychoPy (Peirce, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 12 Stimuli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' All stimuli were presented against a grey background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Each search array contained thirty-six coloured circles (radius: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='48°) arranged in a six-by-six grid format (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Stimulus locations were initially selected to have a 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='96° horizontal separation and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='30° vertical separation (centre-to-centre), which varied because the location of all non- target stimuli (NT) was randomly jittered by ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='43° horizontally and vertically on each trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The relevant distractors (relational, optimal, target-similar and salient) and the target were not jittered to retain precise eye tracking data and to ensure that these stimuli were never too close to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The location of all items was randomly chosen on each trial, with the restriction that the items of interest could never appear in the corner and corner-adjacent positions of the search array (as these positions were too far from fixation), and never in the central four (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='82° from fixation) positions (as these were too close to fixation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Each coloured circle contained a letter, either ‘u’, ‘n’, ‘m’ or ‘w’ (height: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='29°).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The target stimulus always contained a ‘u’ or ‘m’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The distractor items of interest never contained the target response characters (u/m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Colours were selected from an equiluminant (30 ± 2cd/m2) RGB colour set (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' There were two potential target colours, orange (RGB: [227, 124,52]) and teal (RGB: [56,171,146]), that alternated between blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The orange target could either appear among a set of redder non-targets, creating a yellower target condition, or among yellower non-targets, creating a redder target condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The teal target could be presented either among greener or bluer non-targets, creating bluer or greener target conditions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Each trial contained the same amount of distractor and non-target items: One distractor with a relationally matching colour (R), two distractors with an optimal colour (O), two target-matching distractors (T), and a salient distractor (S) that always had a colour from the opposite side of colour space (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', a pink distractor for when the target was teal).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The stimuli were always presented among 29 non-target items that were selected from two other colours (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', two blue-ish colours;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 13 Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The colours of the target, distractors and non-targets were always repeated within a mini-block of 10 trials, and mini-blocks alternated between orange and teal targets, with the direction of search (redder/yellower or greener/bluer condition) determined randomly at the start of each block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Participants completed 64 mini-blocks, for a total of 640 trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The first four blocks were treated as practice trials, leaving 600 trials for the final analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Prior to the experiment, participants were instructed to locate the target- coloured stimuli containing the character u or m and respond with the corresponding keyboard key as quickly and accurately as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Moreover, prior to each mini-block, participants were shown the colour of the upcoming visual search target (either orange or teal).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Importantly, no information about the colour of the non-targets was provided;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' hence participants did not know the relative colour of the target prior to the first trial (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', whether it was redder/yellower or greener/bluer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To ensure stable and accurate eye tracking, participants were calibrated with a randomised 9-point calibration at the beginning of the experiment and whenever the fixation control failed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The fixation control was implemented prior to each trial, with participants maintaining fixation for 650ms on the central fixation cross.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' If gaze remained within 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0° from the centre, the search array was presented until a manual keypress response (u, m) was recorded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' If an incorrect response was returned, error feedback was displayed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' After each trial, a blank grey screen was presented for 750ms, and the next trial commenced again with the fixation control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Results Overall, accuracy on the letter identification task was high (>90%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Trials with incorrect responses were excluded from all analyses (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='6% of trials).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The average response time (RT) was 2,207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='7ms (SD = 1,919.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='4ms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Trials that were more than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5 standard deviations above the mean RT (rounded to 7,000ms) were excluded from all analyses (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='9% of trials).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 14 Proportion of First Fixations on Each Item on Trials 1 - 10 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The proportion of first fixations directed towards the target, or any of the distractors of interest (target-matching, optimal, relational or salient), depicted as a function of trial repetition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The relational and optimal distractors attracted the highest proportions of first fixations and showed a linear increase over the ten trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The target and the target-matching distractor received more first fixations than the saliently different item, and also displayed a linear increase in fixations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The salient item was selected least frequently and showed a linear decrease in first fixations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' First Fixations: Training Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To assess whether attentional priorities changed with experience, we analysed the probability of fixating on each of the differently coloured distractors as a function of trial repetition (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The probability of fixating on each differently coloured distractor was computed by dividing the proportion of trials in which a given distractor was fixated (as the first item) by the number of distractors present on the trial (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', as there were two optimal-coloured stimuli, the proportion of first fixations on an optimal coloured stimulus was divided by two).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The proportion of first fixations on the target stimulus and the target-matching distractor did not differ from each other, F(1, 31) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='95, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='337, and did not interact with trial repetition, F(9, 279) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='16, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This shows that 14 Target TMatch (%) suo!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1e Optimal 12 Relational Salient 10ortion of First Fix 8 6 42 P 0 T1 T2 T3 T4 Te T7 T: Tg T10 Ts Trial Repetition15 attention was not guided to the target item based on the contained response-related character, and thus the data were collapsed across the target and target-coloured distractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' A 4 (Item Type: Target-Matching, Optimal, Relational, Salient) x 10 (Trial Repetition: T1 to T10) repeated measures analysis of variance (ANOVA) was computed over the probabilities of fixating on each differently coloured item.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results showed a main effect of item type, F(3, 93) = 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='47, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, ƞ2p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='63, trial repetition, F(9, 279) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='42, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, ƞ2p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='13, as well as a significant interaction, F(27, 837) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='46, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, ƞ2p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Pairwise t-tests showed that both the relational and optimal items attracted more first eye movements than the target-coloured items (relational: t(31) = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='33, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 2500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='17, optimal: t(31) = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='61, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='24 * 104).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In turn, the target-coloured items received more first saccades than the saliently different item, t(31) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='96, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Optimal and relational items did not differ, t(31) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='07, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='294, BF10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To investigate possible linear trends that may reflect learning or adaptation effects, we next examined the slopes of first fixation locations separately for each of the differently coloured items across the ten trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The linear trends for all four item types differed significantly from zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The relational item had the steepest positive slope, β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='33, t(31) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='38, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, followed by the optimal item, β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='18, t(31) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='87, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='007, and the target- matching item, β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='09, t(31) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='36, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='025, reflecting that selection increased for all of these items over the course of the block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, the first fixations in a trial show relational tuning, which increased slightly and remained dominant across all trials in the block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Finally, the saliently different item showed a significant reduction in visual selection across blocks, β = -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='11, t(31) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='08, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' First Fixations: Initial Guidance on T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' We next analysed the eye movement behaviour on the first trial of the block, where participants were unaware of the relative colour of the 16 target (redder/yellower or greener/bluer), and only knew the exact target colour (orange or teal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3, T1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Paired-samples t-tests revealed that first saccade proportions on T1 were lower for the target colour than both the optimal, t(31) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='34, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='7, and relational distractors, t(31) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='50, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='018, BF10 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Optimal and relational distractors did not significantly differ from each other, t(31) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='59, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='123, BF10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The salient item did not differ significantly from the target-coloured item, t(31) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='88, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='388, BF10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The finding that relational search was conducted on trial 1 shows that experience or prior knowledge is not necessary for relational search, and supports the hypothesis that the visual system can quickly assess the dominant colour in the visual field and tune attention to the relative colour of the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Fixation Progression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results above suggest that search was initially (on the first trial) relational and that this relational guidance was maintained and increased across repeated trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To assess whether the same trends may be found within a single trial, we analysed the first five fixations in each trial to reveal how attentional guidance developed within an individual trial (see Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' On average participants made 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='58 fixations per trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' We included all trials in this data set, including those where the task was completed within the first five fixations (which resulted in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='7% missing data for F2, F3: 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='4%, F4: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5%, and F5: 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='6%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The first fixation (F1), now collapsed over trial repetition, followed the same results pattern as previously described, with the relational and optimal stimuli attracting a higher proportion of first fixations than the target and the target-matching distractor (all ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' For F2 results began to deviate from relational guidance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The target stimulus was now more likely to be fixated than any other item (ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The target-matching distractors were now equally likely to be fixated as the optimal distractors, t(31) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='14, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='888, BF10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='19, and 17 the optimal distractors were now more likely to be fixated than the relational item, t(31) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='32, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' From F3 onwards fixation patterns remained consistent: Now the target-matching distractors were more likely to be fixated than the optimal distractor (all ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001), and the optimal distractor was more likely to be fixated than the relational distractor (all ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Finally, fixations on the salient item were highest on F1 than at any other point in the trial (all ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001) and were significantly lower than all other stimuli of interest across all fixations (ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' First Five Fixations in a Trial Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The first five fixations (F1 to F5) in a trial show how search progressed during a trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The first fixation (F1) displayed relational search, with the relational and optimal distractors being selected more frequently than the target and target-matching distractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The second fixation (F2) showed a shift to more feature-specific guidance: The target was now the most likely to be fixated, followed by the target-matching and optimal distractors, with fewer fixations on the relational distractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' With the third fixation (F3), the target-matching distractor was now more likely to be fixated than optimal or relational distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' From this point onwards, fixation proportions seem to be dictated by target-feature similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The salient item was most frequently fixated on F1 then dropped off in subsequent fixations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 24 Target T_Match Optimal (%) suo 20 Relational Salientoportion of Fixati 8P 4 0 F1 F2 F3 F4 Fs Fixation18 In sum, the results are in line with the hypothesis that (in relational search) participants will first select the relationally maximal item (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', reddest), followed by the optimal (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', next-reddest) item, and the target-coloured items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Another way of describing these results is that attention was always initially guided to the relatively matching items, with feature- specific tuning developing only after the first (few) fixation(s), perhaps by inhibiting the more extreme colours that were selected first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' First Saccade Latencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' We next analysed the saccade latencies, that is, the time from the onset of the search display to the onset of the first saccade in a trial, to assess the time- course of attentional deployment using the first saccade in a trial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This analysis was collapsed over trials, with the first trial being excluded (due to longer saccadic latencies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1 Figure 5 shows the distributions of saccadic latencies separately for each item type (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', the proportion of trials where saccadic latencies ranged from 125ms – 150ms, 150 – 175ms, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' To analyse the data statistically, we fed the average saccade latencies of the first saccades in a trial into a one-way (Item Type: Target, Optimal, Relational, Salient) repeated-measures ANOVA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results showed a significant effect of item type F(3,93) = 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='01, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, ƞ2p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Two-tailed comparisons revealed that latencies were shorter for the salient item (M = 217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='6ms) than both the relational (M = 237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5ms) and optimal item (M = 240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='9ms), all ts> 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='18, ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 > 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='98 x 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Saccades to target-matching items (M = 252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0ms) were slower than to the relational and optimal items, ts(31) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='35, ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 > 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='72, while relational and optimal items did not differ, t(31) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='26, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='218, BF10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Thus, the more dissimilar the stimuli were from the target item, the shorter their saccadic latencies were.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 1 Saccade latencies on T1 were longer than in all other trial repetitions (all ps < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001), but there was no repetition by item type interaction (p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='650) or any linear trends for the individual items after excluding the first trial (ps > .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='235).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 19 Distribution of First Saccade Latencies Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The distribution of saccade latencies, which was derived by sorting saccades to each stimulus type into 25ms latency bins and depicting the proportions of trials within each bin separately for each item type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results showed a higher proportion of short-latency saccades to the saliently different distractor than to the other distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Moreover, there was a higher proportion of saccades with long latencies to target-matching items (pooled over target and target-coloured distractor), producing differences between the target-coloured items and the other distractors in the tail end of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Figure 5 shows that the distribution of saccadic latencies and reveals that differences in the average saccade latencies were due to saccades to salient distractor being initiated significantly earlier than to all other items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' By contrast, the longer saccade latencies for the target and target-matching distractors were due to a higher proportion of saccades with longer latencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Distractor Dwell Times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' As in previous studies, we also examined the mean dwell times on each of the distractors, measured as the time spent fixating on each of the different item types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The target-matching stimuli were examined independently from the actual target (M = 162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='9ms), and results were collapsed over trial repetition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 0 5 10 15 20 25 30 125ms 150ms 175ms 200ms 225ms 250ms 275ms 300ms 325ms 350ms Proportions Saccade Latency (25ms Brackets) Target-Matching Optimal Relational Salient 20 The one-way (Distractor Type: Target-Matching, Optimal, Relational, Salient) repeated- measures ANOVA revealed significant differences between the item types, F(3,93) = 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='50, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, ƞ2p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Planned two-tailed comparisons showed that dwell times for the target- matching (M = 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0ms) and optimal distractors (M = 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='4ms) were longest and did not differ from each other, t(31) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='92, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='363, BF10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Dwell times were significantly shorter for the relational distractor (M = 166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='4ms) than the optimal distractor, t(31) = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='74, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 7312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='78, and target matching distractors, t(31) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='21, p = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='003, BF10 = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The relational distractor had longer dwell times than the salient item (M = 152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5ms), t(31) = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='26, p < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001, BF10 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='90 * 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In sum, dwell times increased with similarity to the target colour, indicating that longer dwell times were needed to identify the items as distractors as they became more similar to the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' General Discussion The current study revealed that relational effects may be more pervasive than previously assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This was the first study to examine attentional tuning functions in the absence of target contextual knowledge and in displays containing numerous items.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The relatively matching distractors attracted the first saccade, including on the first trial in a mini-block, when participants only knew the colour of the target but not its relative contextual colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' These results show that relational/contextual information can be quickly extracted from a visual scene, in line with the tenets of the relational account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Previous studies have already shown that information about the statistical properties of a visual scene can be rapidly extracted (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', feature averaging, Chong & Treisman, 2005a, b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Choo & Franconeri, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Joo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' gist processing, Oliva & Torralba, 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see also Thorpe, Fize & Marlot, 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The present study extends on this research by showing that this information can be used to bias attention to the relative features of the target, prior to executing the first eye movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In other words, relational guidance does not require learning of the context or 21 knowledge of the relative target feature, but can be executed with the first glance at a novel scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The current results also revealed that relational guidance is more ubiquitous than previously thought.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In particular, we found relational guidance even when the target never had a relationally maximal value – that is, when it was never the reddest, greenest, bluest or yellowest item in the display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In every trial there were relationally better-matching distractors (one relatively matching distractor and two optimal distractors), which frustrated selecting the target with the first eye movement (in relational search).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Yet, we reliably found that participants searched relationally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This reveals that the visual system is indeed sensitive to the dominant feature in the display, and initiates relational search as soon as the target differs from most of the display items in a linear fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Furthermore, participants continued to search relationally over as many as ten successive trials, even though relational guidance reliably resulted in selecting one of the more extreme distractors first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This means that relational guidance is more readily applied and more persistent than previously thought (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results of the present study also provided evidence for selection proceeding in the way as laid out in the relational account, with the most extreme, relatively matching item being selected first (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', reddest), followed by the next most extreme, relatively matching item (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', next reddest item), and so forth, until the target is selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' As shown in Figure 3, the first saccade in a trial was most likely to select the most extreme, relatively matching item, whereas later saccades were more likely to select target-matching items and the probability for selecting extreme items declined after the second fixation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The mechanism responsible for achieving this order of selection has never been specified in the relational account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Other theories have proposed a memory-based, ‘inhibitory tagging’ mechanism to explain how search proceeds to the next item (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Klein, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 22 Correspondingly, it is possible that selection of target-matching items emerged during the trial due to selection and subsequent inhibition of relatively matching, more extreme distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Inhibitory tagging could be either location-based (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', inhibiting selected nontarget locations during the trial), or feature-based (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', inhibiting a non-target or distractor colour after selection;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Bichot & Schall, 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' If inhibitory tagging is responsible for the selection sequence in the present study, it is perhaps more likely to be feature-based inhibition rather than location-based inhibition: Selection of the target and target-matching distractors commenced earlier than would be expected on the basis of location-based inhibition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Specifically, as there were three relatively matching or optimal distractors in the display, selection of these distractors should have declined after the 3rd fixation, but we observed the decline after the 2nd fixation, which corresponds to the number of different colours in these distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Also, selection of the target and target-matching items showed a steep increase after only one fixation, which seems too early for location-based inhibition, and indicates that the colour(s) rather than the locations of the more extreme distractors may have been inhibited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Alternatively, it is possible that, after the first fixation, attention was tuned to the exact feature value of the target, swiftly switching from originally relational search to a more feature-specific search (or target template;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Duncan & Humphreys, 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' We currently consider this unlikely, as an attentional bias usually automatically carries over to the next trial to influence selection (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', intertrial priming;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Maljkovic & Nakayama, 1994), and the first eye movements never showed evidence of a feature-specific bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Inhibition of a distractor feature can also carry over to the next trial to influence selection, but the effects are weaker than effects of target guidance (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Chang & Egeth, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Hamblin-Frohman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This could explain that relational guidance was somewhat attenuated, as the relatively matching distractor mostly did not differ significantly from the 23 optimal distractor, but was still clearly visible (as both the relatively matching and optimal distractors were selected more frequently than the target-matching distractors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, the somewhat attenuated effect of the relatively matching distractor could also be due to difficulties distinguishing the optimal and relatively matching distractor in the far periphery (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Noorlander et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 1983), or to the fact that there was only one relatively matching, extreme distractor and two optimal distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Further studies are necessary to estimate the magnitude of the attenuation and clarify the mechanism that allows narrowing search to target-matching items after the first fixation(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' A fourth interesting finding relates to the salient item, which had a very dissimilar colour compared to the other items and hence, had the largest bottom-up feature contrast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Wang and Theeuwes (2020) proposed that experiments with sparse displays may underestimate bottom- up saliency effects (see also Rangelov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The displays of the present study contained the largest number of items tested for fine-grained attentional tuning (36 items), yet we found only very weak effects for the salient item, which further declined over trials 1 – 10 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Given the low proportion of first fixations on the salient item, we cannot claim that the salient item significantly attracted attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2 Even in the densely populated displays, top-down tuning to the (relative) target feature led to significantly higher selection rates of the corresponding distractors than bottom-up saliency, indicating that top-down processes dominate attentional guidance over bottom-up saliency, contrary to bottom-up selection views (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Theeuwes, 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Wang & Theeuwes, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' These results also rule out an alternative explanation of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Proponents of feature- based theories (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Guided Search 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Wolfe, 1994) may argue that the results could be due 2 Comparing the proportion of first fixations on the salient item to the proportion of fixations on the non-salient non-target items (omitting the corner positions and central positions that never contained a distractor) revealed that the salient item was actually selected less frequently than the non-salient non-targets (p=.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='03).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 24 to a combination of top-down, feature-specific tuning to the target and bottom-up processes, as the more extreme distractors (optimal and relatively matching distractors) may have been similar enough to the target to be subject to (broad) top-down tuning and were simultaneously more salient than the target, leading to higher selection rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Contrary to this contention, we found a very different results pattern for the salient distractor compared to the other distractors, both in the trial analysis (which showed an increase in capture by extreme and target-similar distractors over trials and a decrease for the salient distractor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 3), and in the time-course analysis (which showed shorter latencies of saccades to the salient distractor than for all other distractors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' These findings suggest that the more extreme (and more salient) relatively matching and optimal distractors attracted attention and the gaze in the same manner as the target-similar (less salient) distractor, viz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', due to top- down tuning and not bottom-up saliency, whereas the effects of the salient distractor were due to bottom-up, stimulus-driven processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Admittedly, it is notoriously difficult to distinguish between combined top-down/bottom- up theories, optimal tuning and the relational account, especially in standard visual search experiments with a distractor, as the theories make quite similar predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' However, the relational account has been extensively tested against these other theories in previous experiments using the spatial cueing paradigm (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2013) and visual search with relatively matching distractors that were very dissimilar from the target (York & Becker, 2020) or whose similarity / saliency varied systematically (Hamblin-Frohman & Becker, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The results unequivocally supported the relational account and showed that early selection cannot be explained by optimal tuning or the combined saliency and similarity to the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Previous studies testing the relational account against the standard, feature-based theories moreover revealed that tuning to relations was a default search mode applied across a wide 25 range of different tasks that would have allowed locating the target by tuning to its specific feature value (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', when the target was always repeated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The present study extends on these findings, by showing that attention is tuned to relative features even when the target is never the relatively reddest, bluest, greenest or yellowest item in the display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' In conditions such as the present experiment, a feature-specific guidance mechanism may be the most efficient search method for the current display, as it would have reduced competition for attention to only target-similar distractors (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', two other items) by excluding relatively matching and optimal distractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Participants chose relational tuning over feature-specific tuning even though, on the first trial of each block, they were only given information about the exact feature-value of the target stimulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The instructional prompts mentioning only the target colour should have primed participants to initiate a guided search for the exact target colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Yet, participants consistently engaged in relational search and also did not learn to use feature-specific tuning over the course of ten (identical) trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' As shown in Figure 3, linear trends for first eye movements were stronger for the relational and the optimal distractors compared to the target-matching items, suggesting that the relational effect became stronger over the course of the block rather than weaker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Collectively, these results show that participants can be quite reluctant to tune attention to the specific feature value of the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' We can only speculate why this may be the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Previous studies have shown that feature-specific tuning results in delays in selecting the target, as well as longer dwell times on target-similar distractors, compared to tuning to relations (in identical displays;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Martin & Becker, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This suggests that tuning attention to exact feature values may cause delays in selection as well as decision- making (about whether the selected item is the target), rendering search less efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' While this question warrants further research, the present study clearly showed that tuning to relative features occurs in more densely populated, 36-item displays;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' in the absence of 26 knowledge of the relative feature of the target, and in the absence of any training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This demonstrates the existence of a mechanism capable of extracting the dominant feature in a visual scene and using that information to tune attention to the relative feature of a target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This renders it likely that relational search is the default search mode in everyday situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 27 Author note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' This research was supported by Australian Research Council (ARC) grant DP210103430 to SIB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 28 References Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The role of target-distractor relationships in guiding attention and the eyes in visual search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Experimental Psychology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' General, 139(2), 247–265.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/a0018808 Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Simply shapely: Relative, not absolute shapes are primed in pop-out search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attention, Perception, and Psychophysics, 75(5), 845–861.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/S13414-013-0433-1/FIGURES/4 Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Folk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Remington, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attentional Capture Does Not Depend on Feature Similarity, but on Target-Nontarget Relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychological Science, 24(5), 634–647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1177/0956797612458528 Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Harris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Venini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Retell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Visual search for color and shape: When is the gaze guided by feature relationships, when by feature values?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Experimental Psychology: Human Perception and Performance, 40(1), 264–291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/a0033489 Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Harris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', York, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Conjunction search is relational: Behavioral and electrophysiological evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Experimental Psychology: Human Perception and Performance, 43(10), 1828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/XHP0000371 Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Valuch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Ansorge, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Color priming in pop-out search depends on the relative color of the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Frontiers in Psychology, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3389/fpsyg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='00289 Bichot, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Schall, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Priming in Macaque Frontal Cortex during Popout Visual Search: Feature-Based Facilitation and Location-Based Inhibition of Return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Neuroscience, 22(11), 4675–4685.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1523/JNEUROSCI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='22-11- 04675.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2002 29 Carrasco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Visual attention: The past 25 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Vision Research, 51(13), 1484– 1525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='VISRES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='012 Chang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Egeth, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Enhancement and Suppression Flexibly Guide Attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychological Science, 30(12), 1724–1732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1177/0956797619878813 Chong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Treisman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2005a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attentional spread in the statistical processing of visual displays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Perception & Psychophysics, 67(1), 1–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/BF03195009 Chong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Treisman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2005b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Statistical processing: computing the average size in perceptual groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Vision Research, 45(7), 891–900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='visres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='004 Choo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Franconeri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Objects with reduced visibility still contribute to size averaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attention, Perception, & Psychophysics, 72(1), 86–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/APP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='86 Desimone, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Duncan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Neural Mechanisms of Selective Visual Attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Annual Review of Neuroscience, 18(1), 193–222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='ne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='030195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001205 Deubel, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Schneider, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Saccade target selection and object recognition: Evidence for a common attentional mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Vision Research, 36(12), 1827–1837.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/0042-6989(95)00294-4 Duncan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Humphreys, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Visual search and stimulus similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychological Review, 96(3), 433–458.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/0033-295X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='433 Gaspelin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Gaspar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Luck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Visual Cognition, 27(3–4), 227–246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1080/13506285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1600090 30 Gaspelin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Leonard, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Luck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychological Science, 26(11), 1740–1750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1177/0956797615597913 Gaspelin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Luck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The Role of Inhibition in Avoiding Distraction by Salient Stimuli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Trends in Cognitive Sciences, 22(1), 79–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='TICS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='001 Gaspelin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Margett-Jordan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Ruthruff, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Gaspelin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Margett-Jordan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Ruthruff, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Susceptible to distraction: Children lack top-down control over spatial attention capture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychon Bull Rev, 22, 461–468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/s13423-014-0708- 0 Geng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', di Quattro, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Helm, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Distractor probability changes the shape of the attentional template.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/XHP0000430 Hamblin-Frohman, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' The attentional template in high and low similarity search: Optimal tuning or tuning to relations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Cognition, 212, 104732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='cognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='104732 Hamblin-Frohman, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Chang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Egeth, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Eye movements reveal the contributions of early and late processes of enhancement and suppression to the guidance of visual search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attention, Perception, and Psychophysics, 84(6), 1913–1924.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/S13414-022-02536-W/FIGURES/4 Joo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Shin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Chong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Blake, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' On the nature of the stimulus information necessary for estimating mean size of visual arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Vision, 9(9), 7–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1167/9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='7 Klein, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Inhibition of return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Trends in Cognitive Sciences, 4(4), 138–147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/S1364-6613(00)01452-2 31 Maljkovic, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Nakayama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Priming of pop-out: I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Role of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Memory & Cognition, 22(6), 657–672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/BF03209251/METRICS Martin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' How feature relationships influence attention and awareness: Evidence from eye movements and EEG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Experimental Psychology: Human Perception and Performance, 44(12), 1865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/XHP0000574 Navalpakkam, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Itti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Search Goal Tunes Visual Features Optimally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Neuron, 53(4), 605–617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='NEURON.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='018 Noorlander, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Koenderink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', den Olden, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Edens, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Sensitivity to spatiotemporal colour contrast in the peripheral visual field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Vision Research, 23(1), 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/0042-6989(83)90035-4 Oliva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Torralba, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Chapter 2 Building the gist of a scene: the role of global image features in recognition (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' 23–36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/S0079-6123(06)55002-2 Peirce, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' PsychoPy—Psychophysics software in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Neuroscience Methods, 162(1–2), 8–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1016/J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='JNEUMETH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='017 Schönhammer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Grubert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Kerzel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attentional guidance by relative features: Behavioral and electrophysiological evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychophysiology, 53(7), 1074–1083.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1111/psyp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='12645 Scolari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Byers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Serences, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Optimal Deployment of Attentional Gain during Fine Discriminations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Neuroscience, 32(22), 7723–7733.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1523/JNEUROSCI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='5558-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2012 Theeuwes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Top-down search strategies cannot override attentional capture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychonomic Bulletin & Review, 11(1), 65–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/BF03206462 Theeuwes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Feature-based attention: it is all bottom-up priming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1098/RSTB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0055 32 Thorpe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Fize, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Marlot, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Speed of processing in the human visual system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Nature, 381(6582), 520–522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1038/381520a0 Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Theeuwes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Salience determines attentional orienting in visual selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Experimental Psychology: Human Perception and Performance, 46(10), 1051–1057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1037/xhp0000796 Wolfe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Guided Search 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0 A revised model of visual search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychonomic Bulletin & Review, 1(2), 202–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/BF03200774/METRICS Wolfe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Visual Search: How Do We Find What We Are Looking For?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Annual Review of Vision Science, 6(1), 539–562.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1146/annurev-vision-091718- 015048 Wolfe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Guided Search 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='0: An updated model of visual search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychonomic Bulletin & Review 2021 28:4, 28(4), 1060–1092.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='3758/S13423-020-01859- 9 York, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Becker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Top-down modulation of gaze capture: Feature similarity, optimal tuning, or tuning to relative features?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Journal of Vision, 20(4), 6–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1167/JOV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='6 Yu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', Hanks, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=', & Geng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Attentional Guidance and Match Decisions Rely on Different Template Information During Visual Search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' Psychological Science, 33(1), 105–120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1177/09567976211032225/ASSET/IMAGES/LARGE/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='1177_095679762 11032225-FIG2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
+page_content='JPEG' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/OtE1T4oBgHgl3EQfaASJ/content/2301.03157v1.pdf'}
diff --git a/P9E0T4oBgHgl3EQfTwDw/content/tmp_files/2301.02242v1.pdf.txt b/P9E0T4oBgHgl3EQfTwDw/content/tmp_files/2301.02242v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..44bbb873b7b7d7c30040d1d2a9cd9cf38db83578
--- /dev/null
+++ b/P9E0T4oBgHgl3EQfTwDw/content/tmp_files/2301.02242v1.pdf.txt
@@ -0,0 +1,590 @@
+GRAPH CONTRASTIVE LEARNING FOR MULTI-OMICS DATA
+Nishant Rajadhyaksha,
+K.J Somaiya College of Engineering
+Mumbai
+n.rajadhyaksha@somaiya.edu
+Aarushi Chitkara
+St Xaviers College
+Mumbai
+aarushi5812@gmail.com
+ABSTRACT
+Advancements in technologies related to working with omics data require novel computation methods
+to fully leverage information and help develop a better understanding of human diseases. This paper
+studies the effects of introducing graph contrastive learning to help leverage graph structure and infor-
+mation to produce better representations for downstream classification tasks for multi-omics datasets.
+We present a learnining framework named Multi-Omics Graph Contrastive Learner(MOGCL) which
+outperforms several aproaches for integrating multi-omics data for supervised learning tasks. We
+show that pre-training graph models with a contrastive methodology along with fine-tuning it in a
+supervised manner is an efficient strategy for multi-omics data classification.
+Keywords Graph Contrastive Learning · Graph Neural Networks · Multi-Omics
+1
+Introduction
+Omics, referring to a field of study in biological sciences that ends with -omics, aims at the collective characterization
+and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an
+organism or organisms. The use of high throughput biomedical research methods has increased substantially over the
+past few years such as Whole Genome Sequencing(WGS), RNA sequencing(RNA-seq), chromosome conformation
+capture (Hi-C) and liquid chromatography coupled with mass spectrometry [1,2]. It is particularly helpful to integrate
+data from different molecular sources such as microRNA(miRNA),mRNA and DNA methylation to provide insight into
+the classification and processes of different diseases. Integration of multi-omics data requires efficient computational
+methods which are capable of correctly modelling and interpreting these relationships. Whilst each omics technology
+can present only a part of the true biological complexity integrating data from multiple omics technologies can help
+provide a more universal picture which can help improve results for classification tasks [3–9].
+Several different methodologies have been proposed to help integrate multi-omics data for classification tasks. Generally,
+different omics data have often been concatenated together or have been subject to ensemble learning where prediction
+for each omics type is ensembled together [10,11]. The recent emergence of Graph Neural Networks(GNNs) as an
+efficient deep learning methodology to model complex systems has prompted researchers to study its effects when
+paired with multi-omics data [12, 13]. Graph contrastive learning is a learning paradigm where data-data pairs are
+utilised to perform discrimination between positive and negative pairs of graph data. Contrastive learning can be used
+as an effective pre-training strategy for training graphical models on supervised learning tasks. This paper describes
+a framework named MOGCL which constructs graphs from multi-omics data and utilises contrastive learning as a
+pre-training strategy to aid downstream classification tasks. We compare our results on benchmark datasets with several
+different machine-learning methodologies. MOGCL performs better on several metrics such as Area Under the ROC
+Curve(AUC), Accuracy and F1 score etc.
+arXiv:2301.02242v1 [q-bio.GN] 3 Jan 2023
+
+2
+Literature Review
+2.1
+Machine learning for multi-omics data
+A significant number of methods have been studied to integrate multi-omics data for various tasks. A large number of
+methods focus on the semi-supervised integration of multi-omics data without utilising the information from ground
+truth labels present in the dataset [14–17]. Most self-supervised methods focus on assigning clusters to different omics
+groups present in the dataset. With the rapid advancements of biotechnology and the detailed curation of datasets,
+more labelled samples of phenotypes or traits are being made available for research. This has led to the development
+of supervised learning models which perform better on multi-omics datasets [18–22]. Kernel methods are powerful
+machine learning models which operate on a higher dimensional space where linear interpolations can be found between
+the given data points. Kernel methods are often used as classical machine learning models for analysing and classifying
+multi-omics. Support Vector Machines(SVM) [23] and partial least squares [24] are examples of classical machine
+learning approaches for multi-omics data. Currently, deep learning approaches are commonly adopted for multi-omics
+integration for various tasks. Islam et al. [25] propose an approach which utilises a convolutional neural network to
+learn important features for multiple omics types and finally concatenate them to predict breast cancer subtypes. An
+approach using stacked Sparse Autoencoders (SAE) was proposed by Xu et al. [26] where representations are produced
+for each type of omics data using autoencoders which are then fed to a deep flexible neural forest for predicting cancer
+subtypes.
+2.2
+Graph based learning approaches
+Graphs are complex data structures which are used to model many complex phenomena in the real world. Graph
+Neural Networks (GNN) deal with applying deep learning to graphical data structures. GNNs have several applications
+such as combinatorial optimizations, neural machine translation, protein-protein interactions, drug discovery [27–34].
+Recently graph-based approaches have been used for multi-omics integration. Wang et al. [35] proposed a methodology
+to convert multi-omics data to graphs and a model named MOGONET consisting of convolutional network (GCN)
+layers [36] to produce refined representations for a downstream classification task on multiple multi-omics datasets
+whilst also identifying important biomarkers. Xiao et al. [37] proposed a model named MOGCN for different cancer
+sub-type classification tasks based on multi-omics data. Graph contrastive learning is an example of a self-supervised
+training methodology where different graph augmentations are utilised to exploit both structural information and
+information about features of the dataset to produce better representations. Some common training strategies are
+pre-training followed by fine-tuning [38] and joint learning [39]. Zhu et al. [40] proposed a framework titled deep
+GRAph Contrastive rEpresentation learning (GRACE) which specifically generates two graph views by corruption and
+attempts to learn node representations by maximizing the agreement of node representations in these two views.
+3
+Methodology
+3.1
+Datasets
+We demonstrate the effectiveness of MOGCL by applying our model on two benchmark datasets namely ROSMAP [41]
+which describes information for patients with Alzheimer’s Disease (AD) concerning a normal control group (NC) and
+BRCA which contains data for breast invasive carcinoma (BRCA) PAM50 subtype classification. The omics data
+used were namely were DNA methylation data (meth), miRNA expression data (miRNA) and mRNA expression data
+(mRNA). Details about the datasets are further described in table 1.
+Dataset Name
+Labels
+Number of features for
+mRNA, meth, miRNA
+Number of features for training
+mRNA, meth, miRNA
+ROSMAP
+NC: 169, AD: 182
+55,889, 23,788, 309
+200, 200, 200
+BRCA
+Normal-like: 115,
+Basal-like: 131,
+HER2-enriched: 46,
+Luminal A: 436,
+Luminal B: 147
+20,531, 20,106, 503
+1000, 1000, 503
+Table 1: Summary of datasets
+2
+
+3.2
+Contrusting graphs from multi-omics data
+In this section, we describe the methodology of converting multi-omics data to a graphical structure which can then
+be leveraged by powerful graph neural network models for further processing. Our task can be defined as defining
+graphs G = (V, E) where V, E represent vertices and edges of the graph respectively. We utilise the feature matrices we
+obtain after preprocessing each type of omics data. The feature matrix for each omics type is represented as X ∈ Rn×d
+where for the ROSMAP dataset d is 200 for each of the omics types and n is 351. Similarly for the BRCA dataset n
+is 875 and d ranges from 1000 for mRNA and meth data to 503 for miRNA data. The nodes V of graph G represent
+the users from which the omics data is collected. We construct an adjacency matrix A ∈ Rn×n to represent G with
+each element in the adjacency matrix representing a node. We denote a weighted edge from node i to node j of the
+graph as the element present at the ith row and jth column of A. Such an adjacency matrix is constructed for each type
+of omics data respectively. A pairwise distance matrix is constructed for data for the points of the particular omics
+dataset using cosine similarity [42] as the distance metric. The distance between node i and node j is denoted by tij. A
+parameter k is introduced which represents the number of edges to be formed per node. An adjacency parameter is then
+chosen by selecting the n × kth value from a sorted array of pairwise distances between all data points. Edges E is then
+selected on the criteria of the distance between data points being smaller than the adjacency parameter. This ensures
+that the number of edges per node is k. A weight of 1 − tij is assigned to the edge from node i to node j if belongs to
+the set of selected edges. An adjacency matrix is prepared for each of the omics types present in the respective dataset
+by following the methodology described above.
+3.3
+Graph constrative learning
+In this section, we describe our training methodology which utilises graph contrastive learning. We use GRACE [40]
+which serves as our self-supervision model. Our contrastive learning methodology consists of two stages namely i)
+data augmentation and ii) contrastive learning. Augmentation functions such as removing random edges and feature
+masking are used to create augmented views of a graph. For augmenting edges, we randomly remove a portion of
+edges from the original graph. We sample a random masking matrix ˜R ∈ {0, 1}N×N. Where the elements of R
+are drawn from a Bernoulli distribution ˜R ∼ Bern(1 − pr) where pr is the probability of each edge is removed.
+We choose pr to be 0.4 for our study. The resulting adjacency matrix can be given as ˜A = A ◦ ˜R. For augmenting
+features we randomly mask the dimensions of a feature vector by replacing them with zeros. We sample random feature
+vectors to construct a matrix ˜
+M ∈ {0, 1} according to a Bernoulli distribution having a similar size as feature matrix
+X. The augmented feature matrix can then be represented by ˜X = X ◦ ˜
+M. We use a GCN [36] model as an encoder
+model which helps represent the augmented views of a given graph and denote it with f. Let U = f( ˜
+X1, ˜
+A1) and
+V = f( ˜
+X2, ˜
+A2) be the representations generated after processing two graphs with our shared encoder model. We aim
+to maximise the agreement between similar nodes in the latent space and minimise the agreement between the rest
+of the contrasting nodes. To achieve this we make use of the Normalized Temperature-scaled Cross Entropy Loss
+(NT-Xent) [43]. NT-Xent loss is given by eq 1.
+ℓ(ui, vi) = log
+eθ(ui,vi)/τ
+eθ(ui,vi)/τ +
+�
+k̸=i
+eθ(ui,vk)/τ +
+�
+k̸=i
+eθ(ui,uk)/τ ,
+(1)
+where ui and vi represent the ith feature vector from the feature matrix U and V respectively. τ represents a temperature
+parameter. θ is a similarity function given in equation 2.
+θ(u, v) = c(n(u), n(v))
+(2)
+where c(.,.) is the cosine similarity function and n(.) represents any non-linear function such as ReLU [44] or
+LeakyReLU [45] etc. We finally optimise the weights of the shared encoder model on the NT-Xent loss.
+The GCN encoder is further trained in a supervised manner using labels from the given dataset. The encoder model
+was trained for a downstream classification task using pre-training followed by fine-tuning. In pre-training, we first
+fully train an encoder model for each omics type in an unsupervised manner. We later fine-tune the models using label
+information from the given dataset. Let ˜f be the pre-trained GCN encoder. We utilise linear layers in conjunction
+with concatenated features produced from the encoder models to produce predicted label ˜Y = ˜f(X, A). We use the
+Cross-Entropy Loss to calculate the loss for predicted labels ˜Y and true labels Y and finally optimise our encoder
+model on this loss.
+3
+
+Figure 1: Contrastive Learning for GNN Encoder
+Figure 2: Downstream Supervised Training of GNN Encoder
+3.4
+Experiments
+In this section we describe the experiments we perform to evaluate our MOGCL framework. We first produce graphs
+for each omics type in our datasets and train a separate encoder model for each one respectively. We finally concatenate
+the features produced by each encoder model and train the encoder model in a pre-training followed by fine-tuning
+methodology. We compare our classification results to the ones described in [35] to evaluate the efficiency of introducing
+a contrastive learning methodology for the given classification task. Performance of all permutations of encoder models
+is calculated by conducting r = 5 runs with random weight initialisations for each permutation. We measure the
+performance of our model on metrics such as accuracy, f1-score and AUC for the ROSMAP dataset and use accuracy,f1-
+weighted score and f1-macro score to evaluate the BRCA dataset. We use PyTorch-geometric [46], PyGCL [47] and
+pytorch-lightning [48] for conducting our experiments. Adam [49] optimizer with a learning rate of 0.0001 is utilised
+for all our experiments. We use a two-layered GCN as our encoder model which is used in graph contrastive learning.
+We further use two linear layers in conjunction with our encoder model to perform fine-tuning with the given true labels.
+We compress all feature vectors to a 100-dimensional latent space for all our experiments. We try to visualise the effects
+of our pretraining strategy by visualising the feature vectors before and after processing them with our encoder models
+for each omics type. t-SNE [50] was utilised to compress feature vectors to a two-dimensional space in order to produce
+visualisations.
+4
+Results and Discussion
+The results for the classification task for ROSMAP and BRCA datasets are displayed in table 2 and table 3 respectively.
+4
+
+000
+0000
+t ~T
+GNN
+Intrarview
+ui
+0000
+contrast
+000
+000
+U= f(G)
+0000
+000
+000
+000
+G = t(9) = (X1, A1)
+000
+G1
+0000
+Shared
+000
+000
+=(X,A)
+000
+000
+Y1
+GNN
+0000C0元
+t
+000
+000
+000
+V= f(G2)
+0000
+ T
+G2 = t(G) = (X2, A2)
+000
+92
+0000Linear Layers
+DNA Methylation
+samples
+Pre-trainedGCN
+(meth)
+Concatenated
+Features
+Final Logits
+mRNA expression
+samples
+Pre-trained GCN
+(mRNA)
+miRNA expression
+samples
+Pre-trained GCN
+(miRNA)Table 2: Results for classification task on ROSMAP
+Method
+Accuracy
+F1
+AUC
+KNN
+0.657 ± 0.036
+0.671 ± 0.044
+0.709 ± 0.045
+SVM
+0.770 ± 0.024
+0.778 ± 0.016
+0.770 ± 0.026
+Lasso
+0.694 ± 0.037
+0.730 ± 0.033
+0.770 ± 0.035
+RF
+0.726 ± 0.029
+0.734 ± 0.021
+0.811 ± 0.019
+XGBoost
+0.760 ± 0.046
+0.772 ± 0.045
+0.837 ± 0.030
+NN
+0.755 ± 0.021
+0.764 ± 0.021
+0.827 ± 0.025
+GRridge
+0.760 ± 0.034
+0.769 ± 0.029
+0.841 ± 0.023
+block PLSDA
+0.742 ± 0.024
+0.755 ± 0.023
+0.830 ± 0.025
+block sPLSDA
+0.753 ± 0.033
+0.764 ± 0.035
+0.838 ± 0.021
+NN_NN
+0.766 ± 0.023
+0.777 ± 0.019
+0.819 ± 0.017
+NN_VCDN
+0.775 ± 0.026
+0.790 ± 0.018
+0.843 ± 0.021
+MOGONET_NN
+0.804 ± 0.016
+0.808 ± 0.010
+0.858 ± 0.024
+MOGCL (ours)
+0.818 ± 0.014
+0.818 ± 0.014
+0.866 ± 0.021
+Table 3: Results of classification task on BRCA.
+Method
+Accuracy
+F1-Weighted
+F1-Macro
+KNN
+0.742 ± 0.024
+0.730 ± 0.023
+0.682 ± 0.025
+SVM
+0.729 ± 0.018
+0.702 ± 0.015
+0.640 ± 0.017
+Lasso
+0.732 ± 0.012
+0.698 ± 0.015
+0.642 ± 0.026
+RF
+0.754 ± 0.009
+0.733 ± 0.010
+0.649 ± 0.013
+XGBoost
+0.781 ± 0.008
+0.764 ± 0.010
+0.701 ± 0.017
+NN
+0.754 ± 0.028
+0.740 ± 0.034
+0.668 ± 0.047
+GRridge
+0.745 ± 0.016
+0.726 ± 0.019
+0.656 ± 0.025
+block PLSDA
+0.642 ± 0.009
+0.534 ± 0.014
+0.369 ± 0.017
+block sPLSDA
+0.639 ± 0.008
+0.522 ± 0.016
+0.351 ± 0.022
+NN_NN
+0.796 ± 0.012
+0.784 ± 0.014
+0.723 ± 0.018
+NN_VCDN
+0.792 ± 0.010
+0.781 ± 0.006
+0.721 ± 0.018
+MOGONET_NN
+0.805 ± 0.017
+0.782 ± 0.030
+0.737 ± 0.038
+MOGCL (ours)
+0.853 ± 0.005
+0.851 ± 0.010
+0.823 ± 0.006
+The performance of MOGCL is compared with the following classification algorithms 1) K-nearest neighbour classifier
+(KNN). K-nearest neighbours are chosen from the training data to make label predictions during evaluation. 2) Support
+Vector Machine classifier (SVM). 3) Lasso which is L1-regularised linear regression. A unique model was trained
+to forecast each class’s probability in Lasso, and the class with the greatest foretasted probability was chosen as the
+final prediction of the model’s overall class label 4) Random Forest classifier (RF). 5) Extreme Gradient Boosting
+(XGBoost) is a distributed, scalable gradient-boosted decision tree (GBDT) machine learning framework. 6) Fully
+connected Neural Network (NN) classifier. loss for the fully connected NN was calculated by the cross-entropy loss. 7)
+Adaptive group-regularized ridge regression (GRridge). 8) block PLSDA mentioned in DIABLO [6]. block PLSDA
+performs latent Discriminant Analysis (LDA) to project multi-omics data to a latent space. To categorise a discrete
+outcome, block PLSDA integrates various omics data types measured on the same set of samples. 9) block sPLSDA.
+10) MOGONET_NN. MOGONET_NN is architecturally similar to MOGCL but does not use a pre-training strategy.
+We achieve significant results by following our pre-training methodology as it performs better than the other models
+on all metrics used to measure the results. For the ROSMAP dataset MOGCL achieves an average accuracy of 0.818
+in comparison to 0.804 achieved by MOGONET_NN. following this trend MOGCL achieves an F1-score and AUC
+of 0.818 and 0.866 as compared to 0.808 and 0.856 achieved by MOGONET_NN. For the BRCA dataset MOGCL
+achieves an accuracy of 0.853 as compared to 0.805 for MOGONET_NN. MOGCL receives an F1-weighted score
+of 0.851 and an F1-macro score of 0.823 as compared to 0.782 and 0.737 respectively for MOGONET_NN. This
+demonstrates that adopting a graph based semi-supervised learning strategy in addition to fine-tuning for a downstream
+task is an effective training strategy for training models on multi-omics datasets.
+We demonstrate the effects of adopting a semi-supervised methodology of training by analysing 3 and 4. We visualise
+the feature matrices X by projecting data points into a two-dimensional plane by utilising t-SNE. Similarly, we map the
+feature vectors produced by the GCN encoders to a 2-dimensional space and compare the results. MOGCL tries to
+cluster embeddings in the absence of labels to create more structured representations during the pre-training phase.
+Better representation help during the fine-tuning phase which in turn helps produce better classification scores.
+5
+
+Figure 3: BRCA Embeddings
+Figure 4: ROSMAP Embeddings
+6
+
+DNA-Methylation-BRCA
+DNA-Methylation-BRCA-Embeddings
+mRNA-BRCA
+miRNA-BRCA
+miRNA-BRCA-Embeddings
+mRNA-BRCA-EmbeddingsDNA-Methylation-ROSMAP
+DNA-Methylation-ROSMAP-Embeddings
+mRNA-ROSMAP
+miRNA-ROSMAP
+miRNA-ROSMAP-Embeddings
+mRNA-ROSMAP-EmbeddingsFigure 5 represents the performance of permutation of different omics types when processed by MOGCL. We pre-train
+three encoder models for all omics types in the study respectively. To calculate performance we select a permutation of
+these encoder models and train them using true labels in a supervised manner. MOGCL performs its best when fed
+information by concatenating all the omics types together for both the ROSMAP and BRCA datasets. For the BRCA
+dataset, a combination of mRNA and DNA-Methylation data provides the next best results however for the ROSMAP
+dataset a combination of mRNA and miRNA provides the next best set of results. For both the ROSMAP and BRCA
+datasets using only a single omics type provides the worst results. Using only DNA-Methylation data is the least useful
+option followed by miRNA and mRNA data across both BRCA and ROSMAP datasets.
+Figure 5: Performance of Omics-Types
+5
+Conclusion
+This paper introduces a novel framework named MOGCL which introduces a graph contrastive learning methodology
+for multi-omics data classification. We first provide a comprehensive literature survey regarding work done in the field
+of machine learning relating to graph-based learning methods and multi-omics data. A method for constructing graphs
+from multi-omics data is discussed. We then describe our framework MOGCL which uses GRACE as a pre-training
+method followed by fine-tuning with true labels in a supervised setting. We discuss our results for the BRCA and
+ROSMAP datasets and show that our framework performs better than other baselines used for this study. The use
+of permutations of different omics types is discussed by analysing performance across different metrics. We discuss
+the effects of adopting a semi-supervised pre-training strategy by visualising the embeddings produced by our graph
+encoders. We finally conclude that adopting a pre-training methodology is an efficient way to train graphical models
+for classification problems involving multi-omics datasets. Future works could include experimenting with different
+contrastive learning methodologies to determine which one is the most efficient. Experiments can be conducted for
+different GNNs such as Graph Attention Networks (GAT) or Graph Isomorphism Networks (GIN) etc. to determine
+which one can serve as the best encoder for supervised learning on multi-omics datasets.
+References
+[1] Angela P Fuentes-Pardo and Daniel E Ruzzante. Whole-genome sequencing approaches for conservation biology:
+Advantages, limitations and practical recommendations. Mol. Ecol., 26(20):5369–5406, October 2017.
+[2] Rui Chen and Michael Snyder. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst.
+Biol. Med., 5(1):73–82, January 2013.
+[3] Zhi Huang, Xiaohui Zhan, Shunian Xiang, Travis S. Johnson, Bryan Helm, Christina Y. Yu, Jie Zhang, Paul
+Salama, Maher Rizkalla, Zhi Han, and Kun Huang. Salmon: Survival analysis learning with multi-omics neural
+networks on breast cancer. Frontiers in Genetics, 10, 2019.
+[4] Sijia Huang, Kumardeep Chaudhary, and Lana X. Garmire. More is better: Recent progress in multi-omics data
+integration methods. Frontiers in Genetics, 8, 2017.
+[5] Sebastian Canzler, Jana Schor, Wibke Busch, Kristin Schubert, Ulrike E. Rolle-Kampczyk, Hervé Seitz, Hennicke
+Kamp, Martin von Bergen, Roland Buesen, and Jörg Hackermüller. Prospects and challenges of multi-omics data
+integration in toxicology. Archives of Toxicology, Feb 2020.
+7
+
+0.7
+0.7
+0.6
+0.6
+Performance
+Performance
+0.5
+E'0
+0.3
+0.2
+mRNA+meth+miRNA
+mRNA+meth
+0.2
+mRNA+meth
+mRNA+miRNA
+mRNA+miRNA
+meth+miRNA
+mRNA
+meth+miRNA
+0.1
+miRNA
+F1_weighted
+AUC
+BRCA Metric
+ROSMAPMetric[6] Amrit Singh, Casey P Shannon, Benoît Gautier, Florian Rohart, Michaël Vacher, Scott J Tebbutt, and Kim-Anh
+Lê Cao. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.
+Bioinformatics, 35(17):3055–3062, September 2019.
+[7] Mark A. van de Wiel, Tonje G. Lien, Wina Verlaat, Wessel N. van Wieringen, and Saskia M. Wilting. Better
+prediction by use of co-data: adaptive group-regularized ridge regression. Statistics in Medicine, 35(3):368–381,
+2016.
+[8] Yingkun Zhu, Dengpan Bu, and Lu Ma. Integration of multiplied omics, a step forward in systematic dairy
+research. Metabolites, 12(3), 2022.
+[9] Indhupriya Subramanian, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal Anamika. Multi-omics data
+integration, interpretation, and its application. Bioinform. Biol. Insights, 14:1177932219899051, January 2020.
+[10] Olivier B. Poirion, Zheng Jing, Kumardeep Chaudhary, Sijia Huang, and Lana X. Garmire. Deepprog: an ensemble
+of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Medicine,
+13(1):112, Jul 2021.
+[11] Shane O’Donnell, R. Ross, and Catherine Stanton. The progress of multi-omics technologies: Determining
+function in lactic acid bacteria using a systems level approach. Frontiers in Microbiology, 10:3084, 01 2020.
+[12] Chaoyi Yin, Yangkun Cao, Peishuo Sun, Hengyuan Zhang, Zhi Li, Ying Xu, and Huiyan Sun. Molecular subtyping
+of cancer based on robust graph neural network and multi-omics data integration. Front. Genet., 13:884028, May
+2022.
+[13] Xiaohan Xing, Fan Yang, Hang Li, Jun Zhang, Yu Zhao, Mingxuan Gao, Junzhou Huang, and Jianhua Yao. An
+interpretable multi-level enhanced graph attention network for disease diagnosis with gene expression data. In
+2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 556–561. IEEE, 2021.
+[14] Ziwang Huang, Hua Chai, Ruoqi Wang, Haitao Wang, Yuedong Yang, and Hejun Wu. Integration of patch features
+through self-supervised learning and transformer for survival analysis on whole slide images. In International
+Conference on Medical Image Computing and Computer-Assisted Intervention, pages 561–570. Springer, 2021.
+[15] Xiaoshuang Liu, Xian Xu, Xiao Xu, Xiang Li, and Guotong Xie. Representation learning for multi-omics data
+with heterogeneous gene regulatory network. In 2021 IEEE International Conference on Bioinformatics and
+Biomedicine (BIBM), pages 702–705, 2021.
+[16] Ronglai Shen, Adam B. Olshen, and Marc Ladanyi. Integrative clustering of multiple genomic data types
+using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics,
+25(22):2906–2912, 09 2009.
+[17] Giulia Tini, Luca Marchetti, Corrado Priami, and Marie-Pier Scott-Boyer. Multi-omics integration-a comparison
+of unsupervised clustering methodologies. Brief. Bioinform., 20(4):1269–1279, July 2019.
+[18] Lorin M. Towle-Miller, Jeffrey C. Miecznikowski, Fan Zhang, and David L. Tritchler. Sumo-fil: Supervised
+multi-omic filtering prior to performing network analysis. PLOS ONE, 16(8):1–20, 08 2021.
+[19] Otília Menyhárt and Balázs Gy˝orffy. Multi-omics approaches in cancer research with applications in tumor
+subtyping, prognosis, and diagnosis. Computational and Structural Biotechnology Journal, 19:949–960, 2021.
+[20] Kaiwen Tan, Weixian Huang, Jinlong Hu, and Shoubin Dong. A multi-omics supervised autoencoder for pan-
+cancer clinical outcome endpoints prediction. BMC Medical Informatics and Decision Making, 20(3):129, Jul
+2020.
+[21] Zak Costello and Hector Garcia Martin. A machine learning approach to predict metabolic pathway dynamics
+from time-series multiomics data. npj Systems Biology and Applications, 4(1):19, May 2018.
+[22] Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, Olivier Périn, and Arnaud Droit. Integration strategies of
+multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 19:3735–
+3746, 2021.
+[23] SungHwan Kim, Jae-Hwan Jhong, JungJun Lee, and Ja-Yong Koo. Meta-analytic support vector machine for
+integrating multiple omics data. BioData Mining, 10(1):2, Jan 2017.
+[24] Candida S. Punla, https://orcid.org/ 0000-0002-1094-0018, cspunla@bpsu.edu.ph, Rosemarie C. Farro,
+https://orcid.org/0000-0002-3571-2716, rcfarro@bpsu.edu.ph, and Bataan Peninsula State University Dinalupihan,
+Bataan, Philippines. Are we there yet?: An analysis of the competencies of BEED graduates of BPSU-DC.
+International Multidisciplinary Research Journal, 4(3):50–59, September 2022.
+[25] Md Mohaiminul Islam, Shujun Huang, Rasif Ajwad, Chen Chi, Yang Wang, and Pingzhao Hu. An integrative
+deep learning framework for classifying molecular subtypes of breast cancer. Comput. Struct. Biotechnol. J.,
+18:2185–2199, August 2020.
+8
+
+[26] Jing Xu, Peng Wu, Yuehui Chen, Qingfang Meng, Hussain Dawood, and Hassan Dawood. A hierarchical
+integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
+BMC Bioinformatics, 20(1):527, Oct 2019.
+[27] Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization with physics-
+inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, Apr 2022.
+[28] Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: a survey of state-of-the-
+art. Data Science and Engineering, 6(2):119–141, 2021.
+[29] Binh Nguyen, Long Nguyen, and Dien Dinh. Multi-level community-awareness graph neural networks for neural
+machine translation. In Proceedings of the 29th International Conference on Computational Linguistics, pages
+5021–5028, Gyeongju, Republic of Korea, October 2022. International Committee on Computational Linguistics.
+[30] Xin Mei, Xiaoyan Cai, Libin Yang, and Nanxin Wang. Graph transformer networks based text representation.
+Neurocomputing, 463:91–100, 2021.
+[31] Elahe Nasiri, Kamal Berahmand, Mehrdad Rostami, and Mohammad Dabiri. A novel link prediction algorithm
+for protein-protein interaction networks by attributed graph embedding. Computers in Biology and Medicine,
+137:104772, 2021.
+[32] Xinnan Dai, Fan Xu, Shike Wang, Piyushkumar A Mundra, and Jie Zheng. Pike-r2p: Protein–protein interaction
+network-based knowledge embedding with graph neural network for single-cell rna to protein prediction. BMC
+bioinformatics, 22(6):1–17, 2021.
+[33] Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang, Lei Cai, Qi Qi, Zhuoning Yuan,
+Tianbao Yang, et al. Advanced graph and sequence neural networks for molecular property prediction and drug
+discovery. Bioinformatics, 38(9):2579–2586, 2022.
+[34] Pietro Bongini, Monica Bianchini, and Franco Scarselli. Molecular generative graph neural networks for drug
+discovery. Neurocomputing, 450:242–252, 2021.
+[35] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, and Kun Huang. Mogonet
+integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker
+identification. Nature Communications, 12(1):3445, Jun 2021.
+[36] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2016.
+[37] Xiao Li, Jie Ma, Ling Leng, Mingfei Han, Mansheng Li, Fuchu He, and Yunping Zhu. Mogcn: A multi-omics
+integration method based on graph convolutional network for cancer subtype analysis. Frontiers in Genetics, 13,
+2022.
+[38] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
+learning with augmentations, 2020.
+[39] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. Graph debiased contrastive learning with joint
+representation clustering. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference
+on Artificial Intelligence, IJCAI-21, pages 3434–3440. International Joint Conferences on Artificial Intelligence
+Organization, 8 2021. Main Track.
+[40] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive Representation
+Learning. In ICML Workshop on Graph Representation Learning and Beyond, 2020.
+[41] Philip L. De Jager, Yiyi Ma, Cristin McCabe, Jishu Xu, Badri N. Vardarajan, Daniel Felsky, Hans-Ulrich Klein,
+Charles C. White, Mette A. Peters, Ben Lodgson, Parham Nejad, Anna Tang, Lara M. Mangravite, Lei Yu, Chris
+Gaiteri, Sara Mostafavi, Julie A. Schneider, and David A. Bennett. A multi-omic atlas of the human frontal cortex
+for aging and alzheimer’s disease research. Scientific Data, 5(1):180142, Aug 2018.
+[42] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad Setiawan. Cosine similarity to determine
+similarity measure: Study case in online essay assessment. In 2016 4th International Conference on Cyber and IT
+Service Management, pages 1–6, 2016.
+[43] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
+learning of visual representations, 2020.
+[44] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biol. Cybern., 20(3–4):121–136,
+sep 1975.
+[45] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
+network, 2015.
+[46] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop
+on Representation Learning on Graphs and Manifolds, 2019.
+9
+
+[47] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An Empirical Study of Graph Contrastive Learning. arXiv.org,
+September 2021.
+[48] William Falcon et al. Pytorch lightning. GitHub. Note: https://github. com/PyTorchLightning/pytorch-lightning,
+3(6), 2019.
+[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann
+LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
+May 7-9, 2015, Conference Track Proceedings, 2015.
+[50] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
+Research, 9:2579–2605, 2008.
+10
+
diff --git a/P9E0T4oBgHgl3EQfTwDw/content/tmp_files/load_file.txt b/P9E0T4oBgHgl3EQfTwDw/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d8bce18ade5976d3947c36a8a140f10060f46fc5
--- /dev/null
+++ b/P9E0T4oBgHgl3EQfTwDw/content/tmp_files/load_file.txt
@@ -0,0 +1,560 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf,len=559
+page_content='GRAPH CONTRASTIVE LEARNING FOR MULTI-OMICS DATA Nishant Rajadhyaksha, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='J Somaiya College of Engineering Mumbai n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='rajadhyaksha@somaiya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='edu Aarushi Chitkara St Xaviers College Mumbai aarushi5812@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='com ABSTRACT Advancements in technologies related to working with omics data require novel computation methods to fully leverage information and help develop a better understanding of human diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' This paper studies the effects of introducing graph contrastive learning to help leverage graph structure and infor- mation to produce better representations for downstream classification tasks for multi-omics datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We present a learnining framework named Multi-Omics Graph Contrastive Learner(MOGCL) which outperforms several aproaches for integrating multi-omics data for supervised learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We show that pre-training graph models with a contrastive methodology along with fine-tuning it in a supervised manner is an efficient strategy for multi-omics data classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Keywords Graph Contrastive Learning · Graph Neural Networks · Multi-Omics 1 Introduction Omics, referring to a field of study in biological sciences that ends with -omics, aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The use of high throughput biomedical research methods has increased substantially over the past few years such as Whole Genome Sequencing(WGS), RNA sequencing(RNA-seq), chromosome conformation capture (Hi-C) and liquid chromatography coupled with mass spectrometry [1,2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' It is particularly helpful to integrate data from different molecular sources such as microRNA(miRNA),mRNA and DNA methylation to provide insight into the classification and processes of different diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Integration of multi-omics data requires efficient computational methods which are capable of correctly modelling and interpreting these relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Whilst each omics technology can present only a part of the true biological complexity integrating data from multiple omics technologies can help provide a more universal picture which can help improve results for classification tasks [3–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Several different methodologies have been proposed to help integrate multi-omics data for classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Generally, different omics data have often been concatenated together or have been subject to ensemble learning where prediction for each omics type is ensembled together [10,11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The recent emergence of Graph Neural Networks(GNNs) as an efficient deep learning methodology to model complex systems has prompted researchers to study its effects when paired with multi-omics data [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph contrastive learning is a learning paradigm where data-data pairs are utilised to perform discrimination between positive and negative pairs of graph data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Contrastive learning can be used as an effective pre-training strategy for training graphical models on supervised learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' This paper describes a framework named MOGCL which constructs graphs from multi-omics data and utilises contrastive learning as a pre-training strategy to aid downstream classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We compare our results on benchmark datasets with several different machine-learning methodologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' MOGCL performs better on several metrics such as Area Under the ROC Curve(AUC), Accuracy and F1 score etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='02242v1 [q-bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='GN] 3 Jan 2023 2 Literature Review 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='1 Machine learning for multi-omics data A significant number of methods have been studied to integrate multi-omics data for various tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A large number of methods focus on the semi-supervised integration of multi-omics data without utilising the information from ground truth labels present in the dataset [14–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Most self-supervised methods focus on assigning clusters to different omics groups present in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' With the rapid advancements of biotechnology and the detailed curation of datasets, more labelled samples of phenotypes or traits are being made available for research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' This has led to the development of supervised learning models which perform better on multi-omics datasets [18–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Kernel methods are powerful machine learning models which operate on a higher dimensional space where linear interpolations can be found between the given data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Kernel methods are often used as classical machine learning models for analysing and classifying multi-omics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Support Vector Machines(SVM) [23] and partial least squares [24] are examples of classical machine learning approaches for multi-omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Currently, deep learning approaches are commonly adopted for multi-omics integration for various tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Islam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [25] propose an approach which utilises a convolutional neural network to learn important features for multiple omics types and finally concatenate them to predict breast cancer subtypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' An approach using stacked Sparse Autoencoders (SAE) was proposed by Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [26] where representations are produced for each type of omics data using autoencoders which are then fed to a deep flexible neural forest for predicting cancer subtypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='2 Graph based learning approaches Graphs are complex data structures which are used to model many complex phenomena in the real world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph Neural Networks (GNN) deal with applying deep learning to graphical data structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' GNNs have several applications such as combinatorial optimizations, neural machine translation, protein-protein interactions, drug discovery [27–34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Recently graph-based approaches have been used for multi-omics integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [35] proposed a methodology to convert multi-omics data to graphs and a model named MOGONET consisting of convolutional network (GCN) layers [36] to produce refined representations for a downstream classification task on multiple multi-omics datasets whilst also identifying important biomarkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [37] proposed a model named MOGCN for different cancer sub-type classification tasks based on multi-omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph contrastive learning is an example of a self-supervised training methodology where different graph augmentations are utilised to exploit both structural information and information about features of the dataset to produce better representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Some common training strategies are pre-training followed by fine-tuning [38] and joint learning [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [40] proposed a framework titled deep GRAph Contrastive rEpresentation learning (GRACE) which specifically generates two graph views by corruption and attempts to learn node representations by maximizing the agreement of node representations in these two views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 3 Methodology 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='1 Datasets We demonstrate the effectiveness of MOGCL by applying our model on two benchmark datasets namely ROSMAP [41] which describes information for patients with Alzheimer’s Disease (AD) concerning a normal control group (NC) and BRCA which contains data for breast invasive carcinoma (BRCA) PAM50 subtype classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The omics data used were namely were DNA methylation data (meth), miRNA expression data (miRNA) and mRNA expression data (mRNA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Details about the datasets are further described in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Dataset Name Labels Number of features for mRNA, meth, miRNA Number of features for training mRNA, meth, miRNA ROSMAP NC: 169, AD: 182 55,889, 23,788, 309 200, 200, 200 BRCA Normal-like: 115, Basal-like: 131, HER2-enriched: 46, Luminal A: 436, Luminal B: 147 20,531, 20,106, 503 1000, 1000, 503 Table 1: Summary of datasets 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='2 Contrusting graphs from multi-omics data In this section, we describe the methodology of converting multi-omics data to a graphical structure which can then be leveraged by powerful graph neural network models for further processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Our task can be defined as defining graphs G = (V, E) where V, E represent vertices and edges of the graph respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We utilise the feature matrices we obtain after preprocessing each type of omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The feature matrix for each omics type is represented as X ∈ Rn×d where for the ROSMAP dataset d is 200 for each of the omics types and n is 351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Similarly for the BRCA dataset n is 875 and d ranges from 1000 for mRNA and meth data to 503 for miRNA data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The nodes V of graph G represent the users from which the omics data is collected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We construct an adjacency matrix A ∈ Rn×n to represent G with each element in the adjacency matrix representing a node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We denote a weighted edge from node i to node j of the graph as the element present at the ith row and jth column of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Such an adjacency matrix is constructed for each type of omics data respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A pairwise distance matrix is constructed for data for the points of the particular omics dataset using cosine similarity [42] as the distance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The distance between node i and node j is denoted by tij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A parameter k is introduced which represents the number of edges to be formed per node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' An adjacency parameter is then chosen by selecting the n × kth value from a sorted array of pairwise distances between all data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Edges E is then selected on the criteria of the distance between data points being smaller than the adjacency parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' This ensures that the number of edges per node is k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A weight of 1 − tij is assigned to the edge from node i to node j if belongs to the set of selected edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' An adjacency matrix is prepared for each of the omics types present in the respective dataset by following the methodology described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='3 Graph constrative learning In this section, we describe our training methodology which utilises graph contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We use GRACE [40] which serves as our self-supervision model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Our contrastive learning methodology consists of two stages namely i) data augmentation and ii) contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Augmentation functions such as removing random edges and feature masking are used to create augmented views of a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' For augmenting edges, we randomly remove a portion of edges from the original graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We sample a random masking matrix ˜R ∈ {0, 1}N×N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Where the elements of R are drawn from a Bernoulli distribution ˜R ∼ Bern(1 − pr) where pr is the probability of each edge is removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We choose pr to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='4 for our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The resulting adjacency matrix can be given as ˜A = A ◦ ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' For augmenting features we randomly mask the dimensions of a feature vector by replacing them with zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We sample random feature vectors to construct a matrix ˜ M ∈ {0, 1} according to a Bernoulli distribution having a similar size as feature matrix X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The augmented feature matrix can then be represented by ˜X = X ◦ ˜ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We use a GCN [36] model as an encoder model which helps represent the augmented views of a given graph and denote it with f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Let U = f( ˜ X1, ˜ A1) and V = f( ˜ X2, ˜ A2) be the representations generated after processing two graphs with our shared encoder model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We aim to maximise the agreement between similar nodes in the latent space and minimise the agreement between the rest of the contrasting nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' To achieve this we make use of the Normalized Temperature-scaled Cross Entropy Loss (NT-Xent) [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' NT-Xent loss is given by eq 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' ℓ(ui, vi) = log eθ(ui,vi)/τ eθ(ui,vi)/τ + � k̸=i eθ(ui,vk)/τ + � k̸=i eθ(ui,uk)/τ , (1) where ui and vi represent the ith feature vector from the feature matrix U and V respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' τ represents a temperature parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' θ is a similarity function given in equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' θ(u, v) = c(n(u), n(v)) (2) where c(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=',.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=') is the cosine similarity function and n(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=') represents any non-linear function such as ReLU [44] or LeakyReLU [45] etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We finally optimise the weights of the shared encoder model on the NT-Xent loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The GCN encoder is further trained in a supervised manner using labels from the given dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The encoder model was trained for a downstream classification task using pre-training followed by fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In pre-training, we first fully train an encoder model for each omics type in an unsupervised manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We later fine-tune the models using label information from the given dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Let ˜f be the pre-trained GCN encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We utilise linear layers in conjunction with concatenated features produced from the encoder models to produce predicted label ˜Y = ˜f(X, A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We use the Cross-Entropy Loss to calculate the loss for predicted labels ˜Y and true labels Y and finally optimise our encoder model on this loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 3 Figure 1: Contrastive Learning for GNN Encoder Figure 2: Downstream Supervised Training of GNN Encoder 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='4 Experiments In this section we describe the experiments we perform to evaluate our MOGCL framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We first produce graphs for each omics type in our datasets and train a separate encoder model for each one respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We finally concatenate the features produced by each encoder model and train the encoder model in a pre-training followed by fine-tuning methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We compare our classification results to the ones described in [35] to evaluate the efficiency of introducing a contrastive learning methodology for the given classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Performance of all permutations of encoder models is calculated by conducting r = 5 runs with random weight initialisations for each permutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We measure the performance of our model on metrics such as accuracy, f1-score and AUC for the ROSMAP dataset and use accuracy,f1- weighted score and f1-macro score to evaluate the BRCA dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We use PyTorch-geometric [46], PyGCL [47] and pytorch-lightning [48] for conducting our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Adam [49] optimizer with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='0001 is utilised for all our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We use a two-layered GCN as our encoder model which is used in graph contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We further use two linear layers in conjunction with our encoder model to perform fine-tuning with the given true labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We compress all feature vectors to a 100-dimensional latent space for all our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We try to visualise the effects of our pretraining strategy by visualising the feature vectors before and after processing them with our encoder models for each omics type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' t-SNE [50] was utilised to compress feature vectors to a two-dimensional space in order to produce visualisations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 4 Results and Discussion The results for the classification task for ROSMAP and BRCA datasets are displayed in table 2 and table 3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 4 000 0000 t ~T GNN Intrarview ui 0000 contrast 000 000 U= f(G) 0000 000 000 000 G = t(9) = (X1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A1) 000 G1 0000 Shared 000 000 =(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='A) 000 000 Y1 GNN 0000C0元 t 000 000 000 V= f(G2) 0000 T G2 = t(G) = (X2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A2) 000 92 0000Linear Layers DNA Methylation samples Pre-trainedGCN (meth) Concatenated Features Final Logits mRNA expression samples Pre-trained GCN (mRNA) miRNA expression samples Pre-trained GCN (miRNA)Table 2: Results for classification task on ROSMAP Method Accuracy F1 AUC KNN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='657 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='671 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='709 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='045 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='770 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='778 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='770 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='026 Lasso 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='694 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='037 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='730 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='770 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='035 RF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='726 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='734 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='811 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='019 XGBoost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='760 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='046 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='772 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='837 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='030 NN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='755 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='764 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='827 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='025 GRridge 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='760 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='769 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='841 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='023 block PLSDA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='742 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='755 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='830 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='025 block sPLSDA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='753 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='764 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='838 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='021 NN_NN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='766 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='777 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='819 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='017 NN_VCDN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='775 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='790 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='843 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='021 MOGONET_NN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='804 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='808 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='858 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='024 MOGCL (ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='818 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='818 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='866 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='021 Table 3: Results of classification task on BRCA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Method Accuracy F1-Weighted F1-Macro KNN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='742 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='730 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='682 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='025 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='729 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='702 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='640 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='017 Lasso 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='732 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='698 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='642 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='026 RF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='754 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='733 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='649 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='013 XGBoost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='781 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='764 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='701 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='017 NN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='754 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='740 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='668 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='047 GRridge 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='745 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='726 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='656 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='025 block PLSDA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='642 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='534 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='369 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='017 block sPLSDA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='639 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='522 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='351 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='022 NN_NN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='796 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='784 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='723 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='018 NN_VCDN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='792 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='781 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='721 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='018 MOGONET_NN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='805 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='782 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='737 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='038 MOGCL (ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='853 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='851 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='823 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='006 The performance of MOGCL is compared with the following classification algorithms 1) K-nearest neighbour classifier (KNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' K-nearest neighbours are chosen from the training data to make label predictions during evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 2) Support Vector Machine classifier (SVM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 3) Lasso which is L1-regularised linear regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A unique model was trained to forecast each class’s probability in Lasso, and the class with the greatest foretasted probability was chosen as the final prediction of the model’s overall class label 4) Random Forest classifier (RF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 5) Extreme Gradient Boosting (XGBoost) is a distributed, scalable gradient-boosted decision tree (GBDT) machine learning framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 6) Fully connected Neural Network (NN) classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' loss for the fully connected NN was calculated by the cross-entropy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 7) Adaptive group-regularized ridge regression (GRridge).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 8) block PLSDA mentioned in DIABLO [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' block PLSDA performs latent Discriminant Analysis (LDA) to project multi-omics data to a latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' To categorise a discrete outcome, block PLSDA integrates various omics data types measured on the same set of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 9) block sPLSDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 10) MOGONET_NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' MOGONET_NN is architecturally similar to MOGCL but does not use a pre-training strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We achieve significant results by following our pre-training methodology as it performs better than the other models on all metrics used to measure the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' For the ROSMAP dataset MOGCL achieves an average accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='818 in comparison to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='804 achieved by MOGONET_NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' following this trend MOGCL achieves an F1-score and AUC of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='818 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='866 as compared to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='808 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='856 achieved by MOGONET_NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' For the BRCA dataset MOGCL achieves an accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='853 as compared to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='805 for MOGONET_NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' MOGCL receives an F1-weighted score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='851 and an F1-macro score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='823 as compared to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='782 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='737 respectively for MOGONET_NN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' This demonstrates that adopting a graph based semi-supervised learning strategy in addition to fine-tuning for a downstream task is an effective training strategy for training models on multi-omics datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We demonstrate the effects of adopting a semi-supervised methodology of training by analysing 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We visualise the feature matrices X by projecting data points into a two-dimensional plane by utilising t-SNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Similarly, we map the feature vectors produced by the GCN encoders to a 2-dimensional space and compare the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' MOGCL tries to cluster embeddings in the absence of labels to create more structured representations during the pre-training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Better representation help during the fine-tuning phase which in turn helps produce better classification scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 5 Figure 3: BRCA Embeddings Figure 4: ROSMAP Embeddings 6 DNA-Methylation-BRCA DNA-Methylation-BRCA-Embeddings mRNA-BRCA miRNA-BRCA miRNA-BRCA-Embeddings mRNA-BRCA-EmbeddingsDNA-Methylation-ROSMAP DNA-Methylation-ROSMAP-Embeddings mRNA-ROSMAP miRNA-ROSMAP miRNA-ROSMAP-Embeddings mRNA-ROSMAP-EmbeddingsFigure 5 represents the performance of permutation of different omics types when processed by MOGCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We pre-train three encoder models for all omics types in the study respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' To calculate performance we select a permutation of these encoder models and train them using true labels in a supervised manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' MOGCL performs its best when fed information by concatenating all the omics types together for both the ROSMAP and BRCA datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' For the BRCA dataset, a combination of mRNA and DNA-Methylation data provides the next best results however for the ROSMAP dataset a combination of mRNA and miRNA provides the next best set of results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' For both the ROSMAP and BRCA datasets using only a single omics type provides the worst results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Using only DNA-Methylation data is the least useful option followed by miRNA and mRNA data across both BRCA and ROSMAP datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Figure 5: Performance of Omics-Types 5 Conclusion This paper introduces a novel framework named MOGCL which introduces a graph contrastive learning methodology for multi-omics data classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We first provide a comprehensive literature survey regarding work done in the field of machine learning relating to graph-based learning methods and multi-omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A method for constructing graphs from multi-omics data is discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We then describe our framework MOGCL which uses GRACE as a pre-training method followed by fine-tuning with true labels in a supervised setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We discuss our results for the BRCA and ROSMAP datasets and show that our framework performs better than other baselines used for this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The use of permutations of different omics types is discussed by analysing performance across different metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We discuss the effects of adopting a semi-supervised pre-training strategy by visualising the embeddings produced by our graph encoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' We finally conclude that adopting a pre-training methodology is an efficient way to train graphical models for classification problems involving multi-omics datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Future works could include experimenting with different contrastive learning methodologies to determine which one is the most efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Experiments can be conducted for different GNNs such as Graph Attention Networks (GAT) or Graph Isomorphism Networks (GIN) etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' to determine which one can serve as the best encoder for supervised learning on multi-omics datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' References [1] Angela P Fuentes-Pardo and Daniel E Ruzzante.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Ecol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=', 26(20):5369–5406, October 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [2] Rui Chen and Michael Snyder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Promise of personalized omics to precision medicine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Wiley Interdiscip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Med.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=', 5(1):73–82, January 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [3] Zhi Huang, Xiaohui Zhan, Shunian Xiang, Travis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Johnson, Bryan Helm, Christina Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Yu, Jie Zhang, Paul Salama, Maher Rizkalla, Zhi Han, and Kun Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Salmon: Survival analysis learning with multi-omics neural networks on breast cancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Frontiers in Genetics, 10, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [4] Sijia Huang, Kumardeep Chaudhary, and Lana X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Garmire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' More is better: Recent progress in multi-omics data integration methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Frontiers in Genetics, 8, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [5] Sebastian Canzler, Jana Schor, Wibke Busch, Kristin Schubert, Ulrike E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Rolle-Kampczyk, Hervé Seitz, Hennicke Kamp, Martin von Bergen, Roland Buesen, and Jörg Hackermüller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Prospects and challenges of multi-omics data integration in toxicology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Archives of Toxicology, Feb 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='6 Performance Performance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content="5 E'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='2 mRNA+meth+miRNA mRNA+meth 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='2 mRNA+meth mRNA+miRNA mRNA+miRNA meth+miRNA mRNA meth+miRNA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='1 miRNA F1_weighted AUC BRCA Metric ROSMAPMetric[6] Amrit Singh, Casey P Shannon, Benoît Gautier, Florian Rohart, Michaël Vacher, Scott J Tebbutt, and Kim-Anh Lê Cao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Bioinformatics, 35(17):3055–3062, September 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [7] Mark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' van de Wiel, Tonje G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Lien, Wina Verlaat, Wessel N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' van Wieringen, and Saskia M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Wilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Better prediction by use of co-data: adaptive group-regularized ridge regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Statistics in Medicine, 35(3):368–381, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [8] Yingkun Zhu, Dengpan Bu, and Lu Ma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Integration of multiplied omics, a step forward in systematic dairy research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Metabolites, 12(3), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [9] Indhupriya Subramanian, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal Anamika.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Multi-omics data integration, interpretation, and its application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Bioinform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Insights, 14:1177932219899051, January 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [10] Olivier B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Poirion, Zheng Jing, Kumardeep Chaudhary, Sijia Huang, and Lana X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Garmire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Deepprog: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Genome Medicine, 13(1):112, Jul 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [11] Shane O’Donnell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Ross, and Catherine Stanton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' The progress of multi-omics technologies: Determining function in lactic acid bacteria using a systems level approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Frontiers in Microbiology, 10:3084, 01 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [12] Chaoyi Yin, Yangkun Cao, Peishuo Sun, Hengyuan Zhang, Zhi Li, Ying Xu, and Huiyan Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Molecular subtyping of cancer based on robust graph neural network and multi-omics data integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Genet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=', 13:884028, May 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [13] Xiaohan Xing, Fan Yang, Hang Li, Jun Zhang, Yu Zhao, Mingxuan Gao, Junzhou Huang, and Jianhua Yao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' An interpretable multi-level enhanced graph attention network for disease diagnosis with gene expression data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 556–561.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' IEEE, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [14] Ziwang Huang, Hua Chai, Ruoqi Wang, Haitao Wang, Yuedong Yang, and Hejun Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Integration of patch features through self-supervised learning and transformer for survival analysis on whole slide images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 561–570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Springer, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [15] Xiaoshuang Liu, Xian Xu, Xiao Xu, Xiang Li, and Guotong Xie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Representation learning for multi-omics data with heterogeneous gene regulatory network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 702–705, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [16] Ronglai Shen, Adam B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Olshen, and Marc Ladanyi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Bioinformatics, 25(22):2906–2912, 09 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [17] Giulia Tini, Luca Marchetti, Corrado Priami, and Marie-Pier Scott-Boyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Multi-omics integration-a comparison of unsupervised clustering methodologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Brief.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Bioinform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=', 20(4):1269–1279, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [18] Lorin M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Towle-Miller, Jeffrey C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Miecznikowski, Fan Zhang, and David L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Tritchler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Sumo-fil: Supervised multi-omic filtering prior to performing network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' PLOS ONE, 16(8):1–20, 08 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [19] Otília Menyhárt and Balázs Gy˝orffy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Computational and Structural Biotechnology Journal, 19:949–960, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [20] Kaiwen Tan, Weixian Huang, Jinlong Hu, and Shoubin Dong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A multi-omics supervised autoencoder for pan- cancer clinical outcome endpoints prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' BMC Medical Informatics and Decision Making, 20(3):129, Jul 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [21] Zak Costello and Hector Garcia Martin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' npj Systems Biology and Applications, 4(1):19, May 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [22] Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, Olivier Périn, and Arnaud Droit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Integration strategies of multi-omics data for machine learning analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Computational and Structural Biotechnology Journal, 19:3735– 3746, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [23] SungHwan Kim, Jae-Hwan Jhong, JungJun Lee, and Ja-Yong Koo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Meta-analytic support vector machine for integrating multiple omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' BioData Mining, 10(1):2, Jan 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [24] Candida S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Punla, https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='org/ 0000-0002-1094-0018, cspunla@bpsu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='ph, Rosemarie C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Farro, https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='org/0000-0002-3571-2716, rcfarro@bpsu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='ph, and Bataan Peninsula State University Dinalupihan, Bataan, Philippines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Are we there yet?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' : An analysis of the competencies of BEED graduates of BPSU-DC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' International Multidisciplinary Research Journal, 4(3):50–59, September 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [25] Md Mohaiminul Islam, Shujun Huang, Rasif Ajwad, Chen Chi, Yang Wang, and Pingzhao Hu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' An integrative deep learning framework for classifying molecular subtypes of breast cancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Struct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Biotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=', 18:2185–2199, August 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 8 [26] Jing Xu, Peng Wu, Yuehui Chen, Qingfang Meng, Hussain Dawood, and Hassan Dawood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' BMC Bioinformatics, 20(1):527, Oct 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [27] Martin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Schuetz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Kyle Brubaker, and Helmut G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Katzgraber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Combinatorial optimization with physics- inspired graph neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Nature Machine Intelligence, 4(4):367–377, Apr 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [28] Yun Peng, Byron Choi, and Jianliang Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph learning for combinatorial optimization: a survey of state-of-the- art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Data Science and Engineering, 6(2):119–141, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [29] Binh Nguyen, Long Nguyen, and Dien Dinh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Multi-level community-awareness graph neural networks for neural machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In Proceedings of the 29th International Conference on Computational Linguistics, pages 5021–5028, Gyeongju, Republic of Korea, October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' International Committee on Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [30] Xin Mei, Xiaoyan Cai, Libin Yang, and Nanxin Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph transformer networks based text representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Neurocomputing, 463:91–100, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [31] Elahe Nasiri, Kamal Berahmand, Mehrdad Rostami, and Mohammad Dabiri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Computers in Biology and Medicine, 137:104772, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [32] Xinnan Dai, Fan Xu, Shike Wang, Piyushkumar A Mundra, and Jie Zheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Pike-r2p: Protein–protein interaction network-based knowledge embedding with graph neural network for single-cell rna to protein prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' BMC bioinformatics, 22(6):1–17, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [33] Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang, Lei Cai, Qi Qi, Zhuoning Yuan, Tianbao Yang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Advanced graph and sequence neural networks for molecular property prediction and drug discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Bioinformatics, 38(9):2579–2586, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [34] Pietro Bongini, Monica Bianchini, and Franco Scarselli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Molecular generative graph neural networks for drug discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Neurocomputing, 450:242–252, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [35] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, and Kun Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Nature Communications, 12(1):3445, Jun 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [36] Thomas N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Kipf and Max Welling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Semi-supervised classification with graph convolutional networks, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [37] Xiao Li, Jie Ma, Ling Leng, Mingfei Han, Mansheng Li, Fuchu He, and Yunping Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Mogcn: A multi-omics integration method based on graph convolutional network for cancer subtype analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Frontiers in Genetics, 13, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [38] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph contrastive learning with augmentations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [39] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Graph debiased contrastive learning with joint representation clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 3434–3440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' International Joint Conferences on Artificial Intelligence Organization, 8 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Main Track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [40] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Deep Graph Contrastive Representation Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In ICML Workshop on Graph Representation Learning and Beyond, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [41] Philip L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' De Jager, Yiyi Ma, Cristin McCabe, Jishu Xu, Badri N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Vardarajan, Daniel Felsky, Hans-Ulrich Klein, Charles C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' White, Mette A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Peters, Ben Lodgson, Parham Nejad, Anna Tang, Lara M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Mangravite, Lei Yu, Chris Gaiteri, Sara Mostafavi, Julie A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Schneider, and David A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Bennett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A multi-omic atlas of the human frontal cortex for aging and alzheimer’s disease research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Scientific Data, 5(1):180142, Aug 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [42] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad Setiawan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Cosine similarity to determine similarity measure: Study case in online essay assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In 2016 4th International Conference on Cyber and IT Service Management, pages 1–6, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [43] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' A simple framework for contrastive learning of visual representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [44] Kunihiko Fukushima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Cognitron: A self-organizing multilayered neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Cybern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=', 20(3–4):121–136, sep 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [45] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Empirical evaluation of rectified activations in convolutional network, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [46] Matthias Fey and Jan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Lenssen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Fast graph representation learning with PyTorch Geometric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 9 [47] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' An Empirical Study of Graph Contrastive Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content='org, September 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [48] William Falcon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Pytorch lightning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' GitHub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Note: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' com/PyTorchLightning/pytorch-lightning, 3(6), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [49] Diederik P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Kingma and Jimmy Ba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Adam: A method for stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' [50] Laurens van der Maaten and Geoffrey Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Visualizing data using t-SNE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' Journal of Machine Learning Research, 9:2579–2605, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
+page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9E0T4oBgHgl3EQfTwDw/content/2301.02242v1.pdf'}
diff --git a/QNAzT4oBgHgl3EQfIvuz/vector_store/index.pkl b/QNAzT4oBgHgl3EQfIvuz/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..dbd401740a262daa4b2fa71b78c3172e799347b8
--- /dev/null
+++ b/QNAzT4oBgHgl3EQfIvuz/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:81be42c53ee06139e89405c2cc1a4e1be659e5e8d3a3168380d83398dee61031
+size 299248
diff --git a/QNAzT4oBgHgl3EQflf3i/vector_store/index.faiss b/QNAzT4oBgHgl3EQflf3i/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..aa12688d162ec9c60c12ee22e5e6ccec9b932514
--- /dev/null
+++ b/QNAzT4oBgHgl3EQflf3i/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bc8abf799ce93839801d240538726ff7b7c35d4b32e457f871e890482580a497
+size 720941
diff --git a/QNAzT4oBgHgl3EQflf3i/vector_store/index.pkl b/QNAzT4oBgHgl3EQflf3i/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..24e48dca689b643b235d9b265b9466cfeaf1a6f4
--- /dev/null
+++ b/QNAzT4oBgHgl3EQflf3i/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4d92eed7743f5d6667411f2aa4e76fec608669b31bb41718dd14558ad84ce709
+size 30002
diff --git a/R9FQT4oBgHgl3EQfbDai/content/tmp_files/2301.13322v1.pdf.txt b/R9FQT4oBgHgl3EQfbDai/content/tmp_files/2301.13322v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b53f50a1c663545e8c67f00fe93b4c3baf63f177
--- /dev/null
+++ b/R9FQT4oBgHgl3EQfbDai/content/tmp_files/2301.13322v1.pdf.txt
@@ -0,0 +1,2494 @@
+Draft version February 1, 2023
+Typeset using LATEX twocolumn style in AASTeX62
+A Catalog of 71 Coronal Line Galaxies in MaNGA: [NeV] is an Effective AGN Tracer
+James Negus,1 Julia M. Comerford,1 Francisco M¨uller S´anchez,2 Mitchell Revalski,3 Rogemar A. Riffel,4, 5
+Kevin Bundy,6 Rebecca Nevin,7 and Sandro B. Rembold4, 5
+1The University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80309, USA
+2The University of Memphis, 3720 Alumni Avenue, Memphis, TN 38152, USA
+3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
+4Departamento de F´ısica, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
+5Laborat´orio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jos´e Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
+6UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
+7Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
+ABSTRACT
+Despite the importance of AGN in galaxy evolution, accurate AGN identification is often challenging,
+as common AGN diagnostics can be confused by contributions from star formation and other effects
+(e.g., Baldwin-Phillips-Terlevich diagrams). However, one promising avenue for identifying AGNs are
+“coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials
+≥ 100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGN.
+To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of
+optical CL galaxies using the Sloan Digital Sky Survey’s Mapping Nearby Galaxies at Apache Point
+Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010
+unique galaxies from the final MaNGA catalog, with ≥ 5σ confidence. In our sample, we measure
+[NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 emission and crossmatch the CL
+galaxies with a catalog of AGNs that were confirmed with broad line, X-ray, IR, and radio observations.
+We find that [NeV] emission, compared to [FeVII] and [FeX] emission, is best at identifying high
+luminosity AGN. Moreover, we find that the CL galaxies with the least dust extinction yield the most
+iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies
+with the highest [OIII] luminosities in our sample, and that AGN in the galaxies with low [OIII]
+luminosities are possibly too weak to be detected using traditional techniques.
+1. INTRODUCTION
+Active Galactic Nucleus (AGN) feedback, the process
+by which an active accretion disk converts gravitational
+energy into radiative or mechanical energy (e.g., AGN-
+induced photoionization, outflows, shocks, winds, and
+jets), has been shown to dynamically influence the evo-
+lution of a host galaxy (e.g., the tight correlation be-
+tween stellar velocity dispersion and black hole mass and
+the quenching of star formation; e.g., Ferrarese & Mer-
+ritt 2000; Gebhardt et al. 2000; Hopkins et al. 2005; Di
+Matteo et al. 2005; Fabian 2012; Kormendy & Ho 2013;
+Heckman & Best 2014). However, the full spatial extent,
+ionization properties, and impact of AGN feedback on
+the host galaxy have yet to be fully unraveled.
+The Unified Model of AGN (Antonucci 1993; Urry &
+Padovani 1995) provides a fundamental architecture for
+⋆ james.negus@colorado.edu
+understanding the evolution of AGN feedback. In this
+model, an AGN is either Type I or Type II. Type I are
+viewed pole-on and are observed to have broad (FWHM
+⪆ 1,000 km s−1) and narrow (FWHM ⪅ 1,000 km s−1)
+emission lines, whereas Type II are viewed edge-on and
+are observed to only have narrow emission lines. These
+regions are termed the broad-line region (BLR) and the
+narrow-line region (NLR), respectively.
+In Negus et al. 2021, we considered the Unified Model
+before investigating the “coronal line region” (CLR),
+an area surrounding a supermassive black hole (SMBH;
+MBH > 106 M⊙) that produces highly ionized species of
+gas with ionization potentials (IPs) ≳ 100 eV (termed
+“coronal lines” (CLs) since they were first observed in
+the solar corona). CLs are suspected to primarily orig-
+inate from the strong ionizing continuum of an AGN;
+in particular, nuclear CLs are produced in the inner
+edge of the dusty torus and extended CLs are tied
+to the presence of a jet or AGN-driven outflows (due
+arXiv:2301.13322v1 [astro-ph.GA] 30 Jan 2023
+
+2
+Negus et al.
+to the highly energetic nature of these processes; e.g.,
+Rodr´ıguez-Ardila et al. 2002; Prieto et al. 2005; Gel-
+bord et al. 2009; Mullaney et al. 2009; Mazzalay et al.
+2010; Rodr´ıguez-Ardila et al. 2011; M¨uller-S´anchez et
+al. 2011; Glidden et al. 2016; Riffel et al. 2021; Trindade
+Falc˜ao et al. 2022).
+Further, CLs in the mid-infrared have been extensively
+used to probe for AGNs, and to subsequently analyze
+their physical environments, within dusty galaxies (e.g.,
+Genzel et al. 1998, Sturm et al. 2002, Armus et al. 2004
+Lutz et al. 2005, Weedman et al. 2006, Dasyra et al.
+2008, Armus et al. 2022). In fact, several studies have
+shown that AGNs, even those missed by optical surveys
+(due to obscuration, for example), are uncovered by ob-
+servations of infrared CLs (e.g., Satyapal et al. 2008,
+2021; Sajina et al. 2022). Additionally, since CL emis-
+sion from Type II supernovae is infrequent, weak, and
+short lived, CL infrared observations have been partic-
+ularly useful for accurately identifying CL emission ex-
+clusively from AGNs (e.g., Smith et al. 2009).
+In regard to optical studies, Baldwin-Phillips-Terlevich
+diagnostics diagrams (Baldwin et al. 1981; Veilleux &
+Osterbrock 1987; Kewley et al. 2001, 2006) are pre-
+dominantly used to differentiate emission-line sources as
+star-forming, AGN, or a composite of the two. However,
+diffuse ionized gas, extraplanar gas, photoionization by
+hot stars, metallicity, and shocks can elevate sources be-
+yond the star formation threshold and potentially lead
+to AGN misclassification (e.g., Wylezalek et al. 2018).
+Moreover, while the NLR is the largest observable
+structure directly affected by an AGN’s ionizing radi-
+ation (out to several kpcs; e.g., M¨uller-S´anchez et al.
+2011), star formation can also produce some of the nar-
+row lines usually associated with AGN (e.g., [OIII] 5007;
+“[OIII]” hereafter).
+Further, while the BLR provides
+definitive evidence of AGN activity, due to the elevated
+cloud velocities, its compact radial extent (≈ 0.1 kpc;
+e.g., Laor 2004) is spatially unresolved in most spectro-
+scopic surveys. On the other hand, CLs require energies
+well above the limit of stellar emission (55 eV; Haehnelt
+et al. 2001) and are typically spatially resolved beyond
+the BLR and well into the NLR (e.g., Negus et al. 2021).
+If CLs can provide accurate AGN identification in opti-
+cal spectroscopic surveys of galaxies, as they have been
+shown to do in infrared surveys, then detecting them
+may be a critical step in constraining the complexities
+of AGN feedback (e.g., Molina et al. 2021).
+The Sloan Digital Sky Survey’s (SDSS) Mapping
+Nearby Galaxies at Apache Point Observatory cata-
+log (MaNGA; Bundy et al. 2015) has provided an un-
+precedented lens into the dynamic environments that
+surround the SMBHs of nearly 10,010 nearby (0.01 <
+z < 0.15; average z ≈ 0.03) galaxies.
+Using integral
+field spectroscopy (IFS), MaNGA provides a 1 - 2 kpc
+spatial sampling across the field of view of each observed
+galaxy, which offers direct insight into the spatial extent,
+ionization properties, and the environmental impact of
+AGN feedback. For reference, previous SDSS surveys
+(e.g., SDSS-I to SDSS-III; York et al. 2000; Eisenstein
+et al. 2011) observed galaxies with small (3” diame-
+ter) optical fibers.
+The resulting spectra only traced
+a small region close to the galactic center, potentially
+missing nuclear activity outside of this region. Yan et
+al. (2016) further report that 80% of SDSS galaxies ob-
+served with a single fiber have less than 36% of their
+light covered. Moreover, long-slit spectroscopic surveys
+of galaxies also reveal limited spatial information, since
+only narrow elongated regions of each galaxy are ob-
+served (e.g., Newman et al. 2013). In contrast, MaNGA
+offers the ability to capture spatially extended galac-
+tic features, which can reveal off-nuclear activity and
+large-scale emission line regions.
+In Negus et al. 2021, we scanned for [NeV]λ3347,
+λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374
+emission at ≥ 5σ above the background continuum in
+the 6,623 galaxies from MaNGA’s eighth data release
+(MPL-8). We identified 10 CL galaxies in MPL-8, the
+largest such catalog at the time; seven of which were con-
+firmed to host an AGN, which suggests that CL emission
+can be useful for tracing AGN activity. The remaining
+three visually appear to be undergoing galactic mergers.
+We also found that the average spatial extent of the CLR
+from the nuclear center is 6.6 kpc - well into the NLR.
+Further, we measured the average electron number den-
+sity of the CLRs in our sample to be on the order of ≈
+102 cm−3, also consistent with the CLR occupying the
+traditional NLR, beyond the BLR (typical NLR den-
+sities range from 101 - 107 cm−3; e.g., Peterson 1997;
+Revalski et al. 2022).
+However, we also reported a range of power-law in-
+dices (α) above the threshold expected for pure AGN
+photoionization (α = −2; we measured -1.8 ± 0.3
+≤ α ≤ 0.2 ± 0.1), and electron temperature values
+slightly above the threshold for pure AGN photoioniza-
+tion (Te = 20, 000 K; Osterbrock 1981). We found that
+the average CLR electron temperatures varied between
+12,331 K - 22,530 K. These results suggest that shock-
+induced compression and heating may also play a role
+in the production of CLs.
+Comparatively, Mazzalay et al. (2010) investigated the
+CLR for 10 pre-selected AGNs. They used the Hubble
+Space Telescope/Space Telescope Imaging Spectrograph
+to study [NeV] λ3427, [FeVII] λ3586, λ3760, λ6086,
+[FeX] λ6374, [FeXIV] λ5303, [FeXI] λ7892, and [SXII]
+
+Coronal Lines in MaNGA
+3
+λ7611 emission in their sample. The authors deduced
+that AGN photoionization is the main driving mecha-
+nism for the CLs. Moreover, Gelbord et al. (2009) used
+the sixth SDSS data release (Adelman-McCarthy et al.
+2008) to analyze the CLR in 63 AGNs with [FeX] λ6374
+(IP = 233.60 eV), [FeXI] λ7892 (IP = 262.10 eV), and
+[FeVII] λ6086 (IP = 99.10 eV) emission. They used X-
+ray observations from Rosat (Voges et al. 1999, 2000)
+to similarly posit that AGN photoionization is the main
+ionization source of the CLs. Finally, Reefe et al. (2022)
+executed the first systematic survey of twenty optical
+CLs in the spectra of nearly 1 million galaxies from the
+eighth SDSS data release (Aihara et al. 2011). The au-
+thors found that CL emission is extremely rare (≈ 0.03%
+of the sample show at least one CL), and that the highest
+ionization potential CLs tend to be found in lower mass
+galaxies. They reasoned that this finding is consistent
+with theory that hotter accretion disks are produced by
+lower mass black holes, which typically reside in lower
+mass galaxies.
+Here, we use MaNGA’s eleventh, and final, data re-
+lease (MPL-11; 10,010 unique galaxies) to further re-
+solve the physics of the CLR, and to better understand
+the relationship between the production of CLs and
+AGN activity. With our custom pipeline, we identify 71
+unique galaxies with emission from either [NeV]λ3347,
+λ3427, [FeVII]λ3586, λ3760, λ6086, or [FeX]λ6374 de-
+tected at ≥ 5σ above the continuum, which makes it the
+most extensive such catalog of MaNGA CL galaxies to
+date.
+This paper is outlined as follows: Section 2 details the
+technical components of the SDSS-IV MaNGA survey
+and its data pipeline, Section 3 describes the methodol-
+ogy we use to build the CL catalog and to analyze the
+physical properties of the CLR, Section 4 reviews our re-
+sults, Section 5 provides interpretations of our findings,
+and Section 6 includes our conclusions and intended fu-
+ture work. All wavelengths are provided in vacuum and
+we assume a ΛCDM cosmology with the following val-
+ues: ΩM = 0.287, ΩΛ = 0.713 and H0 = 69.3 km s−1
+Mpc−1.
+2. OBSERVATIONS
+2.1. Sample of Galaxies
+We assemble our sample from the SDSS-IV MaNGA
+catalog (Bundy et al. 2015; Drory et al. 2015; Law et
+al. 2016; Yan et al. 2016; Blanton et al. 2017; Wake et
+al. 2017). MaNGA observations occurred between 2014
+to 2020, using the SDSS 2.5 m telescope (Gunn et al.
+2006). The IFS survey contains data for 10,010 nearby
+galaxies (0.01 < z < 0.15; average z ≈ 0.03) with stellar
+mass distributions between 109 M⊙ and 1012 M⊙. The
+spectra were taken at wavelengths between 3622 ˚A -
+10354 ˚A, with a typical spectral resolving power of ≈
+2000, corresponding to a velocity resolution of ≈ 60 km
+s−1 (see Bundy et al. 2015).
+MaNGA contains spectroscopic maps out to at least
+1.5 times the effective radius; the typical galaxy is
+mapped out to a radius of 15 kpc. Each MaNGA spa-
+tial pixel, or spaxel, covers 0.′′5 × 0.′′5, and the average
+full-width half maximum (FWHM) of the on-sky point
+spread function (PSF) is 2.′′5, which corresponds to a
+typical spatial resolution of 1 -2 kpc (Drory et al. 2015).
+2.2. MaNGA Data Analysis Pipeline
+The MaNGA Data Analysis Pipeline (DAP; Westfall
+et al. 2019) offers publicly available high-level data prod-
+ucts. The MaNGA DAP algorithms have been in de-
+velopment since 2014 and its main outputs are stellar
+kinematics, fluxes and kinematics of prominent emis-
+sion lines, and continuum spectral indices. To measure
+each parameter, the DAP relies on spectral fitting with
+pPXF (Cappellari 2012, 2017), where each fit features a
+blend of stellar templates with a multiplicative polyno-
+mial component to the stellar continuum. In particular,
+the DAP incorporates the MILESHC stellar templates
+library (Westfall et al. 2019) to fit the stellar kinematics.
+The inputs for the DAP are data reduced by the
+MaNGA Data Reduction Pipeline (DRP). The DRP is
+fed spectra from the MaNGA fiber-feed system, which
+consists of 17 IFUs: two 19-fiber IFUs, four 37-fiber
+IFUs, four 61-fiber IFUs, two 91-fiber IFUs, and five
+127-fiber IFUs (see Drory et al. 2015 for a more detailed
+description). The DRP subsequently wavelength, flux,
+and astrometrically calibrates the spectra.
+3. ANALYSIS
+3.1. CL Continuum Subtraction and Emission Line
+Fitting
+We scan for [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760,
+λ6086, and [FeX]λ6374 emission to better understand
+their effectiveness as AGN indicators. These CLs are
+selected because MaNGA’s DAP does not provide emis-
+sion line measurements for them. As a result, we expand
+upon the custom pipeline detailed in Negus et al. 2021
+to measure these CLs in MPL-11. Note, all 10 CL galax-
+ies reported in Negus et al. 2021 are recovered using the
+new MPL-11 pipeline.
+3.1.1. CL Stellar Continuum Subtraction
+To measure the stellar kinematics, and subsequently
+subtract the stellar continuum for each CL galaxy’s ob-
+served spectra, we use pPXF (Cappellari 2012, 2017).
+pPXF performs a polynomial fit on each galaxy’s spec-
+trum while masking gas emission lines. For each fit, we
+
+4
+Negus et al.
+use the MILES1 stellar templates library to represent
+the stellar population synthesis model. This library con-
+tains ≈ 1,000 stars, with spectra obtained by the Isaac
+Newton Telescope. These spectra cover the wavelength
+range of 3525 ˚A - 7500 ˚A at a 2.5 ˚A FWHM resolution.
+We first access the DRP to extract the necessary data
+cubes for each MaNGA galaxy before performing the
+pPXF stellar continuum subtraction. The data cubes
+provide a spectrum for each individual spaxel across the
+FoV of each galaxy. We then use the spectroscopic red-
+shifts of each galaxy, adopted from the NASA Sloan At-
+las catalogs (Blanton et al. 2011), to adjust the spectra
+to rest vacuum wavelengths. We also use a minimum
+redshift threshold (z min) for CLs near the lower wave-
+length limit of MaNGA (3622 ˚A; Table 1) to ensure CLs
+of interest are not shifted out of MaNGA’s spectral cov-
+erage. For [NeV]λ3347, λ3427 and [FeVII]λ3586, ≈ 93%
+(9,152), ≈ 83% (8,096), and ≈ 3% (229) of the MPL-11
+galaxies, respectively, feature redshifts that place each
+CL out of MaNGA’s spectral range; as a result, we are
+unable to scan for [NeV]λ3347, λ3427 and [FeVII]λ3586
+in these respective galaxies.
+We then apply a mask to each datacube, such that the
+imported wavelength range for each spectrum matches
+the wavelength range of the stellar templates library
+(3525 ˚A- 7500 ˚A). Next, we normalize each spectrum by
+dividing fluxes in this wavelength range by each spec-
+trum’s median flux value (to avoid numerical issues; see
+Cappellari 2017 for a more detailed discussion). Sub-
+sequently, we define a typical instrument resolution of
+≈ 2.5 ˚A, construct a set of Gaussian emission line tem-
+plates (to mask emission lines; provided by pPXF), and
+fit the stellar templates. Note, for the CLs near the lower
+limit of the mask (3525 ˚A; e.g., [NeV]λ3347, λ3427 and
+[FeVII]λ3586), we perform a custom stellar continuum
+fit and subtraction before measuring the target emis-
+sion line. In these instances, we execute a polynomial
+fit on a narrow spectral region, ≈ 300 ˚A wide, of con-
+tinuum (free of prominent absorption or emission lines)
+near the rest wavelength of the target CL to model the
+background stellar continuum and subtract it from the
+spectrum.
+3.1.2. [NeV] and [FeVII] Emission Line Measurements
+Once the spectra are stellar continuum subtracted, we
+attempt a single Gaussian fit on a ≈ 30 ˚A region cen-
+tered on the rest wavelengths of the CLs ([FeX]λ6374
+being the exception; see Section 3.1.3). We found that
+this wavelength range is adequate for capturing the full
+extent of CL emission in our preliminary scans.
+We
+1 http://miles.iac.es/
+Table 1. Target CLs
+Emission Line
+Wavelength
+IP
+z min
+(˚A)
+(eV)
+[NeV]
+3347
+126.2
+0.088
+[NeV]
+3427
+126.2
+0.061
+[FeVII]
+3586
+125.0
+0.016
+[FeVII]
+3760
+125.0
+-
+[FeVII]
+6086
+125.0
+-
+[FeX]
+6374
+262.1
+-
+Note: Columns are (1) emission line, (2) rest wavelength,
+(3) ionization potential, and (4) minimum redshift value
+required for MaNGA detection.
+then determine the root mean square (RMS) flux of two
+continuum regions (≈ 60 ˚A wide) that neighbor each
+target CL, free of absorption or emission lines, and re-
+quire that CL amplitudes are detected at ≥ 5σ above the
+mean RMS flux values in these continuum regions. We
+consider the spectral resolution of MaNGA (R = λ/∆λ
+≈ 1400 at 3600 ˚A; R ≈ 2000 at 6000 ˚A; Smee et al.
+2013) to eliminate fits with ∆λ ⪅ 2.4 ˚A(for [NeV]λ3347,
+λ3427), ⪅ 2.6 ˚A(for [FeVII]λ3586, λ3760), and ⪅ 3 ˚A(for
+[FeVII]λ6086 and [FeX]λ6374). We provide an example
+of a single Gaussian fit for the [FeVII]λ3586 line in Fig-
+ure 1.
+3.1.3. [FeX] Emission Line Measurements
+For [FeX]λ6374, the broad blue wing of this line is
+often blended with [OI]λ6364 due to their close prox-
+imity.
+Consequently, we attempt a double Gaussian
+fit to isolate the [FeX]λ6374 line. If this routine does
+not successfully fit both lines with ≥ 5σ confidence,
+then we attempt a single Gaussian fit and apply the
+method used in Gelbord et al. (2009) and Rose et al.
+(2015), whereby the emission line ratio [OI]λ6300/λ6364
+is used to determine if the [OI]λ6364 and [FeX]λ6374
+lines are blended. Specifically, from atomic physics, if
+[OI]λ6300/λ6364 = 3, then the [OI]λ6364 line is free
+from contamination (see also Elmhamdi 2011 for a full
+review). If [FeX]λ6374 emission is present and blended
+with [OI]λ6364, it will reduce the [OI]λ6300/λ6364 ra-
+tio below three. The MaNGA DAP provides flux values
+for both [OI]λ6364 and [OI]λ6300 lines. We adopt this
+method and require this ratio to be below three when
+fitting for [FeX]λ6374 with a single Gaussian fit to avoid
+confusing [OI]λ6364 and [FeX]λ6374 emission. Once we
+isolate the [FeX]λ6374 emission, we impose the same
+thresholds used to identify the [NeV] and [FeVII] emis-
+sion lines (e.g., amplitudes ≥ 5σ; Section 3.1.2).
+3.2. Coronal Line Flux Maps
+
+Coronal Lines in MaNGA
+5
+Similar to Negus et al. 2021, we create custom CL
+flux maps to analyze the strength and distribution of
+the CLs in the CLR. We create these maps using the
+integrated CL flux value from each spaxel for each CL
+galaxy (Figure 2).
+The center of each MaNGA observation corresponds
+to the galactic center (Yan et al. 2016). We use this posi-
+tion and the galaxy’s inclination angle to determine the
+de-projected galactocentric distance of each CL spaxel.
+We do acknowledge that the CL gas may not be re-
+stricted to the galactic disk; i.e., the CL emission may
+associated with an ionization “cone” and therefore, in
+these instances, the de-projected distances are approxi-
+mations.
+The MaNGA DAP provides the ratio of the semi-
+minor to semi-major axes (b/a) for each galaxy, and we
+use this value to determine the cosine of each galaxy’s
+inclination angle (i): cos(i)= b/a. The de-projected dis-
+tance of each CL spaxel to the center of the galaxy is
+then measured by:
+CLD =
+�
+(x − xcenter)2 +
+�
+(y − ycenter) ∗ cos(i)
+�2
+(1)
+where x is the projected distance between the spaxel and
+the galaxy center measured along the galaxy’s major
+axis, and y for the minor axis.
+We then convert spaxel distances to a physical unit
+(kpc) using the astropy.cosmology Python package.
+The resulting value corresponds to the coronal line dis-
+tance (CLD) of each CL emitting spaxel from the galac-
+tic center. Further, the minimum coronal line distance
+(CLDmin) corresponds to the distance of each galaxy’s
+closest CL-emitting spaxel from the galactic center. Fi-
+nally, the maximum coronal line distance (CLDmax) cor-
+responds to the distance of each galaxy’s most distant
+CL-emitting spaxel from the galactic center.
+3.3. Galaxy Morphology
+To uncover the correlation, if any, between CL emis-
+sion and galaxy morphology (e.g., spiral and elliptical),
+we use the MaNGA Morphologies Galaxy Zoo value-
+added catalog to classify the morphologies of the galax-
+ies in our sample.
+This catalog features data from
+Galaxy Zoo 2, a “citizen science” catalog with more
+than 16 million visual morphological classifications for
+> 304,000 galaxies in SDSS (GZ2; Willett et al. 2013),
+The weighted vote fraction (discussed in Willett et al.
+2013) accounts for voter consistency when participants
+select morphological classifications, and we require this
+fraction to be ≥ 50% before assigning a morphological
+classification (e.g., “E” for elliptical, or “S” for spiral).
+We also use the weighted vote fraction to determine if a
+Figure 1.
+A sample spectrum from an individual spaxel
+showing the [FeVII]λ3586 line detected at ≥ 5σ above the
+continuum in J0906. The dotted black line is the continuum
+subtracted spectrum, the shaded gray region is the uncer-
+tainty, the solid red line represents the best fit, the red dotted
+vertical lines mark the fitting window, the blue dotted line
+signifies the rest wavelength of the [FeVII]λ3586 line, and
+the two sets of black dotted vertical lines correspond to the
+neighboring continuum windows where the RMS flux values
+of the continuum are calculated.
+CL galaxy features a bar, and/or is categorized as odd
+(“b” and“o”, respectively).
+In addition, to determine the fraction of CL galaxies
+undergoing a merger, we consider the analysis being per-
+formed by Nevin et al., in prep (“Nevin catalog” here-
+after). The authors determine the merger probability for
+each of the 1.3 million galaxies in the SDSS DR16 pho-
+tometric sample, using a statistical learning tool that is
+built on a linear discriminant analysis framework, which
+is trained to separate mock images of simulated merg-
+ing and non-merging galaxies using imaging predictors
+(see Nevin et al. 2019 for a full review).
+We investi-
+gate the MPL-11 galaxies from the broader SDSS DR16
+Nevin catalog, and classify a CL galaxy as a merger if
+the Nevin catalog gives it a merger value (pmerg) > 0.5.
+3.4. AGN Bolometric and [OIII] Luminosities
+The AGN bolometric luminosity effectively traces the
+energetic output of an AGN (across the entire electro-
+magnetic spectrum). To compare the luminosity of the
+CL AGN candidates with other known AGN candidates,
+we thus consider the bolometric luminosity parameter.
+We determine the AGN bolometric luminosity for
+each CL galaxy using the summed [OIII] flux val-
+ues (F[OIII]) across the entire galaxy (provided by the
+MaNGA DAP), and the procedure outlined in Pennell
+et al. (2017), which assumes [OIII] emission comes from
+
+[FeVIl] 35866
+Negus et al.
+Figure 2. A sample CL flux map showing [NeV]λ3427 emis-
+sion detected ≥ 5σ above the continuum in J1714. For this
+galaxy, the strongest [NeV]λ3427 emission is located near
+the center of the galaxy. The gray region is outside of the
+MaNGA FoV and the black region are spaxels with no CL
+emission. North is up, south is down, east is to the left, and
+west is to the right.
+an AGN:
+log
+� Lbol
+ergs−1
+�
+= (0.5617 ± 0.0978) log
+� L[OIII]
+ergs−1
+�
++(21.186 ± 4.164)
+(2)
+where L[OIII] = F[OIII](4πR2) and R is the DAP pro-
+vided luminosity distance based on redshift and a stan-
+dard cosmology of ΩM = 0.3 and ΩΛ = 0.7 (redshift is
+also measured by the DAP).
+We then measure the total [OIII] luminosity (using the
+summed [OIII] fluxes across the entire galaxy) for each
+CL galaxy in our sample. Next, we compare the [OIII]
+luminosities of the CLs in our pipeline (Section 4.3) to
+determine the relative strength of [OIII] for each CL. We
+do so to assess if specific CLs are preferentially found
+in higher or lower luminosity [OIII]-emitting galaxies,
+which is useful to determine if CLs uniformly trace all
+AGN, or if there may be an [OIII] luminosity depen-
+dence.
+3.5. Narrow-Line BPT Diagnostics Diagrams
+Baldwin-Phillips-Terlevich optical emission-line diag-
+nostic diagrams (BPT diagrams; Baldwin et al. 1981;
+Veilleux & Osterbrock 1987; Kewley et al. 2001, 2006)
+are widely accepted to be effective tools for categorizing
+gas ionization sources as star-forming, Seyfert (AGN),
+low-ionization nuclear emission-line region (LINER), or
+a composite of multiple ionization sources. They serve
+as the traditional AGN selection tool for most spectro-
+scopic surveys. Specifically, these diagrams compare line
+ratios between high and low ionization species, most
+commonly [OIII]λ5007/Hβ vs. [NII]λ6583/Hα (“[NII]/
+Hα diagram” hereafter).
+In this paper, we construct spatially resolved narrow-
+line BPT diagnostic diagrams for the CL galaxies to
+better constrain the ionization sources of the CLs. To
+do so, we require emission line measurements for the
+[NII]λ6583, [OIII]λ5007, Hα, and Hβ emission lines.
+The DAP measures the continuum subtracted flux for
+each of these emission lines. Note, these fluxes account
+for galactic reddening using the E(B-V) values deter-
+mined by the DRP, which assumes an O’Donnell (1994)
+reddening law.
+Once we determine the necessary emission line flux
+measurements, we compute the ratios for the [NII]/ Hα
+diagram, for each CL-emitting spaxel. We then use these
+values to create custom spatially-resolved BPT maps,
+whereby we present the BPT-classification for each CL-
+emitting spaxel within the MaNGA FoV, for each CL
+galaxy. Figure 3 shows an example BPT map.
+3.6. Dust Attenuation
+Mullaney et al. (2009) investigated the [FeVII]λ6086,
+[FeX]λ6374, and [FeXI]λ7892 emission lines in the
+Seyfert 1 galaxy Ark 564. The authors used the pho-
+toionization code CLOUDY (Ferland et al. 1998) to
+determine the location and kinematics of these lines.
+They found that the CLs are launched from a dusty
+torus near the SMBH, where the gas is quickly ac-
+celerated. Moreover, using the CLOUDY models, they
+determined that some iron carrying grains are destroyed
+during the initial acceleration of the gas.
+To follow up on the analysis performed by Mullaney
+et al. (2009), and to better understand the role of dust
+grains on the potential depletion of the iron CLs, we
+use the E(B - V) color excess index. This index traces
+the degree of interstellar reddening caused by photons
+that are scattered off of dust; in essence, it measures
+the difference between an object’s observed color index
+and its intrinsic color index. E(B - V) values for each
+CL galaxy are provided by the MaNGA DRP (using
+Schlegel et al. 1998 maps), and assume the extinction
+law provided by O’Donnell (1994).
+3.7. Shock Diagnostics
+We explore the role of shocks (e.g., supernova rem-
+nant (SNR) and [OI]λ6300 (“[OI]” hereafter) shocks) in
+our analysis to elucidate the role of collisional excita-
+tion in the production CLs (e.g., Penston et al. 1984).
+To do so, we consider the strength of the [SII]λ6717,
+
+J171411.63+575834.0
+14
+10
+8
+6
+4
+2
+5 kpc
+0Coronal Lines in MaNGA
+7
+Figure 3. A sample BPT map showing AGN spaxels in red
+and composite spaxels in green, for CL-emitting spaxels in
+J2051 (a [NeV]λ3427 galaxy). The gray region is outside of
+the MaNGA FoV and the black region are spaxels with no
+CL emission. North is up, south is down, east is to the left,
+and west is to the right.
+λ6731 doublet with respect to the Hα line, which has
+traditionally been used to differentiate SNR shocks from
+photoionized regions. Specifically, Dodorico (1978) and
+Dodorico et al. (1980) first determined that regions with
+[SII] (λ6717 + λ6731)/Hα > 0.4 can be used to identify
+SNR shocks. Additionally, the [OI] emission line is gen-
+erally a strong tracer of shock excitation, and line flux
+ratios with [OI]/Hα> 0.1 indicate that shocks with ve-
+locities 160-300 km s −1 are the main excitation source
+of [OI] (e.g., Dopita 1976; Allen et al. 2008; Farage et al.
+2010; Rich et al. 2010, 2011; Riffel et al. 2021; Comerford
+et al. 2022). The MaNGA DAP provides flux measure-
+ments for the [SII]λ6717, λ6731, [OI], and Hα emission
+lines.
+4. RESULTS
+In this section, we report the main findings for the CL
+galaxies in our sample. First, we present the fraction of
+confirmed AGN in the CL galaxies. Then, we analyze
+the spatial distribution and extent of the CLs. Next, we
+inspect the CL galaxy bolometric and [OIII] luminosi-
+ties to deduce the effectiveness of using each species for
+accurate AGN identification. After, we assess the BPT
+classification of the CL-emitting spaxels. Finally, we in-
+vestigate the role of dust extinction and shocks in the
+CLR to determine the impact of dust grains on CL emis-
+sion, and to further constrain the ionization source(s) of
+the CLs.
+In total, we find 71 galaxies with CL emission at ≥ 5σ
+above the background continuum in MaNGA’s MPL-
+11 (33 feature [NeV] emission, 39 feature [FeVII] emis-
+sion, and 4 feature [FeX] emission). Note, in our sample,
+40 unique CL galaxies with either [NeV]λ3427, [FeVII],
+or [FeX] emission, or a combination of the three, fea-
+ture redshifts below the z min threshold for [NeV]λ3347
+(z min = 0.088); further, 24 unique CL galaxies with
+either [FeVII] or [FeX] emission feature redshifts be-
+low the z min threshold for [NeV]λ3427 (z min = 0.061).
+Therefore, we are unable to scan for [NeV]λ3347 or
+[NeV]λ3427 in these respective galaxies.
+In general,
+most of the MPL-11 galaxies feature redshifts that place
+[NeV]λ3347, λ3427 out of MaNGA’s spectral range (see
+Section 3.1.1).
+Moreover, in light of the extensive work to detect
+AGNs using infrared CLs, we crossmatched our catalog
+of 71 unique CL galaxies with the infrared CL catalogs
+presented in Genzel et al. 1998, Sturm et al. 2002, Ar-
+mus et al. 2004 Lutz et al. 2005, Weedman et al. 2006,
+Dasyra et al. 2008, Goulding & Alexander 2009, Armus
+et al. 2022. We do not identify any of the MaNGA CL
+galaxies in these samples.
+For 63/71 CL galaxies with GZ2 classifications (89%),
+we determine a nearly even fraction of spirals and el-
+lipticals (48% and 52%, respectively). In addition, we
+measure the average size of the CLR (from the galac-
+tic center) for [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760,
+λ6086, and [FeX]λ6374 to be 1.9 kpc, 2.3 kpc, 3.7 kpc,
+5.3 kpc, 4.1 kpc, and 2.5 kpc, respectively (Table 2).
+Further, we find that the vast majority of [NeV] galax-
+ies feature at least one CL-emitting spaxel in their nu-
+clear regions (98.5%; 2.′′5 x 2.′′5 FoV surrounding the
+central spaxel), whereas [FeVII] and [FeX] galaxies gen-
+erally feature a smaller fraction (73% and 75%, respec-
+tively). The corresponding fraction of confirmed AGN
+in these galaxies (determined by comparing our sample
+to the largest catalog of confirmed MaNGA AGN; Sec-
+tion 4.1) is 94%, 14%, and 25%, respectively.
+4.1. MaNGA AGN Comparison
+Comerford et al. (in prep) provide the most complete
+sample of AGN in MaNGA’s MPL-11 (see Comerford et
+al. 2020 for a full review of their MPL-8 MaNGA AGN
+catalog).
+The authors compile a catalog of MaNGA
+AGN that were detected using SDSS broad emission
+lines, NVSS/ FIRST 1.4 GHz radio observations, WISE
+mid-infrared color cuts, and Swift/BAT hard X-ray ob-
+servations.
+
+5 kpc
+0205141.54±005135.48
+Negus et al.
+Broad Balmer emission lines (FWHM > 1,000 km s−1)
+are strong tracers of the rapidly rotating, high density
+gas, near the SMBH. They serve as reliable tracers for
+AGN activity. Oh et al. (2015) assembled a catalog of
+nearby (z ≤ 2) Type I AGN in SDSS’s seventh data
+release using the broad Hα emission line, and Comerford
+et al. (in prep) identify 78 broad line AGN from this
+catalog in MPL-11.
+Powerful AGN radio jets can expand several kpcs from
+the SMBH, and can thus serve as strong signatures for
+AGN activity.
+As a result, detecting the radio emis-
+sion from these sources is a great tool for accurate AGN
+identification.
+Best & Heckman (2012) used observa-
+tions from the 1.4 GHz NRAO Very Large Array Sky
+Survey (NVSS; Condon et al. 1998) and the Faint Im-
+ages of the Radio Sky at Twenty Centimeters (FIRST;
+Becker et al. 1995) to detect AGN in the SDSS’s seventh
+data release (DR7). They differentiated AGN activity
+from star formation emission using the correlation be-
+tween the 4000 ˚A break strength and radio luminosity
+per stellar mass, emission line diagnostics, and the re-
+lation between Hα and radio luminosity (Becker et al.
+1995). Comerford et al. (in prep) find 221 radio AGN
+from this catalog in MPL-11.
+Heated dust that surrounds an AGN can produce mid-
+infrared emission, which can expose obscured and un-
+obscured AGN activity.
+Comerford et al.
+(in prep)
+thus rely upon observations from the Wide-Field In-
+frared Survey Explorer (WISE; Wright et al. 2010) to
+help identify AGN. They consider the four bands ob-
+served with WISE (3.4 µm (W1), 4.6 µm (W2), 12 µm
+(W3), and 22 µm (W4)) and apply a 75% reliability
+criteria of W1 - W2 > 0.486 exp{0.092(W2 - 13.07)2}
+and W2 > 13.07, or W1 - W2 > 0.486 and W2 ≤ 13.07
+(Assef et al. 2018) to select AGN. Comerford et al. (in
+prep) detect 130 WISE AGN in MPL-11.
+X-ray emission produced by AGN generally result
+from inverse Compton scattering of low energy UV pho-
+tons by energetic electrons from the accretion disk (e.g.,
+Antonucci 1993; Haardt & Maraschi 1991; Hinkle &
+Mushotzky 2021).
+Therefore, X-rays can be a useful
+indicator of AGN activity. Accordingly, the authors use
+the X-ray catalog assembled by Oh et al. (2018), which
+consists of ≈ 1,000 AGN observed by the Swift Obser-
+vatory’s Burst Alert Telescope (BAT) in the ultra hard
+X-ray (14 - 195 keV), to detect AGN. Comerford et al.
+(in prep) uncover 30 AGN from this catalog in MPL-11.
+We compare our CL sample to the AGN catalog re-
+ported by Comerford et al. (in prep; “Comerford sam-
+ple” hereafter) and crossmatch 35 CL galaxies in it (52%
+of our sample). Further, we consider the fraction of CL
+galaxies with confirmed AGN by specific CL species.
+We determine that 94% (31/33) of the [NeV] galaxies
+host an AGN; 14% (5/36) of the [FeVII] galaxies and
+25% (1/4) of the [FeX] galaxies.
+Overall, 35 unique
+CL galaxies host a confirmed AGN; 80% (28/35) are
+confirmed with WISE observations, 63% (22/35) with
+broad Balmer emission lines, 14% (5/35) with NVSS
+observations, and 11% (4/35) with BAT AGN.
+All of the [NeV]λ3347 galaxies feature an AGN and
+[NeV]λ3427 emission, and of the five [FeVII] galaxies
+with a confirmed AGN, two (J0736 and J1714) also fea-
+ture both [NeV]λ3347, λ3427 emission.
+Further, two
+of the remaining three [FeVII] galaxies with a con-
+firmed AGN (J0807 and J1157) feature emission from
+more than one [FeVII] emission line (J0807 features
+[FeVII]λ3586, λ3760, λ6086 emission; J1157 features
+[FeVII]λ3586, λ3760 emission). The final [FeVII] galaxy
+with a confirmed AGN exclusively features [FeVII]λ6086
+emission, and the sole [FeX] galaxy with a confirmed
+AGN (J1628) exclusively features [FeX] emission.
+Provided that 80% of the CL galaxies in our sample
+are confirmed to host an AGN via WISE diagnostics, we
+consider the fact that these WISE diagnostics are likely
+to miss low luminosity AGN (e.g., Assef et al. 2018).
+Perhaps, one possible explanation for the discrepancy in
+AGN across the CLs in our sample is that [NeV] traces
+high-luminosity AGN, while [FeVII] and [FeX] may pos-
+sibly trace low-luminosity AGN. We explore this further
+in Sections 4.3 and 4.5.
+4.2. Spatial Distribution and Extent of the CLs
+To better constrain the ionization source(s) of the
+CLs, we first map the measured fluxes of the CLs within
+the MaNGA FoV for each CL galaxy (Figure 2). These
+flux maps provide a snapshot of the orientation, extent,
+and intensity of CL emission for the galaxies in our sam-
+ple.
+Then, we compute the de-projected distance of
+each CL spaxel from the nuclear center of each galaxy
+(i.e. the photometric center; Section 3.2) to determine
+the distance of each CL-emitting spaxel from the galaxy
+center. Finally, we define the nuclear region of each CL
+galaxy to be a 2.′′5 x 2.′′5 aperture (5 x 5 spaxel grid;
+where each spaxel covers a 0.′′5 x 0.′′5 FoV) surrounding
+the central spaxel.
+If AGN photoionization is the primary mechanism
+producing the CLs, it is likely that CL emission is pre-
+dominantly within the nuclear region of each galaxy,
+close to the SMBH and the accretion disk (e.g., Gel-
+bord et al. 2009; Mazzalay et al. 2010). On the other
+hand, if shocks, AGN outflows, or stellar processes play
+an active role in generating CLs, we anticipate that CL
+emission will not be found exclusively in the nuclear
+region.
+Rather, we would expect to find emission in
+
+Coronal Lines in MaNGA
+9
+Table 2. Spatial Properties for the CL Galaxies
+Detected
+Wavelength
+Confirmed
+Nuclear Emission
+CLDmin
+CLDmax
+CLDavg
+CL
+(˚A)
+Galaxies
+(%)
+kpc
+kpc
+kpc
+(1)
+(2)
+(3)
+(4)
+(5)
+(6)
+(7)
+[NeV]
+3347
+8
+100
+0.52
+5.3
+1.9
+[NeV]
+3427
+33
+97
+0.34
+19
+2.3
+[FeVII]
+3586
+4
+100
+0.10
+9.6
+3.7
+[FeVII]
+3760
+16
+56
+0.11
+36
+5.3
+[FeVII]
+6086
+19
+63
+0.10
+21
+4.1
+[FeX]
+6374
+4
+75
+0.60
+4.9
+2.5
+Note: Columns are (1) detected CL, (2) rest wavelength, (3) number of galaxies with CL
+emission detected, (4) percentage of CL galaxies with at least one CL-emitting spaxel in
+a nuclear 2.′′5 FoV, (5) the average CLD (distance of CL-emitting spaxel from the galaxy
+center), (6) the distance of the furthest CL-emitting spaxel from the galaxy center, and (7)
+the distance of the closest CL-emitting spaxel from the galaxy center.
+regions off-center or off-axis from the SMBH and the
+galaxy’s rotational plane (see Negus et al. 2021 for more
+discussion).
+To analyze the CL distribution within the nuclear re-
+gion of the CL galaxies, we measure the fraction of CL
+galaxies with at least one CL emitting spaxel in their
+center, for each CL (Table 2). We find that the vast
+majority of [NeV] λ3347, λ3427 galaxies feature at least
+one [NeV]-emitting spaxel in their nuclear regions (100%
+and 97%, respectively). This finding is consistent with
+our results in Section 4.1, that [NeV] is a strong tracer
+of AGN activity (i.e. CL emission is likely dominated by
+AGN photoionization near the SMBH). Comparatively,
+the fraction of CL galaxies with nuclear emission from
+[FeVII] λ3586, λ3760, or λ6086 varies significantly more
+(100%, 56%, and 63%, respectively).
+In Figure 4, we present a sample of CL flux maps for
+six representative CL galaxies. In three of the galaxies
+(J1104, J1349, and J2152), it is apparent that the source
+of the CLs is within the nuclear region, as the CL flux
+is concentrated here.
+However, for the three remain-
+ing galaxies (J0023, J1613, and J0920), the CL-emitting
+spaxels are highly offset from the nuclear region. Based
+on the orientation of the CL flux in J0023 and J0920,
+it is possible that AGN outflows are generating the CL
+since the CL emission is generally perpendicular to the
+orbital plane of each galaxy. For the J1613 observation,
+we determine that several optical emission lines (e.g.,
+[OIII] and Hα) measured in the secondary galaxy (with
+the featured “CL emission”; southwest of J1613 in the
+MaNGA FoV) have large velocity shifts (> 2,000 km
+s−1) compared to the center of J1613, which suggests
+this may not be a companion galaxy (i.e., this is not
+a merging system; J1613 is not in the Nevin catalog).
+As a result, the “CL emission” in this galaxy is likely
+from a separate emission line, from a background galaxy
+with a different redshift than the primary galaxy. For
+J1349, we acknowledge that there appears to be a visual
+companion galaxy near the nuclear region; it is possible
+that both merger induced shocks and AGN photoioniza-
+tion could be producing the CL emission. In addition,
+we suspect that dust grains may also have a significant
+impact on the presence of [FeVII] and [FeX] emission in
+our sample. In Section 4.5, we review the likelihood of
+iron depletion by dust grains more thoroughly.
+We also compute the CLDs for the CL galaxies. The
+CLD, which is the distance of each CL-emitting spaxel
+from the galactic center, reveals the physical scale of the
+CLR for each CL galaxy. We measure the average CLDs
+for [NeV]λ3347, λ3427 to be 1.9 kpc and 2.3 kpc, respec-
+tively; 3.7 kpc, 5.3 kpc, and 4.1 kpc for [FeVII]λ3586,
+λ3760, λ6086, respectively; 2.5 kpc for [FeX]λ6374. We
+find no correlation between IPs and CLDs (IP = 262.1
+eV for [FeX], IP = 126.2 eV for [NeV], and IP = 125
+eV for [FeVII]). Moreover, for the [NeV] galaxies, the
+minimum and maximum distances of each CL-emitting
+spaxel from the nuclear center (labeled CLDmin and
+CLDmax in Table 2) ranges between 340 pc to 19 kpc,
+100 pc to 36 kpc for the [FeVII] galaxies, and 600 pc
+to 4.9 kpc for the [FeX] galaxies. These large variances
+in CL distance suggest that the CLR extends from just
+beyond the BLR (≈ 0.1 kpc) and well into the NLR
+(several kpcs).
+Finally, to confirm that CL emission is indeed resolved
+for each CL galaxy, we consider the instrument PSF (≈
+2.′′5 for MaNGA), and find that 60/71 CL galaxies show
+resolved and continuous emission in excess of the typical
+instrument PSF. The remaining 11 CL galaxies (J0205,
+J1010, J1117, J1317, J1344, J1416, J1604, J1626, J1628,
+J1658, and J1649) lack CL emission in excess of the typ-
+ical instrument PSF. We reason that these CLRs are be-
+low the instrument PSF, and not spatially resolved. As
+
+10
+Negus et al.
+discussed in Negus et al. (2021), these CLRs may still be
+spatially resolved by other instruments (e.g., Mazzalay
+et al. 2010 and their use of STIS/HST optical spectra),
+and it is also posible that CL emission may be oriented
+along an ionization cone; however here we consider the
+CLDs of these galaxies to be upper limits.
+4.3. AGN Bolometric and [OIII] Luminosities
+AGN bolometric luminosity, which scales with [OIII]
+luminosity, is effectively the “power” of an AGN. As
+outlined in Pennell et al. (2017), [OIII] emission is the
+most utilized line for measuring bolometric luminosity,
+due its strength in most AGN spectra and the relatively
+weak blending of emission from photoionized gas in star
+forming regions with the line (e.g., Heckman et al. 2004;
+Heckman & Best 2014).
+Therefore, to help resolve the discrepancy between the
+differing fractions of confirmed AGN in our sample (Sec-
+tion 4.1; 94% of the [NeV] galaxies feature a confirmed
+AGN, 14% for the [FeVII] galaxies, and 25% of the [FeX]
+galaxies; for CL galaxies with multiple CLs, we measure
+this fraction independently for each CL), and to eval-
+uate the overall effectiveness of using CL detections to
+identify AGN, we consider the bolometric and [OIII] lu-
+minosities of the CL galaxies, and further inspect the
+Comerford sample of MaNGA AGN. In particular, we
+compare the mean bolometric luminosities of the CL
+galaxies (Lbol; using the summed [OIII] flux across the
+entire galaxy; Section 3.4) with the total population of
+MPL-11 AGN in the Comerford sample (Section 4.1;
+Figure 5).
+We find that the mean bolometric luminosity for the
+[NeV] galaxies (mean z = 0.10; median z = 0.11),
+log(Lbol) = 44.5 erg s−1, is consistent with the mean
+value of Comerford’s population of MaNGA galaxies
+that host an AGN (log(Lbol) = 44.6 erg s−1). On the
+other hand, we measure the mean bolometric luminosi-
+ties of the [FeVII] galaxies (mean z = 0.06; median z =
+0.05) and the [FeX] galaxies (mean z = 0.07; median z =
+0.06) to be an order of magnitude lower than the mean
+log(Lbol) value of the Comerford sample (log(Lbol) =
+43.7 erg s−1 and log(Lbol) = 43.5 erg s−1 for the [FeVII]
+and [FeX] galaxies, respectively). Note, we also present
+the [OIII] luminosity distribution for the CL galaxies
+in Figure 6 (the mean [OIII] luminosity for the [NeV]
+galaxies is 41.5 erg s−1; 40.1 erg s−1 and 39.8 erg s−1 for
+the [FeVII] and [FeX] galaxies, respectively). We reason
+that the [FeVII] and [FeX] galaxies may be preferen-
+tially tracing lower luminosity AGN in MaNGA, which
+are generally more difficult to detect in multi-wavelength
+observations.
+However, we find that the five [FeVII] galaxies with
+a confirmed AGN (J0736, J0807, J1157, J1535, and
+J1714) all feature relatively high [OIII] luminosities of
+log(L[OIII]) ⪆ 41 erg s−1. Additionally, the three remain-
+ing [FeVII] galaxies with [OIII] luminosities at or above
+this limit (without confirmed AGN) are J0906, J1349,
+and J2152. Both J0906 and J1349 visually appear to
+be actively undergoing a merger; J2152 shows no appar-
+ent companion galaxy. We reason that, for the [FeVII]
+galaxies in our sample, the log(L[OIII]) cutoff of ≈ 41 erg
+s−1 is a useful threshold for identifying confirmed AGN
+(from the Comerford sample) and may also be helpful
+for detecting mergers. Further, for the [NeV] galaxies,
+J1344 features the lowest [OIII] luminosity (log(L[OIII])
+= 40.6 erg s−1) and in fact hosts a confirmed AGN. We
+consider the [OIII] luminosity threshold for the [FeVII]
+galaxies (log(L[OIII]) ≈ 41 erg s−1) to be similar for the
+[NeV] galaxies.
+We also determine that the two [NeV] galaxies (J1658
+and J1104) that do not feature a confirmed AGN (out
+of 33 total [NeV] galaxies), feature [OIII] luminosities
+of log(L[OIII]) = 41.2 erg s−1 and log(L[OIII]) = 41.4 erg
+s−1, respectively.
+Considering these high [OIII] lumi-
+nosities, and the high [NeV] AGN detection rate (94%),
+we propose that these two galaxies are strong AGN can-
+didates.
+On the other hand, the one [FeX] galaxy with a con-
+firmed AGN, J1628, features an [OIII] luminosity of
+log(L[OIII]) = 39.8 erg s−1 (the remaining three [FeX]
+galaxies, which do not host a confirmed AGN, also have
+log([OIII]) luminosities < 40 erg s−1).
+Consequently,
+while we consider the log(L[OIII]) ≈ 41 erg s−1 threshold
+useful for identifying CL galaxies with a confirmed AGN,
+it is important to acknowledge that CL galaxies with a
+confirmed AGN can have [OIII] luminosities below this
+limit.
+4.4. BPT Analysis
+The BPT diagram has long served as the standard
+tool for identifying ionization mechanisms in emission
+line sources (e.g, Baldwin et al. 1981; Veilleux & Oster-
+brock 1987; Kewley et al. 2001, 2006). While effects such
+as stellar shocks and emission from post-AGB stars are
+liable to elevate SF sources beyond the AGN threshold
+(see Yan & Blanton 2012; Belfiore et al. 2016; Agostino
+& Salim 2019 for a further discussion), we nonethe-
+less explore the BPT classification for each CL-emitting
+spaxel to help pin down the source of CL emission in our
+sample. To do so, we compute the log([OIII]/Hβ) and
+log([NII]/Hα) ratios required for the [NII]/Hα diagram
+(Section 3.5).
+Using the thresholds outlined in Kew-
+ley et al. (2006), we categorize each CL spaxel as either
+
+Coronal Lines in MaNGA
+11
+Figure 4.
+CL flux maps for 6/71 CL galaxies in our sample.
+From top to bottom and left to right: J1104 ([NeV]λ3427
+map), J0023 ([FeVII]λ3760 map), J1349 ([FeVII]λ3760 map), J1613 ([FeVII]λ3760 map), J2152 ([FeVII]λ6086 map), and J0940
+([FeVII]λ6086 map). For J0023 and J0940, the maps display CL emission spatially offset from the galaxy center. For each
+galaxy, the emission is offset perpendicular to the rotational plane of the galaxy, suggestive of the source of the CLs being
+AGN outflows. For J1349 we observe a possible companion galaxy and consider the possibility that these two galaxies to be
+undergoing a merger. For the J1613 observation, we determine that several optical emission lines (e.g., [OIII] and Hα) measured
+in the secondary galaxy (with the featured “CL emission”; southwest of J1613 in the MaNGA FoV) have large velocity shifts (>
+2,000 km s−1) compared to the center of J1613, which suggests this may not be a companion galaxy (i.e., this is not a merging
+system; J1613 is not in the Nevin catalog). As a result, the “CL emission” in this galaxy is likely from a separate emission line,
+from a background galaxy with a different redshift than the primary galaxy. For J1104 and J2152, CL emission is concentrated
+towards the galaxy center, likely produced by AGN photoionization.
+[HII] (i.e. star forming), AGN, or a composite of the
+two. Note, for some CL-spaxels, the DAP reports nega-
+tive values for the necessary emission line fluxes, likely
+because the emission lines of interest yield low flux lev-
+els and the DAP’s subtraction of the stellar continuum
+results in a net absorption at the expected wavelength
+of the emission line. As such, we exclude these spaxels
+from our analysis.
+For the [NeV], [FeVII], and [FeX] emission lines,
+we determine that, on average, the majority of CL-
+emitting spaxels are AGN or composite (Table 3). For
+[NeV]λ3347, λ3427 we find that 87.5% and 90% of these
+spaxels are classified as AGN, respectively; 12.5% and
+10% composite, respectively; 0% SF for both. Moreover,
+we measure the BPT ratios for the [FeVII]λ3586, λ3760,
+λ6086 spaxels, and find that 78.5%, 80.3%, and 67.9% of
+these spaxels are classified as AGN, respectively; 19%,
+5.8%, and 19.7% composite, respectively; 2.5%, 13.9%,
+and 12.5% SF, respectively. For [FeX]λ6374, 88.3% of
+the CL-emitting spaxels are classified as AGN; 0% com-
+posite; 11.7% SF. In total, 100% of the [NeV] spaxels in
+our sample are either BPT AGN or BPT composite, 91%
+of the [FeVII] spaxels, and 88.3% of the [FeX] spaxels.
+These results suggest that the CLs are perhaps useful
+tracers of AGN, and that the lack of confirmed AGN
+in our [FeVII] and [FeX] galaxies may trace back to the
+nearly bimodal log([OIII]) and bolometric luminosity
+distributions presented in Section 4.3 (i.e. [FeVII] and
+
+400
+1.2
+300
+cm
+erg s
+200m
+(10-
+150
+Flux
+2
+0.2
+50
+J110431.08+423721.2
+J002343.86+141824.2
+5kpc
+5.0
+0
+12
+60
+6
+(10-
+10
+J134918.20+240544.9
+J161358.56+393150.2
+5kpc
+1.75
+1.0
+-1)
+1.50%
+0.75
+0.2
+0.25
+J215259.07-000903.4
+5 kpc
+J094036.39+033436.9
+5kpo
+0.00
+0.012
+Negus et al.
+Table 3. BPT Classifications for the CL Galaxies
+.
+Detected
+Rest
+Confirmed
+Confirmed
+Confirmed
+[NII]
+[NII]
+[NII]
+CL
+Wavelength
+CL Galaxies
+AGN
+AGN Fraction
+AGN Fraction
+Composite Fraction
+SF Fraction
+˚A
+%
+%
+%
+%
+(1)
+(2)
+(3)
+(4)
+(5)
+(6)
+(7)
+(8)
+[NeV]
+λ3347
+8
+8
+100
+87.5
+12.5
+0
+λ3427
+33
+31
+94
+90
+10
+0
+[FeVII]
+λ3586
+4
+3
+75
+78.5
+19
+2.5
+λ3760
+16
+2
+13
+80.3
+5.8
+13.9
+λ6086
+19
+3
+16
+67.9
+19.7
+12.5
+[FeX]
+λ6374
+4
+1
+25
+88.3
+0
+11.7
+Note: Columns are (1) detected CL, (2) rest wavelength, (3) the number of galaxies that feature emission from the
+respective line, (4) the fraction of galaxies that host a confirmed AGN, (5) the average fraction of [NII] AGN BPT
+spaxels, (6) the average fraction of [NII] Composite BPT spaxels, and (7) the average fraction of [NII] SF BPT spaxels.
+Figure 5.
+Average mean bolometric luminosities for the
+71 CL galaxies in our sample (analyzed by each CL species;
+[NeV], [FeVII], and [FeX]), compared to the MaNGA galax-
+ies confirmed to feature an AGN in the Comerford sample.
+The AGN in the Comerford sample were verified using SDSS
+broad emission lines, NVSS/ FIRST 1.4 GHz radio observa-
+tions, WISE mid-infrared color cuts, and Swift/BAT hard
+X-ray observations. The mean bolometric luminosity of the
+[NeV] galaxies, log(Lbol) = 44.5 erg s−1, is consistent with
+the AGN reported in the Comerford sample (mean log(Lbol)
+= 44.6 erg s−1 for the Comerford sample).
+However, the
+[FeVII] and [FeX] galaxies feature mean bolometric lumi-
+nosities an order of magnitude lower (log(Lbol) ≤ 43.7 erg
+s−1) than the Comerford sample. We suspect that the [Fe-
+VII] and [FeX] emission lines may primarily be detecting low
+luminosity AGN in MaNGA.
+[FeX] may generally be found in low luminosity AGN
+that are potentially missed by traditional AGN detec-
+tion techniques; though, it is also possible that [FeVII]
+Figure 6. The log([OIII]) luminosity distribution for the 71
+CL galaxies. The blue, orange, and green histograms repre-
+sent the [NeV], [FeVII], and [FeX] galaxies in our sample, re-
+spectively. [NeV] emitting galaxies tend to have higher [OIII]
+luminosities than [FeVII] or [FeX], which suggests that these
+galaxies may host higher luminosity AGN. The mean of the
+[NeV] log([OIII]) luminosity distribution is 41.5 erg s−1; 40.1
+erg s−1 and 39.8 erg s−1 for [FeVII] and [FeX], respectively.
+and [FeX] may not host an AGN at all). We explore
+this possibility, and the corresponding impact of dust
+extinction on iron CL emission in Section 4.5.
+4.5. The Impact of Dust on CL Emission
+The role of dust extinction (i.e. the impact of dust
+grains) on CL emission has yet to be fully unraveled.
+Mullaney et al. (2009) suggest that dust grains can po-
+tentially deplete heavier CL species (e.g., iron). Further,
+Ferguson et al. (1997) posit that there are three pri-
+
+45.5
+) (erg/s)
+45.0
+44.5
+44.0
+T
+43.5
+Nev
+FeVIl
+FeX
+BAT
+WISE
+RADIO
+BROAD
+Source12
+[NeV]
+[FeVII]
+[FeX]
+10
+Number of CL Galaxies
+2
+39.0
+39.5 40.0 40.5 41.0 41.5 42.0
+42.5
+log [Oll] Luminosity (erg/s)Coronal Lines in MaNGA
+13
+mary effects of dust on line formation: 1) emission lines
+weaken due to the absorption of the incident continuum
+by dust, 2) grains photoelectrially heat the gas, and 3)
+some of the gas-phase elements (e.g., iron) are depleted
+(see also Seab & Shull 1983; Snow & Witt 1996; Collins
+et al. 2009; Kraemer et al. 2009). Comparatively, Fergu-
+son et al. (1997) contend that neon (a noble gas; i.e. a
+species of gas with a full outer shell of valence electrons,
+and thus less chemical reactivity) is significantly less de-
+pleted by dust grains, and therefore [NeV] is emitted al-
+most fully outside the grain sublimation radii. Here, we
+consider the likelihood that a significant population of
+iron CL photons are destroyed by dust in our sample.
+To explore the role of dust extinction on CL emission
+in our sample, and to determine its relevance for the dis-
+crepancy between the fraction of confirmed AGN in the
+[NeV] galaxies (94%) vs. the [FeVII] and [FeX] galaxies
+(14% and 25% respectively; Section 4.1), we use the E(B
+- V) color excess index, which traces interstellar redden-
+ing (Section 3.6). The MaNGA DRP provides this index
+for each galaxy in MPL-11, and we use it to determine
+if there is a correlation between the dust content of each
+CL galaxy and its CL emission. We present our findings
+in Table 4.
+In particular, we find the mean E(B - V) values
+for the [FeVII]λ3760, λ6086 galaxies to be the low-
+est (i.e.
+feature less dust grains) across our sam-
+ple (0.029 and 0.039, respectively).
+Because iron is
+susceptible to destruction by dust grains, particularly
+in the nuclear region where the presence of dust is
+greater (also due to dust in the NLR), these relatively
+low values provide a viable explanation for the pres-
+ence of [FeVII]λ3760, λ6086 emission in these galax-
+ies; for reference, our sample contains 16 [FeVII]λ3760
+galaxies and 19 [FeVII]λ6086 galaxies. Comparatively,
+the [NeV]λ3347, λ3427, [FeVII]λ3586, and [FeX]λ6374
+galaxies feature higher mean E(B- V) values; 0.057,
+0.045, 0.045, and 0.049, respectively. The correspond-
+ing number of iron CL-emitting galaxies found in these
+galaxies is only nine in total (J0736 features emission
+from both [NeV] lines, as well as [FeVII]λ3586 emis-
+sion; J1714 features emission from both [NeV] lines, as
+well as [FeVII]λ6086 emission; J0807 features emission
+from [FeVII]λ3586, λ3760, λ6086; J1157 features emis-
+sion from [FeVII]λ3586, λ3760; J0906 features emission
+from [FeVII]λ3586; J1628, J2311, J1649, and J1720 ex-
+clusively feature emission from [FeX]λ6374). We suspect
+that emission from the iron CL species is being dimin-
+ished within these relatively dusty galaxies, which pro-
+vides a physical explanation for the low number of iron
+CL galaxies in the high E(B - V) value galaxies (E(B -
+Table 4. CLR Dust Attenuation
+Detected
+Wavelength
+Average E(B-V) Value
+CL
+(˚A)
+(1)
+(2)
+(3)
+[NeV]
+3347
+0.057
+3427
+0.045
+[FeVII]
+3586
+0.045
+3760
+0.029
+6086
+0.039
+[FeX]
+6374
+0.049
+Note: Columns are (1) detected CL, (2)
+rest wavelength, and (3) average E(B-V)
+values, for each CL, reported by MaNGA’s
+DRP.
+V) ≥ 0.045; nine iron CL galaxies) vs. the low E(B - V)
+galaxies (E(B - V) < 0.039; 34 iron CL galaxies).
+Furthermore, Elitzur & Shlosman 2006 considered the
+correlation between the AGN dusty torus and AGN
+bolometric luminosity. They proposed that the dusty
+torus diminishes at log(Lbol) ⪅ 42 erg s−1, due to mass
+accretion no longer being able to sustain the necessary
+cloud outflow rate, which effectively results in a de-
+crease in column density (see also Chiaberge et al. 1999;
+Whysong & Antonucci 2004; Maoz et al. 2005). While
+the cloud component of the AGN is not immediately
+extinguished below this threshold, the authors contend
+that the cloud outflow rate at log(Lbol) ⪅ 42 erg s−1 is
+less than the necessary “standard” observed in higher
+luminosity AGN. As a result, we consider the Lbol val-
+ues for the CL species (Figure 5, mean log(Lbol) ≥ 44.3
+erg s−1 for [NeV] galaxies; mean log(Lbol) ≤ 43.7 erg
+s−1 for the [FeVII] and [FeX] galaxies) to conclude that
+the lower Lbol values correlate with a diminishing dusty
+torus, which results in less destruction of iron by dust
+grains. Accordingly, we detect more iron CLs in these
+low luminosity sources. On the other hand, the [NeV]
+galaxies feature higher Lbol values, which likely cor-
+respond to their elevated E(B - V) values.
+Likewise,
+since Lbol scales with LOIII, this reasoning elucidates
+the nearly bimodal log(LOIII) distribution of the [NeV]
+vs. the [FeVII] and [FeX] galaxies (Figure 6; the mean
+of the [NeV] log([OIII]) luminosity distribution is 41.5
+erg s−1; 40.1 erg s−1 and 39.8 erg s−1 for [FeVII] and
+[FeX], respectively).
+4.6. SNR, [OI], and Merger-Induced Shocks in the
+CLR
+Astrophysical shocks can result from a variety of
+mechanisms, which include, but are not limited to,
+galaxy collisions, SNRs, cloud-cloud collisions, expand-
+ing HII regions, and outflows from young stellar objects
+
+14
+Negus et al.
+Table 5. Morphological and Merger Classifications of the CL Galaxies
+SDSS Name
+Detected CL(s)
+Redshift
+Morphology
+Merger
+(1)
+(2)
+(3)
+(4)
+(5)
+J001938.78+144201.1
+[FeVII]λ6086
+0.116
+E
+N
+J002343.86+141824.2
+[FeVII]λ3760
+0.018
+S(b)
+N
+J020557.03+004623.9
+[FeVII]λ6086
+0.042
+E
+N
+J021257.59+140610.2
+[NeV]λ3427
+0.062
+-
+N
+J030639.57+000343.1
+[NeV]λ3427
+0.107
+E
+Y
+J072656.07+410136.0
+[NeV]λ3427
+0.129
+S(b)
+Y
+J073623.13+392617.7
+[NeV]λ3347, [NeV]λ3427, [FeVII]λ3586
+0.118
+-
+Y
+J074128.48+442431.6
+[NeV]λ3427
+0.132
+E
+N
+J075217.84+193542.2
+[NeV]λ3427
+0.117
+-
+-
+J075756.71+395936.1
+[NeV]λ3427
+0.066
+E(o)
+Y
+J080018.53+461112.3
+[FeVII]λ3760
+0.061
+E
+N
+J080403.40+404809.3
+[NeV]λ3427
+0.126
+S
+Y
+J080543.32+252710.9
+[FeVII]λ3760
+0.072
+E
+Y
+J080707.18+361400.5
+[FeVII]λ3586, [FeVII]λ3760, [FeVII]λ6086
+0.032
+S
+N
+J080859.19+364112.9
+[FeVII]λ6086
+0.03
+E
+Y
+J084002.36+294902.6
+[NeV]λ3427
+0.065
+E
+N
+J085208.48+511845.8
+[FeVII]λ3760
+0.115
+S
+N
+J085601.94+572327.4
+[FeVII]λ6086
+0.041
+S(bo)
+N
+J085835.98+013149.5
+[NeV]λ3427
+0.107
+S(b)
+Y
+J090659.46+204810.0
+[FeVII]λ3586
+0.109
+S(o)
+N
+J092002.85+054407.7
+[FeVII]λ6086
+0.038
+S(b)
+-
+J092739.77+050312.5
+[NeV]λ3427
+0.126
+S
+N
+J094036.39+033436.9
+[FeVII]λ6086
+0.016
+-
+Y
+J101042.59+061157.0
+[NeV]λ3427
+0.098
+E(o)
+Y
+J103825.16-002331.1
+[NeV]λ3347, [NeV]λ3427
+0.096
+S(o)
+Y
+J105439.31+475144.2
+[NeV]λ3427
+0.073
+S(b)
+N
+J105759.31+404940.6
+[FeVII]λ6086
+0.024
+E
+Y
+J110431.08+423721.2
+[NeV]λ3427
+0.126
+E(o)
+Y
+J111403.52+472653.4
+[FeVII]λ3760
+0.113
+E
+Y
+J111711.79+465134.0
+[FeVII]λ3760
+0.061
+E
+N
+J111724.94+443347.8
+[FeVII]λ3760
+0.066
+E
+N
+J111803.22+450646.8
+[NeV]λ3347, [NeV]λ3427
+0.107
+E(o)
+Y
+J112043.79+534337.4
+[FeVII]λ6086
+0.107
+E
+N
+J115710.68+221746.2
+[FeVII]λ3586, [FeVII]λ3760
+0.052
+S(b)
+N
+J122443.43+442438.8
+[NeV]λ3427
+0.126
+E
+Y
+J123521.03+422002.6
+[FeVII]λ6086
+0.039
+E
+N
+J130626.65+451720.4
+[FeVII]λ6086
+0.051
+E
+-
+J131730.11+474659.3
+[FeVII]λ3760
+0.027
+E
+N
+J134401.90+255628.3
+[NeV]λ3427
+0.062
+S(b)
+N
+J134918.20+240544.9
+[FeVII]λ3760
+0.021
+-
+Y
+J141623.14+381127.4
+[NeV]λ3427
+0.135
+-
+Y
+J142004.29+470716.8
+[NeV]λ3427
+0.07
+S(b)
+N
+J144454.24+522648.5
+[FeVII]λ3760
+0.146
+E
+N
+Note: Columns are (1) SDSS Name, (2) detected CL(s), (3) redshift, (4) GZ2 morphological classifications;
+“E” is for elliptical, “S” is for spiral, “b” is for bar, “o” is for odd, and “-” indicates no morphological
+classification was assigned, and (5) the merger classification from the Nevin catalog; “Y” marks galaxies
+with pmerg > 0.5, “N” identifies galaxies with pmerg ≤ 0.5, and “-” represents galaxies that are not in the
+Nevin catalog.
+
+Coronal Lines in MaNGA
+15
+Table 6. Morphological and Merger Classifications of the CL Galaxies (Continued)
+SDSS Name
+CL
+Redshift
+Morphology
+Merger
+(1)
+(2)
+(3)
+(4)
+(5)
+J145420.10+470022.3
+[FeVII]λ3760
+0.126
+E(o)
+Y
+J151600.58+342119.1
+[NeV]λ3427
+0.125
+S(o)
+Y
+J151856.39+332152.2
+[FeVII]λ6086
+0.069
+E
+N
+J153552.40+575409.4
+[FeVII]λ6086
+0.03
+E(o)
+N
+J160455.20+280956.9
+[NeV]λ3427
+0.077
+S
+Y
+J161301.62+371714.9
+[NeV]λ3427
+0.069
+S(b)
+Y
+J161358.56+393150.2
+[FeVII]λ3760
+0.038
+S
+-
+J161413.20+260416.3
+[NeV]λ3347, [NeV]λ3427
+0.131
+-(o)
+Y
+J162428.39+483548.0
+[FeVII]λ6086
+0.057
+E(o)
+Y
+J162621.91+405442.7
+[FeVII]λ3760
+0.03
+S(o)
+Y
+J162845.89+252938.0
+[FeX]λ6374
+0.04
+E
+N
+J162908.95+383256.6
+[FeVII]λ6086
+0.033
+E
+N
+J163014.63+261223.3
+[NeV]λ3347, [NeV]λ3427
+0.131
+S(b)
+N
+J163053.84+243343.5
+[FeVII]λ6086
+0.063
+E
+Y
+J163430.87+374143.6
+[NeV]λ3427
+0.099
+E
+N
+J164956.39+351243.5
+[FeX]λ6374
+0.1
+E
+N
+J165810.10+622456.3
+[NeV]λ3427
+0.119
+S(b)
+N
+J171411.63+575834.0
+[NeV]λ3347, [NeV]λ3427, [FeVII]λ6086
+0.093
+E
+Y
+J172032.02+280602.9
+[FeX]λ6374
+0.083
+-
+Y
+J205141.54+005135.4
+[NeV]λ3347, [NeV]λ3427
+0.106
+S
+Y
+J211646.34+110237.4
+[NeV]λ3427
+0.081
+S
+Y
+J212401.89-002158.6
+[NeV]λ3427
+0.062
+S(b)
+Y
+J212900.75+001057.3
+[FeVII]λ3760
+0.133
+E(o)
+N
+J213227.90+100816.9
+[NeV]λ3427
+0.063
+S(o)
+-
+J215259.07-000903.4
+[FeVII]λ6086
+0.028
+S
+N
+J223338.41+131243.6
+[NeV]λ3347, [NeV]λ3427
+0.093
+S
+Y
+J231142.05+150638.2
+[FeX]λ6374
+0.04
+S(o)
+N
+J232538.54+152115.8
+[FeVII]λ6086
+0.041
+S
+N
+Note: Columns are (1) SDSS Name, (2) detected CL(s), (3) redshift, (4) GZ2 morphological classifications;
+“E” is for elliptical, “S” is for spiral, “b” is for bar, “o” is for odd, and “-” indicates no morphological
+classification was assigned, and (5) the merger classification from the Nevin catalog; “Y” marks galaxies
+with pmerg > 0.5, “N” identifies galaxies with pmerg ≤ 0.5, and “-” represents galaxies that are not in the
+Nevin catalog.
+
+16
+Negus et al.
+Table 7. SNR Shocks
+Detected
+Wavelength
+CL AGN
+CL Non-AGN
+CL Mergers
+CL Non-Mergers
+CL Nuclear
+CL Non-Nuclear
+CL
+(˚A)
+SNR Shocks
+SNR Shocks
+SNR Shocks
+SNR Shocks
+SNR Shocks
+SNR Shocks
+(1)
+(2)
+(3)
+(4)
+(5)
+(6)
+(7)
+(8)
+[NeV]
+3347
+13%
+-
+14%
+0%
+13%
+-
+[NeV]
+3427
+33%
+100%
+30%
+50%
+39%
+0%
+[FeVII]
+3586
+3%
+38%
+0%
+8%
+12%
+-
+[FeVII]
+3760
+6%
+55%
+49%
+49%
+52%
+45%
+[FeVII]
+6086
+95%
+42%
+64%
+41%
+61%
+25%
+[FeX]
+6374
+100%
+45%
+36%
+67%
+67%
+36%
+Note: Columns are (1) detected CL, (2) rest wavelength, (3) percentage of CL-emitting spaxels in the CL Galaxies
+with a confirmed AGN that feature SNR shocks, (4) percentage of CL-emitting spaxels in the CL Galaxies without a
+confirmed AGN that feature SNR shocks, (5) percentage of CL-emitting spaxels in the CL Galaxies undergoing a merger
+that feature SNR shocks, (6) percentage of CL-emitting spaxels in the CL Galaxies not undergoing a merger that feature
+SNR shocks, (7) percentage of CL-emitting spaxels in the CL Galaxies with nuclear CL emission (See Section 4.2) that
+feature SNR shocks, and (8) percentage of CL-emitting spaxels in the CL Galaxies without nuclear CL emission that
+feature SNR shocks. “-” indicates an empty sample set.
+Table 8. [OI] Shocks
+Detected
+Wavelength
+CL AGN
+CL Non-AGN
+CL Mergers
+CL Non-Mergers
+CL Nuclear
+CL Non-Nuclear
+CL
+(˚A)
+SNR Shocks
+[OI] Shocks
+[OI] Shocks
+[OI] Shocks
+[OI] Shocks
+[OI] Shocks
+(1)
+(2)
+(3)
+(4)
+(5)
+(6)
+(7)
+[NeV]
+3347
+25%
+-
+29%
+0%
+25%
+-
+[NeV]
+3427
+29%
+100%
+33%
+31%
+35%
+0%
+[FeVII]
+3586
+4%
+12%
+0%
+6%
+6%
+-
+[FeVII]
+3760
+3%
+28%
+20%
+26%
+25%
+25%
+[FeVII]
+6086
+50%
+36%
+45%
+33%
+31%
+49%
+[FeX]
+6374
+100%
+67%
+100%
+67%
+67%
+100%
+Note: Columns are (1) detected CL, (2) rest wavelength, (3) percentage of CL-emitting spaxels in the CL Galaxies
+with a confirmed AGN that feature [OI] shocks, (4) percentage of CL-emitting spaxels in the CL Galaxies without a
+confirmed AGN that feature [OI] shocks, (5) percentage of CL-emitting spaxels in the CL Galaxies undergoing a merger
+that feature [OI] shocks, (6) percentage of CL-emitting spaxels in the CL Galaxies not undergoing a merger that feature
+[OI] shocks, (7) percentage of CL-emitting spaxels in the CL Galaxies with nuclear CL emission (See Section 4.2) that
+feature [OI] shocks, and (8) percentage of CL-emitting spaxels in the CL Galaxies without nuclear CL emission that
+feature [OI] shocks. “-” indicates an empty sample set.
+(see Allen et al. 2008 for a further review). To deduce
+the role of shocks in the CLR, we consider the [SII]
+(λ6717 + λ6731)/Hα and [OI]λ6300/Hα ratios for each
+CL-emitting spaxel in our sample (values > 0.4 indicate
+SNR shocks and values > 0.1 trace [OI] shocks, respec-
+tively; Section 3.7).
+We also investigate the fraction of CL galaxies actively
+undergoing a merger using the Nevin et al., catalog (Ta-
+ble 5; Table 6; Section 3.3). In Negus et al. 2021, we
+found that the 3/10 CL galaxies without a confirmed
+AGN were all strong merger candidates (J0906, J1349,
+and J1454). Therefore, we consider the possibility that
+companion galaxies can drive gas inflows towards the
+galactic centers, resulting in merger-induced shock ex-
+citation (e.g., Farage et al. 2010) that may also pro-
+duce CLs. Using the Nevin catalog, here we determine
+that 32/66 of the CL galaxies (48%; 5 CL galaxies are
+not reported in the Nevin catalog: J0752, J0920, J1306,
+J1613, and J2132) have pmerg values > 0.5 - indicative
+of an ongoing merger.
+Further, we present our SNR and [OI] shocks results
+in Tables 7 and 8. Overall, we find that the fraction of
+SNR and [OI] shocks do not vary significantly for the
+CL galaxies. In particular, on average and across all CL
+species, 42% of the CL-emitting spaxels in the CL galax-
+ies with a confirmed AGN feature SNR shocks (35% fea-
+ture [OI] shocks), whereas 56% of the CL-emitting spax-
+els in the CL galaxies without a confirmed AGN feature
+SNR shocks (49% feature [OI] shocks). Further, on av-
+erage and across all CL species, 32% of the CL-emitting
+
+Coronal Lines in MaNGA
+17
+spaxels in the CL galaxies undergoing a merger feature
+SNR shocks (38% feature [OI] shocks). On the other
+hand, 36% of the CL-emitting spaxels in the CL galaxies
+not undergoing a merger feature SNR shocks (27% fea-
+ture [OI] shocks). Finally, on average and across all CL
+species, 41% of the CL-emitting spaxels in the CL galax-
+ies with nuclear CL emission feature SNR shocks (32%
+feature [OI] shocks).
+Comparatively, 27% of the CL-
+emitting spaxels in the CL galaxies without nuclear CL
+emission feature SNR shocks (44% feature [OI] shocks).
+We find clear evidence of SNR and [OI] shocks in the
+CL-emitting spaxels of each CL species in our sample.
+However, the fraction of these shocks does not strongly
+trace CL galaxies with or without: a confirmed AGN, a
+companion galaxy, or nuclear CL emission. We reason
+that SNR and [OI] shocks may be viable CL-emission
+mechanisms; however, they are not likely dominant, and
+we find little evidence that they produce CLs away from
+the nuclear region, in the absence of a confirmed AGN,
+or when a merging companion galaxy is present.
+5. DISCUSSION
+Based on our findings, we reason that the efficacy of
+using CLs to detect AGN varies by species of CL. While
+the ionization potential of each CL is ≥ 100 eV (Table
+1; well above the 55 eV threshold for pure star forma-
+tion; consistent with the strong continuum of an AGN
+being the ionization source), we find that certain CLs
+are better at identifying higher luminosity AGN than
+others (log(L[OIII]) ⪆ 41 erg s−1). In particular, [NeV]
+emission is predominately present in higher [OIII] lu-
+minosity galaxies that feature a confirmed AGN (mean
+log(L[OIII]) = 41.5 erg s−1 for the [NeV] galaxies; 94%
+of the [NeV] galaxies host a confirmed AGN). On the
+other hand, we detect [FeVII] and [FeX] emission in
+lower [OIII] luminosity galaxies with fewer confirmed
+AGNs (mean log(L[OIII]) ≤ 40.1 erg s−1 for both CLs;
+14% and 25% confirmed AGN for the [FeVII] and [FeX]
+galaxies, respectively).
+We reason that the destruction of iron CLs by dust
+grains, which we find is inversely proportional to AGN
+bolometric luminosity (the dusty torus diminishes at
+log(Lbol) ⪅ 42 erg s−1; e.g., Elitzur & Shlosman 2006),
+may be directly impacting [FeVII] and [FeX] emission;
+the CL galaxies with the lowest E(B-V) values yield the
+most iron CL detections (nine iron CL galaxies with
+E(B - V) ≥ 0.045; 34 iron CL galaxies with (E(B -
+V) < 0.039).
+We posit that if the [FeVII] and [FeX]
+galaxies host AGNs, that they may be lower luminosity
+AGNs, which are potentially too weak to be detected
+via SDSS broad emission lines, NVSS/ FIRST 1.4 GHz
+radio observations, WISE mid-infrared color cuts, and
+Swift/BAT hard X-ray observations.
+We determine that there are primarily two distinct
+populations of CL galaxies in our sample: 1) a subset of
+CL galaxies that emit [NeV] (33/71 CL galaxies), with
+relatively high [OIII] and bolometric luminosities, and a
+high fraction of confirmed AGN (94%), and 2) a group
+of CL galaxies that emit [FeVII] and [FeX] (40/71 CL
+galaxies), with relatively low [OIII] and bolometric lu-
+minosities, and a low fraction of confirmed AGN (14%
+and 25%, respectively).
+Overall, we consider the similar IPs of [NeV] and [Fe-
+VII] (126.2 eV and 125 eV, respectively), the high IP
+of [FeX] (262.21 eV), and our BPT analysis (100% of
+the [NeV] spaxels in our sample are either BPT AGN or
+NPT composite, 91% of the [FeVII] spaxels, and 88.3%
+of the [FeX] spaxels; Table 3), to deduce that each CL
+in our sample is likely linked to AGN activity, but that
+[FeVII] and [FeX] emission may preferentially be found
+in less luminous AGN (we also consider the possibility
+that some of the iron CL emission may not exclusively
+be produced by AGN; e.g., shocks may also play a role).
+We conclude that the BPT diagram is generally effective
+at tracing large populations of AGN; however, [NeV], in
+particular, can also be used as an additional resource
+to help trace AGN, specifically for instances where one
+or more of the optical BPT line ratios is unable to be
+determined.
+Moreover, Ferguson et al. (1997) reported CL criti-
+cal densities between 107 - 1010 cm−3, which suggest
+that the CLR is a region between the classical NLR and
+the BLR. The authors also indicate that lower ioniza-
+tion CLs (e.g., [NeV] and [FeVII]; IPs ≈ 125 eV) are
+more likely to form in lower density gas that should be
+spatially resolved.
+In contrast, higher ionization CLs
+(e.g., [FeX]; IP = 262.1 eV) form in a region closer
+to the nucleus where the ionizing flux, and ionization
+parameters, are higher (i.e., these CLs form in denser,
+more efficiently emitting regions). Here we determine
+that the average size of the CLR for [NeV]λ3347, λ3427,
+[FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 is 1.9 kpc,
+2.3 kpc, 3.7 kpc, 5.3 kpc, 4.1 kpc, and 2.5 kpc, respec-
+tively (Table 2) - well into the NLR for all CL species.
+With the enhanced capabilities of IFS, which enables us
+to spatially resolve the CLR, we find that the CLR for
+the galaxies in MaNGA is larger than reported in pre-
+vious works (tens to hundreds of pcs; e.g. Prieto et al.
+2005; Mazzalay et al. 2010; M¨uller-S´anchez et al. 2011;
+Rodr´ıguez-Ardila et al. 2011).
+Finally, while the bulk of the CL galaxies in our sam-
+ple feature CL emission in their nuclear regions (within
+a central 2.′′5 x 2.′′5 FoV; Section 4.2; Table 2), a sig-
+
+18
+Negus et al.
+nificant fraction do not, which is inconsistent with pure
+AGN photoionization. In Section 4.6, we show that [OI]
+and SNR shocks are present in the CL-emitting spax-
+els of each CL species. However, the fraction of SNR
+and [OI] shocks, across all CL species, do not signifi-
+cantly vary for the CL galaxies with or without nuclear
+CL emission. We reason, instead, that AGN radio jets
+or outflows may be interacting with gas clouds away
+from the nuclear region, ionizing them, and producing
+the non-centric CL emission we uncover in our sample
+(Figure 4; e.g., Tadhunter et al. 1988; M¨uller-S´anchez
+et al. 2011). It is also possible that this CL emission is
+tracing a different species of gas, that is not a CL, from
+a non-companion galaxy within the MaNGA FoV (at a
+different redshift than the target galaxy; e.g., J1613 -
+Figure 4).
+6. SUMMARY AND FUTURE WORK
+We construct the most extensive sample of MaNGA
+CL galaxies to date.
+With our custom pipeline,
+we measure emission from [NeV]λ3347, [NeV]λ3427,
+[FeVII]λ3586,
+[FeVII]λ3760,
+[FeVII]λ6086,
+and/or
+[FeX]λ6374 at ≥ 5σ above the background continuum
+in 71 galaxies in MaNGA’s MPL-11 catalog of 10,010
+unique galaxies.
+Our main findings are:
+1. The average size of the CLR for [NeV], [FeVII],
+and [FeX] is 1.9 kpc, 3.8 kpc, and 2.5 kpc, respec-
+tively - beyond the BLR and into the traditional
+NLR.
+2. The fraction of [NeV], [FeVII], and [FeX] galax-
+ies with at least one CL-emitting spaxel in their
+nuclear 2.′′5 region is 98.5%, 73%, and 75%, re-
+spectively. Nuclear CL emission is preferentially
+found in [NeV] galaxies.
+3. We identify two main populations of CL galax-
+ies: 1) galaxies that mostly feature [NeV] emis-
+sion (33/71 CL galaxies), with relatively high
+[OIII] and bolometric luminosities (mean [NeV]
+log([OIII]) luminosity = 41.5 erg s−1; mean [NeV]
+log(Lbol) = 44.5 erg s−1), and a high fraction
+of confirmed AGN (94%), and 2) galaxies that
+predominately emit [FeVII] and [FeX] (40/71 CL
+galaxies), with relatively low [OIII] and bolometric
+luminosities (mean [FeVII] and [FeX] log([OIII])
+luminosities are 40.1 erg s−1 and 39.8 erg s−1, re-
+spectively; mean [FeVII] and [FeX] log(Lbol) val-
+ues are 43.7 erg s−1 and 43.5 erg s−1, respectively),
+and a low fraction of confirmed AGN (14% and
+25%, respectively).
+4. 100% of the [NeV] spaxels in our sample are either
+BPT AGN or BPT composite, 91% of the [FeVII]
+spaxels, and 88.3% of the [FeX] spaxels. The CLs
+are strong tracers of BPT AGN and BPT compos-
+ite sources.
+5. We detect a low number of iron CL galaxies in high
+E(B - V) value galaxies (E(B - V) ≥ 0.045; nine
+iron CL galaxies) vs. low E(B - V) galaxies (E(B
+- V) < 0.039; 34 iron CL galaxies).
+We reason
+that the destruction of iron CLs by dust grains,
+which is inversely proportional to AGN bolomet-
+ric luminosity, may likely be depleting [FeVII] and
+[FeX] emission, particularly in the nuclear region
+where the presence of dust is greater. The [FeVII]
+and [FeX] galaxies may be tracing lower luminosity
+AGN, which are possibly too weak to be confirmed
+by traditional AGN detection techniques.
+6. SNR and [OI] shock excitation are viable CL pro-
+duction mechanisms; however, they are not likely
+primary, as the abundance of SNR and [OI] shocks
+does not vary significantly across our sample for
+galaxies with or without: nuclear CL emission, an
+AGN, or a merging companion.
+We will explore the CLR kinematics in a future publi-
+cation to better comprehend the role of outflows on CL
+production. In particular, we will use [OIII] flux maps to
+evaluate the likelihood that AGN outflows produce CL
+emission, provided the strong correlation between [OIII]
+emission and AGN outflows (e.g., Sun et al. 2017; Com-
+erford et al. 2018). Further, we will measure the rotation
+and cloud velocities of the gas for each CL galaxy (to
+determine how the bulk motion of gas in the CL galaxies
+correlates with CL emission), and also analyze the emis-
+sion line profiles of the CLs to determine if, for example,
+the CLs feature any blue shifted emission - indicative of
+outflows.
+Moreover, additional multi-wavelength observations of
+the CLs would help deduce their nature. X-ray obser-
+vations from Chandra, for example, would allow us to
+better confirm the population of low luminosity AGN in
+the CL galaxies. This will help to determine the effec-
+tiveness of using CL emission as an unambiguous tracer
+of AGN in large-scale spectroscopic surveys of galaxies.
+Finally, our work here is also relevant for motivating
+near IR measurements of additional CLs that are observ-
+able by the James Webb Space Telescope, particularly in
+cases where optical CLs may be obscured.
+
+Coronal Lines in MaNGA
+19
+ACKNOWLEDGMENTS
+J.N. and J.M.C. acknowledge support from NSF
+AST1714503 and NSF AST1847938.
+Funding for the Sloan Digital Sky Survey IV has been
+provided by the Alfred P. Sloan Foundation, the U.S.
+Department of Energy Office of Science, and the Partici-
+pating Institutions. SDSS-IV acknowledges support and
+resources from the Center for High-Performance Com-
+puting at the University of Utah. The SDSS web site is
+www.sdss.org.
+SDSS-IV is managed by the Astrophysical Research
+Consortium for the Participating Institutions of the
+SDSS Collaboration including the Brazilian Participa-
+tion Group, the Carnegie Institution for Science,
+Carnegie Mellon University, the Chilean Participa-
+tion Group, the French Participation Group, Harvard
+Smithsonian Center for Astrophysics, Instituto de As-
+trof´ısica de Canarias, The Johns Hopkins University,
+Kavli Institute for the Physics and Mathematics of
+the Universe (IPMU) / University of Tokyo, the Ko-
+rean Participation Group, Lawrence Berkeley National
+Laboratory, Leibniz Institut f¨ur Astrophysik Potsdam
+(AIP), Max-Planck-Institut f¨ur Astronomie (MPIA Hei-
+delberg), Max-Planck-Institut f¨ur Astrophysik (MPA
+Garching), Max-Planck-Institut f¨ur Extraterrestrische
+Physik (MPE), National Astronomical Observatories of
+China, New Mexico State University, New York Uni-
+versity, University of Notre Dame, Observat´ario Na-
+cional / MCTI, The Ohio State University, Pennsylva-
+nia State University, Shanghai Astronomical Observa-
+tory, United Kingdom Participation Group, Universidad
+Nacional Aut´onoma de M´exico, University of Arizona,
+University of Colorado Boulder, University of Oxford,
+University of Portsmouth, University of Utah, Univer-
+sity of Virginia, University of Washington, University of
+Wisconsin, Vanderbilt University, and Yale University.
+This publication makes use of data products from the
+Wide-field Infrared Survey Explorer, which is a joint
+project of the University of California, Los Angeles, and
+the Jet Propulsion Laboratory/California Institute of
+Technology, funded by the National Aeronautics and
+Space Administration.
+This research has made use of data supplied by the UK
+Swift Science Data Centre at the University of Leicester.
+This work utilized the Summit supercomputer, which
+is
+supported
+by
+the
+National
+Science
+Foundation
+(awards ACI-1532235 and ACI-1532236), the Univer-
+sity of Colorado Boulder, and Colorado State Univer-
+sity.
+The Summit supercomputer is a joint effort of
+the University of Colorado Boulder and Colorado State
+University.
+Software:
+This work made use of Astropy2:
+a
+community-developed core Python package and an
+ecosystem of tools and resources for astronomy (As-
+tropy Collaboration et al. 2013, 2018, 2022).
+REFERENCES
+Adelman-McCarthy, J. K., Ag¨ueros, M. A., Allam, S. S., et
+al. 2006, ApJS, 162, 38. doi:10.1086/497917
+Adelman-McCarthy, J. K., Ag¨ueros, M. A., Allam, S. S., et
+al. 2008, ApJS, 175, 297. doi:10.1086/524984
+Allen, M. G., Groves, B. A., Dopita, M. A., et al. 2008,
+ApJS, 178, 20. doi:10.1086/589652
+Agostino, C. J. & Salim, S. 2019, ApJ, 876, 12.
+doi:10.3847/1538-4357/ab1094
+Aihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS,
+193, 29. doi:10.1088/0067-0049/193/2/29
+Antonucci, R. 1993, ARA&A, 31, 473.
+doi:10.1146/annurev.aa.31.090193.002353
+Armus, L., Charmandaris, V., Spoon, H. W. W., et al.
+2004, ApJS, 154, 178. doi:10.1086/422915
+Armus, L., Lai, T., U, V., et al. 2022, arXiv:2209.13125
+Assef, R. J., Stern, D., Noirot, G., et al. 2018, ApJS, 234, 23
+2 http://www.astropy.org
+Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et
+al. 2013, A&A, 558, A33.
+doi:10.1051/0004-6361/201322068
+Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M.,
+et al. 2018, AJ, 156, 123. doi:10.3847/1538-3881/aabc4f
+Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et
+al. 2022, ApJ, 935, 167. doi:10.3847/1538-4357/ac7c74
+Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981,
+PASP, 93, 5. doi:10.1086/130766
+Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ,
+450, 559
+Belfiore, F., Maiolino, R., Maraston, C., et al. 2016,
+MNRAS, 461, 3111. doi:10.1093/mnras/stw1234
+Best, P. N. & Heckman, T. M. 2012, MNRAS, 421, 1569
+Blanton, M. R., Kazin, E., Muna, D., et al. 2011, AJ, 142,
+31. doi:10.1088/0004-6256/142/1/31
+Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017,
+AJ, 154, 28. doi:10.3847/1538-3881/aa7567
+Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ,
+798, 7. doi:10.1088/0004-637X/798/1/7
+
+20
+Negus et al.
+Cappellari, M. 2012, Astrophysics Source Code Library.
+ascl:1210.002
+Cappellari, M. 2017, MNRAS, 466, 798.
+doi:10.1093/mnras/stw3020
+Chiaberge, M., Capetti, A., & Celotti, A. 1999, A&A, 349,
+77
+Collins, N. R., Kraemer, S. B., Crenshaw, D. M., et al.
+2009, ApJ, 694, 765. doi:10.1088/0004-637X/694/2/765
+Comerford, J. M., Nevin, R., Stemo, A., et al. 2018, ApJ,
+867, 66. doi:10.3847/1538-4357/aae2b4
+Comerford, J. M., Negus, J., M¨uller-S´anchez, F., et al.
+2020, ApJ, 901, 159. doi:10.3847/1538-4357/abb2ae
+Comerford, J. M., Negus, J., Barrows, R. S., et al. 2022,
+ApJ, 927, 23. doi:10.3847/1538-4357/ac496a
+Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998,
+AJ, 115, 1693
+Dasyra, K. M., Ho, L. C., Armus, L., et al. 2008, ApJL,
+674, L9. doi:10.1086/528843
+Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature,
+433, 604. doi:10.1038/nature03335
+Dodorico, S. 1978, Mem. Soc. Astron. Italiana, 49, 485
+Dodorico, S., Dopita, M. A., & Benvenuti, P. 1980, A&AS,
+40, 67
+Dopita, M. A. 1976, ApJ, 209, 395. doi:10.1086/154732
+Drory, N., MacDonald, N., Bershady, M. A., et al. 2015,
+AJ, 149, 77. doi:10.1088/0004-6256/149/2/77
+Eisenstein, D. J., Weinberg, D. H., Agol, E., et al. 2011,
+AJ, 142, 72. doi:10.1088/0004-6256/142/3/72
+Elitzur, M. & Shlosman, I. 2006, ApJL, 648, L101.
+doi:10.1086/508158
+Elmhamdi, A. 2011, AcA, 61, 179
+Fabian, A. C. 2012, ARA&A, 50, 455.
+doi:10.1146/annurev-astro-081811-125521
+Farage, C. L., McGregor, P. J., Dopita, M. A., et al. 2010,
+ApJ, 724, 267. doi:10.1088/0004-637X/724/1/267
+Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998,
+PASP, 110, 761. doi:10.1086/316190
+Ferguson, J. W., Korista, K. T., & Ferland, G. J. 1997,
+ApJS, 110, 287. doi:10.1086/312998
+Ferrarese, L. & Merritt, D. 2000, ApJL, 539, L9.
+doi:10.1086/312838
+Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJL,
+539, L13. doi:10.1086/312840
+Gelbord, J. M., Mullaney, J. R., & Ward, M. J. 2009,
+MNRAS, 397, 172. doi:10.1111/j.1365-2966.2009.14961.x
+Genzel, R., Lutz, D., Sturm, E., et al. 1998, ApJ, 498, 579.
+doi:10.1086/305576
+Glidden, A., Rose, M., Elvis, M., et al. 2016, ApJ, 824, 34.
+doi:10.3847/0004-637X/824/1/34
+Goulding, A. D. & Alexander, D. M. 2009, MNRAS, 398,
+1165. doi:10.1111/j.1365-
+2966.2009.15194.x10.48550/arXiv.0906.0772
+Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006,
+AJ, 131, 2332. doi:10.1086/500975
+Haardt, F. & Maraschi, L. 1991, ApJL, 380, L51.
+doi:10.1086/186171
+Haehnelt, M. G., Madau, P., Kudritzki, R., et al. 2001,
+ApJL, 549, L151.
+Heckman, T. M., Kauffmann, G., Brinchmann, J., et al.
+2004, ApJ, 613, 109. doi:10.1086/422872
+Heckman, T. M. & Best, P. N. 2014, ARA&A, 52, 589.
+Hinkle, J. T. & Mushotzky, R. 2021, MNRAS, 506, 4960.
+doi:10.1093/mnras/stab1976
+doi:10.1146/annurev-astro-081913-035722
+Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2005, ApJ,
+630, 705. doi:10.1086/432438
+Kewley, L. J., Dopita, M. A., Sutherland, R. S., et al. 2001,
+ApJ, 556, 121. doi:10.1086/321545
+Kewley, L. J., Groves, B., Kauffmann, G., et al. 2006,
+MNRAS, 372, 961. doi:10.1111/j.1365-2966.2006.10859.x
+Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511.
+doi:10.1146/annurev-astro-082708-101811
+Kraemer, S. B., Trippe, M. L., Crenshaw, D. M., et al.
+2009, ApJ, 698, 106. doi:10.1088/0004-637X/698/1/106
+Laor, A. 2004, AGN Physics with the Sloan Digital Sky
+Survey, 169
+Law, D. R., Cherinka, B., Yan, R., et al. 2016, AJ, 152, 83.
+doi:10.3847/0004-6256/152/4/83
+Lutz, D., Yan, L., Armus, L., et al. 2005, ApJL, 632, L13.
+doi:10.1086/497639
+Maoz, D., Nagar, N. M., Falcke, H., et al. 2005, ApJ, 625,
+699. doi:10.1086/429795
+Mazzalay, X., Rodr´ıguez-Ardila, A., & Komossa, S. 2010,
+MNRAS, 405, 1315. doi:10.1111/j.1365-2966.2010.16533.x
+Molina, M., Reines, A. E., Latimer, L. J., et al. 2021, ApJ,
+922, 155. doi:10.3847/1538-4357/ac1ffa
+Mullaney, J. R., Ward, M. J., Done, C., et al. 2009,
+MNRAS, 394, L16. doi:10.1111/j.1745-3933.2008.00599.x
+M¨uller-S´anchez, F., Prieto, M. A., Hicks, E. K. S., et al.
+2011, ApJ, 739, 69. doi:10.1088/0004-637X/739/2/69
+Negus, J., Comerford, J. M., M¨uller S´anchez, F., et al.
+2021, ApJ, 920, 62. doi:10.3847/1538-4357/ac1343
+Newman, J. A., Cooper, M. C., Davis, M., et al. 2013,
+ApJS, 208, 5. doi:10.1088/0067-0049/208/1/5
+Nevin, R., Blecha, L., Comerford, J., et al. 2019, ApJ, 872,
+76. doi:10.3847/1538-4357/aafd34
+O’Donnell, J. E. 1994, ApJ, 422, 158. doi:10.1086/173713
+Oh, K., Yi, S. K., Schawinski, K., et al. 2015, ApJS, 219, 1
+
+Coronal Lines in MaNGA
+21
+Oh, K., Koss, M., Markwardt, C. B., et al. 2018, ApJS,
+235, 4
+Osterbrock, D. E. 1981, ApJ, 246, 696
+Pennell, A., Runnoe, J. C., & Brotherton, M. S. 2017,
+MNRAS, 468, 1433
+Penston, M. V., Fosbury, R. A. E., Boksenberg, A., et al.
+1984, MNRAS, 208, 347. doi:10.1093/mnras/208.2.347
+Peterson, B. M. 1997, An introduction to active galactic
+nuclei
+Prieto, M. A., Marco, O., & Gallimore, J. 2005, MNRAS,
+364, L28. doi:10.1111/j.1745-3933.2005.00099.x
+Reefe, M., Satyapal, S., Sexton, R. O., et al. 2022, ApJ,
+936, 140. doi:10.3847/1538-4357/ac8981
+Revalski, M., Crenshaw, D. M., Rafelski, M., et al. 2022,
+ApJ, 930, 14. doi:10.3847/1538-4357/ac5f3d
+Rich, J. A., Dopita, M. A., Kewley, L. J., et al. 2010, ApJ,
+721, 505. doi:10.1088/0004-637X/721/1/505
+Rich, J. A., Kewley, L. J., & Dopita, M. A. 2011, ApJ, 734,
+87. doi:10.1088/0004-637X/734/2/87
+Riffel, R. A., Bianchin, M., Riffel, R., et al. 2021, MNRAS,
+503, 5161. doi:10.1093/mnras/stab788
+Riffel, R. A., Dors, O. L., Armah, M., et al. 2021, MNRAS,
+501, L54. doi:10.1093/mnrasl/slaa194
+Rodr´ıguez-Ardila, A., Viegas, S. M., Pastoriza, M. G., et al.
+2002, ApJ, 579, 214. doi:10.1086/342840
+Rodr´ıguez-Ardila, A., Prieto, M. A., Portilla, J. G., et al.
+2011, ApJ, 743, 100. doi:10.1088/0004-637X/743/2/100
+Rose, M., Elvis, M., & Tadhunter, C. N. 2015, MNRAS,
+448, 2900. doi:10.1093/mnras/stv113
+Sajina, A., Lacy, M., & Pope, A. 2022, Universe, 8, 356.
+doi:10.3390/universe8070356
+Satyapal, S., Vega, D., Dudik, R. P., et al. 2008, ApJ, 677,
+926. doi:10.1086/529014
+Satyapal, S., Kamal, L., Cann, J. M., et al. 2021, ApJ, 906,
+35. doi:10.3847/1538-4357/abbfaf
+Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ,
+500, 525. doi:10.1086/305772
+Seab, C. G. & Shull, J. M. 1983, ApJ, 275, 652.
+doi:10.1086/161563
+Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, AJ, 146,
+32. doi:10.1088/0004-6256/146/2/32
+Smith, N., Silverman, J. M., Chornock, R., et al. 2009,
+ApJ, 695, 1334. doi:10.1088/0004-637X/695/2/1334
+Snow, T. P. & Witt, A. N. 1996, ApJL, 468, L65.
+doi:10.1086/310225
+Sturm, E., Lutz, D., Verma, A., et al. 2002, A&A, 393, 821.
+doi:10.1051/0004-6361:20021043
+Sun, A.-L., Greene, J. E., & Zakamska, N. L. 2017, ApJ,
+835, 222. doi:10.3847/1538-4357/835/2/222
+Tadhunter, C. N., Fosbury, R. A. E., di Serego Alighieri, S.,
+et al. 1988, MNRAS, 235, 403.
+doi:10.1093/mnras/235.2.403
+Trindade Falc˜ao, A., Kraemer, S. B., Crenshaw, D. M., et
+al. 2022, MNRAS, 511, 1420. doi:10.1093/mnras/stac173
+Urry, C. M. & Padovani, P. 1995, PASP, 107, 803.
+doi:10.1086/133630
+Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295.
+doi:10.1086/191166
+Voges, W., Aschenbach, B., Boller, T., et al. 1999, A&A,
+349, 389
+Voges, W., Aschenbach, B., Boller, T., et al. 2000, IAUC,
+7432
+Wake, D. A., Bundy, K., Diamond-Stanic, A. M., et al.
+2017, AJ, 154, 86. doi:10.3847/1538-3881/aa7ecc
+Ward, M. & Morris, S. 1984, MNRAS, 207, 867.
+doi:10.1093/mnras/207.4.867
+Weedman, D. W., Soifer, B. T., Hao, L., et al. 2006, ApJ,
+651, 101. doi:10.1086/507322
+Westfall, K. B., Cappellari, M., Bershady, M. A., et al.
+2019, AJ, 158, 231. doi:10.3847/1538-3881/ab44a2
+Whysong, D. & Antonucci, R. 2004, ApJ, 602, 116.
+doi:10.1086/380828
+Willett, K. W., Lintott, C. J., Bamford, S. P., et al. 2013,
+MNRAS, 435, 2835
+Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al.
+2010, AJ, 140, 1868
+Wylezalek, D., Zakamska, N. L., Greene, J. E., et al. 2018,
+MNRAS, 474, 1499
+Yan, R. & Blanton, M. R. 2012, ApJ, 747, 61.
+doi:10.1088/0004-637X/747/1/61
+Yan, R., Bundy, K., Law, D. R., et al. 2016, AJ, 152, 197.
+doi:10.3847/0004-6256/152/6/197
+York, D. G., Adelman, J., Anderson, J. E., et al. 2000, AJ,
+120, 1579. doi:10.1086/301513 et al 21020
+
diff --git a/R9FQT4oBgHgl3EQfbDai/content/tmp_files/load_file.txt b/R9FQT4oBgHgl3EQfbDai/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7fde2d4d3be1d6f21562dee8f9f66e237b6ba999
--- /dev/null
+++ b/R9FQT4oBgHgl3EQfbDai/content/tmp_files/load_file.txt
@@ -0,0 +1,2298 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf,len=2297
+page_content='Draft version February 1, 2023 Typeset using LATEX twocolumn style in AASTeX62 A Catalog of 71 Coronal Line Galaxies in MaNGA: [NeV] is an Effective AGN Tracer James Negus,1 Julia M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comerford,1 Francisco M¨uller S´anchez,2 Mitchell Revalski,3 Rogemar A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Riffel,4, 5 Kevin Bundy,6 Rebecca Nevin,7 and Sandro B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Rembold4, 5 1The University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80309, USA 2The University of Memphis, 3720 Alumni Avenue, Memphis, TN 38152, USA 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 4Departamento de F´ısica, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil 5Laborat´orio Interinstitucional de e-Astronomia - LIneA, Rua Gal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Jos´e Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil 6UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 7Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ABSTRACT Despite the importance of AGN in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Baldwin-Phillips-Terlevich diagrams).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, one promising avenue for identifying AGNs are “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥ 100 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These CLs may serve as excellent signatures for the strong ionizing continuum of AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey’s Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥ 5σ confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In our sample, we measure [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad line, X-ray, IR, and radio observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We find that [NeV] emission, compared to [FeVII] and [FeX] emission, is best at identifying high luminosity AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [OIII] luminosities in our sample, and that AGN in the galaxies with low [OIII] luminosities are possibly too weak to be detected using traditional techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' INTRODUCTION Active Galactic Nucleus (AGN) feedback, the process by which an active accretion disk converts gravitational energy into radiative or mechanical energy (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', AGN- induced photoionization, outflows, shocks, winds, and jets), has been shown to dynamically influence the evo- lution of a host galaxy (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', the tight correlation be- tween stellar velocity dispersion and black hole mass and the quenching of star formation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Ferrarese & Mer- ritt 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Gebhardt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Hopkins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Di Matteo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Fabian 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Kormendy & Ho 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Heckman & Best 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, the full spatial extent, ionization properties, and impact of AGN feedback on the host galaxy have yet to be fully unraveled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The Unified Model of AGN (Antonucci 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Urry & Padovani 1995) provides a fundamental architecture for ⋆ james.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='negus@colorado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='edu understanding the evolution of AGN feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In this model, an AGN is either Type I or Type II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Type I are viewed pole-on and are observed to have broad (FWHM ⪆ 1,000 km s−1) and narrow (FWHM ⪅ 1,000 km s−1) emission lines, whereas Type II are viewed edge-on and are observed to only have narrow emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These regions are termed the broad-line region (BLR) and the narrow-line region (NLR), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, we considered the Unified Model before investigating the “coronal line region” (CLR), an area surrounding a supermassive black hole (SMBH;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' MBH > 106 M⊙) that produces highly ionized species of gas with ionization potentials (IPs) ≳ 100 eV (termed “coronal lines” (CLs) since they were first observed in the solar corona).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CLs are suspected to primarily orig- inate from the strong ionizing continuum of an AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' in particular, nuclear CLs are produced in the inner edge of the dusty torus and extended CLs are tied to the presence of a jet or AGN-driven outflows (due arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='13322v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='GA] 30 Jan 2023 2 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' to the highly energetic nature of these processes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Rodr´ıguez-Ardila et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Prieto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Gel- bord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Mullaney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Mazzalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Rodr´ıguez-Ardila et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M¨uller-S´anchez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Glidden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Riffel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Trindade Falc˜ao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, CLs in the mid-infrared have been extensively used to probe for AGNs, and to subsequently analyze their physical environments, within dusty galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Genzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998, Sturm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2002, Armus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004 Lutz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, Weedman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, Dasyra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, Armus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In fact, several studies have shown that AGNs, even those missed by optical surveys (due to obscuration, for example), are uncovered by ob- servations of infrared CLs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Satyapal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Sajina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Additionally, since CL emis- sion from Type II supernovae is infrequent, weak, and short lived, CL infrared observations have been partic- ularly useful for accurately identifying CL emission ex- clusively from AGNs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In regard to optical studies, Baldwin-Phillips-Terlevich diagnostics diagrams (Baldwin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Veilleux & Osterbrock 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Kewley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2001, 2006) are pre- dominantly used to differentiate emission-line sources as star-forming, AGN, or a composite of the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, diffuse ionized gas, extraplanar gas, photoionization by hot stars, metallicity, and shocks can elevate sources be- yond the star formation threshold and potentially lead to AGN misclassification (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Wylezalek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, while the NLR is the largest observable structure directly affected by an AGN’s ionizing radi- ation (out to several kpcs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', M¨uller-S´anchez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011), star formation can also produce some of the nar- row lines usually associated with AGN (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', [OIII] 5007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “[OIII]” hereafter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, while the BLR provides definitive evidence of AGN activity, due to the elevated cloud velocities, its compact radial extent (≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 kpc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Laor 2004) is spatially unresolved in most spectro- scopic surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, CLs require energies well above the limit of stellar emission (55 eV;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Haehnelt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2001) and are typically spatially resolved beyond the BLR and well into the NLR (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' If CLs can provide accurate AGN identification in opti- cal spectroscopic surveys of galaxies, as they have been shown to do in infrared surveys, then detecting them may be a critical step in constraining the complexities of AGN feedback (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Molina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The Sloan Digital Sky Survey’s (SDSS) Mapping Nearby Galaxies at Apache Point Observatory cata- log (MaNGA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Bundy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015) has provided an un- precedented lens into the dynamic environments that surround the SMBHs of nearly 10,010 nearby (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='01 < z < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' average z ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03) galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Using integral field spectroscopy (IFS), MaNGA provides a 1 - 2 kpc spatial sampling across the field of view of each observed galaxy, which offers direct insight into the spatial extent, ionization properties, and the environmental impact of AGN feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For reference, previous SDSS surveys (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', SDSS-I to SDSS-III;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' York et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Eisenstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011) observed galaxies with small (3” diame- ter) optical fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The resulting spectra only traced a small region close to the galactic center, potentially missing nuclear activity outside of this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Yan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2016) further report that 80% of SDSS galaxies ob- served with a single fiber have less than 36% of their light covered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, long-slit spectroscopic surveys of galaxies also reveal limited spatial information, since only narrow elongated regions of each galaxy are ob- served (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Newman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In contrast, MaNGA offers the ability to capture spatially extended galac- tic features, which can reveal off-nuclear activity and large-scale emission line regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, we scanned for [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 emission at ≥ 5σ above the background continuum in the 6,623 galaxies from MaNGA’s eighth data release (MPL-8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We identified 10 CL galaxies in MPL-8, the largest such catalog at the time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' seven of which were con- firmed to host an AGN, which suggests that CL emission can be useful for tracing AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The remaining three visually appear to be undergoing galactic mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We also found that the average spatial extent of the CLR from the nuclear center is 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 kpc - well into the NLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, we measured the average electron number den- sity of the CLRs in our sample to be on the order of ≈ 102 cm−3, also consistent with the CLR occupying the traditional NLR, beyond the BLR (typical NLR den- sities range from 101 - 107 cm−3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Peterson 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Revalski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, we also reported a range of power-law in- dices (α) above the threshold expected for pure AGN photoionization (α = −2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' we measured -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 ≤ α ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1), and electron temperature values slightly above the threshold for pure AGN photoioniza- tion (Te = 20, 000 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Osterbrock 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We found that the average CLR electron temperatures varied between 12,331 K - 22,530 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These results suggest that shock- induced compression and heating may also play a role in the production of CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comparatively, Mazzalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2010) investigated the CLR for 10 pre-selected AGNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They used the Hubble Space Telescope/Space Telescope Imaging Spectrograph to study [NeV] λ3427, [FeVII] λ3586, λ3760, λ6086, [FeX] λ6374, [FeXIV] λ5303, [FeXI] λ7892, and [SXII] Coronal Lines in MaNGA 3 λ7611 emission in their sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The authors deduced that AGN photoionization is the main driving mecha- nism for the CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, Gelbord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2009) used the sixth SDSS data release (Adelman-McCarthy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008) to analyze the CLR in 63 AGNs with [FeX] λ6374 (IP = 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='60 eV), [FeXI] λ7892 (IP = 262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10 eV), and [FeVII] λ6086 (IP = 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10 eV) emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They used X- ray observations from Rosat (Voges et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1999, 2000) to similarly posit that AGN photoionization is the main ionization source of the CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, Reefe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2022) executed the first systematic survey of twenty optical CLs in the spectra of nearly 1 million galaxies from the eighth SDSS data release (Aihara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The au- thors found that CL emission is extremely rare (≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03% of the sample show at least one CL), and that the highest ionization potential CLs tend to be found in lower mass galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They reasoned that this finding is consistent with theory that hotter accretion disks are produced by lower mass black holes, which typically reside in lower mass galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Here, we use MaNGA’s eleventh, and final, data re- lease (MPL-11;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 10,010 unique galaxies) to further re- solve the physics of the CLR, and to better understand the relationship between the production of CLs and AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' With our custom pipeline, we identify 71 unique galaxies with emission from either [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, or [FeX]λ6374 de- tected at ≥ 5σ above the continuum, which makes it the most extensive such catalog of MaNGA CL galaxies to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This paper is outlined as follows: Section 2 details the technical components of the SDSS-IV MaNGA survey and its data pipeline, Section 3 describes the methodol- ogy we use to build the CL catalog and to analyze the physical properties of the CLR, Section 4 reviews our re- sults, Section 5 provides interpretations of our findings, and Section 6 includes our conclusions and intended fu- ture work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' All wavelengths are provided in vacuum and we assume a ΛCDM cosmology with the following val- ues: ΩM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='287, ΩΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='713 and H0 = 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 km s−1 Mpc−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' OBSERVATIONS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Sample of Galaxies We assemble our sample from the SDSS-IV MaNGA catalog (Bundy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Drory et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Law et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Yan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Blanton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Wake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' MaNGA observations occurred between 2014 to 2020, using the SDSS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 m telescope (Gunn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The IFS survey contains data for 10,010 nearby galaxies (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='01 < z < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' average z ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03) with stellar mass distributions between 109 M⊙ and 1012 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The spectra were taken at wavelengths between 3622 ˚A - 10354 ˚A, with a typical spectral resolving power of ≈ 2000, corresponding to a velocity resolution of ≈ 60 km s−1 (see Bundy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' MaNGA contains spectroscopic maps out to at least 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 times the effective radius;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the typical galaxy is mapped out to a radius of 15 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Each MaNGA spa- tial pixel, or spaxel, covers 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5, and the average full-width half maximum (FWHM) of the on-sky point spread function (PSF) is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5, which corresponds to a typical spatial resolution of 1 -2 kpc (Drory et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' MaNGA Data Analysis Pipeline The MaNGA Data Analysis Pipeline (DAP;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Westfall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2019) offers publicly available high-level data prod- ucts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The MaNGA DAP algorithms have been in de- velopment since 2014 and its main outputs are stellar kinematics, fluxes and kinematics of prominent emis- sion lines, and continuum spectral indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To measure each parameter, the DAP relies on spectral fitting with pPXF (Cappellari 2012, 2017), where each fit features a blend of stellar templates with a multiplicative polyno- mial component to the stellar continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In particular, the DAP incorporates the MILESHC stellar templates library (Westfall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2019) to fit the stellar kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The inputs for the DAP are data reduced by the MaNGA Data Reduction Pipeline (DRP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The DRP is fed spectra from the MaNGA fiber-feed system, which consists of 17 IFUs: two 19-fiber IFUs, four 37-fiber IFUs, four 61-fiber IFUs, two 91-fiber IFUs, and five 127-fiber IFUs (see Drory et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015 for a more detailed description).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The DRP subsequently wavelength, flux, and astrometrically calibrates the spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' ANALYSIS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CL Continuum Subtraction and Emission Line Fitting We scan for [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 emission to better understand their effectiveness as AGN indicators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These CLs are selected because MaNGA’s DAP does not provide emis- sion line measurements for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As a result, we expand upon the custom pipeline detailed in Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021 to measure these CLs in MPL-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Note, all 10 CL galax- ies reported in Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021 are recovered using the new MPL-11 pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CL Stellar Continuum Subtraction To measure the stellar kinematics, and subsequently subtract the stellar continuum for each CL galaxy’s ob- served spectra, we use pPXF (Cappellari 2012, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' pPXF performs a polynomial fit on each galaxy’s spec- trum while masking gas emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For each fit, we 4 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' use the MILES1 stellar templates library to represent the stellar population synthesis model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This library con- tains ≈ 1,000 stars, with spectra obtained by the Isaac Newton Telescope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These spectra cover the wavelength range of 3525 ˚A - 7500 ˚A at a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 ˚A FWHM resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We first access the DRP to extract the necessary data cubes for each MaNGA galaxy before performing the pPXF stellar continuum subtraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The data cubes provide a spectrum for each individual spaxel across the FoV of each galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We then use the spectroscopic red- shifts of each galaxy, adopted from the NASA Sloan At- las catalogs (Blanton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011), to adjust the spectra to rest vacuum wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We also use a minimum redshift threshold (z min) for CLs near the lower wave- length limit of MaNGA (3622 ˚A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 1) to ensure CLs of interest are not shifted out of MaNGA’s spectral cov- erage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For [NeV]λ3347, λ3427 and [FeVII]λ3586, ≈ 93% (9,152), ≈ 83% (8,096), and ≈ 3% (229) of the MPL-11 galaxies, respectively, feature redshifts that place each CL out of MaNGA’s spectral range;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' as a result, we are unable to scan for [NeV]λ3347, λ3427 and [FeVII]λ3586 in these respective galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We then apply a mask to each datacube, such that the imported wavelength range for each spectrum matches the wavelength range of the stellar templates library (3525 ˚A- 7500 ˚A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Next, we normalize each spectrum by dividing fluxes in this wavelength range by each spec- trum’s median flux value (to avoid numerical issues;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' see Cappellari 2017 for a more detailed discussion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Sub- sequently, we define a typical instrument resolution of ≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 ˚A, construct a set of Gaussian emission line tem- plates (to mask emission lines;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' provided by pPXF), and fit the stellar templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Note, for the CLs near the lower limit of the mask (3525 ˚A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', [NeV]λ3347, λ3427 and [FeVII]λ3586), we perform a custom stellar continuum fit and subtraction before measuring the target emis- sion line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In these instances, we execute a polynomial fit on a narrow spectral region, ≈ 300 ˚A wide, of con- tinuum (free of prominent absorption or emission lines) near the rest wavelength of the target CL to model the background stellar continuum and subtract it from the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [NeV] and [FeVII] Emission Line Measurements Once the spectra are stellar continuum subtracted, we attempt a single Gaussian fit on a ≈ 30 ˚A region cen- tered on the rest wavelengths of the CLs ([FeX]λ6374 being the exception;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We found that this wavelength range is adequate for capturing the full extent of CL emission in our preliminary scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We 1 http://miles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='iac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='es/ Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Target CLs Emission Line Wavelength IP z min (˚A) (eV) [NeV] 3347 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='088 [NeV] 3427 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='061 [FeVII] 3586 125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='016 [FeVII] 3760 125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [FeVII] 6086 125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [FeX] 6374 262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 Note: Columns are (1) emission line, (2) rest wavelength, (3) ionization potential, and (4) minimum redshift value required for MaNGA detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' then determine the root mean square (RMS) flux of two continuum regions (≈ 60 ˚A wide) that neighbor each target CL, free of absorption or emission lines, and re- quire that CL amplitudes are detected at ≥ 5σ above the mean RMS flux values in these continuum regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We consider the spectral resolution of MaNGA (R = λ/∆λ ≈ 1400 at 3600 ˚A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R ≈ 2000 at 6000 ˚A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Smee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013) to eliminate fits with ∆λ ⪅ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 ˚A(for [NeV]λ3347, λ3427), ⪅ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 ˚A(for [FeVII]λ3586, λ3760), and ⪅ 3 ˚A(for [FeVII]λ6086 and [FeX]λ6374).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We provide an example of a single Gaussian fit for the [FeVII]λ3586 line in Fig- ure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [FeX] Emission Line Measurements For [FeX]λ6374, the broad blue wing of this line is often blended with [OI]λ6364 due to their close prox- imity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Consequently, we attempt a double Gaussian fit to isolate the [FeX]λ6374 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' If this routine does not successfully fit both lines with ≥ 5σ confidence, then we attempt a single Gaussian fit and apply the method used in Gelbord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2009) and Rose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2015), whereby the emission line ratio [OI]λ6300/λ6364 is used to determine if the [OI]λ6364 and [FeX]λ6374 lines are blended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Specifically, from atomic physics, if [OI]λ6300/λ6364 = 3, then the [OI]λ6364 line is free from contamination (see also Elmhamdi 2011 for a full review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' If [FeX]λ6374 emission is present and blended with [OI]λ6364, it will reduce the [OI]λ6300/λ6364 ra- tio below three.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The MaNGA DAP provides flux values for both [OI]λ6364 and [OI]λ6300 lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We adopt this method and require this ratio to be below three when fitting for [FeX]λ6374 with a single Gaussian fit to avoid confusing [OI]λ6364 and [FeX]λ6374 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Once we isolate the [FeX]λ6374 emission, we impose the same thresholds used to identify the [NeV] and [FeVII] emis- sion lines (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', amplitudes ≥ 5σ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Coronal Line Flux Maps Coronal Lines in MaNGA 5 Similar to Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, we create custom CL flux maps to analyze the strength and distribution of the CLs in the CLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We create these maps using the integrated CL flux value from each spaxel for each CL galaxy (Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The center of each MaNGA observation corresponds to the galactic center (Yan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We use this posi- tion and the galaxy’s inclination angle to determine the de-projected galactocentric distance of each CL spaxel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We do acknowledge that the CL gas may not be re- stricted to the galactic disk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', the CL emission may associated with an ionization “cone” and therefore, in these instances, the de-projected distances are approxi- mations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The MaNGA DAP provides the ratio of the semi- minor to semi-major axes (b/a) for each galaxy, and we use this value to determine the cosine of each galaxy’s inclination angle (i): cos(i)= b/a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The de-projected dis- tance of each CL spaxel to the center of the galaxy is then measured by: CLD = � (x − xcenter)2 + � (y − ycenter) ∗ cos(i) �2 (1) where x is the projected distance between the spaxel and the galaxy center measured along the galaxy’s major axis, and y for the minor axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We then convert spaxel distances to a physical unit (kpc) using the astropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='cosmology Python package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The resulting value corresponds to the coronal line dis- tance (CLD) of each CL emitting spaxel from the galac- tic center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, the minimum coronal line distance (CLDmin) corresponds to the distance of each galaxy’s closest CL-emitting spaxel from the galactic center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Fi- nally, the maximum coronal line distance (CLDmax) cor- responds to the distance of each galaxy’s most distant CL-emitting spaxel from the galactic center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Galaxy Morphology To uncover the correlation, if any, between CL emis- sion and galaxy morphology (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', spiral and elliptical), we use the MaNGA Morphologies Galaxy Zoo value- added catalog to classify the morphologies of the galax- ies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This catalog features data from Galaxy Zoo 2, a “citizen science” catalog with more than 16 million visual morphological classifications for > 304,000 galaxies in SDSS (GZ2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Willett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013), The weighted vote fraction (discussed in Willett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013) accounts for voter consistency when participants select morphological classifications, and we require this fraction to be ≥ 50% before assigning a morphological classification (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', “E” for elliptical, or “S” for spiral).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We also use the weighted vote fraction to determine if a Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A sample spectrum from an individual spaxel showing the [FeVII]λ3586 line detected at ≥ 5σ above the continuum in J0906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The dotted black line is the continuum subtracted spectrum, the shaded gray region is the uncer- tainty, the solid red line represents the best fit, the red dotted vertical lines mark the fitting window, the blue dotted line signifies the rest wavelength of the [FeVII]λ3586 line, and the two sets of black dotted vertical lines correspond to the neighboring continuum windows where the RMS flux values of the continuum are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CL galaxy features a bar, and/or is categorized as odd (“b” and“o”, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In addition, to determine the fraction of CL galaxies undergoing a merger, we consider the analysis being per- formed by Nevin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', in prep (“Nevin catalog” here- after).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The authors determine the merger probability for each of the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 million galaxies in the SDSS DR16 pho- tometric sample, using a statistical learning tool that is built on a linear discriminant analysis framework, which is trained to separate mock images of simulated merg- ing and non-merging galaxies using imaging predictors (see Nevin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2019 for a full review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We investi- gate the MPL-11 galaxies from the broader SDSS DR16 Nevin catalog, and classify a CL galaxy as a merger if the Nevin catalog gives it a merger value (pmerg) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' AGN Bolometric and [OIII] Luminosities The AGN bolometric luminosity effectively traces the energetic output of an AGN (across the entire electro- magnetic spectrum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To compare the luminosity of the CL AGN candidates with other known AGN candidates, we thus consider the bolometric luminosity parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We determine the AGN bolometric luminosity for each CL galaxy using the summed [OIII] flux val- ues (F[OIII]) across the entire galaxy (provided by the MaNGA DAP), and the procedure outlined in Pennell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2017), which assumes [OIII] emission comes from [FeVIl] 35866 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A sample CL flux map showing [NeV]λ3427 emis- sion detected ≥ 5σ above the continuum in J1714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For this galaxy, the strongest [NeV]λ3427 emission is located near the center of the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The gray region is outside of the MaNGA FoV and the black region are spaxels with no CL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' North is up, south is down, east is to the left, and west is to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' an AGN: log � Lbol ergs−1 � = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5617 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0978) log � L[OIII] ergs−1 � +(21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='186 ± 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='164) (2) where L[OIII] = F[OIII](4πR2) and R is the DAP pro- vided luminosity distance based on redshift and a stan- dard cosmology of ΩM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 and ΩΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 (redshift is also measured by the DAP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We then measure the total [OIII] luminosity (using the summed [OIII] fluxes across the entire galaxy) for each CL galaxy in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Next, we compare the [OIII] luminosities of the CLs in our pipeline (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3) to determine the relative strength of [OIII] for each CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We do so to assess if specific CLs are preferentially found in higher or lower luminosity [OIII]-emitting galaxies, which is useful to determine if CLs uniformly trace all AGN, or if there may be an [OIII] luminosity depen- dence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Narrow-Line BPT Diagnostics Diagrams Baldwin-Phillips-Terlevich optical emission-line diag- nostic diagrams (BPT diagrams;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Baldwin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Veilleux & Osterbrock 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Kewley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2001, 2006) are widely accepted to be effective tools for categorizing gas ionization sources as star-forming, Seyfert (AGN), low-ionization nuclear emission-line region (LINER), or a composite of multiple ionization sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They serve as the traditional AGN selection tool for most spectro- scopic surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Specifically, these diagrams compare line ratios between high and low ionization species, most commonly [OIII]λ5007/Hβ vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [NII]λ6583/Hα (“[NII]/ Hα diagram” hereafter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In this paper, we construct spatially resolved narrow- line BPT diagnostic diagrams for the CL galaxies to better constrain the ionization sources of the CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To do so, we require emission line measurements for the [NII]λ6583, [OIII]λ5007, Hα, and Hβ emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The DAP measures the continuum subtracted flux for each of these emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Note, these fluxes account for galactic reddening using the E(B-V) values deter- mined by the DRP, which assumes an O’Donnell (1994) reddening law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Once we determine the necessary emission line flux measurements, we compute the ratios for the [NII]/ Hα diagram, for each CL-emitting spaxel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We then use these values to create custom spatially-resolved BPT maps, whereby we present the BPT-classification for each CL- emitting spaxel within the MaNGA FoV, for each CL galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Figure 3 shows an example BPT map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Dust Attenuation Mullaney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2009) investigated the [FeVII]λ6086, [FeX]λ6374, and [FeXI]λ7892 emission lines in the Seyfert 1 galaxy Ark 564.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The authors used the pho- toionization code CLOUDY (Ferland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998) to determine the location and kinematics of these lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They found that the CLs are launched from a dusty torus near the SMBH, where the gas is quickly ac- celerated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, using the CLOUDY models, they determined that some iron carrying grains are destroyed during the initial acceleration of the gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To follow up on the analysis performed by Mullaney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2009), and to better understand the role of dust grains on the potential depletion of the iron CLs, we use the E(B - V) color excess index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This index traces the degree of interstellar reddening caused by photons that are scattered off of dust;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' in essence, it measures the difference between an object’s observed color index and its intrinsic color index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E(B - V) values for each CL galaxy are provided by the MaNGA DRP (using Schlegel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998 maps), and assume the extinction law provided by O’Donnell (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Shock Diagnostics We explore the role of shocks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', supernova rem- nant (SNR) and [OI]λ6300 (“[OI]” hereafter) shocks) in our analysis to elucidate the role of collisional excita- tion in the production CLs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Penston et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To do so, we consider the strength of the [SII]λ6717, J171411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='63+575834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 14 10 8 6 4 2 5 kpc 0Coronal Lines in MaNGA 7 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A sample BPT map showing AGN spaxels in red and composite spaxels in green, for CL-emitting spaxels in J2051 (a [NeV]λ3427 galaxy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The gray region is outside of the MaNGA FoV and the black region are spaxels with no CL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' North is up, south is down, east is to the left, and west is to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' λ6731 doublet with respect to the Hα line, which has traditionally been used to differentiate SNR shocks from photoionized regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Specifically, Dodorico (1978) and Dodorico et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (1980) first determined that regions with [SII] (λ6717 + λ6731)/Hα > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 can be used to identify SNR shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Additionally, the [OI] emission line is gen- erally a strong tracer of shock excitation, and line flux ratios with [OI]/Hα> 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 indicate that shocks with ve- locities 160-300 km s −1 are the main excitation source of [OI] (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dopita 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Allen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Farage et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Rich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Riffel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The MaNGA DAP provides flux measure- ments for the [SII]λ6717, λ6731, [OI], and Hα emission lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' RESULTS In this section, we report the main findings for the CL galaxies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' First, we present the fraction of confirmed AGN in the CL galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Then, we analyze the spatial distribution and extent of the CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Next, we inspect the CL galaxy bolometric and [OIII] luminosi- ties to deduce the effectiveness of using each species for accurate AGN identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' After, we assess the BPT classification of the CL-emitting spaxels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, we in- vestigate the role of dust extinction and shocks in the CLR to determine the impact of dust grains on CL emis- sion, and to further constrain the ionization source(s) of the CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In total, we find 71 galaxies with CL emission at ≥ 5σ above the background continuum in MaNGA’s MPL- 11 (33 feature [NeV] emission, 39 feature [FeVII] emis- sion, and 4 feature [FeX] emission).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Note, in our sample, 40 unique CL galaxies with either [NeV]λ3427, [FeVII], or [FeX] emission, or a combination of the three, fea- ture redshifts below the z min threshold for [NeV]λ3347 (z min = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='088);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' further, 24 unique CL galaxies with either [FeVII] or [FeX] emission feature redshifts be- low the z min threshold for [NeV]λ3427 (z min = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='061).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Therefore, we are unable to scan for [NeV]λ3347 or [NeV]λ3427 in these respective galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In general, most of the MPL-11 galaxies feature redshifts that place [NeV]λ3347, λ3427 out of MaNGA’s spectral range (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, in light of the extensive work to detect AGNs using infrared CLs, we crossmatched our catalog of 71 unique CL galaxies with the infrared CL catalogs presented in Genzel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998, Sturm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2002, Ar- mus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004 Lutz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, Weedman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, Dasyra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, Goulding & Alexander 2009, Armus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We do not identify any of the MaNGA CL galaxies in these samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For 63/71 CL galaxies with GZ2 classifications (89%), we determine a nearly even fraction of spirals and el- lipticals (48% and 52%, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In addition, we measure the average size of the CLR (from the galac- tic center) for [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 kpc, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 kpc, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 kpc, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 kpc, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 kpc, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 kpc, respectively (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, we find that the vast majority of [NeV] galax- ies feature at least one CL-emitting spaxel in their nu- clear regions (98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5%;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 FoV surrounding the central spaxel), whereas [FeVII] and [FeX] galaxies gen- erally feature a smaller fraction (73% and 75%, respec- tively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The corresponding fraction of confirmed AGN in these galaxies (determined by comparing our sample to the largest catalog of confirmed MaNGA AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Sec- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1) is 94%, 14%, and 25%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' MaNGA AGN Comparison Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep) provide the most complete sample of AGN in MaNGA’s MPL-11 (see Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2020 for a full review of their MPL-8 MaNGA AGN catalog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The authors compile a catalog of MaNGA AGN that were detected using SDSS broad emission lines, NVSS/ FIRST 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 GHz radio observations, WISE mid-infrared color cuts, and Swift/BAT hard X-ray ob- servations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 5 kpc 0205141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='54±005135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='48 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Broad Balmer emission lines (FWHM > 1,000 km s−1) are strong tracers of the rapidly rotating, high density gas, near the SMBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They serve as reliable tracers for AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Oh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2015) assembled a catalog of nearby (z ≤ 2) Type I AGN in SDSS’s seventh data release using the broad Hα emission line, and Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep) identify 78 broad line AGN from this catalog in MPL-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Powerful AGN radio jets can expand several kpcs from the SMBH, and can thus serve as strong signatures for AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As a result, detecting the radio emis- sion from these sources is a great tool for accurate AGN identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Best & Heckman (2012) used observa- tions from the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 GHz NRAO Very Large Array Sky Survey (NVSS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Condon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998) and the Faint Im- ages of the Radio Sky at Twenty Centimeters (FIRST;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1995) to detect AGN in the SDSS’s seventh data release (DR7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They differentiated AGN activity from star formation emission using the correlation be- tween the 4000 ˚A break strength and radio luminosity per stellar mass, emission line diagnostics, and the re- lation between Hα and radio luminosity (Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep) find 221 radio AGN from this catalog in MPL-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Heated dust that surrounds an AGN can produce mid- infrared emission, which can expose obscured and un- obscured AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep) thus rely upon observations from the Wide-Field In- frared Survey Explorer (WISE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Wright et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010) to help identify AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They consider the four bands ob- served with WISE (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 µm (W1), 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 µm (W2), 12 µm (W3), and 22 µm (W4)) and apply a 75% reliability criteria of W1 - W2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='486 exp{0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='092(W2 - 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07)2} and W2 > 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07, or W1 - W2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='486 and W2 ≤ 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07 (Assef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018) to select AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep) detect 130 WISE AGN in MPL-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' X-ray emission produced by AGN generally result from inverse Compton scattering of low energy UV pho- tons by energetic electrons from the accretion disk (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Antonucci 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Haardt & Maraschi 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Hinkle & Mushotzky 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Therefore, X-rays can be a useful indicator of AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Accordingly, the authors use the X-ray catalog assembled by Oh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2018), which consists of ≈ 1,000 AGN observed by the Swift Obser- vatory’s Burst Alert Telescope (BAT) in the ultra hard X-ray (14 - 195 keV), to detect AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep) uncover 30 AGN from this catalog in MPL-11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We compare our CL sample to the AGN catalog re- ported by Comerford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (in prep;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “Comerford sam- ple” hereafter) and crossmatch 35 CL galaxies in it (52% of our sample).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, we consider the fraction of CL galaxies with confirmed AGN by specific CL species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We determine that 94% (31/33) of the [NeV] galaxies host an AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 14% (5/36) of the [FeVII] galaxies and 25% (1/4) of the [FeX] galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Overall, 35 unique CL galaxies host a confirmed AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 80% (28/35) are confirmed with WISE observations, 63% (22/35) with broad Balmer emission lines, 14% (5/35) with NVSS observations, and 11% (4/35) with BAT AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' All of the [NeV]λ3347 galaxies feature an AGN and [NeV]λ3427 emission, and of the five [FeVII] galaxies with a confirmed AGN, two (J0736 and J1714) also fea- ture both [NeV]λ3347, λ3427 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, two of the remaining three [FeVII] galaxies with a con- firmed AGN (J0807 and J1157) feature emission from more than one [FeVII] emission line (J0807 features [FeVII]λ3586, λ3760, λ6086 emission;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J1157 features [FeVII]λ3586, λ3760 emission).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The final [FeVII] galaxy with a confirmed AGN exclusively features [FeVII]λ6086 emission, and the sole [FeX] galaxy with a confirmed AGN (J1628) exclusively features [FeX] emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Provided that 80% of the CL galaxies in our sample are confirmed to host an AGN via WISE diagnostics, we consider the fact that these WISE diagnostics are likely to miss low luminosity AGN (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Assef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Perhaps, one possible explanation for the discrepancy in AGN across the CLs in our sample is that [NeV] traces high-luminosity AGN, while [FeVII] and [FeX] may pos- sibly trace low-luminosity AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We explore this further in Sections 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Spatial Distribution and Extent of the CLs To better constrain the ionization source(s) of the CLs, we first map the measured fluxes of the CLs within the MaNGA FoV for each CL galaxy (Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These flux maps provide a snapshot of the orientation, extent, and intensity of CL emission for the galaxies in our sam- ple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Then, we compute the de-projected distance of each CL spaxel from the nuclear center of each galaxy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the photometric center;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2) to determine the distance of each CL-emitting spaxel from the galaxy center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, we define the nuclear region of each CL galaxy to be a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 aperture (5 x 5 spaxel grid;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' where each spaxel covers a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 FoV) surrounding the central spaxel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' If AGN photoionization is the primary mechanism producing the CLs, it is likely that CL emission is pre- dominantly within the nuclear region of each galaxy, close to the SMBH and the accretion disk (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Gel- bord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Mazzalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, if shocks, AGN outflows, or stellar processes play an active role in generating CLs, we anticipate that CL emission will not be found exclusively in the nuclear region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Rather, we would expect to find emission in Coronal Lines in MaNGA 9 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Spatial Properties for the CL Galaxies Detected Wavelength Confirmed Nuclear Emission CLDmin CLDmax CLDavg CL (˚A) Galaxies (%) kpc kpc kpc (1) (2) (3) (4) (5) (6) (7) [NeV] 3347 8 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='52 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [NeV] 3427 33 97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='34 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [FeVII] 3586 4 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 [FeVII] 3760 16 56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='11 36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [FeVII] 6086 19 63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10 21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 [FeX] 6374 4 75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='60 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 Note: Columns are (1) detected CL, (2) rest wavelength, (3) number of galaxies with CL emission detected, (4) percentage of CL galaxies with at least one CL-emitting spaxel in a nuclear 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 FoV, (5) the average CLD (distance of CL-emitting spaxel from the galaxy center), (6) the distance of the furthest CL-emitting spaxel from the galaxy center, and (7) the distance of the closest CL-emitting spaxel from the galaxy center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' regions off-center or off-axis from the SMBH and the galaxy’s rotational plane (see Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021 for more discussion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To analyze the CL distribution within the nuclear re- gion of the CL galaxies, we measure the fraction of CL galaxies with at least one CL emitting spaxel in their center, for each CL (Table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We find that the vast majority of [NeV] λ3347, λ3427 galaxies feature at least one [NeV]-emitting spaxel in their nuclear regions (100% and 97%, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This finding is consistent with our results in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1, that [NeV] is a strong tracer of AGN activity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CL emission is likely dominated by AGN photoionization near the SMBH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comparatively, the fraction of CL galaxies with nuclear emission from [FeVII] λ3586, λ3760, or λ6086 varies significantly more (100%, 56%, and 63%, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In Figure 4, we present a sample of CL flux maps for six representative CL galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In three of the galaxies (J1104, J1349, and J2152), it is apparent that the source of the CLs is within the nuclear region, as the CL flux is concentrated here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, for the three remain- ing galaxies (J0023, J1613, and J0920), the CL-emitting spaxels are highly offset from the nuclear region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Based on the orientation of the CL flux in J0023 and J0920, it is possible that AGN outflows are generating the CL since the CL emission is generally perpendicular to the orbital plane of each galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For the J1613 observation, we determine that several optical emission lines (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', [OIII] and Hα) measured in the secondary galaxy (with the featured “CL emission”;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' southwest of J1613 in the MaNGA FoV) have large velocity shifts (> 2,000 km s−1) compared to the center of J1613, which suggests this may not be a companion galaxy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', this is not a merging system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J1613 is not in the Nevin catalog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As a result, the “CL emission” in this galaxy is likely from a separate emission line, from a background galaxy with a different redshift than the primary galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For J1349, we acknowledge that there appears to be a visual companion galaxy near the nuclear region;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' it is possible that both merger induced shocks and AGN photoioniza- tion could be producing the CL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In addition, we suspect that dust grains may also have a significant impact on the presence of [FeVII] and [FeX] emission in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5, we review the likelihood of iron depletion by dust grains more thoroughly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We also compute the CLDs for the CL galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The CLD, which is the distance of each CL-emitting spaxel from the galactic center, reveals the physical scale of the CLR for each CL galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We measure the average CLDs for [NeV]λ3347, λ3427 to be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 kpc and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 kpc, respec- tively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 kpc, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 kpc, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 kpc for [FeVII]λ3586, λ3760, λ6086, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 kpc for [FeX]λ6374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We find no correlation between IPs and CLDs (IP = 262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 eV for [FeX], IP = 126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 eV for [NeV], and IP = 125 eV for [FeVII]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, for the [NeV] galaxies, the minimum and maximum distances of each CL-emitting spaxel from the nuclear center (labeled CLDmin and CLDmax in Table 2) ranges between 340 pc to 19 kpc, 100 pc to 36 kpc for the [FeVII] galaxies, and 600 pc to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 kpc for the [FeX] galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These large variances in CL distance suggest that the CLR extends from just beyond the BLR (≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 kpc) and well into the NLR (several kpcs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, to confirm that CL emission is indeed resolved for each CL galaxy, we consider the instrument PSF (≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 for MaNGA), and find that 60/71 CL galaxies show resolved and continuous emission in excess of the typical instrument PSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The remaining 11 CL galaxies (J0205, J1010, J1117, J1317, J1344, J1416, J1604, J1626, J1628, J1658, and J1649) lack CL emission in excess of the typ- ical instrument PSF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason that these CLRs are be- low the instrument PSF, and not spatially resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As 10 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' discussed in Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2021), these CLRs may still be spatially resolved by other instruments (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Mazzalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010 and their use of STIS/HST optical spectra), and it is also posible that CL emission may be oriented along an ionization cone;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' however here we consider the CLDs of these galaxies to be upper limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' AGN Bolometric and [OIII] Luminosities AGN bolometric luminosity, which scales with [OIII] luminosity, is effectively the “power” of an AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As outlined in Pennell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2017), [OIII] emission is the most utilized line for measuring bolometric luminosity, due its strength in most AGN spectra and the relatively weak blending of emission from photoionized gas in star forming regions with the line (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Heckman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Heckman & Best 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Therefore, to help resolve the discrepancy between the differing fractions of confirmed AGN in our sample (Sec- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 94% of the [NeV] galaxies feature a confirmed AGN, 14% for the [FeVII] galaxies, and 25% of the [FeX] galaxies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' for CL galaxies with multiple CLs, we measure this fraction independently for each CL), and to eval- uate the overall effectiveness of using CL detections to identify AGN, we consider the bolometric and [OIII] lu- minosities of the CL galaxies, and further inspect the Comerford sample of MaNGA AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In particular, we compare the mean bolometric luminosities of the CL galaxies (Lbol;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' using the summed [OIII] flux across the entire galaxy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4) with the total population of MPL-11 AGN in the Comerford sample (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We find that the mean bolometric luminosity for the [NeV] galaxies (mean z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' median z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='11), log(Lbol) = 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1, is consistent with the mean value of Comerford’s population of MaNGA galaxies that host an AGN (log(Lbol) = 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 erg s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, we measure the mean bolometric luminosi- ties of the [FeVII] galaxies (mean z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='06;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' median z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='05) and the [FeX] galaxies (mean z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' median z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='06) to be an order of magnitude lower than the mean log(Lbol) value of the Comerford sample (log(Lbol) = 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 erg s−1 and log(Lbol) = 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1 for the [FeVII] and [FeX] galaxies, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Note, we also present the [OIII] luminosity distribution for the CL galaxies in Figure 6 (the mean [OIII] luminosity for the [NeV] galaxies is 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 erg s−1 and 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 erg s−1 for the [FeVII] and [FeX] galaxies, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason that the [FeVII] and [FeX] galaxies may be preferen- tially tracing lower luminosity AGN in MaNGA, which are generally more difficult to detect in multi-wavelength observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, we find that the five [FeVII] galaxies with a confirmed AGN (J0736, J0807, J1157, J1535, and J1714) all feature relatively high [OIII] luminosities of log(L[OIII]) ⪆ 41 erg s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Additionally, the three remain- ing [FeVII] galaxies with [OIII] luminosities at or above this limit (without confirmed AGN) are J0906, J1349, and J2152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Both J0906 and J1349 visually appear to be actively undergoing a merger;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J2152 shows no appar- ent companion galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason that, for the [FeVII] galaxies in our sample, the log(L[OIII]) cutoff of ≈ 41 erg s−1 is a useful threshold for identifying confirmed AGN (from the Comerford sample) and may also be helpful for detecting mergers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, for the [NeV] galaxies, J1344 features the lowest [OIII] luminosity (log(L[OIII]) = 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 erg s−1) and in fact hosts a confirmed AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We consider the [OIII] luminosity threshold for the [FeVII] galaxies (log(L[OIII]) ≈ 41 erg s−1) to be similar for the [NeV] galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We also determine that the two [NeV] galaxies (J1658 and J1104) that do not feature a confirmed AGN (out of 33 total [NeV] galaxies), feature [OIII] luminosities of log(L[OIII]) = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 erg s−1 and log(L[OIII]) = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 erg s−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Considering these high [OIII] lumi- nosities, and the high [NeV] AGN detection rate (94%), we propose that these two galaxies are strong AGN can- didates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, the one [FeX] galaxy with a con- firmed AGN, J1628, features an [OIII] luminosity of log(L[OIII]) = 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 erg s−1 (the remaining three [FeX] galaxies, which do not host a confirmed AGN, also have log([OIII]) luminosities < 40 erg s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Consequently, while we consider the log(L[OIII]) ≈ 41 erg s−1 threshold useful for identifying CL galaxies with a confirmed AGN, it is important to acknowledge that CL galaxies with a confirmed AGN can have [OIII] luminosities below this limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' BPT Analysis The BPT diagram has long served as the standard tool for identifying ionization mechanisms in emission line sources (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g, Baldwin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Veilleux & Oster- brock 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Kewley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2001, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' While effects such as stellar shocks and emission from post-AGB stars are liable to elevate SF sources beyond the AGN threshold (see Yan & Blanton 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Belfiore et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Agostino & Salim 2019 for a further discussion), we nonethe- less explore the BPT classification for each CL-emitting spaxel to help pin down the source of CL emission in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To do so, we compute the log([OIII]/Hβ) and log([NII]/Hα) ratios required for the [NII]/Hα diagram (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Using the thresholds outlined in Kew- ley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2006), we categorize each CL spaxel as either Coronal Lines in MaNGA 11 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CL flux maps for 6/71 CL galaxies in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' From top to bottom and left to right: J1104 ([NeV]λ3427 map), J0023 ([FeVII]λ3760 map), J1349 ([FeVII]λ3760 map), J1613 ([FeVII]λ3760 map), J2152 ([FeVII]λ6086 map), and J0940 ([FeVII]λ6086 map).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For J0023 and J0940, the maps display CL emission spatially offset from the galaxy center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For each galaxy, the emission is offset perpendicular to the rotational plane of the galaxy, suggestive of the source of the CLs being AGN outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For J1349 we observe a possible companion galaxy and consider the possibility that these two galaxies to be undergoing a merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For the J1613 observation, we determine that several optical emission lines (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', [OIII] and Hα) measured in the secondary galaxy (with the featured “CL emission”;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' southwest of J1613 in the MaNGA FoV) have large velocity shifts (> 2,000 km s−1) compared to the center of J1613, which suggests this may not be a companion galaxy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', this is not a merging system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J1613 is not in the Nevin catalog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As a result, the “CL emission” in this galaxy is likely from a separate emission line, from a background galaxy with a different redshift than the primary galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For J1104 and J2152, CL emission is concentrated towards the galaxy center, likely produced by AGN photoionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [HII] (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' star forming), AGN, or a composite of the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Note, for some CL-spaxels, the DAP reports nega- tive values for the necessary emission line fluxes, likely because the emission lines of interest yield low flux lev- els and the DAP’s subtraction of the stellar continuum results in a net absorption at the expected wavelength of the emission line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As such, we exclude these spaxels from our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For the [NeV], [FeVII], and [FeX] emission lines, we determine that, on average, the majority of CL- emitting spaxels are AGN or composite (Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For [NeV]λ3347, λ3427 we find that 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5% and 90% of these spaxels are classified as AGN, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5% and 10% composite, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 0% SF for both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, we measure the BPT ratios for the [FeVII]λ3586, λ3760, λ6086 spaxels, and find that 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5%, 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3%, and 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9% of these spaxels are classified as AGN, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 19%, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8%, and 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7% composite, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5%, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9%, and 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5% SF, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' For [FeX]λ6374, 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3% of the CL-emitting spaxels are classified as AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 0% com- posite;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7% SF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In total, 100% of the [NeV] spaxels in our sample are either BPT AGN or BPT composite, 91% of the [FeVII] spaxels, and 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3% of the [FeX] spaxels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' These results suggest that the CLs are perhaps useful tracers of AGN, and that the lack of confirmed AGN in our [FeVII] and [FeX] galaxies may trace back to the nearly bimodal log([OIII]) and bolometric luminosity distributions presented in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [FeVII] and 400 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 300 cm erg s 200m (10- 150 Flux 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 50 J110431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='08+423721.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 J002343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='86+141824.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 5kpc 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 0 12 60 6 (10- 10 J134918.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='20+240544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 J161358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='56+393150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 5kpc 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 1) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='50% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='25 J215259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07-000903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 5 kpc J094036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='39+033436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 5kpo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='012 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' BPT Classifications for the CL Galaxies .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Detected Rest Confirmed Confirmed Confirmed [NII] [NII] [NII] CL Wavelength CL Galaxies AGN AGN Fraction AGN Fraction Composite Fraction SF Fraction ˚A % % % % (1) (2) (3) (4) (5) (6) (7) (8) [NeV] λ3347 8 8 100 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 0 λ3427 33 31 94 90 10 0 [FeVII] λ3586 4 3 75 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 λ3760 16 2 13 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 λ6086 19 3 16 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [FeX] λ6374 4 1 25 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 Note: Columns are (1) detected CL, (2) rest wavelength, (3) the number of galaxies that feature emission from the respective line, (4) the fraction of galaxies that host a confirmed AGN, (5) the average fraction of [NII] AGN BPT spaxels, (6) the average fraction of [NII] Composite BPT spaxels, and (7) the average fraction of [NII] SF BPT spaxels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Average mean bolometric luminosities for the 71 CL galaxies in our sample (analyzed by each CL species;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [NeV], [FeVII], and [FeX]), compared to the MaNGA galax- ies confirmed to feature an AGN in the Comerford sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The AGN in the Comerford sample were verified using SDSS broad emission lines, NVSS/ FIRST 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 GHz radio observa- tions, WISE mid-infrared color cuts, and Swift/BAT hard X-ray observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The mean bolometric luminosity of the [NeV] galaxies, log(Lbol) = 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1, is consistent with the AGN reported in the Comerford sample (mean log(Lbol) = 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 erg s−1 for the Comerford sample).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, the [FeVII] and [FeX] galaxies feature mean bolometric lumi- nosities an order of magnitude lower (log(Lbol) ≤ 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 erg s−1) than the Comerford sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We suspect that the [Fe- VII] and [FeX] emission lines may primarily be detecting low luminosity AGN in MaNGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [FeX] may generally be found in low luminosity AGN that are potentially missed by traditional AGN detec- tion techniques;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' though, it is also possible that [FeVII] Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The log([OIII]) luminosity distribution for the 71 CL galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The blue, orange, and green histograms repre- sent the [NeV], [FeVII], and [FeX] galaxies in our sample, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [NeV] emitting galaxies tend to have higher [OIII] luminosities than [FeVII] or [FeX], which suggests that these galaxies may host higher luminosity AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The mean of the [NeV] log([OIII]) luminosity distribution is 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 erg s−1 and 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 erg s−1 for [FeVII] and [FeX], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' and [FeX] may not host an AGN at all).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We explore this possibility, and the corresponding impact of dust extinction on iron CL emission in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The Impact of Dust on CL Emission The role of dust extinction (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the impact of dust grains) on CL emission has yet to be fully unraveled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Mullaney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2009) suggest that dust grains can po- tentially deplete heavier CL species (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', iron).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, Ferguson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (1997) posit that there are three pri- 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 ) (erg/s) 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 T 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 Nev FeVIl FeX BAT WISE RADIO BROAD Source12 [NeV] [FeVII] [FeX] 10 Number of CL Galaxies 2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 log [Oll] Luminosity (erg/s)Coronal Lines in MaNGA 13 mary effects of dust on line formation: 1) emission lines weaken due to the absorption of the incident continuum by dust, 2) grains photoelectrially heat the gas, and 3) some of the gas-phase elements (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', iron) are depleted (see also Seab & Shull 1983;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Snow & Witt 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Collins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Kraemer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comparatively, Fergu- son et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (1997) contend that neon (a noble gas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' a species of gas with a full outer shell of valence electrons, and thus less chemical reactivity) is significantly less de- pleted by dust grains, and therefore [NeV] is emitted al- most fully outside the grain sublimation radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Here, we consider the likelihood that a significant population of iron CL photons are destroyed by dust in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To explore the role of dust extinction on CL emission in our sample, and to determine its relevance for the dis- crepancy between the fraction of confirmed AGN in the [NeV] galaxies (94%) vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the [FeVII] and [FeX] galaxies (14% and 25% respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1), we use the E(B V) color excess index, which traces interstellar redden- ing (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The MaNGA DRP provides this index for each galaxy in MPL-11, and we use it to determine if there is a correlation between the dust content of each CL galaxy and its CL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We present our findings in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In particular, we find the mean E(B - V) values for the [FeVII]λ3760, λ6086 galaxies to be the low- est (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' feature less dust grains) across our sam- ple (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='029 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='039, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Because iron is susceptible to destruction by dust grains, particularly in the nuclear region where the presence of dust is greater (also due to dust in the NLR), these relatively low values provide a viable explanation for the pres- ence of [FeVII]λ3760, λ6086 emission in these galax- ies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' for reference, our sample contains 16 [FeVII]λ3760 galaxies and 19 [FeVII]λ6086 galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comparatively, the [NeV]λ3347, λ3427, [FeVII]λ3586, and [FeX]λ6374 galaxies feature higher mean E(B- V) values;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='057, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='049, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The correspond- ing number of iron CL-emitting galaxies found in these galaxies is only nine in total (J0736 features emission from both [NeV] lines, as well as [FeVII]λ3586 emis- sion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J1714 features emission from both [NeV] lines, as well as [FeVII]λ6086 emission;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J0807 features emission from [FeVII]λ3586, λ3760, λ6086;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J1157 features emis- sion from [FeVII]λ3586, λ3760;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J0906 features emission from [FeVII]λ3586;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J1628, J2311, J1649, and J1720 ex- clusively feature emission from [FeX]λ6374).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We suspect that emission from the iron CL species is being dimin- ished within these relatively dusty galaxies, which pro- vides a physical explanation for the low number of iron CL galaxies in the high E(B - V) value galaxies (E(B - Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' CLR Dust Attenuation Detected Wavelength Average E(B-V) Value CL (˚A) (1) (2) (3) [NeV] 3347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='057 3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045 [FeVII] 3586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045 3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='029 6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='039 [FeX] 6374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='049 Note: Columns are (1) detected CL, (2) rest wavelength, and (3) average E(B-V) values, for each CL, reported by MaNGA’s DRP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' V) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' nine iron CL galaxies) vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the low E(B - V) galaxies (E(B - V) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='039;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 34 iron CL galaxies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Furthermore, Elitzur & Shlosman 2006 considered the correlation between the AGN dusty torus and AGN bolometric luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' They proposed that the dusty torus diminishes at log(Lbol) ⪅ 42 erg s−1, due to mass accretion no longer being able to sustain the necessary cloud outflow rate, which effectively results in a de- crease in column density (see also Chiaberge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Whysong & Antonucci 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Maoz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' While the cloud component of the AGN is not immediately extinguished below this threshold, the authors contend that the cloud outflow rate at log(Lbol) ⪅ 42 erg s−1 is less than the necessary “standard” observed in higher luminosity AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' As a result, we consider the Lbol val- ues for the CL species (Figure 5, mean log(Lbol) ≥ 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 erg s−1 for [NeV] galaxies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' mean log(Lbol) ≤ 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 erg s−1 for the [FeVII] and [FeX] galaxies) to conclude that the lower Lbol values correlate with a diminishing dusty torus, which results in less destruction of iron by dust grains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Accordingly, we detect more iron CLs in these low luminosity sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, the [NeV] galaxies feature higher Lbol values, which likely cor- respond to their elevated E(B - V) values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Likewise, since Lbol scales with LOIII, this reasoning elucidates the nearly bimodal log(LOIII) distribution of the [NeV] vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the [FeVII] and [FeX] galaxies (Figure 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the mean of the [NeV] log([OIII]) luminosity distribution is 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 erg s−1 and 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 erg s−1 for [FeVII] and [FeX], respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' SNR, [OI], and Merger-Induced Shocks in the CLR Astrophysical shocks can result from a variety of mechanisms, which include, but are not limited to, galaxy collisions, SNRs, cloud-cloud collisions, expand- ing HII regions, and outflows from young stellar objects 14 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Morphological and Merger Classifications of the CL Galaxies SDSS Name Detected CL(s) Redshift Morphology Merger (1) (2) (3) (4) (5) J001938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='78+144201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='116 E N J002343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='86+141824.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='018 S(b) N J020557.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03+004623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='042 E N J021257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='59+140610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='062 N J030639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='57+000343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='107 E Y J072656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07+410136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='129 S(b) Y J073623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='13+392617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 [NeV]λ3347, [NeV]λ3427, [FeVII]λ3586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='118 Y J074128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='48+442431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='132 E N J075217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='84+193542.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='117 J075756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='71+395936.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='066 E(o) Y J080018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='53+461112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='061 E N J080403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='40+404809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='126 S Y J080543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='32+252710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='072 E Y J080707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='18+361400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [FeVII]λ3586, [FeVII]λ3760, [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='032 S N J080859.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='19+364112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03 E Y J084002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='36+294902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='065 E N J085208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='48+511845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='115 S N J085601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='94+572327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='041 S(bo) N J085835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='98+013149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='107 S(b) Y J090659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='46+204810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [FeVII]λ3586 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='109 S(o) N J092002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='85+054407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='038 S(b) J092739.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='77+050312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='126 S N J094036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='39+033436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='016 Y J101042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='59+061157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='098 E(o) Y J103825.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='16-002331.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 [NeV]λ3347, [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='096 S(o) Y J105439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='31+475144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='073 S(b) N J105759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='31+404940.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='024 E Y J110431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='08+423721.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='126 E(o) Y J111403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='52+472653.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='113 E Y J111711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='79+465134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='061 E N J111724.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='94+443347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='066 E N J111803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='22+450646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 [NeV]λ3347, [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='107 E(o) Y J112043.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='79+534337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='107 E N J115710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='68+221746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [FeVII]λ3586, [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='052 S(b) N J122443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='43+442438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='126 E Y J123521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03+422002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='039 E N J130626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='65+451720.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='051 E J131730.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='11+474659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='027 E N J134401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='90+255628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='062 S(b) N J134918.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='20+240544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='021 Y J141623.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='14+381127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='135 Y J142004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='29+470716.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07 S(b) N J144454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='24+522648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='146 E N Note: Columns are (1) SDSS Name, (2) detected CL(s), (3) redshift, (4) GZ2 morphological classifications;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “E” is for elliptical, “S” is for spiral, “b” is for bar, “o” is for odd, and “-” indicates no morphological classification was assigned, and (5) the merger classification from the Nevin catalog;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “Y” marks galaxies with pmerg > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5, “N” identifies galaxies with pmerg ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5, and “-” represents galaxies that are not in the Nevin catalog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Coronal Lines in MaNGA 15 Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Morphological and Merger Classifications of the CL Galaxies (Continued) SDSS Name CL Redshift Morphology Merger (1) (2) (3) (4) (5) J145420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10+470022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='126 E(o) Y J151600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='58+342119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='125 S(o) Y J151856.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='39+332152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='069 E N J153552.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='40+575409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03 E(o) N J160455.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='20+280956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='077 S Y J161301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='62+371714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='069 S(b) Y J161358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='56+393150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='038 S J161413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='20+260416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [NeV]λ3347, [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='131 (o) Y J162428.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='39+483548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='057 E(o) Y J162621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='91+405442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='03 S(o) Y J162845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='89+252938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [FeX]λ6374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='04 E N J162908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='95+383256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='033 E N J163014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='63+261223.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [NeV]λ3347, [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='131 S(b) N J163053.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='84+243343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='063 E Y J163430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='87+374143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='099 E N J164956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='39+351243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 [FeX]λ6374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 E N J165810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10+622456.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='119 S(b) N J171411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='63+575834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0 [NeV]λ3347, [NeV]λ3427, [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='093 E Y J172032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='02+280602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [FeX]λ6374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='083 Y J205141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='54+005135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [NeV]λ3347, [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='106 S Y J211646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='34+110237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='081 S Y J212401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='89-002158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='062 S(b) Y J212900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='75+001057.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 [FeVII]λ3760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='133 E(o) N J213227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='90+100816.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='063 S(o) J215259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='07-000903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='028 S N J223338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='41+131243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6 [NeV]λ3347, [NeV]λ3427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='093 S Y J231142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='05+150638.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 [FeX]λ6374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='04 S(o) N J232538.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='54+152115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 [FeVII]λ6086 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='041 S N Note: Columns are (1) SDSS Name, (2) detected CL(s), (3) redshift, (4) GZ2 morphological classifications;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “E” is for elliptical, “S” is for spiral, “b” is for bar, “o” is for odd, and “-” indicates no morphological classification was assigned, and (5) the merger classification from the Nevin catalog;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “Y” marks galaxies with pmerg > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5, “N” identifies galaxies with pmerg ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5, and “-” represents galaxies that are not in the Nevin catalog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 16 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='Detected ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='Wavelength ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL AGN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Non-AGN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Mergers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Non-Mergers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Nuclear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Non-Nuclear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(˚A) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(5) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[NeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3347 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='13% 14% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='13% [NeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3427 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='33% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='30% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='50% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='39% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[FeVII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3586 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='38% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='12% [FeVII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3760 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='55% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='49% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='49% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='52% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='45% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[FeVII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='95% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='42% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='64% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='41% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='61% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='25% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[FeX] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6374 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='45% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='36% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='67% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='67% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='36% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='Note: Columns are (1) detected CL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2) rest wavelength,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (3) percentage of CL-emitting spaxels in the CL Galaxies with a confirmed AGN that feature SNR shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (4) percentage of CL-emitting spaxels in the CL Galaxies without a confirmed AGN that feature SNR shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (5) percentage of CL-emitting spaxels in the CL Galaxies undergoing a merger that feature SNR shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (6) percentage of CL-emitting spaxels in the CL Galaxies not undergoing a merger that feature SNR shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (7) percentage of CL-emitting spaxels in the CL Galaxies with nuclear CL emission (See Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2) that feature SNR shocks, and (8) percentage of CL-emitting spaxels in the CL Galaxies without nuclear CL emission that feature SNR shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “-” indicates an empty sample set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' [OI] Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='Detected ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='Wavelength ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL AGN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Non-AGN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Mergers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Non-Mergers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Nuclear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL Non-Nuclear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='CL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(˚A) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='SNR Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[OI] Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[OI] Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[OI] Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[OI] Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[OI] Shocks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(5) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='(7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[NeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3347 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='25% 29% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='25% [NeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3427 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='29% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='33% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='31% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='35% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[FeVII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3586 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='12% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6% [FeVII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3760 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='28% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='20% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='26% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='25% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='25% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[FeVII] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='50% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='36% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='45% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='33% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='31% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='49% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='[FeX] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6374 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='67% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='67% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='67% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='Note: Columns are (1) detected CL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (2) rest wavelength,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (3) percentage of CL-emitting spaxels in the CL Galaxies with a confirmed AGN that feature [OI] shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (4) percentage of CL-emitting spaxels in the CL Galaxies without a confirmed AGN that feature [OI] shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (5) percentage of CL-emitting spaxels in the CL Galaxies undergoing a merger that feature [OI] shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (6) percentage of CL-emitting spaxels in the CL Galaxies not undergoing a merger that feature [OI] shocks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (7) percentage of CL-emitting spaxels in the CL Galaxies with nuclear CL emission (See Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2) that feature [OI] shocks, and (8) percentage of CL-emitting spaxels in the CL Galaxies without nuclear CL emission that feature [OI] shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' “-” indicates an empty sample set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (see Allen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008 for a further review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' To deduce the role of shocks in the CLR, we consider the [SII] (λ6717 + λ6731)/Hα and [OI]λ6300/Hα ratios for each CL-emitting spaxel in our sample (values > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 indicate SNR shocks and values > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 trace [OI] shocks, respec- tively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We also investigate the fraction of CL galaxies actively undergoing a merger using the Nevin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', catalog (Ta- ble 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, we found that the 3/10 CL galaxies without a confirmed AGN were all strong merger candidates (J0906, J1349, and J1454).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Therefore, we consider the possibility that companion galaxies can drive gas inflows towards the galactic centers, resulting in merger-induced shock ex- citation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Farage et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010) that may also pro- duce CLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Using the Nevin catalog, here we determine that 32/66 of the CL galaxies (48%;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 5 CL galaxies are not reported in the Nevin catalog: J0752, J0920, J1306, J1613, and J2132) have pmerg values > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 - indicative of an ongoing merger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, we present our SNR and [OI] shocks results in Tables 7 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Overall, we find that the fraction of SNR and [OI] shocks do not vary significantly for the CL galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In particular, on average and across all CL species, 42% of the CL-emitting spaxels in the CL galax- ies with a confirmed AGN feature SNR shocks (35% fea- ture [OI] shocks), whereas 56% of the CL-emitting spax- els in the CL galaxies without a confirmed AGN feature SNR shocks (49% feature [OI] shocks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, on av- erage and across all CL species, 32% of the CL-emitting Coronal Lines in MaNGA 17 spaxels in the CL galaxies undergoing a merger feature SNR shocks (38% feature [OI] shocks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, 36% of the CL-emitting spaxels in the CL galaxies not undergoing a merger feature SNR shocks (27% fea- ture [OI] shocks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, on average and across all CL species, 41% of the CL-emitting spaxels in the CL galax- ies with nuclear CL emission feature SNR shocks (32% feature [OI] shocks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Comparatively, 27% of the CL- emitting spaxels in the CL galaxies without nuclear CL emission feature SNR shocks (44% feature [OI] shocks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We find clear evidence of SNR and [OI] shocks in the CL-emitting spaxels of each CL species in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, the fraction of these shocks does not strongly trace CL galaxies with or without: a confirmed AGN, a companion galaxy, or nuclear CL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason that SNR and [OI] shocks may be viable CL-emission mechanisms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' however, they are not likely dominant, and we find little evidence that they produce CLs away from the nuclear region, in the absence of a confirmed AGN, or when a merging companion galaxy is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' DISCUSSION Based on our findings, we reason that the efficacy of using CLs to detect AGN varies by species of CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' While the ionization potential of each CL is ≥ 100 eV (Table 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' well above the 55 eV threshold for pure star forma- tion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' consistent with the strong continuum of an AGN being the ionization source), we find that certain CLs are better at identifying higher luminosity AGN than others (log(L[OIII]) ⪆ 41 erg s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In particular, [NeV] emission is predominately present in higher [OIII] lu- minosity galaxies that feature a confirmed AGN (mean log(L[OIII]) = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1 for the [NeV] galaxies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 94% of the [NeV] galaxies host a confirmed AGN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' On the other hand, we detect [FeVII] and [FeX] emission in lower [OIII] luminosity galaxies with fewer confirmed AGNs (mean log(L[OIII]) ≤ 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 erg s−1 for both CLs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 14% and 25% confirmed AGN for the [FeVII] and [FeX] galaxies, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason that the destruction of iron CLs by dust grains, which we find is inversely proportional to AGN bolometric luminosity (the dusty torus diminishes at log(Lbol) ⪅ 42 erg s−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Elitzur & Shlosman 2006), may be directly impacting [FeVII] and [FeX] emission;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the CL galaxies with the lowest E(B-V) values yield the most iron CL detections (nine iron CL galaxies with E(B - V) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 34 iron CL galaxies with (E(B - V) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='039).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We posit that if the [FeVII] and [FeX] galaxies host AGNs, that they may be lower luminosity AGNs, which are potentially too weak to be detected via SDSS broad emission lines, NVSS/ FIRST 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4 GHz radio observations, WISE mid-infrared color cuts, and Swift/BAT hard X-ray observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We determine that there are primarily two distinct populations of CL galaxies in our sample: 1) a subset of CL galaxies that emit [NeV] (33/71 CL galaxies), with relatively high [OIII] and bolometric luminosities, and a high fraction of confirmed AGN (94%), and 2) a group of CL galaxies that emit [FeVII] and [FeX] (40/71 CL galaxies), with relatively low [OIII] and bolometric lu- minosities, and a low fraction of confirmed AGN (14% and 25%, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Overall, we consider the similar IPs of [NeV] and [Fe- VII] (126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2 eV and 125 eV, respectively), the high IP of [FeX] (262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='21 eV), and our BPT analysis (100% of the [NeV] spaxels in our sample are either BPT AGN or NPT composite, 91% of the [FeVII] spaxels, and 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3% of the [FeX] spaxels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 3), to deduce that each CL in our sample is likely linked to AGN activity, but that [FeVII] and [FeX] emission may preferentially be found in less luminous AGN (we also consider the possibility that some of the iron CL emission may not exclusively be produced by AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', shocks may also play a role).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We conclude that the BPT diagram is generally effective at tracing large populations of AGN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' however, [NeV], in particular, can also be used as an additional resource to help trace AGN, specifically for instances where one or more of the optical BPT line ratios is unable to be determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, Ferguson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' (1997) reported CL criti- cal densities between 107 - 1010 cm−3, which suggest that the CLR is a region between the classical NLR and the BLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The authors also indicate that lower ioniza- tion CLs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', [NeV] and [FeVII];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' IPs ≈ 125 eV) are more likely to form in lower density gas that should be spatially resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In contrast, higher ionization CLs (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', [FeX];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' IP = 262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 eV) form in a region closer to the nucleus where the ionizing flux, and ionization parameters, are higher (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', these CLs form in denser, more efficiently emitting regions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Here we determine that the average size of the CLR for [NeV]λ3347, λ3427, [FeVII]λ3586, λ3760, λ6086, and [FeX]λ6374 is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 kpc, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 kpc, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 kpc, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3 kpc, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 kpc, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 kpc, respec- tively (Table 2) - well into the NLR for all CL species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' With the enhanced capabilities of IFS, which enables us to spatially resolve the CLR, we find that the CLR for the galaxies in MaNGA is larger than reported in pre- vious works (tens to hundreds of pcs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Prieto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Mazzalay et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M¨uller-S´anchez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Rodr´ıguez-Ardila et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, while the bulk of the CL galaxies in our sam- ple feature CL emission in their nuclear regions (within a central 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 FoV;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Table 2), a sig- 18 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' nificant fraction do not, which is inconsistent with pure AGN photoionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='6, we show that [OI] and SNR shocks are present in the CL-emitting spax- els of each CL species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' However, the fraction of SNR and [OI] shocks, across all CL species, do not signifi- cantly vary for the CL galaxies with or without nuclear CL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason, instead, that AGN radio jets or outflows may be interacting with gas clouds away from the nuclear region, ionizing them, and producing the non-centric CL emission we uncover in our sample (Figure 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Tadhunter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M¨uller-S´anchez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' It is also possible that this CL emission is tracing a different species of gas, that is not a CL, from a non-companion galaxy within the MaNGA FoV (at a different redshift than the target galaxy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', J1613 - Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' SUMMARY AND FUTURE WORK We construct the most extensive sample of MaNGA CL galaxies to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' With our custom pipeline, we measure emission from [NeV]λ3347, [NeV]λ3427, [FeVII]λ3586, [FeVII]λ3760, [FeVII]λ6086, and/or [FeX]λ6374 at ≥ 5σ above the background continuum in 71 galaxies in MaNGA’s MPL-11 catalog of 10,010 unique galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Our main findings are: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The average size of the CLR for [NeV], [FeVII], and [FeX] is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='9 kpc, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 kpc, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 kpc, respec- tively - beyond the BLR and into the traditional NLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The fraction of [NeV], [FeVII], and [FeX] galax- ies with at least one CL-emitting spaxel in their nuclear 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='′′5 region is 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5%, 73%, and 75%, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Nuclear CL emission is preferentially found in [NeV] galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We identify two main populations of CL galax- ies: 1) galaxies that mostly feature [NeV] emis- sion (33/71 CL galaxies), with relatively high [OIII] and bolometric luminosities (mean [NeV] log([OIII]) luminosity = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' mean [NeV] log(Lbol) = 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1), and a high fraction of confirmed AGN (94%), and 2) galaxies that predominately emit [FeVII] and [FeX] (40/71 CL galaxies), with relatively low [OIII] and bolometric luminosities (mean [FeVII] and [FeX] log([OIII]) luminosities are 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1 erg s−1 and 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='8 erg s−1, re- spectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' mean [FeVII] and [FeX] log(Lbol) val- ues are 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='7 erg s−1 and 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='5 erg s−1, respectively), and a low fraction of confirmed AGN (14% and 25%, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 100% of the [NeV] spaxels in our sample are either BPT AGN or BPT composite, 91% of the [FeVII] spaxels, and 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3% of the [FeX] spaxels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The CLs are strong tracers of BPT AGN and BPT compos- ite sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We detect a low number of iron CL galaxies in high E(B - V) value galaxies (E(B - V) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='045;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' nine iron CL galaxies) vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' low E(B - V) galaxies (E(B V) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='039;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 34 iron CL galaxies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We reason that the destruction of iron CLs by dust grains, which is inversely proportional to AGN bolomet- ric luminosity, may likely be depleting [FeVII] and [FeX] emission, particularly in the nuclear region where the presence of dust is greater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The [FeVII] and [FeX] galaxies may be tracing lower luminosity AGN, which are possibly too weak to be confirmed by traditional AGN detection techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' SNR and [OI] shock excitation are viable CL pro- duction mechanisms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' however, they are not likely primary, as the abundance of SNR and [OI] shocks does not vary significantly across our sample for galaxies with or without: nuclear CL emission, an AGN, or a merging companion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' We will explore the CLR kinematics in a future publi- cation to better comprehend the role of outflows on CL production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' In particular, we will use [OIII] flux maps to evaluate the likelihood that AGN outflows produce CL emission, provided the strong correlation between [OIII] emission and AGN outflows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Com- erford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Further, we will measure the rotation and cloud velocities of the gas for each CL galaxy (to determine how the bulk motion of gas in the CL galaxies correlates with CL emission), and also analyze the emis- sion line profiles of the CLs to determine if, for example, the CLs feature any blue shifted emission - indicative of outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Moreover, additional multi-wavelength observations of the CLs would help deduce their nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' X-ray obser- vations from Chandra, for example, would allow us to better confirm the population of low luminosity AGN in the CL galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This will help to determine the effec- tiveness of using CL emission as an unambiguous tracer of AGN in large-scale spectroscopic surveys of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Finally, our work here is also relevant for motivating near IR measurements of additional CLs that are observ- able by the James Webb Space Telescope, particularly in cases where optical CLs may be obscured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Coronal Lines in MaNGA 19 ACKNOWLEDGMENTS J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' acknowledge support from NSF AST1714503 and NSF AST1847938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Sloan Foundation, the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Department of Energy Office of Science, and the Partici- pating Institutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' SDSS-IV acknowledges support and resources from the Center for High-Performance Com- puting at the University of Utah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The SDSS web site is www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='sdss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participa- tion Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the Carnegie Institution for Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Carnegie Mellon University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the Chilean Participa- tion Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the French Participation Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Harvard Smithsonian Center for Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Instituto de As- trof´ısica de Canarias,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The Johns Hopkins University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' the Ko- rean Participation Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Lawrence Berkeley National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Leibniz Institut f¨ur Astrophysik Potsdam (AIP),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Max-Planck-Institut f¨ur Astronomie (MPIA Hei- delberg),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Max-Planck-Institut f¨ur Astrophysik (MPA Garching),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Max-Planck-Institut f¨ur Extraterrestrische Physik (MPE),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' National Astronomical Observatories of China,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' New Mexico State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' New York Uni- versity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Notre Dame,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Observat´ario Na- cional / MCTI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The Ohio State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Pennsylva- nia State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Shanghai Astronomical Observa- tory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' United Kingdom Participation Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Universidad Nacional Aut´onoma de M´exico,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Arizona,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Colorado Boulder,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Oxford,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Portsmouth,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Utah,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Univer- sity of Virginia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Washington,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' University of Wisconsin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Vanderbilt University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' and Yale University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This research has made use of data supplied by the UK Swift Science Data Centre at the University of Leicester.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' This work utilized the Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the Univer- sity of Colorado Boulder, and Colorado State Univer- sity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Software: This work made use of Astropy2: a community-developed core Python package and an ecosystem of tools and resources for astronomy (As- tropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013, 2018, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' REFERENCES Adelman-McCarthy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Ag¨ueros, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Allam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, ApJS, 162, 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/497917 Adelman-McCarthy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Ag¨ueros, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Allam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, ApJS, 175, 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/524984 Allen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Groves, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, ApJS, 178, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/589652 Agostino, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Salim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2019, ApJ, 876, 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ab1094 Aihara, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Allende Prieto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', An, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, ApJS, 193, 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0067-0049/193/2/29 Antonucci, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1993, ARA&A, 31, 473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='aa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='090193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='002353 Armus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Charmandaris, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Spoon, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004, ApJS, 154, 178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/422915 Armus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Lai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', U, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='13125 Assef, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Stern, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Noirot, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018, ApJS, 234, 23 2 http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='astropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='org Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013, A&A, 558, A33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1051/0004-6361/201322068 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Sip˝ocz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018, AJ, 156, 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-3881/aabc4f Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Lim, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, ApJ, 935, 167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ac7c74 Baldwin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Phillips, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Terlevich, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1981, PASP, 93, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/130766 Becker, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', White, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Helfand, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1995, ApJ, 450, 559 Belfiore, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Maiolino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Maraston, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016, MNRAS, 461, 3111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/stw1234 Best, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2012, MNRAS, 421, 1569 Blanton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kazin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Muna, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, AJ, 142, 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-6256/142/1/31 Blanton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bershady, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Abolfathi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017, AJ, 154, 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-3881/aa7567 Bundy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bershady, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Law, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015, ApJ, 798, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/798/1/7 20 Negus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Cappellari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2012, Astrophysics Source Code Library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' ascl:1210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='002 Cappellari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017, MNRAS, 466, 798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/stw3020 Chiaberge, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Capetti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Celotti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1999, A&A, 349, 77 Collins, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kraemer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Crenshaw, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009, ApJ, 694, 765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/694/2/765 Comerford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Nevin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Stemo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018, ApJ, 867, 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/aae2b4 Comerford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Negus, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', M¨uller-S´anchez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2020, ApJ, 901, 159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/abb2ae Comerford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Negus, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Barrows, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, ApJ, 927, 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ac496a Condon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Cotton, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Greisen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998, AJ, 115, 1693 Dasyra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Armus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, ApJL, 674, L9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/528843 Di Matteo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Springel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Hernquist, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, Nature, 433, 604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1038/nature03335 Dodorico, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1978, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Italiana, 49, 485 Dodorico, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Benvenuti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1980, A&AS, 40, 67 Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1976, ApJ, 209, 395.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/154732 Drory, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', MacDonald, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bershady, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015, AJ, 149, 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-6256/149/2/77 Eisenstein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Weinberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Agol, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, AJ, 142, 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-6256/142/3/72 Elitzur, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Shlosman, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, ApJL, 648, L101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/508158 Elmhamdi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, AcA, 61, 179 Fabian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2012, ARA&A, 50, 455.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1146/annurev-astro-081811-125521 Farage, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', McGregor, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010, ApJ, 724, 267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/724/1/267 Ferland, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Korista, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Verner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998, PASP, 110, 761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/316190 Ferguson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Korista, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Ferland, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1997, ApJS, 110, 287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/312998 Ferrarese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Merritt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2000, ApJL, 539, L9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/312838 Gebhardt, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bender, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bower, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2000, ApJL, 539, L13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/312840 Gelbord, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Mullaney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Ward, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009, MNRAS, 397, 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='14961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='x Genzel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Lutz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Sturm, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998, ApJ, 498, 579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/305576 Glidden, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Rose, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Elvis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016, ApJ, 824, 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/0004-637X/824/1/34 Goulding, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Alexander, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009, MNRAS, 398, 1165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1365- 2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='15194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='x10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='0772 Gunn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Siegmund, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Mannery, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, AJ, 131, 2332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/500975 Haardt, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Maraschi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1991, ApJL, 380, L51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/186171 Haehnelt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Madau, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kudritzki, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2001, ApJL, 549, L151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kauffmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Brinchmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004, ApJ, 613, 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/422872 Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Best, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2014, ARA&A, 52, 589.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' Hinkle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Mushotzky, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, MNRAS, 506, 4960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/stab1976 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1146/annurev-astro-081913-035722 Hopkins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Hernquist, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Cox, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, ApJ, 630, 705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/432438 Kewley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Sutherland, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2001, ApJ, 556, 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/321545 Kewley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Groves, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kauffmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, MNRAS, 372, 961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='10859.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='x Kormendy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013, ARA&A, 51, 511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1146/annurev-astro-082708-101811 Kraemer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Trippe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Crenshaw, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009, ApJ, 698, 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/698/1/106 Laor, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004, AGN Physics with the Sloan Digital Sky Survey, 169 Law, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Cherinka, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Yan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016, AJ, 152, 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/0004-6256/152/4/83 Lutz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Yan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Armus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, ApJL, 632, L13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/497639 Maoz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Nagar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Falcke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, ApJ, 625, 699.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/429795 Mazzalay, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Rodr´ıguez-Ardila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Komossa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010, MNRAS, 405, 1315.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='16533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='x Molina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Reines, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Latimer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, ApJ, 922, 155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ac1ffa Mullaney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Ward, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Done, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009, MNRAS, 394, L16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1745-3933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='00599.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='x M¨uller-S´anchez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Prieto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Hicks, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, ApJ, 739, 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/739/2/69 Negus, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Comerford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', M¨uller S´anchez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, ApJ, 920, 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ac1343 Newman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Cooper, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Davis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013, ApJS, 208, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0067-0049/208/1/5 Nevin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Blecha, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Comerford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2019, ApJ, 872, 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/aafd34 O’Donnell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1994, ApJ, 422, 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/173713 Oh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Yi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Schawinski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015, ApJS, 219, 1 Coronal Lines in MaNGA 21 Oh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Koss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Markwardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018, ApJS, 235, 4 Osterbrock, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1981, ApJ, 246, 696 Pennell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Runnoe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Brotherton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017, MNRAS, 468, 1433 Penston, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Fosbury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Boksenberg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1984, MNRAS, 208, 347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='347 Peterson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1997, An introduction to active galactic nuclei Prieto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Marco, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Gallimore, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2005, MNRAS, 364, L28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1745-3933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='00099.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='x Reefe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Satyapal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Sexton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, ApJ, 936, 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ac8981 Revalski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Crenshaw, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Rafelski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, ApJ, 930, 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/ac5f3d Rich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kewley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010, ApJ, 721, 505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/721/1/505 Rich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kewley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, ApJ, 734, 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/734/2/87 Riffel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bianchin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Riffel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, MNRAS, 503, 5161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/stab788 Riffel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dors, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Armah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, MNRAS, 501, L54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnrasl/slaa194 Rodr´ıguez-Ardila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Viegas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Pastoriza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2002, ApJ, 579, 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/342840 Rodr´ıguez-Ardila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Prieto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Portilla, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2011, ApJ, 743, 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/743/2/100 Rose, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Elvis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Tadhunter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2015, MNRAS, 448, 2900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/stv113 Sajina, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Lacy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Pope, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, Universe, 8, 356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3390/universe8070356 Satyapal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Vega, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Dudik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2008, ApJ, 677, 926.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/529014 Satyapal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kamal, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Cann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2021, ApJ, 906, 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/abbfaf Schlegel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Finkbeiner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Davis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1998, ApJ, 500, 525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/305772 Seab, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Shull, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1983, ApJ, 275, 652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/161563 Smee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Gunn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Uomoto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013, AJ, 146, 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-6256/146/2/32 Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Silverman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Chornock, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2009, ApJ, 695, 1334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/695/2/1334 Snow, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Witt, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1996, ApJL, 468, L65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/310225 Sturm, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Lutz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Verma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2002, A&A, 393, 821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1051/0004-6361:20021043 Sun, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Greene, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', & Zakamska, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017, ApJ, 835, 222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-4357/835/2/222 Tadhunter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Fosbury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', di Serego Alighieri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1988, MNRAS, 235, 403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='403 Trindade Falc˜ao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Kraemer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Crenshaw, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2022, MNRAS, 511, 1420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/stac173 Urry, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Padovani, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1995, PASP, 107, 803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/133630 Veilleux, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Osterbrock, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1987, ApJS, 63, 295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/191166 Voges, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Aschenbach, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Boller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1999, A&A, 349, 389 Voges, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Aschenbach, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Boller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2000, IAUC, 7432 Wake, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bundy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Diamond-Stanic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2017, AJ, 154, 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-3881/aa7ecc Ward, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Morris, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 1984, MNRAS, 207, 867.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1093/mnras/207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='867 Weedman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Soifer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Hao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2006, ApJ, 651, 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/507322 Westfall, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Cappellari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bershady, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2019, AJ, 158, 231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/1538-3881/ab44a2 Whysong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Antonucci, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2004, ApJ, 602, 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/380828 Willett, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Lintott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bamford, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2013, MNRAS, 435, 2835 Wright, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Eisenhardt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Mainzer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2010, AJ, 140, 1868 Wylezalek, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Zakamska, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Greene, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2018, MNRAS, 474, 1499 Yan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' & Blanton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2012, ApJ, 747, 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1088/0004-637X/747/1/61 Yan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Bundy, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Law, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2016, AJ, 152, 197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='3847/0004-6256/152/6/197 York, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Adelman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', Anderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' 2000, AJ, 120, 1579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
+page_content='1086/301513 et al 21020' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/R9FQT4oBgHgl3EQfbDai/content/2301.13322v1.pdf'}
diff --git a/SNAyT4oBgHgl3EQfVPeU/content/tmp_files/load_file.txt b/SNAyT4oBgHgl3EQfVPeU/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0b7e84f0caff9f1b30f217b02e4ebf2c2ee21ab0
--- /dev/null
+++ b/SNAyT4oBgHgl3EQfVPeU/content/tmp_files/load_file.txt
@@ -0,0 +1,2368 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf,len=2367
+page_content='Published at 1st Conference on Lifelong Learning Agents, 2022 SELF-ACTIVATING NEURAL ENSEMBLES FOR CONTINUAL REINFORCEMENT LEARNING Sam Powers Carnegie Mellon University snpowers@cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='cmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='edu Eliot Xing Georgia Institute of Technology exing@gatech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='edu Abhinav Gupta Carnegie Mellon University gabhinav@cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='cmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='edu ABSTRACT The ability for an agent to continuously learn new skills without catastrophically forgetting existing knowledge is of critical importance for the development of generally intelligent agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Most meth- ods devised to address this problem depend heavily on well-defined task boundaries, and thus depend on human supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our task-agnostic method, Self-Activating Neural Ensembles (SANE), uses a modular architecture designed to avoid catastrophic forgetting without making any such assump- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' At the beginning of each trajectory, a module in the SANE ensemble is activated to determine the agent’s next policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' During training, new modules are created as needed and only activated modules are updated to ensure that unused modules remain unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This system enables our method to retain and leverage old skills, while growing and learning new ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We demonstrate our approach on visually rich procedurally generated environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1 INTRODUCTION Lifelong learning (Thrun & Mitchell, 1995) is of critical importance for the field of robotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' An agent that interacts with the world should continuously learn from it and act intelligently in a wide variety of situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In contrast to this ideal, most standard deep reinforcement learning methods are centered around a single task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' First, a task is defined, then a policy is learned to maximize the rewards the agent receives in that setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' If the task is changed, a new model is learned from scratch, discarding the previous model and previous interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Task specification thus plays a central role in current end-to-end deep reinforcement learning frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In contrast, humans do not require concrete task boundaries to be able to effectively learn separate tasks—instead, we perform continual (lifelong) learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We learn new skills efficiently by leveraging prior knowledge, without forgetting old behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, when placed into continual learning settings, current deep reinforcement learning approaches do neither: the forward transfer properties of these systems are negligible, and they suffer from catastrophic forgetting (McCloskey & Cohen, 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' French, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The core issue of catastrophic forgetting is that a neural network trained on one task starts to forget what it knows when trained on a second task, and this issue only becomes exacerbated as more tasks are added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The problem ultimately stems from sequentially training a single network in an end-to-end manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The shared nature of the weights and the use of backpropagation to update them mean that later tasks overwrite earlier ones (McCloskey & Cohen, 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ratcliff, 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' To handle this, past approaches have proposed a wide variety of ideas: from task-based regularization (Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017), to learning different sub-modules for different tasks (Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2016), and dual-system slow/fast learners inspired by the human hippocampus (Schwarz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The fundamental problem of continual learning, which few methods address, is that the agent should autonomously determine how and when to adapt to changing environments, or stabilize existing knowledge, without explicit task specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' It is infeasible for a human to indefinitely provide agents with task-boundary supervision, and doing so side-steps the core problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' There are a few existing task-agnostic (Zeno et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018) methods, though most have only been demonstrated on classification or behavior cloning: for example Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2019b) addresses the problem by detecting plateaus and using those as boundaries, Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2019) adaptively creates new clusters using Dirichlet processes, and Veness et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2021) replaces backpropagation completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Methods that have been demonstrated on reinforcement learning are rarer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' exceptions include Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2019), which utilizes a large replay buffer, and Lomonaco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2020) which uses the error in the value estimate to determine when to consolidate modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='00141v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='LG] 31 Dec 2022 Published at 1st Conference on Lifelong Learning Agents, 2022 We approach the problem by introducing a system that continuously, dynamically adapts to changing environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our ensemble-based method, Self-Activating Neural Ensembles1 (SANE), depicted in Figure 1, is the core of our proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Each module in the ensemble is a separate, task-agnostic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Periodically, a single module from the ensemble is activated to determine which policy to use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Only activated modules are updated, leaving unused modules unchanged and therefore protected from catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Crucially, our ensemble is dynamic: new modules are created when existing modules are found to be insufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In this way, modules are created when novel scenarios are encountered, preventing destructive updates to other modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Additionally, SANE is simple;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' modules control their own relevance, activating when the situation to which they are specialized is encountered, and remaining untouched the rest of the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE provides the following desirable properties for continual reinforcement learning: (a) It mitigates catastrophic forgetting by only updating relevant modules;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (b) Because of its task-agnostic nature, unlike previous approaches, it does not require explicit supervision with task IDs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (c) It achieves these targets with bounded resources and computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We demonstrate SANE on three visually rich, challenging level sequences based on Procgen (Cobbe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2020) environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Additionally, we analyze the behavior of SANE at a more fine-grained level on 2 individual runs, to gain more understanding of the dynamics of training SANE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Figure 1: The overall structure of the SANE system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Each module contains an actor and a critic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Upon activation, collection occurs from several environments in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2 RELATED WORK Continual learning Any continual learning system must balance stability (the extent to which existing knowledge is retained) and plasticity (how readily new knowledge is acquired) (Grossberg, 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Abraham & Robins, 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Mermillod et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Stability has posed a substantial challenge due to catastrophic forgetting, by which neural networks trained by backpropagation abruptly forget learned behavior for solving old tasks when presented with new tasks (Kemker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' McCloskey & Cohen, 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ratcliff, 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lewandowsky & Li, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' French, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Broadly, methods for continual learning can be categorized under Regularization, Rehearsal, or Architectural ap- proaches, as well as combinations of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We refer the reader to the survey papers by Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lesort et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Mundt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2020) for general discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Here we review methods for continual learning relevant to our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Recent strategies for mitigating catastrophic forgetting such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017), among other Regularization approaches (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Li & Hoiem, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Zenke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ritter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Jaeger, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' He & Jaeger, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2019b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Park et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019), constrain updates to network parameters important for past tasks when learning new tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, these methods fundamentally run into the stability-plasticity dilemma, as over-constraining updates can hinder the learning of new tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' To improve plasticity, dynamic architectures (Ring, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Terekhov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2016) incorporate additional network parameters to help learn new tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Furthermore, to prevent model size from growing unbounded, such approaches (Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Cortes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Yoon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Mallya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Mallya & Lazebnik, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Xu & Zhu, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Schwarz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Kaplanis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Traor´e et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019) use distillation (Buciluˇa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hinton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rusu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Teh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017), pruning, and related techniques to consolidating learned behavior while reducing parameter count.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Similarly, Rehearsal and (generative) memory-based approaches (Robins, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' French, 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gepperth & Karaoguz, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Furlanello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rebuffi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Shin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Draelos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Kamra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lopez-Paz & Ranzato, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Chaudhry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Wu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Isele & Cosgun, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Parisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Riemer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Soltoggio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Kemker & Kanan, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Van de Ven & Tolias, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Xiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lesort et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1Code available: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='com/AGI-Labs/continual_rl 2 State s Activate SANE Train Collect P P P Env Env EnvPublished at 1st Conference on Lifelong Learning Agents, 2022 Caccia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Caselles-Dupr´e et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021) must also balance data storage and memory network constraints when determining which examples are needed to preserve previously learned behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We build our ensemble approach off of CLEAR (Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019), a state-of-the-art asynchronous continual RL method which uses Rehearsal, by maintaining a replay buffer that uniformly preserves past experience via reservoir sampling (Isele & Cosgun, 2018), along with Regularization, via behavioral cloning and a KL penalty to preserve prior learned behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ensemble methods Falling under Architectural approaches, aggregation ensembles (Cheung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Wen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Veness et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021) combine predictions from multiple models to produce a final output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' These types of ensem- bles are also commonly used for uncertainty estimation (Lakshminarayanan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017), exploration (Pathak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019), or reducing overestimation bias such as in double Q-learning (Van Hasselt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Fujimoto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In contrast, modular ensembles (Aljundi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Fernando et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Parascandolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Kessler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021) use a subset of the entire ensemble’s parameters to select an appropriate expert model for the task presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Selectively updating a subset of parameters or specific modules instead of the entire ensemble can circumvent catastrophic forgetting while bounding compute costs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' this is a feature we utilize in SANE, which is a type of modular ensemble rather than the former, aggregation ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our method is similar to Multiple Choice Learning (Guzman-Rivera et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Seo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2020), which chooses and updates only the best expert from an ensemble, encouraging specialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, Multiple Choice Learning uses fixed-size static ensembles, while SANE is a dynamic ensemble that merges similar modules and works with a given resource budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For supervised continual learning, LMC (Ostapenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021) also proposes a modular ensemble approach, although LMC assumes access to task IDs at training time and can only add modules, meaning that its computational footprint is linear relative to the number of tasks learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In contrast, SANE is completely task-agnostic at train and test time, while also creating and merging modules to meet a given compute budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hierarchical RL can be seen as a hierarchy of meta-policies that control access to an ensemble of (often hand-designed) sub-policies that act at differing temporal resolutions (Sutton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Brunskill & Li, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Tessler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Analogous to our own value-based activation score, some hierarchical RL methods use predicted Q-values to select amongst their ensemble, as in (Dayan & Hinton, 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Dietterich, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Goyal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2019) demonstrates the utility of avoiding meta-policies, instead relying on primitives that independently determine their own relevance, similar to self-activation in our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, their primitives distinguish themselves by factorizing a state space, placing strong assumptions on the learnable policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Additionally, their primitives are not created over time, so the method relies on regularization to ensure primitives in their ensemble are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 3 BACKGROUND We review background on the continual RL setting we study in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Traditional neural networks suffer from catastrophic forgetting because weights in the network are changed by backpropagation every update (McCloskey & Cohen, 1989), causing information learned in a new scenario to overwrite prior behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Instead of learning and updating a single neural network for policy π across multiple tasks, we propose using an dynamic ensemble of self- activating modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our approach partitions, allocates, and manages parameters for separate modules, so that each module may handle different situations without interfering with others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' If a module is relevant to the current situation, it activates during inference and is updated during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' If a module is irrelevant, it is unused and remains unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' One way of viewing these modules is as latent behaviors, each specialized to a particular circumstance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For example, if in one context an agent must carefully wait to allow an enemy to pass, we don’t want this to disrupt a behavior where moving quickly to dodge an enemy is the best action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' How may we know when to use which module, when task boundaries are ambiguous and not given by human super- vision?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Each module in our ensemble predicts an activation score, which estimates the relevancy of a given module’s behavior to the current situation, and the module with the highest activation score is selected from the ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' An appropriate activation score will protect modules against catastrophic forgetting, and can also enable forward transfer, by activating modules with prior learned behaviors that are advantageous in new settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' How should such an ensemble be structured?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Pre-defining a static fixed-size ensemble is ineffective for module- based behavior specialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In such a static ensemble, one module will tend to perform well at a task, leading to that module being chosen as the starting point for future tasks which results in catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Regularizing with additional losses would be necessary to distribute activation across the ensemble’s experts, as in (Jacobs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Shazeer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Goyal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Instead, we design SANE as a dynamic ensemble, in which modules are created and merged together as necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Intuitively, modules are created when existing latent behaviors fail to perform as expected, and the ensemble determines that a new latent behavior is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Modules may also be merged to conserve resource consumption and meet a given compute budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 3 Published at 1st Conference on Lifelong Learning Agents, 2022 Bringing self-activating modules and a dynamic ensemble together, we present Self-Activating Neural Ensembles (SANE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' To summarize, our approach differs from traditionally-used ensembles in two ways: (i) We do not aggregate results across modules, in order to keep modules isolated from one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This circumvents catastrophic forgetting, by not backpropogating through the entire ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The ensemble itself is dynamic, in that modules are being created and merged throughout training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4 SELF-ACTIVATING NEURAL ENSEMBLES FOR CONTINUAL RL We now proceed to formally describe SANE in full detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE is a dynamic collection of modules {M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' , Mk} where, based on the context, one module Mt activates and is used for inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Subsequently, given transitions from collected episodes, only the selected module Mt is updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We describe an individual SANE module in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1, including how activation scores are computed to determine which module to use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We present the learning process to manage a dynamic ensemble in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Pseudocode is provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 SELF-ACTIVATING MODULE Every module Mi is an actor-critic algorithm represented by: a policy πi(a|s), a critic Vi(v, u|s), as well as a replay buffer Bi that holds experience transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We modify the critic Vi from the standard formulation in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Given a state s at timestep t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' the critic Vi predicts two scalars: vi(s),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' the value estimate of the return Rt received if module Mi is activated,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' and ui(s),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' an uncertainty estimate of the absolute error: ui(s) ≈ |Rt − vi(s)| (1) We proceed by defining an optimistic estimate vUCB i (upper confidence bound) and a pessimistic estimate vLCB i (lower confidence bound) for the return that the module M⟩ can achieve from state s: vUCB i (s) = vi(s) + αu ∗ ui(s) (2) vLCB i (s) = vi(s) − αl ∗ ui(s) (3) where αu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' αl > 0 are hyperparameters which represent how wide a margin around the expected value to allow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We use these margins to: (i) choose which module to activate during inference;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (ii) decide when to create a new module during Structure Update (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In all, each module Mi can be considered to be a tuple ⟨πi, Vi, Bi, V i, Ai⟩, where V i and Ai are two other versions of the critic Vi, which we proceed to describe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The target network V i is used for the confidence bounds estimates (Equation 2 and 3) instead of Vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Target networks are commonly used in Q-learning (Mnih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lillicrap et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Anschel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Fujimoto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018) to stabilize training by reducing variance from approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Similarly, we update V i with an exponential moving average (Ruppert, 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Polyak & Juditsky, 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Izmailov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We denote Vi’s parameters by θi, V i’s parameters by θ′ i, and the update rate by τV ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' we use the update: θ′ i ← τV θi + (1 − τV )θ′ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The anchor Ai is a frozen instance of the critic Vi from when the module Mi was created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We describe how we use the anchor Ai to measure drift in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Module update SANE can be applied to any actor-critic algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' we describe the specifics of our implementation in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Let LMi denote the loss function of the active SANE module and Lrl be the loss of the actor- critic RL algorithm, with components associated with module Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We perform a module update by optimizing LMi = Lrl + µLue, where Lue is MSE loss to estimate uncertainty from Equation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Inference (Self-Activation) SANE consists of several modules where each module represents the behavior for a particular situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Activating the right module for the right situation is key to the success of the SANE method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In an RL setting, the critic predicts a value estimate, which can serve as an effective proxy for how successful a module Mi may be in obtaining high return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' At the beginning of the episode, we compute vUCB i for each module in the ensemble {M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' , Mk} using the target network critic V i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Then, we greedily select the module whose critic predicts the highest such value, and use that module for the whole episode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 DYNAMIC ENSEMBLE We propose a process to dynamically update the structure of the ensemble in SANE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' If the current set of modules behave in an expected manner (returns are within the expected range) then the current set is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However 4 Published at 1st Conference on Lifelong Learning Agents, 2022 at some point in training, if the returns are outside the expected range, then we know the current set of modules is insufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We create new modules to handle the new situation, and merge modules together to stay within a given compute budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 MEASURING DRIFT The key to successfully updating the SANE structure lies in our ability to detect that we have moved outside this expected range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our main assumption here is that the change in rewards received is sufficient for distinguishing relevant changes in setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Therefore, we detect change in setting by measuring drift in rewards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Drift describes when an environment is non-stationary, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' when the reward distribution or the state transition distribution is changing over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Often where drift occurs, catastrophic forgetting follows because networks update to the new setting, forgetting the old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' To recognize drift with SANE, at the time of their creation modules have their critic cloned and frozen, creating a static critic called the anchor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We compare the prediction of a module’s critic to the prediction of its anchor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We say that sufficient change has occurred when the bounds of the expected return, as defined in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1, predicted by a module’s critic do not include the value predicted by its anchor, which serves as a static baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Let vAi denote the value estimate of the anchor Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Formally, we say that sufficient change has occurred when for a given state s, critic Vi, and anchor Ai, either of the following inequalities hold: vUCB i (s) < vAi(s) (4) vLCB i (s) > vAi(s) (5) In practice, we use the target network critic V i to predict vUCB i (s) and vLCB i (s), instead of Vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 CREATING A NEW MODULE When drift occurs such that the returns are better than anticipated, we expect that this corresponds to the case that the policy has simply improved in the current setting, as intended by standard module policy training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In this setup, we just update the anchor to improve expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, the case of negative drift, where the UCB falls below the estimate of the anchor, requires a different strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This situation occurs when the behavior (policy) starts under-performing expectation, which can occur when the task has been changed and the old policy is no longer as effective as it had been.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' What we do in this case is create a new module that is a clone of the one that was activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We empty the replay buffer and update the anchor at the time of creation of the new module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The goal is for the new module to be activated by the new setting while the old one continues to be activated by the old setting, splitting the input space to more effectively handle the two desired behaviors that are not well handled by a single policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 MERGING MODULES To prevent unlimited memory consumption, we limit the the total number of modules in our ensemble by merging modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' To execute a merge, we start by finding the two modules in the ensemble that are closest by the L2 distance between frames averaged from a sample of trajectories from the replay buffers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We then keep the more frequently used module and drop the less frequent module from the ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Before dropping, we combine the replay buffer of the two modules and run a module update (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1) on the combined module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Note that in combining the replay buffers of the two modules we use the reservoir sampling technique from CLEAR (Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We maintain a reservoir value for each trajectory, defined as a random value be- tween 0 and 1, that allows every trajectory to have an equal chance of being stored in the buffer, regardless of when it was collected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The trajectories from the module being dropped are added to the replay buffer of the module being kept using the reservoir values that were originally generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 IMPLEMENTATION DETAILS Leveraging CLEAR and IMPALA We have chosen to base our modules on IMPALA-based CLEAR as implemented by CORA (Powers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021), as it allows us to get several useful features for free: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Learning is done efficiently, in a highly parallel manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The expected return, used for training both the critic and the policy (for SANE as well as all baselines), is computed using vtrace, an effective credit assignment method, as described in (Espeholt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The CLEAR replay buffers are maintained using reservoir sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' CLEAR provides auxiliary losses that maintain consistency of both the policy and critic with the replay buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 5 Published at 1st Conference on Lifelong Learning Agents, 2022 Model architecture The base implementation uses the Nature CNN model from Mnih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We augment the baseline network with 2 hidden linear layers of dimension 32 with ReLU nonlinearities to increase its representational capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' All other hyperparameters for the experiments are provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our code is provided in additional materials, and will be open sourced upon publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Parallelism By collecting data from multiple environments in parallel, training is considerably faster, but it requires us to make one key assumption: the activated module must be guaranteed to be applicable to all actors being run at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This requires that all actors be running the same task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 5 EXPERIMENTS Task sequences We choose three procedurally-generated game environments (Climber, Miner, Fruitbot) from Proc- gen (Cobbe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We construct three task sequences using each of these game environments, by isolating sequences of levels that are likely to cause catastrophic forgetting and where approaches like CLEAR would perform poorly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We selected four levels for Climber and Miner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For Fruitbot, we added an easier fifth level at the start as a simple curriculum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We run each set of levels for three cycles, to see how learning evolves as the levels are seen again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The first frame of the selected levels are visualized in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' (a) Climber Levels (b) Miner Levels (c) Fruitbot Levels Figure 2: The first frame of each sequence of levels used in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Baselines We compare our approach to three baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We also perform an ablation showing the importance of the dynamic ensemble compared to a static set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The baselines we selected are: CLEAR We compare to CLEAR (Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019), a state-of-the-art continual RL method (Powers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In addition to comparing to CLEAR with the default number of parameters (the same as each module in the SANE ensemble), we also compare to a version of CLEAR with as many total parameters as we use in our SANE ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We refer to this as “CLEAR 8x”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Note that while SANE takes around 14 hours to run our Fruitbot sequence and standard CLEAR takes around 10 hours, these larger models take longer to run: CLEAR 8x took 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We would have liked to compare to a CLEAR 32x as well, but such an experiment was on track to take more than 2 weeks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This exemplifies another benefit of SANE: the effective usage of more parameters without such a dramatic increase in runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Elastic Weight Consolidation (EWC) We compare to EWC (Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017), which uses the diag- onal of the Fisher matrix to estimate the importance of parameters for past tasks, and slows updates to those parameters when learning new tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Progress & Compress (P&C) We additionally compare to P&C (Schwarz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018), which uses an online variant of EWC to consolidate learned behavior between dual networks, after each task is learned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Static SANE Ensemble To validate the utility of our dynamic SANE ensemble, we compare to a SANE ensemble that is static: all modules are initialized upfront, and no creation or merging occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE Oracle We also compare against an Oracle version of SANE, where each task has its own pre-specified module, which is looked up by task ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Experimental setup & metrics All hyperparameters for the methods used are given in the Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For fairness of comparison we hold constant the number of replay frames each method has access to in total, at 400k frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' All implementations for baselines are based on those provided by (Powers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We use Continual Evaluation to generate plots for each task in the task sequence, which show how well each task was learned and how well each task was remembered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Every method was run for 5 seeds, and the mean and standard error of the mean are shown in the graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gray shaded rectangles show when the agent trains on each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We also report the Forgetting metric introduced in (Powers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We reproduce the definition of their Forgetting metric here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ri,j,end expected return achieved on task i after training on task j (6) ri,all,max maximum expected return achieved on task i after training on all tasks (7) 6 Published at 1st Conference on Lifelong Learning Agents, 2022 SANE Static SANE CLEAR CLEAR 8x EWC 8x P&C 8x SANE Oracle Climber 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 Miner 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 Fruitbot 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 Table 1: Forgetting (F) summary statistics for all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' EWC and P&C exhibit little forgetting because they also exhibit little learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Of the methods that learned the tasks, we see SANE performs best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Forgetting compares the maximum final expected return achieved for a task i at any prior point to the expected return while training on task j, where j > i: Fi,j = 10 s � s �ri,j,end − ri,j−1,end |ri,all,max| � We compute the Forgetting statistic for only the first cycle for each seed and take the average across tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We report the average and standard error of the mean across seeds for the Forgetting summary statistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 RESULTS We present the Forgetting summary statistics (Powers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2021) for all methods in Table 1 and the Continual Eval- uation graphs, which present the average and standard error of the mean of the returns received from the environment versus steps taken in the environment, in each section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We also present the final average performance and standard error of the mean for all benchmarks in the Appendix, Tables 3-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Climber: First we demonstrate SANE on Climber, a side-view task where the agent must ascend a series of platforms while collecting coins and dodging bats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The selected levels are particularly challenging because avoiding the bats requires relatively precise timing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' a slight decay in policy performance results in significantly reduced reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We start by analyzing the Continual Evaluation results in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE and Static SANE both learn the tasks, but we can see that our dynamic model consistently learns and remembers, while Static SANE overall shows more inconsistent performance, doing particularly poorly on Envs 0 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Both versions of CLEAR learn the tasks but readily forget them, indicating that SANE is not improving by merely adding more parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' EWC has mixed results;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' it does worse than SANE uniformly on all cycles of Env 0 and the first cycle of the other Envs, but approximately ties it on the other cycles of Envs 2 and 3, and exceeds it on the other cycles of Env 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' P&C largely fails to learn the tasks at all, with some exception on Env 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' These results are further validated by looking at the Forgetting summary statistics presented in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' By this metric EWC does the best, likely aided by poorer learning during the first cycle of Envs 0 and 1 and the particularly good later performance on Env 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Of the four methods that learned all tasks immediately (SANE, Static SANE, CLEAR, and CLEAR 8x), SANE exhibits the least forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 3: Results for Continual Evaluation on the Climber sequence of tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We observe that SANE consistently learns and recalls the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gray shaded rectangles show when the agent trains on each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Miner: We additionally demonstrate SANE on Miner, a task where the agent must dig through dirt in two dimensions, collecting diamonds and going to a specified end-goal without getting crushed by rocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 7 Published at 1st Conference on Lifelong Learning Agents, 2022 Continual Evaluation results are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE overall outperforms the baselines on the first three envi- ronments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' we see CLEAR and EWC learning and forgetting, static SANE showing more recall than CLEAR but less than SANE, and largely little learning from P&C with the exception of Env 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, on Env 2 one of SANE’s seeds fails to learn the task, and on Env 3 all seeds did.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Perhaps CLEAR’s larger buffer effectively provides more exploration, as there is more randomness amongst the batches selected to be trained upon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Table 1 again demonstrates numerically these qualitative results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We see that of the methods that learned the tasks, SANE not only did the best, it also exhibited some backwards transfer (negative forgetting).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Miner: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Miner: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Miner: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Miner: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 4: Results for Continual Evaluation on the Miner task sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We again observe that SANE improves on the baselines at recall across the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gray shaded rectangles show when the agent trains on each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Fruitbot: The final Procgen sequence we use is based on Fruitbot, where the environment continuously scrolls and the agent must move left and right to collect fruit, avoid vegetables, and make it through gaps in the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual Evaluation results, shown in Figure 5, are less clear-cut than the previous two experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE clearly exceeds baselines on recall on Envs 1 and 3, but remains comparable to the CLEAR 8x baseline on Envs 2 and 4, and struggles on Env 0, only exceeding the baseline in the final cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Furthermore for the most part SANE receives a lower maximum score than the CLEAR baselines, with the exception of Env 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Table 1 shows that despite the mixed qualitative results, SANE again exceeds baselines quantitatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 6 ANALYSIS OF SANE We generate two additional figures to help us analyze our SANE ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The first is a module ID plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' On creation we assign every module a unique identifier: an integer that increases per module created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This ID is constant through the lifetime of the module, including when other modules get merged into it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We can plot what module is active by plotting its module ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This allows us to see when there are periods of rapid creation (steep regions of the graph), when older modules are re-used, and when modules are being stably activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The second plot is a lineage plot, showing a graph that represents the history of the ensemble, with each node in the graph representing a module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A blue line indicates that one module spawned another, and a red line indicates that a module was merged into another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Light blue nodes represent modules that are current available to be activated at the current time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' An example lineage plot2 is shown in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 SINGLE RUN: CLIMBER We start by analyzing a single (non-hand-picked) run of SANE in Climber, to demonstrate the dynamics of learning in a simple environment where behaviors are readily separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Figure 6, we aligned a graph of the ID of the currently active module with the reward received at that time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We can see the desired behavior in this case: several new modules are created (a sharp increase in module ID is observed) as performance successively fails to meet expectation, until a suitable module is created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Additionally, we can observe that before a task is trained upon, it is likely to use the best module for the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Env 3 uses Env 0’s active module (module 0) for the first 3M steps, then Env 1’s module (15) for most of the next 3M, then Env 2’s module (18) for the next 3M, until during its own training period drift is detected and a custom module is created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' It is also worth remarking on the decline in Env 3’s performance, which occurs particularly while the task is being trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' It occurs while a consistent module is being activated, so is not related to the ensembling behaviors of module 2An interactive lineage plot can also be viewed at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='com/AGI-Labs/continual_rl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 8 Published at 1st Conference on Lifelong Learning Agents,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2022 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Static SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 5: Results on the Fruitbot sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE performs particularly well on Envs 1 and 3, comparable to CLEAR 8x on Envs 2 and 4, and struggles some with Env 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gray shaded rectangles show when the agent trains on each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M 15M 20M 25M 30M 35M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 6: Module ID and expected return plots aligned by timestep,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' to show module activation during a single run of Climber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gray shaded rectangles show when the agent trains on each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' creation or merging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Observing the behavior indicates that the agent is jumping into a bat rather than avoiding it, so it would seem it is overfitting to the jumping behavior, possibly as a result of the decreased replay buffer size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 FRUITBOT ANALYSIS Fruitbot performed least well of our experiments, so we dive in further to understand the dynamics at play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Module Count Ablation: We first discuss the difference in expected return when we vary the number of modules for SANE, as visualized in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Overall, we observe that the fewer the modules, the higher the maximum scores received.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The one exception is Env 3, where 8 and 16 modules both receive comparable scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, in general the fewer the modules the more forgetting is observed as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This is particularly noticeable on Envs 0, 1, and 4, with more ambiguity on Envs 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' As we observed in the analysis of Climber, when a new task is switched to, we don’t create just a single module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rather, the critic steadily learns to adapt to the new task;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' each time it passes the vLCB threshold, a new module is created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Once the maximum number of modules has been reached, this triggers a merge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Since a merge combines the replay buffers of the two modules, when two “compatible” modules are merged, the resulting policy is more robust than that of the individual modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However when two modules representing conflicting behaviors are merged, we see a reduction in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Taken together, this means that as merging is occurring, more modules in the ensemble will generally be more stable over time, but might be slower to learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We discuss a concrete example of this in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 SINGLE RUN Here we analyze a single run of Fruitbot, which allows us to see in more detail the dynamics of SANE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We use an ensemble with 8 modules to simplify analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We focus on three important points, labeled A, B, and C in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In all three cases the module the Environment is using switches to an older module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' At A (21M timesteps), Env 1 switches from using Module 193 to Module 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' By analyzing the Lineage plot (not shown here due to its large size) we see that 193 merged into Module 150, which then merged into Module 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Thus the continued high performance on this task can be explained by a successful sequence of merges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' At B (27M timesteps), Env 2 switches from using Module 252 to Module 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In this case, Module 252, which is a direct descendent of Module 9, merged into Module 197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Module 197 is at this point still a module available in the ensemble,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' meaning Env 2 began to activate a high-performing previous module (Module 9) instead of the result of the 9 Published at 1st Conference on Lifelong Learning Agents,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2022 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (16) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (32) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (16) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (32) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (16) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (32) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (16) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (32) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (16) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (32) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 7: Comparison of SANE variations on the Fruitbot task sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The number in parentheses indicates the number of modules in the ensemble, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE (8) has 8 modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gray shaded rectangles show when the agent trains on each task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Module ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE (8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 8: The Module ID and Expected Return plots for a single run of Fruitbot,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' aligned by timestep to see how modules are getting used and created while Fruitbot is training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' merge, implying that the critic value of 252 decayed as a result of its merger into Module 197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, performance was rescued by return to a previous module and performance remains high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' At C (30M timesteps), Env 4 switches from using Module 261 to Module 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Module 10, as we saw in case A, is a module that is well-suited for Env 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In this case, Module 261 merged into Module 262, a descendent of Module 9, which as we saw in case B is well-suited for Env 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Essentially, our 8 module ensemble lacks the capacity to adequately represent all of the behaviors necessary for this sequence of tasks, and start combining policies destructively, resulting in forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This is mitigated by introducing more modules into our ensemble, as shown in Figure 7 7 CONCLUSION Inspired by the fact that catastrophic forgetting is caused by updating all neurons in a network for all tasks, we propose the creation of self-activating modules to break up a network into modular components that only get updated when they are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Our experimental results suggest that a dynamic ensemble, which creates modules as necessary and merges them to conserve resources, performs better than a static ensemble where all modules are created up- front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' By combining these two novel features, we present SANE (Self-Activating Neural Ensembles) for continual reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We demonstrate SANE on sequences of Procgen levels that prove particularly challenging for the current state-of-the-art (CLEAR), showing that our method reliably improves the mitigation of catastrophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Furthermore, we present a thorough analysis of SANE, showing how modules are created, used, and merged on individual runs of Climber and Fruitbot, to provide a more comprehensive view into the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Limitations and future directions In this paper, we present a straightforward and simple instantiation of SANE, which has some limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' First, using the initial observation of the episode to choose which module to activate limits the current method to tasks that are distinguishable immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Second, the complete separation of modules precludes transfer, wherein improvement on one task benefits performance on another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Future work to address these issues may include choosing the active module every n steps instead of once at the beginning of an episode, or making a hierarchical version of SANE where similar tasks activate similar paths through the tree while distinct tasks activate non-overlapping paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 10 Published at 1st Conference on Lifelong Learning Agents, 2022 ACKNOWLEDGEMENTS This work was supported by ONR MURI, ONR Young Investigator Program, and DARPA MCS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' REFERENCES Wickliffe C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Abraham and Anthony Robins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Memory retention–the synaptic stability versus plasticity dilemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Trends in neurosciences, 28(2):73–78, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Expert gate: Lifelong learning with a network of experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 3366–3375, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Memory aware synapses: Learning what (not) to forget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the European Conference on Computer Vision (ECCV), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 139–154, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lucas Page- Caccia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Online continual learning with maximal interfered retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 32, 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Task-free continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 11254–11263, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Oron Anschel, Nir Baram, and Nahum Shimkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Averaged-dqn: Variance reduction and stabilization for deep rein- forcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 176–185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Emma Brunskill and Lihong Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Pac-inspired option discovery in lifelong reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 316–324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Cristian Buciluˇa, Rich Caruana, and Alexandru Niculescu-Mizil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Model compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 535–541, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Online learned continual compression with adaptive quantization modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1240–1250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hugo Caselles-Dupr´e, Michael Garcia-Ortiz, and David Filliat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' S-trigger: Continual state representation learning via self-triggered generative replay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In 2021 International Joint Conference on Neural Networks (IJCNN), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' IEEE, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Riemannian walk for incremental learning: Understanding forgetting and intransigence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the European Conference on Computer Vision (ECCV), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 532–547, 2018a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Efficient lifelong learning with a-gem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Superposition of many models into one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Leveraging procedural generation to benchmark rein- forcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2048–2056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Adanet: Adaptive structural learning of artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 874–883.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Peter Dayan and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Feudal reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' volume 5, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Thomas G Dietterich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hierarchical reinforcement learning with the maxq value function decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Journal of artificial intelligence research, 13:227–303, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Timothy J Draelos, Nadine E Miner, Christopher C Lamb, Jonathan A Cox, Craig M Vineyard, Kristofor D Carlson, William M Severa, Conrad D James, and James B Aimone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Neurogenesis deep learning: Extending deep networks to accommodate new classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In 2017 International Joint Conference on Neural Networks (IJCNN), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 526–533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 11 Published at 1st Conference on Lifelong Learning Agents, 2022 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1407–1416.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Pathnet: Evolution channels gradient descent in super neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='08734, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Robert M French.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Pseudo-recurrent connectionist networks: An approach to the’sensitivity-stability’dilemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Con- nection science, 9(4):353–380, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Robert M French.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Catastrophic forgetting in connectionist networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Trends in cognitive sciences, 3(4):128–135, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Scott Fujimoto, Herke Hoof, and David Meger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Addressing function approximation error in actor-critic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1587–1596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Tommaso Furlanello, Jiaping Zhao, Andrew M Saxe, Laurent Itti, and Bosco S Tjan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Active long term memory networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02355, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Alexander Gepperth and Cem Karaoguz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A bio-inspired incremental learning architecture for applied perceptual problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Cognitive Computation, 8(5):924–934, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Reinforce- ment learning with competitive ensembles of information-constrained primitives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Stephen Grossberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' How does a brain build a cognitive code?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Studies of mind and brain, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Springer, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Multiple choice learning: Learning to produce multiple structured outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 25, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Xu He and Herbert Jaeger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Overcoming catastrophic interference using conceptor-aided backpropagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Interna- tional Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Distilling the knowledge in a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02531, 2(7), 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' David Isele and Akansel Cosgun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Selective experience replay for lifelong learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Averaging weights leads to wider optima and better generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 876–885.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Association For Uncertainty in Artificial Intelligence (AUAI), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Adaptive mixtures of local experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Neural computation, 3(1):79–87, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Herbert Jaeger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Using conceptors to manage neural long-term memories for temporal patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The Journal of Machine Learning Research, 18(1):387–429, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Nitin Kamra, Umang Gupta, and Yan Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Deep generative dual memory network for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10368, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Christos Kaplanis, Murray Shanahan, and Claudia Clopath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Policy consolidation for continual reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 3242–3251.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ronald Kemker and Christopher Kanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Fearnet: Brain-inspired model for incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Measuring catastrophic forgetting in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Same state, different task: Continual reinforcement learning without interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02940, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 12 Published at 1st Conference on Lifelong Learning Agents, 2022 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Overcoming catastrophic forgetting in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Simple and scalable predictive uncertainty esti- mation using deep ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Kimin Lee, Changho Hwang, KyoungSoo Park, and Jinwoo Shin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Confident multiple choice learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2014–2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2017a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Overcoming catastrophic forget- ting by incremental moment matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A neural dirichlet process mixture model for task-free continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ranjan, David Crandall, and Dhruv Batra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Stochastic multiple choice learning for training diverse deep ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 29, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Timoth´ee Lesort, Hugo Caselles-Dupr´e, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Generative models from the perspective of continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In 2019 International Joint Conference on Neural Networks (IJCNN), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Timoth´ee Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia D´ıaz-Rodr´ıguez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Informa- tion fusion, 58:52–68, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Stephan Lewandowsky and Shu-Chen Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Catastrophic interference in neural networks: Causes, solutions, and data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Interference and inhibition in cognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 329–361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Elsevier, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Zhizhong Li and Derek Hoiem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Learning without forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' IEEE transactions on pattern analysis and machine intelligence, 40(12):2935–2947, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continuous control with deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual reinforcement learning in 3d non-stationary environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 248–249, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' David Lopez-Paz and Marc’Aurelio Ranzato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gradient episodic memory for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Arun Mallya and Svetlana Lazebnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Packnet: Adding multiple tasks to a single network by iterative pruning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 7765–7773, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Arun Mallya, Dillon Davis, and Svetlana Lazebnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Piggyback: Adapting a single network to multiple tasks by learning to mask weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the European Conference on Computer Vision (ECCV), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 67–82, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Michael McCloskey and Neal J Cohen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Catastrophic interference in connectionist networks: The sequential learning problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Psychology of learning and motivation, volume 24, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 109–165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Elsevier, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Martial Mermillod, Aur´elia Bugaiska, and Patrick Bonin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The stability-plasticity dilemma: Investigating the contin- uum from catastrophic forgetting to age-limited learning effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Frontiers in psychology, 4:504, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Human-level control through deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' nature, 518(7540):529–533, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Martin Mundt, Yong Won Hong, Iuliia Pliushch, and Visvanathan Ramesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='01797, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 13 Published at 1st Conference on Lifelong Learning Agents, 2022 Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual learning via local module composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 34, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard Sch¨olkopf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Learning independent causal mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4036–4044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' German I Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Frontiers in neurorobotics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 78, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual lifelong learning with neural networks: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Neural Networks, 113:54–71, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Dongmin Park, Seokil Hong, Bohyung Han, and Kyoung Mu Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual learning by asymmetric loss approxi- mation with single-side overestimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 3335–3344, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Self-supervised exploration via disagreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 5062–5071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Boris T Polyak and Anatoli B Juditsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Acceleration of stochastic approximation by averaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SIAM journal on control and optimization, 30(4):838–855, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Cora: Benchmarks, baselines, and metrics as a platform for continual reinforcement learning agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10067, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Roger Ratcliff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Connectionist models of recognition memory: constraints imposed by learning and forgetting func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Psychological review, 97(2):285, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' icarl: Incremental classifier and representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2001–2010, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Learning to learn without forgetting by maximizing transfer and minimizing interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Mark B Ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Child: A first step towards continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Learning to learn, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 261–292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Springer, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hippolyt Ritter, Aleksandar Botev, and David Barber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Online structured laplace approximations for overcoming catas- trophic forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Anthony Robins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Catastrophic forgetting, rehearsal and pseudorehearsal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Connection Science, 7(2):123–146, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Experience replay for con- tinual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' David Ruppert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Efficient estimations from a slowly convergent robbins-monro process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Technical report, Cornell University Operations Research and Industrial Engineering, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Raz- van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Policy distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06295, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Progressive neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='04671, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Progress & compress: A scalable framework for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4528–4537, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Younggyo Seo, Kimin Lee, Ignasi Clavera Gilaberte, Thanard Kurutach, Jinwoo Shin, and Pieter Abbeel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Trajectory- wise multiple choice learning for dynamics generalization in reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Informa- tion Processing Systems, 33:12968–12979, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 14 Published at 1st Conference on Lifelong Learning Agents, 2022 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Overcoming catastrophic forgetting with hard attention to the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 4548–4557.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Out- rageously large neural networks: The sparsely-gated mixture-of-experts layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual learning with deep generative replay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Andrea Soltoggio, Kenneth O Stanley, and Sebastian Risi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Born to learn: the inspiration, progress, and future of evolved plastic artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Neural Networks, 108:48–67, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rupesh K Srivastava, Klaus Greff, and J¨urgen Schmidhuber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Training very deep networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 28, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Richard S Sutton, Doina Precup, and Satinder Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Artificial intelligence, 112(1-2):181–211, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Distral: Robust multitask reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Alexander V Terekhov, Guglielmo Montone, and J Kevin O’Regan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Knowledge transfer in deep block-modular neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Conference on Biomimetic and Biohybrid Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 268–279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A deep hierarchical approach to lifelong learning in minecraft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Sebastian Thrun and Tom M Mitchell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lifelong robot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Robotics and autonomous systems, 15(1-2):25–46, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ren´e Traor´e, Hugo Caselles-Dupr´e, Timoth´ee Lesort, Te Sun, Natalia D´ıaz-Rodr´ıguez, and David Filliat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual reinforcement learning deployed in real-life using policy distillation and sim2real transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In ICML Workshop on “Multi-Task and Lifelong Reinforcement Learning”, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gido M Van de Ven and Andreas S Tolias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Generative replay with feedback connections as a general strategy for continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10635, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hado Van Hasselt, Arthur Guez, and David Silver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Deep reinforcement learning with double q-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka Grabska- Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Gated linear networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 10015–10023, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Yeming Wen, Dustin Tran, and Jimmy Ba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Batchensemble: an alternative approach to efficient ensemble and lifelong learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Memory replay gans: Learning to generate new categories without forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ye Xiang, Ying Fu, Pan Ji, and Hua Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Incremental learning using conditional adversarial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceed- ings of the IEEE/CVF International Conference on Computer Vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 6619–6628, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Error-driven incremental learning in deep convolutional neural network for large-scale image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Proceedings of the 22nd ACM international conference on Multimedia, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 177–186, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Ju Xu and Zhanxing Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Reinforced continual learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Lifelong learning with dynamically expandable networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 15 Published at 1st Conference on Lifelong Learning Agents, 2022 Friedemann Zenke, Ben Poole, and Surya Ganguli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Continual learning through synaptic intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 3987–3995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Task agnostic continual learning using online variational bayes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10123, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Jesse Zhang, Haonan Yu, and Wei Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hierarchical reinforcement learning by discovering intrinsic options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' arXiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06521, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Guanyu Zhou, Kihyuk Sohn, and Honglak Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Online incremental feature learning with denoising autoencoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In Artificial intelligence and statistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1453–1461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' PMLR, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 16 Published at 1st Conference on Lifelong Learning Agents, 2022 A APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 HYPERPARAMETERS Here we give the hyperparameters for our methods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' see the provided code for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For convenience, we put all parameters that vary between methods above the line, and those that are consistent below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Hyperparameter Shared Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' actors 16 Learner threads 1 Unroll length 32 Grad clip 40 Reward clip [−1, 1] Normalize rewards No Entropy cost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='01 Discount factor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='99 LSTM No Network arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Nature CNN Learning rate 4e−4 Optimizer RMSProp α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='99 ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='01 µ = 0 (Climber & Miner) (Fruitbot) Hyperparameter SANE SANE CLEAR P&C EWC Batch size 2 2 2 18 2 Baseline cost 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 EWC λ 30 300 EWC, min task steps 2e5 Fisher samples 100 100 Normalize Fisher Yes No Online EWC γ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='99 KL cost 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 Policy cloning cost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 Value cloning cost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='005 Replay ratio 8 8 8 Replay buffer size 50k 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5k 400k (per module) (per module) Max num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' modules 8 32 αu,inf 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 αu,create 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 αl,create 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 Critic cadence T 1000 10000 Critic target update rate τV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='9 Uncertainty cost µ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 Table 2: Hyperparameters for all methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The network architecture is the “Nature CNN” model (Mnih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Note that there are two different α parameters for SANE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' One describes the parameter used for inference (αu,inf) and the other describes the parameters used during module creation (αx,create).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Batch size Since two of the methods augment the batch with more data (SANE and CLEAR), there is the question of how to size the batches of the other baselines (EWC, P&C) fairly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' There are two ways to view it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The first is to equalize the total amount of data the optimizer sees per gradient step (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' since the augmented size is 18, collect a batch size of 18 for EWC and P&C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The second is to equalize the amount of new data the optimizer sees (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2 new trajectories are collected so use a batch size of 2 for EWC and P&C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We compare the differences in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We can see that a smaller batch (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' training more often) results in learning the tasks more quickly, but the impact on recall is more ambiguous: on Env 0 the smaller batch size recalls less well, but it’s comparable on all other environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 17 Published at 1st Conference on Lifelong Learning Agents, 2022 Worth noting also is that the smaller batch size takes considerably longer to train.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Given these facts we have chosen to use the larger batch size for our EWC and P&C baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 9: Comparison of running EWC with a batch size of 2 versus the default (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Increasing network size The base architecture used for all methods is the Nature CNN model (Mnih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015) with ∼6e5 parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' To make the 8x version, we multiplied the number of filters at every convolutional layer by 6 (for a total of ∼5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7e6 parameters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We opted for making the network wider instead of deeper because: (i) conceptually this is more similar to the structure of the SANE ensemble (ii) it does not introduce the possibility of decreased performance due to gradient vanishing or exploding (Srivastava et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 ARCHITECTURE OVERVIEW Here we describe how SANE utilizes the highly parallel IMPALA method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Every SANE module is one instance of an IMPALA agent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' all modules operate independently, with no shared parameters or data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Each IMPALA agent is composed of a set of actors that are constantly collecting data and populating a shared buffer with the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' When a separate learner thread detects that the minimum batch size of trajectories has been collected, it computes the losses and runs a gradient step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Not needing to pause the actors to update the model provides significant runtime improvements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' SANE augments this basic structure in one primary way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' In order to switch modules, the currently running module is paused (all actors stop collecting data, and all learner threads stop updating the model) every syield seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' At this point an activation score is computed for every module and the highest-scoring module is activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Activation means that all actors are restarted, and model updating resumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This alternating of module activation and data collection continues until all tasks are complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 HYPERPARAMETER TUNING First, we present the λ tuning graph for EWC in Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We ran using λ values in the range [1, 1e5] with a batch size of 18 (B=18) on the Climber task sequence with 3 seeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We also ran two experiments with (B=2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We can see that while the lower λ values (1 and 10) learn the tasks better, they are also more inclined to forget, as can be seen particularly on Envs 0 and the first cycle of Env 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Based on these results we chose λ = 300 and a batch size of 2 for the experiments presented in the paper as the best balance of learning and remembering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 300 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 100 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 300 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 100 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 300 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 100 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 300 (B=2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 100 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 1k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='EWC 10k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 10: Comparison of EWC λ variations on the Climber task sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The number represents λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Second, we present the λ tuning graph for P&C in Figure 11, representing values in the range [3, 3e3], over 3 seeds for a batch size of 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We thus chose λ = 30 for our experiments 18 Published at 1st Conference on Lifelong Learning Agents,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 2022 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 300 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 300 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 300 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 30 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 300 (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='P&C 3k (B=18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 11: Comparison of P&C λ variations on the Climber task sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The number represents λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 PARAMETER ABLATION ON FRUITBOT As shown in Table 2 we use different parameters for Climber/Miner vs Fruitbot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For simplicity we refer to the former set of parameters as SANE v1 and the latter as SANE v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Conceptually, the difference between SANE v1 and SANE v2 is that the former trains the critic more aggressively (higher coefficients and fewer frames between target network updates), but also has a much more conservative vLCB, meaning more drift must be observed before a node is created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We observe that the former performed well on Climber and Miner, but on Fruitbot we obtained higher performance using the smoother critic training of SANE v2, as shown in Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, it is worth noting that the ensemble learns and remembers in both cases, even when the parameters vary widely (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' αl,create differs by a factor of 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' However, optimal parameter selection remains an area of future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE v2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Fruitbot: Env 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 12: Comparison of SANE variations on the Fruitbot task sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 LINEAGE PLOT, FRUITBOT 0 500k 1M 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M 2M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5M 3M 0 5 10 15 20 SANE (8) Fruitbot: Env 0 Step Module ID Figure 13: An example Lineage plot, showing how nodes are created and merged while training on Env 0 of Fruitbot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' While we are not able to provide the full Lineage plots used in the analysis above (a graph with hundreds of nodes displays poorly in pdf form), we show an example of what one looks like for the first task of Fruitbot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Node 0 is used initially, but soon spawns a cascading sequence of Nodes that settles for some time on Node 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' There is some churn as nodes are created but merged back into 9, until another burst of creation settles finally on Node 18, though we see in Figure 8 that this does not last either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 19 X 13 11 14 15 10 16 17 18Published at 1st Conference on Lifelong Learning Agents, 2022 If the policies and critics improved monotonically, we would not see such a chaotic plot, but instead one more like what we see for Climber, in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Essentially, since creation only happens when we detect that a node is worse than its anchor, this pattern of creation represents much noisier learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ALGORITHM PSEUDOCODE FOR SANE Algorithm 1 SANE Require: timestep t, total task timesteps T, state at episode start s0, max allowed module count N, modules M = {M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' , Mk} where Mi contains actor πi, critic Vi, static anchor critic ai, and replay buffer Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 1: while t < T do 2: Mmax = arg maxi(vUCB,i(s0)) ▷ select active module 3: Collect tnew timesteps of data using Mmax 4: t := t + tnew 5: 6: if vUCB,Mmax(s) < va(s) then ▷ negative drift detected, so add module 7: 8: Mnew := clone(Mmax) 9: anew := clone(Vmax) 10: M := {M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', Mk, Mnew} 11: else 12: if vLCB,m(s) > va(s) then ▷ positive drift detected, so update module 13: amax := clone(Vmax) 14: end if 15: end if 16: if |M| > N then ▷ merge modules 17: gi := avg(batch(Ri)[′observation′]) ▷ compute an avg observation for each module 18: Mi, Mj = arg mini,j ||gi, gj||2 19: Mkeep, Mremove = which of Mi or Mj has been used more and fewer times, respectively 20: Rkeep = {Ri, Rj} 21: M = M − Mremove 22: 23: end if 24: end while A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 FINAL AVERAGE PERFORMANCE TABLES Task SANE Static SANE CLEAR 8x CLEAR EWC 8x PnC 8x SANE Oracle Env 0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='72 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='54 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='85 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='26 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='08 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='52 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 Env 1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='43 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='04 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='80 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='49 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='34 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='32 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='96 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='21 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='37 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='22 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='22 Env 2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='82 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='92 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='95 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='77 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='57 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='43 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='33 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='91 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='70 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='95 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='66 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='08 Env 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='99 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='28 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='22 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='34 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='26 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='34 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='71 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='59 Table 3: Climber final average performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The Oracle is not considered for the purposes of highlighting the average performance, as it is an idealized model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Task SANE Static SANE CLEAR 8x CLEAR EWC 8x PnC 8x SANE Oracle Env 0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='35 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='61 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='89 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='71 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='26 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='03 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='55 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='01 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='41 Env 1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='43 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='03 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='07 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='71 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='90 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='58 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='68 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='66 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='56 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 Env 2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='64 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='09 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='46 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='93 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='42 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='90 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='39 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='65 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='62 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='11 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='54 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='49 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='22 Env 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='97 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='31 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='74 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='87 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='96 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='93 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='26 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 Table 4: Miner final average performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The Oracle is not considered for the purposes of highlighting the average performance, as it is an idealized model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 20 Published at 1st Conference on Lifelong Learning Agents, 2022 Task SANE Static SANE CLEAR 8x CLEAR EWC 8x PnC 8x SANE Oracle Env 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='18 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='46 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='70 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='37 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='77 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='36 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='24 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='77 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='09 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='84 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='68 Env 1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='71 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='43 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='45 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='85 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='26 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='44 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='91 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='56 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='78 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='85 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='47 Env 2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='21 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='34 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='01 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='50 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='52 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='87 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='26 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='87 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='73 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='89 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='68 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='39 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='71 Env 3 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='38 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='84 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='80 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='43 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='52 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='66 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='73 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='36 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='74 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='51 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='65 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='88 Env 4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='36 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='72 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='48 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='95 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='86 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='47 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='84 ± 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='06 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='94 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='37 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='37 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='66 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='75 Table 5: Fruitbot final average performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The Oracle is not considered for the purposes of highlighting the average performance, as it is an idealized model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 2 MODULE EXPERIMENTS Here we present training SANE using only 2 modules (each with 2e5 replay buffer entries) on Climber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The intent of this experiment is to look at how having fewer modules than tasks impacts performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We can see that while peak performance is generally higher, recall is poor overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Perhaps unsurprisingly, the curve resembles that of CLEAR: reaching similar maximum values, and observing the same forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE 2 Modules ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE 2 Modules ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE 2 Modules ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='20M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='30M ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE 2 Modules ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='SANE Oracle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='CLEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Climber: Env 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Step ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Expected Return ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='Figure 14: Comparison for using SANE with 2 modules to other SANE variants and CLEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='7 EXTENDED BACKGROUND In the standard, single-task reinforcement learning scenario, we consider the task T as a discrete-time Markov Decision Process (MDP) consisting of a tuple ⟨S, A, T, r, γ, ρ0, ⟩, with state space S, action space A, state transition probability function T, reward function r, discount factor γ, and probability distribution ρ0 on the initial states S0 ⊂ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' The goal is to learn a policy π(a|s) which maximizes the expected return, where the return Rt of a state s at timestep t is the discounted sum of rewards over an infinite-horizon trajectory from state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' For continual RL (Kirkpatrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Schwarz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Rolnick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=', 2019), we extend this setting by considering a sequence of N tasks, SN := (T1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' TN), presented to the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This induces a non-stationary learning process as any component of the MDP may change on task switch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A capable continual RL agent should continue to learn new skills (maintain plasticity), recall prior learned behavior (mitigate catastrophic forgetting), and transfer old abilities to new domains (demonstrate forward transfer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We assume the agent trains on task Ti at timesteps in the interval [Ai, Bi), for ki = Bi − Ai timesteps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Here Ai and Bi are the task boundaries denoting the start and end, respectively, of task Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Additionally, we may cycle through the tasks M times, which yields full task sequence SNM that has length N · M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='8 ANALYSIS OF ESTIMATED RETURNS In Figure 15 we present SANE’s estimated vtrace return in comparison to the observed vtrace return for the training periods for each task for a single run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' There is a bit of overestimation in Env 0, more significant overestimation in Env 1, but almost none in Envs 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Env 1 is also where we see the most uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Note that the first time a transition to a new task occurs, the estimated return is near zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' We believe these estimates to be close enough that using our estimated vtrace returns is preferred over using a history of recent returns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' An example of when this is the case is if every episode is different;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' then any window size to average over poses problems: the best module will not be activated and creation will not occur properly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Furthermore, we hope 21 Published at 1st Conference on Lifelong Learning Agents, 2022 to extend SANE such that activation occurs many times during an episode as well, so modules can capture even more fine-grained behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' This fine-grained behavior becomes impossible if we are reliant on final returns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Figure 15: Comparison of the true and predicted vtrace returns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' Figure 16: Graph of the uncertainty of SANE’s prediction of our vtrace returns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content=' 22 Climber: Env 0 Climber: Eny 1 Climber: Env 2 Climber: Env 3 2 5 2 2 True Return Expected Return Expected Return Return 4 Predicted Return 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 3 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 1 00 00 % % 10M 20M 30M 10M 20M 30M 10M 20M 30M 10M 20M 30M Step Step Step StepClimber: Env 0 Climber: Env 1 Climber: Env 2 Climber: Env 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='3 Uncertainty Expected Return Expected Return Return I Return 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='2 Expected xpected 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
+page_content='05 00 % % 00 10M 20M 30M 10M 20M 30M 10M 20M 30M 10M 20M 30M Step Step Step Step' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNAyT4oBgHgl3EQfVPeU/content/2301.00141v1.pdf'}
diff --git a/StE3T4oBgHgl3EQfDwk0/content/2301.04289v1.pdf b/StE3T4oBgHgl3EQfDwk0/content/2301.04289v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..b6e6b2625764fa6d3873b5389d4ebdbd8c31d1f5
--- /dev/null
+++ b/StE3T4oBgHgl3EQfDwk0/content/2301.04289v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2e186915c010c7e9fe76d729ddc2f0a16fc9c778d4931490819e86411f771998
+size 911836
diff --git a/StE3T4oBgHgl3EQfDwk0/vector_store/index.faiss b/StE3T4oBgHgl3EQfDwk0/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..217e14aa8979994ca67d2522fa06fe82a3b52514
--- /dev/null
+++ b/StE3T4oBgHgl3EQfDwk0/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5669d3be808278020740ea980ccd52781834db3e175a5f843df41ff7b2d4e583
+size 2293805
diff --git a/StE3T4oBgHgl3EQfDwk0/vector_store/index.pkl b/StE3T4oBgHgl3EQfDwk0/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..b4cc30201f6a729da0e2e6746e5a9d39e3ad0d99
--- /dev/null
+++ b/StE3T4oBgHgl3EQfDwk0/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b3bcd6668e659edd04ce8aa795cf6f5cd0b391772519991cd669f7499b01e91b
+size 86056
diff --git a/TtAyT4oBgHgl3EQfVvcM/content/2301.00147v1.pdf b/TtAyT4oBgHgl3EQfVvcM/content/2301.00147v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..a272d753ed4132c473c3a832daf5550b13e57f67
--- /dev/null
+++ b/TtAyT4oBgHgl3EQfVvcM/content/2301.00147v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:21ce2c87743adcb0732f76d738f86ec663848dba9ab0437c1970893ebbda3285
+size 8310407
diff --git a/UNE0T4oBgHgl3EQflQHp/content/2301.02485v1.pdf b/UNE0T4oBgHgl3EQflQHp/content/2301.02485v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..fb22b59cb4bd82f4b4c8af7224522e017e1d373b
--- /dev/null
+++ b/UNE0T4oBgHgl3EQflQHp/content/2301.02485v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:415e373accd9caffff070a3d89fcbe6c4ad8d31dd3d18d6e244f9d20bc627520
+size 2743117
diff --git a/UNE0T4oBgHgl3EQflQHp/vector_store/index.faiss b/UNE0T4oBgHgl3EQflQHp/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..35fbdf881631dfd3294631aae3bc8bca7c8cf341
--- /dev/null
+++ b/UNE0T4oBgHgl3EQflQHp/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:14c443c4d955b5d69e27c2f9c7952ab932461368e9a49d03c279a09988340dfe
+size 9306157
diff --git a/UNE0T4oBgHgl3EQflQHp/vector_store/index.pkl b/UNE0T4oBgHgl3EQflQHp/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..c082cd166a8d967e7838c90f6689094c99e4ad5f
--- /dev/null
+++ b/UNE0T4oBgHgl3EQflQHp/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4546fc97ddb4b9e062cd56ec58354c1920df0e6532a6c249d02c582f8b1c8d13
+size 303662
diff --git a/UdFJT4oBgHgl3EQfNSxs/vector_store/index.faiss b/UdFJT4oBgHgl3EQfNSxs/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..aec3aaf4e9f72ad7e1eb90d6f816d3c5f04fcd0e
--- /dev/null
+++ b/UdFJT4oBgHgl3EQfNSxs/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5248ee8df6bbe03bbb44e4eb64a7a91c9d2912361dd638f8863a2cae060dc96c
+size 1245229
diff --git a/VNE4T4oBgHgl3EQfnQ0i/vector_store/index.faiss b/VNE4T4oBgHgl3EQfnQ0i/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..481ecbd4d59bc4fb00559aeaa629aa1c33aaf9d4
--- /dev/null
+++ b/VNE4T4oBgHgl3EQfnQ0i/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:771a279afc93af069ab895ba44ca8560fd604c87030967de0788f52a6e8fe29d
+size 2490413
diff --git a/VdE2T4oBgHgl3EQftwjJ/vector_store/index.faiss b/VdE2T4oBgHgl3EQftwjJ/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..cc8702d8a6d62f505b3d6b87075aba27e3651a71
--- /dev/null
+++ b/VdE2T4oBgHgl3EQftwjJ/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1a748acf89d919236eec83970b64c735ff54de5535da42a8e9faeb27223c2f41
+size 4325421
diff --git a/VdE2T4oBgHgl3EQftwjJ/vector_store/index.pkl b/VdE2T4oBgHgl3EQftwjJ/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..6c9b873c6e638bdc602cc2b53224f3dcfa1950df
--- /dev/null
+++ b/VdE2T4oBgHgl3EQftwjJ/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8711657215f100871f1aef553f1a6ba72cc18e455a4e5b413d847b5e5eb422d2
+size 157566
diff --git a/WtFJT4oBgHgl3EQfPSye/content/2301.11486v1.pdf b/WtFJT4oBgHgl3EQfPSye/content/2301.11486v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..ee695b7065afd060e35b9eb9c634df9657f857a1
--- /dev/null
+++ b/WtFJT4oBgHgl3EQfPSye/content/2301.11486v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:958c420ca0b9a3c2413a87289da772d407dd97db7d2209090b58700b36cec5a8
+size 1908263
diff --git a/WtFJT4oBgHgl3EQfPSye/vector_store/index.faiss b/WtFJT4oBgHgl3EQfPSye/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..408c8219a8da9b77db94450c52df4684cbaf8e01
--- /dev/null
+++ b/WtFJT4oBgHgl3EQfPSye/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:59609bff202b5dca21073d8d627fdeda6aadc5dcbd90fbf5b70dd24349991983
+size 7405613
diff --git a/ZdFAT4oBgHgl3EQf4B4e/content/tmp_files/2301.08723v1.pdf.txt b/ZdFAT4oBgHgl3EQf4B4e/content/tmp_files/2301.08723v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5ca0ef3e602af2a5a42eaace318828c3e33dd339
--- /dev/null
+++ b/ZdFAT4oBgHgl3EQf4B4e/content/tmp_files/2301.08723v1.pdf.txt
@@ -0,0 +1,3204 @@
+arXiv:2301.08723v1 [math.FA] 20 Jan 2023
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY
+SPACES AND THEIR DUAL SPACES
+ODYSSEAS BAKAS, ZHENDONG XU, YUJIA ZHAI, AND HAO ZHANG
+Abstract. In this paper, we establish continuous bilinear decompositions that arise in the
+study of products between elements in martingale Hardy spaces Hp p0 ă p ⩽ 1q and func-
+tions in their dual spaces. Our decompositions are based on martingale paraproducts. As a
+consequence of our work, we also obtain analogous results for dyadic martingales on spaces of
+homogeneous type equipped with a doubling measure.
+1. Introduction
+The pointwise product of a function in the classical Hardy space H1pRnq and a function of
+bounded mean oscillation on Rn need not be in L1pRnq; see e.g. §6.2 in Chapter IV in [24].
+However, using Fefferman’s duality theorem [10] and the fact that the pointwise product of a
+BMO-function and a C8
+0 -function is in BMOpRnq, Bonami, Iwaniec, Jones and Zinsmeister
+defined in [5] the product f ˆ g of a function f P H1pRnq and a function g P BMOpRnq as a
+distribution given by
+(1.1)
+xf ˆ g, φy :“ xg ¨ φ, fy,
+φ P C8
+0 pRnq,
+where in the right-hand side of (1.1) the duality between f P H1pRnq and g ¨ φ P BMOpRnq
+is employed. Moreover, it is shown in [5] that for any fixed f P H1pRnq there exist two linear
+continuous operators Sf from BMOpRnq to L1pRnq and Tf from BMOpRnq to a weighted
+Hardy–Orlicz space such that
+f ˆ g “ Sfpgq ` Tfpgq
+for all g P BMOpRnq; see [5, Theorem 1.6].
+In [4], using wavelet analysis, Bonami, Grellier and Ky showed that there exist two bilinear
+continuous operators S from H1pRnq ˆ BMOpRnq to L1pRnq and T from H1pRnq ˆ BMOpRnq
+to HlogpRnq such that
+f ˆ g “ Spf, gq ` T pf, gq
+for all f P H1pRnq and for all g P BMOpRnq; see [4, Theorem 1.1]. The Musielak Hardy–Orlicz
+space HlogpRnq is defined as the class consisting of all distributions h on Rn whose grand maximal
+function Mh satisfies
+ˆ
+Rn
+|Mhpxq|
+logpe ` |x|q ` logpe ` |Mhpxq|qdx ă 8
+and is smaller than the weighted Hardy–Orlicz space appearing in [5]. In fact, as explained in
+[5], in view of the results of Nakai and Yabuta [22] on pointwise multipliers of BMOpRnq and
+duality, the Musielak Hardy–Orlicz space HlogpRnq is optimal.
+2020 Mathematics Subject Classification. Primary: 47A07, 60G42, 60G46. Secondary: 42B30, 46E30, 46F10.
+Key words: Paraproducts; Martingales; Hardy–Orlicz spaces; Musielak–Orlicz spaces; Doubling spaces.
+O. Bakas is partially supported by the projects CEX2021-001142-S, RYC2018-025477-I, PID2021-122156NB-
+I00/AEI/10.13039/501100011033 funded by Agencia Estatal de Investigaci´on and acronym “HAMIP”, Juan de
+la Cierva Incorporaci´on IJC2020-043082-I and grant BERC 2022-2025 of the Basque Government.
+Y. Zhai acknowledges partial support from ERC project FAnFArE no. 637510 and the region Pays de la Loire.
+1
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+2
+In addition, continuous bilinear decomposition theorems for products of elements in HppRnq,
+for 0 ă p ă 1, and their dual spaces were established in [3].
+Using the theory of wavelets on spaces of homogeneous type, which was developed by Auscher
+and Hyt¨onen in [1], the aforementioned results have been extended to spaces of homogeneous
+type by Liu, Yang and Yuan [15] and Xing, Yang and Liang [29]. More precisely, in [15] and
+[29], continuous bilinear decompositions for products between elements in atomic Hardy spaces
+Hp
+atpΩq (in the sense of Coifman and Weiss [7]) and their dual spaces were established in the case
+where p P p
+n
+n`1, 1s. Here n is defined as the dimension of the homogeneous space Ω.
+Recently, in [2], a dyadic variant of the aforementioned results of Bonami, Grellier, and Ky
+was established; see [2, Theorem 24], which in turn was used to deduce a periodic version of [4,
+Theorem 1.1]; see [2, Theorem 28].
+Motivated by [2], the first part of this article is concerned with the study of multiplication
+between Hardy spaces and their dual spaces for martingales on a probability space Ω. More
+specifically, we study multiplications between functions in the martingale Hardy space H1pΩq
+and its dual space BMOpΩq as stated in our first result, Theorem 1.1. We also investigate the
+case 0 ă p ă 1, namely multiplication between elements in HppΩq and their dual spaces, the
+so-called martingale Lipschitz spaces Λ1pαpq with αp :“
+1
+p ´ 1, see Theorem 1.2.
+Since the
+dual space pHppΩqq˚ could be t0u for some irregular martingales, we shall only consider regular
+martingales where every σ´algebra Fk in the corresponding filtration is generated by countably
+many atoms.
+We would like to mention that Yong Jiao, Guangheng Xie, Dachun Yang, and Dejian Zhou
+have independently obtained Theorem 1.1, and derived from it interesting applications on the
+boundedness of operators involving commutators in [14].
+Theorem 1.1. Let pΩ, F, Pq be a probability space equipped with the filtration tFkukě1.
+There exist continuous bilinear operators Π1 : H1pΩq ˆ BMOpΩq Ñ L1pΩq, Π2 : H1pΩq ˆ
+BMOpΩq Ñ H1pΩq and Π3 : H1pΩq ˆ BMOpΩq Ñ HΦpΩq such that
+f ¨ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq
+for all f P H1pΩq and g P BMOpΩq, where f ¨ g is in the sense of the pointwise multiplication.
+In Theorem 1.1, HΦpΩq is a martingale Hardy–Orlicz space defined in terms of the growth
+function Φptq; see Definition 2.15 and (2.3) below. We shall refer to the terms Π2pf, gq and
+Π3pf, gq as the martingale paraproducts.
+Theorem 1.1 can be regarded as an extension of [2, Theorem 24] to the general case of mar-
+tingales.
+For 0 ă p ă 1, if f P HppΩq, g P Λ1pαpq and f0 “ g0 “ 0, then their product can be
+regarded as a continuous linear functional on L8pΩq X Λ1pαpq. To be more precise, for any
+h P L8pΩq X Λ1pαpq, define
+xf ˆ g, hy :“ xh ¨ g, fy,
+where in the right-hand side the duality between HppΩq and Λ1pαpq is invoked. Note that h ¨ g
+belongs to Λ1pαpq since h is a pointwise multiplier on Λ1pαpq (see [21]).
+Our following theorem establishes a continuous bilinear decomposition for products between
+elements in HppΩq and functions in the dual space Λ1pαpq when 0 ă p ă 1.
+Theorem 1.2. Let pΩ, F, Pq be a probability space equipped with the filtration tFkukě1, where
+Fk is generated by countably many atoms for any k ě 1.
+If HppΩq p0 ă p ă 1q are martingale Hardy spaces, then there exist continuous bilinear
+operators Π1 : HppΩq ˆ Λ1pαpq Ñ L1pΩq, Π2 : HppΩq ˆ Λ1pαpq Ñ H1pΩq and Π3 : HppΩq ˆ
+Λ1pαpq Ñ HppΩq such that
+f ˆ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+3
+for all f P HppΩq and g P Λ1pαpq.
+In the second part of this paper, we study analogues of Theorems 1.1 and 1.2 for the case of
+dyadic martingales on spaces of homogeneous type. Such martingales were first constructed in
+[13]. We investigate the corresponding martingale Hardy spaces and extend Mei’s results in [17]
+to this general setting. Compared with the probability setting, the case of spaces of homogeneous
+type is more difficult to deal with since backward martingales arise, and the underlying measures
+on homogeneous spaces may be infinite.
+The present paper is organized as follows. In section 2, we set down notation and give some
+background on martingale Hardy–Orlicz spaces. In section 3, we prove Theorem 1.1. In section
+4, we present a characterization of martingale Lipschitz spaces Λ1pαpq, which is of independent
+interest (see Theorem 4.4 and Remark 4.5 below), and then we show Theorem 1.2. The remaining
+sections are concerned with spaces of homogeneous type. For the convenience of the reader, in
+section 5, we recall some definitions and facts regarding Hardy spaces and Lipschitz spaces on
+spaces of homogeneous type in the sense of Coifman and Weiss [7]. In section 6, we give some
+new proofs of results in [7] based on martingale methods and the existence of dyadic martingales
+on homogeneous spaces. In section 7, we establish analogues of Theorems 1.1 and 1.2 for dyadic
+martingales on spaces of homogeneous type; see Theorem 7.7 below. In the last section, we apply
+Theorem 7.7 to obtain a decomposition of products of functions in Hardy spaces and their dual
+spaces on spaces of homogeneous type.
+2. Notation and Background
+In this section, we provide some notation and background that will be used in this paper.
+2.1. Notation. In several parts of this paper, we consider sums and intersections of quasi-
+normed vector spaces. For the convenience of the reader we recall these notions below.
+Definition 2.1. Let pX1, } ¨ }X1q, pX2, } ¨ }X2q be two quasi-normed vector spaces and let X be
+a topological vector space X such that X1, X2 Ă X continuously.
+(1) pX1 X X2, } ¨ }X1Xx2q is the intersection of X1 and X2, where
+}x}X1XX2 :“ maxt}x}X1, }x}X2u
+for all x P X1 X X2;
+(2) pX1 ` X2, } ¨ }X1`X2q is the sum of X1 and X2, where
+}x}X1`X2 :“ inft}x1}X1 ` }x2}X2 : x “ x1 ` x2, x1 P X1, x2 P X2u
+for all x P X1 ` X2.
+For convenience, the sum X1 ` X2 ` ¨ ¨ ¨ ` Xn and the intersection X1 X X2 ` ¨ ¨ ¨ X Xn will
+also be denoted by
+nř
+k“1
+Xk and Şn
+k“1 Xk, respectively.
+Note that pX1 XX2, }¨}X1XX2q and pX1 `X2, }¨}X1`X2q are both quasi-normed vector spaces.
+Moreover, if pX1, } ¨ }X1q and pX2, } ¨ }X2q are Banach spaces, then pX1 X X2, } ¨ }X1XX2q and
+pX1 ` X2, } ¨ }X1`X2q are both Banach spaces.
+In this article we shall use the following standard notation: A ≲ B (resp. A ≲p B) means
+that A ď CB (resp. A ď CpB) for some absolute positive constant C (resp. a positive constant
+Cp depending only on a parameter p). If A ≲ B and B ≲ A (resp. A ≲p B and B ≲p A), we
+write A « B (resp. A «p B).
+Throughout the paper, the terms “homogeneous spaces” and “spaces of homogeneous type”
+will be used interchangeably.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+4
+2.2. Musielak–Orlicz-type spaces. We shall first recall some definitions and properties of
+Orlicz-type spaces and Musielak–Orlicz-type spaces. In what follows, pΩ, F, µq denotes a σ-finite
+measure space.
+A function Φ : r0, 8q Ñ r0, 8q is called an Orlicz function if it is strictly positive on p0, 8q,
+non-decreasing, unbounded and Φp0q “ 0. A measurable function Ψ : Ω ˆ r0, 8q Ñ r0, 8q is
+called a Musielak–Orlicz function if for all x P Ω, Ψpx, ¨q is an Orlicz function.
+The Musielak–Orlicz-type space LΨpΩq is the set consisting of all measurable functions f on
+Ω such that
+ˆ
+Ω
+Ψpx, λ´1|fpxq|qdµ ă 8
+for some λ ą 0. We equip LΨpΩq with the Luxembourg quasi-norm
+}f}LΨpΩq :“ inf
+"
+λ ą 0 :
+ˆ
+Ω
+Ψpx, λ´1|fpxq|qdµ ⩽ 1
+*
+,
+f P LΨpΩq.
+Let p P R. A Musielak–Orlicz function is said to be of uniformly lower type (respectively,
+upper type) p if there exists a positive constant C such that
+Ψpx, stq ⩽ CspΨpx, tq
+for all x P Ω, t ⩾ 0 and s P p0, 1q (respectively, s P r1, 8q). In particular, if Ψ is of uniformly
+lower type p with 0 ă p ă 1 and of uniformly upper type 1 then
+(2.1)
+Ψpx, ctq «c Ψpx, tq
+for all c ą 0.
+In the sequel, Ψpx, tq is always assumed to be of uniformly lower type p with 0 ă p ă 1 and
+of uniformly upper type 1, and to be continuous in the t variable. For more information on
+Musielak–Orlicz spaces, we refer the reader to [4] and [30].
+2.3. Martingales. Let pΩ, F, Pq be a fixed probability space. Given a filtration which consists
+of a sequence of σ-algebras
+F1 Ă ¨ ¨ ¨ Ă Fk Ă ¨ ¨ ¨ Ă F
+such that σpY8
+k“1Fkq “ F, for a random variable f P L1pΩ, F, Pq and k P N`, we set
+fk “ E pf | Fkq ,
+dkf “ fk ´ fk´1,
+where we adopt the convention that f0 “ 0. We shall also denote fk by Ekpfq. The sequence
+tfkukě0 is called the martingale of f, and tdkfukě1 is called the martingale difference of f. If f
+and tfkukě0 are as above, we shall also write f “ tfkukě0. To simplify notation, we write LppΩq
+instead of LppΩ, F, Pq, 0 ă p ă 8.
+Definition 2.2. If f, tfkukě0 and tdkfukě1 are as above, we define:
+(1) the maximal function
+f ˚ :“ sup
+k⩾0
+|fk|;
+(2) the square function
+Spfq :“
+˜ 8
+ÿ
+k“1
+|dkf|2
+¸ 1
+2
+;
+(3) the conditional square function
+spfq :“
+˜ 8
+ÿ
+k“1
+Ek´1|dkf|2
+¸ 1
+2
+.
+There are several types of martingale Hardy spaces, which are defined in terms of maximal
+functions, square functions and conditional square functions.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+5
+Definition 2.3. For 1 ď p ă 8, the martingale Hardy spaces hppΩq, HppΩq, Hp
+mpΩq are defined
+as follows
+hppΩq :“ tf P L1pΩq : }f}hp :“ }spfq}p ă 8u,
+HppΩq :“ tf P L1pΩq : }f}Hp :“ }Spfq}p ă 8u,
+Hp
+mpΩq :“ tf P L1pΩq : }f}Hp
+m :“ }f ˚}p ă 8u,
+respectively.
+For 0 ă p ă 1, hppΩq is defined as the completion of the space tf P L1pΩq : }f}hp :“ }spfq}p ă
+8u with respect to the norm } ¨ }hp. Similarly, HppΩq is defined as the completion of the space
+tf P L1pΩq : }f}Hp :“ }Spfq}p ă 8u with respect to the norm } ¨ }Hp, and Hp
+mpΩq is defined as
+the completion of the space tf P L1pΩq : }f}Hp
+m :“ }f ˚}p ă 8u with respect to the norm } ¨ }Hp
+m.
+In general, the above three martingale Hardy spaces are different. However, for 1 ď p ă 8,
+HppΩq “ Hp
+mpΩq (see [6], [9], [26]).
+Definition 2.4. (Regular filtration) A filtration is regular if there exists a constant C ą 0 such
+that for all k ě 2, Fk P Fk, there exists a Gk P Fk´1 satisfying
+Fk Ă Gk,
+PpGkq ď C ¨ PpFkq.
+In addition, a martingale f “ tfkukě0 with respect to such a regular filtration is called a regular
+martingale.
+Remark 2.5. Suppose that for a positive random variable f P L1pΩq the corresponding martingale
+tfkuk⩾0 is regular. Then for any k ě 2
+fk ⩽ A ¨ fk´1,
+where A ą 0 is a constant that depends only on the constant C of Definition 2.4.
+See [16] for more information about regular filtrations and martingales.
+Remark 2.6. For regular martingale filtrations, HppΩq “ hppΩq “ Hp
+mpΩq when 0 ă p ă 8. See
+[27], [26] and [16] for more information.
+An important aspect of martingale Hardy spaces is that they admit atomic decompositions.
+The definition of atoms in the martingale setting is given below.
+Definition 2.7. A random variable a : Ω Ñ C is called a martingale simple pp, qq-atom (0 ă
+p ď 1, 1 ď q ⩽ 8) if there exist k P N and A P Fk such that
+(1) Ekpaq “ 0;
+(2) supppaq Ă A;
+(3) }a}q ⩽ PpAq
+1
+q ´ 1
+p ,
+where 1
+q :“ 0 when q “ 8 as convention.
+Definition 2.8. We define the martingale atomic Hardy spaces Hp,q
+at pΩq for 0 ă p ă 1 ⩽ q ⩽ 8
+or p “ 1, 1 ă q ď 8 as follows
+Hp,q
+at pΩq :“
+#
+f “
+8
+ÿ
+j“0
+λjaj where aj is a simple pp, qq-atom and
+8
+ÿ
+j“0
+|λj|p ă 8
++
+,
+where for f P Hp,q
+at pΩq
+}f}Hp,q
+at pΩq :“ inf
+#
+` 8
+ÿ
+j“0
+|λj|p˘ 1
+p : f “
+8
+ÿ
+j“0
+λjaj, where aj is a simple pp, qq-atom
++
+.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+6
+It is well-known that hppΩq “ Hp,2
+at pΩq when 0 ă p ď 1 (see [27]).
+In particular, if the
+martingale filtration is regular, then hppΩq “ Hp,q
+at pΩq when 0 ă p ď 1 and 1 ă q ď 8. The
+following result is the atomic decomposition of H1pΩq, which follows from the noncommutative
+result in [23]. In particular, it reveals the relationship between H1pΩq and h1pΩq and shows that
+H1pΩq ‰ h1pΩq for general martingales.
+Theorem 2.9. We have H1pΩq “ h1pΩq ` h1
+dpΩq, where h1
+d denotes the diagonal Hardy space of
+martingale differences
+h1
+dpΩq :“
+#
+h P L1pΩq : }h}h1
+dpΩq :“
+8
+ÿ
+k“1
+}dkh}1 ă 8
++
+.
+We shall now introduce the martingale BMO and bmo spaces, which are the duals of H1pΩq
+and h1pΩq, respectively (see Theorem 2.13 below).
+Definition 2.10. Assume f, g P L2pΩq. We say that f is a martingale BMO function if
+}f}BMOpΩq :“ sup
+n⩾1
+}En|f ´ fn´1|2}
+1
+28 ă 8.
+We say that g is a martingale bmo function if
+}g}bmopΩq :“ sup
+n⩾0
+}En|g ´ gn|2}
+1
+28 ă 8.
+Denote by BMOpΩq and bmopΩq the spaces consisting of all martingale BMO and bmo
+functions, respectively.
+For regular martingales, BMOpΩq “ bmopΩq. The following result is the so-called martingale
+John–Nirenberg inequality and can be found in [12].
+Theorem 2.11. There exists a sufficiently small constant κ ą 0 such that for any f P BMOpΩq
+with }f}BMOpΩq ď κ, we have
+E
+´
+e|f|¯
+⩽ 1.
+Remark 2.12. From the martingale John–Nirenberg inequality, we have for any 1 ď p ă 8,
+}f}BMOpΩq «p sup
+n⩾1
+}En|f ´ fn´1|p}
+1
+p
+8.
+However, the above John–Nirenberg inequality fails for bmopΩq in the general martingale setting.
+For the following duality theorem, see [12], [16], [26].
+Theorem 2.13. pH1pΩqq˚ “ BMOpΩq and ph1pΩqq˚ “ bmopΩq.
+The following proposition, which can be found in [8] and [12], is a consequence of Theorems
+2.9 and 2.13 and it gives a description of the relationship between BMOpΩq and bmopΩq. In
+particular, it implies that BMOpΩq ⫋ bmopΩq for general martingales.
+Proposition 2.14. Assume f is a martingale BMO function. Then
+(2.2)
+}f}BMOpΩq « }f}bmopΩq ` sup
+kě1
+}dkf}8.
+We end this section with the definition of martingale Musielak–Orlicz Hardy spaces and the
+generalized H¨older inequality.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+7
+Definition 2.15. The martingale Musielak–Orlicz Hardy space HΨpΩq (where Ψ is described in
+Section 2.2) is the space consisting of all martingales f “ tfkukě0 such that the square function
+Spfq P LΨpΩq. Moreover, we define the quasi-norm
+}f}HΨpΩq :“ }Spfq}LΨpΩq.
+If Ψ is replaced by an Orlicz function Φ, the corresponding Hardy–Orlicz space HΦpΩq is defined
+in an analogous way.
+To obtain the generalized H¨older inequality, we shall introduce a particular Orlicz space LΦpΩq,
+where
+(2.3)
+Φptq :“
+t
+logpe ` tq,
+t ě 0.
+Note that Φ is an Orlicz function of uniformly lower type p p0 ă p ă 1q and upper type 1, which
+guarantees that the vector space LΦpΩq is a quasi-normed space. Note that L1pΩq Ă LΦpΩq.
+Remark 2.16. It follows from [19] that if f “ tfkukě0 is a regular martingale, then the martin-
+gale Hardy–Orlicz space HΦpΩq can also be characterized by martingale maximal functions and
+conditional square functions. For any f P HΦpΩq one has
+}f}HΦpΩq “ }Spfq}LΦpΩq « }f ˚}LΦpΩq « }spfq}LΦpΩq.
+The following lemma is a variant of [5, Proposition 2.1] in the martingale setting.
+Lemma 2.17. Assume pΩ, F, Pq is a probability space, f P L1pΩq and g P BMOpΩq. Then
+f ¨ g P LΦpΩq and
+(2.4)
+}f ¨ g}LΦpΩq ≲ }f}1}g}BMOpΩq.
+Proof. The proof is similar to the proof of the corresponding Euclidean result and we shall only
+outline it here for the convenience of the reader. By [5, Lemma 2.1], one has
+(2.5)
+st
+M ` logpe ` stq ď et´M ` s.
+for all M ě 0, s ě 0, t ě 0.
+When }f}1 “ 0 or }g}BMOpΩq “ 0, p2.4q trivially holds.
+Assume g P BMOpΩq with
+}g}BMOpΩq ą 0 and f P L1pΩq with }f}1 ą 0. Let κ be the constant in Theorem 2.11, M “ 0,
+t “
+κ|gpxq|
+}g}BMOpΩq and s “ |fpxq|
+}f}1 . Then by Theorem 2.11 and (2.5), we have
+ˆ
+Ω
+Φ
+ˆ
+|fpxq ¨ gpxq|
+κ´1}f}1}g}BMOpΩq
+˙
+dP ď
+ˆ
+Ω
+e
+κ|gpxq|
+}g}BMOpΩq dP `
+››››
+f
+}f}1
+››››
+1
+ď 2.
+(2.6)
+Hence, from (2.1) we conclude
+}f ¨ g}LΦpΩq ≲ κ´1}f}1}g}BMOpΩq,
+which completes the proof of the lemma.
+□
+We shall refer to (2.4) as the generalized H¨older inequality.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+8
+3. Bilinear decompositions on H1pΩq ˆ BMOpΩq
+In this section we prove Theorem 1.1.
+Let pΩ, F, Pq be a fixed probability space and let
+f P H1pΩq, g P BMOpΩq. If we assume that f and g have finite martingale expansions, then we
+may write their pointwise product f ¨ g as follows
+(3.1)
+f ¨ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq,
+where
+Π1pf, gq :“
+8
+ÿ
+k“1
+dkfdkg,
+Π2pf, gq :“
+8
+ÿ
+k“1
+fk´1dkg
+and
+Π3pf, gq :“
+8
+ÿ
+k“1
+gk´1dkf.
+We shall estimate Π1pf, gq, Π2pf, gq, Π3pf, gq separately. To do so, we shall make use of the
+atomic decomposition of H1pΩq. It follows from our arguments below that the operators Π1, Π2
+and Π3 are well-defined (in a pointwise sense) on the product space H1pΩq ˆ BMOpΩq. Hence,
+the proof of Theorem will follow from the boundedness properties of Π1, Π2 and Π3, (3.1) and
+a limiting argument.
+In §3.4, we present a direct way to deal with Π3pf, gq, which avoids the use of the atomic
+decomposition.
+Proof of Theorem 1.1. By Theorem 2.9, there always exist two functions f h and f d such that
+f “ f h ` f d, where f h P h1pΩq and f d P h1
+dpΩq.
+For any such decomposition of f, since
+f h P h1pΩq, there exist tλjuj⩾1 Ă R and simple p1, 2q-atoms
+␣
+aj(
+j⩾1 such that
+(3.2)
+f h “
+8
+ÿ
+j“1
+λjaj,
+}f h}h1pΩq «
+8
+ÿ
+j“1
+|λj|,
+where we assume supppajq Ă Anj and Anj P Fnj with PpAnjq ą 0 for j ě 1. Then
+(3.3)
+Πipf, gq “
+8
+ÿ
+j“1
+λjΠipaj, gq ` Πipf d, gq,
+i “ 1, 2, 3.
+3.1. Estimates for Π1pf h, gq and Π1pf d, gq. We are going to show that Π1 is a bounded bilinear
+operator from H1pΩq ˆ BMOpΩq to L1pΩq. In fact, the boundedness of Π1 follows naturally
+from the duality between H1pΩq and BMOpΩq, i.e. Theorem 2.13 (see [12]). For the reader’s
+convenience, we give a proof based on atomic decompositions.
+We first focus on Π1pf h, gq, which can further be decomposed into atoms as described in (3.2).
+It thus suffices to consider
+Π1paj, gq “
+8
+ÿ
+k“1
+dkajdkg,
+which can further be localized as dkaj “ 1Anj dkaj when k ě nj ` 1 since Anj P Fnj, namely
+Π1paj, gq “
+8
+ÿ
+k“nj`1
+1Anj dkajdkg.
+Now, by applying the Cauchy-Schwarz inequality, we derive the estimate
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+9
+}Π1paj, gq}1 “ E
+¨
+˝
+ˇˇˇˇˇˇ
+8
+ÿ
+k“nj`1
+1Anj dkajdkg
+ˇˇˇˇˇˇ
+˛
+‚
+⩽
+»
+–E
+¨
+˝
+8
+ÿ
+k“nj`1
+|dkaj|2
+˛
+‚
+fi
+fl
+1
+2 »
+–E
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |dkg|2
+˛
+‚
+fi
+fl
+1
+2
+⩽ }aj}2
+»
+–EEnj
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |dkg|2
+˛
+‚
+fi
+fl
+1
+2
+⩽ PpAnjq´ 1
+2
+»
+–E
+¨
+˝1Anj Enj
+¨
+˝
+8
+ÿ
+k“nj`1
+|dkg|2
+˛
+‚
+˛
+‚
+fi
+fl
+1
+2
+⩽ PpAnjq´ 1
+2 }g}bmopΩqPpAnjq
+1
+2
+where the fourth inequalitiy follows from the definition of the atom. Hence, we deduce from the
+definition of the bmo´norm that
+(3.4)
+}Π1paj, gq}1 ď }g}bmopΩq.
+By using (3.4) and (3.3), we have by Theorem 2.14
+}Π1pf, gq}1 ⩽
+8
+ÿ
+j“1
+|λj|}g}bmopΩq `
+›››››
+8
+ÿ
+k“1
+dkf ddkg
+›››››
+1
+≲ }f h}h1}g}bmopΩq `
+ˆ
+sup
+kě1
+}dkg}8
+˙ ˜ 8
+ÿ
+k“1
+}dkf d}1
+¸
+≲
+´
+}f h}h1pΩq ` }f d}hd
+1pΩq
+¯
+}g}BMOpΩq.
+Since the decomposition of f “ f h ` f d is arbitrary, by Theorem 2.9 we conclude
+(3.5)
+}Π1pf, gq}1 ≲ }f}H1pΩq}g}BMOpΩq.
+3.2. Estimates for Π2pf h, gq and Π2pf d, gq. We are going to show that Π2 is a bounded
+bilinear operator from H1pΩq ˆ BMOpΩq to H1pΩq. Arguing as in section 3.1, we perform the
+localization on each term
+Π2paj, gq “
+8
+ÿ
+k“1
+aj
+k´1dkg “
+8
+ÿ
+k“nj`2
+1Anj aj
+k´1dkg.
+It is easy to verify that
+dkpΠ2paj, gqq “ aj
+k´1dkg,
+k ě nj ` 2 and dkpΠ2paj, gqq “ 0,
+1 ⩽ k ⩽ nj ` 1.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+10
+We consider the corresponding square function
+S
+`
+Π2paj, gq
+˘
+“
+¨
+˝
+8
+ÿ
+k“nj`2
+´
+|aj
+k´1|21Anj |dkg|2¯
+˛
+‚
+1
+2
+⩽ |pajq˚|
+¨
+˝
+8
+ÿ
+k“nj`2
+1Anj
+`
+|dkg|2˘
+˛
+‚
+1
+2
+.
+Then by invoking the Cauchy-Schwarz inequality, we have that
+}Π2paj, gq}H1pΩq “ E
+“
+S
+`
+Π2paj, gq
+˘‰
+⩽ }pajq˚}2
+»
+–E
+¨
+˝
+8
+ÿ
+k“nj`2
+1Anj p|dkg|2q
+˛
+‚
+fi
+fl
+1
+2
+⩽ }aj}2
+»
+–E
+¨
+˝1Anj Enj
+¨
+˝
+8
+ÿ
+k“nj`2
+|dkg|2
+˛
+‚
+˛
+‚
+fi
+fl
+1
+2
+⩽ PpAnjq´ 1
+2 }g}BMOpΩqPpAnjq
+1
+2
+and hence,
+(3.6)
+}Π2paj, gq}H1pΩq ⩽ }g}BMOpΩq.
+Similarly, by Theorem 2.14
+››Π2pf d, gq
+››
+H1pΩq “ E
+«
+S
+˜
+Π2p
+8
+ÿ
+m“1
+dmf d, gq
+¸ff
+⩽
+8
+ÿ
+m“1
+E
+“
+S
+`
+Π2pdmf d, gq
+˘‰
+“
+8
+ÿ
+m“1
+E
+»
+–Em
+˜
+8
+ÿ
+k“m`1
+|dmf d|2|dkg|2
+¸ 1
+2 fi
+fl
+“
+8
+ÿ
+m“1
+E
+»
+–|dmf d|Em
+˜
+8
+ÿ
+k“m`1
+|dkg|2
+¸ 1
+2 fi
+fl
+⩽
+8
+ÿ
+m“1
+¨
+˝}dmf d}1
+›››››Em
+˜
+8
+ÿ
+k“m`1
+|dkg|2
+¸›››››
+1
+2
+8
+˛
+‚
+and hence,
+(3.7)
+››Π2pf d, gq
+››
+H1pΩq ⩽ }f d}h1
+dpΩq}g}BMOpΩq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+11
+By using (3.7), (3.2) and (3.3), we have by Theorem 2.9
+}Π2pf, gq}H1pΩq ď
+››Π2pf h, gq
+››
+H1pΩq `
+››Π2pf d, gq
+››
+H1pΩq
+⩽
+8
+ÿ
+j“1
+|λj|}g}BMOpΩq ` }f d}hd
+1pΩq}g}BMOpΩq
+≲
+´
+}f h}h1pΩq ` }f d}h1
+dpΩq
+¯
+}g}BMOpΩq.
+Since the decomposition of f “ f h ` f d is arbitrary, by Theorem 2.9 we conclude
+(3.8)
+}Π2pf, gq}H1pΩq ≲ }f}H1pΩq}g}BMOpΩq.
+3.3. Estimates for Π3pf h, gq and Π3pf d, gq. We are going to show that Π3 is a bounded bilinear
+operator from H1pΩqˆBMOpΩq to HΦpΩq. To this end, we first deal with Π3pf h, gq. Note that
+SpΠ3pf h, gqq “ S
+˜ 8
+ÿ
+k“1
+8
+ÿ
+j“1
+λjgk´1dkaj
+¸
+ď
+8
+ÿ
+j“1
+λjS
+˜ 8
+ÿ
+k“1
+gk´1dkaj
+¸
+“
+8
+ÿ
+j“1
+λj
+¨
+˝
+8
+ÿ
+k“nj`1
+|gk´1|2|dkaj|2
+˛
+‚
+1
+2
+ď
+8
+ÿ
+j“1
+λj
+¨
+˝
+8
+ÿ
+k“nj`1
+|gk´1 ´ gnj|2|dkaj|2
+˛
+‚
+1
+2
+`
+8
+ÿ
+j“1
+λj|gnj|Spajq
+“: I1 ` I2.
+It thus suffices to handle I1 and I2. For I1, we have
+EpI1q ⩽
+8
+ÿ
+j“1
+|λj|E
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |gk´1 ´ gnj|2|dkaj|2
+˛
+‚
+1
+2
+⩽
+8
+ÿ
+j“1
+|λj|
+»
+—–E
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |gk´1 ´ g|2|dkaj|2
+˛
+‚
+1
+2
+` E
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |g ´ gnj|2|dkaj|2
+˛
+‚
+1
+2 fi
+ffifl
+⩽
+8
+ÿ
+j“1
+|λj|
+$
+’
+&
+’
+%
+PpAnjq
+1
+2
+»
+–E
+¨
+˝
+8
+ÿ
+k“nj`1
+|gk´1 ´ g|2|dkaj|2
+˛
+‚
+fi
+fl
+1
+2
+` E
+´
+1Anj |g ´ gnj|Spajq
+¯
+,
+/
+.
+/
+-
+⩽
+8
+ÿ
+j“1
+|λj|
+$
+’
+&
+’
+%
+PpAnjq
+1
+2
+»
+–E
+¨
+˝
+8
+ÿ
+k“nj`1
+|dkaj|2Ekp|gk´1 ´ g|2q
+˛
+‚
+fi
+fl
+1
+2
+` }aj}2PpAnjq
+1
+2 }g}BMOpΩq
+,
+/
+.
+/
+-
+⩽ 2
+8
+ÿ
+j“1
+|λj|PpAnjq
+1
+2 }g}BMOpΩq}aj}2
+and so,
+(3.9)
+EpI1q ≲ }f h}h1pΩq}g}BMOpΩq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+12
+Next, we obtain an estimate for I2. To this end, notice that
+I2 ď
+˜ 8
+ÿ
+j“1
+1Anj |λj|Spajq
+¸
+¨ |g| `
+8
+ÿ
+j“1
+|λj|1Anj |gnj ´ g|Spajq
+“: I3 ` I4.
+Since aj is a simple p1, 2q-atom, we have }1Anj Spajq}1 ď 1 and
+›››››
+8
+ÿ
+j“1
+1Anj |λj|Spajq
+›››››
+1
+ď
+8
+ÿ
+j“1
+|λj| ≲ }f h}h1pΩq.
+By Lemma 2.17, we have
+(3.10)
+}I3}LΦpΩq ≲
+›››››
+8
+ÿ
+j“1
+1Anj |λj|Spajq
+›››››
+1
+}g}BMOpΩq ≲ }f h}h1pΩq}g}BMOpΩq.
+The following estimate is implicit in the proof of (3.9):
+(3.11)
+EpI4q ⩽
+8
+ÿ
+j“1
+|λj|PpAnjq
+1
+2 }g}BMOpΩq}aj}2 ≲ }f h}h1pΩq}g}BMOpΩq.
+By combining (3.10) and (3.11), we deduce that
+(3.12)
+}I2}LΦpΩq ≲ }f h}h1pΩq}g}BMOpΩq.
+In conclusion, by (3.9) and (3.12) we get
+(3.13)
+}Π3pf h, gq}HΦpΩq ≲ }f h}h1pΩq}g}BMOpΩq.
+It remains to deal with Π3pf d, gq. We have
+SpΠ3pf d, gqq “
+˜ 8
+ÿ
+k“1
+|gk´1|2|dkf d|2
+¸ 1
+2
+⩽
+8
+ÿ
+k“1
+|gk´1||dkf d|
+ď
+8
+ÿ
+k“1
+|gk´1 ´ g||dkf d| ` |g|
+˜ 8
+ÿ
+k“1
+|dkf d|
+¸
+.
+By Lemma 2.17,
+(3.14)
+›››››g
+˜ 8
+ÿ
+k“1
+|dkf d|
+¸›››››
+LΦpΩq
+≲
+˜ 8
+ÿ
+k“1
+}dkf d}1
+¸
+}g}BMOpΩq “ }f d}h1
+dpΩq}g}BMOpΩq.
+For the remaining term, we have
+E
+˜ 8
+ÿ
+k“1
+|gk´1 ´ g||dkf d|
+¸
+“ E
+˜ 8
+ÿ
+k“1
+|dkf d|Ek|gk´1 ´ g|
+¸
+⩽ }g}BMOpΩq
+˜ 8
+ÿ
+k“1
+}dkf d}1
+¸
+and so
+(3.15)
+E
+˜ 8
+ÿ
+k“1
+|gk´1 ´ g||dkf d|
+¸
+⩽ }f d}h1
+dpΩq}g}BMOpΩq.
+Hence, by (3.14) and (3.15), we get
+(3.16)
+}Π3pf d, gq}HΦpΩq ≲ }f d}h1
+dpΩq}g}BMOpΩq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+13
+By (3.13) and (3.16), we obtain
+}Π3pf, gq}HΦpΩq ≲
+´
+}f h}h1pΩq ` }f d}h1
+dpΩq
+¯
+}g}BMOpΩq.
+Thus we conclude
+(3.17)
+}Π3pf, gq}HΦpΩq ≲ }f}H1pΩq}g}BMOpΩq.
+This completes the proof of Theorem 1.1
+□
+3.4. Another method for handling Π3pf, gq. In this section we present a different method
+for dealing with Π3pf, gq, which is much neater and simpler than the one presented above, and
+it relies on the following theorem which has been shown in [12].
+Theorem 3.1. If g P BMOpΩq and g0 “ 0, then pg˚q0 ≲ }g}BMOpΩq and g˚ P BMOpΩq.
+Moreover, }g˚}BMOpΩq ≲ }g}BMOpΩq.
+We begin with a pointwise estimate for SpΠ3pf, gqq. Towards this aim, note that dkpΠ3pf, gqq “
+gk´1dkf, which implies that
+SpΠ3pf, gqq “
+˜ 8
+ÿ
+k“1
+|gk´1|2|dkf|2
+¸ 1
+2
+⩽ |g˚|Spfq ⩽ J1 ` J2,
+where
+J1 :“ |g˚ ´ pg˚q0|Spfq
+and
+J2 :“ Spfq}g}BMOpΩq.
+Clearly,
+(3.18)
+}J2}1 ≲ }f}H1pΩq}g}BMOpΩq.
+By Theorem 3.1, we get g˚ P BMOpΩq, and hence by Lemma 2.17
+(3.19)
+}J1}LΦpΩq ≲ }g˚}BMOpΩq}Spfq}1 ≲ }f}H1pΩq}g}BMOpΩq.
+As SpΠ3pf, gqq ď J1 ` J2, by combining (3.18) with (3.19), and by the fact L1pΩq Ă LΦpΩq, we
+conclude
+}Π3pf, gq}HΦpΩq “ }SpΠ3pf, gqq}LΦpΩq ≲ }f}H1pΩq}g}BMOpΩq,
+as desired.
+We would like to end this section with the comparison between our proof and the one provided
+in [14].
+Though both arguments heavily rely on the atomic decomposition of H1pΩq, they
+further use weak atom decomposition for the diagonal Hardy space while our proof proceeds
+more directly. Moreover, the treatment of the most technical term Π3 is significantly simplified
+in this section thanks to Theorem 3.1.
+4. Bilinear decompositions on HppΩq ˆ Λ1pαpq for 0 ă p ă 1
+In this section, we give a proof of Theorem 1.2. Arguing as in the proof of Theorem 1.1, it
+suffices to establish appropriate estimates for the bilinear operators Π1, Π2 and Π3.
+Let pΩ, F, Pq be a fixed probability space. If we consider the filtration F0 “ tH, Ωu and
+Fk “ F for all k ⩾ 1, then HppΩq “ LppΩq for 0 ă p ă 8. It is well-known that pLppΩqq˚ ‰ t0u
+if and only if the probability space pΩ, F, Pq contains at least one atom with non-zero measure
+when 0 ă p ă 1. This means that pHppΩqq˚ “ t0u may occur. Therefore, we are only concerned
+with regular martingales where every Fk is generated by countably many atoms.
+To prove Theorem 1.2, we start with the following lemma, which holds for general martingales
+that are not necessarily regular. This shall be familiar to the experts in the area, but we will
+enclose the proof here for the sake of completeness.
+Lemma 4.1. For any 0 ă p ă 1, we have L1pΩq Ă Hp
+mpΩq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+14
+Proof. By Doob’s maximal inequality, for any f P L1pΩq and for any λ ą 0 we have
+(4.1)
+Ppf ˚ ą λq ⩽ 1
+λ
+ˆ
+tf ˚ąλu
+|f|dP.
+Without loss of generality, we may assume }f}1 ⩽ 1. Then
+}f ˚}p
+p “
+ˆ
+Ω
+|f ˚|pdP “ p
+ˆ 8
+0
+Pp|f ˚| ą λqλp´1dλ
+“ p
+ˆ 1
+0
+Ppf ˚ ą λqλp´1dλ ` p
+ˆ 8
+1
+Ppf ˚ ą λqλp´1dλ
+⩽ p
+ˆ 1
+0
+λp´1dλ ` p
+ˆ 8
+1
+1
+λ
+˜ˆ
+tf ˚ąλu
+|f|dP
+¸
+λp´1dλ
+“ 1 ` p
+ˆ
+tf ˚ą1u
+|f|
+˜ˆ f ˚
+1
+λp´2dλ
+¸
+dP
+“ 1 `
+p
+1 ´ p
+ˆ
+tf ˚ą1u
+|f|
+`
+1 ´ |f ˚|p´1˘
+dP
+⩽ 1 `
+p
+1 ´ p
+ˆ
+tf ˚ą1u
+|f|dP ⩽
+1
+1 ´ p.
+This implies that for any f P L1pΩq
+}f}Hp
+mpΩq ⩽
+`
+1
+1 ´ p
+˘ 1
+p }f}1,
+which yields the desired result.
+□
+For regular martingales, we have L1pΩq Ă Hp
+mpΩq “ HppΩq “ hppΩq. In what follows, the
+martingales are always assumed to be regular and every Fk is generated by countable atoms.
+Corollary 4.2. For 0 ă p ă 1 and 1 ď q ď 8, HppΩq “ Hp,q
+at pΩq.
+Proof. By considering the aforementioned atomic decomposition of HppΩq and Definition 2.8,
+we have HppΩq “ Hp,8
+at pΩq. It is easy to see Hp,8
+at pΩq Ă Hp,q
+at pΩq Ă Hp,1
+at pΩq. It thus suffices to
+show that Hp,1
+at pΩq Ă HppΩq. By Lemma 4.1, if a is a simple pp, 1q-atom, then
+}a}HppΩq ≲p }a}1,
+which implies that a P HppΩq. Hence, Hp,1
+at pΩq Ă HppΩq and so, HppΩq “ Hp,q
+at pΩq.
+□
+4.1. Characterization of martingale Lipschitz spaces. In this subsection, we give a char-
+acterization of martingale Lipschitz spaces that appears to be new and useful in our argument.
+We shall first recall the definition of martingale Lipschitz spaces. For 0 ă p ă 1 define
+(4.2)
+Λqpαpq :“
+#
+f P L2pΩq : }f}Λqpαpq “ sup
+ně0
+sup
+APFn
+PpAq´ 1
+q ´αp
+ˆˆ
+A
+|f ´ fn|qdP
+˙ 1
+q
+ă 8
++
+,
+where q “ 1 or q “ 2, αp :“ 1
+p ´ 1 ą 0.
+In [27], Weisz showed that pHppΩqq˚ “ Λ1pαpq and Λ1pαpq “ Λ2pαpq.
+Corollary 4.3. For any g P Λ1pαpq, we have }g ´ g0}8 ≲p }g}Λ1pαpq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+15
+Proof. By duality and Lemma 4.1, for any f P L2pΩq,
+|E
+`
+fpg ´ g0q
+˘
+| “
+ˇˇE pgpf ´ f0qq
+ˇˇ ≲p }f}Hp}g}Λ1pαpq ≲p }f}1}g}Λ1pαpq.
+The above estimate together with the fact
+`
+L1`
+Ωqq˚ “ L8pΩq yields
+}g ´ g0}8 ≲p }g}Λ1pαpq,
+which finishes the proof.
+□
+By virtue of Corollary 4.3, we have the following property of martingale Lipschitz spaces.
+Theorem 4.4. If g P Λ1pαpq, we have }1A ¨ |g ´ gn|}8 ≲p PpAqαp}g}Λ1pαpq, for any n P N and
+any A P Fn.
+Proof. Note that when PpAq “ 0, the desired result holds trivially. Fix n P N and A P Fn with
+PpAq ‰ 0. For k ě 0, let FA
+k :“ tB P Fk`n : B Ď Au. Note that the union FA of all FA
+k is
+exactly tB P F|B Ă Au. Hence, if we define
+PApBq :“ PpBq
+PpAq
+pB P FAq
+then pA, FA, PAq is a probability space. Note that for any g P L1pA, FA, PAq one has
+Epg|FA
+k q “ 1A ¨ Epg|Fk`nq.
+Denote Ep¨|FA
+k q by EA
+k . It is easy to verify tEA
+k pgqukě0 is also a regular martingale on pA, FA, PAq.
+If g P Λ1pαpq, then for B P FA
+k with PpBq ‰ 0,
+PApBq´1´αp
+ˆˆ
+B
+|g ´ EA
+k pgq|dPA
+˙
+“ PpAqαp
+ˆ
+PpBq´1´αp
+ˆˆ
+B
+|g ´ gk`n|dP
+˙˙
+ď PpAqαp}g}Λ1pαpq
+which implies that by Corollary 4.3,
+}1A ¨ |g ´ gn|}8 “ }1A ¨ |g ´ EA
+0 pgq|}8 ≲p PpAqαp}g}Λ1pαpq.
+This completes the proof of the theorem.
+□
+Remark 4.5. By Theorem 4.4 and (4.2), we conclude that for g P Λ1pαpq we have the character-
+ization
+(4.3)
+}g}Λ1pαpq «p sup
+ně0
+sup
+APFn
+PpAq´αp}1A ¨ |g ´ gn|}8.
+Note that the results in [18] can be deduced from (4.3).
+4.2. Proof of Theorem 1.2. As in the proof of Theorem 1.1, we divide the proof into three
+parts. Without loss of generality, we may assume that f0 “ g0 “ 0.
+4.2.1. Estimates for Π1pf, gq and Π3pf, gq. The boundedness of Π1 from HppΩq ˆ Λ1pαpq to
+L1pΩq follows directly from the duality between HppΩq and Λ1pαpq, we omit the details.
+We shall also prove that Π3 is a bounded bilinear operator from HppΩq ˆ Λ1pαpq to HppΩq.
+Note that
+(4.4)
+SpΠ3pf, gqq2 “
+8
+ÿ
+k“1
+|gk´1|2|dkf|2 ⩽ pg˚q2Spfq2.
+Hence we conclude from Corollary 4.3 and the L8 boundedness of the maximal function that
+(4.5)
+}Π3pf, gq}p
+HppΩq ≲ }g˚}p
+8EpSpfqpq ď }g}p
+8}f}p
+HppΩq ≲p }f}p
+HppΩq}g}p
+Λ1pαpq,
+as desired.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+16
+4.2.2. Estimates for Π2pf, gq. We will show that Π2 is a bounded bilinear operator from HppΩqˆ
+Λ1pαpq to H1pΩq. Note that HppΩq “ hppΩq, and hppΩq admits an atomic decomposition.
+Then there exist tλjuj⩾1 Ă R and simple pp, 8q-atoms
+␣
+aj(
+j⩾1 such that
+(4.6)
+f “
+8
+ÿ
+j“1
+λjaj,
+}f}HppΩq «p
+˜ 8
+ÿ
+j“1
+|λj|p
+¸ 1
+p
+,
+where we assume supppajq Ă Anj and Anj P Fnj with PpAnjq ą 0 for j ě 1. By arguing as in
+the corresponding case in the proof of Theorem 1.1,
+(4.7)
+SpΠ2paj, gqq “
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |aj
+k´1|2|dkg|2
+˛
+‚
+1
+2
+⩽ |pajq˚|
+¨
+˝
+8
+ÿ
+k“nj`1
+1Anj |dkg|2
+˛
+‚
+1
+2
+.
+Hence,
+E
+“
+SpΠ2paj, gqq
+‰
+⩽ }pajq˚}8
+»
+—–E
+¨
+˝1Anj
+8
+ÿ
+k“nj`1
+|dkg|2
+˛
+‚
+1
+2 fi
+ffifl
+⩽ }aj}8
+¨
+˝PpAnjq
+¨
+˝E
+8
+ÿ
+k“nj`1
+|dkg|2
+˛
+‚
+˛
+‚
+1
+2
+⩽ PpAnjq´ 1
+p
+´
+PpAnjq}g}2
+Λ2pαpqPpAnjq1`2αp¯ 1
+2
+“ }g}Λ2pαpqPpAnjq´ 1
+p PpAnjq1`αp
+⩽ }g}Λ2pαpq ≲p }g}Λ1pαpq,
+where the last inequality follows from the condition that αp “ 1
+p ´ 1. As a consequence of the
+above estimates, we have that
+(4.8)
+}Π2pf, gq}p
+H1pΩq ⩽
+8
+ÿ
+j“1
+|λj|p “
+ESpΠ2paj, gqq
+‰p ≲p }f}p
+HppΩq}g}p
+Λ1pαpq.
+This completes the proof of the theorem.
+5. Homogeneous spaces
+In this section, we introduce some fundamental concepts and important theorems for homo-
+geneous spaces, which can be found in [7]. We begin with the definition of homogeneous spaces.
+Recall that d is a quasi-metric on Ω if
+(1) dpx, xq ě 0, @x P Ω;
+(2) dpx, yq “ dpy, xq, @x, y P Ω;
+(3) there exists a constant A0 ě 1 such that
+(5.1)
+dpx, yq ⩽ A0pdpx, zq ` dpz, yqq,
+@x, y, z P Ω.
+Denote by Bpx, rq :“ ty P Ω : dpy, xq ă ru the open ball centered at x with radius r. In this
+paper, all quasi-metric spaces are assumed to have the doubling property: there exists a positive
+integer A1 P N such that for every x P Ω and for every r ą 0, the ball Bpx, rq can be covered by
+at most A1 balls Bpxi, r
+2q for some xi P Ω.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+17
+Definition 5.1. A σ-finite measure space pΩ, F, µq equipped with a quasi-metric d is called a
+homogeneous space if µ is a Borel measure of homogeneous type:
+(5.2)
+0 ă µ pBpx, 2rqq ⩽ 2Cµµ pBpx, rqq ă 8,
+@x P Ω, r ą 0,
+where the constant Cµ is independent of x and r.
+In [7], Coifman and Weiss defined Hardy spaces on homogeneous spaces by regarding their
+elements as linear functionals acting on some appropriate quasi-normed spaces. In order to state
+the definition of Coifman and Weiss, we need to introduce the notions of atoms, BMO and
+Lipschitz spaces on homogeneous spaces.
+Definition 5.2. If 0 ă p ⩽ 1 ⩽ q ď 8 and p ă q, we say that a function a is a pp, qq-atom if
+(1) supppaq Ă B where B is a ball;
+(2) }a}q ⩽ pµpBqq
+1
+q ´ 1
+p ;
+(3)
+´
+Ω adµ “
+´
+B adµ “ 0.
+Definition 5.3. A locally integrable function f is called a BMO function if
+}f}BMO :“ sup
+B
+1
+µpBq
+ˆ
+B
+|f ´ fB|dµ ă 8,
+where fB :“
+1
+µpBq
+´
+B fdµ, and the supremum runs over all balls B. Denote by BMOpµq the
+BMO space consisting of all BMO functions.
+Definition 5.4. For α ą 0, a locally integrable function l is called a Lipschitz function if
+(5.3)
+|lpxq ´ lpyq| ⩽ Cα pµpBqqα for any x, y P Ω and any ball B containing x, y.
+Moreover,
+(5.4)
+}l}Lα :“ inftCα : |lpxq ´ lpyq| ⩽ Cα pµpBqqα , @x, y P Bu,
+where the infimum runs over all balls B. Denote by Lαpµq the space consisting of all Lipschitz
+functions.
+It is well-known that each BMO function can be regarded as a continuous linear functional
+on the vector space generated by finite linear combinations of p1, qq-atoms for 1 ă q ď 8 (cf.
+[7]). Hence we can define the atomic Hardy space H1,q
+at pµq p1 ă q ď 8q as follows:
+(5.5)
+H1,q
+at pµq :“
+#
+f P pBMOpµqq˚ : f “
+8
+ÿ
+j“0
+λjaj, where aj is a p1, qq-atom and
+8
+ÿ
+j“0
+|λj| ă 8
++
+endowed with the norm
+}f}H1,q
+at pµq :“ inf
+# 8
+ÿ
+j“0
+|λj| : f “
+8
+ÿ
+j“0
+λjaj, where aj is a p1, qq-atom
++
+.
+Similarly, each Lipschitz function l P Lαppµq can be also regarded as a continuous linear
+functional of the vector space generated by finite linear combinations of pp, qq-atoms where 0 ă
+p ă 1 ď q ď 8 and αp “ 1
+p ´ 1 (cf. [7]). We define the atomic Hardy spaces Hp,q
+at pµq as follows:
+(5.6)
+Hp,q
+at pµq
+:“
+#
+f P
+`
+Lαppµq
+˘˚ : f “
+8
+ÿ
+j“0
+λjaj, where aj is a pp, qq-atom and
+8
+ÿ
+j“0
+|λj|p ă 8
++
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+18
+endowed with the quasi-norm
+}f}Hp,q
+at pµq :“ inf
+$
+&
+%
+˜ 8
+ÿ
+j“0
+|λj|p
+¸ 1
+p
+: f “
+8
+ÿ
+j“0
+λjaj, where aj is a pp, qq-atom
+,
+.
+- .
+Although the Hardy spaces vary with p and q according to the above definitions, the following
+theorem, which can be found in [7], shows that the Hardy spaces actually depend only on p.
+Consequently, this enables us to define the Hardy spaces Hp
+atpµq for 0 ă p ⩽ 1 to be any one of
+the spaces Hp,q
+at pµq for 0 ă p ă q ⩽ 8, 1 ⩽ q ď 8.
+Theorem 5.5. Hp,q
+at pµq “ Hp,8
+at pµq whenever 0 ă p ď 1 ⩽ q ⩽ 8 and p ă q.
+We end this section with the following duality theorem obtained in [7].
+Theorem 5.6.
+`
+H1
+atpµq
+˘˚ “ BMOpµq, and pHp
+atpµqq˚ “ Lαppµq for 0 ă p ă 1.
+The proofs of Theorem 5.5 and Theorem 5.6 that appeared in [7] are very technical. In the
+following sections, by employing martingale methods, we give much simpler proofs of these facts.
+Our approach is based on the fact that Hp
+atpµq for 0 ă p ď 1 is the finite sum of several dyadic
+martingale Hardy spaces.
+6. Dyadic systems on homogeneous spaces
+In this section, we start with introducing dyadic systems on homogeneous spaces, which first
+appeared in the work of Hyt¨onen and Kairema [13]. With the help of these dyadic structures,
+we then show that Hp
+atpµq is exactly the finite sum of martingale Hardy spaces associated with
+some adjacent dyadic martingales, which extends Mei’s result [17] to homogeneous spaces.
+The following theorem concerning the existence of dyadic structures is due to Hyt¨onen and
+Kairema [13].
+Theorem 6.1. Let Ω denote a homogeneous space. Suppose that the constants 0 ă c0 ⩽ C0 ă 8
+and δ P p0, 1q satisfy
+12A3
+0C0δ ⩽ c0,
+where A0 is specified in the definition of quasi-metric, see (5.1).
+Given a set of reference points tzk
+αuα, α P Ak (an index set), for every k P Z, with the
+properties that
+dpzk
+α, zk
+βq ⩾ c0δk, pα ‰ βq
+min
+α dpx, zk
+αq ă C0δk, for all x P Ω,
+one can construct families of sets ˜Qk
+α Ď Qk
+α Ď ¯Qk
+α, called open, half-open and closed dyadic cubes
+respectively, such that:
+˜Qk
+α and ¯Qk
+αare the interior and closure of Qk
+α;
+(6.1)
+if k ⩽ l, then either Ql
+β Ď Qk
+α or Ql
+β X Qk
+α “ H;
+(6.2)
+X “ Ť
+α
+Qk
+α (disjoint union) for all k P Z;
+(6.3)
+Bpzk
+α, c1δkq Ď Qk
+α Ď Bpzk
+α, C1δkq “: BpQk
+αq where c1 “ p3A2
+0q´1c0 and C1 “ 2A0C0;
+(6.4)
+if k ⩽ l and Ql
+β Ď Qk
+α then BpQl
+βq Ď BpQk
+αq.
+(6.5)
+The open and closed cubes ˜Qk
+α and ¯Qk
+α depend only on the points zl
+β for l ⩾ k. The half-open
+cubes Qk
+α depend on zl
+β for l ⩾ minpk, k0q, where k0 P Z is a preassigned number entering the
+construction.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+19
+It is obvious that the construction of the above dyadic systems is not unique, and it depends
+on the set of the reference points tzk
+αuα. We denote this dyadic system by D “ tQk
+αuk,α. Let
+Fk “ σptQk
+αuαq be the σ-algebra generated by tQk
+αuα. Then it is clear that
+¨ ¨ ¨ Ă Fk´1 Ă Fk Ă ¨ ¨ ¨ ,
+which implies that tFkukPZ is a filtration generated by atoms. Let F “ σpYkPZFkq. Note that
+each Qk
+α is an atom of Fk.
+Remark 6.2. The standard dyadic grid on the real line is a dyadic system given by
+Fk “ tr2´km, 2´kpm ` 1qq : m P Zu
+for all k P Z.
+Similarly, an example of a dyadic system on Rn is given by the family of standard dyadic cubes
+in Rn.
+Recall that, for f P L1
+locpΩ, F, µq, the martingale maximal function, the square function and
+the conditional square function of f associated with pFkqkPZ are given by
+f ˚ :“ max
+kPZ |fk|,
+Spfq :“
+˜ÿ
+kPZ
+|dkf|2
+¸ 1
+2
+and
+spfq :“
+˜ÿ
+kPZ
+Ek´1|dkf|2
+¸ 1
+2
+,
+respectively.
+Let 0 ă p ď 1. The martingale Hardy space Hp
+m,Dpµq is defined as the completion of the space
+consisting of all f P L1
+locpΩq such that f ˚ P LppΩq with respect to the quasi-norm }f}Hp
+m,Dpµq :“
+}f ˚}p.
+We define Hp
+Dpµq and hp
+Dpµq by the square functions and the conditional square functions
+respectively, with the additional assumption that
+(6.6)
+lim
+nÑ´8
+ˆ
+Ω
+sup
+kďn
+|fk|pdµ “ 0.
+From (6.6), we have
+lim
+nÑ´8 sup
+kďn
+|fk| “ 0.
+Analogously, define the martingale atomic Hardy spaces Hp,q
+at,Dpµq p0 ă p ă 1 ď q ď 8 or p “
+1, 1 ă q ď 8q like Definition 2.8.
+In order to show Theorem 5.6, we introduce the dual spaces of these atomic martingale Hardy
+spaces. For 0 ă p ă 1, q “ 1 or 2 and αp “ 1
+p ´ 1, define
+BMODpµq :“
+#
+f P L1
+locpΩ, µq : }f}BMODpµq :“ sup
+QPD
+1
+µpQq
+ˆ
+Q
+|f ´ fQ|dµ ă 8
++
+,
+ΛD
+q pαpq :“
+#
+f P L1
+locpΩ, µq : }f}ΛD
+q pαpq :“ sup
+QPD
+µpQq´ 1
+q ´αp
+ˆˆ
+Q
+|f ´ fQ|qdµ
+˙ 1
+q
+ă 8
++
+.
+The spaces ΛD
+q pαpq are called the martingale Lipschitz spaces with respect to D. Note that
+ΛD
+1 pαpq “ ΛD
+2 pαpq.
+Arguing as in [27], one can show that
+`
+H1
+at,Dpµq
+˘˚ “ BMODpµq,
+and for 0 ă p ă 1,
+´
+Hp
+at,Dpµq
+¯˚
+“ ΛD
+q pαpq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+20
+Remark 6.3. Since every simple pp, qq-atom is locally supported, by Corollary 4.2, we conclude
+that for 0 ă p ă 1 ď q ď 8 or p “ 1, 1 ă q ď 8
+Hp,q
+at,Dpµq “ Hp,8
+at,Dpµq.
+Thus we are only concerned with Hp
+at,Dpµq :“ Hp,8
+at,Dpµq.
+Proposition 6.4. For 0 ă p ⩽ 1, the martingale Hardy spaces defined above are mutually
+equivalent. Namely, Hp
+Dpµq “ Hp
+m,Dpµq “ hp
+Dpµq “ Hp
+at,Dpµq.
+Proof. Let p P p0, 1s be fixed. First, we show Hp
+Dpµq “ Hp
+m,Dpµq. Suppose that f P Hp
+m,Dpµq.
+Then for any n ą 0, by a well-known inequality of Burkholder–Davis–Gundy,
+ˆ
+Ω
+˜
+|f´n|2 `
+nÿ
+k“´n`1
+|dkf|2
+¸ p
+2
+dµ ≲
+ˆ
+Ω
+sup
+´nďkďn
+|fk|pdµ ≲
+ˆ
+Ω
+pf ˚qpdµ
+which yields by letting n Ñ 8 and by Fatou’s lemma
+}Spfq}p ≲ }f ˚}p.
+Thus Hp
+m,Dpµq Ă Hp
+Dpµq.
+Conversely, if f P Hp
+Dpµq, then for n ą 0,
+ˆ
+Ω
+sup
+´nďkďn
+|fk|pdµ ≲
+ˆ
+Ω
+˜
+|f´n|2 `
+n
+ÿ
+k“´n`1
+|dkf|2
+¸ p
+2
+dµ,
+and hence
+(6.7)
+ˆ
+Ω
+sup
+´nďkďn
+|fk|pdµ ≲
+ˆ
+Ω
+sup
+kď´n
+|fk|pdµ `
+ˆ
+Ω
+|Spfq|pdµ ă 8.
+Then by letting n Ñ 8 and applying Fatou’s lemma, we obtain }f ˚}p ă 8 and
+}f ˚}p ≲ }Spfq}p.
+Therefore, Hp
+Dpµq Ă Hp
+m,Dpµq and Hp
+m,Dpµq “ Hp
+Dpµq.
+One shows Hp
+m,Dpµq “ hp
+Dpµq in a completely analogous way. To show hp
+Dpµq “ Hp
+at,Dpµq, one
+can argue by mimicking the corresponding proof in [27] and [26]. We omit the details.
+□
+The following theorem can be found in [13] and ensures that there exist enough dyadic cubes
+to cover all balls on homogeneous spaces.
+Theorem 6.5. Given a set of reference points tzk
+αu, k P Z, α P Ak, suppose that there exists
+constant δ P p0, 1q that satisfies 96A6
+0δ ⩽ 1. Then there exists a finite collection of families
+Dt, t “ 1, 2, ¨ ¨ ¨ , K “ KpA0, A1, δq ă 8, where each Dt is a collection of dyadic cubes, associated
+to dyadic points tzk
+αu, k P Z, α P Ak, with the properties (6.1)-(6.5) in Theorem 6.1.
+In addition, the following property is satisfied:
+(6.8)
+for every Bpx, rq Ď Ω, there exist t and Q P Dt with Bpx, rq Ď Q and diampQq ⩽ Cr.
+The constant C ă 8 in (6.8) only depends on the quasi-metric constant A0 and the parameter
+δ.
+By virtue of Proposition 6.4 and Theorem 6.5, we have the following theorem, which extends
+Mei’s result in [17].
+Theorem 6.6. For 0 ă p ⩽ 1, we have
+(6.9)
+Hp
+atpµq “
+K
+ÿ
+t“1
+Hp
+at,Dtpµq “
+K
+ÿ
+t“1
+Hp
+Dtpµq “
+K
+ÿ
+t“1
+Hp
+m,Dtpµq “
+K
+ÿ
+t“1
+hp
+Dtpµq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+21
+Proof. Let p P p0, 1s be fixed. In view of Proposition 6.4, it suffices to show Hp
+atpµq “
+Kř
+t“1
+Hp
+at,Dtpµq.
+We prove it via comparing the atoms. Let a be a pp, 8q-atom in Hp
+atpµq. Then there exists a
+ball B such that
+supppaq Ă B, }a}8 ⩽ pµpBqq´ 1
+p ,
+ˆ
+B
+apxqdµ “ 0.
+By Theorem 6.5, there exist t and a cube Q P Dt such that B Ă Q, and µpQq ≲ µpBq. Then
+supppaq Ă B Ă Q, }a}8 ⩽ pµpBqq´ 1
+p ≲ pµpQqq´ 1
+p ,
+ˆ
+Q
+adµ “ 0,
+which implies that a is a constant multiple of a simple pp, 8q-atom in Hp
+at,Dtpµq. Thus
+(6.10)
+Hp
+atpµq Ă
+K
+ÿ
+t“1
+Hp
+at,Dtpµq.
+For any t “ 1, 2, ¨ ¨ ¨ , K and for any given simple pp, 8q-atom b in Hp
+at,Dtpµq, there exists
+Q P Dt such that
+supppbq Ă Q, }b}8 ⩽ pµpQqq´ 1
+p ,
+ˆ
+Q
+bdµ “ 0.
+By Theorem 6.1, there exists a ball B such that Q Ă B and µpQq ≳ µpBq. Hence
+supppbq Ă Q Ă B, }b}8 ⩽ pµpQqq´ 1
+p ≲ pµpBqq´ 1
+p ,
+ˆ
+B
+bdµ “ 0,
+which implies that a multiple of b is also a pp, 8q-atom in Hp
+atpµq, thus
+(6.11)
+K
+ÿ
+t“1
+Hp
+at,Dtpµq Ă Hp
+atpµq.
+To complete the proof of the theorem, combine (6.10) and (6.11).
+□
+Remark 6.7. Theorem 5.5 follows immediately from Corollary 4.2, Proposition 6.4 and Theorem
+6.6, which simplifies the original proof by Coifman and Weiss in [7].
+By duality and Theorem 6.6, we recover the following result of [13], which is an extension of
+a result due to Mei [17]:
+(6.12)
+BMOpµq “
+K
+č
+t“1
+BMODtpµq.
+We will now establish an analogous result for Lαppµq p0 ă p ă 1q.
+Theorem 6.8. For 0 ă p ă 1,
+Lαppµq “
+K
+č
+t“1
+ΛDt
+2 pαpq.
+Proof. By Theorem 6.1, for any Q P Dt (and t “ 1, 2, ¨ ¨ ¨ , K), there exists a ball B such that
+Q Ă B and µpBq ≲ µpQq. If f P Lαppµq, then for any x, y P Q, we have
+|fpxq ´ fpyq| ď }f}LαppµqµpBqαp ≲ }f}LαppµqµpQqαp.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+22
+We thus have
+}f}ΛDt
+2
+pαpq ď sup
+QPDt pµpQqq´ 1
+2 ´αp
+˜
+µpQq´2
+ˆ
+Q
+ˆˆ
+Q
+|fpxq ´ fpyq|dµpyq
+˙2
+dµpxq
+¸ 1
+2
+⩽ sup
+QPDt pµpQqq´ 1
+2 ´αp
+ˆˆ
+Q
+}f}2
+Lαppµqµ pQq2αp dµ
+˙ 1
+2
+≲ }f}Lαppµq,
+which yields
+(6.13)
+Lαppµq Ă
+K
+č
+t“1
+ΛDt
+2 pαpq.
+Conversely, let f P
+KŞ
+t“1
+ΛDt
+2 pαpq. For Q P Dt, by Theorem 4.4,
+|fpxq ´ fQ| ≲ µpQqαp}f}ΛDt
+2
+pαpq
+@x P Q,
+which implies that for any x, y P Q,
+(6.14)
+|fpxq ´ fpyq| ≲ µpQqαp}f}ΛDt
+2
+pαpq.
+For any ball B Ă Ω, by Theorem 6.5, there exist t and Q P Dt such that B Ă Q and
+µpQq ≲ µpBq. Then for any x, y P B, by (6.14)
+|fpxq ´ fpyq| ≲ µpBqαp}f}ΛDt
+2
+pαpq.
+Thus
+}f}Lαp ≲
+K
+ÿ
+t“1
+}f}ΛDt
+2
+pαpq,
+which implies
+(6.15)
+K
+č
+t“1
+ΛDt
+2 pαpq Ă Lαppµq.
+The theorem follows from (6.13) and (6.15).
+□
+Remark 6.9. Theorem 6.6 and Theorem 6.8 give a simple proof of Theorem 5.6 originally estab-
+lished by Coifman and Weiss [7]:
+pHp
+atpµqq˚ “
+˜ K
+ÿ
+t“1
+Hp
+at,Dtpµq
+¸˚
+“
+K
+č
+t“1
+pHp
+at,Dtpµqq˚ “
+K
+č
+t“1
+ΛDt
+2 pαpq “ Lαppµq.
+7. Bilinear decompositions for dyadic martingales on homogeneous spaces
+In this section, we focus on bilinear decompositions arising in the study of products between
+elements in spaces of dyadic martingales on homogeneous spaces introduced in the previous
+section. In the setting of homogeneous spaces, due to their quasi-metrics and measures, the
+dyadic martingales behave worse than martingales in probability spaces and the underlying
+analysis is more intricate.
+In §7.1 we prove appropriate generalized H¨older-type inequalities on homogeneous spaces (see
+Lemmas 7.2 and 7.4 below). We then introduce a class of pointwise multipliers of ΛD
+1,`pαpq and
+BMODpµq; see Theorem 7.5 below. Using Theorem 7.5, we define products between dyadic
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+23
+martingale Hardy spaces on homogeneous spaces and their duals and then, in §7.2 we establish
+analogues of the results of Sections 3 and 4 in the setting of homogeneous spaces.
+7.1. A generalized H¨older-type inequality. Let 0 ă p ď 1 and D be a dyadic system,
+constructed as in Theorem 6.1. The martingale Musielak–Orlicz Hardy spaces HΨp
+D pµq consist
+of all measurable functions f on pΩ, F, µq such that spfq P LΨppΩq where O P Ω is a fixed point,
+and
+Ψ1px, tq :“
+t
+log pe ` dpx, Oqq ` logpe ` tq,
+Ψppx, tq :“
+t
+1 ` ttr1 ` µpBpO, dpx, Oqqqsu1´p
+p0 ă p ă 1q.
+Note that LΨppΩq is a quasi-normed space.
+Let M :“ pCµ ` 1q log pe ` dpx, Oqq. By (2.5) we obtain
+(7.1)
+Ψ1px, stq ≲ pe ` dpx, Oqq´pCµ`1qet ` s ≲ wpxqet ` s,
+for all x P Ω, s, t ą 0,
+where w : Ω Ñ R` is a weight function with
+(7.2)
+wpxq ≲ min
+!
+1, dpx, Oq´pCµ`1q)
+.
+Let Q0 P F0 be the dyadic cube such that O P Q0. For g P BMODpµq, define
+}g}BMOD
+`pµq :“ sup
+αPA0
+|gQ0α ´ gQ0|
+log pe ` dpz0α, Oqq ` |gQ0| ` }g}BMODpµq,
+where Q0
+α P F0 is a dyadic cube with its center z0
+α and A0 is the index set in Theorem 6.1.
+Denote by BMOD
+`pµq the space consisting of all g P BMODpµq such that }g}BMOD
+`pµq ă 8. It
+is not difficult to verify that } ¨ }BMOD
+` pµq is a norm on BMOD
+`pµq.
+Remark 7.1. If we consider the dyadic martingales on Rn, by taking appropriate cubes Q0
+one shows that if g P BMODpµq, then g P BMOD
+`pµq. Note that if g P BMOpµq, then g P
+BMOD
+`pµq. Moreover,
+}g}BMOD
+`pµq ≲ }g}BMOpµq ` |gQ0|.
+We now introduce the following generalized H¨older inequality for L1pΩ, F, µq and BMOD
+`pµq.
+Lemma 7.2. If f P L1pΩ, F, µq and g P BMOD
+`pµq, then f ¨ g P LΨ1pΩq. Moreover,
+(7.3)
+}fg}LΨ1pΩq ≲ }f}1}g}BMOD
+`pµq.
+Proof. Without loss of generality, assume }f}1 ď 1, }g}BMOD
+` pµq ď 1 and gQ0 “ 0. It suffices to
+show that
+ˆ
+Ω
+Ψ1px, |fpxqgpxq|qdµ ≲ 1.
+Let Sk :“ BpO, C0δkqzBpO, C0δk`1q for k ă 0 and S0 :“ BpO, C0q, where δ P p0, 1q is the
+constant in Theorem 6.1. Then for each k ď 0, there exists a finite index subset Bk Ă A0 such
+that BpO, C0δkq Ă Ť
+αPBk
+Q0
+α (where Q0
+α P F0) and
+ÿ
+αPBk
+µ
+`
+Q0
+α
+˘
+“ µ
+˜ ď
+αPBk
+Q0
+α
+¸
+ď µ
+`
+BpO, 2A0C0δkq
+˘
+≲ δCµk.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+24
+Take s “ ν´1|fpxq|, t “ ν|gpxq| in (7.1), one has
+ˆ
+Ω
+Ψ1px, |fpxqgpxq|qdµ “
+0ÿ
+k“´8
+ÿ
+αPBk
+ˆ
+SkXQ0α
+Ψ1px, |fpxqgpxq|qdµ
+≲
+0ÿ
+k“´8
+ÿ
+αPBk
+ˆ
+SkXQ0
+α
+wpxqeν|gpxq|dµ ` ν´1}f}1.
+Therefore,
+(7.4)
+ˆ
+Ω
+Ψ1px, |fpxqgpxq|qdµ ≲ T1 ` ν´1}f}1,
+where
+T1 :“
+0ÿ
+k“´8
+ÿ
+αPBk
+ˆ
+SkXQ0
+α
+wpxqeν
+ˇˇˇgpxq´gQ0α
+ˇˇˇeν
+ˇˇˇgQ0α
+ˇˇˇdµ.
+Let ν :“ mintκ,1u
+2
+ą 0 (where κ is defined in Theorem 2.11), by (7.2) and Theorem 4.1, one
+has
+T1 ≲
+0ÿ
+k“´8
+ÿ
+αPBk
+µpQ0
+αq
+`
+e ` dpz0
+α, Oq
+˘ 1
+2
+δpk`1qpCµ`1q
+≲
+0ÿ
+k“´8
+ÿ
+αPBk
+µpQ0
+αqδ
+k
+2
+δpk`1qpCµ`1q ≲
+0ÿ
+k“´8
+δCµkδ
+k
+2
+δCµk`k
+≲
+0ÿ
+k“´8
+δ´ 1
+2 k,
+and hence
+(7.5)
+T1 ≲ 1.
+Combine (7.4), (7.5) and the fact that ν´1}f}1 ≲ 1, and the proof is complete.
+□
+We consider the case 0 ă p ă 1. Define
+}g}ΛD
+1,`pαpq :“ sup
+αPA0
+|gQ0α ´ gQ0|
+1 ` µ tB pO, dpz0α, Oqquαp ` |gQ0| ` }g}ΛD
+1 pαpq,
+Denote by ΛD
+1,`pαpq the space consisting of all g P ΛD
+1 pαpq such that }g}ΛD
+1,`pαpq ă 8. It is easy
+to verify that } ¨ }ΛD
+1,`pαpq is a norm on ΛD
+1,`pαpq.
+Remark 7.3. If we consider the dyadic martingales on Rn, by taking appropriate cubes Q0 one
+can show that if g P ΛD
+1 pαpq, then g P ΛD
+1,`pαpq. Note that if g P Lαppµq, then g P ΛD
+1,`pαpq.
+Moreover,
+}g}ΛD
+1,`pαpq ≲ }g}Lαppµq ` |gQ0|.
+Next we present a generalized H¨older inequality for LppΩ, F, µq and ΛD
+1,`pαpq for 0 ă p ă 1.
+Lemma 7.4. If f P LppΩ, F, µq and g P ΛD
+1,`pαpq for 0 ă p ă 1, then f ¨ g P LΨppµq. Moreover,
+(7.6)
+}fg}LΨppΩq ≲ }f}p}g}ΛD
+1,`pαpq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+25
+Proof. Without loss of generality, assume }f}p ď 1, }g}ΛD
+1,`pαpq ď 1 and gQ0 “ 0. It suffices to
+show that
+ˆ
+Ω
+Ψppx, |fpxqgpxq|qdµ ≲ 1.
+Take the same family of sets tSkukď0 as above. From Theorem 4.4, we know that for x P Q0
+α,
+|gpxq| “ |gpxq ´ gQ0| ⩽
+ˇˇgpxq ´ gQ0α
+ˇˇ `
+ˇˇgQ0α ´ gQ0
+ˇˇ
+ď
+`
+µpQ0
+αq
+˘αp ` µ
+␣
+B
+`
+O, dpz0
+α, Oq
+˘(αp ` 1
+≲ µ
+`
+BpO, 2A0C0δkq
+˘αp ` 1.
+Therefore
+ˆ
+Ω
+Ψppx, |fpxqgpxq|qdµ “
+0ÿ
+k“´8
+ÿ
+αPBk
+ˆ
+SkXQ0α
+|gpxq||fpxq|
+1 ` t|gpxq||fpxq| r1 ` µ pBpO, dpx, Oqqsu1´p dµ
+≲
+0ÿ
+k“´8
+ÿ
+αPBk
+ˆ
+SkXQ0α
+|gpxq|p|fpxq|p
+1 ` µ pBpO, dpx, Oqq1´p dµ
+≲
+0ÿ
+k“´8
+ÿ
+αPBk
+ˆ
+SkXQ0α
+µ
+`
+BpO, 2A0C0δkq
+˘αpp ` 1
+t1 ` µ pBpO, C0δk`1qu1´p |fpxq|pdµ
+≲ 1,
+which finishes the proof.
+□
+We are now about to present the analogues of the results in Sections 3 and 4 concerning
+bilinear decompositions for dyadic martingales on homogeneous spaces. To this end, we need
+to define the product between martingale Hardy spaces and their dual spaces first. As in the
+probability setting, we regard the product in the sense of distribution as follows: for 0 ă p ă 1,
+xf ˆ g, hy :“ xh ¨ g, fy,
+f P Hp
+at,Dpµq, g P ΛD
+1,`pαpq,
+where h is a test function such that h ¨ g is in ΛD
+1,`pαpq. For p “ 1, we may define the product
+between H1
+at,Dpµq and BMODpµq analogously. To this end, we need to introduce some pointwise
+multipliers of ΛD
+1,`pαpq and BMODpµq.
+Denote the space of test functions by Hpαpq p0 ă p ď 1q, and a measurable function h is a
+test function if it satisfies the following properties:
+(7.7)
+|hpxq| ≲
+1
+p1 ` µpBpO, dpx, Oqqqαpq logpe ` dpx, Oqq,
+@x P Ω,
+and
+(7.8)
+|hpyq ´ hpzq| ≲
+µpBqαp
+p1 ` µrBpO, 1 ` r ` dpcB, Oqqsαpq logpe ` r ` dpcB, Oqq
+whenever y, z are both contained in a ball B with center cB and radius r ď dpcB,Oq
+2A0
+` 1.
+It is obvious that Hpαpq Ă L8pΩq. The following theorem shows that if h P Hpαpq, then h is
+a pointwise multiplier of ΛD
+1,`pαpq.
+Theorem 7.5. For 0 ă p ă 1 and any dyadic system D, Hpαpq is a space of pointwise multipliers
+of ΛD
+1,`pαpq. For p “ 1, Hp0q is a space of pointwise multipliers of BMOD
+`pµq. More precisely,
+for any g P ΛD
+1,`pαpq and h P Hpαpq, we have
+}g ¨ h}ΛD
+1,`pαpq ≲ }g}ΛD
+1,`pαpq
+`
+}h}L8pΩq ` 1
+˘
+,
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+26
+and for any g P BMOD
+`pµq and h P Hp0q, we have
+}g ¨ h}BMOD
+` pµq ≲ }g}BMOD
+`pµq
+`
+}h}L8pΩq ` 1
+˘
+.
+Proof. First, we consider the case 0 ă p ă 1.
+Assume that g P ΛD
+1,`pαpq and h P Hpαpq.
+According to [20], it suffices to show that
+(7.9)
+sup
+Q
+|gQ|
+µpQqαp`1
+ˆˆ
+Q
+|hpxq ´ hQ|dx
+˙
+ă 8,
+where Q runs over all dyadic cubes in D.
+If Q Ă Q0
+β for some β P A0, there exists a collection of cubes Q “ Q0 Ă Q1 Ă ¨ ¨ ¨ Ă QN “ Q0
+β
+such that there exists a universal constant 0 ă δ
+1 ă 1 with µpQk´1q ď δ
+1µpQkq. Hence
+|gQ ´ gQ0
+β| ď
+N
+ÿ
+k“1
+|gQk ´ gQk´1| ≲
+N
+ÿ
+k“1
+µpQkqαp}g}ΛD
+1,`pαpq
+≲ }g}ΛD
+1,`pαpq
+N
+ÿ
+k“1
+ˆ µpQkq
+µpQk´1q
+tαp´1dt
+≲ µpQ0
+βqαp}g}ΛD
+1,`pαpq.
+Similarly, if Q0
+β Ă Q, we have
+|gQ ´ gQ0
+β| ≲ µpQqαp}g}ΛD
+1,`pαpq.
+By Theorem 6.1, there exists a ball B, with center cB and radius r, such that Q Ă B and
+µpBq ≲ µpQq.
+If Q0
+β Ă Q and r ą
+dpO,cBq
+2A0
+` 1, for any x P BpO, rq, we have dpcB, xq ď A0pdpcB, Oq `
+dpO, xqq ă p2A2
+0 ` A0qr. Then µpQq ≳ µpBq ≳ C´p2A2
+0`A0q
+µ
+µ pBpO, rqq ≳ 1. Similarly, we also
+have dpz0
+β, Oq ă p2A2
+0 ` A0qr and µ
+!
+B
+´
+O, dpz0
+β, Oq
+¯)
+≲ µpBq ≲ µpQq. Thus
+|gQ|
+µpQqαp`1
+ˆˆ
+Q
+|hpxq ´ hQ|dx
+˙
+≲
+|gQ ´ gQ0
+β| ` |gQ0
+β ´ gQ0| ` |gQ0|
+µpQqαp
+¨ }h}L8pΩq
+≲
+µpQqαp ` µ
+!
+B
+´
+O, dpz0
+β, Oq
+¯)αp
+` 1
+µpQqαp
+¨ }g}ΛD
+1,`pαpq}h}L8pΩq
+≲ }g}ΛD
+1,`pαpq}h}L8pΩq.
+If Q0
+β Ă Q and r ď dpO,cBq
+2A0
+` 1, for any x P B, we have dpx, Oq ď A0pdpO, cBq ` rq, then
+µpQq ≲ µ pBpO, A0pdpO, cBq ` rqq. Thus
+|gQ|
+µpQqαp`1
+ˆˆ
+Q
+|hpxq ´ hQ|dx
+˙
+≲
+|gQ ´ gQ0
+β| ` |gQ0
+β ´ gQ0| ` |gQ0|
+µpQqαp`1
+µpBqαp`1
+p1 ` µrBpO, 1 ` r ` dpO, cBqqsqαp
+≲
+´
+µpQqαp ` µ
+!
+B
+´
+O, dpz0
+β, Oq
+¯)αp
+` 1
+¯
+}g}ΛD
+1,`pαpq
+p1 ` µrBpO, 1 ` r ` dpO, cBqqsqαp
+≲ }g}ΛD
+1,`pαpq.
+If Q Ă Q0
+β, from Theorem 6.1, we can choose C0 sufficiently small such that C1 “ 2A0C0 ď 1,
+then r ď C1 ď dpcB,Oq
+2A0
+` 1. For any x P Q0
+β, we have dpO, xq ď A0pdpO, z0
+βq ` C1q. Then
+µpQ0
+βq ≲ µ
+␣
+B
+`
+O, A0pdpO, z0
+βq ` C1q
+˘(
+.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+27
+By a calculation similar to the one presented above, we get the desired result.
+Combining the above estimates, we finish our proof for 0 ă p ă 1. The case for p “ 1 is
+similar.
+□
+Remark 7.6. Note that in Theorem 7.5, the dyadic system D is arbitrary. Then from Theorem
+6.8 and (6.12), we conclude that Hpαpq is a space of pointwise multipliers of Lαppµq and Hp0q is
+a space of pointwise multipliers of BMOpµq.
+7.2. Bilinear decompositions. Assume f P H1
+Dpµq, g P BMOD
+`pµq or f P Hp
+Dpµq, g P ΛD
+1,`pαpq,
+0 ă p ă 1.
+Denote by Hp
+D,finpµq p0 ă p ď 1q the linear space consisting of all functions which can be
+written as a finite sum of simple pp, 8q-atoms. Thus if f P Hp
+D,finpµq, f is locally supported,
+f P L1pΩq X L8pΩq and
+´
+Ω fdµ “ 0. Note that Hp
+D,finpµq is dense in Hp
+Dpµq with respect to the
+norm } ¨ }Hp
+Dpµq.
+In the following, we shall only consider the case where f P Hp
+D,finpµq. Then f ¨ g P L1pΩq, and
+we can write
+(7.10)
+f ¨ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq,
+where
+Π1pf, gq :“
+8
+ÿ
+k“1
+dkfdkg,
+Π2pf, gq :“
+8
+ÿ
+k“1
+fk´1dkg
+and
+Π3pf, gq :“
+8
+ÿ
+k“1
+gk´1dkf.
+Theorem 7.7. We have the following:
+(1) Π1 is a bilinear bounded operator from H1
+Dpµq ˆ BMOD
+`pµq to L1pΩq, and
+when 0 ă p ă 1, Π1 is a bilinear bounded operator from Hp
+Dpµq ˆ ΛD
+1,`pαpq to L1pΩq.
+(2) Π2 is a bilinear bounded operator from H1
+Dpµq ˆ BMOD
+`pµq to H1
+Dpµq, and
+when 0 ă p ă 1, Π2 is a bilinear bounded operator from Hp
+Dpµq ˆ ΛD
+1,`pαpq to H1
+Dpµq.
+(3) Π3 is a bilinear bounded operator from H1
+Dpµq ˆ BMOD
+`pµq to HΨ1
+D pµq, and
+when 0 ă p ă 1, Π3 is a bilinear bounded operator from Hp
+Dpµq ˆ ΛD
+1,`pαpq to HΨp
+D pµq.
+Proof. For Π1 and Π2, we can argue as in the corresponding part of the proof of Theorem 1.1.
+As for Π3, we can also argue as in the corresponding part of the proof Theorem 1.1, where in the
+homogeneous setting one needs to apply Lemma 7.2 and Lemma 7.4. We omit the details.
+□
+Remark 7.8. For Π1 and Π2, the condition H1
+Dpµq ˆ BMOD
+`pµq and Hp
+Dpµq ˆ ΛD
+1,`pαpq can be
+in fact replaced by H1
+Dpµq ˆ BMODpµq and Hp
+Dpµq ˆ ΛD
+1 pαpq, respectively.
+8. Applications to Homogeneous spaces
+In the first part of this section we show that HΨp
+D pµq admits an atomic decomposition for
+0 ă p ă 1, which allows us to integrate several adjacent dyadic systems on homogeneous spaces.
+For a given dyadic system D on Ω, we define the dyadic HΨp
+at,D-atom as follows.
+Definition 8.1. A measurable function a is said to be an HΨp
+at,D-atom if
+(i) supppaq Ă Q where Q P D is a cube;
+(ii) ´
+Ω adµ “ 0;
+(iii) }a}8 ⩽ }1Q}´1
+LΨppΩq.
+The atomic dyadic martingale Musielak–Orlicz Hardy spaces HΨp
+at,Dpµq p0 ă p ă 1q are defined
+in a way analogous to (5.5) and (5.6). We first introduce the space BMOD
+Ψppµq, which is a
+subspace of continuous linear functionals on finite sums of atoms.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+28
+Definition 8.2. A locally integrable function g is said to be a dyadic BMOD
+Ψppµq function
+associated with a dyadic system D if
+}g}BMOD
+Ψppµq :“ sup
+kPZ
+sup
+QPFk
+1
+}1Q}LΨppΩq
+ˆ
+Q
+|gpxq ´ gkpxq|dx ă 8.
+Then we define the atomic Musielak–Orlicz martingale Hardy spaces HΨp
+at,Dpµq as follows:
+HΨp
+at,Dpµq :“
+#
+f P
+´
+BMOD
+Ψppµq
+¯˚
+: f “
+8
+ÿ
+i“0
+λiai, where ai is an HΨp
+at,Dpµq-atom supported on a cube Qi.
++
+,
+where
+8
+ÿ
+i“0
+ˆ
+Qi
+Ψppx, |λi|}ai}8qdµ ă 8.
+Moreover,
+}f}H
+Ψp
+at,Dpµq :“ inf
+#
+ρ ą 0 :
+8
+ÿ
+i“0
+ˆ
+Qi
+Ψppx, ρ´1|λi|}ai}8qdµ ⩽ 1
++
+Arguing as in [28], one can show that for 0 ă p ă 1
+(8.1)
+HΨp
+D pµq “ HΨp
+at,Dpµq.
+We shall now introduce the atomic Musielak–Orlicz Hardy spaces HΨp
+at pµq p0 ă p ď 1q on the
+homogeneous space Ω. First, we present the definition of atoms for HΨp
+at pµq.
+Definition 8.3. A measurable function apxq is said to be an HΨp
+at pµq-atom if
+(i) supppaq Ă B where B Ă Ω is a ball;
+(ii)
+´
+Ω adµ “ 0;
+(iii) }a}8 ⩽ }1B}´1
+LΨppΩq.
+Definition 8.4. A locally integrable function g is said to be a BMOΨppµq function if
+}g}BMOΨppµq :“ sup
+B
+1
+}1B}LΨppΩq
+ˆ
+B
+|gpxq ´ gB|dx ă 8,
+where B runs over all balls in Ω.
+Definition 8.5. The atomic Musielak–Orlicz Hardy spaces HΨp
+at pµq p0 ă p ď 1q are defined as
+follows:
+HΨp
+at pµq :“
+#
+f P
+`
+BMOΨppµq
+˘˚ : f “
+8
+ÿ
+i“0
+λiai, where ai is an HΨp
+at pµq-atom supported on a ball Bi
++
+,
+where
+8
+ÿ
+i“0
+ˆ
+Bi
+Ψppx, |λi|}ai}8qdµ ă 8.
+Moreover,
+}f}H
+Ψp
+at pµq :“ inf
+#
+ρ ą 0 :
+8
+ÿ
+i“0
+ˆ
+Bi
+Ψppx, ρ´1|λi|}ai}8qdµ ⩽ 1
++
+.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+29
+Let Dt p1 ď t ď Kq be the adjacent systems of Theorem 6.5. By arguing as in the proof of
+Theorem 6.6, we have the following:
+Lemma 8.6. For 0 ă p ă 1, HΨp
+at pµq “ HΨp
+at,D1pµq ` HΨp
+at,D2pµq ` ¨ ¨ ¨ ` HΨp
+at,DKpµq.
+Proof. It suffices to show that any dyadic HΨp
+Dt -atom a is a constant multiple of an HΨppµq-atom,
+and any HΨppµq-atom b is a constant multiple of a dyadic HΨp
+Dt -atom.
+If B :“ Bpx0, rq, then denote the ball Bpx0, Drq by DB for D ě 1. Denote d :“ dpx0, Oq.
+In what follows, CpD, p, A0, Cµq denotes a constant that depends on D, p, A0, Cµ and may differ
+from line to line. We first show that if
+ˆ
+B
+1
+1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq “ 1,
+then
+(8.2)
+ˆ
+DB
+1
+1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ CpD, p, A0, Cµq.
+Notice that
+1 “
+ˆ
+B
+1
+1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq
+⩾
+µpBq
+sup
+xPB
+t1 ` r1 ` µpBpO, dpx, Oqqqs1´pu
+⩾
+µpBq
+1 ` r1 ` µpBpO, A0pd ` rqqqs1´p ,
+which implies
+µpBq ⩽ 1 ` r1 ` µpBpO, A0pd ` rqqqs1´p.
+If d ⩽ 2A0Dr, we have
+µpBq ⩽ 1 ` r1 ` µpBpO, A0p2A0D ` 1qrqqs1´p
+⩽ 1 ` t1 ` µrBpx0, A0pA0 ` 1qp2A0D ` 1qrqsu1´p
+⩽ 1 `
+!
+1 ` rA0pA0 ` 1qp2A0D ` 1qsCµ µpBq
+)1´p
+,
+and thus µpBq ⩽ CpD, p, A0, Cµq.
+Then
+(8.3)
+ˆ
+DB
+1
+1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ µpDBq ⩽ DCµµpBq ⩽ CpD, p, A0, Cµq.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+30
+If d ą 2A0Dr, then
+ˆ
+DB
+1
+1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq
+⩽
+µpDBq
+inf
+xPDB t1 ` r1 ` µpBpO, dpx, Oqqqs1´pu
+⩽
+DCµµpBq
+1 ` r1 ` µpBpO, d{A0 ´ Drqqs1´p ,
+⩽DCµ t1 ` µrB pO, rA0 ` 1{p2Dqsdqsu1´p ` DCµ
+1 ` t1 ` µrBpO, d{p2A0qqsu1´p
+⩽
+DCµ
+!
+1 ` rp2A0 ` 1{DqA0sCµ µrBpO, d{p2A0qqs
+)1´p
+1 ` t1 ` µrBpO, d{p2A0qqsu1´p
+` DCµ.
+Hence
+(8.4)
+ˆ
+DB
+1
+1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ CpD, p, A0, Cµq
+Combining (8.3) with (8.4), we get (8.2).
+Assume a is an HΨppµq-atom supported on B. By Theorem 6.5, there exist t and a cube
+Q P Dt such that B Ă Q and diampQq ⩽ Cr, hence B Ă Q Ă CB.
+Note that supppaq Ă Q,
+´
+Q apxqdµpxq “ 0 and
+}1Q}LΨppµq ⩽ }1CB}LΨppµq ⩽ CpC, p, A0, Cµq}1B}LΨppµq,
+which follows from (8.2). Thus
+}a}8 ⩽ }1B}´1
+LΨppµq ≲ }1Q}´1
+LΨppµq,
+which implies a is a multiple of dyadic HΨp
+Dt -atom supported on Q.
+For any t “ 1, 2 ¨ ¨ ¨ , K, assume b is a dyadic HΨp
+Dt -atom supported on Qk
+β. By Theorem 6.1,
+there exists two balls such that Bpzk
+β, c1δkq Ă Qk
+β Ă Bpzk
+β, C1δkq.
+Thus supppbq Ă Bpzk
+β, C1δkq,
+´
+Bpzk
+β,C1δkq bpxqdµpxq “ 0 and
+}1Bpzk
+β,C1δkq}LΨppµq ⩽ C
+ˆC1
+c1
+, p, A0, Cµ
+˙
+}1Bpzk
+β,c1δkq}LΨppµq ≲ }1Qk
+β}LΨppµq,
+which follows from (8.2). Therefore,
+}b}8 ⩽ }1Qk
+β}´1
+LΨppµq ≲ }1Bpzk
+β,C1δkq}´1
+LΨppµq,
+which implies b is a multiple of dyadic HΨp-atom supported on Bpzk
+β, C1δkq.
+□
+Remark 8.7. In [11], Fu, Ma and Yang defined another kind of Musielak–Orlicz Hardy spaces
+by grand maximal function and they also proved that these Musielak–Orlicz Hardy spaces are
+equivalent to HΨp
+at pµq with respect to the corresponding norms when p P p
+Cµ
+Cµ`1, 1s.
+Let B1 :“ BpO, 1q. Define
+}g}BMO`pµq :“ |gB1| ` }g}BMOpµq,
+for g P BMOpµq,
+and
+}g}L`,αpµq :“ |gB1| ` }g}Lαppµq,
+for g P Lαppµq.
+Thus } ¨ }BMO`pµq and } ¨ }L`,αppµq are quasi-norms on BMOpµq and Lαppµq, respectively.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+31
+Theorem 8.8. Let 0 ă p ă 1 and f P Hp
+atpµq. There exist three linear continuous operators
+Πf
+1 : Lαppµq Ñ L1pΩq, Πf
+2 : Lαppµq Ñ H1
+atpµq and Πf
+3 : Lαppµq Ñ HΨp
+at pµq such that
+f ¨ g “ Πf
+1pgq ` Πf
+2pgq ` Πf
+3pgq
+for all g P Lαppµq,
+where Lαppµq is endowed with the quasi-norm } ¨ }L`,αppµq.
+Proof. Let f P Hp
+atpµq. By Theorem 6.6 there exist f t P Hp
+Dtpµq pt “ 1, 2, ¨ ¨ ¨ , Kq such that
+f “ f 1 ` f 2 ` ¨ ¨ ¨ ` f K, and
+K
+ÿ
+t“1
+}f t}Hp
+Dtpµq « }f}Hp
+atpµq.
+Define Πf
+i pgq :“
+Kř
+t“1
+Πipf t, gq for i “ 1, 2, 3 and g P Lαppµq (Πi defined as in Theorem 7.7). Then
+f ¨ g “ Πf
+1pgq ` Πf
+2pgq ` Πf
+3pgq.
+By Theorem 7.7, Theorem 6.6 and Lemma 8.6, we have
+}Πf
+1pgq}1 ≲
+K
+ÿ
+t“1
+}Π1pf t, gq}1 ≲
+K
+ÿ
+t“1
+}f t}Hp
+Dt pµq}g}ΛDt
+1,`pαpq ≲ }f}Hp
+atpµq}g}L`,αppµq,
+}Πf
+2pgq}H1
+atpµq ≲
+K
+ÿ
+t“1
+}Π2pf t, gq}H1
+Dtpµq ≲
+K
+ÿ
+t“1
+}f t}Hp
+Dtpµq}g}ΛDt
+1,`pαpq ≲ }f}Hp
+atpµq}g}L`,αppµq,
+}Πf
+3pgq}H
+Ψp
+at pµq ≲
+K
+ÿ
+t“1
+}Π3pf t, gq}H
+Ψp
+Dt pµq ≲
+K
+ÿ
+t“1
+}f t}Hp
+Dtpµq}g}ΛDt
+1,`pαpq ≲ }f}Hp
+atpµq}g}L`,αppµq.
+which finishes the proof.
+□
+Remark 8.9. If the homogeneous space pΩ, µq satisfies the reverse doubling condition, then
+Lemma 8.6 holds for p “ 1. Then we conclude the following.
+Let f P H1
+atpµq.
+There exist three linear continuous operators Πf
+1 : BMOpµq Ñ L1pΩq,
+Πf
+2 : BMOpµq Ñ H1
+atpµq and Πf
+3 : BMOpµq Ñ HΨ1
+at pµq such that
+f ¨ g “ Πf
+1pgq ` Πf
+2pgq ` Πf
+3pgq
+for all g P BMOpµq,
+where BMOpµq is endowed with the norm } ¨ }BMO`pµq.
+Acknowledgments. We thank Professor Quanhua Xu for helpful discussions and suggestions.
+O.B. and Y.Z. would like to express their gratitude to Professor Xu for his kind invitation and
+hospitality during their visit to Besan¸con in March 2022.
+We would also like to thank Yong Jiao, Guangheng Xie, Dachun Yang, Dejian Zhou for
+personal communications on their work with us.
+References
+[1] P. Auscher and T. Hyt¨onen. Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl.
+Comput. Harmon. Anal. 34 (2013), no. 2, 266–296; Addendum to Orthonormal bases of regular wavelets in
+spaces of homogeneous type. Appl. Comput. Harmon. Anal. 39 (2015), no. 3, 568–569.
+[2] O. Bakas, S. Pott, S. Rodr´ıguez-L´opez and A. Sola. Notes on Hlog: structural properties, dyadic variants,
+and bilinear H1-BMO mappings. Ark. Mat. 60 (2022), no. 2, 231–275.
+[3] A. Bonami, J. Cao, L. D. Ky, L. Liu, D. Yang and W. Yuan. Multiplication between Hardy spaces and their
+dual spaces. J. Math. Pures Appl. (9) 131 (2019), 130–170.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+32
+[4] A. Bonami, S. Grellier and L. D. Ky. Paraproducts and products of functions in BMOpRnq and H1pRnq
+through wavelets. J. Math. Pures Appl. (9) 97 (2012), no. 3, 230–241.
+[5] A. Bonami, T. Iwaniec, P. Jones and M. Zinsmeister. On the product of functions in BMO and H1. Ann.
+Inst. Fourier (Grenoble) 57 (2007), no. 5, 1405–1439.
+[6] D. L. Burkholder. Martingale transforms. Ann. Math. Statist. 37 (1966), no. 6, 1494–1504.
+[7] R. R. Coifman and G. Weiss. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc,
+83 (1977), no. 4, 569–645
+[8] J. M. Conde-Alonso and J. Parcet. Atomic Blocks for Noncommutative Martingales. Indiana Univ. Math.
+J. 65 (2016), no. 4, 1425–1443.
+[9] B. Davis. On the integrability of the martingale square function. Israel J. Math. 8 (1970), 187–190.
+[10] C. Fefferman. Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc. 77 (1971), 587–588.
+[11] X. Fu, T. Ma, and D. Yang. Real-variable characterizations of Musielak-Orlicz Hardy spaces on spaces of
+homogeneous type. Ann. Acad. Sci. Fenn. Math. 45 (2020), no. 1, 343–410.
+[12] A. M. Garsia. Martingale inequalities: Seminar notes on recent progress. Mathematics Lecture Note Series.
+W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. viii+184 pp.
+[13] T. Hyt¨onen and A. Kairema. Systems of dyadic cubes in a doubling metric space. Colloq. Math.126 (2012),
+no. 1, 1–33.
+[14] Y. Jiao, G. Xie, D. Yang, D. Zhou. Bilinear decomposition for product of martingale Hardy space H1pΩq
+and martingale BMOpΩq. Manuscript.
+[15] L. Liu, D. Yang and W. Yuan. Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces
+of homogeneous type. Dissertationes Math. 533 (2018), 93 pp.
+[16] R. Long. Martingale spaces and inequalities. Peking University Press, Beijing; Friedr. Vieweg & Sohn,
+Braunschweig, 1993. iv+346 pp.
+[17] T. Mei. BMO is the intersection of two translates of dyadic BMO. C. R. Math. Acad. Sci. Paris, 336 (2003),
+no. 12, 1003–1006.
+[18] N. G. Meyers. Mean oscillation over cubes and H¨older continuity. Proc. Amer. Math. Soc., 15 (1964),
+717–721.
+[19] T. Miyamoto, E. Nakai and G. Sadasue. Martingale Orlicz-Hardy spaces. Math. Nachr. 285 (2012), no. 5-6,
+670–686.
+[20] E. Nakai. Pointwise multipliers on weighted BMO spaces. Studia Math. 125 (1997), no. 1, 35–56.
+[21] E. Nakai and G. Sadasue. Pointwise multipliers on martingale Campanato spaces. Studia Math. 220 (2014),
+no. 1, 87–100.
+[22] E. Nakai and K. Yabuta. Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc.
+Japan 37 (1985), no. 2, 207–218.
+[23] M. Perrin. A noncommutative Davis’ decomposition for martingales. J. Lond. Math. Soc. (2) 80 (2009), no.
+3, 627–648.
+[24] E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the
+assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis,
+III. Princeton University Press, Princeton, NJ, 1993. xiv+695 pp.
+[25] B. E. Viviani. An atomic decomposition of the predual of BMOpρq. Rev. Mat. Iberoamericana 3 (1987),
+no. 3-4, 401–425
+[26] F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics,
+1568. Springer-Verlag, Berlin, 1994. viii+218 pp.
+[27] F. Weisz. Martingale Hardy spaces for 0 ă p ď 1. Probab. Theory Related Fields 84 (1990), no. 3, 361–376.
+[28] G. Xie, Y. Jiao and D. Yang. Martingale Musielak-Orlicz Hardy spaces. Sci. China Math. 62 (2019), no. 8,
+1567–1584.
+[29] F. Xing, D. Yang and Y. Liang. Products of Functions in BMOpXq and H1
+atpXq via wavelets over spaces
+of homogeneous type. J. Fourier Anal. Appl. 23 (2017), no. 4, 919–990.
+[30] D. Yang, Y. Liang and L. D. Ky. Real-variable theory of Musielak-Orlicz Hardy spaces. Lecture Notes in
+Mathematics, 2182. Springer, Cham, 2017. xiii+466 pp.
+
+MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS
+33
+(O. Bakas) BCAM - Basque Center for Applied Mathematics, 48009 Bilbao, Spain
+Email address: obakas@bcamath.org
+(Z. Xu) Laboratoire de Math´ematiques, Universit´e de Bourgogne Franche-Comt´e, 25030 Besanc¸on
+Cedex, France
+Email address: xu.zhendong@univ-fcomte.fr
+(Y. Zhai) School of Mathematical and Statistical Sciences, Clemson University, 29634 South Car-
+olina, USA
+Email address: zhai@clemson.edu
+(H. Zhang) Laboratoire de Math´ematiques, Universit´e de Bourgogne Franche-Comt´e, 25030 Besanc¸on
+Cedex, France
+Email address: hao.zhang@univ-fcomte.fr
+
diff --git a/ZdFAT4oBgHgl3EQf4B4e/content/tmp_files/load_file.txt b/ZdFAT4oBgHgl3EQf4B4e/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b97f3b496f2d395ad351002ac7f1349e0f0e77cd
--- /dev/null
+++ b/ZdFAT4oBgHgl3EQf4B4e/content/tmp_files/load_file.txt
@@ -0,0 +1,1247 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf,len=1246
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='08723v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='FA] 20 Jan 2023 MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUAL SPACES ODYSSEAS BAKAS, ZHENDONG XU, YUJIA ZHAI, AND HAO ZHANG Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In this paper, we establish continuous bilinear decompositions that arise in the study of products between elements in martingale Hardy spaces Hp p0 ă p ⩽ 1q and func- tions in their dual spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Our decompositions are based on martingale paraproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' As a consequence of our work, we also obtain analogous results for dyadic martingales on spaces of homogeneous type equipped with a doubling measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Introduction The pointwise product of a function in the classical Hardy space H1pRnq and a function of bounded mean oscillation on Rn need not be in L1pRnq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' §6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2 in Chapter IV in [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' However, using Fefferman’s duality theorem [10] and the fact that the pointwise product of a BMO-function and a C8 0 -function is in BMOpRnq, Bonami, Iwaniec, Jones and Zinsmeister defined in [5] the product f ˆ g of a function f P H1pRnq and a function g P BMOpRnq as a distribution given by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) xf ˆ g, φy :“ xg ¨ φ, fy, φ P C8 0 pRnq, where in the right-hand side of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) the duality between f P H1pRnq and g ¨ φ P BMOpRnq is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, it is shown in [5] that for any fixed f P H1pRnq there exist two linear continuous operators Sf from BMOpRnq to L1pRnq and Tf from BMOpRnq to a weighted Hardy–Orlicz space such that f ˆ g “ Sfpgq ` Tfpgq for all g P BMOpRnq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see [5, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In [4], using wavelet analysis, Bonami, Grellier and Ky showed that there exist two bilinear continuous operators S from H1pRnq ˆ BMOpRnq to L1pRnq and T from H1pRnq ˆ BMOpRnq to HlogpRnq such that f ˆ g “ Spf, gq ` T pf, gq for all f P H1pRnq and for all g P BMOpRnq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see [4, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The Musielak Hardy–Orlicz space HlogpRnq is defined as the class consisting of all distributions h on Rn whose grand maximal function Mh satisfies ˆ Rn |Mhpxq| logpe ` |x|q ` logpe ` |Mhpxq|qdx ă 8 and is smaller than the weighted Hardy–Orlicz space appearing in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In fact, as explained in [5], in view of the results of Nakai and Yabuta [22] on pointwise multipliers of BMOpRnq and duality, the Musielak Hardy–Orlicz space HlogpRnq is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Primary: 47A07, 60G42, 60G46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Secondary: 42B30, 46E30, 46F10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Key words: Paraproducts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingales;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hardy–Orlicz spaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Musielak–Orlicz spaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Doubling spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bakas is partially supported by the projects CEX2021-001142-S, RYC2018-025477-I, PID2021-122156NB- I00/AEI/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13039/501100011033 funded by Agencia Estatal de Investigaci´on and acronym “HAMIP”, Juan de la Cierva Incorporaci´on IJC2020-043082-I and grant BERC 2022-2025 of the Basque Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Zhai acknowledges partial support from ERC project FAnFArE no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 637510 and the region Pays de la Loire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1 MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 2 In addition, continuous bilinear decomposition theorems for products of elements in HppRnq, for 0 ă p ă 1, and their dual spaces were established in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Using the theory of wavelets on spaces of homogeneous type, which was developed by Auscher and Hyt¨onen in [1], the aforementioned results have been extended to spaces of homogeneous type by Liu, Yang and Yuan [15] and Xing, Yang and Liang [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' More precisely, in [15] and [29], continuous bilinear decompositions for products between elements in atomic Hardy spaces Hp atpΩq (in the sense of Coifman and Weiss [7]) and their dual spaces were established in the case where p P p n n`1, 1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Here n is defined as the dimension of the homogeneous space Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Recently, in [2], a dyadic variant of the aforementioned results of Bonami, Grellier, and Ky was established;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see [2, Theorem 24], which in turn was used to deduce a periodic version of [4, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see [2, Theorem 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Motivated by [2], the first part of this article is concerned with the study of multiplication between Hardy spaces and their dual spaces for martingales on a probability space Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' More specifically, we study multiplications between functions in the martingale Hardy space H1pΩq and its dual space BMOpΩq as stated in our first result, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We also investigate the case 0 ă p ă 1, namely multiplication between elements in HppΩq and their dual spaces, the so-called martingale Lipschitz spaces Λ1pαpq with αp :“ 1 p ´ 1, see Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Since the dual space pHppΩqq˚ could be t0u for some irregular martingales, we shall only consider regular martingales where every σ´algebra Fk in the corresponding filtration is generated by countably many atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We would like to mention that Yong Jiao, Guangheng Xie, Dachun Yang, and Dejian Zhou have independently obtained Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, and derived from it interesting applications on the boundedness of operators involving commutators in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let pΩ, F, Pq be a probability space equipped with the filtration tFkukě1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' There exist continuous bilinear operators Π1 : H1pΩq ˆ BMOpΩq Ñ L1pΩq, Π2 : H1pΩq ˆ BMOpΩq Ñ H1pΩq and Π3 : H1pΩq ˆ BMOpΩq Ñ HΦpΩq such that f ¨ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq for all f P H1pΩq and g P BMOpΩq, where f ¨ g is in the sense of the pointwise multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, HΦpΩq is a martingale Hardy–Orlicz space defined in terms of the growth function Φptq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='15 and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall refer to the terms Π2pf, gq and Π3pf, gq as the martingale paraproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1 can be regarded as an extension of [2, Theorem 24] to the general case of mar- tingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1, if f P HppΩq, g P Λ1pαpq and f0 “ g0 “ 0, then their product can be regarded as a continuous linear functional on L8pΩq X Λ1pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To be more precise, for any h P L8pΩq X Λ1pαpq, define xf ˆ g, hy :“ xh ¨ g, fy, where in the right-hand side the duality between HppΩq and Λ1pαpq is invoked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that h ¨ g belongs to Λ1pαpq since h is a pointwise multiplier on Λ1pαpq (see [21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Our following theorem establishes a continuous bilinear decomposition for products between elements in HppΩq and functions in the dual space Λ1pαpq when 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let pΩ, F, Pq be a probability space equipped with the filtration tFkukě1, where Fk is generated by countably many atoms for any k ě 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If HppΩq p0 ă p ă 1q are martingale Hardy spaces, then there exist continuous bilinear operators Π1 : HppΩq ˆ Λ1pαpq Ñ L1pΩq, Π2 : HppΩq ˆ Λ1pαpq Ñ H1pΩq and Π3 : HppΩq ˆ Λ1pαpq Ñ HppΩq such that f ˆ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 3 for all f P HppΩq and g P Λ1pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In the second part of this paper, we study analogues of Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2 for the case of dyadic martingales on spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Such martingales were first constructed in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We investigate the corresponding martingale Hardy spaces and extend Mei’s results in [17] to this general setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Compared with the probability setting, the case of spaces of homogeneous type is more difficult to deal with since backward martingales arise, and the underlying measures on homogeneous spaces may be infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The present paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In section 2, we set down notation and give some background on martingale Hardy–Orlicz spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In section 3, we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In section 4, we present a characterization of martingale Lipschitz spaces Λ1pαpq, which is of independent interest (see Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4 and Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5 below), and then we show Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The remaining sections are concerned with spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For the convenience of the reader, in section 5, we recall some definitions and facts regarding Hardy spaces and Lipschitz spaces on spaces of homogeneous type in the sense of Coifman and Weiss [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In section 6, we give some new proofs of results in [7] based on martingale methods and the existence of dyadic martingales on homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In section 7, we establish analogues of Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2 for dyadic martingales on spaces of homogeneous type;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In the last section, we apply Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7 to obtain a decomposition of products of functions in Hardy spaces and their dual spaces on spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Notation and Background In this section, we provide some notation and background that will be used in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In several parts of this paper, we consider sums and intersections of quasi- normed vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For the convenience of the reader we recall these notions below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let pX1, } ¨ }X1q, pX2, } ¨ }X2q be two quasi-normed vector spaces and let X be a topological vector space X such that X1, X2 Ă X continuously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (1) pX1 X X2, } ¨ }X1Xx2q is the intersection of X1 and X2, where }x}X1XX2 :“ maxt}x}X1, }x}X2u for all x P X1 X X2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) pX1 ` X2, } ¨ }X1`X2q is the sum of X1 and X2, where }x}X1`X2 :“ inft}x1}X1 ` }x2}X2 : x “ x1 ` x2, x1 P X1, x2 P X2u for all x P X1 ` X2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For convenience, the sum X1 ` X2 ` ¨ ¨ ¨ ` Xn and the intersection X1 X X2 ` ¨ ¨ ¨ X Xn will also be denoted by nř k“1 Xk and Şn k“1 Xk, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that pX1 XX2, }¨}X1XX2q and pX1 `X2, }¨}X1`X2q are both quasi-normed vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, if pX1, } ¨ }X1q and pX2, } ¨ }X2q are Banach spaces, then pX1 X X2, } ¨ }X1XX2q and pX1 ` X2, } ¨ }X1`X2q are both Banach spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In this article we shall use the following standard notation: A ≲ B (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A ≲p B) means that A ď CB (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A ď CpB) for some absolute positive constant C (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' a positive constant Cp depending only on a parameter p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If A ≲ B and B ≲ A (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A ≲p B and B ≲p A), we write A « B (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A «p B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Throughout the paper, the terms “homogeneous spaces” and “spaces of homogeneous type” will be used interchangeably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Musielak–Orlicz-type spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall first recall some definitions and properties of Orlicz-type spaces and Musielak–Orlicz-type spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In what follows, pΩ, F, µq denotes a σ-finite measure space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A function Φ : r0, 8q Ñ r0, 8q is called an Orlicz function if it is strictly positive on p0, 8q, non-decreasing, unbounded and Φp0q “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A measurable function Ψ : Ω ˆ r0, 8q Ñ r0, 8q is called a Musielak–Orlicz function if for all x P Ω, Ψpx, ¨q is an Orlicz function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The Musielak–Orlicz-type space LΨpΩq is the set consisting of all measurable functions f on Ω such that ˆ Ω Ψpx, λ´1|fpxq|qdµ ă 8 for some λ ą 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We equip LΨpΩq with the Luxembourg quasi-norm }f}LΨpΩq :“ inf " λ ą 0 : ˆ Ω Ψpx, λ´1|fpxq|qdµ ⩽ 1 , f P LΨpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let p P R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A Musielak–Orlicz function is said to be of uniformly lower type (respectively, upper type) p if there exists a positive constant C such that Ψpx, stq ⩽ CspΨpx, tq for all x P Ω, t ⩾ 0 and s P p0, 1q (respectively, s P r1, 8q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In particular, if Ψ is of uniformly lower type p with 0 ă p ă 1 and of uniformly upper type 1 then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) Ψpx, ctq «c Ψpx, tq for all c ą 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In the sequel, Ψpx, tq is always assumed to be of uniformly lower type p with 0 ă p ă 1 and of uniformly upper type 1, and to be continuous in the t variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For more information on Musielak–Orlicz spaces, we refer the reader to [4] and [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let pΩ, F, Pq be a fixed probability space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Given a filtration which consists of a sequence of σ-algebras F1 Ă ¨ ¨ ¨ Ă Fk Ă ¨ ¨ ¨ Ă F such that σpY8 k“1Fkq “ F, for a random variable f P L1pΩ, F, Pq and k P N`, we set fk “ E pf | Fkq , dkf “ fk ´ fk´1, where we adopt the convention that f0 “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall also denote fk by Ekpfq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The sequence tfkukě0 is called the martingale of f, and tdkfukě1 is called the martingale difference of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If f and tfkukě0 are as above, we shall also write f “ tfkukě0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To simplify notation, we write LppΩq instead of LppΩ, F, Pq, 0 ă p ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If f, tfkukě0 and tdkfukě1 are as above, we define: (1) the maximal function f ˚ :“ sup k⩾0 |fk|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) the square function Spfq :“ ˜ 8 ÿ k“1 |dkf|2 ¸ 1 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (3) the conditional square function spfq :“ ˜ 8 ÿ k“1 Ek´1|dkf|2 ¸ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' There are several types of martingale Hardy spaces, which are defined in terms of maximal functions, square functions and conditional square functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 5 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 1 ď p ă 8, the martingale Hardy spaces hppΩq, HppΩq, Hp mpΩq are defined as follows hppΩq :“ tf P L1pΩq : }f}hp :“ }spfq}p ă 8u, HppΩq :“ tf P L1pΩq : }f}Hp :“ }Spfq}p ă 8u, Hp mpΩq :“ tf P L1pΩq : }f}Hp m :“ }f ˚}p ă 8u, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1, hppΩq is defined as the completion of the space tf P L1pΩq : }f}hp :“ }spfq}p ă 8u with respect to the norm } ¨ }hp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Similarly, HppΩq is defined as the completion of the space tf P L1pΩq : }f}Hp :“ }Spfq}p ă 8u with respect to the norm } ¨ }Hp, and Hp mpΩq is defined as the completion of the space tf P L1pΩq : }f}Hp m :“ }f ˚}p ă 8u with respect to the norm } ¨ }Hp m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In general, the above three martingale Hardy spaces are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' However, for 1 ď p ă 8, HppΩq “ Hp mpΩq (see [6], [9], [26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (Regular filtration) A filtration is regular if there exists a constant C ą 0 such that for all k ě 2, Fk P Fk, there exists a Gk P Fk´1 satisfying Fk Ă Gk, PpGkq ď C ¨ PpFkq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In addition, a martingale f “ tfkukě0 with respect to such a regular filtration is called a regular martingale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Suppose that for a positive random variable f P L1pΩq the corresponding martingale tfkuk⩾0 is regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then for any k ě 2 fk ⩽ A ¨ fk´1, where A ą 0 is a constant that depends only on the constant C of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' See [16] for more information about regular filtrations and martingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For regular martingale filtrations, HppΩq “ hppΩq “ Hp mpΩq when 0 ă p ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' See [27], [26] and [16] for more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' An important aspect of martingale Hardy spaces is that they admit atomic decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The definition of atoms in the martingale setting is given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A random variable a : Ω Ñ C is called a martingale simple pp, qq-atom (0 ă p ď 1, 1 ď q ⩽ 8) if there exist k P N and A P Fk such that (1) Ekpaq “ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) supppaq Ă A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (3) }a}q ⩽ PpAq 1 q ´ 1 p , where 1 q :“ 0 when q “ 8 as convention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We define the martingale atomic Hardy spaces Hp,q at pΩq for 0 ă p ă 1 ⩽ q ⩽ 8 or p “ 1, 1 ă q ď 8 as follows Hp,q at pΩq :“ # f “ 8 ÿ j“0 λjaj where aj is a simple pp, qq-atom and 8 ÿ j“0 |λj|p ă 8 + , where for f P Hp,q at pΩq }f}Hp,q at pΩq :“ inf # ` 8 ÿ j“0 |λj|p˘ 1 p : f “ 8 ÿ j“0 λjaj, where aj is a simple pp, qq-atom + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 6 It is well-known that hppΩq “ Hp,2 at pΩq when 0 ă p ď 1 (see [27]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In particular, if the martingale filtration is regular, then hppΩq “ Hp,q at pΩq when 0 ă p ď 1 and 1 ă q ď 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following result is the atomic decomposition of H1pΩq, which follows from the noncommutative result in [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In particular, it reveals the relationship between H1pΩq and h1pΩq and shows that H1pΩq ‰ h1pΩq for general martingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We have H1pΩq “ h1pΩq ` h1 dpΩq, where h1 d denotes the diagonal Hardy space of martingale differences h1 dpΩq :“ # h P L1pΩq : }h}h1 dpΩq :“ 8 ÿ k“1 }dkh}1 ă 8 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall now introduce the martingale BMO and bmo spaces, which are the duals of H1pΩq and h1pΩq, respectively (see Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume f, g P L2pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We say that f is a martingale BMO function if }f}BMOpΩq :“ sup n⩾1 }En|f ´ fn´1|2} 1 28 ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We say that g is a martingale bmo function if }g}bmopΩq :“ sup n⩾0 }En|g ´ gn|2} 1 28 ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote by BMOpΩq and bmopΩq the spaces consisting of all martingale BMO and bmo functions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For regular martingales, BMOpΩq “ bmopΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following result is the so-called martingale John–Nirenberg inequality and can be found in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' There exists a sufficiently small constant κ ą 0 such that for any f P BMOpΩq with }f}BMOpΩq ď κ, we have E ´ e|f|¯ ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' From the martingale John–Nirenberg inequality, we have for any 1 ď p ă 8, }f}BMOpΩq «p sup n⩾1 }En|f ´ fn´1|p} 1 p 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' However, the above John–Nirenberg inequality fails for bmopΩq in the general martingale setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For the following duality theorem, see [12], [16], [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' pH1pΩqq˚ “ BMOpΩq and ph1pΩqq˚ “ bmopΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following proposition, which can be found in [8] and [12], is a consequence of Theorems 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13 and it gives a description of the relationship between BMOpΩq and bmopΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In particular, it implies that BMOpΩq ⫋ bmopΩq for general martingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume f is a martingale BMO function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) }f}BMOpΩq « }f}bmopΩq ` sup kě1 }dkf}8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We end this section with the definition of martingale Musielak–Orlicz Hardy spaces and the generalized H¨older inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 7 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The martingale Musielak–Orlicz Hardy space HΨpΩq (where Ψ is described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) is the space consisting of all martingales f “ tfkukě0 such that the square function Spfq P LΨpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, we define the quasi-norm }f}HΨpΩq :“ }Spfq}LΨpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If Ψ is replaced by an Orlicz function Φ, the corresponding Hardy–Orlicz space HΦpΩq is defined in an analogous way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To obtain the generalized H¨older inequality, we shall introduce a particular Orlicz space LΦpΩq, where (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) Φptq :“ t logpe ` tq, t ě 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that Φ is an Orlicz function of uniformly lower type p p0 ă p ă 1q and upper type 1, which guarantees that the vector space LΦpΩq is a quasi-normed space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that L1pΩq Ă LΦpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It follows from [19] that if f “ tfkukě0 is a regular martingale, then the martin- gale Hardy–Orlicz space HΦpΩq can also be characterized by martingale maximal functions and conditional square functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any f P HΦpΩq one has }f}HΦpΩq “ }Spfq}LΦpΩq « }f ˚}LΦpΩq « }spfq}LΦpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following lemma is a variant of [5, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1] in the martingale setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume pΩ, F, Pq is a probability space, f P L1pΩq and g P BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then f ¨ g P LΦpΩq and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) }f ¨ g}LΦpΩq ≲ }f}1}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The proof is similar to the proof of the corresponding Euclidean result and we shall only outline it here for the convenience of the reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By [5, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1], one has (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) st M ` logpe ` stq ď et´M ` s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' for all M ě 0, s ě 0, t ě 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' When }f}1 “ 0 or }g}BMOpΩq “ 0, p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4q trivially holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume g P BMOpΩq with }g}BMOpΩq ą 0 and f P L1pΩq with }f}1 ą 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let κ be the constant in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11, M “ 0, t “ κ|gpxq| }g}BMOpΩq and s “ |fpxq| }f}1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11 and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5), we have ˆ Ω Φ ˆ |fpxq ¨ gpxq| κ´1}f}1}g}BMOpΩq ˙ dP ď ˆ Ω e κ|gpxq| }g}BMOpΩq dP ` ›››› f }f}1 ›››› 1 ď 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6) Hence, from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) we conclude }f ¨ g}LΦpΩq ≲ κ´1}f}1}g}BMOpΩq, which completes the proof of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ We shall refer to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) as the generalized H¨older inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bilinear decompositions on H1pΩq ˆ BMOpΩq In this section we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let pΩ, F, Pq be a fixed probability space and let f P H1pΩq, g P BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If we assume that f and g have finite martingale expansions, then we may write their pointwise product f ¨ g as follows (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) f ¨ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq, where Π1pf, gq :“ 8 ÿ k“1 dkfdkg, Π2pf, gq :“ 8 ÿ k“1 fk´1dkg and Π3pf, gq :“ 8 ÿ k“1 gk´1dkf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall estimate Π1pf, gq, Π2pf, gq, Π3pf, gq separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To do so, we shall make use of the atomic decomposition of H1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It follows from our arguments below that the operators Π1, Π2 and Π3 are well-defined (in a pointwise sense) on the product space H1pΩq ˆ BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence, the proof of Theorem will follow from the boundedness properties of Π1, Π2 and Π3, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) and a limiting argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4, we present a direct way to deal with Π3pf, gq, which avoids the use of the atomic decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9, there always exist two functions f h and f d such that f “ f h ` f d, where f h P h1pΩq and f d P h1 dpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any such decomposition of f, since f h P h1pΩq, there exist tλjuj⩾1 Ă R and simple p1, 2q-atoms ␣ aj( j⩾1 such that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) f h “ 8 ÿ j“1 λjaj, }f h}h1pΩq « 8 ÿ j“1 |λj|, where we assume supppajq Ă Anj and Anj P Fnj with PpAnjq ą 0 for j ě 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) Πipf, gq “ 8 ÿ j“1 λjΠipaj, gq ` Πipf d, gq, i “ 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Estimates for Π1pf h, gq and Π1pf d, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We are going to show that Π1 is a bounded bilinear operator from H1pΩq ˆ BMOpΩq to L1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In fact, the boundedness of Π1 follows naturally from the duality between H1pΩq and BMOpΩq, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13 (see [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For the reader’s convenience, we give a proof based on atomic decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We first focus on Π1pf h, gq, which can further be decomposed into atoms as described in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It thus suffices to consider Π1paj, gq “ 8 ÿ k“1 dkajdkg, which can further be localized as dkaj “ 1Anj dkaj when k ě nj ` 1 since Anj P Fnj, namely Π1paj, gq “ 8 ÿ k“nj`1 1Anj dkajdkg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Now,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' by applying the Cauchy-Schwarz inequality,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' we derive the estimate MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 9 }Π1paj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' gq}1 “ E ¨ ˝ ˇˇˇˇˇˇ 8 ÿ k“nj`1 1Anj dkajdkg ˇˇˇˇˇˇ ˛ ‚ ⩽ » –E ¨ ˝ 8 ÿ k“nj`1 |dkaj|2 ˛ ‚ fi fl 1 2 » –E ¨ ˝ 8 ÿ k“nj`1 1Anj |dkg|2 ˛ ‚ fi fl 1 2 ⩽ }aj}2 » –EEnj ¨ ˝ 8 ÿ k“nj`1 1Anj |dkg|2 ˛ ‚ fi fl 1 2 ⩽ PpAnjq´ 1 2 » –E ¨ ˝1Anj Enj ¨ ˝ 8 ÿ k“nj`1 |dkg|2 ˛ ‚ ˛ ‚ fi fl 1 2 ⩽ PpAnjq´ 1 2 }g}bmopΩqPpAnjq 1 2 where the fourth inequalitiy follows from the definition of the atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence, we deduce from the definition of the bmo´norm that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) }Π1paj, gq}1 ď }g}bmopΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3), we have by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14 }Π1pf, gq}1 ⩽ 8 ÿ j“1 |λj|}g}bmopΩq ` ››››› 8 ÿ k“1 dkf ddkg ››››› 1 ≲ }f h}h1}g}bmopΩq ` ˆ sup kě1 }dkg}8 ˙ ˜ 8 ÿ k“1 }dkf d}1 ¸ ≲ ´ }f h}h1pΩq ` }f d}hd 1pΩq ¯ }g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Since the decomposition of f “ f h ` f d is arbitrary, by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9 we conclude (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) }Π1pf, gq}1 ≲ }f}H1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Estimates for Π2pf h, gq and Π2pf d, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We are going to show that Π2 is a bounded bilinear operator from H1pΩq ˆ BMOpΩq to H1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Arguing as in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, we perform the localization on each term Π2paj, gq “ 8 ÿ k“1 aj k´1dkg “ 8 ÿ k“nj`2 1Anj aj k´1dkg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is easy to verify that dkpΠ2paj, gqq “ aj k´1dkg, k ě nj ` 2 and dkpΠ2paj, gqq “ 0, 1 ⩽ k ⩽ nj ` 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 10 We consider the corresponding square function S ` Π2paj, gq ˘ “ ¨ ˝ 8 ÿ k“nj`2 ´ |aj k´1|21Anj |dkg|2¯ ˛ ‚ 1 2 ⩽ |pajq˚| ¨ ˝ 8 ÿ k“nj`2 1Anj ` |dkg|2˘ ˛ ‚ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then by invoking the Cauchy-Schwarz inequality, we have that }Π2paj, gq}H1pΩq “ E “ S ` Π2paj, gq ˘‰ ⩽ }pajq˚}2 » –E ¨ ˝ 8 ÿ k“nj`2 1Anj p|dkg|2q ˛ ‚ fi fl 1 2 ⩽ }aj}2 » –E ¨ ˝1Anj Enj ¨ ˝ 8 ÿ k“nj`2 |dkg|2 ˛ ‚ ˛ ‚ fi fl 1 2 ⩽ PpAnjq´ 1 2 }g}BMOpΩqPpAnjq 1 2 and hence, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6) }Π2paj, gq}H1pΩq ⩽ }g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Similarly, by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14 ››Π2pf d, gq ›› H1pΩq “ E « S ˜ Π2p 8 ÿ m“1 dmf d, gq ¸ff ⩽ 8 ÿ m“1 E “ S ` Π2pdmf d, gq ˘‰ “ 8 ÿ m“1 E » –Em ˜ 8 ÿ k“m`1 |dmf d|2|dkg|2 ¸ 1 2 fi fl “ 8 ÿ m“1 E » –|dmf d|Em ˜ 8 ÿ k“m`1 |dkg|2 ¸ 1 2 fi fl ⩽ 8 ÿ m“1 ¨ ˝}dmf d}1 ›››››Em ˜ 8 ÿ k“m`1 |dkg|2 ¸››››› 1 2 8 ˛ ‚ and hence, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7) ››Π2pf d, gq ›› H1pΩq ⩽ }f d}h1 dpΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 11 By using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3), we have by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9 }Π2pf, gq}H1pΩq ď ››Π2pf h, gq ›› H1pΩq ` ››Π2pf d, gq ›› H1pΩq ⩽ 8 ÿ j“1 |λj|}g}BMOpΩq ` }f d}hd 1pΩq}g}BMOpΩq ≲ ´ }f h}h1pΩq ` }f d}h1 dpΩq ¯ }g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Since the decomposition of f “ f h ` f d is arbitrary, by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9 we conclude (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8) }Π2pf, gq}H1pΩq ≲ }f}H1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Estimates for Π3pf h, gq and Π3pf d, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We are going to show that Π3 is a bounded bilinear operator from H1pΩqˆBMOpΩq to HΦpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To this end, we first deal with Π3pf h, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that SpΠ3pf h, gqq “ S ˜ 8 ÿ k“1 8 ÿ j“1 λjgk´1dkaj ¸ ď 8 ÿ j“1 λjS ˜ 8 ÿ k“1 gk´1dkaj ¸ “ 8 ÿ j“1 λj ¨ ˝ 8 ÿ k“nj`1 |gk´1|2|dkaj|2 ˛ ‚ 1 2 ď 8 ÿ j“1 λj ¨ ˝ 8 ÿ k“nj`1 |gk´1 ´ gnj|2|dkaj|2 ˛ ‚ 1 2 ` 8 ÿ j“1 λj|gnj|Spajq “: I1 ` I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It thus suffices to handle I1 and I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For I1, we have EpI1q ⩽ 8 ÿ j“1 |λj|E ¨ ˝ 8 ÿ k“nj`1 1Anj |gk´1 ´ gnj|2|dkaj|2 ˛ ‚ 1 2 ⩽ 8 ÿ j“1 |λj| » —–E ¨ ˝ 8 ÿ k“nj`1 1Anj |gk´1 ´ g|2|dkaj|2 ˛ ‚ 1 2 ` E ¨ ˝ 8 ÿ k“nj`1 1Anj |g ´ gnj|2|dkaj|2 ˛ ‚ 1 2 fi ffifl ⩽ 8 ÿ j“1 |λj| $ ’ & ’ % PpAnjq 1 2 » –E ¨ ˝ 8 ÿ k“nj`1 |gk´1 ´ g|2|dkaj|2 ˛ ‚ fi fl 1 2 ` E ´ 1Anj |g ´ gnj|Spajq ¯ , / .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' / ⩽ 8 ÿ j“1 |λj| $ ’ & ’ % PpAnjq 1 2 » –E ¨ ˝ 8 ÿ k“nj`1 |dkaj|2Ekp|gk´1 ´ g|2q ˛ ‚ fi fl 1 2 ` }aj}2PpAnjq 1 2 }g}BMOpΩq , / .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' / ⩽ 2 8 ÿ j“1 |λj|PpAnjq 1 2 }g}BMOpΩq}aj}2 and so, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9) EpI1q ≲ }f h}h1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 12 Next, we obtain an estimate for I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To this end, notice that I2 ď ˜ 8 ÿ j“1 1Anj |λj|Spajq ¸ ¨ |g| ` 8 ÿ j“1 |λj|1Anj |gnj ´ g|Spajq “: I3 ` I4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Since aj is a simple p1, 2q-atom, we have }1Anj Spajq}1 ď 1 and ››››› 8 ÿ j“1 1Anj |λj|Spajq ››››› 1 ď 8 ÿ j“1 |λj| ≲ }f h}h1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='17, we have (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='10) }I3}LΦpΩq ≲ ››››› 8 ÿ j“1 1Anj |λj|Spajq ››››› 1 }g}BMOpΩq ≲ }f h}h1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following estimate is implicit in the proof of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9): (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11) EpI4q ⩽ 8 ÿ j“1 |λj|PpAnjq 1 2 }g}BMOpΩq}aj}2 ≲ }f h}h1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By combining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='10) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11), we deduce that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='12) }I2}LΦpΩq ≲ }f h}h1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In conclusion, by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='12) we get (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13) }Π3pf h, gq}HΦpΩq ≲ }f h}h1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It remains to deal with Π3pf d, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We have SpΠ3pf d, gqq “ ˜ 8 ÿ k“1 |gk´1|2|dkf d|2 ¸ 1 2 ⩽ 8 ÿ k“1 |gk´1||dkf d| ď 8 ÿ k“1 |gk´1 ´ g||dkf d| ` |g| ˜ 8 ÿ k“1 |dkf d| ¸ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='17, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14) ›››››g ˜ 8 ÿ k“1 |dkf d| ¸››››› LΦpΩq ≲ ˜ 8 ÿ k“1 }dkf d}1 ¸ }g}BMOpΩq “ }f d}h1 dpΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For the remaining term, we have E ˜ 8 ÿ k“1 |gk´1 ´ g||dkf d| ¸ “ E ˜ 8 ÿ k“1 |dkf d|Ek|gk´1 ´ g| ¸ ⩽ }g}BMOpΩq ˜ 8 ÿ k“1 }dkf d}1 ¸ and so (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='15) E ˜ 8 ÿ k“1 |gk´1 ´ g||dkf d| ¸ ⩽ }f d}h1 dpΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence, by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='15), we get (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='16) }Π3pf d, gq}HΦpΩq ≲ }f d}h1 dpΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 13 By (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='16), we obtain }Π3pf, gq}HΦpΩq ≲ ´ }f h}h1pΩq ` }f d}h1 dpΩq ¯ }g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus we conclude (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='17) }Π3pf, gq}HΦpΩq ≲ }f}H1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' This completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1 □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Another method for handling Π3pf, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In this section we present a different method for dealing with Π3pf, gq, which is much neater and simpler than the one presented above, and it relies on the following theorem which has been shown in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If g P BMOpΩq and g0 “ 0, then pg˚q0 ≲ }g}BMOpΩq and g˚ P BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, }g˚}BMOpΩq ≲ }g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We begin with a pointwise estimate for SpΠ3pf, gqq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Towards this aim, note that dkpΠ3pf, gqq “ gk´1dkf, which implies that SpΠ3pf, gqq “ ˜ 8 ÿ k“1 |gk´1|2|dkf|2 ¸ 1 2 ⩽ |g˚|Spfq ⩽ J1 ` J2, where J1 :“ |g˚ ´ pg˚q0|Spfq and J2 :“ Spfq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Clearly, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='18) }J2}1 ≲ }f}H1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, we get g˚ P BMOpΩq, and hence by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='17 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='19) }J1}LΦpΩq ≲ }g˚}BMOpΩq}Spfq}1 ≲ }f}H1pΩq}g}BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' As SpΠ3pf, gqq ď J1 ` J2, by combining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='18) with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='19), and by the fact L1pΩq Ă LΦpΩq, we conclude }Π3pf, gq}HΦpΩq “ }SpΠ3pf, gqq}LΦpΩq ≲ }f}H1pΩq}g}BMOpΩq, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We would like to end this section with the comparison between our proof and the one provided in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Though both arguments heavily rely on the atomic decomposition of H1pΩq, they further use weak atom decomposition for the diagonal Hardy space while our proof proceeds more directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, the treatment of the most technical term Π3 is significantly simplified in this section thanks to Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bilinear decompositions on HppΩq ˆ Λ1pαpq for 0 ă p ă 1 In this section, we give a proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Arguing as in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, it suffices to establish appropriate estimates for the bilinear operators Π1, Π2 and Π3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let pΩ, F, Pq be a fixed probability space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If we consider the filtration F0 “ tH, Ωu and Fk “ F for all k ⩾ 1, then HppΩq “ LppΩq for 0 ă p ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is well-known that pLppΩqq˚ ‰ t0u if and only if the probability space pΩ, F, Pq contains at least one atom with non-zero measure when 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' This means that pHppΩqq˚ “ t0u may occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Therefore, we are only concerned with regular martingales where every Fk is generated by countably many atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2, we start with the following lemma, which holds for general martingales that are not necessarily regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' This shall be familiar to the experts in the area, but we will enclose the proof here for the sake of completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any 0 ă p ă 1, we have L1pΩq Ă Hp mpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 14 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Doob’s maximal inequality, for any f P L1pΩq and for any λ ą 0 we have (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) Ppf ˚ ą λq ⩽ 1 λ ˆ tf ˚ąλu |f|dP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Without loss of generality, we may assume }f}1 ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then }f ˚}p p “ ˆ Ω |f ˚|pdP “ p ˆ 8 0 Pp|f ˚| ą λqλp´1dλ “ p ˆ 1 0 Ppf ˚ ą λqλp´1dλ ` p ˆ 8 1 Ppf ˚ ą λqλp´1dλ ⩽ p ˆ 1 0 λp´1dλ ` p ˆ 8 1 1 λ ˜ˆ tf ˚ąλu |f|dP ¸ λp´1dλ “ 1 ` p ˆ tf ˚ą1u |f| ˜ˆ f ˚ 1 λp´2dλ ¸ dP “ 1 ` p 1 ´ p ˆ tf ˚ą1u |f| ` 1 ´ |f ˚|p´1˘ dP ⩽ 1 ` p 1 ´ p ˆ tf ˚ą1u |f|dP ⩽ 1 1 ´ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' This implies that for any f P L1pΩq }f}Hp mpΩq ⩽ ` 1 1 ´ p ˘ 1 p }f}1, which yields the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ For regular martingales, we have L1pΩq Ă Hp mpΩq “ HppΩq “ hppΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In what follows, the martingales are always assumed to be regular and every Fk is generated by countable atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1 and 1 ď q ď 8, HppΩq “ Hp,q at pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By considering the aforementioned atomic decomposition of HppΩq and Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8, we have HppΩq “ Hp,8 at pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is easy to see Hp,8 at pΩq Ă Hp,q at pΩq Ă Hp,1 at pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It thus suffices to show that Hp,1 at pΩq Ă HppΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, if a is a simple pp, 1q-atom, then }a}HppΩq ≲p }a}1, which implies that a P HppΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence, Hp,1 at pΩq Ă HppΩq and so, HppΩq “ Hp,q at pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Characterization of martingale Lipschitz spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In this subsection, we give a char- acterization of martingale Lipschitz spaces that appears to be new and useful in our argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall first recall the definition of martingale Lipschitz spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1 define (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) Λqpαpq :“ # f P L2pΩq : }f}Λqpαpq “ sup ně0 sup APFn PpAq´ 1 q ´αp ˆˆ A |f ´ fn|qdP ˙ 1 q ă 8 + , where q “ 1 or q “ 2, αp :“ 1 p ´ 1 ą 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In [27], Weisz showed that pHppΩqq˚ “ Λ1pαpq and Λ1pαpq “ Λ2pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any g P Λ1pαpq, we have }g ´ g0}8 ≲p }g}Λ1pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 15 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By duality and Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, for any f P L2pΩq, |E ` fpg ´ g0q ˘ | “ ˇˇE pgpf ´ f0qq ˇˇ ≲p }f}Hp}g}Λ1pαpq ≲p }f}1}g}Λ1pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The above estimate together with the fact ` L1` Ωqq˚ “ L8pΩq yields }g ´ g0}8 ≲p }g}Λ1pαpq, which finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ By virtue of Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3, we have the following property of martingale Lipschitz spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If g P Λ1pαpq, we have }1A ¨ |g ´ gn|}8 ≲p PpAqαp}g}Λ1pαpq, for any n P N and any A P Fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that when PpAq “ 0, the desired result holds trivially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Fix n P N and A P Fn with PpAq ‰ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For k ě 0, let FA k :“ tB P Fk`n : B Ď Au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that the union FA of all FA k is exactly tB P F|B Ă Au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence, if we define PApBq :“ PpBq PpAq pB P FAq then pA, FA, PAq is a probability space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that for any g P L1pA, FA, PAq one has Epg|FA k q “ 1A ¨ Epg|Fk`nq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote Ep¨|FA k q by EA k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is easy to verify tEA k pgqukě0 is also a regular martingale on pA, FA, PAq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If g P Λ1pαpq, then for B P FA k with PpBq ‰ 0, PApBq´1´αp ˆˆ B |g ´ EA k pgq|dPA ˙ “ PpAqαp ˆ PpBq´1´αp ˆˆ B |g ´ gk`n|dP ˙˙ ď PpAqαp}g}Λ1pαpq which implies that by Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3, }1A ¨ |g ´ gn|}8 “ }1A ¨ |g ´ EA 0 pgq|}8 ≲p PpAqαp}g}Λ1pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' This completes the proof of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4 and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2), we conclude that for g P Λ1pαpq we have the character- ization (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) }g}Λ1pαpq «p sup ně0 sup APFn PpAq´αp}1A ¨ |g ´ gn|}8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that the results in [18] can be deduced from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' As in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, we divide the proof into three parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Without loss of generality, we may assume that f0 “ g0 “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Estimates for Π1pf, gq and Π3pf, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The boundedness of Π1 from HppΩq ˆ Λ1pαpq to L1pΩq follows directly from the duality between HppΩq and Λ1pαpq, we omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall also prove that Π3 is a bounded bilinear operator from HppΩq ˆ Λ1pαpq to HppΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) SpΠ3pf, gqq2 “ 8 ÿ k“1 |gk´1|2|dkf|2 ⩽ pg˚q2Spfq2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence we conclude from Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3 and the L8 boundedness of the maximal function that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) }Π3pf, gq}p HppΩq ≲ }g˚}p 8EpSpfqpq ď }g}p 8}f}p HppΩq ≲p }f}p HppΩq}g}p Λ1pαpq, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Estimates for Π2pf, gq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We will show that Π2 is a bounded bilinear operator from HppΩqˆ Λ1pαpq to H1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that HppΩq “ hppΩq, and hppΩq admits an atomic decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then there exist tλjuj⩾1 Ă R and simple pp, 8q-atoms ␣ aj( j⩾1 such that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6) f “ 8 ÿ j“1 λjaj, }f}HppΩq «p ˜ 8 ÿ j“1 |λj|p ¸ 1 p , where we assume supppajq Ă Anj and Anj P Fnj with PpAnjq ą 0 for j ě 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By arguing as in the corresponding case in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7) SpΠ2paj, gqq “ ¨ ˝ 8 ÿ k“nj`1 1Anj |aj k´1|2|dkg|2 ˛ ‚ 1 2 ⩽ |pajq˚| ¨ ˝ 8 ÿ k“nj`1 1Anj |dkg|2 ˛ ‚ 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence, E “ SpΠ2paj, gqq ‰ ⩽ }pajq˚}8 » —–E ¨ ˝1Anj 8 ÿ k“nj`1 |dkg|2 ˛ ‚ 1 2 fi ffifl ⩽ }aj}8 ¨ ˝PpAnjq ¨ ˝E 8 ÿ k“nj`1 |dkg|2 ˛ ‚ ˛ ‚ 1 2 ⩽ PpAnjq´ 1 p ´ PpAnjq}g}2 Λ2pαpqPpAnjq1`2αp¯ 1 2 “ }g}Λ2pαpqPpAnjq´ 1 p PpAnjq1`αp ⩽ }g}Λ2pαpq ≲p }g}Λ1pαpq, where the last inequality follows from the condition that αp “ 1 p ´ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' As a consequence of the above estimates, we have that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8) }Π2pf, gq}p H1pΩq ⩽ 8 ÿ j“1 |λj|p “ ESpΠ2paj, gqq ‰p ≲p }f}p HppΩq}g}p Λ1pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' This completes the proof of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Homogeneous spaces In this section, we introduce some fundamental concepts and important theorems for homo- geneous spaces, which can be found in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We begin with the definition of homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Recall that d is a quasi-metric on Ω if (1) dpx, xq ě 0, @x P Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) dpx, yq “ dpy, xq, @x, y P Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (3) there exists a constant A0 ě 1 such that (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) dpx, yq ⩽ A0pdpx, zq ` dpz, yqq, @x, y, z P Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote by Bpx, rq :“ ty P Ω : dpy, xq ă ru the open ball centered at x with radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In this paper, all quasi-metric spaces are assumed to have the doubling property: there exists a positive integer A1 P N such that for every x P Ω and for every r ą 0, the ball Bpx, rq can be covered by at most A1 balls Bpxi, r 2q for some xi P Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 17 Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A σ-finite measure space pΩ, F, µq equipped with a quasi-metric d is called a homogeneous space if µ is a Borel measure of homogeneous type: (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) 0 ă µ pBpx, 2rqq ⩽ 2Cµµ pBpx, rqq ă 8, @x P Ω, r ą 0, where the constant Cµ is independent of x and r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In [7], Coifman and Weiss defined Hardy spaces on homogeneous spaces by regarding their elements as linear functionals acting on some appropriate quasi-normed spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In order to state the definition of Coifman and Weiss, we need to introduce the notions of atoms, BMO and Lipschitz spaces on homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If 0 ă p ⩽ 1 ⩽ q ď 8 and p ă q, we say that a function a is a pp, qq-atom if (1) supppaq Ă B where B is a ball;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) }a}q ⩽ pµpBqq 1 q ´ 1 p ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (3) ´ Ω adµ “ ´ B adµ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A locally integrable function f is called a BMO function if }f}BMO :“ sup B 1 µpBq ˆ B |f ´ fB|dµ ă 8, where fB :“ 1 µpBq ´ B fdµ, and the supremum runs over all balls B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote by BMOpµq the BMO space consisting of all BMO functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For α ą 0, a locally integrable function l is called a Lipschitz function if (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) |lpxq ´ lpyq| ⩽ Cα pµpBqqα for any x, y P Ω and any ball B containing x, y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) }l}Lα :“ inftCα : |lpxq ´ lpyq| ⩽ Cα pµpBqqα , @x, y P Bu, where the infimum runs over all balls B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote by Lαpµq the space consisting of all Lipschitz functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is well-known that each BMO function can be regarded as a continuous linear functional on the vector space generated by finite linear combinations of p1, qq-atoms for 1 ă q ď 8 (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence we can define the atomic Hardy space H1,q at pµq p1 ă q ď 8q as follows: (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) H1,q at pµq :“ # f P pBMOpµqq˚ : f “ 8 ÿ j“0 λjaj, where aj is a p1, qq-atom and 8 ÿ j“0 |λj| ă 8 + endowed with the norm }f}H1,q at pµq :“ inf # 8 ÿ j“0 |λj| : f “ 8 ÿ j“0 λjaj, where aj is a p1, qq-atom + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Similarly, each Lipschitz function l P Lαppµq can be also regarded as a continuous linear functional of the vector space generated by finite linear combinations of pp, qq-atoms where 0 ă p ă 1 ď q ď 8 and αp “ 1 p ´ 1 (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We define the atomic Hardy spaces Hp,q at pµq as follows: (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6) Hp,q at pµq :“ # f P ` Lαppµq ˘˚ : f “ 8 ÿ j“0 λjaj, where aj is a pp, qq-atom and 8 ÿ j“0 |λj|p ă 8 + MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 18 endowed with the quasi-norm }f}Hp,q at pµq :“ inf $ & % ˜ 8 ÿ j“0 |λj|p ¸ 1 p : f “ 8 ÿ j“0 λjaj, where aj is a pp, qq-atom , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Although the Hardy spaces vary with p and q according to the above definitions, the following theorem, which can be found in [7], shows that the Hardy spaces actually depend only on p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Consequently, this enables us to define the Hardy spaces Hp atpµq for 0 ă p ⩽ 1 to be any one of the spaces Hp,q at pµq for 0 ă p ă q ⩽ 8, 1 ⩽ q ď 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hp,q at pµq “ Hp,8 at pµq whenever 0 ă p ď 1 ⩽ q ⩽ 8 and p ă q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We end this section with the following duality theorem obtained in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' ` H1 atpµq ˘˚ “ BMOpµq, and pHp atpµqq˚ “ Lαppµq for 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The proofs of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5 and Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6 that appeared in [7] are very technical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In the following sections, by employing martingale methods, we give much simpler proofs of these facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Our approach is based on the fact that Hp atpµq for 0 ă p ď 1 is the finite sum of several dyadic martingale Hardy spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Dyadic systems on homogeneous spaces In this section, we start with introducing dyadic systems on homogeneous spaces, which first appeared in the work of Hyt¨onen and Kairema [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' With the help of these dyadic structures, we then show that Hp atpµq is exactly the finite sum of martingale Hardy spaces associated with some adjacent dyadic martingales, which extends Mei’s result [17] to homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following theorem concerning the existence of dyadic structures is due to Hyt¨onen and Kairema [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let Ω denote a homogeneous space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Suppose that the constants 0 ă c0 ⩽ C0 ă 8 and δ P p0, 1q satisfy 12A3 0C0δ ⩽ c0, where A0 is specified in the definition of quasi-metric, see (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Given a set of reference points tzk αuα, α P Ak (an index set), for every k P Z, with the properties that dpzk α, zk βq ⩾ c0δk, pα ‰ βq min α dpx, zk αq ă C0δk, for all x P Ω, one can construct families of sets ˜Qk α Ď Qk α Ď ¯Qk α, called open, half-open and closed dyadic cubes respectively, such that: ˜Qk α and ¯Qk αare the interior and closure of Qk α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) if k ⩽ l, then either Ql β Ď Qk α or Ql β X Qk α “ H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) X “ Ť α Qk α (disjoint union) for all k P Z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) Bpzk α, c1δkq Ď Qk α Ď Bpzk α, C1δkq “: BpQk αq where c1 “ p3A2 0q´1c0 and C1 “ 2A0C0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) if k ⩽ l and Ql β Ď Qk α then BpQl βq Ď BpQk αq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) The open and closed cubes ˜Qk α and ¯Qk α depend only on the points zl β for l ⩾ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The half-open cubes Qk α depend on zl β for l ⩾ minpk, k0q, where k0 P Z is a preassigned number entering the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 19 It is obvious that the construction of the above dyadic systems is not unique, and it depends on the set of the reference points tzk αuα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We denote this dyadic system by D “ tQk αuk,α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let Fk “ σptQk αuαq be the σ-algebra generated by tQk αuα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then it is clear that ¨ ¨ ¨ Ă Fk´1 Ă Fk Ă ¨ ¨ ¨ , which implies that tFkukPZ is a filtration generated by atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let F “ σpYkPZFkq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that each Qk α is an atom of Fk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The standard dyadic grid on the real line is a dyadic system given by Fk “ tr2´km, 2´kpm ` 1qq : m P Zu for all k P Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Similarly, an example of a dyadic system on Rn is given by the family of standard dyadic cubes in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Recall that, for f P L1 locpΩ, F, µq, the martingale maximal function, the square function and the conditional square function of f associated with pFkqkPZ are given by f ˚ :“ max kPZ |fk|, Spfq :“ ˜ÿ kPZ |dkf|2 ¸ 1 2 and spfq :“ ˜ÿ kPZ Ek´1|dkf|2 ¸ 1 2 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let 0 ă p ď 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The martingale Hardy space Hp m,Dpµq is defined as the completion of the space consisting of all f P L1 locpΩq such that f ˚ P LppΩq with respect to the quasi-norm }f}Hp m,Dpµq :“ }f ˚}p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We define Hp Dpµq and hp Dpµq by the square functions and the conditional square functions respectively, with the additional assumption that (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6) lim nÑ´8 ˆ Ω sup kďn |fk|pdµ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' From (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6), we have lim nÑ´8 sup kďn |fk| “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Analogously, define the martingale atomic Hardy spaces Hp,q at,Dpµq p0 ă p ă 1 ď q ď 8 or p “ 1, 1 ă q ď 8q like Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In order to show Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6, we introduce the dual spaces of these atomic martingale Hardy spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1, q “ 1 or 2 and αp “ 1 p ´ 1, define BMODpµq :“ # f P L1 locpΩ, µq : }f}BMODpµq :“ sup QPD 1 µpQq ˆ Q |f ´ fQ|dµ ă 8 + , ΛD q pαpq :“ # f P L1 locpΩ, µq : }f}ΛD q pαpq :“ sup QPD µpQq´ 1 q ´αp ˆˆ Q |f ´ fQ|qdµ ˙ 1 q ă 8 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The spaces ΛD q pαpq are called the martingale Lipschitz spaces with respect to D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that ΛD 1 pαpq “ ΛD 2 pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Arguing as in [27], one can show that ` H1 at,Dpµq ˘˚ “ BMODpµq, and for 0 ă p ă 1, ´ Hp at,Dpµq ¯˚ “ ΛD q pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 20 Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Since every simple pp, qq-atom is locally supported, by Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2, we conclude that for 0 ă p ă 1 ď q ď 8 or p “ 1, 1 ă q ď 8 Hp,q at,Dpµq “ Hp,8 at,Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus we are only concerned with Hp at,Dpµq :“ Hp,8 at,Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ⩽ 1, the martingale Hardy spaces defined above are mutually equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Namely, Hp Dpµq “ Hp m,Dpµq “ hp Dpµq “ Hp at,Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let p P p0, 1s be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' First, we show Hp Dpµq “ Hp m,Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Suppose that f P Hp m,Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then for any n ą 0, by a well-known inequality of Burkholder–Davis–Gundy, ˆ Ω ˜ |f´n|2 ` nÿ k“´n`1 |dkf|2 ¸ p 2 dµ ≲ ˆ Ω sup ´nďkďn |fk|pdµ ≲ ˆ Ω pf ˚qpdµ which yields by letting n Ñ 8 and by Fatou’s lemma }Spfq}p ≲ }f ˚}p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus Hp m,Dpµq Ă Hp Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Conversely, if f P Hp Dpµq, then for n ą 0, ˆ Ω sup ´nďkďn |fk|pdµ ≲ ˆ Ω ˜ |f´n|2 ` n ÿ k“´n`1 |dkf|2 ¸ p 2 dµ, and hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7) ˆ Ω sup ´nďkďn |fk|pdµ ≲ ˆ Ω sup kď´n |fk|pdµ ` ˆ Ω |Spfq|pdµ ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then by letting n Ñ 8 and applying Fatou’s lemma, we obtain }f ˚}p ă 8 and }f ˚}p ≲ }Spfq}p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Therefore, Hp Dpµq Ă Hp m,Dpµq and Hp m,Dpµq “ Hp Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' One shows Hp m,Dpµq “ hp Dpµq in a completely analogous way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To show hp Dpµq “ Hp at,Dpµq, one can argue by mimicking the corresponding proof in [27] and [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ The following theorem can be found in [13] and ensures that there exist enough dyadic cubes to cover all balls on homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Given a set of reference points tzk αu, k P Z, α P Ak, suppose that there exists constant δ P p0, 1q that satisfies 96A6 0δ ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then there exists a finite collection of families Dt, t “ 1, 2, ¨ ¨ ¨ , K “ KpA0, A1, δq ă 8, where each Dt is a collection of dyadic cubes, associated to dyadic points tzk αu, k P Z, α P Ak, with the properties (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1)-(6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) in Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In addition, the following property is satisfied: (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8) for every Bpx, rq Ď Ω, there exist t and Q P Dt with Bpx, rq Ď Q and diampQq ⩽ Cr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The constant C ă 8 in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8) only depends on the quasi-metric constant A0 and the parameter δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By virtue of Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4 and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5, we have the following theorem, which extends Mei’s result in [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ⩽ 1, we have (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9) Hp atpµq “ K ÿ t“1 Hp at,Dtpµq “ K ÿ t“1 Hp Dtpµq “ K ÿ t“1 Hp m,Dtpµq “ K ÿ t“1 hp Dtpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 21 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let p P p0, 1s be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In view of Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4, it suffices to show Hp atpµq “ Kř t“1 Hp at,Dtpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We prove it via comparing the atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let a be a pp, 8q-atom in Hp atpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then there exists a ball B such that supppaq Ă B, }a}8 ⩽ pµpBqq´ 1 p , ˆ B apxqdµ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5, there exist t and a cube Q P Dt such that B Ă Q, and µpQq ≲ µpBq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then supppaq Ă B Ă Q, }a}8 ⩽ pµpBqq´ 1 p ≲ pµpQqq´ 1 p , ˆ Q adµ “ 0, which implies that a is a constant multiple of a simple pp, 8q-atom in Hp at,Dtpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='10) Hp atpµq Ă K ÿ t“1 Hp at,Dtpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any t “ 1, 2, ¨ ¨ ¨ , K and for any given simple pp, 8q-atom b in Hp at,Dtpµq, there exists Q P Dt such that supppbq Ă Q, }b}8 ⩽ pµpQqq´ 1 p , ˆ Q bdµ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, there exists a ball B such that Q Ă B and µpQq ≳ µpBq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence supppbq Ă Q Ă B, }b}8 ⩽ pµpQqq´ 1 p ≲ pµpBqq´ 1 p , ˆ B bdµ “ 0, which implies that a multiple of b is also a pp, 8q-atom in Hp atpµq, thus (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11) K ÿ t“1 Hp at,Dtpµq Ă Hp atpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To complete the proof of the theorem, combine (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='10) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5 follows immediately from Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4 and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6, which simplifies the original proof by Coifman and Weiss in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By duality and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6, we recover the following result of [13], which is an extension of a result due to Mei [17]: (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='12) BMOpµq “ K č t“1 BMODtpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We will now establish an analogous result for Lαppµq p0 ă p ă 1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1, Lαppµq “ K č t“1 ΛDt 2 pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, for any Q P Dt (and t “ 1, 2, ¨ ¨ ¨ , K), there exists a ball B such that Q Ă B and µpBq ≲ µpQq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If f P Lαppµq, then for any x, y P Q, we have |fpxq ´ fpyq| ď }f}LαppµqµpBqαp ≲ }f}LαppµqµpQqαp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 22 We thus have }f}ΛDt 2 pαpq ď sup QPDt pµpQqq´ 1 2 ´αp ˜ µpQq´2 ˆ Q ˆˆ Q |fpxq ´ fpyq|dµpyq ˙2 dµpxq ¸ 1 2 ⩽ sup QPDt pµpQqq´ 1 2 ´αp ˆˆ Q }f}2 Lαppµqµ pQq2αp dµ ˙ 1 2 ≲ }f}Lαppµq, which yields (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13) Lαppµq Ă K č t“1 ΛDt 2 pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Conversely, let f P KŞ t“1 ΛDt 2 pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For Q P Dt, by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4, |fpxq ´ fQ| ≲ µpQqαp}f}ΛDt 2 pαpq @x P Q, which implies that for any x, y P Q, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14) |fpxq ´ fpyq| ≲ µpQqαp}f}ΛDt 2 pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any ball B Ă Ω, by Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5, there exist t and Q P Dt such that B Ă Q and µpQq ≲ µpBq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then for any x, y P B, by (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='14) |fpxq ´ fpyq| ≲ µpBqαp}f}ΛDt 2 pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus }f}Lαp ≲ K ÿ t“1 }f}ΛDt 2 pαpq, which implies (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='15) K č t“1 ΛDt 2 pαpq Ă Lαppµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The theorem follows from (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='13) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6 and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8 give a simple proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6 originally estab- lished by Coifman and Weiss [7]: pHp atpµqq˚ “ ˜ K ÿ t“1 Hp at,Dtpµq ¸˚ “ K č t“1 pHp at,Dtpµqq˚ “ K č t“1 ΛDt 2 pαpq “ Lαppµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bilinear decompositions for dyadic martingales on homogeneous spaces In this section, we focus on bilinear decompositions arising in the study of products between elements in spaces of dyadic martingales on homogeneous spaces introduced in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In the setting of homogeneous spaces, due to their quasi-metrics and measures, the dyadic martingales behave worse than martingales in probability spaces and the underlying analysis is more intricate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In §7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1 we prove appropriate generalized H¨older-type inequalities on homogeneous spaces (see Lemmas 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2 and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We then introduce a class of pointwise multipliers of ΛD 1,`pαpq and BMODpµq;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' see Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Using Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5, we define products between dyadic MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 23 martingale Hardy spaces on homogeneous spaces and their duals and then, in §7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2 we establish analogues of the results of Sections 3 and 4 in the setting of homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A generalized H¨older-type inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let 0 ă p ď 1 and D be a dyadic system, constructed as in Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The martingale Musielak–Orlicz Hardy spaces HΨp D pµq consist of all measurable functions f on pΩ, F, µq such that spfq P LΨppΩq where O P Ω is a fixed point, and Ψ1px, tq :“ t log pe ` dpx, Oqq ` logpe ` tq, Ψppx, tq :“ t 1 ` ttr1 ` µpBpO, dpx, Oqqqsu1´p p0 ă p ă 1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that LΨppΩq is a quasi-normed space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let M :“ pCµ ` 1q log pe ` dpx, Oqq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) we obtain (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) Ψ1px, stq ≲ pe ` dpx, Oqq´pCµ`1qet ` s ≲ wpxqet ` s, for all x P Ω, s, t ą 0, where w : Ω Ñ R` is a weight function with (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) wpxq ≲ min !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1, dpx, Oq´pCµ`1q) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let Q0 P F0 be the dyadic cube such that O P Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For g P BMODpµq, define }g}BMOD `pµq :“ sup αPA0 |gQ0α ´ gQ0| log pe ` dpz0α, Oqq ` |gQ0| ` }g}BMODpµq, where Q0 α P F0 is a dyadic cube with its center z0 α and A0 is the index set in Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote by BMOD `pµq the space consisting of all g P BMODpµq such that }g}BMOD `pµq ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is not difficult to verify that } ¨ }BMOD ` pµq is a norm on BMOD `pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If we consider the dyadic martingales on Rn, by taking appropriate cubes Q0 one shows that if g P BMODpµq, then g P BMOD `pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that if g P BMOpµq, then g P BMOD `pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, }g}BMOD `pµq ≲ }g}BMOpµq ` |gQ0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We now introduce the following generalized H¨older inequality for L1pΩ, F, µq and BMOD `pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If f P L1pΩ, F, µq and g P BMOD `pµq, then f ¨ g P LΨ1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) }fg}LΨ1pΩq ≲ }f}1}g}BMOD `pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Without loss of generality, assume }f}1 ď 1, }g}BMOD ` pµq ď 1 and gQ0 “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It suffices to show that ˆ Ω Ψ1px, |fpxqgpxq|qdµ ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let Sk :“ BpO, C0δkqzBpO, C0δk`1q for k ă 0 and S0 :“ BpO, C0q, where δ P p0, 1q is the constant in Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then for each k ď 0, there exists a finite index subset Bk Ă A0 such that BpO, C0δkq Ă Ť αPBk Q0 α (where Q0 α P F0) and ÿ αPBk µ ` Q0 α ˘ “ µ ˜ ď αPBk Q0 α ¸ ď µ ` BpO, 2A0C0δkq ˘ ≲ δCµk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 24 Take s “ ν´1|fpxq|, t “ ν|gpxq| in (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1), one has ˆ Ω Ψ1px, |fpxqgpxq|qdµ “ 0ÿ k“´8 ÿ αPBk ˆ SkXQ0α Ψ1px, |fpxqgpxq|qdµ ≲ 0ÿ k“´8 ÿ αPBk ˆ SkXQ0 α wpxqeν|gpxq|dµ ` ν´1}f}1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Therefore, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) ˆ Ω Ψ1px, |fpxqgpxq|qdµ ≲ T1 ` ν´1}f}1, where T1 :“ 0ÿ k“´8 ÿ αPBk ˆ SkXQ0 α wpxqeν ˇˇˇgpxq´gQ0α ˇˇˇeν ˇˇˇgQ0α ˇˇˇdµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let ν :“ mintκ,1u 2 ą 0 (where κ is defined in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='11), by (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, one has T1 ≲ 0ÿ k“´8 ÿ αPBk µpQ0 αq ` e ` dpz0 α, Oq ˘ 1 2 δpk`1qpCµ`1q ≲ 0ÿ k“´8 ÿ αPBk µpQ0 αqδ k 2 δpk`1qpCµ`1q ≲ 0ÿ k“´8 δCµkδ k 2 δCµk`k ≲ 0ÿ k“´8 δ´ 1 2 k, and hence (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) T1 ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Combine (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4), (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) and the fact that ν´1}f}1 ≲ 1, and the proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ We consider the case 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Define }g}ΛD 1,`pαpq :“ sup αPA0 |gQ0α ´ gQ0| 1 ` µ tB pO, dpz0α, Oqquαp ` |gQ0| ` }g}ΛD 1 pαpq, Denote by ΛD 1,`pαpq the space consisting of all g P ΛD 1 pαpq such that }g}ΛD 1,`pαpq ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is easy to verify that } ¨ }ΛD 1,`pαpq is a norm on ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If we consider the dyadic martingales on Rn, by taking appropriate cubes Q0 one can show that if g P ΛD 1 pαpq, then g P ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that if g P Lαppµq, then g P ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, }g}ΛD 1,`pαpq ≲ }g}Lαppµq ` |gQ0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Next we present a generalized H¨older inequality for LppΩ, F, µq and ΛD 1,`pαpq for 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If f P LppΩ, F, µq and g P ΛD 1,`pαpq for 0 ă p ă 1, then f ¨ g P LΨppµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6) }fg}LΨppΩq ≲ }f}p}g}ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 25 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Without loss of generality, assume }f}p ď 1, }g}ΛD 1,`pαpq ď 1 and gQ0 “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It suffices to show that ˆ Ω Ψppx, |fpxqgpxq|qdµ ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Take the same family of sets tSkukď0 as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' From Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4, we know that for x P Q0 α, |gpxq| “ |gpxq ´ gQ0| ⩽ ˇˇgpxq ´ gQ0α ˇˇ ` ˇˇgQ0α ´ gQ0 ˇˇ ď ` µpQ0 αq ˘αp ` µ ␣ B ` O, dpz0 α, Oq ˘(αp ` 1 ≲ µ ` BpO, 2A0C0δkq ˘αp ` 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Therefore ˆ Ω Ψppx, |fpxqgpxq|qdµ “ 0ÿ k“´8 ÿ αPBk ˆ SkXQ0α |gpxq||fpxq| 1 ` t|gpxq||fpxq| r1 ` µ pBpO, dpx, Oqqsu1´p dµ ≲ 0ÿ k“´8 ÿ αPBk ˆ SkXQ0α |gpxq|p|fpxq|p 1 ` µ pBpO, dpx, Oqq1´p dµ ≲ 0ÿ k“´8 ÿ αPBk ˆ SkXQ0α µ ` BpO, 2A0C0δkq ˘αpp ` 1 t1 ` µ pBpO, C0δk`1qu1´p |fpxq|pdµ ≲ 1, which finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ We are now about to present the analogues of the results in Sections 3 and 4 concerning bilinear decompositions for dyadic martingales on homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To this end, we need to define the product between martingale Hardy spaces and their dual spaces first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' As in the probability setting, we regard the product in the sense of distribution as follows: for 0 ă p ă 1, xf ˆ g, hy :“ xh ¨ g, fy, f P Hp at,Dpµq, g P ΛD 1,`pαpq, where h is a test function such that h ¨ g is in ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For p “ 1, we may define the product between H1 at,Dpµq and BMODpµq analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' To this end, we need to introduce some pointwise multipliers of ΛD 1,`pαpq and BMODpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote the space of test functions by Hpαpq p0 ă p ď 1q, and a measurable function h is a test function if it satisfies the following properties: (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7) |hpxq| ≲ 1 p1 ` µpBpO, dpx, Oqqqαpq logpe ` dpx, Oqq, @x P Ω, and (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8) |hpyq ´ hpzq| ≲ µpBqαp p1 ` µrBpO, 1 ` r ` dpcB, Oqqsαpq logpe ` r ` dpcB, Oqq whenever y, z are both contained in a ball B with center cB and radius r ď dpcB,Oq 2A0 ` 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It is obvious that Hpαpq Ă L8pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The following theorem shows that if h P Hpαpq, then h is a pointwise multiplier of ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1 and any dyadic system D, Hpαpq is a space of pointwise multipliers of ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For p “ 1, Hp0q is a space of pointwise multipliers of BMOD `pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' More precisely, for any g P ΛD 1,`pαpq and h P Hpαpq, we have }g ¨ h}ΛD 1,`pαpq ≲ }g}ΛD 1,`pαpq ` }h}L8pΩq ` 1 ˘ , MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 26 and for any g P BMOD `pµq and h P Hp0q, we have }g ¨ h}BMOD ` pµq ≲ }g}BMOD `pµq ` }h}L8pΩq ` 1 ˘ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' First, we consider the case 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume that g P ΛD 1,`pαpq and h P Hpαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' According to [20], it suffices to show that (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9) sup Q |gQ| µpQqαp`1 ˆˆ Q |hpxq ´ hQ|dx ˙ ă 8, where Q runs over all dyadic cubes in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If Q Ă Q0 β for some β P A0, there exists a collection of cubes Q “ Q0 Ă Q1 Ă ¨ ¨ ¨ Ă QN “ Q0 β such that there exists a universal constant 0 ă δ 1 ă 1 with µpQk´1q ď δ 1µpQkq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence |gQ ´ gQ0 β| ď N ÿ k“1 |gQk ´ gQk´1| ≲ N ÿ k“1 µpQkqαp}g}ΛD 1,`pαpq ≲ }g}ΛD 1,`pαpq N ÿ k“1 ˆ µpQkq µpQk´1q tαp´1dt ≲ µpQ0 βqαp}g}ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Similarly, if Q0 β Ă Q, we have |gQ ´ gQ0 β| ≲ µpQqαp}g}ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, there exists a ball B, with center cB and radius r, such that Q Ă B and µpBq ≲ µpQq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If Q0 β Ă Q and r ą dpO,cBq 2A0 ` 1, for any x P BpO, rq, we have dpcB, xq ď A0pdpcB, Oq ` dpO, xqq ă p2A2 0 ` A0qr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then µpQq ≳ µpBq ≳ C´p2A2 0`A0q µ µ pBpO, rqq ≳ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Similarly, we also have dpz0 β, Oq ă p2A2 0 ` A0qr and µ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' B ´ O, dpz0 β, Oq ¯) ≲ µpBq ≲ µpQq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus |gQ| µpQqαp`1 ˆˆ Q |hpxq ´ hQ|dx ˙ ≲ |gQ ´ gQ0 β| ` |gQ0 β ´ gQ0| ` |gQ0| µpQqαp ¨ }h}L8pΩq ≲ µpQqαp ` µ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' B ´ O, dpz0 β, Oq ¯)αp ` 1 µpQqαp ¨ }g}ΛD 1,`pαpq}h}L8pΩq ≲ }g}ΛD 1,`pαpq}h}L8pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If Q0 β Ă Q and r ď dpO,cBq 2A0 ` 1, for any x P B, we have dpx, Oq ď A0pdpO, cBq ` rq, then µpQq ≲ µ pBpO, A0pdpO, cBq ` rqq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus |gQ| µpQqαp`1 ˆˆ Q |hpxq ´ hQ|dx ˙ ≲ |gQ ´ gQ0 β| ` |gQ0 β ´ gQ0| ` |gQ0| µpQqαp`1 µpBqαp`1 p1 ` µrBpO, 1 ` r ` dpO, cBqqsqαp ≲ ´ µpQqαp ` µ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' B ´ O, dpz0 β, Oq ¯)αp ` 1 ¯ }g}ΛD 1,`pαpq p1 ` µrBpO, 1 ` r ` dpO, cBqqsqαp ≲ }g}ΛD 1,`pαpq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If Q Ă Q0 β, from Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, we can choose C0 sufficiently small such that C1 “ 2A0C0 ď 1, then r ď C1 ď dpcB,Oq 2A0 ` 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any x P Q0 β, we have dpO, xq ď A0pdpO, z0 βq ` C1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then µpQ0 βq ≲ µ ␣ B ` O, A0pdpO, z0 βq ` C1q ˘( .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 27 By a calculation similar to the one presented above, we get the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Combining the above estimates, we finish our proof for 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The case for p “ 1 is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that in Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5, the dyadic system D is arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then from Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8 and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='12), we conclude that Hpαpq is a space of pointwise multipliers of Lαppµq and Hp0q is a space of pointwise multipliers of BMOpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bilinear decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume f P H1 Dpµq, g P BMOD `pµq or f P Hp Dpµq, g P ΛD 1,`pαpq, 0 ă p ă 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote by Hp D,finpµq p0 ă p ď 1q the linear space consisting of all functions which can be written as a finite sum of simple pp, 8q-atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus if f P Hp D,finpµq, f is locally supported, f P L1pΩq X L8pΩq and ´ Ω fdµ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that Hp D,finpµq is dense in Hp Dpµq with respect to the norm } ¨ }Hp Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In the following, we shall only consider the case where f P Hp D,finpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then f ¨ g P L1pΩq, and we can write (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='10) f ¨ g “ Π1pf, gq ` Π2pf, gq ` Π3pf, gq, where Π1pf, gq :“ 8 ÿ k“1 dkfdkg, Π2pf, gq :“ 8 ÿ k“1 fk´1dkg and Π3pf, gq :“ 8 ÿ k“1 gk´1dkf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We have the following: (1) Π1 is a bilinear bounded operator from H1 Dpµq ˆ BMOD `pµq to L1pΩq, and when 0 ă p ă 1, Π1 is a bilinear bounded operator from Hp Dpµq ˆ ΛD 1,`pαpq to L1pΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) Π2 is a bilinear bounded operator from H1 Dpµq ˆ BMOD `pµq to H1 Dpµq, and when 0 ă p ă 1, Π2 is a bilinear bounded operator from Hp Dpµq ˆ ΛD 1,`pαpq to H1 Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (3) Π3 is a bilinear bounded operator from H1 Dpµq ˆ BMOD `pµq to HΨ1 D pµq, and when 0 ă p ă 1, Π3 is a bilinear bounded operator from Hp Dpµq ˆ ΛD 1,`pαpq to HΨp D pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For Π1 and Π2, we can argue as in the corresponding part of the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' As for Π3, we can also argue as in the corresponding part of the proof Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, where in the homogeneous setting one needs to apply Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2 and Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For Π1 and Π2, the condition H1 Dpµq ˆ BMOD `pµq and Hp Dpµq ˆ ΛD 1,`pαpq can be in fact replaced by H1 Dpµq ˆ BMODpµq and Hp Dpµq ˆ ΛD 1 pαpq, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Applications to Homogeneous spaces In the first part of this section we show that HΨp D pµq admits an atomic decomposition for 0 ă p ă 1, which allows us to integrate several adjacent dyadic systems on homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For a given dyadic system D on Ω, we define the dyadic HΨp at,D-atom as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A measurable function a is said to be an HΨp at,D-atom if (i) supppaq Ă Q where Q P D is a cube;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (ii) ´ Ω adµ “ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (iii) }a}8 ⩽ }1Q}´1 LΨppΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The atomic dyadic martingale Musielak–Orlicz Hardy spaces HΨp at,Dpµq p0 ă p ă 1q are defined in a way analogous to (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We first introduce the space BMOD Ψppµq, which is a subspace of continuous linear functionals on finite sums of atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 28 Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A locally integrable function g is said to be a dyadic BMOD Ψppµq function associated with a dyadic system D if }g}BMOD Ψppµq :“ sup kPZ sup QPFk 1 }1Q}LΨppΩq ˆ Q |gpxq ´ gkpxq|dx ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then we define the atomic Musielak–Orlicz martingale Hardy spaces HΨp at,Dpµq as follows: HΨp at,Dpµq :“ # f P ´ BMOD Ψppµq ¯˚ : f “ 8 ÿ i“0 λiai, where ai is an HΨp at,Dpµq-atom supported on a cube Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' + , where 8 ÿ i“0 ˆ Qi Ψppx, |λi|}ai}8qdµ ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, }f}H Ψp at,Dpµq :“ inf # ρ ą 0 : 8 ÿ i“0 ˆ Qi Ψppx, ρ´1|λi|}ai}8qdµ ⩽ 1 + Arguing as in [28], one can show that for 0 ă p ă 1 (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1) HΨp D pµq “ HΨp at,Dpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We shall now introduce the atomic Musielak–Orlicz Hardy spaces HΨp at pµq p0 ă p ď 1q on the homogeneous space Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' First, we present the definition of atoms for HΨp at pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A measurable function apxq is said to be an HΨp at pµq-atom if (i) supppaq Ă B where B Ă Ω is a ball;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (ii) ´ Ω adµ “ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (iii) }a}8 ⩽ }1B}´1 LΨppΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A locally integrable function g is said to be a BMOΨppµq function if }g}BMOΨppµq :“ sup B 1 }1B}LΨppΩq ˆ B |gpxq ´ gB|dx ă 8, where B runs over all balls in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' The atomic Musielak–Orlicz Hardy spaces HΨp at pµq p0 ă p ď 1q are defined as follows: HΨp at pµq :“ # f P ` BMOΨppµq ˘˚ : f “ 8 ÿ i“0 λiai, where ai is an HΨp at pµq-atom supported on a ball Bi + , where 8 ÿ i“0 ˆ Bi Ψppx, |λi|}ai}8qdµ ă 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Moreover, }f}H Ψp at pµq :“ inf # ρ ą 0 : 8 ÿ i“0 ˆ Bi Ψppx, ρ´1|λi|}ai}8qdµ ⩽ 1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 29 Let Dt p1 ď t ď Kq be the adjacent systems of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By arguing as in the proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6, we have the following: Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For 0 ă p ă 1, HΨp at pµq “ HΨp at,D1pµq ` HΨp at,D2pµq ` ¨ ¨ ¨ ` HΨp at,DKpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' It suffices to show that any dyadic HΨp Dt -atom a is a constant multiple of an HΨppµq-atom, and any HΨppµq-atom b is a constant multiple of a dyadic HΨp Dt -atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If B :“ Bpx0, rq, then denote the ball Bpx0, Drq by DB for D ě 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Denote d :“ dpx0, Oq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In what follows, CpD, p, A0, Cµq denotes a constant that depends on D, p, A0, Cµ and may differ from line to line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We first show that if ˆ B 1 1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq “ 1, then (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2) ˆ DB 1 1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ CpD, p, A0, Cµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Notice that 1 “ ˆ B 1 1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩾ µpBq sup xPB t1 ` r1 ` µpBpO, dpx, Oqqqs1´pu ⩾ µpBq 1 ` r1 ` µpBpO, A0pd ` rqqqs1´p , which implies µpBq ⩽ 1 ` r1 ` µpBpO, A0pd ` rqqqs1´p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If d ⩽ 2A0Dr, we have µpBq ⩽ 1 ` r1 ` µpBpO, A0p2A0D ` 1qrqqs1´p ⩽ 1 ` t1 ` µrBpx0, A0pA0 ` 1qp2A0D ` 1qrqsu1´p ⩽ 1 ` !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1 ` rA0pA0 ` 1qp2A0D ` 1qsCµ µpBq )1´p , and thus µpBq ⩽ CpD, p, A0, Cµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) ˆ DB 1 1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ µpDBq ⩽ DCµµpBq ⩽ CpD, p, A0, Cµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 30 If d ą 2A0Dr, then ˆ DB 1 1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ µpDBq inf xPDB t1 ` r1 ` µpBpO, dpx, Oqqqs1´pu ⩽ DCµµpBq 1 ` r1 ` µpBpO, d{A0 ´ Drqqs1´p , ⩽DCµ t1 ` µrB pO, rA0 ` 1{p2Dqsdqsu1´p ` DCµ 1 ` t1 ` µrBpO, d{p2A0qqsu1´p ⩽ DCµ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1 ` rp2A0 ` 1{DqA0sCµ µrBpO, d{p2A0qqs )1´p 1 ` t1 ` µrBpO, d{p2A0qqsu1´p ` DCµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hence (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4) ˆ DB 1 1 ` r1 ` µpBpO, dpx, Oqqqs1´p dµpxq ⩽ CpD, p, A0, Cµq Combining (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='3) with (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='4), we get (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Assume a is an HΨppµq-atom supported on B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='5, there exist t and a cube Q P Dt such that B Ă Q and diampQq ⩽ Cr, hence B Ă Q Ă CB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Note that supppaq Ă Q, ´ Q apxqdµpxq “ 0 and }1Q}LΨppµq ⩽ }1CB}LΨppµq ⩽ CpC, p, A0, Cµq}1B}LΨppµq, which follows from (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus }a}8 ⩽ }1B}´1 LΨppµq ≲ }1Q}´1 LΨppµq, which implies a is a multiple of dyadic HΨp Dt -atom supported on Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' For any t “ 1, 2 ¨ ¨ ¨ , K, assume b is a dyadic HΨp Dt -atom supported on Qk β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='1, there exists two balls such that Bpzk β, c1δkq Ă Qk β Ă Bpzk β, C1δkq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus supppbq Ă Bpzk β, C1δkq, ´ Bpzk β,C1δkq bpxqdµpxq “ 0 and }1Bpzk β,C1δkq}LΨppµq ⩽ C ˆC1 c1 , p, A0, Cµ ˙ }1Bpzk β,c1δkq}LΨppµq ≲ }1Qk β}LΨppµq, which follows from (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Therefore, }b}8 ⩽ }1Qk β}´1 LΨppµq ≲ }1Bpzk β,C1δkq}´1 LΨppµq, which implies b is a multiple of dyadic HΨp-atom supported on Bpzk β, C1δkq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' In [11], Fu, Ma and Yang defined another kind of Musielak–Orlicz Hardy spaces by grand maximal function and they also proved that these Musielak–Orlicz Hardy spaces are equivalent to HΨp at pµq with respect to the corresponding norms when p P p Cµ Cµ`1, 1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let B1 :“ BpO, 1q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Define }g}BMO`pµq :“ |gB1| ` }g}BMOpµq, for g P BMOpµq, and }g}L`,αpµq :“ |gB1| ` }g}Lαppµq, for g P Lαppµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Thus } ¨ }BMO`pµq and } ¨ }L`,αppµq are quasi-norms on BMOpµq and Lαppµq, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 31 Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let 0 ă p ă 1 and f P Hp atpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' There exist three linear continuous operators Πf 1 : Lαppµq Ñ L1pΩq, Πf 2 : Lαppµq Ñ H1 atpµq and Πf 3 : Lαppµq Ñ HΨp at pµq such that f ¨ g “ Πf 1pgq ` Πf 2pgq ` Πf 3pgq for all g P Lαppµq, where Lαppµq is endowed with the quasi-norm } ¨ }L`,αppµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let f P Hp atpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6 there exist f t P Hp Dtpµq pt “ 1, 2, ¨ ¨ ¨ , Kq such that f “ f 1 ` f 2 ` ¨ ¨ ¨ ` f K, and K ÿ t“1 }f t}Hp Dtpµq « }f}Hp atpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Define Πf i pgq :“ Kř t“1 Πipf t, gq for i “ 1, 2, 3 and g P Lαppµq (Πi defined as in Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then f ¨ g “ Πf 1pgq ` Πf 2pgq ` Πf 3pgq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' By Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='7, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6 and Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6, we have }Πf 1pgq}1 ≲ K ÿ t“1 }Π1pf t, gq}1 ≲ K ÿ t“1 }f t}Hp Dt pµq}g}ΛDt 1,`pαpq ≲ }f}Hp atpµq}g}L`,αppµq, }Πf 2pgq}H1 atpµq ≲ K ÿ t“1 }Π2pf t, gq}H1 Dtpµq ≲ K ÿ t“1 }f t}Hp Dtpµq}g}ΛDt 1,`pαpq ≲ }f}Hp atpµq}g}L`,αppµq, }Πf 3pgq}H Ψp at pµq ≲ K ÿ t“1 }Π3pf t, gq}H Ψp Dt pµq ≲ K ÿ t“1 }f t}Hp Dtpµq}g}ΛDt 1,`pαpq ≲ }f}Hp atpµq}g}L`,αppµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' which finishes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' □ Remark 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' If the homogeneous space pΩ, µq satisfies the reverse doubling condition, then Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='6 holds for p “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Then we conclude the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Let f P H1 atpµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' There exist three linear continuous operators Πf 1 : BMOpµq Ñ L1pΩq, Πf 2 : BMOpµq Ñ H1 atpµq and Πf 3 : BMOpµq Ñ HΨ1 at pµq such that f ¨ g “ Πf 1pgq ` Πf 2pgq ` Πf 3pgq for all g P BMOpµq, where BMOpµq is endowed with the norm } ¨ }BMO`pµq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We thank Professor Quanhua Xu for helpful discussions and suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' would like to express their gratitude to Professor Xu for his kind invitation and hospitality during their visit to Besan¸con in March 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' We would also like to thank Yong Jiao, Guangheng Xie, Dachun Yang, Dejian Zhou for personal communications on their work with us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' References [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Auscher and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hyt¨onen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Orthonormal bases of regular wavelets in spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Harmon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 34 (2013), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2, 266–296;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Addendum to Orthonormal bases of regular wavelets in spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Harmon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 39 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3, 568–569.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [2] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bakas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Pott, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Rodr´ıguez-L´opez and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Sola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Notes on Hlog: structural properties, dyadic variants, and bilinear H1-BMO mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 60 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2, 231–275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bonami, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Cao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ky, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yuan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Multiplication between Hardy spaces and their dual spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (9) 131 (2019), 130–170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 32 [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bonami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Grellier and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Paraproducts and products of functions in BMOpRnq and H1pRnq through wavelets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Pures Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (9) 97 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3, 230–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bonami, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Iwaniec, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Jones and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Zinsmeister.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' On the product of functions in BMO and H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Fourier (Grenoble) 57 (2007), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 5, 1405–1439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Burkholder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale transforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 37 (1966), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 6, 1494–1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Coifman and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Weiss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Extensions of Hardy spaces and their use in analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Soc, 83 (1977), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 4, 569–645 [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Conde-Alonso and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Parcet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Atomic Blocks for Noncommutative Martingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Indiana Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 65 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 4, 1425–1443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [9] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Davis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' On the integrability of the martingale square function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Israel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 8 (1970), 187–190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Fefferman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Characterizations of bounded mean oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 77 (1971), 587–588.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [11] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Fu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ma, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Real-variable characterizations of Musielak-Orlicz Hardy spaces on spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Fenn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 45 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1, 343–410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Garsia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale inequalities: Seminar notes on recent progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Mathematics Lecture Note Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Benjamin, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=', Reading, Mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='-London-Amsterdam, 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' viii+184 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Hyt¨onen and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Kairema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Systems of dyadic cubes in a doubling metric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='126 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1, 1–33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Jiao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Xie, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bilinear decomposition for product of martingale Hardy space H1pΩq and martingale BMOpΩq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yuan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Dissertationes Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 533 (2018), 93 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale spaces and inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Peking University Press, Beijing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Friedr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Vieweg & Sohn, Braunschweig, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' iv+346 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [17] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Mei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' BMO is the intersection of two translates of dyadic BMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Paris, 336 (2003), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 12, 1003–1006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [18] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Meyers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Mean oscillation over cubes and H¨older continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=', 15 (1964), 717–721.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Miyamoto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Nakai and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Sadasue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale Orlicz-Hardy spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 285 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 5-6, 670–686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Nakai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Pointwise multipliers on weighted BMO spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 125 (1997), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1, 35–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Nakai and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Sadasue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Pointwise multipliers on martingale Campanato spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Studia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 220 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 1, 87–100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [22] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Nakai and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yabuta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Pointwise multipliers for functions of bounded mean oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Japan 37 (1985), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 2, 207–218.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Perrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' A noncommutative Davis’ decomposition for martingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' (2) 80 (2009), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3, 627–648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [24] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Stein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' With the assistance of Timothy S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Murphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Princeton Mathematical Series, 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Monographs in Harmonic Analysis, III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Princeton University Press, Princeton, NJ, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' xiv+695 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [25] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Viviani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' An atomic decomposition of the predual of BMOpρq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Iberoamericana 3 (1987), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3-4, 401–425 [26] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Weisz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale Hardy spaces and their applications in Fourier analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lecture Notes in Mathematics, 1568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Springer-Verlag, Berlin, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' viii+218 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [27] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Weisz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale Hardy spaces for 0 ă p ď 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Theory Related Fields 84 (1990), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 3, 361–376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Xie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Jiao and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Martingale Musielak-Orlicz Hardy spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' China Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 62 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 8, 1567–1584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [29] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Xing, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Liang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Products of Functions in BMOpXq and H1 atpXq via wavelets over spaces of homogeneous type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Fourier Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 23 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' 4, 919–990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' [30] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Liang and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Ky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Real-variable theory of Musielak-Orlicz Hardy spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Lecture Notes in Mathematics, 2182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Springer, Cham, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' xiii+466 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' MULTIPLICATION BETWEEN ELEMENTS IN MARTINGALE HARDY SPACES AND THEIR DUALS 33 (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Bakas) BCAM - Basque Center for Applied Mathematics, 48009 Bilbao, Spain Email address: obakas@bcamath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='org (Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Xu) Laboratoire de Math´ematiques, Universit´e de Bourgogne Franche-Comt´e, 25030 Besanc¸on Cedex, France Email address: xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='zhendong@univ-fcomte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='fr (Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Zhai) School of Mathematical and Statistical Sciences, Clemson University, 29634 South Car- olina, USA Email address: zhai@clemson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='edu (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content=' Zhang) Laboratoire de Math´ematiques, Universit´e de Bourgogne Franche-Comt´e, 25030 Besanc¸on Cedex, France Email address: hao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='zhang@univ-fcomte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
+page_content='fr' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFAT4oBgHgl3EQf4B4e/content/2301.08723v1.pdf'}
diff --git a/ZdFLT4oBgHgl3EQfWC9a/vector_store/index.faiss b/ZdFLT4oBgHgl3EQfWC9a/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..8592b1d39388f0693b1118e85314be5e1c2dd584
--- /dev/null
+++ b/ZdFLT4oBgHgl3EQfWC9a/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5275ec6cbe1f76146b27dfbcdabf6ffb93b98ec5f2f2adf70e293a08f206fd0e
+size 3014701
diff --git a/ZdFRT4oBgHgl3EQfPzc_/content/tmp_files/2301.13518v1.pdf.txt b/ZdFRT4oBgHgl3EQfPzc_/content/tmp_files/2301.13518v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1dcd0d865a9b952452b4404b85c62456e039e447
--- /dev/null
+++ b/ZdFRT4oBgHgl3EQfPzc_/content/tmp_files/2301.13518v1.pdf.txt
@@ -0,0 +1,951 @@
+arXiv:2301.13518v1 [math.NT] 31 Jan 2023
+Relations between values of arithmetic Gevrey series,
+and applications to values of the Gamma function
+S. Fischler and T. Rivoal
+February 1, 2023
+Abstract
+We investigate the relations between the rings E, G and D of values taken at alge-
+braic points by arithmetic Gevrey series of order either −1 (E-functions), 0 (analytic
+continuations of G-functions) or 1 (renormalization of divergent series solutions at
+∞ of E-operators) respectively. We prove in particular that any element of G can
+be written as multivariate polynomial with algebraic coefficients in elements of E
+and D, and is the limit at infinity of some E-function along some direction. This
+prompts to defining and studying the notion of mixed functions, which generalizes
+simultaneously E-functions and arithmetic Gevrey series of order 1. Using natural
+conjectures for arithmetic Gevrey series of order 1 and mixed functions (which are
+analogues of a theorem of Andr´e and Beukers for E-functions) and the conjecture
+D ∩ E = Q (but not necessarily all these conjectures at the same time), we deduce a
+number of interesting Diophantine results such as an analogue for mixed functions of
+Beukers’ linear independence theorem for values of E-functions, the transcendance
+of the values of the Gamma function and its derivatives at all non-integral algebraic
+numbers, the transcendance of Gompertz constant as well as the fact that Euler’s
+constant is not in E.
+1
+Introduction
+A power series �∞
+n=0
+an
+n! xn ∈ Q[[x]] is said to be an E-function when it is solution of a linear
+differential equation over Q(x) (holonomic), and |σ(an)| (for any σ ∈ Gal(Q/Q)) and the
+least common denominator of a0, a1, . . . , an grow at most exponentially in n. They were
+defined and studied by Siegel in 1929, who also defined the class of G-functions: a power
+series �∞
+n=0 anxn ∈ Q[[x]] is said to be a G-function when �∞
+n=0
+an
+n! xn is an E-function. In
+this case, �∞
+n=0 n!anzn ∈ Q[[z]] is called an Э-function, following the terminology intro-
+duced by Andr´e in [1]. E-functions are entire, while G-functions have a positive radius of
+convergence, which is finite except for polynomials. Here and below, we see Q as embedded
+into C. Following Andr´e again, E-functions, G-functions and Э-fonctions are exactly arith-
+metic Gevrey series of order s = −1, 0, 1 respectively. Actually Andr´e defines arithmetic
+1
+
+Gevrey series of any order s ∈ Q, but the set of values at algebraic points is the same for
+a given s ̸= 0 as for s/|s| using [1, Corollaire 1.3.2].
+Э-functions are divergent series, unless they are polynomials. Given an Э-function f
+and any θ ∈ R, except finitely many values mod 2π (namely anti-Stokes directions of
+f), one can perform Ramis’ 1-summation of f(1/z) in the direction θ, which coincides
+in this setting with Borel-Laplace summation (see [14] or [9]). This provides a function
+denoted by fθ(1/z), holomorphic on the open subset of C consisting in all z ̸= 0 such that
+θ− π
+2 −ε < arg z < θ+ π
+2 +ε for some ε > 0, of which f(1/z) is the asymptotic expansion in
+this sector (called a large sector bisected by θ). Of course f(1/z) can be extended further
+by analytic continuation, but this asymptotic expansion may no longer be valid. When an
+Э-function is denoted by fj, we shall denote by fj,θ or fj;θ its 1-summation and we always
+assume (implicitly or explicitly) that θ is not an anti-Stokes direction.
+In [8], [9] and [10, §4.3], we have studied the sets G, E and D defined respectively as
+the sets of all the values taken by all (analytic continuations of) G-functions at algebraic
+points, of all the values taken by all E-functions at algebraic points and of all values fθ(1)
+where f is an Э-function (θ = 0 if it is not an anti-Stokes direction, and θ > 0 is very small
+otherwise.) These three sets are countable sub-rings of C that all contain Q; conjecturally,
+they are related to the set of periods and exponential periods, see §3. (The ring D is
+denoted by Э in [10].)
+We shall prove the following result in §3.
+Theorem 1. Every element of G can be written as a multivariate polynomial (with coef-
+ficients in Q) in elements of E and D.
+Moreover, G coincides with the set of all convergent integrals
+� ∞
+0 F(x)dx where F is
+an E-function, or equivalently with the set of all finite limits of E-functions at ∞ along
+some direction.
+Above, a convergent integral
+� ∞
+0 F(x)dx means a finite limit of the E-function
+� z
+0 F(x)dx
+as z → ∞ along some direction; this explains the equivalence of both statements.
+We refer to Eq. (3.2) in §3 for an expression of log(2) as a polynomial in elements in E
+and D; the number π could be similarly expressed by considering z and iz instead of z and
+2z there. Examples of the last statement are the identities (see [12] for the second one):
+� +∞
+0
+sin(x)
+x
+dx = π
+2
+and
+� +∞
+0
+J0(ix)e−3xdx =
+√
+6
+96π3Γ
+� 1
+24
+�
+Γ
+� 5
+24
+�
+Γ
+� 7
+24
+�
+Γ
+�11
+24
+�
+.
+It is notoriously difficult to prove/disprove that a given element of G is transcendental;
+it is known that a Siegel-Shidlovskii type theorem for G-functions can not hold mutatis
+mutandis. Theorem 1 suggests that an alternative approach to the study of the Diophantine
+properties of elements of G can be through a better understanding of joint study of the
+elements of E and D, modulo certain conjectures to begin with. Our applications will
+not be immediately directed to the elements of G but rather to the understanding of the
+(absence of) relations between the elements of E and D.
+2
+
+It seems natural (see [9, p. 37]) to conjecture that E ∩ G = Q, and also that G ∩ D =
+Q, though both properties seem currently out of reach. In this paper, we suggest (see §2)
+a possible approach towards the following analogous conjecture.
+Conjecture 1. We have E ∩ D = Q.
+In §2 we shall make a functional conjecture, namely Conjecture 3, that implies Conjec-
+ture 1. We also prove that Conjecture 1 has very important consequences, as the following
+result shows.
+Theorem 2. Assume that Conjecture 1 holds. Then Γ(s)(a) is a transcendental number
+for any rational number a > 0 and any integer s ≥ 0, except of course if s = 0 and a ∈ N.
+One of the aims of this paper is to show that combining Э- and E-functions may lead
+to very important results in transcendental number theory. Let us recall now briefly the
+main known results on E-functions.
+Point (i) in the following result is due to Andr´e [2] for E-functions with rational Taylor
+coefficients, and to Beukers [6] in the general case. Andr´e used this property to obtain a
+new proof of the Siegel-Shidlovskii Theorem, and Beukers to prove an optimal refinement
+of this theorem (namely, (ii) below).
+Theorem A. (i) [Andr´e, Beukers] If an E-function F(z) is such that F(1) = 0, then F (z)
+z−1
+is an E-function.
+(ii) [Beukers] Let F(z) := t(f1(z), . . . , fn(z)) be a vector of E-functions solution of a
+differential system F ′(z) = A(z)F(z) for some matrix A(z) ∈ Mn(Q(z)).
+Let ξ ∈ Q
+∗ which is not a pole of a coefficient of A. Let P ∈ Q[X1, . . . , Xn] be a
+homogeneous polynomial such that
+P(f1(ξ), . . . , fn(ξ)) = 0.
+Then there exists Q ∈ Q[Z, X1, . . . , Xn], homogeneous in the Xi, such that
+Q(z, f1(z), . . . , fn(z)) = 0 identically and P(X1, . . . , Xn) = Q(ξ, X1, . . . , Xn).
+In particular, we have
+trdegQ(f1(ξ), . . . , fn(ξ)) = trdegQ(z)(f1(z), . . . , fn(z)).
+The Siegel-Shidlovskii Theorem itself is the final statement about equality of transcen-
+dence degrees.
+In this paper we state conjectural analogues of these results, involving Э-functions.
+The principal difficulty is that these functions are divergent power series, and the exact
+analogue of Theorem A is meaningless.
+Andr´e discussed the situation in [2] and even
+though he did not formulate exactly the following conjecture, it seems plausible to us.
+From it, we will show how to deduce an analogue of the Siegel-Shidlovskii theorem for
+Э-functions. Ferguson [7, p. 171, Conjecture 1] essentially stated this conjecture when f(z)
+has rational coefficients and when θ = 0.
+3
+
+Conjecture 2. Let f(z) be an Э-function and θ ∈ (−π/2, π/2) be such that fθ(1) = 0.
+Then f(z)
+z−1 is an Э-function.
+In other words, the conclusion of this conjecture asserts that
+z
+1−zf(1/z) is an Э-function
+in 1/z; this is equivalent to f(1/z)
+z−1 being an Э-function in 1/z (since we have f(1/z)
+z−1 = O(1/z)
+unconditionally as |z| → ∞).
+Following Beukers’ proof [6] yields the following result (see [3, §4.6] for a related con-
+jecture).
+Theorem 3. Assume that Conjecture 2 holds.
+Let f(z) := t(f1(z), . . . , fn(z)) be a vector of Э-functions solution of a differential system
+f′(z) = A(z)f(z) for some matrix A(z) ∈ Mn(Q(z)).
+Let ξ ∈ Q
+∗ and θ ∈ (arg(ξ) −
+π/2, arg(ξ) + π/2) ; assume that ξ is not a pole of a coefficient of A, and that θ is anti-
+Stokes for none of the fj.
+Let P ∈ Q[X1, . . . , Xn] be a homogeneous polynomial such that
+P(f1,θ(1/ξ), . . . , fn,θ(1/ξ)) = 0.
+Then there exists Q ∈ Q[Z, X1, . . . , Xn], homogeneous in the Xi, such that
+Q(z, f1(z), . . . , fn(z)) = 0 identically and P(X1, . . . , Xn) = Q(1/ξ, X1, . . . , Xn).
+In particular, we have
+trdegQ(f1,θ(1/ξ), . . ., fn,θ(1/ξ)) = trdegQ(z)(f1(z), . . . , fn(z)).
+As an application of Theorem 3, we shall prove the following corollary. Note that under
+his weaker version of Conjecture 2, Ferguson [7, p. 171, Theorem 2] proved that Gompertz’s
+constant is an irrational number.
+Corollary 1. Assume that Conjecture 2 holds. Then for any α ∈ Q, α > 0, and any
+s ∈ Q \ Z≥0, the number
+� ∞
+0 (t + α)se−tdt is a transcendental number.
+In particular, Gompertz’s constant δ :=
+� ∞
+0 e−t/(t + 1)dt is a transcendental number.
+In this text we suggest an approach towards Conjecture 1, based on the new notion
+of mixed functions which enables one to consider E- and Э-functions at the same time.
+In particular we shall state a conjecture about such functions, namely Conjecture 3 in §2,
+which implies both Conjecture 1 and Conjecture 2. The following result is a motivation
+for this approach.
+Proposition 1. Assume that both Conjectures 1 and 2 hold. Then neither Euler’s constant
+γ := −Γ′(1) nor Γ(a) (with a ∈ Q+ \ N) are in E.
+It is likely that none of these numbers is in G, but (as far as we know) there is no
+“functional” conjecture like Conjecture 3 that implies this. It is also likely that none is in
+D as well, but we don’t know if this can be deduced from Conjecture 3.
+4
+
+The structure of this paper is as follows. In §2 we define and study mixed functions, a
+combination of E- and Э-functions. Then in §3 we express any value of a G-function as a
+polynomial in values of E- and Э-functions, thereby proving Theorem 1. We study deriva-
+tives of the Γ function at rational points in §4, and prove Theorem 2 and Proposition 1.
+At last, §5 is devoted to adapting Beukers’ method to our setting: this approach yields
+Theorem 3 and Corollary 1.
+2
+Mixed functions
+2.1
+Definition and properties
+In view of Theorem 1, it is natural to study polynomials in E- and Э-functions. We can
+prove a Diophantine result that combines both Theorems A(ii) and 3 but under a very com-
+plicated polynomial generalization of Conjecture 2. We opt here for a different approach
+to mixing E- and Э-functions for which very interesting Diophantine consequences can be
+deduced from a very easy to state conjecture which is more in the spirit of Conjecture 2.
+We refer to §2.3 for proofs of all properties stated in this section (including Lemma 1 and
+Proposition 2), except Theorem 4.
+Definition 1. We call mixed (arithmetic Gevrey) function any formal power series
+�
+n∈Z
+anzn
+such that �
+n≥0 anzn is an E-function in z, and �
+n≥1 a−nz−n is an Э-function in 1/z.
+In other words, a mixed function is defined as a formal sum Ψ(z) = F(z)+f(1/z) where
+F is an E-function and f is an Э-function. In particular, such a function is zero if, and
+only if, both F and f are constants such that F + f = 0; obviously, F and f are uniquely
+determined by Ψ upon assuming (for instance) that f(0) = 0. The set of mixed functions
+is a Q-vector space stable under multiplication by zn for any n ∈ Z. Unless f(z) is a
+polynomial, such a function Ψ(z) = F(z) + f(1/z) is purely formal: there is no z ∈ C such
+that f(1/z) is a convergent series. However, choosing a direction θ which is not anti-Stokes
+for f allows one to evaluate Ψθ(z) = F(z) + fθ(1/z) at any z in a large sector bisected by
+θ. Here and below, such a direction will be said not anti-Stokes for Ψ and whenever we
+write fθ or Ψθ we shall assume implicitly that θ is not anti-Stokes.
+Definition 1 is a formal definition, but one may identify a mixed function with the
+holomorphic function it defines on a given large sector by means of the following lemma.
+Lemma 1. Let Ψ be a mixed function, and θ ∈ R be a non-anti-Stokes direction for Ψ.
+Then Ψθ is identically zero (as a holomorphic function on a large sector bisected by θ) if,
+and only if, Ψ is equal to zero (as a formal power series in z and 1/z).
+5
+
+Any mixed function Ψ(z) = F(z) + f(1/z) is solution of an E-operator. Indeed, this
+follows from applying [1, Theorem 6.1] twice: there exist an E-operator L such that
+L(f(1/z)) = 0, and an E-operator M such that M(L(F(z))) = 0 (because L(F(z)) is an
+E-function). Hence ML(F(z) + f(1/z)) = 0 and by [1, p. 720, §4.1], ML is an E-operator.
+We formulate the following conjecture, which implies both Conjecture 1 and Conjec-
+ture 2.
+Conjecture 3. Let Ψ(z) be an mixed function, and θ ∈ (−π/2, π/2) be such that Ψθ(1) = 0.
+Then Ψ(z)
+z−1 is an mixed function.
+The conclusion of this conjecture is that Ψ(z) = (z − 1)Ψ1(z) for some mixed function
+Ψ1. This conclusion can be made more precise as follows; see §2.3 for the proof.
+Proposition 2. Let Ψ(z) = F(z) + f(1/z) be an mixed function, and θ ∈ (−π/2, π/2) be
+such that Ψθ(1) = 0. Assume that Conjecture 3 holds for Ψ and θ.
+Then both F(1) and fθ(1) are algebraic, and f(1/z)−fθ(1)
+z−1
+is an Э-function.
+Of course, in the conclusion of this proposition, one may assert also that F (z)−F (1)
+z−1
+is an
+E-function using Theorem A(i).
+Conjecture 3 already has far reaching Diophantine consequences: Conjecture 2 and
+Theorem 2 stated in the introduction, and also the following result that encompasses
+Theorem 3 in the linear case.
+Theorem 4. Assume that Conjecture 3 holds.
+Let Ψ(z) := t(Ψ1(z), . . . , Ψn(z)) be a vector of mixed functions solution of a differential
+system Ψ′(z) = A(z)Ψ(z) for some matrix A(z) ∈ Mn(Q(z)).
+Let ξ ∈ Q
+∗ and θ ∈
+(arg(ξ) − π/2, arg(ξ) + π/2) ; assume that ξ is not a pole of a coefficient of A, and that θ
+is anti-Stokes for none of the Ψj.
+Let λ1, . . . , λn ∈ Q be such that
+n
+�
+i=1
+λiΨi,θ(ξ) = 0.
+Then there exist L1, . . . , Ln ∈ Q[z] such that
+n
+�
+i=1
+Li(z)Ψi(z) = 0 identically and Li(ξ) = λi for any i.
+In particular, we have
+rkQ(Ψ1,θ(ξ), . . . , Ψn,θ(ξ)) = rkQ(z)(Ψ1(z), . . . , Ψn(z)).
+The proof of Theorem 4 follows exactly the linear part of the proof of Theorem 3 (see
+§5.1), which is based on [6, §3]. The only difference is that Э-functions have to be replaced
+6
+
+with mixed functions, and Conjecture 2 with Conjecture 3. In particular Proposition 4
+stated in §5.1 remains valid with these modifications.
+However a product of mixed functions is not, in general, a mixed function. Therefore
+the end of [6, §3] does not adapt to mixed functions, and there is no hope to obtain in this
+way a result on the transcendence degree of a field generated by values of mixed functions.
+As an application of Theorem 4, we can consider the mixed functions 1, eβz and f(1/z) :=
+�∞
+n=0(−1)nn!z−n, where β is a fixed non-zero algebraic number. These three functions are
+linearly independent over C(z) and form a solution of a differential system with only 0 for
+singularity (because (f(1/z))′ = (1 + 1/z)f(1/z) − 1), hence for any α ∈ Q, α > 0 and any
+̺ ∈ Q
+∗, the numbers 1, e̺, f0(1/α) :=
+� ∞
+0 e−t/(1 + αt)dt are Q-linearly independent (for a
+fixed α, take β = ̺/α).
+2.2
+Values of mixed functions
+We denote by MG the set of values Ψθ(1), where Ψ is a mixed function and θ = 0 if it is
+not anti-Stokes, θ > 0 is sufficiently small otherwise. This set is obviously equal to E + D.
+Proposition 3. For every integer s ≥ 0 and every a ∈ Q+, a ̸= 0, we have Γ(s)(a) ∈
+e−1MG.
+This results follows immediately from Eq. (4.4) below (see §4.2), written in the form
+Γ(s)(a) = e−1�
+(−1)ses!Ea,s+1(−1) + fa,s+1;0(1)
+�
+,
+because ezEa,s+1(−z) is an E-function and fa,s+1;0(1) is the 1-summation in the direction
+0 of an Э-function.
+It would be interesting to know if Γ(s)(a) belongs to MG. We did not succeed in proving
+it does, and we believe it does not. Indeed, for instance if we want to prove that γ ∈ MG,
+a natural strategy would be to construct an E-function F(z) with asymptotic expansion
+of the form γ + log(z) + f(1/z) in a large sector, and then to evaluate at z = 1. However
+this strategy cannot work since there is no such E-function (see the footnote in the proof
+of Lemma 1 in §2.3).
+2.3
+Proofs concerning mixed functions
+To begin with, let us take Proposition 2 for granted and prove that Conjecture 3 implies
+both Conjecture 1 and Conjecture 2. Concerning Conjecture 2 it is clear. To prove that it
+implies Conjecture 1, let ξ ∈ D, i.e. ξ = fθ(1) is the 1-summation of an Э-function f(z) in
+the direction θ = 0 if it is not anti-Stokes, and θ > 0 close to 0 otherwise. Assume that ξ
+is also in E: we have ξ = F(1) for some E-function F(z). Therefore, Ψ(z) = F(z) − f(1/z)
+is a mixed function such that Ψθ(1) = 0. By Conjecture 3 and Proposition 2, we have
+ξ = fθ(1) ∈ Q. This concludes the proof that Conjecture 3 implies Conjecture 1.
+7
+
+Let us prove Proposition 2 now. Assuming that Conjecture 3 holds for Ψ and θ, there
+exists a mixed function Ψ1(z) = F1(z) + f1(1/z) such that Ψ(z) = (z − 1)Ψ1(z). We have
+F(z) − (z − 1)F1(z) + f(1/z) − (z − 1)f1(1/z) = 0
+(2.1)
+as a formal power series in z and 1/z. Now notice that z − 1 = z(1 − 1
+z), and that we
+may assume f and f1 to have zero constant terms.
+Denote by α the constant term of
+f(1/z) − z(1 − 1
+z)f1(1/z). Then we have
+F(z) − (z − 1)F1(z) + α + f2(1/z) = 0
+for some Э-function f2 without constant term, so that f2 = 0, F(z) = (z − 1)F1(z) − α and
+F(1) = −α ∈ Q. This implies fθ(1) = α, and f(1/z)−fθ(1)
+z−1
+= f1(1/z) is an Э-function since
+f2 = 0. This concludes the proof of Proposition 2.
+At last, let us prove Lemma 1. We write Ψ(z) = F(z) + f(1/z) and assume that Ψθ
+is identically zero. Modifying θ slightly if necessary, we may assume that the asymptotic
+expansion −f(1/z) of F(z) in a large sector bisected by θ is given explicitly by [9, Theorem 5]
+applied to F(z) − F(0); recall that such an asymptotic expansion is unique (see [9]). As
+in [9] we let g(z) = �∞
+n=1 anz−n−1 where the coefficients an are given by F(z) − F(0) =
+�∞
+n=1
+an
+n! zn. For any σ ∈ C\{0} there is no contribution in eσz in the asymptotic expansion
+of F(z), so that g(z) is holomorphic at σ. At σ = 0, the local expansion of g is of the
+form g(z) = h1(z) + h2(z) log(z) with G-functions h1 and h2, and the coefficients of h2
+are related to those of f; however we shall not use this special form (1). Now recall that
+g(z) = G(1/z)/z where G is a G-function; then G is entire and has moderate growth at
+infinity (because ∞ is a regular singularity of G), so it is a polynomial due to Liouville’s
+theorem. This means that F(z) is a polynomial in z. Recall that asymptotic expansions
+in large sectors are unique. Therefore both F and f are constant functions, and F + f = 0.
+This concludes the proof of Lemma 1.
+3
+Proof of Theorem 1: values of G-functions
+In this section we prove Theorem 1. Let us begin with an example, starting with the
+relation proved in [15, Proposition 1] for z ∈ C \ (−∞, 0]:
+γ + log(z) = zE1,2(−z) − e−zf1,2;0(1/z)
+(3.1)
+where E1,2 is an E-function, and f1,2 is an Э-function, both defined below in §4.2.
+Apply Eq. (3.1) at both z and 2z, and then substract one equation from the other.
+This provides a relation of the form
+log(2) = F(z) + e−zf1;0(1/z) + e−2zf2;0(1/z)
+(3.2)
+1Actually we are proving that the asymptotic expansion of a non-polynomial E-function is never a C-
+linear combination of functions zα logk(z)f(1/z) with α ∈ Q, k ∈ N and Э-functions f: some exponentials
+have to appear.
+8
+
+valid in a large sector bisected by 0, with an E-function F and Э-functions f1 and f2.
+Choosing arbitrarily a positive real algebraic value of z yields an explicit expression of
+log(2) ∈ G as a multivariate polynomial in elements of E and D. But this example shows
+also that a polynomial in E- and Э-functions may be constant eventhough there does not
+seem to be any obvious reason. In particular, the functions 1, F(z), e−zf1;0(1/z), and
+e−2zf2;0(1/z) are linearly dependent over C. However we see no reason why they would
+be linearly dependent over Q. This could be a major drawback to combine in E- and
+Э-functions, since functions that are linearly dependent over C but not over Q can not
+belong to any Picard-Vessiot extension over Q.
+Let us come now to the proof of Theorem 1. We first prove the second part, which runs
+as follows (it is reproduced from the unpublished note [16]).
+From the stability of the class of E-functions by
+d
+dz and
+� z
+0 , we deduce that the set of
+convergent integrals
+� ∞
+0 F(x)dx of E-functions and the set of finite limits of E-functions
+along some direction as z → ∞ are the same. Theorem 2(iii) in [9] implies that if an
+E-function has a finite limit as z → ∞ along some direction, then this limit must be in G.
+Conversely, let β ∈ G. By Theorem 1 in [8], there exists a G-function G(z) = �∞
+n=0 anzn
+of radius of convergence ≥ 2 (say) such that G(1) = β. Let F(z) = �∞
+n=0
+an
+n! zn be the
+associated E-function. Then for any z such that Re(z) > 1
+2, we have
+1
+zG
+�1
+z
+�
+=
+� +∞
+0
+e−xzF(x)dx.
+Hence, β =
+� +∞
+0
+e−xF(x)dx where e−zF(z) is an E-function.
+We shall now prove the first part of Theorem 1. In fact, we shall prove a slightly more
+general result, namely Theorem 5 below. We first recall a few notations. Denote by S the
+G-module generated by all derivatives Γ(s)(a) (with s ∈ N and a ∈ Q\ Z≤0), and by V the
+S-module generated by E. Recall that G, S and V are rings. Conjecturally, G = P[1/π]
+and V = Pe[1/π] where P and Pe are the ring of periods and the ring of exponential
+periods over Q respectively (see [8, §2.2] and [10, §4.3]). We have proved in [10, Theorem
+3] that V is the S-module generated by the numbers eρχ, with ρ ∈ Q and χ ∈ D.
+Theorem 5. The ring V is the ring generated by E and D. In particular, all values of
+G-functions belong to the ring generated by E and D.
+In other words, the elements of V are exactly the sums of products ab with a ∈ E and
+b ∈ D.
+Proof of Theorem 5. We already know that V is a ring, and that it contains E and D. To
+prove the other inclusion, denote by U the ring generated by E and D. Using Proposition 3
+proved in §2.2 and the functional equation of Γ, we have Γ(s)(a) ∈ U for any s ∈ N and
+any a ∈ Q \ Z≤0. Therefore for proving that V ⊂ U, it is enough to prove that G ⊂ U.
+Let ξ ∈ G. Using [11, Theorem 3] there exists an E-function F(z) such that for any for
+any θ ∈ [−π, π) outside a finite set, ξ is a coefficient of the asymptotic expansion of F(z)
+9
+
+in a large sector bisected by θ. As the proof of [11, Theorem 3] shows, we can assume that
+ξ is the coefficient of ez in this expansion.
+Denote by L an E-operator of which F is a solution, and by µ its order. Andr´e has
+proved [1] that there exists a basis (H1(z), . . . , Hµ(z)) of formal solutions of L at infinity
+such that for any j, e−ρjzHj(z) ∈ NGA{1/z}Q
+1 for some algebraic number ρj. We recall
+that elements of NGA{1/z}Q
+1 are arithmetic Nilsson-Gevrey series of order 1 with algebraic
+coefficients, i.e. Q-linear combinations of functions zk(log z)ℓf(1/z) with k ∈ Q, ℓ ∈ N
+and Э-functions f. Expanding in this basis the asymptotic expansion of F(z) in a large
+sector bisected by θ (denoted by �F), there exist complex numbers κ1, . . . , κd such that
+�F(z) = κ1H1(z) + . . . + κµHµ(z). Then we have ξ = κ1c1 + . . . + κµcµ, where cj is the
+coefficient of ez in Hj(z) ∈ eρjzNGA{1/z}Q
+1 . We have cj = 0 if ρj ̸= 1, and otherwise cj is
+the constant coefficient of e−zHj(z): in both cases cj is an algebraic number. Therefore to
+conclude the proof that ξ ∈ U, it is enough to prove that κ1, . . . , κµ ∈ U.
+For simplicity let us prove that κ1 ∈ U. Given solutions F1, . . . , Fµ of L, we denote
+by W(F1, . . . , Fµ) the corresponding wronskian matrix. Then for any z in a large sector
+bisected by θ we have
+κ1 = det W(F(z), H2,θ(z), . . . , Hµ,θ(z))
+det W(H1,θ(z), . . . , Hµ,θ(z))
+where Hj,θ(z) is the 1-sommation of Hj(z) in this sector. The determinant in the denomi-
+nator belongs to eazNGA{1/z}Q
+1 with a = ρ1+. . .+ρµ ∈ Q. As the proof of [10, Theorem 6]
+shows, there exist b, c ∈ Q, with c ̸= 0, such that
+det W(H1,θ(z), . . . , Hµ,θ(z)) = czbeaz.
+We take z = 1, and choose θ = 0 if it is not anti-Stokes for L (and θ > 0 sufficiently small
+otherwise). Then we have
+κ1 = c−1e−a�
+det W(F(z), H2,θ(z), . . . , Hµ,θ(z))
+�
+|z=1 ∈ U.
+This concludes the proof.
+Remark 1. The second part of Theorem 1 suggests the following comments.
+It would
+be interesting to have a better understanding (in terms of E, G and D) of the set of
+convergent integrals
+� ∞
+0 R(x)F(x)dx where R is a rational function in Q(x) and F is an
+E-function, which are thus in G when R = 1 (see [16] for related considerations). Indeed,
+classical examples of such integrals are
+� +∞
+0
+cos(x)
+1+x2 dx = π/(2e) ∈ πE, Euler’s constant
+� +∞
+0
+1−(1+x)e−x
+x(1+x)
+dx = γ ∈ E + e−1D (using Eq. (3.1) and [20, p. 248, Example 2]) and
+Gompertz constant δ :=
+� +∞
+0
+e−x
+1+xdx ∈ D. A large variety of behaviors can thus be expected
+here.
+10
+
+For instance, using various explicit formulas in [13, Chapters 6.5–6.7], it can be proved
+that
+� +∞
+0
+R(x)J0(x)dx ∈ G + E + γE + log(Q
+⋆)E
+for any R(x) ∈ Q(x) without poles on [0, +∞), where J0(x) = �∞
+n=0(ix/2)2n/n!2 is a Bessel
+function.
+A second class of examples is when R(x)F(x) is an even function without poles on
+[0, +∞) and such that lim|x|→∞,Im(x)≥0 x2R(x)F(x) = 0. Then by the residue theorem,
+� +∞
+0
+R(x)F(x)dx = iπ
+�
+ρ, Im(ρ)>0
+Resx=ρ
+�
+R(x)F(x)
+�
+∈ πE
+where the summation is over the poles of R in the upper half plane.
+4
+Derivatives of the Γ function at rational points
+In this section we prove Theorem 2 and Proposition 1 stated in the introduction, dealing
+with Γ(s)(a).
+To begin with, we define E-functions Ea,s(z) in §4.1 and prove a linear
+independence result concerning these functions.
+Then we prove in §4.2 a formula for
+Γ(s)(a), namely Eq. (4.4), involving Ea,s+1(−1) and the 1-summation of an Э-function.
+This enables us to prove Theorem 2 in §4.3 and Proposition 1 in §4.4.
+4.1
+Linear independence of a family of E-functions
+To study derivatives of the Γ function at rational points, we need the following lemma.
+For s ≥ 1 and a ∈ Q \ Z≤0, we consider the E-function Ea,s(z) := �∞
+n=0
+zn
+n!(n+a)s.
+Lemma 2. (i) For any a ∈ Q \ Z and any s ≥ 1, the functions
+1, ez, ezEa,1(−z), ezEa,2(−z), . . . , ezEa,s(−z)
+are linearly independent over C(z).
+(ii) For any a ∈ N∗ and any s ≥ 2, the functions
+1, ez, ezEa,2(−z), . . . , ezEa,s(−z)
+are linearly independent over C(z).
+Remark 2. Part (i) of the lemma is false if a ∈ N∗ because 1, ez, ezEa,1(−z) are Q(z)-linearly
+dependent in this case (see the proof of Part (ii) below).
+11
+
+Proof. (i) For simplicity, we set ψs(z) := ezEa,s(−z). We proceed by induction on s ≥ 1.
+Let us first prove the case s = 1. The derivative of ψ1(z) is (1 + (z − a)ψ1(z))/z. Let
+us assume the existence of a relation ψ1(z) = u(z)ez + v(z) with u, v ∈ C(z) (a putative
+relation U(z) + V (z)ez + W(z)ψ1(z) = 0 forces W ̸= 0 because ez /∈ C(z)). Then after
+differentiation of both sides, we end up with
+1 + (z − a)ψ1(z)
+z
+=
+�
+u(z) + u′(z)
+�
+ez + v′(z).
+Hence,
+1 + (z − a)
+�
+u(z)ez + v(z)
+�
+z
+=
+�
+u(z) + u′(z)
+�
+ez + v′(z).
+Since ez /∈ C(z), the function v(z) is a rational solution of the differential equation zv′(z) =
+(z − a)v(z) + 1: v(z) cannot be identically 0, and it cannot be a polynomial (the degrees
+do not match on both sides). It must then have a pole at some point ω, of order d ≥ 1
+say. We must have ω = 0 because otherwise the order of the pole at ω of zv′(z) is d + 1
+while the order of the pole of (z − a)v(z) + 1 is at most d. Writing v(z) = �
+n≥−d vnzn
+with v−d ̸= 0 and comparing the term in z−d of zv′(z) and (z − a)v(z) + 1, we obtain that
+d = a. This forces a to be an integer ≥ 1, which is excluded. Hence, 1, ez, ezEa,1(−z) are
+C(z)-linearly independent.
+Let us now assume that the case s − 1 ≥ 1 holds. Let us assume the existence of a
+relation over C(z)
+ψs(z) = v(z) + u0(z)ez +
+s−1
+�
+j=1
+uj(z)ψj(z).
+(4.1)
+(A putative relation V (z) + U0(z)ez + �s
+j=1 Uj(z)ψj(z) = 0 forces Us ̸= 0 by the induction
+hypothesis). Differentiating (4.1) and because ψ′
+j(z) = (1− a
+z)ψj(z)+ 1
+zψj−1(z) for all j ≥ 1
+(where we have let ψ0(z) = 1), we have
+A(z)ψs(z) + 1
+zψs−1(z) = v′(z) +
+�
+u0(z) + u′
+0(z)
+�
+ez +
+s−1
+�
+j=1
+u′
+j(z)ψj(z)
++
+s−1
+�
+j=1
+uj(z)
+�
+A(z)ψj(z) + 1
+zψj−1(z)
+�
+,
+(4.2)
+where A(z) := 1 −a/z. Substituting the right-hand side of (4.1) for ψs(z) on the left-hand
+side of (4.2), we then deduce that
+v′(z) − A(z)v(z) +
+�
+u′
+0(z) + (1 − A(z))u0(z)
+�
+ez
++ 1
+z(z − a)u1(z)ψ1(z) +
+s−1
+�
+j=1
+u′
+j(z)ψj(z) + 1
+z
+s−1
+�
+j=1
+uj(z)ψj−1(z) − 1
+zψs−1(z) = 0.
+12
+
+This is a non-trivial C(z)-linear relation between 1, ez, ψ1(z), ψ2(z), . . . , ψs−1(z) because
+the coefficient of ψs−1(z) is u′
+s−1(z) −1/z and it is not identically 0 because u′
+s−1(z) cannot
+have a pole of order 1. But by the induction hypothesis, we know that such a relation is
+impossible.
+(ii) The proof can be done by induction on s ≥ 2 similarily. In the case s = 2, assume
+the existence of a relation ψ2(z) = u(z)ez +v(z) with u(z), v(z) ∈ C(z). By differentiation,
+we obtain
+�
+1 − a
+z
+�
+ψ2(z) = −1
+zψ1(z) +
+�
+u(z) + u′(z)
+�
+ez + v′(z).
+By induction on a ≥ 1, we have ψ1(z) = (a−1)!ez/za +w(z) for some w(z) ∈ Q(z). Hence,
+we have
+�
+1 − a
+z
+�
+u(z) = −
+�(a − 1)!
+za+1
++ 1
+�
+u(z) + u′(z)
+which is not possible. Let us now assume that the case s − 1 ≥ 2 holds, as well as the
+existence of a relation over C(z)
+ψs(z) = v(z) + u0(z)ez +
+s−1
+�
+j=2
+uj(z)ψj(z).
+(4.3)
+We proceed exactly as above by differentiation of both sides of (4.3). Using the relation
+ψ′
+j(z) = (1− a
+z)ψj(z)+ 1
+zψj−1(z) for all j ≥ 2 and the fact that ψ1(z) = (a−1)!ez/za+w(z),
+we obtain a relation �v(z) + �u0(z)ez + �s−1
+j=2 �uj(z)ψj(z) = 0 where �us−1(z) = u′
+s−1(z) −
+1/z cannot be identically 0. The induction hypothesis rules out the existence of such a
+relation.
+4.2
+A formula for Γ(s)(a)
+Let z > 0 and a ∈ Q+, a ̸= 0. We have
+Γ(s)(a) =
+� ∞
+0
+ta−1 log(t)se−tdt =
+� z
+0
+ta−1 log(t)se−tdt +
+� ∞
+z
+ta−1 log(t)se−tdt.
+On the one hand,
+� z
+0
+ta−1 log(t)se−tdt =
+∞
+�
+n=0
+(−1)n
+n!
+� z
+0
+ta+n−1 log(t)sdt
+=
+∞
+�
+n=0
+(−1)n
+n!
+s
+�
+k=0
+(−1)k
+s!
+(s − k)!
+zn+a log(z)s−k
+(n + a)k+1
+=
+s
+�
+k=0
+(−1)ks!
+(s − k)!za log(z)s−kEa,k+1(−z);
+13
+
+recall that Ea,j(z) = �∞
+n=0
+zn
+n!(n+a)j . On the other hand,
+� ∞
+z
+ta−1 log(t)se−tdt = e−z
+� ∞
+0
+(t + z)a−1 log(t + z)se−tdt
+= za−1e−z
+s
+�
+k=0
+�s
+k
+�
+log(z)s−k
+� ∞
+0
+(1 + t/z)a−1 log(1 + t/z)ke−tdt.
+Now z > 0 so that
+fa,k+1;0(z) :=
+� ∞
+0
+(1 + tz)a−1 log(1 + tz)ke−tdt = 1
+z
+� ∞
+0
+(1 + x)a−1 log(1 + x)ke−x/zdx
+is the 1-summation at the origin in the direction 0 of the Э-function
+∞
+�
+n=0
+n!ua,k,nzn,
+where the sequence (ua,k,n)n≥0 ∈ QN is defined by the expansion of the G-function:
+(1 + x)a−1 log(1 + x)k =
+∞
+�
+n=0
+ua,k,nxn.
+Note that if k = 0 and a ∈ N∗, then ua,k,n = 0 for any n ≥ a, and fa,k+1;0(1/z) is a
+polynomial in 1/z. Therefore, we have for any z > 0:
+Γ(s)(a) =
+s
+�
+k=0
+(−1)ks!
+(s − k)!za log(z)s−kEa,k+1(−z) + za−1e−z
+s
+�
+k=0
+�s
+k
+�
+log(z)s−kfa,k+1;0(1/z).
+In particular, for z = 1, this relation reads
+Γ(s)(a) = (−1)ss!Ea,s+1(−1) + e−1fa,s+1;0(1).
+(4.4)
+Since γ = −Γ′(1) we obtain as a special case the formula
+γ = E1,2(−1) − e−1f1,2;0(1),
+(4.5)
+which is also a special case of Eq. (3.1) proved in [15].
+4.3
+Proof of Theorem 2
+Let us assume that Γ(s)(a) ∈ Q for some a ∈ Q+ \ N and s ≥ 0.
+Then ezΓ(s)(a) +
+(−1)s+1s!ezEa,s+1(−z) is an E-function. The relation eΓ(s)(a) + (−1)s+1s!eEa,s+1(−1) =
+fa,s+1;0(1) proved at the end of §4.2 shows that α := eΓ(s)(a)+(−1)s+1s!eEa,s+1(−1) ∈ E∩D.
+14
+
+Hence α is in Q by Conjecture 1 and we have a non-trivial Q-linear relation between 1, e
+and eEa,s+1(−1): we claim that this is not possible. Indeed, consider the vector
+Y (z) := t(1, ez, ezEa,1(−z), . . . , ezEa,s+1(−z)).
+It is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only pole of
+M(z) ∈ Ms+3(Q(z)) (see the computations in the proof of Lemma 2 above). Since the
+components of Y (z) are Q(z)-linearly independent by Lemma 2(i), we deduce from Beuk-
+ers’ [6, Corollary 1.4] that
+1, e, eEa,1(−1), . . . , eEa,s+1(−1)
+are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly
+independent. This concludes the proof if a ∈ Q+ \ N.
+Let us assume now that Γ(s)(a) ∈ Q for some a ∈ N∗ and s ≥ 1. Then ezΓ(s)(a) +
+(−1)s+1s!ezEa,s+1(−z) is an E-function.
+The relation Γ(s)(a) + (−1)s+1s!Ea,s+1(−1) =
+e−1fa,s+1;0(1) shows that α := eΓ(s)(a)+(−1)s+1s!eEa,s+1(−1) ∈ E∩D. Hence α is in Q by
+Conjecture 1 and we have a non-trivial Q-linear relation between 1, e and eEa,s+1(−1): we
+claim that this is not possible. Indeed, consider the vector Y (z) := t(1, ez, ezEa,2(−z), . . . ,
+ezEa,s+1(−z)): it is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only
+pole of M(z) ∈ Ms+2(Q(z)). Since the components of Y (z) are Q(z)-linearly independent
+by Lemma 2(ii), we deduce again from Beukers’ theorem that
+1, e, eEa,2(−1), . . . , eEa,s+1(−1)
+are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly
+independent. This concludes the proof of Theorem 2.
+4.4
+Proof of Proposition 1
+Recall that Eq. (4.5) proved in §4.2 reads eE1,2(−1)−eγ = f1,2;0(1). Assuming that γ ∈ E,
+the left-hand side is in E while the right-hand side is in D. Hence both sides are in Q by
+Conjecture 1. Note that, by integration by parts,
+f1,2;0(1) =
+� ∞
+0
+log(1 + t)e−tdt =
+� ∞
+0
+e−t
+1 + tdt
+is Gompertz’s constant.
+Hence, by Corollary 1 (which holds under Conjecture 2), the
+number f1,2;0(1) is not in Q. Consequently, γ /∈ E.
+Similarly, Eq. (4.4) with a ∈ Q \ Z and s = 0 reads eΓ(a) − eEa,1(−1) = fa,1;0(1).
+Assuming that Γ(a) ∈ E, the left-hand side is in E while the right-hand side is in D. Hence
+both sides are in Q by Conjecture 1. But by Corollary 1 (which holds under Conjecture 2),
+the number fa,1;0(1) =
+� ∞
+0 (1 + t)a−1e−tdt is not in Q. Hence, Γ(a) /∈ E.
+15
+
+5
+Application of Beukers’ method and consequence
+In this section we prove Theorem 3 and Corollary 1 stated in the introduction.
+5.1
+Proof of Theorem 3
+The proof of Theorem 3 is based on the arguments given in [6], except that E-functions
+have to be replaced with Э-functions, and 1-summation in non-anti-Stokes directions is
+used for evaluations. Conjecture 2 is used as a substitute for Theorem A(i).
+The main step is the following result, the proof of which is analogous to the end of the
+proof of [6, Corollary 2.2].
+Proposition 4. Assume that Conjecture 2 holds.
+Let f be an Э-function, ξ ∈ Q
+∗ and θ ∈ (arg(ξ) − π/2, arg(ξ) + π/2). Assume that θ is
+not anti-Stokes for f, and that fθ(1/ξ) = 0. Denote by Ly = 0 a differential equation, of
+minimal order, satisfied by f(1/z).
+Then all solutions of Ly = 0 are holomorphic and vanish at ξ; the differential operator
+L has an apparent singularity at ξ.
+To deduce Theorem 3 from Proposition 4, it is enough to follow [6, §3].
+5.2
+Proof of Corollary 1
+Let s ∈ Q \ Z≥0. The Э-function f(z) := �∞
+n=0 s(s − 1) . . . (s − n + 1)zn is solution of the
+inhomogeneous differential equation z2f′(z)+(1−sz)f(z)−1 = 0, which can be immediately
+transformed into a differential system satisfied by the vector of Э-functions t(1, f(z)). The
+coefficients of the matrix have only 0 as pole. Moreover, f(z) is a transcendental function
+because s /∈ Z≥0. Hence, by Theorem 3, f0(1/α) /∈ Q when α ∈ Q, α > 0, because 0 is not
+an anti-Stokes direction of f(z). It remains to observe that this 1-sommation is
+� ∞
+0
+(1 + tz)se−tdt.
+References
+[1] Y. Andr´e, S´eries Gevrey de type arithm´etique I. Th´eor`emes de puret´e et de dualit´e,
+Annals of Math. 151 (2000), 705–740.
+[2] Y. Andr´e, S´eries Gevrey de type arithm´etique II. Transcendance sans transcendance,
+Annals of Math. 151 (2000), 741–756.
+[3] Y. Andr´e, Arithmetic Gevrey series and transcendence. A survey, J. Th´eor. Nombres
+Bordeaux 15 (2003), 1–10.
+16
+
+[4] D. Bertrand, F. Beukers, ´Equations diff´erentielles lin´eaires et majorations de multi-
+plicit´es, Annales scientifiques ENS 18.1 (1985), 181–192.
+[5] D. Bertrand, V. Chirskii, J. Yebbou, Effective estimates for global relations on Euler-
+type series, Annales de la Facult´e des sciences de Toulouse : Math´ematiques, S´er. 6,
+13.2 (2004), 241–260.
+[6] F. Beukers, A refined version of the Siegel-Shidlovskii theorem, Annals of Math. 163
+(2006), 369–379.
+[7] T. Ferguson, Algebraic properties of Э-functions, J. Number Theory 229 (2021), 168–
+178.
+[8] S. Fischler, T. Rivoal, On the values of G-functions, Commentarii Math. Helv. 89.2
+(2014), 313–341.
+[9] S. Fischler, T. Rivoal, Arithmetic theory of E-operators, Journal de l’´Ecole polytech-
+nique – Math´ematiques 3 (2016), 31–65.
+[10] S. Fischler, T. Rivoal, Microsolutions of differential operators and values of arithmetic
+Gevrey series, American J. of Math. 140.2 (2018), 317–348.
+[11] S. Fischler, T. Rivoal, On Siegel’s problem for E-functions, preprint arxiv 1910.06817
+[math.NT], Rendiconti Sem. Math. Univ. Padova, to appear.
+[12] M. L. Glasser, I. J. Zucker, Extended Watson integrals for the cubic lattices, Proc.
+Nat. Acad. Sci. U.S.A. 74.5 (1977), 1800—1801.
+[13] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, trans-
+lated from the Russian, edited by A. Jeffrey and D. Zwillinger, Amsterdam: Else-
+vier/Academic Press, 7th edition (english), 1176 pp., 2007.
+[14] J. P. Ramis, S´eries divergentes et th´eories asymptotiques, Panoramas et Synth`eses,
+no. 21, Soc. Math. France, Paris, 1993.
+[15] T. Rivoal,
+On the arithmetic nature of the values of the Gamma function, Euler’s
+constant et Gompertz’s constant, Michigan Math. Journal 61 (2012), 239–254.
+[16] T. Rivoal, Is Euler’s constant a value of an arithmetic special function?, unpublished
+note (2017), 10 pages, https://hal.archives-ouvertes.fr/hal-01619235
+[17] A. B. Shidlovskii, On a criterion for algebraic independence of the values of a class of
+integral functions, Izvestia Akad. Nauk SSSR 23 (1959), 35–66.
+[18] C. L. Siegel, ¨Uber einige Anwendungen diophantischer Approximationen, vol. 1 S.
+Abhandlungen Akad., Berlin, 1929.
+17
+
+[19] C. L. Siegel, Transcendental Numbers, Annals of Mathematical Studies 16, Princeton
+University Press, 1949.
+[20] E. T. Whittaker, G. N. Watson, A course of Modern Analysis, 4th edition, Cambridge
+Mathematical Library, 1996.
+S. Fischler, Universit´e Paris-Saclay, CNRS, Laboratoire de math´ematiques d’Orsay, 91405
+Orsay, France.
+T. Rivoal, Universit´e Grenoble Alpes, CNRS, Institut Fourier, CS 40700, 38058 Grenoble
+cedex 9, France.
+Keywords:
+E-functions, Э-functions, G-functions, Gamma function, Siegel-Shidlovskii
+Theorem.
+MSC 2020: 11J91 (Primary), 33B15 (Secondary)
+18
+
diff --git a/ZdFRT4oBgHgl3EQfPzc_/content/tmp_files/load_file.txt b/ZdFRT4oBgHgl3EQfPzc_/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5bcd749029f46fb9f95ab2e0813870780ba40b65
--- /dev/null
+++ b/ZdFRT4oBgHgl3EQfPzc_/content/tmp_files/load_file.txt
@@ -0,0 +1,705 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf,len=704
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='13518v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='NT] 31 Jan 2023 Relations between values of arithmetic Gevrey series, and applications to values of the Gamma function S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Fischler and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal February 1, 2023 Abstract We investigate the relations between the rings E, G and D of values taken at alge- braic points by arithmetic Gevrey series of order either −1 (E-functions), 0 (analytic continuations of G-functions) or 1 (renormalization of divergent series solutions at ∞ of E-operators) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We prove in particular that any element of G can be written as multivariate polynomial with algebraic coefficients in elements of E and D, and is the limit at infinity of some E-function along some direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This prompts to defining and studying the notion of mixed functions, which generalizes simultaneously E-functions and arithmetic Gevrey series of order 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Using natural conjectures for arithmetic Gevrey series of order 1 and mixed functions (which are analogues of a theorem of Andr´e and Beukers for E-functions) and the conjecture D ∩ E = Q (but not necessarily all these conjectures at the same time),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' we deduce a number of interesting Diophantine results such as an analogue for mixed functions of Beukers’ linear independence theorem for values of E-functions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' the transcendance of the values of the Gamma function and its derivatives at all non-integral algebraic numbers,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' the transcendance of Gompertz constant as well as the fact that Euler’s constant is not in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 1 Introduction A power series �∞ n=0 an n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' xn ∈ Q[[x]] is said to be an E-function when it is solution of a linear differential equation over Q(x) (holonomic), and |σ(an)| (for any σ ∈ Gal(Q/Q)) and the least common denominator of a0, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , an grow at most exponentially in n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' They were defined and studied by Siegel in 1929, who also defined the class of G-functions: a power series �∞ n=0 anxn ∈ Q[[x]] is said to be a G-function when �∞ n=0 an n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' xn is an E-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In this case, �∞ n=0 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='anzn ∈ Q[[z]] is called an Э-function, following the terminology intro- duced by Andr´e in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' E-functions are entire, while G-functions have a positive radius of convergence, which is finite except for polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Here and below, we see Q as embedded into C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Following Andr´e again, E-functions, G-functions and Э-fonctions are exactly arith- metic Gevrey series of order s = −1, 0, 1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Actually Andr´e defines arithmetic 1 Gevrey series of any order s ∈ Q, but the set of values at algebraic points is the same for a given s ̸= 0 as for s/|s| using [1, Corollaire 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Э-functions are divergent series, unless they are polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Given an Э-function f and any θ ∈ R, except finitely many values mod 2π (namely anti-Stokes directions of f), one can perform Ramis’ 1-summation of f(1/z) in the direction θ, which coincides in this setting with Borel-Laplace summation (see [14] or [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This provides a function denoted by fθ(1/z), holomorphic on the open subset of C consisting in all z ̸= 0 such that θ− π 2 −ε < arg z < θ+ π 2 +ε for some ε > 0, of which f(1/z) is the asymptotic expansion in this sector (called a large sector bisected by θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Of course f(1/z) can be extended further by analytic continuation, but this asymptotic expansion may no longer be valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' When an Э-function is denoted by fj, we shall denote by fj,θ or fj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='θ its 1-summation and we always assume (implicitly or explicitly) that θ is not an anti-Stokes direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In [8], [9] and [10, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3], we have studied the sets G, E and D defined respectively as the sets of all the values taken by all (analytic continuations of) G-functions at algebraic points, of all the values taken by all E-functions at algebraic points and of all values fθ(1) where f is an Э-function (θ = 0 if it is not an anti-Stokes direction, and θ > 0 is very small otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=') These three sets are countable sub-rings of C that all contain Q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' conjecturally, they are related to the set of periods and exponential periods, see §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (The ring D is denoted by Э in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=') We shall prove the following result in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Every element of G can be written as a multivariate polynomial (with coef- ficients in Q) in elements of E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Moreover, G coincides with the set of all convergent integrals � ∞ 0 F(x)dx where F is an E-function, or equivalently with the set of all finite limits of E-functions at ∞ along some direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Above, a convergent integral � ∞ 0 F(x)dx means a finite limit of the E-function � z 0 F(x)dx as z → ∞ along some direction;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' this explains the equivalence of both statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We refer to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2) in §3 for an expression of log(2) as a polynomial in elements in E and D;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' the number π could be similarly expressed by considering z and iz instead of z and 2z there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Examples of the last statement are the identities (see [12] for the second one): � +∞ 0 sin(x) x dx = π 2 and � +∞ 0 J0(ix)e−3xdx = √ 6 96π3Γ � 1 24 � Γ � 5 24 � Γ � 7 24 � Γ �11 24 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It is notoriously difficult to prove/disprove that a given element of G is transcendental;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' it is known that a Siegel-Shidlovskii type theorem for G-functions can not hold mutatis mutandis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 1 suggests that an alternative approach to the study of the Diophantine properties of elements of G can be through a better understanding of joint study of the elements of E and D, modulo certain conjectures to begin with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Our applications will not be immediately directed to the elements of G but rather to the understanding of the (absence of) relations between the elements of E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 2 It seems natural (see [9, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 37]) to conjecture that E ∩ G = Q, and also that G ∩ D = Q, though both properties seem currently out of reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In this paper, we suggest (see §2) a possible approach towards the following analogous conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We have E ∩ D = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In §2 we shall make a functional conjecture, namely Conjecture 3, that implies Conjec- ture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We also prove that Conjecture 1 has very important consequences, as the following result shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that Conjecture 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then Γ(s)(a) is a transcendental number for any rational number a > 0 and any integer s ≥ 0, except of course if s = 0 and a ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' One of the aims of this paper is to show that combining Э- and E-functions may lead to very important results in transcendental number theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us recall now briefly the main known results on E-functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Point (i) in the following result is due to Andr´e [2] for E-functions with rational Taylor coefficients, and to Beukers [6] in the general case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Andr´e used this property to obtain a new proof of the Siegel-Shidlovskii Theorem, and Beukers to prove an optimal refinement of this theorem (namely, (ii) below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (i) [Andr´e, Beukers] If an E-function F(z) is such that F(1) = 0, then F (z) z−1 is an E-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (ii) [Beukers] Let F(z) := t(f1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(z)) be a vector of E-functions solution of a differential system F ′(z) = A(z)F(z) for some matrix A(z) ∈ Mn(Q(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let ξ ∈ Q ∗ which is not a pole of a coefficient of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let P ∈ Q[X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn] be a homogeneous polynomial such that P(f1(ξ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(ξ)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then there exists Q ∈ Q[Z, X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn], homogeneous in the Xi, such that Q(z, f1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(z)) = 0 identically and P(X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn) = Q(ξ, X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, we have trdegQ(f1(ξ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(ξ)) = trdegQ(z)(f1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The Siegel-Shidlovskii Theorem itself is the final statement about equality of transcen- dence degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In this paper we state conjectural analogues of these results, involving Э-functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The principal difficulty is that these functions are divergent power series, and the exact analogue of Theorem A is meaningless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Andr´e discussed the situation in [2] and even though he did not formulate exactly the following conjecture, it seems plausible to us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' From it, we will show how to deduce an analogue of the Siegel-Shidlovskii theorem for Э-functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Ferguson [7, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 171, Conjecture 1] essentially stated this conjecture when f(z) has rational coefficients and when θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 3 Conjecture 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let f(z) be an Э-function and θ ∈ (−π/2, π/2) be such that fθ(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then f(z) z−1 is an Э-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In other words, the conclusion of this conjecture asserts that z 1−zf(1/z) is an Э-function in 1/z;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' this is equivalent to f(1/z) z−1 being an Э-function in 1/z (since we have f(1/z) z−1 = O(1/z) unconditionally as |z| → ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Following Beukers’ proof [6] yields the following result (see [3, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='6] for a related con- jecture).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that Conjecture 2 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let f(z) := t(f1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(z)) be a vector of Э-functions solution of a differential system f′(z) = A(z)f(z) for some matrix A(z) ∈ Mn(Q(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let ξ ∈ Q ∗ and θ ∈ (arg(ξ) − π/2, arg(ξ) + π/2) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' assume that ξ is not a pole of a coefficient of A, and that θ is anti- Stokes for none of the fj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let P ∈ Q[X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn] be a homogeneous polynomial such that P(f1,θ(1/ξ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn,θ(1/ξ)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then there exists Q ∈ Q[Z, X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn], homogeneous in the Xi, such that Q(z, f1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(z)) = 0 identically and P(X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn) = Q(1/ξ, X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, we have trdegQ(f1,θ(1/ξ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=', fn,θ(1/ξ)) = trdegQ(z)(f1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , fn(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' As an application of Theorem 3, we shall prove the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Note that under his weaker version of Conjecture 2, Ferguson [7, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 171, Theorem 2] proved that Gompertz’s constant is an irrational number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that Conjecture 2 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then for any α ∈ Q, α > 0, and any s ∈ Q \\ Z≥0, the number � ∞ 0 (t + α)se−tdt is a transcendental number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, Gompertz’s constant δ := � ∞ 0 e−t/(t + 1)dt is a transcendental number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In this text we suggest an approach towards Conjecture 1, based on the new notion of mixed functions which enables one to consider E- and Э-functions at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular we shall state a conjecture about such functions, namely Conjecture 3 in §2, which implies both Conjecture 1 and Conjecture 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The following result is a motivation for this approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that both Conjectures 1 and 2 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then neither Euler’s constant γ := −Γ′(1) nor Γ(a) (with a ∈ Q+ \\ N) are in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It is likely that none of these numbers is in G, but (as far as we know) there is no “functional” conjecture like Conjecture 3 that implies this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It is also likely that none is in D as well, but we don’t know if this can be deduced from Conjecture 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 4 The structure of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In §2 we define and study mixed functions, a combination of E- and Э-functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then in §3 we express any value of a G-function as a polynomial in values of E- and Э-functions, thereby proving Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We study deriva- tives of the Γ function at rational points in §4, and prove Theorem 2 and Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' At last, §5 is devoted to adapting Beukers’ method to our setting: this approach yields Theorem 3 and Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 2 Mixed functions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1 Definition and properties In view of Theorem 1, it is natural to study polynomials in E- and Э-functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We can prove a Diophantine result that combines both Theorems A(ii) and 3 but under a very com- plicated polynomial generalization of Conjecture 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We opt here for a different approach to mixing E- and Э-functions for which very interesting Diophantine consequences can be deduced from a very easy to state conjecture which is more in the spirit of Conjecture 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We refer to §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3 for proofs of all properties stated in this section (including Lemma 1 and Proposition 2), except Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We call mixed (arithmetic Gevrey) function any formal power series � n∈Z anzn such that � n≥0 anzn is an E-function in z, and � n≥1 a−nz−n is an Э-function in 1/z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In other words, a mixed function is defined as a formal sum Ψ(z) = F(z)+f(1/z) where F is an E-function and f is an Э-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, such a function is zero if, and only if, both F and f are constants such that F + f = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' obviously, F and f are uniquely determined by Ψ upon assuming (for instance) that f(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The set of mixed functions is a Q-vector space stable under multiplication by zn for any n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Unless f(z) is a polynomial, such a function Ψ(z) = F(z) + f(1/z) is purely formal: there is no z ∈ C such that f(1/z) is a convergent series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' However, choosing a direction θ which is not anti-Stokes for f allows one to evaluate Ψθ(z) = F(z) + fθ(1/z) at any z in a large sector bisected by θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Here and below, such a direction will be said not anti-Stokes for Ψ and whenever we write fθ or Ψθ we shall assume implicitly that θ is not anti-Stokes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Definition 1 is a formal definition, but one may identify a mixed function with the holomorphic function it defines on a given large sector by means of the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let Ψ be a mixed function, and θ ∈ R be a non-anti-Stokes direction for Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then Ψθ is identically zero (as a holomorphic function on a large sector bisected by θ) if, and only if, Ψ is equal to zero (as a formal power series in z and 1/z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 5 Any mixed function Ψ(z) = F(z) + f(1/z) is solution of an E-operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Indeed, this follows from applying [1, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1] twice: there exist an E-operator L such that L(f(1/z)) = 0, and an E-operator M such that M(L(F(z))) = 0 (because L(F(z)) is an E-function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence ML(F(z) + f(1/z)) = 0 and by [1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 720, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1], ML is an E-operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We formulate the following conjecture, which implies both Conjecture 1 and Conjec- ture 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Conjecture 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let Ψ(z) be an mixed function, and θ ∈ (−π/2, π/2) be such that Ψθ(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then Ψ(z) z−1 is an mixed function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The conclusion of this conjecture is that Ψ(z) = (z − 1)Ψ1(z) for some mixed function Ψ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This conclusion can be made more precise as follows;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' see §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3 for the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let Ψ(z) = F(z) + f(1/z) be an mixed function, and θ ∈ (−π/2, π/2) be such that Ψθ(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that Conjecture 3 holds for Ψ and θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then both F(1) and fθ(1) are algebraic, and f(1/z)−fθ(1) z−1 is an Э-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Of course, in the conclusion of this proposition, one may assert also that F (z)−F (1) z−1 is an E-function using Theorem A(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Conjecture 3 already has far reaching Diophantine consequences: Conjecture 2 and Theorem 2 stated in the introduction, and also the following result that encompasses Theorem 3 in the linear case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that Conjecture 3 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let Ψ(z) := t(Ψ1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Ψn(z)) be a vector of mixed functions solution of a differential system Ψ′(z) = A(z)Ψ(z) for some matrix A(z) ∈ Mn(Q(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let ξ ∈ Q ∗ and θ ∈ (arg(ξ) − π/2, arg(ξ) + π/2) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' assume that ξ is not a pole of a coefficient of A, and that θ is anti-Stokes for none of the Ψj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , λn ∈ Q be such that n � i=1 λiΨi,θ(ξ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then there exist L1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Ln ∈ Q[z] such that n � i=1 Li(z)Ψi(z) = 0 identically and Li(ξ) = λi for any i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, we have rkQ(Ψ1,θ(ξ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Ψn,θ(ξ)) = rkQ(z)(Ψ1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Ψn(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The proof of Theorem 4 follows exactly the linear part of the proof of Theorem 3 (see §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1), which is based on [6, §3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The only difference is that Э-functions have to be replaced 6 with mixed functions, and Conjecture 2 with Conjecture 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular Proposition 4 stated in §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1 remains valid with these modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' However a product of mixed functions is not, in general, a mixed function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Therefore the end of [6, §3] does not adapt to mixed functions, and there is no hope to obtain in this way a result on the transcendence degree of a field generated by values of mixed functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' As an application of Theorem 4, we can consider the mixed functions 1, eβz and f(1/z) := �∞ n=0(−1)nn!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='z−n, where β is a fixed non-zero algebraic number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' These three functions are linearly independent over C(z) and form a solution of a differential system with only 0 for singularity (because (f(1/z))′ = (1 + 1/z)f(1/z) − 1), hence for any α ∈ Q, α > 0 and any ̺ ∈ Q ∗, the numbers 1, e̺, f0(1/α) := � ∞ 0 e−t/(1 + αt)dt are Q-linearly independent (for a fixed α, take β = ̺/α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 Values of mixed functions We denote by MG the set of values Ψθ(1), where Ψ is a mixed function and θ = 0 if it is not anti-Stokes, θ > 0 is sufficiently small otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This set is obviously equal to E + D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' For every integer s ≥ 0 and every a ∈ Q+, a ̸= 0, we have Γ(s)(a) ∈ e−1MG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This results follows immediately from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4) below (see §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2), written in the form Γ(s)(a) = e−1� (−1)ses!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='Ea,s+1(−1) + fa,s+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) � , because ezEa,s+1(−z) is an E-function and fa,s+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) is the 1-summation in the direction 0 of an Э-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It would be interesting to know if Γ(s)(a) belongs to MG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We did not succeed in proving it does, and we believe it does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Indeed, for instance if we want to prove that γ ∈ MG, a natural strategy would be to construct an E-function F(z) with asymptotic expansion of the form γ + log(z) + f(1/z) in a large sector, and then to evaluate at z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' However this strategy cannot work since there is no such E-function (see the footnote in the proof of Lemma 1 in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3 Proofs concerning mixed functions To begin with, let us take Proposition 2 for granted and prove that Conjecture 3 implies both Conjecture 1 and Conjecture 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Concerning Conjecture 2 it is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' To prove that it implies Conjecture 1, let ξ ∈ D, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' ξ = fθ(1) is the 1-summation of an Э-function f(z) in the direction θ = 0 if it is not anti-Stokes, and θ > 0 close to 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that ξ is also in E: we have ξ = F(1) for some E-function F(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Therefore, Ψ(z) = F(z) − f(1/z) is a mixed function such that Ψθ(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' By Conjecture 3 and Proposition 2, we have ξ = fθ(1) ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This concludes the proof that Conjecture 3 implies Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 7 Let us prove Proposition 2 now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assuming that Conjecture 3 holds for Ψ and θ, there exists a mixed function Ψ1(z) = F1(z) + f1(1/z) such that Ψ(z) = (z − 1)Ψ1(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We have F(z) − (z − 1)F1(z) + f(1/z) − (z − 1)f1(1/z) = 0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) as a formal power series in z and 1/z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Now notice that z − 1 = z(1 − 1 z), and that we may assume f and f1 to have zero constant terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Denote by α the constant term of f(1/z) − z(1 − 1 z)f1(1/z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then we have F(z) − (z − 1)F1(z) + α + f2(1/z) = 0 for some Э-function f2 without constant term, so that f2 = 0, F(z) = (z − 1)F1(z) − α and F(1) = −α ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This implies fθ(1) = α, and f(1/z)−fθ(1) z−1 = f1(1/z) is an Э-function since f2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This concludes the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' At last, let us prove Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We write Ψ(z) = F(z) + f(1/z) and assume that Ψθ is identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Modifying θ slightly if necessary, we may assume that the asymptotic expansion −f(1/z) of F(z) in a large sector bisected by θ is given explicitly by [9, Theorem 5] applied to F(z) − F(0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' recall that such an asymptotic expansion is unique (see [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' As in [9] we let g(z) = �∞ n=1 anz−n−1 where the coefficients an are given by F(z) − F(0) = �∞ n=1 an n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' For any σ ∈ C\\{0} there is no contribution in eσz in the asymptotic expansion of F(z), so that g(z) is holomorphic at σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' At σ = 0, the local expansion of g is of the form g(z) = h1(z) + h2(z) log(z) with G-functions h1 and h2, and the coefficients of h2 are related to those of f;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' however we shall not use this special form (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Now recall that g(z) = G(1/z)/z where G is a G-function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' then G is entire and has moderate growth at infinity (because ∞ is a regular singularity of G), so it is a polynomial due to Liouville’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This means that F(z) is a polynomial in z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Recall that asymptotic expansions in large sectors are unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Therefore both F and f are constant functions, and F + f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This concludes the proof of Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 3 Proof of Theorem 1: values of G-functions In this section we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us begin with an example, starting with the relation proved in [15, Proposition 1] for z ∈ C \\ (−∞, 0]: γ + log(z) = zE1,2(−z) − e−zf1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) where E1,2 is an E-function, and f1,2 is an Э-function, both defined below in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Apply Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) at both z and 2z, and then substract one equation from the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This provides a relation of the form log(2) = F(z) + e−zf1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z) + e−2zf2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2) 1Actually we are proving that the asymptotic expansion of a non-polynomial E-function is never a C- linear combination of functions zα logk(z)f(1/z) with α ∈ Q, k ∈ N and Э-functions f: some exponentials have to appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 8 valid in a large sector bisected by 0, with an E-function F and Э-functions f1 and f2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Choosing arbitrarily a positive real algebraic value of z yields an explicit expression of log(2) ∈ G as a multivariate polynomial in elements of E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' But this example shows also that a polynomial in E- and Э-functions may be constant eventhough there does not seem to be any obvious reason.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, the functions 1, F(z), e−zf1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z), and e−2zf2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z) are linearly dependent over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' However we see no reason why they would be linearly dependent over Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This could be a major drawback to combine in E- and Э-functions, since functions that are linearly dependent over C but not over Q can not belong to any Picard-Vessiot extension over Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us come now to the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We first prove the second part, which runs as follows (it is reproduced from the unpublished note [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' From the stability of the class of E-functions by d dz and � z 0 , we deduce that the set of convergent integrals � ∞ 0 F(x)dx of E-functions and the set of finite limits of E-functions along some direction as z → ∞ are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 2(iii) in [9] implies that if an E-function has a finite limit as z → ∞ along some direction, then this limit must be in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Conversely, let β ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' By Theorem 1 in [8], there exists a G-function G(z) = �∞ n=0 anzn of radius of convergence ≥ 2 (say) such that G(1) = β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let F(z) = �∞ n=0 an n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' zn be the associated E-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then for any z such that Re(z) > 1 2, we have 1 zG �1 z � = � +∞ 0 e−xzF(x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, β = � +∞ 0 e−xF(x)dx where e−zF(z) is an E-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We shall now prove the first part of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In fact, we shall prove a slightly more general result, namely Theorem 5 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We first recall a few notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Denote by S the G-module generated by all derivatives Γ(s)(a) (with s ∈ N and a ∈ Q\\ Z≤0), and by V the S-module generated by E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Recall that G, S and V are rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Conjecturally, G = P[1/π] and V = Pe[1/π] where P and Pe are the ring of periods and the ring of exponential periods over Q respectively (see [8, §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2] and [10, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We have proved in [10, Theorem 3] that V is the S-module generated by the numbers eρχ, with ρ ∈ Q and χ ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The ring V is the ring generated by E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, all values of G-functions belong to the ring generated by E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In other words, the elements of V are exactly the sums of products ab with a ∈ E and b ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We already know that V is a ring, and that it contains E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' To prove the other inclusion, denote by U the ring generated by E and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Using Proposition 3 proved in §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 and the functional equation of Γ, we have Γ(s)(a) ∈ U for any s ∈ N and any a ∈ Q \\ Z≤0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Therefore for proving that V ⊂ U, it is enough to prove that G ⊂ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let ξ ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Using [11, Theorem 3] there exists an E-function F(z) such that for any for any θ ∈ [−π, π) outside a finite set, ξ is a coefficient of the asymptotic expansion of F(z) 9 in a large sector bisected by θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' As the proof of [11, Theorem 3] shows, we can assume that ξ is the coefficient of ez in this expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Denote by L an E-operator of which F is a solution, and by µ its order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Andr´e has proved [1] that there exists a basis (H1(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Hµ(z)) of formal solutions of L at infinity such that for any j, e−ρjzHj(z) ∈ NGA{1/z}Q 1 for some algebraic number ρj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We recall that elements of NGA{1/z}Q 1 are arithmetic Nilsson-Gevrey series of order 1 with algebraic coefficients, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Q-linear combinations of functions zk(log z)ℓf(1/z) with k ∈ Q, ℓ ∈ N and Э-functions f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Expanding in this basis the asymptotic expansion of F(z) in a large sector bisected by θ (denoted by �F), there exist complex numbers κ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , κd such that �F(z) = κ1H1(z) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' + κµHµ(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then we have ξ = κ1c1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' + κµcµ, where cj is the coefficient of ez in Hj(z) ∈ eρjzNGA{1/z}Q 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We have cj = 0 if ρj ̸= 1, and otherwise cj is the constant coefficient of e−zHj(z): in both cases cj is an algebraic number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Therefore to conclude the proof that ξ ∈ U, it is enough to prove that κ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , κµ ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' For simplicity let us prove that κ1 ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Given solutions F1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Fµ of L, we denote by W(F1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Fµ) the corresponding wronskian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then for any z in a large sector bisected by θ we have κ1 = det W(F(z), H2,θ(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Hµ,θ(z)) det W(H1,θ(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Hµ,θ(z)) where Hj,θ(z) is the 1-sommation of Hj(z) in this sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The determinant in the denomi- nator belongs to eazNGA{1/z}Q 1 with a = ρ1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='+ρµ ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' As the proof of [10, Theorem 6] shows, there exist b, c ∈ Q, with c ̸= 0, such that det W(H1,θ(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Hµ,θ(z)) = czbeaz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We take z = 1, and choose θ = 0 if it is not anti-Stokes for L (and θ > 0 sufficiently small otherwise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then we have κ1 = c−1e−a� det W(F(z), H2,θ(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , Hµ,θ(z)) � |z=1 ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The second part of Theorem 1 suggests the following comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It would be interesting to have a better understanding (in terms of E, G and D) of the set of convergent integrals � ∞ 0 R(x)F(x)dx where R is a rational function in Q(x) and F is an E-function, which are thus in G when R = 1 (see [16] for related considerations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Indeed, classical examples of such integrals are � +∞ 0 cos(x) 1+x2 dx = π/(2e) ∈ πE, Euler’s constant � +∞ 0 1−(1+x)e−x x(1+x) dx = γ ∈ E + e−1D (using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) and [20, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 248, Example 2]) and Gompertz constant δ := � +∞ 0 e−x 1+xdx ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' A large variety of behaviors can thus be expected here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 10 For instance, using various explicit formulas in [13, Chapters 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='5–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='7], it can be proved that � +∞ 0 R(x)J0(x)dx ∈ G + E + γE + log(Q ⋆)E for any R(x) ∈ Q(x) without poles on [0, +∞), where J0(x) = �∞ n=0(ix/2)2n/n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 is a Bessel function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' A second class of examples is when R(x)F(x) is an even function without poles on [0, +∞) and such that lim|x|→∞,Im(x)≥0 x2R(x)F(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then by the residue theorem, � +∞ 0 R(x)F(x)dx = iπ � ρ, Im(ρ)>0 Resx=ρ � R(x)F(x) � ∈ πE where the summation is over the poles of R in the upper half plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 4 Derivatives of the Γ function at rational points In this section we prove Theorem 2 and Proposition 1 stated in the introduction, dealing with Γ(s)(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' To begin with, we define E-functions Ea,s(z) in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1 and prove a linear independence result concerning these functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then we prove in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 a formula for Γ(s)(a), namely Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4), involving Ea,s+1(−1) and the 1-summation of an Э-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This enables us to prove Theorem 2 in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3 and Proposition 1 in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1 Linear independence of a family of E-functions To study derivatives of the Γ function at rational points, we need the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' For s ≥ 1 and a ∈ Q \\ Z≤0, we consider the E-function Ea,s(z) := �∞ n=0 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (n+a)s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (i) For any a ∈ Q \\ Z and any s ≥ 1, the functions 1, ez, ezEa,1(−z), ezEa,2(−z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , ezEa,s(−z) are linearly independent over C(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (ii) For any a ∈ N∗ and any s ≥ 2, the functions 1, ez, ezEa,2(−z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , ezEa,s(−z) are linearly independent over C(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Part (i) of the lemma is false if a ∈ N∗ because 1, ez, ezEa,1(−z) are Q(z)-linearly dependent in this case (see the proof of Part (ii) below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 11 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (i) For simplicity, we set ψs(z) := ezEa,s(−z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We proceed by induction on s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us first prove the case s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The derivative of ψ1(z) is (1 + (z − a)ψ1(z))/z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us assume the existence of a relation ψ1(z) = u(z)ez + v(z) with u, v ∈ C(z) (a putative relation U(z) + V (z)ez + W(z)ψ1(z) = 0 forces W ̸= 0 because ez /∈ C(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then after differentiation of both sides, we end up with 1 + (z − a)ψ1(z) z = � u(z) + u′(z) � ez + v′(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, 1 + (z − a) � u(z)ez + v(z) � z = � u(z) + u′(z) � ez + v′(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Since ez /∈ C(z), the function v(z) is a rational solution of the differential equation zv′(z) = (z − a)v(z) + 1: v(z) cannot be identically 0, and it cannot be a polynomial (the degrees do not match on both sides).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It must then have a pole at some point ω, of order d ≥ 1 say.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We must have ω = 0 because otherwise the order of the pole at ω of zv′(z) is d + 1 while the order of the pole of (z − a)v(z) + 1 is at most d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Writing v(z) = � n≥−d vnzn with v−d ̸= 0 and comparing the term in z−d of zv′(z) and (z − a)v(z) + 1, we obtain that d = a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This forces a to be an integer ≥ 1, which is excluded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, 1, ez, ezEa,1(−z) are C(z)-linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us now assume that the case s − 1 ≥ 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us assume the existence of a relation over C(z) ψs(z) = v(z) + u0(z)ez + s−1 � j=1 uj(z)ψj(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) (A putative relation V (z) + U0(z)ez + �s j=1 Uj(z)ψj(z) = 0 forces Us ̸= 0 by the induction hypothesis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Differentiating (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) and because ψ′ j(z) = (1− a z)ψj(z)+ 1 zψj−1(z) for all j ≥ 1 (where we have let ψ0(z) = 1), we have A(z)ψs(z) + 1 zψs−1(z) = v′(z) + � u0(z) + u′ 0(z) � ez + s−1 � j=1 u′ j(z)ψj(z) + s−1 � j=1 uj(z) � A(z)ψj(z) + 1 zψj−1(z) � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2) where A(z) := 1 −a/z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Substituting the right-hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) for ψs(z) on the left-hand side of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2), we then deduce that v′(z) − A(z)v(z) + � u′ 0(z) + (1 − A(z))u0(z) � ez + 1 z(z − a)u1(z)ψ1(z) + s−1 � j=1 u′ j(z)ψj(z) + 1 z s−1 � j=1 uj(z)ψj−1(z) − 1 zψs−1(z) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 12 This is a non-trivial C(z)-linear relation between 1, ez, ψ1(z), ψ2(z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , ψs−1(z) because the coefficient of ψs−1(z) is u′ s−1(z) −1/z and it is not identically 0 because u′ s−1(z) cannot have a pole of order 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' But by the induction hypothesis, we know that such a relation is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (ii) The proof can be done by induction on s ≥ 2 similarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In the case s = 2, assume the existence of a relation ψ2(z) = u(z)ez +v(z) with u(z), v(z) ∈ C(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' By differentiation, we obtain � 1 − a z � ψ2(z) = −1 zψ1(z) + � u(z) + u′(z) � ez + v′(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' By induction on a ≥ 1, we have ψ1(z) = (a−1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='ez/za +w(z) for some w(z) ∈ Q(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, we have � 1 − a z � u(z) = − �(a − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' za+1 + 1 � u(z) + u′(z) which is not possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us now assume that the case s − 1 ≥ 2 holds, as well as the existence of a relation over C(z) ψs(z) = v(z) + u0(z)ez + s−1 � j=2 uj(z)ψj(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3) We proceed exactly as above by differentiation of both sides of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Using the relation ψ′ j(z) = (1− a z)ψj(z)+ 1 zψj−1(z) for all j ≥ 2 and the fact that ψ1(z) = (a−1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='ez/za+w(z), we obtain a relation �v(z) + �u0(z)ez + �s−1 j=2 �uj(z)ψj(z) = 0 where �us−1(z) = u′ s−1(z) − 1/z cannot be identically 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The induction hypothesis rules out the existence of such a relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 A formula for Γ(s)(a) Let z > 0 and a ∈ Q+, a ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' We have Γ(s)(a) = � ∞ 0 ta−1 log(t)se−tdt = � z 0 ta−1 log(t)se−tdt + � ∞ z ta−1 log(t)se−tdt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' On the one hand, � z 0 ta−1 log(t)se−tdt = ∞ � n=0 (−1)n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' � z 0 ta+n−1 log(t)sdt = ∞ � n=0 (−1)n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' s � k=0 (−1)k s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (s − k)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' zn+a log(z)s−k (n + a)k+1 = s � k=0 (−1)ks!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (s − k)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='za log(z)s−kEa,k+1(−z);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 13 recall that Ea,j(z) = �∞ n=0 zn n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (n+a)j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' On the other hand, � ∞ z ta−1 log(t)se−tdt = e−z � ∞ 0 (t + z)a−1 log(t + z)se−tdt = za−1e−z s � k=0 �s k � log(z)s−k � ∞ 0 (1 + t/z)a−1 log(1 + t/z)ke−tdt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Now z > 0 so that fa,k+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(z) := � ∞ 0 (1 + tz)a−1 log(1 + tz)ke−tdt = 1 z � ∞ 0 (1 + x)a−1 log(1 + x)ke−x/zdx is the 1-summation at the origin in the direction 0 of the Э-function ∞ � n=0 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='ua,k,nzn, where the sequence (ua,k,n)n≥0 ∈ QN is defined by the expansion of the G-function: (1 + x)a−1 log(1 + x)k = ∞ � n=0 ua,k,nxn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Note that if k = 0 and a ∈ N∗, then ua,k,n = 0 for any n ≥ a, and fa,k+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z) is a polynomial in 1/z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Therefore, we have for any z > 0: Γ(s)(a) = s � k=0 (−1)ks!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (s − k)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='za log(z)s−kEa,k+1(−z) + za−1e−z s � k=0 �s k � log(z)s−kfa,k+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1/z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' In particular, for z = 1, this relation reads Γ(s)(a) = (−1)ss!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='Ea,s+1(−1) + e−1fa,s+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4) Since γ = −Γ′(1) we obtain as a special case the formula γ = E1,2(−1) − e−1f1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='5) which is also a special case of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1) proved in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='3 Proof of Theorem 2 Let us assume that Γ(s)(a) ∈ Q for some a ∈ Q+ \\ N and s ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then ezΓ(s)(a) + (−1)s+1s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='ezEa,s+1(−z) is an E-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The relation eΓ(s)(a) + (−1)s+1s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='eEa,s+1(−1) = fa,s+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) proved at the end of §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 shows that α := eΓ(s)(a)+(−1)s+1s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='eEa,s+1(−1) ∈ E∩D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 14 Hence α is in Q by Conjecture 1 and we have a non-trivial Q-linear relation between 1, e and eEa,s+1(−1): we claim that this is not possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Indeed, consider the vector Y (z) := t(1, ez, ezEa,1(−z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , ezEa,s+1(−z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only pole of M(z) ∈ Ms+3(Q(z)) (see the computations in the proof of Lemma 2 above).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Since the components of Y (z) are Q(z)-linearly independent by Lemma 2(i), we deduce from Beuk- ers’ [6, Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4] that 1, e, eEa,1(−1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , eEa,s+1(−1) are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This concludes the proof if a ∈ Q+ \\ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let us assume now that Γ(s)(a) ∈ Q for some a ∈ N∗ and s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then ezΓ(s)(a) + (−1)s+1s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='ezEa,s+1(−z) is an E-function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The relation Γ(s)(a) + (−1)s+1s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='Ea,s+1(−1) = e−1fa,s+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) shows that α := eΓ(s)(a)+(−1)s+1s!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='eEa,s+1(−1) ∈ E∩D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence α is in Q by Conjecture 1 and we have a non-trivial Q-linear relation between 1, e and eEa,s+1(−1): we claim that this is not possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Indeed, consider the vector Y (z) := t(1, ez, ezEa,2(−z), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , ezEa,s+1(−z)): it is solution of a differential system Y ′(z) = M(z)Y (z) where 0 is the only pole of M(z) ∈ Ms+2(Q(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Since the components of Y (z) are Q(z)-linearly independent by Lemma 2(ii), we deduce again from Beukers’ theorem that 1, e, eEa,2(−1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' , eEa,s+1(−1) are Q-linearly independent, and in particular that 1, e and eEa,s+1(−1) are Q-linearly independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' This concludes the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4 Proof of Proposition 1 Recall that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='5) proved in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 reads eE1,2(−1)−eγ = f1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assuming that γ ∈ E, the left-hand side is in E while the right-hand side is in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence both sides are in Q by Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Note that, by integration by parts, f1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) = � ∞ 0 log(1 + t)e−tdt = � ∞ 0 e−t 1 + tdt is Gompertz’s constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, by Corollary 1 (which holds under Conjecture 2), the number f1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) is not in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Consequently, γ /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Similarly, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='4) with a ∈ Q \\ Z and s = 0 reads eΓ(a) − eEa,1(−1) = fa,1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assuming that Γ(a) ∈ E, the left-hand side is in E while the right-hand side is in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence both sides are in Q by Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' But by Corollary 1 (which holds under Conjecture 2), the number fa,1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='0(1) = � ∞ 0 (1 + t)a−1e−tdt is not in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, Γ(a) /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 15 5 Application of Beukers’ method and consequence In this section we prove Theorem 3 and Corollary 1 stated in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1 Proof of Theorem 3 The proof of Theorem 3 is based on the arguments given in [6], except that E-functions have to be replaced with Э-functions, and 1-summation in non-anti-Stokes directions is used for evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Conjecture 2 is used as a substitute for Theorem A(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The main step is the following result, the proof of which is analogous to the end of the proof of [6, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that Conjecture 2 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Let f be an Э-function, ξ ∈ Q ∗ and θ ∈ (arg(ξ) − π/2, arg(ξ) + π/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Assume that θ is not anti-Stokes for f, and that fθ(1/ξ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Denote by Ly = 0 a differential equation, of minimal order, satisfied by f(1/z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Then all solutions of Ly = 0 are holomorphic and vanish at ξ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' the differential operator L has an apparent singularity at ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' To deduce Theorem 3 from Proposition 4, it is enough to follow [6, §3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 Proof of Corollary 1 Let s ∈ Q \\ Z≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The Э-function f(z) := �∞ n=0 s(s − 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' (s − n + 1)zn is solution of the inhomogeneous differential equation z2f′(z)+(1−sz)f(z)−1 = 0, which can be immediately transformed into a differential system satisfied by the vector of Э-functions t(1, f(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' The coefficients of the matrix have only 0 as pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Moreover, f(z) is a transcendental function because s /∈ Z≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Hence, by Theorem 3, f0(1/α) /∈ Q when α ∈ Q, α > 0, because 0 is not an anti-Stokes direction of f(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' It remains to observe that this 1-sommation is � ∞ 0 (1 + tz)se−tdt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' References [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Andr´e, S´eries Gevrey de type arithm´etique I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Th´eor`emes de puret´e et de dualit´e, Annals of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 151 (2000), 705–740.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Andr´e, S´eries Gevrey de type arithm´etique II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Transcendance sans transcendance, Annals of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 151 (2000), 741–756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Andr´e, Arithmetic Gevrey series and transcendence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' A survey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Th´eor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Nombres Bordeaux 15 (2003), 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 16 [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Bertrand, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Beukers, ´Equations diff´erentielles lin´eaires et majorations de multi- plicit´es, Annales scientifiques ENS 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='1 (1985), 181–192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Bertrand, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Chirskii, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Yebbou, Effective estimates for global relations on Euler- type series, Annales de la Facult´e des sciences de Toulouse : Math´ematiques, S´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 6, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 (2004), 241–260.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Beukers, A refined version of the Siegel-Shidlovskii theorem, Annals of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 163 (2006), 369–379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Ferguson, Algebraic properties of Э-functions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Number Theory 229 (2021), 168– 178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Fischler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, On the values of G-functions, Commentarii Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Helv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 (2014), 313–341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Fischler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, Arithmetic theory of E-operators, Journal de l’´Ecole polytech- nique – Math´ematiques 3 (2016), 31–65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Fischler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, Microsolutions of differential operators and values of arithmetic Gevrey series, American J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='2 (2018), 317–348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Fischler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, On Siegel’s problem for E-functions, preprint arxiv 1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='06817 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='NT], Rendiconti Sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Padova, to appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Glasser, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Zucker, Extended Watson integrals for the cubic lattices, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='5 (1977), 1800—1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [13] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Gradshteyn, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Ryzhik, Table of Integrals, Series, and Products, trans- lated from the Russian, edited by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Jeffrey and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Zwillinger, Amsterdam: Else- vier/Academic Press, 7th edition (english), 1176 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Ramis, S´eries divergentes et th´eories asymptotiques, Panoramas et Synth`eses, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 21, Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' France, Paris, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, On the arithmetic nature of the values of the Gamma function, Euler’s constant et Gompertz’s constant, Michigan Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Journal 61 (2012), 239–254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, Is Euler’s constant a value of an arithmetic special function?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=', unpublished note (2017), 10 pages, https://hal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='archives-ouvertes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content='fr/hal-01619235 [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Shidlovskii, On a criterion for algebraic independence of the values of a class of integral functions, Izvestia Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Nauk SSSR 23 (1959), 35–66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Siegel, ¨Uber einige Anwendungen diophantischer Approximationen, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 1 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Abhandlungen Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=', Berlin, 1929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' 17 [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Siegel, Transcendental Numbers, Annals of Mathematical Studies 16, Princeton University Press, 1949.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Whittaker, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Watson, A course of Modern Analysis, 4th edition, Cambridge Mathematical Library, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Fischler, Universit´e Paris-Saclay, CNRS, Laboratoire de math´ematiques d’Orsay, 91405 Orsay, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Rivoal, Universit´e Grenoble Alpes, CNRS, Institut Fourier, CS 40700, 38058 Grenoble cedex 9, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' Keywords: E-functions, Э-functions, G-functions, Gamma function, Siegel-Shidlovskii Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
+page_content=' MSC 2020: 11J91 (Primary), 33B15 (Secondary) 18' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdFRT4oBgHgl3EQfPzc_/content/2301.13518v1.pdf'}
diff --git a/_dAzT4oBgHgl3EQfvf3k/content/tmp_files/2301.01709v1.pdf.txt b/_dAzT4oBgHgl3EQfvf3k/content/tmp_files/2301.01709v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2593d64c7e78ed1b57c1edb06889f19a589076c3
--- /dev/null
+++ b/_dAzT4oBgHgl3EQfvf3k/content/tmp_files/2301.01709v1.pdf.txt
@@ -0,0 +1,2699 @@
+Novel topological black holes from thermodynamics and
+deforming horizons
+Jinbo Yang 1,2,3
+1Department of Astronomy, School of Physics and Materials Science,
+Guangzhou University, Guangzhou 510006, P.R.China
+2Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
+3HKUST Jockey Club Institute for Advanced Study,
+The Hong Kong University of Science and Technology,
+Clear Water Bay, Hong Kong, P.R.China
+ABSTRACT
+Two novel topological black hole exact solutions with unusual shapes of the horizon in
+the 4-dimensional Einstein-scalars theory are constructed. The application of the unified
+first law dramatically simplifies the construction. The article re-derives such first law from
+the Einstein equations for a spacetime with product structure
+¯
+M(2) × ˆ
+M(D−2). The non-
+constant Ricci scalar ˆR of the sub-manifold ˆ
+M(D−2) remarkably leads to two versions of the
+Misner-Sharp mass and the unified first law. Both versions are applied to generate topo-
+logical black holes and to discuss their significance. Unusual shapes of ˆ
+M(D−2) in solutions
+naturally require topological charges. It gives the first glimpse of non-explored aspects of
+the first law of black hole thermodynamics.
+Keywords: topological black hole, unusual shape, unified first law, Misner-Sharp mass,
+topological charge
+yangjinbophy@gmail.com
+arXiv:2301.01709v1 [gr-qc] 4 Jan 2023
+
+Contents
+1
+Introduction
+3
+2
+Unified first law including unusual shape
+4
+2.1
+Unified first law from Einstein field equation . . . . . . . . . . . . . . . . . .
+5
+2.2
+Misner-Sharp mass as conserved charge
+. . . . . . . . . . . . . . . . . . . .
+8
+3
+Topological black holes from the unified first law
+9
+3.1
+Topological black holes sourced by sigma model . . . . . . . . . . . . . . . .
+10
+3.2
+Additional sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+17
+4
+The first law including topological charge
+21
+4.1
+Topological charge as the portal of
+ˆ
+M(D−2) . . . . . . . . . . . . . . . . . .
+22
+4.2
+Unusual shapes and topological charges
+. . . . . . . . . . . . . . . . . . . .
+24
+5
+Summary and discussion
+27
+Appendix A: Calculate Γλ
+µν and Rλ
+ρµν
+29
+Appendix B: Calculate ∗J and ∗K
+31
+Appendix C: General Eddington-Finkelstein coordinates
+32
+Appendix D: Design the field space metric GIJ
+34
+2
+
+1
+Introduction
+In several decades, black hole physics, especially black hole thermodynamics, has brought us
+deep insights into theoretical physics [1–9]. The mainly concerning shape of the black hole
+has a spherical topology, supported by the topological theorem for Einstein gravity [10].
+According to the theorem, the horizon of a 4-dimensional asymptotically flat black hole
+must be topologically spherical. Further focusing on the perfectly spherical black hole is
+an appropriate starting point for detailed research of black hole evolution. A spherically
+symmetric spacetime in 4-dimensional Einstein gravity has a quasi-local mass called Misner-
+Sharp (MS) mass [11,12].
+mMS =
+r
+2GN
+(1 − gµν∇µr∇νr) ,
+(1.1)
+where GN is the 4-dimensional Newton constant, and r is the areal radius which gives the
+area of a sphere A = 4πr2. This mass reduces to the Arnowitt-Deser-Misner(ADM) mass
+in the asymptotic flat background and is significant for formulating the unified first law in
+Einstein gravity [13]. The MS mass and the unified first law are widely applied in the context
+of primordial black hole formation [14–19], detailed study for Hawking evaporation [20–24]
+and the first law on the apparent horizon of an expanding universe [25,26]. These concepts
+also inspire a novel approach to generate spherical black hole solutions of general relativity
+from thermodynamics [27].
+Nevertheless, many black objects beyond the spherical horizon in higher dimensional
+supergravity or string theory have been discovered [28–33]. One kind of black object is
+the topological black hole. The part of its metric describing the horizon shape is not a
+sphere but rather an Einstein manifold [34–37].
+Widely studied topological black holes
+have planar or hyperbolic horizons [38–40]. The hyperbolic counterpart of the Schwarzchild
+black hole can be viewed as a gravitational description of S-brane [41], and the planar one
+is widely applied since it generally describes a specific boundary phase in the context of
+AdS/CFT correspondence [42, 43]. The parameters of a planar Reissner-Nordstr¨om(RN)-
+AdS black hole satisfy the Gibbs-Duhem relationship. The unified first law and the approach
+of deriving solutions from thermodynamics also have been generalized to include planar
+and hyperbolic cases in the context of modified gravity [44–47]. Ref. [48, 49] introduces
+the concept of topological charge for the topological RN-AdS black hole to preserve the
+Gibbs-Duhem-like relation. They suggest that the topological charge is the last charge for
+the first law of thermodynamics of a maximally symmetric black hole.
+The article explores the possibility of replacing the spherical part with an unusual shape,
+3
+
+not limited to maximally symmetric space or Einstein manifold. Suppose the part replacing
+the sphere is an independent manifold with metric ˆgij(x), where x donate the point in the
+independent manifold, and i, j, k are the corresponding indexes. If the manifold is maxi-
+mally symmetric, the Rienman tensor from ˆgij(x) is ˆRijkl = k(ˆgikˆgjl − ˆgilˆgjk). An Einstein
+manifold satisfies a weaker condition ˆRij(x) = λˆgij(x), where λ is a constant [35]. Its Ricci
+scalar ˆR is a constant. This article concerns the situation with non-constant ˆR(x). The
+original unified first law only focuses on the maximally symmetric situation. However, the
+unusual shape with non-constant ˆR(x) implies two versions of the unified first law, which
+is discussed by re-deriving the law from Einstein equations in section 2. Remarkably, ap-
+plying unified first laws simplifies constructing concrete examples of topological black holes
+with unusual shapes. The method used here improves the approach of generating solutions
+from thermodynamics in Ref. [27]. Novel topological black holes with unusual shapes in
+4-dimensional Einstein-scalars theory are obtained through this method. Successfully con-
+structing solutions with the non-constant ˆR(x) seems to give a more natural motivation for
+introducing the topological charge defined in [48,49], but it also challenges the topological
+significance of such a charge. Nevertheless, novel solutions open a new window to inves-
+tigate how parameters describing the shape of the horizon join the first law of black hole
+thermodynamics.
+The article is organized as follows. Section 2 revisits the unified first law of general
+relativity by dimensional reduction, an explicitly covariant method. Additionally, it is shown
+that Misner-Sharp mass is a conserved charge relating to the Kodama vector, and a more
+general horizon shape leads to two versions for formulating the unified first law. Section
+3 constructs novel topological black hole solutions. The improved approach to generating
+solutions from thermodynamics is discussed in detail. Embedding plots are displayed to
+visualize the horizon shape. Contributions from other sources are also attached. Metrics
+for novel solutions with charge and the cosmological constant are given. Section 4 focuses
+on the topological charge to discuss how such a charge should relate to the shape of the
+horizon from the viewpoint of the unified first law. Section 5 gives a summary and discusses
+other open issues.
+2
+Unified first law including unusual shape
+This section re-derives the unified first law from the Einstein equations and shows that
+Misner-Sharp mass is a conserved charge. Consider a D-dimensional spacetime with the
+4
+
+following line element
+ds2 = gµν(X)dXµdXν = Iab(u)duadub + r2(u)ˆgij(x)dxidxj .
+(2.1)
+This spacetime has a product structure
+¯
+M(2) × ˆ
+M(D−2). Coordinates frame {Xµ} of the
+whole spacetime is specified as {ua, xi}. It is beneficial to choose the following viewpoint.
+Coordinates ua label the point in the 2-dimensional manifold ¯
+M(2), while xi label the point
+in the (D − 2)-dimensional manifold
+ˆ
+M(D−2). Both manifolds have its independent metric
+Iab(u) and ˆgij(x). The areal radius r(u) is a scalar function in spacetime, also a function in
+¯
+M(2). Its value means enlarging the unit ˆ
+M(D−2) in r times. It is worth emphasizing again
+that the manifold
+ˆ
+M(D−2) is not limited to the maximally symmetric space investigated
+in Ref [13,44]. It is not presuming that the independent Ricci scalar ˆR(x) of
+ˆ
+M(D−2) is a
+constant.
+It is also assumed that the manifold
+ˆ
+M(D−2) has a finite (D − 2)-dimensional volume
+Ω(D−2), or just the finite part of the
+ˆ
+M(D−2) with volume Ω(D−2) is concerned.
+2.1
+Unified first law from Einstein field equation
+Next, consider the Hilbert-Einstein action in the higher dimension
+S =
+� �MD−2
+Pl
+2
+R + Lm
+� √−g dDx ,
+(2.2)
+where Lm is the Lagrangian for matter fields. It leads to Einstein equations Rµν −Rgµν/2 =
+M2−D
+Pl
+Tµν .
+Appendix A shows tricks for obtaining the Levi-Civita connection and the
+Riemann tensor of the metric (2.1).
+Using Eq (A.14),(A.15) and (A.16), the Einstein
+equations become as
+¯Rab − (D − 2)
+¯∇a ¯∇br
+r
+− R
+2 Iab = M2−D
+Pl
+Tab(u, x) ,
+(2.3)
+ˆRij − ˆgij
+�
+r ¯∇2r + (D − 3)Irr�
+− R
+2 r2ˆgij = M2−D
+Pl
+Tij(u, x) ,
+(2.4)
+where Irr is ¯∇ar ¯∇ar for short; ¯∇ and ˆ∇ is the Levi-Civita connection of ¯
+M(2) and ˆ
+M(D−2)
+respectively. Even the ab components Tab of the energy-momentum tensor may depend on
+x due to the x-dependent ˆR(x). Nevertheless, the unified first law is directly derived from
+Eq.(2.3). Since the Einstein tensor of a 2-dimensional metric always vanishes1, there is
+¯Rab = ¯RIab/2. Then, contracting the Eq.(2.3) with ¯∇br gives
+¯R − R
+2
+¯∇ar − (D − 2)
+¯∇aIrr
+2r
+= M2−D
+Pl
+Tab(u, x) ¯∇br .
+(2.5)
+1This feature relates to the fact that any 2-dimensional metric is conformally flat, see [50,51]
+5
+
+On the other hand, the trace of Eq.(2.3) gives
+¯R − R − D − 2
+r
+¯∇2r = −2M2−D
+Pl
+W(u, x) ,
+(2.6)
+where the trace of Tab contributes to the so-called work term [13],
+W(u, x) = −1
+2IabTab(u, x) .
+(2.7)
+The work term (2.7) used in this article probably depends on x. It is necessary to reduce
+the order of Eq.(2.6). This relys on re-writting ¯∇2r in terms of W(u, x) and K(x) − Irr(u).
+Substitute the D-dimensional Ricci scalar (A.16) into Eq. (2.6), there is
+(D − 2)
+¯∇2r
+r
+= −2M2−D
+Pl
+W(u, x) + (K(x) − Irr)(D − 2)(D − 3)
+r2
+,
+(2.8)
+where the K is proportional to the ˆR as follow2,
+K(x) =
+ˆR(x)
+(D − 2)(D − 3) .
+(2.9)
+Then, using the Eq.(2.6) and Eq.(2.8), the Eq.(2.5) implies
+D − 2
+2rD−2 ¯∇a(rD−3(K(x) − Irr)) = M2−D
+Pl
+(Tab∇br + 2W∇ar) .
+(2.10)
+Noting that the trick ¯∇aK(x) = ∂K(x)/∂ua = 0 is applied to simplify the left-hand side
+(LHS). The appearance of rD−2 hints that the (D − 2)-dimensional volume for the sub-
+manifold at the fixed ua is relevant. It naturally leads to the following definition
+MMS(u, x) = (D − 2)Ω(D−2)
+2 M2−D
+Pl
+rD−3(u)(K(x) − Irr(u)) ,
+(2.11)
+in which the Ω(D−2) represents the (D − 2)-dimensional volume of
+ˆ
+M(D−2) with unit-size.
+In 4-dimensional spherical case, since there are Ω(2) = 4π, M2
+Pl = 8πGN, and K is always
+normalized as 1, Eq. (2.11) reduces to the original definition (1.1). The (D − 2)-volume for
+a general sub-manifold at fixed ua is A(D−2) = Ω(D−2)rD−2, and the Eq. (2.10) leads to
+¯∇aMMS(u, x) = A(D−2)Tab(u, x) ¯∇br + 2W(u, x) ¯∇aV(D−1) ,
+(2.12)
+in which V(D−1) = Ω(D−2)rD−1/(D − 1) is the (D − 1)-dimensional volume for the region
+surrounded by the the (D − 2)-dimensional surface with size A(D−2).
+The last step to finish deriving needs to introduce the energy supply vector field. Ref. [13]
+defines it as
+ψa = T ab(u, x) ¯∇br + W(u, x) ¯∇ar .
+(2.13)
+2Such notation is ill-defined if D = 3. The
+ˆ
+M(D−2) only has one dimension such that the ˆR vanishes.
+The case of D = 3 is ignored in this article since the main concern here is the x-dependent ˆR.
+6
+
+The ψa does not depend on x, although it relys on Tab(u, x). It is the vector along
+¯
+M(2)
+defined by contracting ¯∇ar with the trace-less part of T ab. Since components (2.3) of the
+Einstein equation force the traceless part of Tab becomes
+Tab − 1
+2(TcdIcd)Iab = −MD−2
+Pl
+D − 2
+r
+� ¯∇a ¯∇b r − 1
+2
+¯∇2r Iab
+�
+,
+(2.14)
+the ψa reduces to
+ψa = MD−2
+Pl
+D − 2
+2 r
+�
+( ¯∇2r) ¯∇a r − ¯∇a Irr�
+,
+(2.15)
+which is x-independent. Finally, rewrite the Eq. (2.10) as
+¯∇aMMS(u, x) = A(D−2)ψa + W(u, x) ¯∇aV(D−1) .
+(2.16)
+It completes the derivation of the united first law of Einstein gravity from the Eq. (2.3).
+The x-dependence happens at MMS(u, x) and W(u, x) in the unified first law (2.16). Once
+restrict
+ˆ
+M(D−2) as the Einstein manifold including the original case in Refs. [13], the x-
+dependence of Eq. (2.16) goes out. An alternative approach is integrating out x on the
+compact
+ˆ
+M(D−2), or its finite part if the volume of the whole
+ˆ
+M(D−2) is ill-defined. To
+formulate this, one should define the average MS mass as
+mMS(u) = (Ω(D−2))−1
+�
+ˆ
+M(D−2)
+MMS(u, x)
+�
+ˆg(x) dD−2x
+= (D − 2)Ω(D−2)
+2 M2−D
+Pl
+rD−3(k − Irr) ,
+(2.17)
+in which k is the average K in the sense of
+k = (Ω(D−2))−1
+�
+ˆ
+M(D−2)
+K(x)
+�
+ˆg(x) dD−2x ,
+(2.18)
+and define the average work term
+w(u) = (Ω(D−2))−1
+�
+ˆ
+M(D−2)
+W(u, x)
+�
+ˆg(x) dD−2x .
+(2.19)
+The unified first law has the following average version
+¯∇amMS = A(D−2)ψa + w ¯∇aV(D−1) .
+(2.20)
+Therefore, the unusual shape requires two versions of the unified first law, the non-average
+one (2.16) and the average one (2.20). They share the same Aψ term. It is the reason that
+this article does not introduce the MS mass “density” in Eq. (2.11), though the “density”
+seems competitive with the holographic viewpoint when treating ˆ
+M(D−2) as the holographic
+screen [48,49]. The next subsection applies the language of differential form to clarify that
+the non-average MS mass MMS relates to a (D − 2)-form field, while the average MS mass
+mMS as a conserved charge should be the integral of such (D − 2)-form field on
+ˆ
+M(D−2).
+7
+
+2.2
+Misner-Sharp mass as conserved charge
+The so-called Kodama vector field is introduced for the spacetime with the metric (2.1)
+in which the
+ˆ
+M(D−2) part is the maximal symmetric space [12,13,52]. In this article, the
+requirement of the maximal symmetry is released, any spacetime with metric (2.1) has a
+Kodama vector field. Suppose ¯ϵab is the volume 2-form of
+¯
+M(2), then the Kodama vector
+field is given by
+Kµ∂µ = −¯ϵab ¯∇br
+∂
+∂ua ,
+(2.21)
+where ¯ϵab = IacIbd¯ϵcd. The Kodama vector field does not have i components, i.e., Ki = 0.
+The vector field also orthogonal to the ∇µr because Kµ∇µr = Ka ¯∇ar = 0. Combining
+these facts with the Levi-Civita connection (A.6), non-vanishing components of ∇µKν are
+∇aKb = ¯∇aKb .
+(2.22)
+Therefore, it is straightforward to show that
+∇µKµ = −¯ϵab ¯∇a ¯∇br = 0,
+(2.23)
+i.e., the Kodama vector field is divergence-free. Then define a conserved current as following
+Jµ = −T µνKν .
+(2.24)
+The vector field Jµ is also divergence free without i components due to the Einstein equation.
+More concretely, ∇µJµ = 0 is derived by
+∇µ(−T µνKν) = −D − 2
+r
+¯ϵbc( ¯∇a ¯∇cr)( ¯∇a ¯∇br) = 0 ,
+(2.25)
+while Ji = 0 is due to Rai = 0.
+Lowering the index of vector fields Kµ, Jµ leads to one-form fields K = KµdXµ, J =
+JµdXµ. Divergence free implies ∗d ∗ K = 0 and ∗d ∗ J = 0. Therefore, the Hodge dual
+(D − 1)-forms ∗K and ∗J are closed , such that there are locally exact (D − 2)-forms QK
+and QJ which satisfy ∗K = dQK and ∗J = dQJ. Integrating ∗K and ∗J on a slice Σ with
+a boundary ∂Σ leads to two conserve charges
+QK =
+�
+Σ
+∗K =
+�
+∂Σ
+QK ,
+QJ =
+�
+Σ
+∗J =
+�
+∂Σ
+QJ ,
+(2.26)
+The Hodge dual (D − 1)-forms ∗K and ∗J are calculated in detail in the Appendix. B.
+The result for ∗K shows a straightforward relationship QK = rD−1ˆϵ/(D − 1) in which ˆϵ is
+8
+
+the volume (D − 2)-form for the unit
+ˆ
+M(D−2). Suppose the slice Σ only has one connected
+boundary ∂Σ located at a fixed u, then the K charge is
+QK =
+�
+∂Σ
+rD−1
+D − 1 ˆϵ = Ω(D−2)
+D − 1 rD−1 ,
+(2.27)
+Compare the result (B.11) with Eq. (2.12),(2.13), ∗J should be
+∗J = rD−2(ψa + W ¯∇ar) dua ∧ ˆϵ =
+¯∇aMMS
+Ω(D−2)
+dua ∧ ˆϵ ,
+(2.28)
+Thus, the locally exact (D − 2)-form should be QJ = (MMS/Ω(D−2))ˆϵ, and the conserve
+charge QJ at ∂Σ is
+QJ =
+�
+∂Σ
+MMS
+Ω(D−2)
+ˆϵ = mMS ,
+(2.29)
+exactly the averaged Misner-Sharp mass (2.17).
+3
+Topological black holes from the unified first law
+This section applies the unified first law to generate solutions. The method is developed from
+Ref. [27] and applied for constructing exact solutions with non-constant ˆR(x). Scalar fields
+described by the sigma model offer the matter source. Subsection 1 gives the construction
+of such solutions. Additional matter sources, like the cosmological constant, Maxwell field,
+and in-falling null matters, are discussed in subsection 2.
+Only the unified first law itself is not enough to find solutions since it requires one part
+of information about Eq. (2.3). The complementary part needs to introduce the geometric
+surface gravity [13], defined as
+κgeo = 1
+2 ¯∇2r .
+(3.1)
+It is x-independent. Moreover, the Eq. (2.8) gives the following relationship
+κgeo(u) = D − 3
+D − 2
+M2−D
+Pl
+Ω(D−2)
+MMS(u, x)
+rD−2(u)
+− M2−D
+Pl
+D − 2 r(u) W(u, x) ,
+(3.2)
+relating the geometric surface gravity with the MS mass and work term. The fact about
+x-independence of κgeo(u) even allows replacing the RHS by corresponding average version
+mMS(u) and w(u).
+For generating solutions, specific coordinates may make the task easier. The approach
+of generating solutions from thermodynamics in Ref. [27] prefers the orthogonal coordinates
+{t, r} for the metric Iab. The following takes a different choice. Generally, the 2-dimensional
+line element d¯s2 for
+¯
+M(2) can be formulated as
+d¯s2 = Iabduadub = − f(v, r)
+σ2(v, r)dv2 + 2dvdr
+σ(v, r) ,
+(3.3)
+9
+
+in the general Eddington-Finkelstein coordinates, see appendix C. The geometric surface
+gravity in terms of functions f and σ is
+κgeo = f′
+2 − σ′
+σ
+f
+2 ,
+(3.4)
+where f′ = ∂f/∂r and σ′ = ∂σ/∂r. Latter application of such a relation will show that it
+dramatically simplifies constructing solutions.
+3.1
+Topological black holes sourced by sigma model
+This subsection considers the sigma model, which contains multiple scalar fields. As the
+matter field, its Lagrangian is
+Lφ = −1
+2GIJ(φ)∂µφI∂µφJ − V (φ) .
+(3.5)
+Variation of δφI gives equations of motion (EOM) of φI, the Klein-Gordon (KG) equations
+in curved field space
+∇2φI + Γ I
+φ JK∇λφJ∇λφK = GIJ ∂V
+∂φJ ,
+(3.6)
+where ∇2φ is ∇λ∇λφ for short, and Γ I
+φ JK represents the field space connection. Variation
+of δgµν leads to the σ-model’s energy-momentum tensor Tµν = GIJ∂µφI∂νφJ + gµνLφ . In
+the
+¯
+M(2) × ˆ
+M(D−2) spacetime, it is decomposed as
+Tab = ¯Φab − 1
+2
+¯ΦIab − Iab(
+ˆΦ
+2r2 + V ) ,
+Tij = ˆΦij − 1
+2
+ˆΦˆgij − r2ˆgij(
+¯Φ
+2 + V ) ,
+(3.7)
+where ¯Φab = GIJ∂aφI∂bφJ, ˆΦij = GIJ∂iφI∂jφJ, while ¯Φ, ˆΦ are their trace ¯Φ = Iab ¯Φab,
+ˆΦ = ˆgij ˆΦij. The term ¯Φab − 1
+2 ¯ΦIab is the trace-less part of Tφ ab while the term contained ˆΦ
+and the potential V contribute to the trace part, so the energy supply vector and the work
+term are3
+ψa
+φ = ¯Φab ¯∇br − 1
+2
+¯Φ ¯∇ar ,
+Wφ =
+ˆΦ
+2r2 + V .
+(3.8)
+Components Tφ ai = 0 are due to the Einstein equations.
+Obviously, ∂aφI = 0 or
+∂iφJ = 0 automatically satisfies these conditions. This article chose the simpler ∂aφI = 0
+since the energy supply vector vanishes in this situation. Then, the non-averaged unified
+first law (2.16) leads to
+MMS(r, x) = ˜
+M(x) +
+ˆΦ(x) Ω(D−2)
+2(D − 3)
+rD−3 + V (x) Ω(D−2)
+(D − 1)
+rD−1 ,
+(3.9)
+3For a scalar, covariant derivative and usual derivative are the same, namely, ¯∇aφ = ∂aφ and ˆ∇iφ = ∂iφ.
+10
+
+The relationship between MMS and the function Irr implies
+Irr = K(x) −
+M2−D
+Pl
+ˆΦ(x)
+(D − 2)(D − 3) − 2M2−D
+Pl
+(D − 2)
+˜
+M(x)
+Ω(D−2)
+1
+rD−3 −
+2M2−D
+Pl
+V (x)
+(D − 1)(D − 2)r2 ,
+(3.10)
+Since Irr does not depend on x, the combination K(x)− M2−D
+Pl
+ˆΦ(x)
+(D−2)(D−3), the function ˜
+M(x) and
+the value of the potential V (x) should be constants. Donate them c, M, Vmin respectively.
+The mark ”min” reminds one that it is reasonable to suppose φI(x) locate at the mini-
+mum of the potential. Then, the function Irr can be rewritten as c − 2M2−D
+Pl
+(D−2)
+M
+Ω(D−2)
+1
+rD−3 −
+2M2−D
+Pl
+Vmin
+(D−1)(D−2)r2, while the average Misner-Sharp mass is
+mMS(r) = M + (k − c) (D − 2) Ω(D−2)
+2M2−D
+Pl
+rD−3 + Vmin Ω(D−2)
+(D − 1)
+rD−1 .
+(3.11)
+The left-hand side (LHS) of Eq.(2.3) gives a consistent result. Since the only x-dependent
+term at is ˆRIab/(2r2), which comes from the term RIab/(2r2), the V (φ(x)) should be a
+constant, while the x-dependent Ricci scalar ˆR(x) should be
+ˆR(x) = M2−D
+Pl
+ˆΦ(x) + C ,
+(3.12)
+where the constant C can be identified as (D − 2)(D − 3) c. If introduce the averaged ˆΦ as
+oφ =
+�
+ˆ
+M(D−2) ˆΦ(x)
+�
+ˆg(x) dD−2x
+Ω(D−2)(D − 2)(D − 3)
+,
+(3.13)
+then Eq.(3.12) becomes c = k − M2−D
+Pl
+oφ. Both the Ricci scalar of
+ˆ
+M(D−2) and the ˆΦ from
+scalars contribute to the constant term in Irr. According to Eq. (3.2), the geometric surface
+gravity is
+κgeo = D − 3
+D − 2
+M2−D
+Pl
+Ω(D−2)
+M
+rD−2(u) −
+2M2−D
+Pl
+Vmin
+(D − 1)(D − 2)r .
+(3.14)
+It also equals to f′/2 since f(r) = Irr(r). Thus, the function σ in the line element (3.3)
+should satisfy σ′ = 0, such that it only depends on the null time v or be a nonzero constant.
+Introduce the coordinates transformation,
+dts =
+dv
+σ(v) + dr
+f(r) .
+(3.15)
+Then, the unified first law and the geometric surface gravity fix the Iab(u)duadub part as
+d¯s2 = − (c − 2M2−D
+Pl
+(D − 2)
+M
+Ω(D−2)
+1
+rD−3 −
+2M2−D
+Pl
+Vmin
+(D − 1)(D − 2)r2)dt2
+s
++
+dr2
+c − 2M2−D
+Pl
+(D−2)
+M
+Ω(D−2)
+1
+rD−3 − 2M2−D
+Pl
+Vmin
+(D−1)(D−2)r2
+.
+(3.16)
+11
+
+On the other hand, there are still freedoms for choosing ˆgij. It becomes the question of
+how to embed
+ˆ
+M(D−2) to the vacuum manifold of the sigma model. The relavant EOMs
+are Eq.(3.6) and Eq.(2.4). The Eq.(3.6) reduces to
+ˆ∇2φI + Γ I
+φ JK ˆ∇iφJ ˆ∇iφK = 0 ,
+(3.17)
+due to ∂aφI = 0 and the constant minimum of the potential, while the Eq.(2.4) becomes
+ˆRij − 1
+2
+ˆRˆgij + (D − 3)(D − 4) c
+2 ˆgij = M2−D
+Pl
+(ˆΦij − 1
+2
+ˆΦˆgij) .
+(3.18)
+The ˆΦij can be treated as the induced metric on the image of
+ˆ
+M(D−2). In principle, one
+can design a suitable field space metric GIJ for an arbitrary shape of
+ˆ
+M(D−2) such that
+Eq.(3.17) and Eq.(3.18) are satisfied. Appendix D gives examples for designing the GIJ to
+let the global monopoles family become exact solutions, repeating results of Ref. [53].
+The 4 dimension situation trivializes Eq.(3.18) further. Its LHS totally vanishes because
+ˆ
+M(D−2) becomes a 2-dimensional manifold such that ˆRij = ˆRˆgij/2. Meanwhile, the RHS
+is proportional to the trace-less part of the induced metric ˆΦij. It also vanishes since any
+2-dimensional Riemann metric is conformally the same.
+ˆΦij as a non-degenerate metric
+requires at least two scalar fields. For simplicity, the field space metric is chosen as GIJ =
+δIJ, I, J = 1, 2, then the kinetic term of the model is
+− 1
+2δIJ ∇µφI∇µφJ = −1
+2(∇µφ1∇µφ1 + ∇µφ2∇µφ2) ,
+(3.19)
+Therefore, Eq.(3.17) is just the Laplacian equation ˆ∇2φI = 0 on the
+ˆ
+M2 manifold. Again,
+any two-dimensional Riemann metric is conformally flat, so it seems to become easier as-
+suming ˆgijdxidxj = e−f(α,β)(dα2 + dβ2).
+A simple calculation shows that φ1 ∝ α and
+φ2 ∝ β are zero modes of the Laplacian ˆ∇2, no matter what the function f(α, β) is. Thus,
+the ansatz φ1 = p α, φ2 = p β implies ˆΦijdxidxj = p2(dα2 + dβ2), and automatically solves
+the KG equations, but still left the problem of finding f(α, β).
+The main constraint for the function f(α, β) comes from Eq.(3.12). A direct calculation
+shows
+ˆR(α, β) = ef�∂2f
+∂α2 + ∂2f
+∂β2
+�
+= 2M−2
+Pl p2 ef + 2c .
+(3.20)
+One way to attach the problem of finding f is to reduce the number of variables. Changing
+the coordinates {α, β} in the the polar coordinates {ρ, ϕ} through α = γ cos ϕ, β = γ sin ϕ,
+the line element of ˆgij becomes e−f(dγ2 + γ2dϕ2). Assuming f only depends on γ highly
+simplifies the case. The alternative method is to focus on the case of c = 0, such that the
+simplest solution is f ∝ α2 + β2. Based on these considerations, two novel 4-dimensional
+topological black holes with unusual shapes will be given in the following.
+12
+
+Type I
+It seems beneficial to compare with the general metric of the 2-dimensional maximal sym-
+metric space dρ2/(1 − kρ2) + ρ2dϕ. The expression inspires the following ansatz
+dρ2
+1 − cρ2 − ψ(ρ) + ρ2dϕ ,
+(3.21)
+for
+ˆ
+M(D−2) metric, and
+φ1 = a
+� ρ
+dξ
+ξ
+�
+1 − c ξ2 − ψ(ξ)
+,
+φ2 = a ϕ ,
+(3.22)
+for scalar fields. Using c instead of k is to avoid that k does not mean the average of K(x)
+anymore. Then, Eq.(3.12) leads to
+dψ(ρ)
+dρ
+= 2M−2
+Pl p2
+ρ
+.
+(3.23)
+Therefore, after adjusting parameters by re-scaling coordinates, the solution becomes
+ds2 = − (c − M−2
+Pl M
+Ω(2) r
+− Vminr2
+3M2
+Pl
+)dt2 +
+dr2
+c − M−2
+Pl M
+Ω(2) r − Vminr2
+3M2
+Pl
++ r2(
+dρ2
+1 − cρ2 − 2a2 log ρ + ρ2dϕ2) ,
+(3.24)
+and corresponding scalars are
+φ1(ρ) = a MPl
+� ρ
+dξ
+ξ
+�
+1 − c ξ2 − 2a2 log ξ
+,
+φ2(ϕ) = a MPl ϕ ,
+(3.25)
+The metric is similar to the topological black hole in (A)dS background. The Iabduadub
+part is the same. However, the shape of the horizon is different if a ̸= 0. The coordinate
+ϕ can be periodical. The simplest choice is to identify ϕ + 2π with ϕ. It also introduces a
+period 2πaMPl for the second scalar field φ2 such that the field space of the model is a flat
+cylinder. The Ricci scalar of the unit
+ˆ
+M2 and the trace of the induced metric ˆΦij are
+ˆR(ρ) = 2a2
+ρ2 + 2c ,
+ˆΦ(ρ) = 2a2MPl2
+ρ2
+,
+(3.26)
+Thus, the shape of
+ˆ
+M2 is controlled by two parameters a and c. The square root of the
+determinant of the metric is √ˆg = ρ/
+�
+1 − cρ2 − 2a2 log ρ. Such an expression makes it
+difficult to calculate the 2-dimensional volume of the unit
+ˆ
+M2 exactly. Instead, it seems
+beneficial to study the shape by numerical method. As an example, setting c = 1.1, a = 0.2,
+the function 1−cρ2−2a2 log ρ is plotted in Fig.1. The root of this function is ρmax ≃ 0.9552.
+13
+
+Figure 1: Function 1 − cρ2 − 2a2 log ρ, c = 1.1, a = 0.2.
+Then the numerical integral of 2π
+� ρmax
+0
+√ˆgdρ gives Ω2 ≃ 5.5717. Unfortunately, integrals
+like
+� ρmax
+0
+ˆR√ˆg and
+� ρmax
+0
+ˆΦ√ˆg blow up near ρ = 0. These divergences cause the average
+Misner-Sharp mass mMS and the average work term wφ of the whole ˆ
+M2 are not well defined
+until introducing a small cut-off for ρ.
+One can embed the ˆ
+M2 into the 3-dimensional flat space. Considering the metric of the
+unit
+ˆ
+M2,
+dρ2
+1 − cρ2 − 2a2 log ρ + ρ2dϕ2 =
+cρ2 + 2a2 log ρ
+1 − cρ2 − 2a2 log ρdρ2 + dρ2 + ρ2dϕ2 ,
+(3.27)
+and setting the same data of a, c, then plot the function (cρ2+2a2 log ρ)/(1−cρ2−2a2 log ρ)
+in Fig.2.
+Figure 2: Function
+cρ2+2a2 log ρ
+1−cρ2−2a2 log ρ, c = 1.1, a = 0.2.
+14
+
+2.5
+2.0
+1.5
+(d)0l
+1.0
+2
+0
+0.5
+-
+0.0
+-0.5
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+p2.0
+1.5
+1.0
+20.
+0.5
+0.0
+0.5
+0.0
+0.2
+0.4
+0.6
+0.8
+pThere exists a turning point implying that the above function changes its sign. The
+numerical result is ρturn ≃ 0.2971. Therefore, the metric in the ρturn < ρ < ρmax region can
+be embedded into the Euclidean space, while the 0 < ρ < ρturn part can be only embedded
+into the Minkowski space. The embedding diagrams are given in Fig.3. The metric (3.24)
+Figure 3: Embedding diagrams for the metric (3.24). The left plot shows the Euclidean part, while
+the medium plot shows the Minkowski part. The right plot shows the embedding diagram connects
+those two parts and completes another symmetric side. Parameters are set as c = 1.1, a = 0.2.
+can describe other unusual shapes by adjusting values of a and c. One can expect cases
+of c = 0 and a ̸= 0 will warp the plane, and c < 0 and a ̸= 0 will deform the hyperbolic
+surface. Such other cases are ignored in this article and left for future investigation.
+Type II
+The alternative metric with an unusual shape is
+ds2 = −(−M−2
+Pl M
+Ω(2) r
+− Vminr2
+3M2
+Pl
+)dt2 +
+dr2
+− M−2
+Pl M
+Ω(2) r − Vminr2
+3M2
+Pl
++ r2e−(x2+y2)(dx2 + dy2) .
+(3.28)
+The ˆgijdxidxj is a conformal plane where the conformal factor is a Gaussian function. Thus,
+the volume of the unit
+ˆ
+M2 is Ω2 = π. When M > 0 and Vmin < 0, the metric (3.28) has
+the same Iabduadub part with the planar Schwarzchild-AdS black hole, such that it is also
+a topological black hole in this case. Two scalar fields supporting this unusual shape are
+φ1(x) =
+√
+2MPl x ,
+φ2(y) =
+√
+2MPl y .
+(3.29)
+The Ricci scalar of the unit
+ˆ
+M2 and the trace of the induced metric ˆΦij are
+ˆR(x, y) = 4ex2+y2 ,
+ˆΦ(x, y) = 4M2
+Plex2+y2 ,
+(3.30)
+Since the √ˆg = e−(x2+y2), the integral of ˆR(x, y) or ˆΦ(x, y) on the whole is divergence.
+Therefore the average Misner-Sharp and the average work term still lack definition. One
+15
+
+can simply propose a cut-off L for the integral region to preserve the validity of the average
+unified first law. It is worth noting that the 2-volume Ω2 should be related to the error
+function erf(L) = (2/√π)
+� L
+0 e−x2dx in this case. More concretely, Ω2 = π erf(L)2, k =
+16L2/(π erf(L)2), such that
+mMS = 16L2M2
+Pl r + M + π erf(L)2Vmin r3
+3
+,
+wφ =
+8M2
+PlL2
+π erf(L)2 r2 + Vmin ,
+(3.31)
+which have L2 divergence if setting L → ∞.
+To draw the embedding diagram, consider coordinates transformation x = ρ cos ϕ, y =
+ρ sin ϕ, the line element of unit
+ˆ
+M2 becomes e−ρ2dρ2 + e−ρ2ρ2dϕ2. Then compare with the
+polar coordinates of a plane, identify ˆr = ρe−ρ2/2, rewritten the unit
+ˆ
+M2 line element as
+follows,
+e−ρ2dρ2 + e−ρ2ρ2dϕ2 = (2 − ρ2)ρ2e−ρ2dρ2 + (dˆr
+dρ)2dρ2 + ˆr2dϕ2 ,
+(3.32)
+where the sign of function (2 − ρ2)ρ2e−ρ2 determines whether the metric can be embedded
+into Euclidean space or Minkowski space. The plot of the function is shown in Fig.4. The
+Figure 4: Function ρ e−ρ2/2 and (2 − ρ2)ρ2e−ρ2. The latter one is positive in 0 < ρ <
+√
+2 and
+negative in ρ >
+√
+2.
+turning point is ρturn =
+√
+2. The Euclidean region is 0 < ρ <
+√
+2 while the Minkowski
+region is ρ >
+√
+2. The embedding diagrams are shown in Fig.5.
+16
+
+0.6
+0.5
+0.4
+22
+0.3
+0.2
+0.1
+0.0
+0
+2
+3
+4
+p0.4
+0.3
+(0.
+0.2
+0.1
+0.0
+-0.1
+0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0
+3.5
+pFigure 5: Embedding diagrams for the metric (3.28). Similar to Fig.3, the left two plots show the
+Euclidean part and the Minkowski part separately. The right-most plot connects them. As ρ tends
+to infinity, the Minkowski part tends to the center peak.
+3.2
+Additional sources
+Cosmological constant
+The cosmological constant, which can be regarded as the vacuum energy density, is the
+simplest “matter” source. Its Lagrangian is
+LΛ = −MD−2
+Pl
+Λ ,
+(3.33)
+which gives the Λgµν term at the LHS of Einstein equation, or classically effective energy-
+momentum tensor Tµν = −MD−2
+Pl
+Λgµν when putting at the RHS. Such an energy-momentum
+tensor contributes a constant energy density in space. It also shifts the value of the potential
+V → V + MD−2
+Pl
+Λ. Thus, only turning off the spacetime dependence of scalars in Eq.(3.8),
+the energy supply vector and the work term of the cosmological constant are directly read
+as
+ψa
+Λ = 0 ,
+WΛ = MD−2
+Pl
+Λ .
+(3.34)
+Such a constant work term contributes the MD−2
+Pl
+Λ ¯∇aV(D−1) term to the unified first law,
+and the energy supply vector vanishes. Therefore, the cosmological constant plays the role
+of pressure for a thermodynamics system. There are more interesting issues in the context
+of cosmology if treating Λ as a pressure [25, 26, 54, 55]. An alternative view is that the
+cosmological constant should be put at the LHS, such that it provides a −MD−2
+Pl
+Λ V(D−1)
+correction to the MS mass, as in Ref. [44].
+17
+
+Maxwell field
+The Lagrangian of a Maxwell field is
+Lem = −1
+4FµνF µν .
+(3.35)
+It gives the energy-momentum tensor Tµν = FµλF λ
+ν
+− 1
+4gµνFλρF λρ and the source-free
+Maxwell equations are
+dF = 0 ,
+d ∗ F = 0 ,
+(3.36)
+in terms of differential forms. The F is the 2-form field strength, while ∗F is the Hodge
+dual of F. The generalized Coulomb field in higher dimension
+Fab =
+Q
+Ω(D−2) rD−2 ¯ϵab ,
+Fij = 0 ,
+(3.37)
+has already solved the Maxwell equations. Obviously, dF = 0 since the factor only depends
+on r and any
+¯
+M(2) 1-form p = padua satisfies p ∧ ¯ϵ = 0. The Hodge dual (D − 2)-form is
+∗F = Qˆϵ/Ω(D−2), so d ∗ F ∝ dˆϵ = 0. Thus, despite what the Iabduadub part is, Eq.(3.37)
+must be the solution of source-free Maxwell equations. Then, integrating the dual (D − 2)-
+form ∗F on
+ˆ
+M(D−2) gives the electric charge
+Q =
+�
+ˆ
+M(D−2)
+∗F ,
+(3.38)
+which confirms the choice of the 1/Ω(D−2) factor. Then, the energy-momentum tensor for
+such Coulumb field F = Q¯ϵ/(Ω(D−2) rD−2) is decomposed as
+Tab = −
+Q2
+2Ω2
+(D−2)
+1
+r2(D−2) Iab ,
+Tij =
+Q2
+2Ω2
+(D−2)
+1
+r2(D−3) ˆgij ,
+(3.39)
+where F 2 = FabF ab.
+ψa
+em = 0 ,
+Wem =
+Q2
+2Ω2
+(D−2)
+1
+r2(D−2) .
+(3.40)
+For the 4-dimensional spherical case, Eq.(3.40) reduces to the result in Ref. [13]. Again, the
+energy supply vector vanishes, and the work term only changes when varying r.
+If every matter source considered in the theory contributes i) only r-dependent average
+work term w(i)(r); and ii) vanishing energy supply vector ψa
+(i) = 0, then the Iabduadub
+part of the spacetime
+¯
+M(2) × ˆ
+M(D−2) is already determined as −Irrdt2 + dr2/Irr, and the
+function Irr should be
+Irr = k − 2M2−D
+Pl
+(D − 2)
+M
+Ω(D−2)
+1
+rD−3 −
+�
+i
+2M2−D
+Pl
+(D − 2) rD−3
+� r
+w(i)(ξ)ξD−2dξ .
+(3.41)
+18
+
+Similar tricks for constructing solutions in the previous subsection are still valid for the
+proof. The average unified first law under conditions (i) and (ii) gives
+¯∇amMS =
+�
+i
+w(i)(r) Ω(D−2)rD−2 ¯∇ar ,
+(3.42)
+such that directly integrating r implies that the average MS mass is
+mMS(r) = M +
+�
+i
+Ω(D−2)
+� r
+w(i)(ξ)ξD−2dξ .
+(3.43)
+It constricts the function Irr taking the form of Eq.(3.41). Concretely, the cosmological
+contributes −
+2Λ r2
+(D−1)(D−2), while the Maxwell field contributes
+M2−D
+Pl
+(D−2)(D−3)
+Q2
+Ω2
+(D−2) r−2(D−3) to
+Irr. Eq.(3.42) also implies
+1
+2
+dIrr
+dr
+= D − 3
+D − 2
+M2−D
+Pl
+Ω(D−2)
+mMS(r)
+rD−2
+− M2−D
+Pl
+D − 2 r
+�
+i
+w(i)(r) ,
+(3.44)
+The RHS coincides with the geometric surface gravity relation (3.2). Thus, in the GEF
+coordinates {v, r}, there is σ′ = 0 again. Finally, the coordinates transformation (3.15)
+explicitly shows that the Iabduadub part must be −Irrdt2 +dr2/Irr. It completes the proof.
+Taking the case of vacuum, both ψa and w vanishes. Meanwhile, for spherical symmetry,
+the ˆgij is detemeined4 and the value of k should be 1. The theorem reduces to Birkhoff’s
+theorem. In such a sense, this theorem generalizes Birkhoff’s theorem.
+Apply the above conclusion, one obtains charged novel topological black hole solutions
+ds2 = − (c − M−2
+Pl M
+Ω(2) r
++
+M−2
+Pl Q2
+2Ω2
+(2) r2(D−3) − Λr2
+3 )dt2
++
+dr2
+c − M−2
+Pl M
+Ω(2) r +
+M−2
+Pl Q2
+2Ω2
+(2) r2(D−3) − Λr2
+3
++ r2(
+dρ2
+1 − cρ2 − 2a2 log ρ + ρ2dϕ2) ,
+(3.45)
+and
+ds2 = − (−M−2
+Pl M
+Ω(2) r
++
+M−2
+Pl Q2
+2Ω2
+(2) r2(D−3) − Λr2
+3 )dt2
++
+dr2
+− M−2
+Pl M
+Ω(2) r +
+M−2
+Pl Q2
+2Ω2
+(2) r2(D−3) − Λr2
+3
++ r2e−(x2+y2)(dx2 + dy2) ,
+(3.46)
+where the minimum of the potential is absorbed into the cosmological constant Λ.
+4In the complete proof, there is one part to proof that spherical symmetry demanding the spacetime
+contains an orbit of SO(3) group, such that the metric has the form of Eq.(2.1), see Ref. [56]. Such a step
+is skipped in this article.
+19
+
+Irreducible mass and usable energy
+Suppose rH is the location of the black hole horizon, since there should be Irr(rH) = 0,
+the averaged MS mass at the horizon is mMS = (D − 2)Ω(D−2)MD−2
+Pl
+krD−3
+H
+/2. Modestly,
+in the case of k > 0, the MS mass mMS should not decrease from the viewpoint of the area
+theorem [56]. It seems reasonable to define (D − 2)Ω(D−2)MD−2
+Pl
+krD−3
+H
+/2 as irreducible
+mass mirr. It is natural to further define the usable energy as musable(r) = mMS(r) − mirr
+outside the horizon r > rH. The mass parameter does not appear in musable(r). Instead,
+such a new definition is determined by the difference of the work term between location r
+and horizon rH. Ref. [57] discussed the possibility of a Schwarzchild black hole as a battery.
+One can regard that their charging process turns the rest energy of in-falling material into
+the usable energy of the black hole. Suitable discharging will extract such energy. It seems
+the concept of usable energy at least works in the case of the asymptotic flat RN black hole.
+Non-vanishing energy supply vector
+The case of ∂aφI ̸= 0 violates the condition ψa = 0 such that the above generalization
+of Birkhoff’s theorem becomes invalid. It explains that a static spherical solution with a
+non-constant σ(r) is due to r-dependent scalars [58]. Another situation violating condition
+(ii) ψa = 0 is the appearance of a Vaidya mass, i.e., a null time-dependent function for
+the mass parameter. More concretely, in the GEF coordinates {v, r}, the Iabduadub part
+satisfies
+−
+�
+(k − ωD M(v)
+rD−3
+−
+�
+i
+2M2−D
+Pl
+(D − 2) rD−3
+� r
+w(i)(ξ)ξD−2dξ)
+�
+dv2 ± 2dvdr ,
+(3.47)
+such that the average unified first law gives
+¯∇amMS = ˙M ¯∇av +
+�
+i
+w(i)(r) Ω(D−2)rD−2 ¯∇ar ,
+(3.48)
+where ˙M is dM/dv. Thus, the function M(v) implies the non-vanishing energy supply vector
+ψa = ˙M ¯∇av/A(D−2) without changing contributions from other matter fields. Eq.(3.44) is
+still valid if change the derivative dIrr/dr as ∂Irr/∂r. Therefore, the work term of the source
+of Vaidya mass must vanish. It hints at finding the corresponding energy-momentum tensor
+T vr = ψa ¯∇av = 0 ,
+T rr = ψa ¯∇ar = ±
+˙M
+Ω(D−2) rD−2 ,
+T vv = 0 .
+(3.49)
+The result for component T vv is obtained by using the vanishing work term W = 0 again. At
+the horizon, the energy supply vector is interpreted as a heat flow [13], so it is plausible that
+20
+
+the vector ψa does not vanish in dynamical cases, like the approach of obtaining evolving
+spacetime by multiplying a time-dependent conformal factor to the static solution [18].
+4
+The first law including topological charge
+Ref. [48,49] introduce the concept of topological charge for a topological RN-AdS black hole
+to preserve the Gibbs-Duhem-like relation. Using the notation of this article, the explicit
+expression of the metric of a topological RN-AdS black hole is
+ds2 = −fdt2 + dr2
+f
++ r2ˆgijdxidxj ,
+(4.1)
+where
+f = k − 2M2−D
+Pl
+(D − 2)
+M
+Ω(D−2)
+1
+rD−3 +
+M2−D
+Pl
+(D − 2)(D − 3)
+Q2
+Ω2
+(D−2)
+1
+r2(D−3) + r2
+l2 ,
+(4.2)
+and l is the AdS radius. They consider formally changing k continually, then define the
+topological charge as
+ε = Ω(D−2)
+�
+|k|
+D−2 .
+(4.3)
+Treat r = rc as a holographic screen, label f(rc), df(rc)/dr as fc, f′
+c. The Brown-York
+tensor on the screen leads to the energy density ϵ and the pressure p as
+ϵ = C − D − 2
+M2−D
+Pl
+√fc
+rc
+,
+p = D − 3
+M2−D
+Pl
+√fc
+rc
++
+1
+2M2−D
+Pl
+f′
+c
+√fc
+− C ,
+(4.4)
+where C is a constant from holographic renormalization [48,49,59]. They define the total
+“volume”5 and energy of the whole screen as
+V = Ω(D−2)rD−2
+c
+,
+E = ϵV .
+(4.5)
+However, the entropy is chosen as horizon entropy
+S =
+2π
+M2−D
+Pl
+Ω(D−2)rD−2
+H
+,
+(4.6)
+in which rH satisfies f(rH) = 0, determines the location of the Killing horizon. Replacing
+M2−D
+Pl
+as 8π, the entropy reduces to the well-known one quarter of the horizon area. After
+suitably defining the temperature T
+T = TH
+√fc
+=
+1
+2π√fc
+�rH
+l2 + (D − 3) 2M2−D
+Pl
+(D − 2)
+M
+Ω(D−2)
+1
+rD−2
+H
+− M2−D
+Pl
+D − 2
+Q2
+Ω2
+(D−2)
+1
+r2D−5
+H
+�
+,
+(4.7)
+5It is worth noting that the “volume” V is the (D − 2)-dimensional area A(D−2) rather than the (D − 1)-
+dimensional volume V(D−1) in this article.
+21
+
+the chemical potential µ for the electric charge Q
+µ = −
+1
+(D − 3) Ω(D−2)
+√fc
+�
+Q
+rD−3
+c
+−
+Q
+rD−3
+H
+�
+,
+(4.8)
+and the potential ζ for the topological charge ε
+ζ = sgn(k)
+ε
+4−D
+D−2 Ω
+D−4
+D−2
+(D−2)
+M2−D
+Pl
+rD−3
+H
+− rD−3
+c
+√fc
+,
+(4.9)
+on the screen6, not only the first law of thermodynamics dE + pdV = TdS + µdQ + ζdε is
+obtained, the Gibbs-Duhem-like relation
+E + pV = TS + µQ + ζε ,
+(4.10)
+still holds for non-planar (k ̸= 0) cases. It is the motivation of Ref. [48,49] introducing the
+topological charge. This charge is suggested as the last charge of a black hole with maximal
+symmetry. On the other hand, Ref. [60] introduces the chemical potential for the number
+of colors, which is applied to study the phase structure of a topological black hole [61]. The
+number of colors seems to have similar behavior with the topological charge under scale
+transformation of
+ˆ
+M(D−2), but their connection is still unclear.
+It is worth mentioning details about scaling
+ˆ
+M(D−2).
+The power (D − 2)/2 in the
+definition (4.3) implies that the topological charge is also a k-normalized volume of MD−2 or
+the part of MD−2 in interest. For the maximally symmetric ˆ
+M(D−2) with a non-normalized
+and nonzero k, re-scale the metric ˆgij → l2 ˆgij to set |k| as 1, then the additional scale l
+can always be absorbed by adjusting other parameters in Irr. Therefore, the maximally
+symmetric
+ˆ
+M(D−2) with a non-normalized k does not distinguish it from the k-normalized
+situation.
+Modestly, if introducing a topological charge for MD−2, it seems better to
+consider the MD−2 as an Einstein manifold without maximal symmetry.
+4.1
+Topological charge as the portal of
+ˆ
+M(D−2)
+Nevertheless, the parameter k plays the role of a portal connecting the manifold
+¯
+M(2) and
+shape parameters of
+ˆ
+M(D−2). In higher dimensions, even if the Ricci scalar of
+ˆ
+M(D−2)
+is a constant, the manifold
+ˆ
+M(D−2) is not necessary to have maximal symmetry. As an
+example, consider the following 4-dimensional Einstein manifold satisfied ˆRij = kˆgij,
+dˆs2 =
+∆ˆr
+ˆr2 − ˆa2 cos2 ˆθ
+�
+dˆτ − ˆa sin2 ˆθ
+1 − k ˆa2
+3
+dˆφ
+�2 + (ˆr2 − ˆa2 cos2 ˆθ)
+�dˆr2
+∆ˆr
++ dˆθ2
+∆ˆθ
+�
++
+∆ˆθ sin2 ˆθ
+ˆr2 − ˆa2 cos2 ˆθ
+�
+ˆadˆτ + ˆr2 − ˆa2
+1 − k ˆa2
+3
+dˆφ
+�2 ,
+(4.11)
+6The notation for factors of M and Q is different with Refs. [48,49].
+22
+
+where
+∆ˆr = (ˆr2 − ˆa2)(1 − kˆr2
+3 ) − 2 ˆmˆr ,
+∆ˆθ = 1 − kˆa2
+3 cos2 ˆθ .
+(4.12)
+This is the Euclideanized Kerr-(A)dS gravitational instanton [62]. The 4-dimensional Planck
+scale MPl(4) is set as 1. The additional hat mark reminds us that the instanton would be
+regarded as the
+ˆ
+M(D−2) manifold. Then it is not hard to construct the following metric in
+6-dimensional Einstein gravity.
+ds2 = −(k − ω6 M
+r3
+)dt2 +
+dr2
+k − ω6 M
+r3
++ r2dˆs2 ,
+(4.13)
+where ω6 can be treated as a suitable constant in 6-dimension when the Eq.(4.11) is the
+metric ˆgij of the
+ˆ
+M(4). This is a vacuum solution of the 6-dimensional Einstein equations.
+At least the situation of M > 0 and k > 0 can describe a black hole. The shape of its
+horizon is a 4-dimensional Kerr-dS instanton.
+It is reasonable to allow continuously varying k for the Einstein manifold.
+The pa-
+rameters of the Euclidean spacetime satisfy the following Smarr-like relationship due to
+∆ˆr = 0.7
+ˆ
+M2 =
+ˆS(1 − k ˆS
+3π )2
+4π
+− π ˆJ2
+ˆS
++ k ˆJ2
+3
+,
+(4.14)
+where
+ˆ
+M =
+ˆm
+(1 − k ˆa2
+3 )2 ,
+ˆJ =
+ˆmˆa
+(1 − k ˆa2
+3 )2 ,
+ˆS = π ˆr2
++ + ˆa2
+1 − k ˆa2
+3
+,
+(4.15)
+in which the ˆr+ is the larger root of the equation ∆ˆr = 0. Treating ˆ
+M as the function of
+ˆS, ˆJ, k, the variation of the Smarr-like relation leads to the first law
+δ ˆ
+M = ˆTδ ˆS + ˆΩδ ˆJ + ˆΘδk ,
+(4.16)
+where
+ˆT = 12π4 ˆJ2 + 3π2 ˆS2 − 4πk ˆS3 + k2 ˆS4
+24π3 ˆ
+M ˆS2
+, ˆΩ =
+ˆJ(k ˆS − 3π)
+3 ˆ
+M ˆS
+,
+ˆΘ = 6π3 ˆJ2 − 3π ˆS2 + k ˆS3
+36π3 ˆ
+M
+.
+(4.17)
+Thus, there should be the first law for the 6-dimensional black hole,
+δM = TδS + r3
+H
+ω6 ˆΘ
+(δ ˆ
+M − ˆTδ ˆS − ˆΩHδ ˆJ) .
+(4.18)
+where
+rH = (ω6M
+k
+)1/3 ,
+T = κ
+2π ,
+S =
+A
+4G6
+.
+(4.19)
+7The J2 term in Euclidean signature has a different sign from the one in Lorentz signature of Ref. [62].
+23
+
+Parameters of the Einstein manifold can join the first law of black hole thermodynamics for
+the whole
+¯
+M(2) × ˆ
+M(D−2). The δk plays the role of a portal. From such a point of view,
+the concrete definition (4.3) does not matter. For convenience, this article still states that
+continuously varying k introduces the topological charge.
+4.2
+Unusual shapes and topological charges
+Reminding that the role of k for the average unified first law is similar to the role of K
+for the non-average first law, it may be beneficial to consider the non-average law to figure
+out natural interpretation of the topological charge, since changing the direction, i.e., the
+position in
+ˆ
+M(D−2) naturally causes continually varying K. Such a consideration requires
+clarifying the relationship between the unified first law, and the usual first law of black hole
+thermodynamics.
+The unified first law states a relation in spacetime, while the usual one deals with the
+variation of global parameters. To handle the tension between two viewpoints of the first
+law, consider a finite falling energy package that goes through the trapping horizon8, shown
+in fig.6, in such a way that the horizon begins as a Killing horizon, and finally settles down as
+a new Killing horizon. To ensure the unified first law is valid, it is assumed that the ˆ
+M(D−2)
+part keeps unchanging. The trapping horizon only changes its size during the process. Select
+a vector za tangent to the ¯
+M(2) and the trapping horizon, i.e., (za ¯∇aIrr)H = 0, and donate
+f′ as (za ¯∇af)H, then according to Eq.(2.15), contracting za with the A(D−2)ψa generates the
+MD−2
+Pl
+κgeo A′
+(D−2) term, the equivalent expression of the heat flow term TdS. The tunneling
+approach for Hawking radiation in dynamical spacetime confirms the relationship between
+κgeo at the horizon and the horizon temperature T = κH/(2π) [20–24]. Remarkably, two
+versions of the unified first law Eq.(2.16) and Eq.(2.20) become
+M′
+MS − WH V ′
+(D−1) = m′
+MS − wH V ′
+(D−1) =
+κgeo A′
+(D−2)
+M2−D
+Pl
+,
+(4.20)
+which is regarded as the quasi-local first law. The average first law implies the integral
+mMS,f − mMS,i −
+�
+TH
+wH dVH =
+1
+M2−D
+Pl
+�
+TH
+κH dAH ,
+(4.21)
+where mMS,f is the final average MS mass on the trapping horizon, mMS,i is the initial
+one, lower subscribes H represent taking value on the horizon. Suppose the change is tiny
+8The trapping horizon is defined as a hypersurface foliated by marginal surfaces, so it has vanishing
+expansion. The equation Irr = 0 determines the location of a trapping horizon, see appendix C.
+24
+
+Figure 6: The time coordinate v is the null retarded time, while ¯t is given by v − r. Such a sketch
+describes a falling process changing the size of the trapping horizon. The red curve represents the
+evolving tapping horizon. Gray arrows portray the in-falling energy package. Both the initial and
+final moment is marked by gray dotted lines while Killing horizons are indicated by black lines.
+enough such that every global parameter becomes M + δM and Q(i) + δQ(i) at the final
+state. Then the (4.21) reduces to
+δmMS(rH) − wH δVH = κH δAH
+M2−D
+Pl
+.
+(4.22)
+The term about δk is omitted since the shape of ˆ
+M(D−2) is fixed during the falling process.
+It is significant that the term κH δAH appears. To indicate that the Eq.(4.20) is the quasi-
+local viewpoint for the first law, although it will be less general, calculate δmMS(rH) of
+Eq.(3.43). Keeping every small change of global parameters except k, the result is
+δmMS(rH) = δM + Ω(D−2)
+�
+i
+� � rH ∂w(i)(ξ)
+∂Q(i)
+ξD−2dξ
+�
+δQ(i) + wH δVH .
+(4.23)
+Identify the corresponding potential for the charge Q(i) as
+Φ(i),H = −Ω(D−2)
+� rH ∂w(i)(ξ)
+∂Q(i)
+ξD−2dξ ,
+(4.24)
+such that the relation
+δmMS(rH) − wH δVH = δM −
+�
+i
+Φ(i),HδQ(i) ,
+(4.25)
+25
+
+2is obtained. Eq.(4.25) and Eq.(4.22) together give the usual first law formulated by variation
+of global parameters. Thus, the result (4.25) shows how to connect the quasi-local viewpoint
+(LHS) with the global viewpoint (RHS).
+Now, back to the issue of x-dependence of K. It is only the K that contributes the
+x-dependence of the non-average MMS by definition (2.11).
+Consider a tangent vector
+hµ∂/∂Xµ = za∂/∂ua + yi∂/∂xi on the trapping horizon.
+Such vector not only has ua
+components za but also has xi component yi. Then redefine f′ as hµ∂µf taking value on
+the horizon, the non-average Eq.(4.20) is modified as
+M′
+MS − (D − 2)Ω(D−2) rD−3
+H
+2M2−D
+Pl
+K′ − WH V ′
+(D−1) =
+κgeo A′
+(D−2)
+M2−D
+Pl
+.
+(4.26)
+Again, considering integrating Eq.(4.26) along h and supposing only a small change of global
+parameters, all derivatives f′ are replaced by δf, including K′. Keeping δk in the usual
+first law or the average unified first law is only a formal operation. However, from the
+non-average point of view, allowing δK is naturally achieved by changing the direction in
+ˆ
+M(D−2). It opens up the consideration of defining topological charge (4.3) by K.
+The K term responds to the x-dependence in MMS, relating to the LHS of the non-
+average unified first law (2.16). For the RHS side, as is discussed in section 2, the energy
+supply vector does not depend on x, so the only term responding to the x-dependence in
+MMS must appear in the work term with the correct power of r. Eq.(3.2) helps again. It
+specifies that the relevant work term should be proportional to r−2. Multi-scalars offer
+such work term. Concrete examples are novel topological black holes constructed in section
+3 and global monopole solutions. The contribution from the r−2 work term cancels the
+x-dependence from K(x) in the charged solution (3.45) and (3.46). The type II solution
+(3.46) have the same Iabduadub part with the planar black hole, while the type I solution
+(3.45) describes diverse situations replacing k by c in Irr. However, it is unclear what the
+topological significance is if replace k with c in the definition (4.3).
+An alternative approach is to define topological charge in a concrete context. In novel
+solutions and global monopole solutions in appendix D, scalar fields φI map the sub-manifold
+ˆ
+M(D−2) to the vacuum manifold of the sigma model. Thus, another choice for defining the
+topological charge is the degree of map for scalars, which is proportional to the integral of
+the volume element of the vacuum manifold
+deg(φ) ∝
+�
+vac
+ϵIJ...K dφI ∧ dφJ ∧ · · · ∧ dφK .
+(4.27)
+Here, it is assumed an appropriate compactification was chosen to ensure the integral is
+finite. The definition includes situations discussed in Ref. [53] in principle. Such a definition
+26
+
+is topological because the degree is homotopy invariant. The x-dependence K rely on the
+x-dependence work term with r−2 power. One can treat the non-average unified first law
+should contain both “topological charges” from curvature K and degree of map from scalars
+simultaneously. Two topological charges satisfy some relation through c if concerning the
+ˆ
+M(D−2) part. The x-dependence is canceled while the constant c may be retained. In this
+sense, it is the c playing the role of the portal. It seems that introducing topological charges
+only touches the corner of an iceberg. Exact solutions (3.45) and (3.46) remind us that the
+constant term in Irr still hides rich structures.
+5
+Summary and discussion
+This article re-derives the unified first law from Einstein equations in detail. Distinguish-
+ing from the original law, sub-manifold
+ˆ
+M(D−2) is no limit to the maximally symmetric
+space, but rather an arbitrary manifold including dependent-on-position Ricci scalar ˆR(x).
+Such unusual shapes require two versions of MS masses and unified first laws. The non-
+average law keeps x-dependence, while the average law is from integrating out positions x
+on
+ˆ
+M(D−2).
+Two types of novel 4-dimensional topological black hole solutions in Einstein-scalars the-
+ory are constructed. The improved approach of generating solutions from thermodynamics
+simplifies the construction. Horizon shapes of these black holes are visualized by plotting
+embedding diagrams in one higher dimension space. Both cannot be entirely embedded
+into a single Euclidean or Minkowski space. The improved approach further gives a simple
+method to introduce cosmological constant, electric charge, and Vaidya mass.
+The non-constant K(x) gives natural motivation to consider topological charge since its
+value changes when moving the position x in
+ˆ
+M(D−2). Novel solutions show that K(x) is
+achieved by x-dependent scalars. Contribution for Irr from K(x) and ˆΦ(x) cancel out, but
+they left a constant. The residual constant seems to challenge the original motivation for
+introducing the topological charge. A modest viewpoint is viewing the residual constant as
+a portal to parameters about the horizon shape for the first law.
+The next task is to investigate how to add angular momentum to topological black holes
+obtained here. It has been successfully done for planar and hyperbolic solutions in Ref.
+[63–66]. We expect a systematic method to generate spinning solutions from the solutions
+with the metric (2.1), at least type I and type II solutions. Once corresponding spinning
+solutions are obtained, they are worth testing the validity of Kerr/CFT corresponding [67],
+27
+
+and may even give some new ideas about black hole evaporation and entropy of horizon.
+Recent progress in quantum gravity has calculated the entropy of horizon with arbitrary
+shape [68]. Solutions here offer concrete examples. It is unclear whether the non-asymptotic
+flat or dS features forbid the production of topological black holes with unusual shapes. It
+is worth exploring these possibilities like Ref. [34].
+An alternative approach to pushing forward such an investigation is considering modified
+gravity. Generalizing the MS mass and the unified first law to modified gravity theories
+has been studied in Ref. [44–46], but they are still only concerned about the maximal
+symmetry. Especially the MS mass for the Gauss-Bonet gravity has non-linear terms of
+about k [44], such that the relation between the average unified first law and the non-
+average law may be non-trivial. Despite the difficulties, the investigation of this article
+suggests that the generating solutions approach for modified gravity theories [69–71] may
+still be worth studying. One can expect the corresponding improved approach benefit of
+finding new topological black holes with unusual horizon shapes.
+Novel topological black holes and the construction method may imply some unexpected
+application in the holographic context. At first, the topological charge, or the color charge
+introduced in Ref. [60] enriches phase structures of topological black hole [61]. Such previous
+researches are interested in maximal symmetry. Nevertheless, novel topological black holes
+imply an inhomogeneous AdS boundary. The entrance of parameters about the shape in
+the first law would enlarge the black hole phase structures. It seems studying black hole
+phase transition would also inspire some new ideas for cosmology [54, 55]. Secondly, Ref.
+[61] emphasizes the sub-system aspect for formulating the thermodynamics when dealing
+with the non-compact nature of the plane and the hyperbolic surface.
+The sub-system
+consideration inspires the possibility that the metric of ˆgij describes the unusual shape with
+richer inhomogeneous structures.
+The whole
+ˆ
+M(D−2) may be too inhomogeneous to be
+described by a single coordinates frame {xi}. Instead, the entire spacetime may need many
+small pieces to write down the line-element (2.1). Different patches are not the same but
+relate to each other by scaling r → lr if they overlap.
+Applying the AdS/CFT corresponding to the type I and type II topological AdS black
+holes, the boundary field theory should live in the non-Euclidean space. The AdS boundary
+with unusual shape means that novel solutions are not asymptotic AdS spacetime in a
+precise sense. Solutions do not reduce to asymptotically flat spacetime when turning off
+the cosmological constant. Thus, the topological theorem in Ref. [10] is not violated. It is
+natural to expect this is the holographic description for some boundary solidary material
+28
+
+in unusual shapes, although the part embedded in Minkowski space seems less plausible.
+The construction in section 3 implies inverse engineering. For a given
+ˆ
+M(D−2), one can
+design an appropriate field space metric GIJ for the sigma model to achieve the metric ˆgij
+of ˆ
+M(D−2). The warp ˆgij should respond to a non-vanishing stress tensor Tij, which may be
+similar to the previous study about holographic viscoelastic hydrodynamics [72]. Moreover,
+it is remarkable that the ansatz (3.25) and (3.29) for scalars is similar to the ansatz that
+appeared in the holographic axion model [73]. Several scalars have VEV proportional to
+coordinates. Completing the inverse engineering technique may give a systematic method
+to find analytic models, opening up a new field of holographic solids.
+Appendix A: Calculate Γλ
+µν and Rλ
+ρµν
+This appendix shows an efficient method for calculating the Levi-Civita connection and
+Riemann tensor. Usually, the components of the Levi-Civita connection for a given metric,
+are calculated by
+Γλ
+µν = 1
+2gλσ(∂gµσ
+∂xν + ∂gνσ
+∂xµ − ∂gµν
+∂xσ ) ,
+(A.1)
+The geodesic equations give hints to finding the trick. Considering the geodesic equations
+d2xλ
+dτ 2 + Γλ
+µν
+dxµ
+dτ
+dxν
+dτ = d2xλ
+dτ 2 + gλσ(dgσν
+dτ
+dxν
+dτ − 1
+2
+∂gµν
+∂xσ
+dxµ
+dτ
+dxν
+dτ ) = 0 ,
+(A.2)
+in which dgσν/dτ = (∂gσν/∂xµ)(dxµ/dτ). one can extract the following structure
+Γλ
+µνdxµdxν = gλσ(dgσνdxν − 1
+2
+∂ds2
+∂xσ ) ,
+(A.3)
+which can be viewed as a coordinate-dependent rank-2 symmetric tensor, in which ∂ds2/∂xσ
+is the short notation of (∂gµν/∂xσ)dxµdxν. Since the coordinates frame is fixed under a
+particular calculation, one can simply treat gσν as several functions of xµ and dgσν represents
+their differential. The trick is to calculate the structure Eq. (A.3) rather than to calculate
+components of Eq. (A.1) one by one. Now we use this trick to calculate the Levi-Civita
+connection of the metric (2.1). The components of its inverse metric are
+gab = Iab ,
+gij = ˆgij
+r2 .
+(A.4)
+Thus, Eq. (A.3) gives
+Γa
+µνdxµdxν = ¯Γa
+bcdubduc − (r ¯∇ar)ˆgijdxidxj ,
+Γi
+µνdxµdxν = 2
+¯∇ar
+r duadxi + ˆΓi
+jkdxjdxk .
+(A.5)
+29
+
+Here, the property ∂r/∂ua = ¯∇ar is used. Noticing that product terms like duadxi are the
+short notation for symmetric tensor product (duadxi ⊗ dxidua)/2, every component can be
+correctly read as
+Γa
+bc = ¯Γa
+bc , Γa
+ij = −rIab ∂r
+∂ub ˆgij , Γi
+aj = 1
+r
+∂r
+∂ua δi
+j , Γi
+jk = ˆΓi
+jk .
+(A.6)
+It is worth noting that the components Γa
+bc and Γi
+jk are just the independent Levi-Civita
+connection of
+¯
+M(2) and
+ˆ
+M(D−2) respectively.
+The author would like to introduce the
+covariant differential operator ¯∇a for
+¯
+M(2) and ˆ∇i for
+ˆ
+M(D−2). The areal radius r(u) can
+be treated as a scalar field in ¯
+M(2). The notation ¯∇ar also means ∂r/∂ua while ¯∇ar means
+Iab(∂r/∂ub).
+Once the connection was obtained, the Riemann tensor can be calculated through
+Rλ
+ρµν = ∂Γλ
+νρ/∂xµ + Γλ
+µσΓσ
+νρ − (µ ↔ ν). It can also be treated as several 2-forms due
+to the anti-symmetry of exchanging µ and ν,
+1
+2Rλ
+ρµνdxµ ∧ dxν = dΓλ
+νρ ∧ dxν + (Γλ
+µσdxµ) ∧ (Γσ
+νρdxν) .
+(A.7)
+In order to simplify the notation, label 1
+2Rλ
+ρµνdxµ ∧ dxν as Ωλ
+ρ and Γλ
+µσdxµ as Aλ
+ρ , then
+Ωλ
+ρ = dAλ
+ρ + Aλ
+σ ∧ Aσ
+ρ .
+(A.8)
+These 1-forms Aλ
+ρ can be viewed as the connection 1-forms for the coordinates tetrad
+(∂µ)ν = δν
+µ while Ωλ
+ρ are their curvature 2-forms. Concretely, 1-forms Aλ
+ρ for the metric
+(2.1) are
+Aa
+b = ¯Γa
+cb duc = ¯Aa
+b ,
+Aa
+i = − (r ¯∇ar)ˆgijdxj ,
+Ai
+a =
+¯∇ar
+r dxi ,
+Ai
+j =
+¯∇ar
+r δi
+jdua + ˆΓi
+kjdxk = dr
+r δi
+j + ˆAi
+j .
+(A.9)
+Then one obtains curvature 2-forms by applying Eq .(A.8). Firstly,
+Ωa
+b = dAa
+b + Aa
+c ∧ Ac
+b + Aa
+i ∧ Ai
+b = ¯Ωa
+b ,
+(A.10)
+since term containing ˆgijdxi ∧ dxj vanishes. Notice that Ωai = IabΩb
+i = −Ωia = −r2ˆgijΩj
+a,
+calculating Ωi
+a can avoid dealing with dˆgij here:
+Ωi
+a =
+¯∇a ¯∇br
+r
+dub ∧ dxi ,
+(A.11)
+therefore,
+Ωa
+i = −r ¯∇a ¯∇br ˆgij dub ∧ dxj ,
+(A.12)
+30
+
+The final 2-form Ωi
+j is
+Ωi
+j = ˆΩi
+j − Irrδi
+k ˆgjl dxk ∧ dxl = 1
+2
+� ˆRi
+jkl − Irr(δi
+k ˆgjl − δi
+l ˆgjk)
+�
+dxk ∧ dxl ,
+(A.13)
+where the term Irr is the short notation for Iab ¯∇ar ¯∇br. Reminding dxµ ∧ dxν = dxµ ⊗
+dxν − dxν ⊗ dxµ, one can read the components of Riemann tensor as
+Ra
+bcd = ¯Ra
+bcd ,
+Ra
+ibj = −Ra
+ijb = −r( ¯∇a ¯∇br) ˆgij ,
+Ri
+ajb = −Ri
+abj = −
+¯∇a ¯∇br
+r
+δi
+j ,
+Ri
+jkl = ˆRi
+jkl − Irr(δi
+kˆgjl − δi
+lˆgjk) .
+(A.14)
+The same result can be found in Ref. [44]. Contracting δi
+i = D −2, components of the Ricci
+tensor are
+Rab = ¯Rab − (D − 2)
+¯∇a ¯∇br
+r
+, Rij = ˆRij − ˆgij
+�
+r ¯∇2r + (D − 3)Irr�
+,
+(A.15)
+in which the ¯∇2r is ¯∇a ¯∇ar for short. The Ricci scalar is
+R = IabRab + ˆgij
+r2 Rij = ¯R − 2(D − 2)
+¯∇2r
+r
++
+ˆR
+r2 − (D − 2)(D − 3)Irr
+r2 .
+(A.16)
+Appendix B: Calculate ∗J and ∗K
+Then the author will calculate the Hodge dual ∗K and ∗J directly. One can read the volume
+D-form ϵ from the metric (2.1) as following
+ϵ = rD−2�
+−I ˆg du1 ∧ du2 ∧ dx1 ∧ · · · ∧ dxn−2 ,
+(B.1)
+where I, ˆg is the determinate of Iab, ˆgij respectly. Meanwhile, the volume 2-form ¯ϵ for ¯
+M(2)
+is
+¯ϵ =
+√
+−I du1 ∧ du2 ,
+(B.2)
+and the volume (D − 2)-form ˆϵ for
+ˆ
+M(D−2) is
+ˆϵ =
+�
+ˆg dx1 ∧ · · · ∧ dxD−2 .
+(B.3)
+This notation makes the following relation obvious,
+ϵ = rD−2¯ϵ ∧ ˆϵ .
+(B.4)
+It is still necessary to use the notation of tensor components to calculate the Hodge dual,
+ϵab i1i2...iD−2 = rD−2¯ϵab ˆϵi1i2...iD−2 .
+(B.5)
+31
+
+Then, ∗J is given by
+∗ J = rD−2Ja¯ϵabdub ∧ ˆϵ = rD−2T ac(¯ϵab¯ϵcd) ¯∇dr dub ∧ ˆϵ ,
+(B.6)
+Noting that tensor notation of the volume 2-form ¯ϵab can be expressed as
+¯ϵab =
+√
+−I¯εab ,
+(B.7)
+in which the symbol ¯εab satisfies ¯ε12 = −¯ε21 = 1 and ¯ε11 = ¯ε22 = 0 . Then the ¯ϵab is
+¯ϵab = −(
+√
+−I)−1¯εab ,
+(B.8)
+where the symbol ¯εab also share the same pattern with ¯εab, i.e., ¯ε12 = −¯ε21 = 1 and
+¯ε11 = ¯ε22 = 0, such that
+¯ϵab¯ϵcd = −¯εab¯εcd = −δa
+cδb
+d + δa
+dδb
+c .
+(B.9)
+Lowering the ab indexes leads to
+¯ϵab¯ϵcd = −IacIbd + IadIbc .
+(B.10)
+Thus, the (D − 1)-form ∗J becomes
+∗J =rD−2(Tab ¯∇ar + 2W ¯∇br) dub ∧ ˆϵ ,
+(B.11)
+As for ∗K, it can be obtained by simply replacing the T ab in ∗J by −Iab. Thus,
+∗K = rD−2 ¯∇br dub ∧ ˆϵ = d( rD−1
+D − 1) ∧ ˆϵ .
+(B.12)
+Appendix C: General Eddington-Finkelstein coordinates
+The 2-dimensional sub-spacetime must permits double null coordinates {u, v} such that the
+line element becomes
+ds2 = −Ω2(u, v)dudv + r2(u, v)ˆgij(x)dxidxj .
+(C.1)
+In the region where ¯∇ar does not vanish, r itself can be a coordinate, such that one can
+change to other coordinates frame like {v, r}.
+Since dr = r,u du + r,v dv where r,u, r,v
+represents ∂r/∂u, ∂r/∂v, the line element becomes
+ds2 = Ω2 r,v
+r,u
+dv2 − Ω2
+r,u
+drdv + r2ˆgij(x)dxidxj .
+(C.2)
+32
+
+The line element (C.2) is still general.
+The coordinates frame {v, r} is called general
+Eddington-Finkelstein (GEF) coordinates in this article. Define functions σ(v, r) = −2r,u/Ω2
+and f(v, r) = −4r,ur,v/Ω2, metric components under the GEF coordinates are
+gvv = Ivv = − f(v, r)
+σ2(v, r) ,
+grr = Irr = 0 ,
+gvr = grv = Ivr = Irv =
+1
+σ(v, r) ,
+gij = r2ˆgij ,
+(C.3)
+while inverse metric components are
+gvv = Ivv = 0 ,
+grr = Irr = f(v, r) ,
+gvr = grv = Ivr = Irv = σ(v, r) ,
+gij = ˆgij
+r2 .
+(C.4)
+In general, the shape of spacetime
+¯
+M(2) × ˆ
+M(D−2) with a given metric ˆgij for the unit
+ˆ
+M(D−2) is described by two functions. In double null coordinates, they are Ω(u, v) and
+r(u, v), while in GEF coordinates, they are σ(v, r) and f(v, r).
+The usage of function
+f(v, r) is convenient since it picks up the important function Irr = ∇µr∇µr. Further, the
+determinant of Iab in the GEF coordinates is simply I = −σ2. Then
+√
+−I equals to σ−1 up
+to a sign. Therefore, the Laplacian of r in
+¯
+M(2) is
+¯∇2r = σ∂(σ−1Ivr)
+∂v
++ σ∂(σ−1Irr)
+∂r
+= f′ − σ′
+σ f ,
+(C.5)
+where f′ = ∂f/∂r and σ′ = ∂σ/∂r. The result leads to a simple expression (3.4) for the
+geometric surface gravity (3.1) in terms of f and σ.
+The next task is to calculate expansions of null vector fields tangent to
+¯
+M(2). Specify
+fields as
+kµ
+∂
+∂Xµ = ∂
+∂v + f
+2σ
+∂
+∂r ,
+lµ
+∂
+∂Xµ = −σ ∂
+∂r ,
+(C.6)
+and require the condition kµlν = −1. Assuming the increasing direction of v is future,
+kµ and lν are all future-pointed.
+Their expansion can be easily calculated by the trick
+θ(k) = (D − 2) ka ¯∇ar/r without dealing with gµν∇µkν
+θ(k) = (D − 2) f
+2σr ,
+θ(l) = −(D − 2) σ
+r .
+(C.7)
+Such a method is also used in Ref. [26]. The hypersurface Irr = f = 0 leads to θ(k) = 0,
+thus determining a trapping horizon, which is defined as a hypersurface foliated by marginal
+surfaces [12, 13]. A marginal surface is a 2-codimensional spatial surface with vanishing
+expansion. One can further classify types of trapping horizons according to the behavior of
+θ(l) and Llθ(k), see Refs. [12,13].
+33
+
+It seems there is a problem that the vector lµ vanishes at location σ = 0. However,
+such location also implies a singular line element. To handle this issue, let us back to the
+non-singular double null coordinates. Another choice for two null vector fields is
+˜kµ
+∂
+∂Xµ =
+√
+2
+Ω
+∂
+∂v ,
+˜lµ
+∂
+∂Xµ =
+√
+2
+Ω
+∂
+∂u .
+(C.8)
+Their expansions are
+θ(˜k) =
+√
+2(D − 2)
+Ω r
+r,v ,
+θ(˜l) =
+√
+2(D − 2)
+Ω r
+r,u .
+(C.9)
+Apply the coordinates transformation and carefully deal with the chain rule
+∂
+∂vDN
+=
+∂
+∂vGEF
++ r,v
+∂
+∂r ,
+∂
+∂u = r,u
+∂
+∂r ,
+(C.10)
+where vGEF donates the coordinate v in GEF frame and vDN donates the v in double null
+frame, one confirms the following relation
+˜kµ =
+√
+2
+Ω kµ ,
+˜lµ = Ω
+√
+2 lµ ,
+(C.11)
+such that
+θ(˜k) =
+√
+2
+Ω θ(k) ,
+θ(˜l) = Ω
+√
+2 θ(l) .
+(C.12)
+Since Ω ̸= 0, σ = 0 is just a coordinate singularity, implying that r,u = 0, which is another
+trapping horizon which satisfies θ(l) = 0. However, the relationship
+Irr = −2(
+r
+D − 2)2θ(k)θ(l) ,
+(C.13)
+is covariant. The normalization condition kµlµ forces that the construction θ(k)θ(l) does not
+change under a regular rescaling like Eq.(C.11). Switching the role of u and v changes the
+concerned null vector field from ˜k to ˜l. Thus, the equation Irr = 0 always picks up the
+hypersurface with vanishing expansion (θ(k) = 0 or θ(l) = 0), i.e., the trapping horizon.
+Appendix D: Design the field space metric GIJ
+This appendix gives examples of designing the field space metric GIJ for a given ˆgij. Ref.
+[53] modifies the field space metric to let the global monopole becomes an exact solution
+and further generalizes it to planar and hyperbolic situations in higher dimension. Such
+research serves as a good example of designing. This appendix aims to repeat results in
+Ref. [53] through the approach of this article. Ref. [47] overstated the approach of generating
+34
+
+solutions from thermodynamics. It was thought that the approach cannot derive the global
+monopole solution. It is going to show the validity of the improved approach.
+Consider a D dimensional spacetime with metric (2.1) and the ansatz φI = η nI(x).
+As what has been discussed in section 3, such ansatz implies the vanishing energy supply
+vector and the work term depending on ua only through r. Thus, according to the theorem
+in subsection 3.3, the line element Iabduadub must be −f(r)dt2 +dr2/f(r) with the function
+f(r) = c − 2M2−D
+Pl
+(D − 2)
+M
+Ω(D−2)
+1
+rD−3 −
+2M2−D
+Pl
+Vmin
+(D − 1)(D − 2)r2 .
+(D.1)
+The only problem is to seek the suitable field space metric GIJ.
+Suppose the ˆgij part is a (D − 2)-dimensional sphere. The simplest choice is GIJ = δIJ
+in (D − 1) dimensions where I, J = 1, 2, . . . , D − 1. Demanding δIJnInJ = 1 respects the
+symmetry of rotation, no matter in
+ˆ
+M(D−2) or the field space. It means embedding the
+unit sphere ˆgijdxidxj into a higher dimensional Euclidean space δIJdφIdφJ, such that
+δIJ ∂inI ∂jnJ = ˆgij ,
+(D.2)
+However, a flat field space metric δIJ does not satisfy the goal of exact solutions [53]. It
+inspires the choice of
+GIJ = F(X) δIJ ,
+(D.3)
+where X = δIJφIφJ. Then the induced metric due to φI = η nI(x) is
+ˆΦij = F(η2) η2 ∂inI∂jnI = F(η2) η2 ˆgij .
+(D.4)
+Thus, the work term of the model is
+Wφ = (D − 2) η2 F(η2)
+2r2
++ Vmin ,
+(D.5)
+which implies c = k − M2−D
+Pl
+η2F(η2)/(D − 3) according to Eq.(3.12). The final check is the
+Klein-Gordon (KG) equations. Since the field space metric GIJ is conformally flat, the field
+space connection is
+Γ I
+φ JK = 1
+F
+dF
+dX (φJ δI
+K + φK δI
+J − φIδJK) .
+(D.6)
+Thus, the KG equations give
+ˆ∇2nI(x) =
+ˆΦ nI
+F(η2)( dF
+dX )X=η2 .
+(D.7)
+Tricks in appendix A lead to ˆ∇2nI = −(D − 2)nI. Consider the following line element
+ds2 = f(ρ)dρ2 + ρ2ˆgijdxidxj ,
+(D.8)
+35
+
+in which the Iab part is only one dimensional.
+Since the ˆgij is supposed as a (D − 2)-
+dimensional metric in this article, the metric (D.8) has D − 1 dimensions.
+Results in
+appendix A implies
+Γρ
+ρρ = 1
+2f
+df
+dρ , Γa
+ij = − ρ
+f ˆgij , Γi
+aj = 1
+ρδi
+j , Γi
+jk = ˆΓi
+jk .
+(D.9)
+and
+Rρ
+iρj = − ρ
+2f2
+df
+dρ ˆgij , Ri
+ρjρ =
+1
+2ρf
+df
+dρδi
+j , Ri
+jkl = ˆRi
+jkl − 1
+f (δi
+kˆgjl − δi
+lˆgjk) .
+(D.10)
+If f = 1 and the ˆgijdxidxj part is a sphere, the metric (D.8) describes a Euclidean space
+ds2 = δIJdXIdXJ in spherical coordinates. Thus, flatness requires vanishing curvature, so
+there should be ˆRi
+jkl = δi
+kˆgjl−δi
+lˆgjk. The case for a Minkowski space ds2 = ηIJdXIdXJ has
+f = −1 and the ˆgijdxidxj part is a hyperbolic surface, such that ˆRi
+jkl = −(δi
+kˆgjl − δi
+lˆgjk).
+This is a quick way to ensure the curvature of the maximum symmetric space is ˆRi
+jkl =
+k(δi
+kˆgjl − δi
+lˆgjk). As for the Laplacian, its expression under coordinates {ρ, xi} is
+∇I∇Iφ =
+1
+fρD−2
+∂
+∂ρ(ρD−2 ∂φ
+∂ρ) +
+ˆ∇2φ
+ρ2 ,
+(D.11)
+where ∇I donates the covariant derivative with respect to the metric (D.8) . If choosing
+the scalar φ as one of the coordinates XI = ρnI, then ∇J∇JXI = 0. In coordinates {ρ, xi},
+the vanishing Laplacian in a flat space implies
+ˆ∇2nI = −D − 2
+f
+nI .
+(D.12)
+For sphere, f = 1, so ˆ∇2nI = −(D − 2)nI. Therefore, to be consistent, there should be
+( dF
+dX )X=η2 = − 1
+η2 .
+(D.13)
+For simplicity, one can further require F(η2) = 1. These are conditions for the field space
+metric F(X)δIJ.
+Such an argument repeats the results of Ref. [53] for the spherical case. For the hyper-
+bolic case, ˆgijdxidxj has k = −1. It can only be embedded into one higher dimensional
+Minkowski space rather than the Euclidean space. The above argument is valid by simply
+replacing δIJ with ηIJ. As for the planar case k = 0, there is no need to introduce higher
+dimensional field space. Simply using the ansatz φI = ηxI leads to a similar result. The
+unified expression for the metric is
+ds2 = − (k − M2−D
+Pl
+η2
+D − 3
+− 2M2−D
+Pl
+(D − 2)
+M
+Ω(D−2)
+1
+rD−3 − Vminr2
+3MD−2
+Pl
+)dt2
++
+dr2
+k − M2−D
+Pl
+η2
+D−3
+− 2M2−D
+Pl
+(D−2)
+M
+Ω(D−2)
+1
+rD−3 − Vminr2
+3MD−2
+Pl
++ r2ˆgijdxidxj ,
+(D.14)
+36
+
+where k = −1, 0, 1. It completes deriving solutions and finding suitable field space metrics,
+and obtains the same results with Ref. [53].
+Acknowledgments
+The author thanks Hyat Huang and Hongwei Tan for their helpful and inspiring discus-
+sion, and the support of Mayumi Aoki and Ryoko Nishikawa regarding personnel affairs at
+Kanazawa University. It is also grateful for the invitation from Yi Wang to visit HKUST
+Jockey Club Institute for Advanced Study. The author thanks for the useful comment from
+Ali Akil. The author was supported by the China Scholarship Council and the Japanese
+Government (Monbukagakusho-MEXT) scholarship during the initial stage of the research.
+References
+[1] J. D. Bekenstein, Generalized second law of thermodynamics in black hole physics,
+Phys. Rev. D 9 (1974) 3292–3300.
+[2] J. M. Bardeen, B. Carter, and S. W. Hawking, The Four laws of black hole
+mechanics, Commun. Math. Phys. 31 (1973) 161–170.
+[3] S. W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D 13 (1976) 191–197.
+[4] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,
+Adv. Theor. Math. Phys. 2 (1998) 231–252, [hep-th/9711200].
+[5] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from
+noncritical string theory, Phys. Lett. B 428 (1998) 105–114, [hep-th/9802109].
+[6] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
+253–291, [hep-th/9802150].
+[7] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from
+AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602, [hep-th/0603001].
+[8] R. M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993), no. 8
+R3427–R3431, [gr-qc/9307038].
+[9] V. Iyer and R. M. Wald, Some properties of the noether charge and a proposal for
+dynamical black hole entropy, Phys. Rev. D 50 (Jul, 1994) 846–864.
+37
+
+[10] S. W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972)
+152–166.
+[11] C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically
+symmetric gravitational collapse, Phys. Rev. 136 (Oct, 1964) B571–B576.
+[12] S. A. Hayward, Gravitational energy in spherical symmetry, Phys. Rev. D 53 (1996)
+1938–1949, [gr-qc/9408002].
+[13] S. A. Hayward, Unified first law of black hole dynamics and relativistic
+thermodynamics, Class. Quant. Grav. 15 (1998) 3147–3162, [gr-qc/9710089].
+[14] K.-i. Nakao, C.-M. Yoo, and T. Harada, Gravastar formation: What can be the
+evidence of a black hole?, Phys. Rev. D 99 (2019), no. 4 044027, [1809.00124].
+[15] G. H¨utsi, T. Koivisto, M. Raidal, V. Vaskonen, and H. Veerm¨ae, Cosmological black
+holes are not described by the Thakurta metric: LIGO-Virgo bounds on PBHs remain
+unchanged, Eur. Phys. J. C 81 (2021), no. 11 999, [2105.09328].
+[16] T. Harada, H. Maeda, and T. Sato, Thakurta metric does not describe a cosmological
+black hole, Phys. Lett. B 833 (2022) 137332, [2106.06651].
+[17] C.-M. Yoo, T. Harada, S. Hirano, H. Okawa, and M. Sasaki, Primordial black hole
+formation from massless scalar isocurvature, Phys. Rev. D 105 (2022), no. 10 103538,
+[2112.12335].
+[18] T. Sato, H. Maeda, and T. Harada, Conformally Schwarzschild cosmological black
+holes, Class. Quant. Grav. 39 (2022), no. 21 215011, [2206.10998].
+[19] A. Escriv`a, Y. Tada, S. Yokoyama, and C.-M. Yoo, Simulation of primordial black
+holes with large negative non-Gaussianity, JCAP 05 (2022), no. 05 012, [2202.01028].
+[20] J.-R. Ren and R. Li, Unified first law and thermodynamics of dynamical black hole in
+n-dimensional Vaidya spacetime, Mod. Phys. Lett. A 23 (2008) 3265–3270,
+[0705.4339].
+[21] J. Ke-Xia, K. San-Min, and P. Dan-Tao, Hawking Radiation as tunneling and the
+unified first law of thermodynamics for a class of dynamical black holes, Int. J. Mod.
+Phys. D 18 (2009) 1707–1717, [1105.0595].
+38
+
+[22] R. Di Criscienzo, S. A. Hayward, M. Nadalini, L. Vanzo, and S. Zerbini,
+Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate
+gauges, Class. Quant. Grav. 27 (2010) 015006, [0906.1725].
+[23] R. di Criscienzo, M. Nadalini, L. Vanzo, S. Zerbini, and S. Hayward, Invariance of
+the Tunneling Method for Dynamical Black Holes, in 12th Marcel Grossmann Meeting
+on General Relativity, pp. 1166–1168, 6, 2010. 1006.1590.
+[24] L. Vanzo, G. Acquaviva, and R. Di Criscienzo, Tunnelling Methods and Hawking’s
+radiation: achievements and prospects, Class. Quant. Grav. 28 (2011) 183001,
+[1106.4153].
+[25] R.-G. Cai and S. P. Kim, First law of thermodynamics and Friedmann equations of
+Friedmann-Robertson-Walker universe, JHEP 02 (2005) 050, [hep-th/0501055].
+[26] R.-G. Cai and L.-M. Cao, Unified first law and thermodynamics of apparent horizon
+in FRW universe, Phys. Rev. D 75 (2007) 064008, [gr-qc/0611071].
+[27] H. Zhang, S. A. Hayward, X.-H. Zhai, and X.-Z. Li, Schwarzschild solution as a result
+of thermodynamics, Phys. Rev. D 89 (2014), no. 6 064052, [1304.3647].
+[28] G. T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360
+(1991) 197–209.
+[29] L. Vanzo, Black holes with unusual topology, Phys. Rev. D 56 (1997) 6475–6483,
+[gr-qc/9705004].
+[30] G. J. Galloway, K. Schleich, D. M. Witt, and E. Woolgar, Topological censorship and
+higher genus black holes, Phys. Rev. D 60 (1999) 104039, [gr-qc/9902061].
+[31] R. Emparan and H. S. Reall, A Rotating black ring solution in five-dimensions, Phys.
+Rev. Lett. 88 (2002) 101101, [hep-th/0110260].
+[32] H. Elvang and P. Figueras, Black Saturn, JHEP 05 (2007) 050, [hep-th/0701035].
+[33] R. Emparan and H. S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11
+(2008) 6, [0801.3471].
+[34] R. B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant.
+Grav. 14 (1997) L109–L114, [gr-qc/9607071].
+39
+
+[35] D. Birmingham, Topological black holes in Anti-de Sitter space, Class. Quant. Grav.
+16 (1999) 1197–1205, [hep-th/9808032].
+[36] R. Emparan, AdS / CFT duals of topological black holes and the entropy of zero
+energy states, JHEP 06 (1999) 036, [hep-th/9906040].
+[37] D. Birmingham and S. Mokhtari, Stability of topological black holes, Phys. Rev. D 76
+(2007) 124039, [0709.2388].
+[38] T. Morley, P. Taylor, and E. Winstanley, Vacuum polarization on topological black
+holes, Class. Quant. Grav. 35 (2018), no. 23 235010, [1808.04386].
+[39] X. Bai and J. Ren, Holographic Renyi entropies from hyperbolic black holes with
+scalar hair, 2210.03732.
+[40] Y. Peng, New topological Gauss-Bonnet black holes in five dimensions, Phys. Rev. D
+104 (2021), no. 8 084004, [2105.08482].
+[41] M. Gutperle and A. Strominger, Space - like branes, JHEP 04 (2002) 018,
+[hep-th/0202210].
+[42] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a Holographic
+Superconductor, Phys. Rev. Lett. 101 (2008) 031601, [0803.3295].
+[43] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Holographic Superconductors,
+JHEP 12 (2008) 015, [0810.1563].
+[44] H. Maeda and M. Nozawa, Generalized Misner-Sharp quasi-local mass in
+Einstein-Gauss-Bonnet gravity, Phys. Rev. D 77 (2008) 064031, [0709.1199].
+[45] H. Zhang, Y. Hu, and X.-Z. Li, Misner-Sharp Mass in N-dimensional f(R) Gravity,
+Phys. Rev. D 90 (2014), no. 2 024062, [1406.0577].
+[46] Y.-P. Hu and H. Zhang, Misner-Sharp Mass and the Unified First Law in Massive
+Gravity, Phys. Rev. D 92 (2015), no. 2 024006, [1502.00069].
+[47] H.-W. Tan, J.-B. Yang, T.-M. He, and J.-Y. Zhang, A Modified Thermodynamics
+Method to Generate Exact Solutions of Einstein Equations, Commun. Theor. Phys.
+67 (2017), no. 1 41, [1609.04181].
+[48] Y. Tian, X.-N. Wu, and H.-B. Zhang, Holographic Entropy Production, JHEP 10
+(2014) 170, [1407.8273].
+40
+
+[49] Y. Tian, A topological charge of black holes, Class. Quant. Grav. 36 (2019), no. 24
+245001, [1804.00249].
+[50] R. Wald, General relativity. 1984.
+[51] C.-B. Liang and B. Zhou, Differential geometry and general relativity. 2023.
+[52] H. Kodama, Conserved Energy Flux for the Spherically Symmetric System and the
+Backreaction Problem
+in the Black Hole Evaporation, Progress of Theoretical Physics 63 (04, 1980) 1217–1228,
+[https://academic.oup.com/ptp/article-pdf/63/4/1217/5243205/63-4-1217.pdf].
+[53] H. Tan, J. Yang, J. Zhang, and T. He, The global monopole spacetime and its
+topological charge, Chin. Phys. B 27 (2018), no. 3 030401, [1705.00817].
+[54] S.-B. Kong, H. Abdusattar, Y. Yin, H. Zhang, and Y.-P. Hu, The P − V phase
+transition of the FRW universe, Eur. Phys. J. C 82 (2022), no. 11 1047,
+[2108.09411].
+[55] H. Abdusattar, S.-B. Kong, Y. Yin, and Y.-P. Hu, The Hawking-Page-like phase
+transition from FRW spacetime to McVittie black hole, JCAP 08 (2022), no. 08 060,
+[2203.10868].
+[56] S. Hawking and G. Ellis, The large scale structure of space-time. 1973.
+[57] Z.-F. Mai and R.-Q. Yang, Rechargeable black hole battery, 2210.10587.
+[58] H. Huang, Z.-Y. Fan, and H. L¨u, Static and Dynamic Charged Black Holes, Eur.
+Phys. J. C 79 (2019), no. 11 975, [1908.07970].
+[59] J. D. Brown and J. W. York, Jr., Quasilocal energy and conserved charges derived
+from the gravitational action, Phys. Rev. D 47 (1993) 1407–1419, [gr-qc/9209012].
+[60] M. R. Visser, Holographic thermodynamics requires a chemical potential for color,
+Phys. Rev. D 105 (2022), no. 10 106014, [2101.04145].
+[61] T. Wang, Z. Zhang, X. Kong, and L. Zhao, Topological black holes in
+Einstein-Maxwell and 4D conformal gravities revisited, 2211.16904.
+[62] M. M. Caldarelli, G. Cognola, and D. Klemm, Thermodynamics of
+Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17
+(2000) 399–420, [hep-th/9908022].
+41
+
+[63] D. Klemm, V. Moretti, and L. Vanzo, Rotating topological black holes, Phys. Rev. D
+57 (1998) 6127–6137, [gr-qc/9710123]. [Erratum: Phys.Rev.D 60, 109902 (1999)].
+[64] G. Tasinato, I. Zavala, C. P. Burgess, and F. Quevedo, Regular S-brane backgrounds,
+JHEP 04 (2004) 038, [hep-th/0403156].
+[65] H. Lu and J. F. Vazquez-Poritz, Nonsingular twisted S-branes from rotating branes,
+JHEP 07 (2004) 050, [hep-th/0403248].
+[66] J. Yang, H. Tan, T. He, and J. Zhang, Symmetric Space-times from Thermodynamics,
+1701.02876.
+[67] M. Guica, T. Hartman, W. Song, and A. Strominger, The Kerr/CFT
+Correspondence, Phys. Rev. D 80 (2009) 124008, [0809.4266].
+[68] S. Song, H. Li, Y. Ma, and C. Zhang, Entropy of black holes with arbitrary shapes in
+loop quantum gravity, Sci. China Phys. Mech. Astron. 64 (2021), no. 12 120411,
+[2002.08869].
+[69] H. Zhang and X.-Z. Li, From thermodynamics to the solutions in gravity theory, Phys.
+Lett. B 737 (2014) 395–400, [1406.1553].
+[70] H. Zhang, Solutions in Gravity Theories Emerge from Thermodynamics: A Mini
+Review of a Recent Progress in Graviti-Thermodynamics, The Universe 3 (2015),
+no. 1 30–40.
+[71] Y.-P. Hu, X.-M. Wu, and H. Zhang, Generalized Vaidya Solutions and Misner-Sharp
+mass for n-dimensional massive gravity, Phys. Rev. D 95 (2017), no. 8 084002,
+[1611.09042].
+[72] M. Baggioli and A. Buchel, Holographic Viscoelastic Hydrodynamics, JHEP 03 (2019)
+146, [1805.06756].
+[73] M. Baggioli, K.-Y. Kim, L. Li, and W.-J. Li, Holographic Axion Model: a simple
+gravitational tool for quantum matter, Sci. China Phys. Mech. Astron. 64 (2021),
+no. 7 270001, [2101.01892].
+42
+
diff --git a/_dAzT4oBgHgl3EQfvf3k/content/tmp_files/load_file.txt b/_dAzT4oBgHgl3EQfvf3k/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5b9bf8e8f23354fd5bf4fb8555280af7fc2a59bd
--- /dev/null
+++ b/_dAzT4oBgHgl3EQfvf3k/content/tmp_files/load_file.txt
@@ -0,0 +1,1675 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf,len=1674
+page_content='Novel topological black holes from thermodynamics and deforming horizons Jinbo Yang 1,2,3 1Department of Astronomy, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='China 2Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan 3HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='China ABSTRACT Two novel topological black hole exact solutions with unusual shapes of the horizon in the 4-dimensional Einstein-scalars theory are constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The application of the unified first law dramatically simplifies the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The article re-derives such first law from the Einstein equations for a spacetime with product structure ¯ M(2) × ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The non- constant Ricci scalar ˆR of the sub-manifold ˆ M(D−2) remarkably leads to two versions of the Misner-Sharp mass and the unified first law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Both versions are applied to generate topo- logical black holes and to discuss their significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Unusual shapes of ˆ M(D−2) in solutions naturally require topological charges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It gives the first glimpse of non-explored aspects of the first law of black hole thermodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Keywords: topological black hole, unusual shape, unified first law, Misner-Sharp mass, topological charge yangjinbophy@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='com arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='01709v1 [gr-qc] 4 Jan 2023 Contents 1 Introduction 3 2 Unified first law including unusual shape 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 Unified first law from Einstein field equation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 Misner-Sharp mass as conserved charge .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 8 3 Topological black holes from the unified first law 9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 Topological black holes sourced by sigma model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 Additional sources .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 17 4 The first law including topological charge 21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 Topological charge as the portal of ˆ M(D−2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 22 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 Unusual shapes and topological charges .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 24 5 Summary and discussion 27 Appendix A: Calculate Γλ µν and Rλ ρµν 29 Appendix B: Calculate ∗J and ∗K 31 Appendix C: General Eddington-Finkelstein coordinates 32 Appendix D: Design the field space metric GIJ 34 2 1 Introduction In several decades, black hole physics, especially black hole thermodynamics, has brought us deep insights into theoretical physics [1–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The mainly concerning shape of the black hole has a spherical topology, supported by the topological theorem for Einstein gravity [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' According to the theorem, the horizon of a 4-dimensional asymptotically flat black hole must be topologically spherical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Further focusing on the perfectly spherical black hole is an appropriate starting point for detailed research of black hole evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A spherically symmetric spacetime in 4-dimensional Einstein gravity has a quasi-local mass called Misner- Sharp (MS) mass [11,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' mMS = r 2GN (1 − gµν∇µr∇νr) , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) where GN is the 4-dimensional Newton constant, and r is the areal radius which gives the area of a sphere A = 4πr2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This mass reduces to the Arnowitt-Deser-Misner(ADM) mass in the asymptotic flat background and is significant for formulating the unified first law in Einstein gravity [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The MS mass and the unified first law are widely applied in the context of primordial black hole formation [14–19], detailed study for Hawking evaporation [20–24] and the first law on the apparent horizon of an expanding universe [25,26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' These concepts also inspire a novel approach to generate spherical black hole solutions of general relativity from thermodynamics [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nevertheless, many black objects beyond the spherical horizon in higher dimensional supergravity or string theory have been discovered [28–33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One kind of black object is the topological black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The part of its metric describing the horizon shape is not a sphere but rather an Einstein manifold [34–37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Widely studied topological black holes have planar or hyperbolic horizons [38–40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The hyperbolic counterpart of the Schwarzchild black hole can be viewed as a gravitational description of S-brane [41], and the planar one is widely applied since it generally describes a specific boundary phase in the context of AdS/CFT correspondence [42, 43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The parameters of a planar Reissner-Nordstr¨om(RN)- AdS black hole satisfy the Gibbs-Duhem relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The unified first law and the approach of deriving solutions from thermodynamics also have been generalized to include planar and hyperbolic cases in the context of modified gravity [44–47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [48, 49] introduces the concept of topological charge for the topological RN-AdS black hole to preserve the Gibbs-Duhem-like relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' They suggest that the topological charge is the last charge for the first law of thermodynamics of a maximally symmetric black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The article explores the possibility of replacing the spherical part with an unusual shape, 3 not limited to maximally symmetric space or Einstein manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Suppose the part replacing the sphere is an independent manifold with metric ˆgij(x), where x donate the point in the independent manifold, and i, j, k are the corresponding indexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' If the manifold is maxi- mally symmetric, the Rienman tensor from ˆgij(x) is ˆRijkl = k(ˆgikˆgjl − ˆgilˆgjk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' An Einstein manifold satisfies a weaker condition ˆRij(x) = λˆgij(x), where λ is a constant [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Its Ricci scalar ˆR is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This article concerns the situation with non-constant ˆR(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The original unified first law only focuses on the maximally symmetric situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' However, the unusual shape with non-constant ˆR(x) implies two versions of the unified first law, which is discussed by re-deriving the law from Einstein equations in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Remarkably, ap- plying unified first laws simplifies constructing concrete examples of topological black holes with unusual shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The method used here improves the approach of generating solutions from thermodynamics in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Novel topological black holes with unusual shapes in 4-dimensional Einstein-scalars theory are obtained through this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Successfully con- structing solutions with the non-constant ˆR(x) seems to give a more natural motivation for introducing the topological charge defined in [48,49], but it also challenges the topological significance of such a charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nevertheless, novel solutions open a new window to inves- tigate how parameters describing the shape of the horizon join the first law of black hole thermodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The article is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Section 2 revisits the unified first law of general relativity by dimensional reduction, an explicitly covariant method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Additionally, it is shown that Misner-Sharp mass is a conserved charge relating to the Kodama vector, and a more general horizon shape leads to two versions for formulating the unified first law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Section 3 constructs novel topological black hole solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The improved approach to generating solutions from thermodynamics is discussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Embedding plots are displayed to visualize the horizon shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Contributions from other sources are also attached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Metrics for novel solutions with charge and the cosmological constant are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Section 4 focuses on the topological charge to discuss how such a charge should relate to the shape of the horizon from the viewpoint of the unified first law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Section 5 gives a summary and discusses other open issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2 Unified first law including unusual shape This section re-derives the unified first law from the Einstein equations and shows that Misner-Sharp mass is a conserved charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Consider a D-dimensional spacetime with the 4 following line element ds2 = gµν(X)dXµdXν = Iab(u)duadub + r2(u)ˆgij(x)dxidxj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) This spacetime has a product structure ¯ M(2) × ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Coordinates frame {Xµ} of the whole spacetime is specified as {ua, xi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is beneficial to choose the following viewpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Coordinates ua label the point in the 2-dimensional manifold ¯ M(2), while xi label the point in the (D − 2)-dimensional manifold ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Both manifolds have its independent metric Iab(u) and ˆgij(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The areal radius r(u) is a scalar function in spacetime, also a function in ¯ M(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Its value means enlarging the unit ˆ M(D−2) in r times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is worth emphasizing again that the manifold ˆ M(D−2) is not limited to the maximally symmetric space investigated in Ref [13,44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is not presuming that the independent Ricci scalar ˆR(x) of ˆ M(D−2) is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is also assumed that the manifold ˆ M(D−2) has a finite (D − 2)-dimensional volume Ω(D−2), or just the finite part of the ˆ M(D−2) with volume Ω(D−2) is concerned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 Unified first law from Einstein field equation Next, consider the Hilbert-Einstein action in the higher dimension S = � �MD−2 Pl 2 R + Lm � √−g dDx , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) where Lm is the Lagrangian for matter fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It leads to Einstein equations Rµν −Rgµν/2 = M2−D Pl Tµν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Appendix A shows tricks for obtaining the Levi-Civita connection and the Riemann tensor of the metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Using Eq (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='14),(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15) and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16), the Einstein equations become as ¯Rab − (D − 2) ¯∇a ¯∇br r − R 2 Iab = M2−D Pl Tab(u, x) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) ˆRij − ˆgij � r ¯∇2r + (D − 3)Irr� − R 2 r2ˆgij = M2−D Pl Tij(u, x) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) where Irr is ¯∇ar ¯∇ar for short;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' ¯∇ and ˆ∇ is the Levi-Civita connection of ¯ M(2) and ˆ M(D−2) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Even the ab components Tab of the energy-momentum tensor may depend on x due to the x-dependent ˆR(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nevertheless, the unified first law is directly derived from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since the Einstein tensor of a 2-dimensional metric always vanishes1, there is ¯Rab = ¯RIab/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then, contracting the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) with ¯∇br gives ¯R − R 2 ¯∇ar − (D − 2) ¯∇aIrr 2r = M2−D Pl Tab(u, x) ¯∇br .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) 1This feature relates to the fact that any 2-dimensional metric is conformally flat, see [50,51] 5 On the other hand, the trace of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) gives ¯R − R − D − 2 r ¯∇2r = −2M2−D Pl W(u, x) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) where the trace of Tab contributes to the so-called work term [13], W(u, x) = −1 2IabTab(u, x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) The work term (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) used in this article probably depends on x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is necessary to reduce the order of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This relys on re-writting ¯∇2r in terms of W(u, x) and K(x) − Irr(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Substitute the D-dimensional Ricci scalar (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6), there is (D − 2) ¯∇2r r = −2M2−D Pl W(u, x) + (K(x) − Irr)(D − 2)(D − 3) r2 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) where the K is proportional to the ˆR as follow2, K(x) = ˆR(x) (D − 2)(D − 3) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) Then, using the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8), the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) implies D − 2 2rD−2 ¯∇a(rD−3(K(x) − Irr)) = M2−D Pl (Tab∇br + 2W∇ar) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) Noting that the trick ¯∇aK(x) = ∂K(x)/∂ua = 0 is applied to simplify the left-hand side (LHS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The appearance of rD−2 hints that the (D − 2)-dimensional volume for the sub- manifold at the fixed ua is relevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It naturally leads to the following definition MMS(u, x) = (D − 2)Ω(D−2) 2 M2−D Pl rD−3(u)(K(x) − Irr(u)) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) in which the Ω(D−2) represents the (D − 2)-dimensional volume of ˆ M(D−2) with unit-size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In 4-dimensional spherical case, since there are Ω(2) = 4π, M2 Pl = 8πGN, and K is always normalized as 1, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) reduces to the original definition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The (D − 2)-volume for a general sub-manifold at fixed ua is A(D−2) = Ω(D−2)rD−2, and the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) leads to ¯∇aMMS(u, x) = A(D−2)Tab(u, x) ¯∇br + 2W(u, x) ¯∇aV(D−1) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) in which V(D−1) = Ω(D−2)rD−1/(D − 1) is the (D − 1)-dimensional volume for the region surrounded by the the (D − 2)-dimensional surface with size A(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The last step to finish deriving needs to introduce the energy supply vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [13] defines it as ψa = T ab(u, x) ¯∇br + W(u, x) ¯∇ar .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13) 2Such notation is ill-defined if D = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The ˆ M(D−2) only has one dimension such that the ˆR vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The case of D = 3 is ignored in this article since the main concern here is the x-dependent ˆR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 6 The ψa does not depend on x, although it relys on Tab(u, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is the vector along ¯ M(2) defined by contracting ¯∇ar with the trace-less part of T ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since components (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) of the Einstein equation force the traceless part of Tab becomes Tab − 1 2(TcdIcd)Iab = −MD−2 Pl D − 2 r � ¯∇a ¯∇b r − 1 2 ¯∇2r Iab � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='14) the ψa reduces to ψa = MD−2 Pl D − 2 2 r � ( ¯∇2r) ¯∇a r − ¯∇a Irr� , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15) which is x-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Finally, rewrite the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) as ¯∇aMMS(u, x) = A(D−2)ψa + W(u, x) ¯∇aV(D−1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) It completes the derivation of the united first law of Einstein gravity from the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The x-dependence happens at MMS(u, x) and W(u, x) in the unified first law (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Once restrict ˆ M(D−2) as the Einstein manifold including the original case in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [13], the x- dependence of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) goes out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' An alternative approach is integrating out x on the compact ˆ M(D−2), or its finite part if the volume of the whole ˆ M(D−2) is ill-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' To formulate this, one should define the average MS mass as mMS(u) = (Ω(D−2))−1 � ˆ M(D−2) MMS(u, x) � ˆg(x) dD−2x = (D − 2)Ω(D−2) 2 M2−D Pl rD−3(k − Irr) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='17) in which k is the average K in the sense of k = (Ω(D−2))−1 � ˆ M(D−2) K(x) � ˆg(x) dD−2x , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='18) and define the average work term w(u) = (Ω(D−2))−1 � ˆ M(D−2) W(u, x) � ˆg(x) dD−2x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='19) The unified first law has the following average version ¯∇amMS = A(D−2)ψa + w ¯∇aV(D−1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20) Therefore, the unusual shape requires two versions of the unified first law, the non-average one (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) and the average one (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' They share the same Aψ term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is the reason that this article does not introduce the MS mass “density” in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11), though the “density” seems competitive with the holographic viewpoint when treating ˆ M(D−2) as the holographic screen [48,49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The next subsection applies the language of differential form to clarify that the non-average MS mass MMS relates to a (D − 2)-form field, while the average MS mass mMS as a conserved charge should be the integral of such (D − 2)-form field on ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 Misner-Sharp mass as conserved charge The so-called Kodama vector field is introduced for the spacetime with the metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) in which the ˆ M(D−2) part is the maximal symmetric space [12,13,52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In this article, the requirement of the maximal symmetry is released, any spacetime with metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) has a Kodama vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Suppose ¯ϵab is the volume 2-form of ¯ M(2), then the Kodama vector field is given by Kµ∂µ = −¯ϵab ¯∇br ∂ ∂ua , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='21) where ¯ϵab = IacIbd¯ϵcd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Kodama vector field does not have i components, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', Ki = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The vector field also orthogonal to the ∇µr because Kµ∇µr = Ka ¯∇ar = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Combining these facts with the Levi-Civita connection (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6), non-vanishing components of ∇µKν are ∇aKb = ¯∇aKb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='22) Therefore, it is straightforward to show that ∇µKµ = −¯ϵab ¯∇a ¯∇br = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='23) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', the Kodama vector field is divergence-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then define a conserved current as following Jµ = −T µνKν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='24) The vector field Jµ is also divergence free without i components due to the Einstein equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' More concretely, ∇µJµ = 0 is derived by ∇µ(−T µνKν) = −D − 2 r ¯ϵbc( ¯∇a ¯∇cr)( ¯∇a ¯∇br) = 0 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='25) while Ji = 0 is due to Rai = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lowering the index of vector fields Kµ, Jµ leads to one-form fields K = KµdXµ, J = JµdXµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Divergence free implies ∗d ∗ K = 0 and ∗d ∗ J = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, the Hodge dual (D − 1)-forms ∗K and ∗J are closed , such that there are locally exact (D − 2)-forms QK and QJ which satisfy ∗K = dQK and ∗J = dQJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Integrating ∗K and ∗J on a slice Σ with a boundary ∂Σ leads to two conserve charges QK = � Σ ∗K = � ∂Σ QK , QJ = � Σ ∗J = � ∂Σ QJ , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='26) The Hodge dual (D − 1)-forms ∗K and ∗J are calculated in detail in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The result for ∗K shows a straightforward relationship QK = rD−1ˆϵ/(D − 1) in which ˆϵ is 8 the volume (D − 2)-form for the unit ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Suppose the slice Σ only has one connected boundary ∂Σ located at a fixed u, then the K charge is QK = � ∂Σ rD−1 D − 1 ˆϵ = Ω(D−2) D − 1 rD−1 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='27) Compare the result (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12),(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13), ∗J should be ∗J = rD−2(ψa + W ¯∇ar) dua ∧ ˆϵ = ¯∇aMMS Ω(D−2) dua ∧ ˆϵ , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='28) Thus, the locally exact (D − 2)-form should be QJ = (MMS/Ω(D−2))ˆϵ, and the conserve charge QJ at ∂Σ is QJ = � ∂Σ MMS Ω(D−2) ˆϵ = mMS , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='29) exactly the averaged Misner-Sharp mass (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 3 Topological black holes from the unified first law This section applies the unified first law to generate solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The method is developed from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [27] and applied for constructing exact solutions with non-constant ˆR(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Scalar fields described by the sigma model offer the matter source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Subsection 1 gives the construction of such solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Additional matter sources, like the cosmological constant, Maxwell field, and in-falling null matters, are discussed in subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Only the unified first law itself is not enough to find solutions since it requires one part of information about Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The complementary part needs to introduce the geometric surface gravity [13], defined as κgeo = 1 2 ¯∇2r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) It is x-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Moreover, the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) gives the following relationship κgeo(u) = D − 3 D − 2 M2−D Pl Ω(D−2) MMS(u, x) rD−2(u) − M2−D Pl D − 2 r(u) W(u, x) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) relating the geometric surface gravity with the MS mass and work term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The fact about x-independence of κgeo(u) even allows replacing the RHS by corresponding average version mMS(u) and w(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For generating solutions, specific coordinates may make the task easier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The approach of generating solutions from thermodynamics in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [27] prefers the orthogonal coordinates {t, r} for the metric Iab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The following takes a different choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Generally, the 2-dimensional line element d¯s2 for ¯ M(2) can be formulated as d¯s2 = Iabduadub = − f(v, r) σ2(v, r)dv2 + 2dvdr σ(v, r) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) 9 in the general Eddington-Finkelstein coordinates, see appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The geometric surface gravity in terms of functions f and σ is κgeo = f′ 2 − σ′ σ f 2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) where f′ = ∂f/∂r and σ′ = ∂σ/∂r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Latter application of such a relation will show that it dramatically simplifies constructing solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 Topological black holes sourced by sigma model This subsection considers the sigma model, which contains multiple scalar fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As the matter field, its Lagrangian is Lφ = −1 2GIJ(φ)∂µφI∂µφJ − V (φ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) Variation of δφI gives equations of motion (EOM) of φI, the Klein-Gordon (KG) equations in curved field space ∇2φI + Γ I φ JK∇λφJ∇λφK = GIJ ∂V ∂φJ , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) where ∇2φ is ∇λ∇λφ for short, and Γ I φ JK represents the field space connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Variation of δgµν leads to the σ-model’s energy-momentum tensor Tµν = GIJ∂µφI∂νφJ + gµνLφ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In the ¯ M(2) × ˆ M(D−2) spacetime, it is decomposed as Tab = ¯Φab − 1 2 ¯ΦIab − Iab( ˆΦ 2r2 + V ) , Tij = ˆΦij − 1 2 ˆΦˆgij − r2ˆgij( ¯Φ 2 + V ) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) where ¯Φab = GIJ∂aφI∂bφJ, ˆΦij = GIJ∂iφI∂jφJ, while ¯Φ, ˆΦ are their trace ¯Φ = Iab ¯Φab, ˆΦ = ˆgij ˆΦij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The term ¯Φab − 1 2 ¯ΦIab is the trace-less part of Tφ ab while the term contained ˆΦ and the potential V contribute to the trace part, so the energy supply vector and the work term are3 ψa φ = ¯Φab ¯∇br − 1 2 ¯Φ ¯∇ar , Wφ = ˆΦ 2r2 + V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) Components Tφ ai = 0 are due to the Einstein equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Obviously, ∂aφI = 0 or ∂iφJ = 0 automatically satisfies these conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This article chose the simpler ∂aφI = 0 since the energy supply vector vanishes in this situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then, the non-averaged unified first law (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) leads to MMS(r, x) = ˜ M(x) + ˆΦ(x) Ω(D−2) 2(D − 3) rD−3 + V (x) Ω(D−2) (D − 1) rD−1 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) 3For a scalar, covariant derivative and usual derivative are the same, namely, ¯∇aφ = ∂aφ and ˆ∇iφ = ∂iφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 10 The relationship between MMS and the function Irr implies Irr = K(x) − M2−D Pl ˆΦ(x) (D − 2)(D − 3) − 2M2−D Pl (D − 2) ˜ M(x) Ω(D−2) 1 rD−3 − 2M2−D Pl V (x) (D − 1)(D − 2)r2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) Since Irr does not depend on x, the combination K(x)− M2−D Pl ˆΦ(x) (D−2)(D−3), the function ˜ M(x) and the value of the potential V (x) should be constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Donate them c, M, Vmin respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The mark ”min” reminds one that it is reasonable to suppose φI(x) locate at the mini- mum of the potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then, the function Irr can be rewritten as c − 2M2−D Pl (D−2) M Ω(D−2) 1 rD−3 − 2M2−D Pl Vmin (D−1)(D−2)r2, while the average Misner-Sharp mass is mMS(r) = M + (k − c) (D − 2) Ω(D−2) 2M2−D Pl rD−3 + Vmin Ω(D−2) (D − 1) rD−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) The left-hand side (LHS) of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) gives a consistent result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since the only x-dependent term at is ˆRIab/(2r2), which comes from the term RIab/(2r2), the V (φ(x)) should be a constant, while the x-dependent Ricci scalar ˆR(x) should be ˆR(x) = M2−D Pl ˆΦ(x) + C , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) where the constant C can be identified as (D − 2)(D − 3) c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' If introduce the averaged ˆΦ as oφ = � ˆ M(D−2) ˆΦ(x) � ˆg(x) dD−2x Ω(D−2)(D − 2)(D − 3) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13) then Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) becomes c = k − M2−D Pl oφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Both the Ricci scalar of ˆ M(D−2) and the ˆΦ from scalars contribute to the constant term in Irr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' According to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2), the geometric surface gravity is κgeo = D − 3 D − 2 M2−D Pl Ω(D−2) M rD−2(u) − 2M2−D Pl Vmin (D − 1)(D − 2)r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='14) It also equals to f′/2 since f(r) = Irr(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the function σ in the line element (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) should satisfy σ′ = 0, such that it only depends on the null time v or be a nonzero constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Introduce the coordinates transformation, dts = dv σ(v) + dr f(r) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15) Then, the unified first law and the geometric surface gravity fix the Iab(u)duadub part as d¯s2 = − (c − 2M2−D Pl (D − 2) M Ω(D−2) 1 rD−3 − 2M2−D Pl Vmin (D − 1)(D − 2)r2)dt2 s + dr2 c − 2M2−D Pl (D−2) M Ω(D−2) 1 rD−3 − 2M2−D Pl Vmin (D−1)(D−2)r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) 11 On the other hand, there are still freedoms for choosing ˆgij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It becomes the question of how to embed ˆ M(D−2) to the vacuum manifold of the sigma model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The relavant EOMs are Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) reduces to ˆ∇2φI + Γ I φ JK ˆ∇iφJ ˆ∇iφK = 0 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='17) due to ∂aφI = 0 and the constant minimum of the potential, while the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) becomes ˆRij − 1 2 ˆRˆgij + (D − 3)(D − 4) c 2 ˆgij = M2−D Pl (ˆΦij − 1 2 ˆΦˆgij) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='18) The ˆΦij can be treated as the induced metric on the image of ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In principle, one can design a suitable field space metric GIJ for an arbitrary shape of ˆ M(D−2) such that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='17) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='18) are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Appendix D gives examples for designing the GIJ to let the global monopoles family become exact solutions, repeating results of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The 4 dimension situation trivializes Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='18) further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Its LHS totally vanishes because ˆ M(D−2) becomes a 2-dimensional manifold such that ˆRij = ˆRˆgij/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Meanwhile, the RHS is proportional to the trace-less part of the induced metric ˆΦij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It also vanishes since any 2-dimensional Riemann metric is conformally the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' ˆΦij as a non-degenerate metric requires at least two scalar fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For simplicity, the field space metric is chosen as GIJ = δIJ, I, J = 1, 2, then the kinetic term of the model is − 1 2δIJ ∇µφI∇µφJ = −1 2(∇µφ1∇µφ1 + ∇µφ2∇µφ2) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='19) Therefore, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='17) is just the Laplacian equation ˆ∇2φI = 0 on the ˆ M2 manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Again, any two-dimensional Riemann metric is conformally flat, so it seems to become easier as- suming ˆgijdxidxj = e−f(α,β)(dα2 + dβ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A simple calculation shows that φ1 ∝ α and φ2 ∝ β are zero modes of the Laplacian ˆ∇2, no matter what the function f(α, β) is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the ansatz φ1 = p α, φ2 = p β implies ˆΦijdxidxj = p2(dα2 + dβ2), and automatically solves the KG equations, but still left the problem of finding f(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The main constraint for the function f(α, β) comes from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A direct calculation shows ˆR(α, β) = ef�∂2f ∂α2 + ∂2f ∂β2 � = 2M−2 Pl p2 ef + 2c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20) One way to attach the problem of finding f is to reduce the number of variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Changing the coordinates {α, β} in the the polar coordinates {ρ, ϕ} through α = γ cos ϕ, β = γ sin ϕ, the line element of ˆgij becomes e−f(dγ2 + γ2dϕ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Assuming f only depends on γ highly simplifies the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The alternative method is to focus on the case of c = 0, such that the simplest solution is f ∝ α2 + β2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Based on these considerations, two novel 4-dimensional topological black holes with unusual shapes will be given in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 12 Type I It seems beneficial to compare with the general metric of the 2-dimensional maximal sym- metric space dρ2/(1 − kρ2) + ρ2dϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The expression inspires the following ansatz dρ2 1 − cρ2 − ψ(ρ) + ρ2dϕ , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='21) for ˆ M(D−2) metric, and φ1 = a � ρ dξ ξ � 1 − c ξ2 − ψ(ξ) , φ2 = a ϕ , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='22) for scalar fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Using c instead of k is to avoid that k does not mean the average of K(x) anymore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) leads to dψ(ρ) dρ = 2M−2 Pl p2 ρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='23) Therefore, after adjusting parameters by re-scaling coordinates, the solution becomes ds2 = − (c − M−2 Pl M Ω(2) r − Vminr2 3M2 Pl )dt2 + dr2 c − M−2 Pl M Ω(2) r − Vminr2 3M2 Pl + r2( dρ2 1 − cρ2 − 2a2 log ρ + ρ2dϕ2) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='24) and corresponding scalars are φ1(ρ) = a MPl � ρ dξ ξ � 1 − c ξ2 − 2a2 log ξ , φ2(ϕ) = a MPl ϕ , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='25) The metric is similar to the topological black hole in (A)dS background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Iabduadub part is the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' However, the shape of the horizon is different if a ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The coordinate ϕ can be periodical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The simplest choice is to identify ϕ + 2π with ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It also introduces a period 2πaMPl for the second scalar field φ2 such that the field space of the model is a flat cylinder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Ricci scalar of the unit ˆ M2 and the trace of the induced metric ˆΦij are ˆR(ρ) = 2a2 ρ2 + 2c , ˆΦ(ρ) = 2a2MPl2 ρ2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='26) Thus, the shape of ˆ M2 is controlled by two parameters a and c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The square root of the determinant of the metric is √ˆg = ρ/ � 1 − cρ2 − 2a2 log ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such an expression makes it difficult to calculate the 2-dimensional volume of the unit ˆ M2 exactly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Instead, it seems beneficial to study the shape by numerical method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As an example, setting c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2, the function 1−cρ2−2a2 log ρ is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The root of this function is ρmax ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9552.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 13 Figure 1: Function 1 − cρ2 − 2a2 log ρ, c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then the numerical integral of 2π � ρmax 0 √ˆgdρ gives Ω2 ≃ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5717.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Unfortunately, integrals like � ρmax 0 ˆR√ˆg and � ρmax 0 ˆΦ√ˆg blow up near ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' These divergences cause the average Misner-Sharp mass mMS and the average work term wφ of the whole ˆ M2 are not well defined until introducing a small cut-off for ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can embed the ˆ M2 into the 3-dimensional flat space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Considering the metric of the unit ˆ M2, dρ2 1 − cρ2 − 2a2 log ρ + ρ2dϕ2 = cρ2 + 2a2 log ρ 1 − cρ2 − 2a2 log ρdρ2 + dρ2 + ρ2dϕ2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='27) and setting the same data of a, c, then plot the function (cρ2+2a2 log ρ)/(1−cρ2−2a2 log ρ) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Figure 2: Function cρ2+2a2 log ρ 1−cρ2−2a2 log ρ, c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 (d)0l 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8 pThere exists a turning point implying that the above function changes its sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The numerical result is ρturn ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, the metric in the ρturn < ρ < ρmax region can be embedded into the Euclidean space, while the 0 < ρ < ρturn part can be only embedded into the Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The embedding diagrams are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The metric (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='24) Figure 3: Embedding diagrams for the metric (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The left plot shows the Euclidean part, while the medium plot shows the Minkowski part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The right plot shows the embedding diagram connects those two parts and completes another symmetric side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Parameters are set as c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' can describe other unusual shapes by adjusting values of a and c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can expect cases of c = 0 and a ̸= 0 will warp the plane, and c < 0 and a ̸= 0 will deform the hyperbolic surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such other cases are ignored in this article and left for future investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Type II The alternative metric with an unusual shape is ds2 = −(−M−2 Pl M Ω(2) r − Vminr2 3M2 Pl )dt2 + dr2 − M−2 Pl M Ω(2) r − Vminr2 3M2 Pl + r2e−(x2+y2)(dx2 + dy2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='28) The ˆgijdxidxj is a conformal plane where the conformal factor is a Gaussian function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the volume of the unit ˆ M2 is Ω2 = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' When M > 0 and Vmin < 0, the metric (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='28) has the same Iabduadub part with the planar Schwarzchild-AdS black hole, such that it is also a topological black hole in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Two scalar fields supporting this unusual shape are φ1(x) = √ 2MPl x , φ2(y) = √ 2MPl y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='29) The Ricci scalar of the unit ˆ M2 and the trace of the induced metric ˆΦij are ˆR(x, y) = 4ex2+y2 , ˆΦ(x, y) = 4M2 Plex2+y2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='30) Since the √ˆg = e−(x2+y2), the integral of ˆR(x, y) or ˆΦ(x, y) on the whole is divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore the average Misner-Sharp and the average work term still lack definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One 15 can simply propose a cut-off L for the integral region to preserve the validity of the average unified first law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is worth noting that the 2-volume Ω2 should be related to the error function erf(L) = (2/√π) � L 0 e−x2dx in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' More concretely, Ω2 = π erf(L)2, k = 16L2/(π erf(L)2), such that mMS = 16L2M2 Pl r + M + π erf(L)2Vmin r3 3 , wφ = 8M2 PlL2 π erf(L)2 r2 + Vmin , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='31) which have L2 divergence if setting L → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' To draw the embedding diagram, consider coordinates transformation x = ρ cos ϕ, y = ρ sin ϕ, the line element of unit ˆ M2 becomes e−ρ2dρ2 + e−ρ2ρ2dϕ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then compare with the polar coordinates of a plane, identify ˆr = ρe−ρ2/2, rewritten the unit ˆ M2 line element as follows, e−ρ2dρ2 + e−ρ2ρ2dϕ2 = (2 − ρ2)ρ2e−ρ2dρ2 + (dˆr dρ)2dρ2 + ˆr2dϕ2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='32) where the sign of function (2 − ρ2)ρ2e−ρ2 determines whether the metric can be embedded into Euclidean space or Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The plot of the function is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Figure 4: Function ρ e−ρ2/2 and (2 − ρ2)ρ2e−ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The latter one is positive in 0 < ρ < √ 2 and negative in ρ > √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' turning point is ρturn = √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Euclidean region is 0 < ρ < √ 2 while the Minkowski region is ρ > √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The embedding diagrams are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4 22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0 2 3 4 p0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5 pFigure 5: Embedding diagrams for the metric (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3, the left two plots show the Euclidean part and the Minkowski part separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The right-most plot connects them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As ρ tends to infinity, the Minkowski part tends to the center peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 Additional sources Cosmological constant The cosmological constant, which can be regarded as the vacuum energy density, is the simplest “matter” source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Its Lagrangian is LΛ = −MD−2 Pl Λ , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='33) which gives the Λgµν term at the LHS of Einstein equation, or classically effective energy- momentum tensor Tµν = −MD−2 Pl Λgµν when putting at the RHS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such an energy-momentum tensor contributes a constant energy density in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It also shifts the value of the potential V → V + MD−2 Pl Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, only turning off the spacetime dependence of scalars in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8), the energy supply vector and the work term of the cosmological constant are directly read as ψa Λ = 0 , WΛ = MD−2 Pl Λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='34) Such a constant work term contributes the MD−2 Pl Λ ¯∇aV(D−1) term to the unified first law, and the energy supply vector vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, the cosmological constant plays the role of pressure for a thermodynamics system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' There are more interesting issues in the context of cosmology if treating Λ as a pressure [25, 26, 54, 55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' An alternative view is that the cosmological constant should be put at the LHS, such that it provides a −MD−2 Pl Λ V(D−1) correction to the MS mass, as in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 17 Maxwell field The Lagrangian of a Maxwell field is Lem = −1 4FµνF µν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='35) It gives the energy-momentum tensor Tµν = FµλF λ ν − 1 4gµνFλρF λρ and the source-free Maxwell equations are dF = 0 , d ∗ F = 0 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='36) in terms of differential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The F is the 2-form field strength, while ∗F is the Hodge dual of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The generalized Coulomb field in higher dimension Fab = Q Ω(D−2) rD−2 ¯ϵab , Fij = 0 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='37) has already solved the Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Obviously, dF = 0 since the factor only depends on r and any ¯ M(2) 1-form p = padua satisfies p ∧ ¯ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Hodge dual (D − 2)-form is ∗F = Qˆϵ/Ω(D−2), so d ∗ F ∝ dˆϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, despite what the Iabduadub part is, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='37) must be the solution of source-free Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then, integrating the dual (D − 2)- form ∗F on ˆ M(D−2) gives the electric charge Q = � ˆ M(D−2) ∗F , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='38) which confirms the choice of the 1/Ω(D−2) factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then, the energy-momentum tensor for such Coulumb field F = Q¯ϵ/(Ω(D−2) rD−2) is decomposed as Tab = − Q2 2Ω2 (D−2) 1 r2(D−2) Iab , Tij = Q2 2Ω2 (D−2) 1 r2(D−3) ˆgij , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='39) where F 2 = FabF ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' ψa em = 0 , Wem = Q2 2Ω2 (D−2) 1 r2(D−2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='40) For the 4-dimensional spherical case, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='40) reduces to the result in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Again, the energy supply vector vanishes, and the work term only changes when varying r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' If every matter source considered in the theory contributes i) only r-dependent average work term w(i)(r);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' and ii) vanishing energy supply vector ψa (i) = 0, then the Iabduadub part of the spacetime ¯ M(2) × ˆ M(D−2) is already determined as −Irrdt2 + dr2/Irr, and the function Irr should be Irr = k − 2M2−D Pl (D − 2) M Ω(D−2) 1 rD−3 − � i 2M2−D Pl (D − 2) rD−3 � r w(i)(ξ)ξD−2dξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='41) 18 Similar tricks for constructing solutions in the previous subsection are still valid for the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The average unified first law under conditions (i) and (ii) gives ¯∇amMS = � i w(i)(r) Ω(D−2)rD−2 ¯∇ar , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='42) such that directly integrating r implies that the average MS mass is mMS(r) = M + � i Ω(D−2) � r w(i)(ξ)ξD−2dξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='43) It constricts the function Irr taking the form of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Concretely, the cosmological contributes − 2Λ r2 (D−1)(D−2), while the Maxwell field contributes M2−D Pl (D−2)(D−3) Q2 Ω2 (D−2) r−2(D−3) to Irr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='42) also implies 1 2 dIrr dr = D − 3 D − 2 M2−D Pl Ω(D−2) mMS(r) rD−2 − M2−D Pl D − 2 r � i w(i)(r) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='44) The RHS coincides with the geometric surface gravity relation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, in the GEF coordinates {v, r}, there is σ′ = 0 again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Finally, the coordinates transformation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15) explicitly shows that the Iabduadub part must be −Irrdt2 +dr2/Irr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Taking the case of vacuum, both ψa and w vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Meanwhile, for spherical symmetry, the ˆgij is detemeined4 and the value of k should be 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The theorem reduces to Birkhoff’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In such a sense, this theorem generalizes Birkhoff’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Apply the above conclusion, one obtains charged novel topological black hole solutions ds2 = − (c − M−2 Pl M Ω(2) r + M−2 Pl Q2 2Ω2 (2) r2(D−3) − Λr2 3 )dt2 + dr2 c − M−2 Pl M Ω(2) r + M−2 Pl Q2 2Ω2 (2) r2(D−3) − Λr2 3 + r2( dρ2 1 − cρ2 − 2a2 log ρ + ρ2dϕ2) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='45) and ds2 = − (−M−2 Pl M Ω(2) r + M−2 Pl Q2 2Ω2 (2) r2(D−3) − Λr2 3 )dt2 + dr2 − M−2 Pl M Ω(2) r + M−2 Pl Q2 2Ω2 (2) r2(D−3) − Λr2 3 + r2e−(x2+y2)(dx2 + dy2) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='46) where the minimum of the potential is absorbed into the cosmological constant Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 4In the complete proof, there is one part to proof that spherical symmetry demanding the spacetime contains an orbit of SO(3) group, such that the metric has the form of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1), see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such a step is skipped in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 19 Irreducible mass and usable energy Suppose rH is the location of the black hole horizon, since there should be Irr(rH) = 0, the averaged MS mass at the horizon is mMS = (D − 2)Ω(D−2)MD−2 Pl krD−3 H /2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Modestly, in the case of k > 0, the MS mass mMS should not decrease from the viewpoint of the area theorem [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It seems reasonable to define (D − 2)Ω(D−2)MD−2 Pl krD−3 H /2 as irreducible mass mirr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is natural to further define the usable energy as musable(r) = mMS(r) − mirr outside the horizon r > rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The mass parameter does not appear in musable(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Instead, such a new definition is determined by the difference of the work term between location r and horizon rH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [57] discussed the possibility of a Schwarzchild black hole as a battery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can regard that their charging process turns the rest energy of in-falling material into the usable energy of the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Suitable discharging will extract such energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It seems the concept of usable energy at least works in the case of the asymptotic flat RN black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Non-vanishing energy supply vector The case of ∂aφI ̸= 0 violates the condition ψa = 0 such that the above generalization of Birkhoff’s theorem becomes invalid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It explains that a static spherical solution with a non-constant σ(r) is due to r-dependent scalars [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Another situation violating condition (ii) ψa = 0 is the appearance of a Vaidya mass, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', a null time-dependent function for the mass parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' More concretely, in the GEF coordinates {v, r}, the Iabduadub part satisfies − � (k − ωD M(v) rD−3 − � i 2M2−D Pl (D − 2) rD−3 � r w(i)(ξ)ξD−2dξ) � dv2 ± 2dvdr , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='47) such that the average unified first law gives ¯∇amMS = ˙M ¯∇av + � i w(i)(r) Ω(D−2)rD−2 ¯∇ar , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='48) where ˙M is dM/dv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the function M(v) implies the non-vanishing energy supply vector ψa = ˙M ¯∇av/A(D−2) without changing contributions from other matter fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='44) is still valid if change the derivative dIrr/dr as ∂Irr/∂r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, the work term of the source of Vaidya mass must vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It hints at finding the corresponding energy-momentum tensor T vr = ψa ¯∇av = 0 , T rr = ψa ¯∇ar = ± ˙M Ω(D−2) rD−2 , T vv = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='49) The result for component T vv is obtained by using the vanishing work term W = 0 again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' At the horizon, the energy supply vector is interpreted as a heat flow [13], so it is plausible that 20 the vector ψa does not vanish in dynamical cases, like the approach of obtaining evolving spacetime by multiplying a time-dependent conformal factor to the static solution [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 4 The first law including topological charge Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [48,49] introduce the concept of topological charge for a topological RN-AdS black hole to preserve the Gibbs-Duhem-like relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Using the notation of this article, the explicit expression of the metric of a topological RN-AdS black hole is ds2 = −fdt2 + dr2 f + r2ˆgijdxidxj , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) where f = k − 2M2−D Pl (D − 2) M Ω(D−2) 1 rD−3 + M2−D Pl (D − 2)(D − 3) Q2 Ω2 (D−2) 1 r2(D−3) + r2 l2 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) and l is the AdS radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' They consider formally changing k continually, then define the topological charge as ε = Ω(D−2) � |k| D−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) Treat r = rc as a holographic screen, label f(rc), df(rc)/dr as fc, f′ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Brown-York tensor on the screen leads to the energy density ϵ and the pressure p as ϵ = C − D − 2 M2−D Pl √fc rc , p = D − 3 M2−D Pl √fc rc + 1 2M2−D Pl f′ c √fc − C , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) where C is a constant from holographic renormalization [48,49,59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' They define the total “volume”5 and energy of the whole screen as V = Ω(D−2)rD−2 c , E = ϵV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) However, the entropy is chosen as horizon entropy S = 2π M2−D Pl Ω(D−2)rD−2 H , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) in which rH satisfies f(rH) = 0, determines the location of the Killing horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Replacing M2−D Pl as 8π, the entropy reduces to the well-known one quarter of the horizon area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' After suitably defining the temperature T T = TH √fc = 1 2π√fc �rH l2 + (D − 3) 2M2−D Pl (D − 2) M Ω(D−2) 1 rD−2 H − M2−D Pl D − 2 Q2 Ω2 (D−2) 1 r2D−5 H � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) 5It is worth noting that the “volume” V is the (D − 2)-dimensional area A(D−2) rather than the (D − 1)- dimensional volume V(D−1) in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 21 the chemical potential µ for the electric charge Q µ = − 1 (D − 3) Ω(D−2) √fc � Q rD−3 c − Q rD−3 H � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) and the potential ζ for the topological charge ε ζ = sgn(k) ε 4−D D−2 Ω D−4 D−2 (D−2) M2−D Pl rD−3 H − rD−3 c √fc , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) on the screen6, not only the first law of thermodynamics dE + pdV = TdS + µdQ + ζdε is obtained, the Gibbs-Duhem-like relation E + pV = TS + µQ + ζε , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) still holds for non-planar (k ̸= 0) cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is the motivation of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [48,49] introducing the topological charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This charge is suggested as the last charge of a black hole with maximal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' On the other hand, Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [60] introduces the chemical potential for the number of colors, which is applied to study the phase structure of a topological black hole [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The number of colors seems to have similar behavior with the topological charge under scale transformation of ˆ M(D−2), but their connection is still unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is worth mentioning details about scaling ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The power (D − 2)/2 in the definition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) implies that the topological charge is also a k-normalized volume of MD−2 or the part of MD−2 in interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For the maximally symmetric ˆ M(D−2) with a non-normalized and nonzero k, re-scale the metric ˆgij → l2 ˆgij to set |k| as 1, then the additional scale l can always be absorbed by adjusting other parameters in Irr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, the maximally symmetric ˆ M(D−2) with a non-normalized k does not distinguish it from the k-normalized situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Modestly, if introducing a topological charge for MD−2, it seems better to consider the MD−2 as an Einstein manifold without maximal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1 Topological charge as the portal of ˆ M(D−2) Nevertheless, the parameter k plays the role of a portal connecting the manifold ¯ M(2) and shape parameters of ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In higher dimensions, even if the Ricci scalar of ˆ M(D−2) is a constant, the manifold ˆ M(D−2) is not necessary to have maximal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As an example, consider the following 4-dimensional Einstein manifold satisfied ˆRij = kˆgij, dˆs2 = ∆ˆr ˆr2 − ˆa2 cos2 ˆθ � dˆτ − ˆa sin2 ˆθ 1 − k ˆa2 3 dˆφ �2 + (ˆr2 − ˆa2 cos2 ˆθ) �dˆr2 ∆ˆr + dˆθ2 ∆ˆθ � + ∆ˆθ sin2 ˆθ ˆr2 − ˆa2 cos2 ˆθ � ˆadˆτ + ˆr2 − ˆa2 1 − k ˆa2 3 dˆφ �2 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) 6The notation for factors of M and Q is different with Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [48,49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 22 where ∆ˆr = (ˆr2 − ˆa2)(1 − kˆr2 3 ) − 2 ˆmˆr , ∆ˆθ = 1 − kˆa2 3 cos2 ˆθ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) This is the Euclideanized Kerr-(A)dS gravitational instanton [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The 4-dimensional Planck scale MPl(4) is set as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The additional hat mark reminds us that the instanton would be regarded as the ˆ M(D−2) manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then it is not hard to construct the following metric in 6-dimensional Einstein gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' ds2 = −(k − ω6 M r3 )dt2 + dr2 k − ω6 M r3 + r2dˆs2 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13) where ω6 can be treated as a suitable constant in 6-dimension when the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) is the metric ˆgij of the ˆ M(4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This is a vacuum solution of the 6-dimensional Einstein equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' At least the situation of M > 0 and k > 0 can describe a black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The shape of its horizon is a 4-dimensional Kerr-dS instanton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is reasonable to allow continuously varying k for the Einstein manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The pa- rameters of the Euclidean spacetime satisfy the following Smarr-like relationship due to ∆ˆr = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7 ˆ M2 = ˆS(1 − k ˆS 3π )2 4π − π ˆJ2 ˆS + k ˆJ2 3 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='14) where ˆ M = ˆm (1 − k ˆa2 3 )2 , ˆJ = ˆmˆa (1 − k ˆa2 3 )2 , ˆS = π ˆr2 + + ˆa2 1 − k ˆa2 3 , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15) in which the ˆr+ is the larger root of the equation ∆ˆr = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Treating ˆ M as the function of ˆS, ˆJ, k, the variation of the Smarr-like relation leads to the first law δ ˆ M = ˆTδ ˆS + ˆΩδ ˆJ + ˆΘδk , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) where ˆT = 12π4 ˆJ2 + 3π2 ˆS2 − 4πk ˆS3 + k2 ˆS4 24π3 ˆ M ˆS2 , ˆΩ = ˆJ(k ˆS − 3π) 3 ˆ M ˆS , ˆΘ = 6π3 ˆJ2 − 3π ˆS2 + k ˆS3 36π3 ˆ M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='17) Thus, there should be the first law for the 6-dimensional black hole, δM = TδS + r3 H ω6 ˆΘ (δ ˆ M − ˆTδ ˆS − ˆΩHδ ˆJ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='18) where rH = (ω6M k )1/3 , T = κ 2π , S = A 4G6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='19) 7The J2 term in Euclidean signature has a different sign from the one in Lorentz signature of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 23 Parameters of the Einstein manifold can join the first law of black hole thermodynamics for the whole ¯ M(2) × ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The δk plays the role of a portal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' From such a point of view, the concrete definition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) does not matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For convenience, this article still states that continuously varying k introduces the topological charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2 Unusual shapes and topological charges Reminding that the role of k for the average unified first law is similar to the role of K for the non-average first law, it may be beneficial to consider the non-average law to figure out natural interpretation of the topological charge, since changing the direction, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', the position in ˆ M(D−2) naturally causes continually varying K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such a consideration requires clarifying the relationship between the unified first law, and the usual first law of black hole thermodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The unified first law states a relation in spacetime, while the usual one deals with the variation of global parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' To handle the tension between two viewpoints of the first law, consider a finite falling energy package that goes through the trapping horizon8, shown in fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6, in such a way that the horizon begins as a Killing horizon, and finally settles down as a new Killing horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' To ensure the unified first law is valid, it is assumed that the ˆ M(D−2) part keeps unchanging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The trapping horizon only changes its size during the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Select a vector za tangent to the ¯ M(2) and the trapping horizon, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', (za ¯∇aIrr)H = 0, and donate f′ as (za ¯∇af)H, then according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15), contracting za with the A(D−2)ψa generates the MD−2 Pl κgeo A′ (D−2) term, the equivalent expression of the heat flow term TdS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The tunneling approach for Hawking radiation in dynamical spacetime confirms the relationship between κgeo at the horizon and the horizon temperature T = κH/(2π) [20–24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Remarkably, two versions of the unified first law Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20) become M′ MS − WH V ′ (D−1) = m′ MS − wH V ′ (D−1) = κgeo A′ (D−2) M2−D Pl , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20) which is regarded as the quasi-local first law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The average first law implies the integral mMS,f − mMS,i − � TH wH dVH = 1 M2−D Pl � TH κH dAH , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='21) where mMS,f is the final average MS mass on the trapping horizon, mMS,i is the initial one, lower subscribes H represent taking value on the horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Suppose the change is tiny 8The trapping horizon is defined as a hypersurface foliated by marginal surfaces, so it has vanishing expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The equation Irr = 0 determines the location of a trapping horizon, see appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 24 Figure 6: The time coordinate v is the null retarded time, while ¯t is given by v − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such a sketch describes a falling process changing the size of the trapping horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The red curve represents the evolving tapping horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Gray arrows portray the in-falling energy package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Both the initial and final moment is marked by gray dotted lines while Killing horizons are indicated by black lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' enough such that every global parameter becomes M + δM and Q(i) + δQ(i) at the final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then the (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='21) reduces to δmMS(rH) − wH δVH = κH δAH M2−D Pl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='22) The term about δk is omitted since the shape of ˆ M(D−2) is fixed during the falling process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is significant that the term κH δAH appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' To indicate that the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20) is the quasi- local viewpoint for the first law, although it will be less general, calculate δmMS(rH) of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='43).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Keeping every small change of global parameters except k, the result is δmMS(rH) = δM + Ω(D−2) � i � � rH ∂w(i)(ξ) ∂Q(i) ξD−2dξ � δQ(i) + wH δVH .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='23) Identify the corresponding potential for the charge Q(i) as Φ(i),H = −Ω(D−2) � rH ∂w(i)(ξ) ∂Q(i) ξD−2dξ , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='24) such that the relation δmMS(rH) − wH δVH = δM − � i Φ(i),HδQ(i) , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='25) 25 2is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='25) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='22) together give the usual first law formulated by variation of global parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the result (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='25) shows how to connect the quasi-local viewpoint (LHS) with the global viewpoint (RHS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Now, back to the issue of x-dependence of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is only the K that contributes the x-dependence of the non-average MMS by definition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Consider a tangent vector hµ∂/∂Xµ = za∂/∂ua + yi∂/∂xi on the trapping horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such vector not only has ua components za but also has xi component yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then redefine f′ as hµ∂µf taking value on the horizon, the non-average Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='20) is modified as M′ MS − (D − 2)Ω(D−2) rD−3 H 2M2−D Pl K′ − WH V ′ (D−1) = κgeo A′ (D−2) M2−D Pl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='26) Again, considering integrating Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='26) along h and supposing only a small change of global parameters, all derivatives f′ are replaced by δf, including K′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Keeping δk in the usual first law or the average unified first law is only a formal operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' However, from the non-average point of view, allowing δK is naturally achieved by changing the direction in ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It opens up the consideration of defining topological charge (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The K term responds to the x-dependence in MMS, relating to the LHS of the non- average unified first law (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For the RHS side, as is discussed in section 2, the energy supply vector does not depend on x, so the only term responding to the x-dependence in MMS must appear in the work term with the correct power of r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) helps again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It specifies that the relevant work term should be proportional to r−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Multi-scalars offer such work term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Concrete examples are novel topological black holes constructed in section 3 and global monopole solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The contribution from the r−2 work term cancels the x-dependence from K(x) in the charged solution (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='45) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='46).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The type II solution (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='46) have the same Iabduadub part with the planar black hole, while the type I solution (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='45) describes diverse situations replacing k by c in Irr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' However, it is unclear what the topological significance is if replace k with c in the definition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' An alternative approach is to define topological charge in a concrete context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In novel solutions and global monopole solutions in appendix D, scalar fields φI map the sub-manifold ˆ M(D−2) to the vacuum manifold of the sigma model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, another choice for defining the topological charge is the degree of map for scalars, which is proportional to the integral of the volume element of the vacuum manifold deg(φ) ∝ � vac ϵIJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='K dφI ∧ dφJ ∧ · · · ∧ dφK .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='27) Here, it is assumed an appropriate compactification was chosen to ensure the integral is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The definition includes situations discussed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53] in principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such a definition 26 is topological because the degree is homotopy invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The x-dependence K rely on the x-dependence work term with r−2 power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can treat the non-average unified first law should contain both “topological charges” from curvature K and degree of map from scalars simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Two topological charges satisfy some relation through c if concerning the ˆ M(D−2) part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The x-dependence is canceled while the constant c may be retained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In this sense, it is the c playing the role of the portal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It seems that introducing topological charges only touches the corner of an iceberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Exact solutions (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='45) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='46) remind us that the constant term in Irr still hides rich structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 5 Summary and discussion This article re-derives the unified first law from Einstein equations in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Distinguish- ing from the original law, sub-manifold ˆ M(D−2) is no limit to the maximally symmetric space, but rather an arbitrary manifold including dependent-on-position Ricci scalar ˆR(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such unusual shapes require two versions of MS masses and unified first laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The non- average law keeps x-dependence, while the average law is from integrating out positions x on ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Two types of novel 4-dimensional topological black hole solutions in Einstein-scalars the- ory are constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The improved approach of generating solutions from thermodynamics simplifies the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Horizon shapes of these black holes are visualized by plotting embedding diagrams in one higher dimension space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Both cannot be entirely embedded into a single Euclidean or Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The improved approach further gives a simple method to introduce cosmological constant, electric charge, and Vaidya mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The non-constant K(x) gives natural motivation to consider topological charge since its value changes when moving the position x in ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Novel solutions show that K(x) is achieved by x-dependent scalars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Contribution for Irr from K(x) and ˆΦ(x) cancel out, but they left a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The residual constant seems to challenge the original motivation for introducing the topological charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A modest viewpoint is viewing the residual constant as a portal to parameters about the horizon shape for the first law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The next task is to investigate how to add angular momentum to topological black holes obtained here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It has been successfully done for planar and hyperbolic solutions in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [63–66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' We expect a systematic method to generate spinning solutions from the solutions with the metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1), at least type I and type II solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Once corresponding spinning solutions are obtained, they are worth testing the validity of Kerr/CFT corresponding [67], 27 and may even give some new ideas about black hole evaporation and entropy of horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Recent progress in quantum gravity has calculated the entropy of horizon with arbitrary shape [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Solutions here offer concrete examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is unclear whether the non-asymptotic flat or dS features forbid the production of topological black holes with unusual shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is worth exploring these possibilities like Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' An alternative approach to pushing forward such an investigation is considering modified gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Generalizing the MS mass and the unified first law to modified gravity theories has been studied in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [44–46], but they are still only concerned about the maximal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Especially the MS mass for the Gauss-Bonet gravity has non-linear terms of about k [44], such that the relation between the average unified first law and the non- average law may be non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Despite the difficulties, the investigation of this article suggests that the generating solutions approach for modified gravity theories [69–71] may still be worth studying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can expect the corresponding improved approach benefit of finding new topological black holes with unusual horizon shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Novel topological black holes and the construction method may imply some unexpected application in the holographic context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' At first, the topological charge, or the color charge introduced in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [60] enriches phase structures of topological black hole [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such previous researches are interested in maximal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nevertheless, novel topological black holes imply an inhomogeneous AdS boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The entrance of parameters about the shape in the first law would enlarge the black hole phase structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It seems studying black hole phase transition would also inspire some new ideas for cosmology [54, 55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Secondly, Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [61] emphasizes the sub-system aspect for formulating the thermodynamics when dealing with the non-compact nature of the plane and the hyperbolic surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The sub-system consideration inspires the possibility that the metric of ˆgij describes the unusual shape with richer inhomogeneous structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The whole ˆ M(D−2) may be too inhomogeneous to be described by a single coordinates frame {xi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Instead, the entire spacetime may need many small pieces to write down the line-element (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Different patches are not the same but relate to each other by scaling r → lr if they overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Applying the AdS/CFT corresponding to the type I and type II topological AdS black holes, the boundary field theory should live in the non-Euclidean space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The AdS boundary with unusual shape means that novel solutions are not asymptotic AdS spacetime in a precise sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Solutions do not reduce to asymptotically flat spacetime when turning off the cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the topological theorem in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [10] is not violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is natural to expect this is the holographic description for some boundary solidary material 28 in unusual shapes, although the part embedded in Minkowski space seems less plausible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The construction in section 3 implies inverse engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For a given ˆ M(D−2), one can design an appropriate field space metric GIJ for the sigma model to achieve the metric ˆgij of ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The warp ˆgij should respond to a non-vanishing stress tensor Tij, which may be similar to the previous study about holographic viscoelastic hydrodynamics [72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Moreover, it is remarkable that the ansatz (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='25) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='29) for scalars is similar to the ansatz that appeared in the holographic axion model [73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Several scalars have VEV proportional to coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Completing the inverse engineering technique may give a systematic method to find analytic models, opening up a new field of holographic solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Appendix A: Calculate Γλ µν and Rλ ρµν This appendix shows an efficient method for calculating the Levi-Civita connection and Riemann tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Usually, the components of the Levi-Civita connection for a given metric, are calculated by Γλ µν = 1 2gλσ(∂gµσ ∂xν + ∂gνσ ∂xµ − ∂gµν ∂xσ ) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) The geodesic equations give hints to finding the trick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Considering the geodesic equations d2xλ dτ 2 + Γλ µν dxµ dτ dxν dτ = d2xλ dτ 2 + gλσ(dgσν dτ dxν dτ − 1 2 ∂gµν ∂xσ dxµ dτ dxν dτ ) = 0 , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) in which dgσν/dτ = (∂gσν/∂xµ)(dxµ/dτ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' one can extract the following structure Γλ µνdxµdxν = gλσ(dgσνdxν − 1 2 ∂ds2 ∂xσ ) , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) which can be viewed as a coordinate-dependent rank-2 symmetric tensor, in which ∂ds2/∂xσ is the short notation of (∂gµν/∂xσ)dxµdxν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since the coordinates frame is fixed under a particular calculation, one can simply treat gσν as several functions of xµ and dgσν represents their differential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The trick is to calculate the structure Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) rather than to calculate components of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) one by one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Now we use this trick to calculate the Levi-Civita connection of the metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The components of its inverse metric are gab = Iab , gij = ˆgij r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) Thus, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) gives Γa µνdxµdxν = ¯Γa bcdubduc − (r ¯∇ar)ˆgijdxidxj , Γi µνdxµdxν = 2 ¯∇ar r duadxi + ˆΓi jkdxjdxk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) 29 Here, the property ∂r/∂ua = ¯∇ar is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Noticing that product terms like duadxi are the short notation for symmetric tensor product (duadxi ⊗ dxidua)/2, every component can be correctly read as Γa bc = ¯Γa bc , Γa ij = −rIab ∂r ∂ub ˆgij , Γi aj = 1 r ∂r ∂ua δi j , Γi jk = ˆΓi jk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) It is worth noting that the components Γa bc and Γi jk are just the independent Levi-Civita connection of ¯ M(2) and ˆ M(D−2) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The author would like to introduce the covariant differential operator ¯∇a for ¯ M(2) and ˆ∇i for ˆ M(D−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The areal radius r(u) can be treated as a scalar field in ¯ M(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The notation ¯∇ar also means ∂r/∂ua while ¯∇ar means Iab(∂r/∂ub).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Once the connection was obtained, the Riemann tensor can be calculated through Rλ ρµν = ∂Γλ νρ/∂xµ + Γλ µσΓσ νρ − (µ ↔ ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It can also be treated as several 2-forms due to the anti-symmetry of exchanging µ and ν, 1 2Rλ ρµνdxµ ∧ dxν = dΓλ νρ ∧ dxν + (Γλ µσdxµ) ∧ (Γσ νρdxν) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) In order to simplify the notation, label 1 2Rλ ρµνdxµ ∧ dxν as Ωλ ρ and Γλ µσdxµ as Aλ ρ , then Ωλ ρ = dAλ ρ + Aλ σ ∧ Aσ ρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) These 1-forms Aλ ρ can be viewed as the connection 1-forms for the coordinates tetrad (∂µ)ν = δν µ while Ωλ ρ are their curvature 2-forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Concretely, 1-forms Aλ ρ for the metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) are Aa b = ¯Γa cb duc = ¯Aa b , Aa i = − (r ¯∇ar)ˆgijdxj , Ai a = ¯∇ar r dxi , Ai j = ¯∇ar r δi jdua + ˆΓi kjdxk = dr r δi j + ˆAi j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) Then one obtains curvature 2-forms by applying Eq .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Firstly, Ωa b = dAa b + Aa c ∧ Ac b + Aa i ∧ Ai b = ¯Ωa b , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) since term containing ˆgijdxi ∧ dxj vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Notice that Ωai = IabΩb i = −Ωia = −r2ˆgijΩj a, calculating Ωi a can avoid dealing with dˆgij here: Ωi a = ¯∇a ¯∇br r dub ∧ dxi , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) therefore, Ωa i = −r ¯∇a ¯∇br ˆgij dub ∧ dxj , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) 30 The final 2-form Ωi j is Ωi j = ˆΩi j − Irrδi k ˆgjl dxk ∧ dxl = 1 2 � ˆRi jkl − Irr(δi k ˆgjl − δi l ˆgjk) � dxk ∧ dxl , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13) where the term Irr is the short notation for Iab ¯∇ar ¯∇br.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Reminding dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ, one can read the components of Riemann tensor as Ra bcd = ¯Ra bcd , Ra ibj = −Ra ijb = −r( ¯∇a ¯∇br) ˆgij , Ri ajb = −Ri abj = − ¯∇a ¯∇br r δi j , Ri jkl = ˆRi jkl − Irr(δi kˆgjl − δi lˆgjk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='14) The same result can be found in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Contracting δi i = D −2, components of the Ricci tensor are Rab = ¯Rab − (D − 2) ¯∇a ¯∇br r , Rij = ˆRij − ˆgij � r ¯∇2r + (D − 3)Irr� , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='15) in which the ¯∇2r is ¯∇a ¯∇ar for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The Ricci scalar is R = IabRab + ˆgij r2 Rij = ¯R − 2(D − 2) ¯∇2r r + ˆR r2 − (D − 2)(D − 3)Irr r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16) Appendix B: Calculate ∗J and ∗K Then the author will calculate the Hodge dual ∗K and ∗J directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can read the volume D-form ϵ from the metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) as following ϵ = rD−2� −I ˆg du1 ∧ du2 ∧ dx1 ∧ · · · ∧ dxn−2 , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) where I, ˆg is the determinate of Iab, ˆgij respectly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Meanwhile, the volume 2-form ¯ϵ for ¯ M(2) is ¯ϵ = √ −I du1 ∧ du2 , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) and the volume (D − 2)-form ˆϵ for ˆ M(D−2) is ˆϵ = � ˆg dx1 ∧ · · · ∧ dxD−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) This notation makes the following relation obvious, ϵ = rD−2¯ϵ ∧ ˆϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) It is still necessary to use the notation of tensor components to calculate the Hodge dual, ϵab i1i2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='iD−2 = rD−2¯ϵab ˆϵi1i2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='iD−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) 31 Then, ∗J is given by ∗ J = rD−2Ja¯ϵabdub ∧ ˆϵ = rD−2T ac(¯ϵab¯ϵcd) ¯∇dr dub ∧ ˆϵ , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) Noting that tensor notation of the volume 2-form ¯ϵab can be expressed as ¯ϵab = √ −I¯εab , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) in which the symbol ¯εab satisfies ¯ε12 = −¯ε21 = 1 and ¯ε11 = ¯ε22 = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then the ¯ϵab is ¯ϵab = −( √ −I)−1¯εab , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) where the symbol ¯εab also share the same pattern with ¯εab, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', ¯ε12 = −¯ε21 = 1 and ¯ε11 = ¯ε22 = 0, such that ¯ϵab¯ϵcd = −¯εab¯εcd = −δa cδb d + δa dδb c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) Lowering the ab indexes leads to ¯ϵab¯ϵcd = −IacIbd + IadIbc .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) Thus, the (D − 1)-form ∗J becomes ∗J =rD−2(Tab ¯∇ar + 2W ¯∇br) dub ∧ ˆϵ , (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) As for ∗K, it can be obtained by simply replacing the T ab in ∗J by −Iab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, ∗K = rD−2 ¯∇br dub ∧ ˆϵ = d( rD−1 D − 1) ∧ ˆϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) Appendix C: General Eddington-Finkelstein coordinates The 2-dimensional sub-spacetime must permits double null coordinates {u, v} such that the line element becomes ds2 = −Ω2(u, v)dudv + r2(u, v)ˆgij(x)dxidxj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) In the region where ¯∇ar does not vanish, r itself can be a coordinate, such that one can change to other coordinates frame like {v, r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since dr = r,u du + r,v dv where r,u, r,v represents ∂r/∂u, ∂r/∂v, the line element becomes ds2 = Ω2 r,v r,u dv2 − Ω2 r,u drdv + r2ˆgij(x)dxidxj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) 32 The line element (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) is still general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The coordinates frame {v, r} is called general Eddington-Finkelstein (GEF) coordinates in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Define functions σ(v, r) = −2r,u/Ω2 and f(v, r) = −4r,ur,v/Ω2, metric components under the GEF coordinates are gvv = Ivv = − f(v, r) σ2(v, r) , grr = Irr = 0 , gvr = grv = Ivr = Irv = 1 σ(v, r) , gij = r2ˆgij , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) while inverse metric components are gvv = Ivv = 0 , grr = Irr = f(v, r) , gvr = grv = Ivr = Irv = σ(v, r) , gij = ˆgij r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) In general, the shape of spacetime ¯ M(2) × ˆ M(D−2) with a given metric ˆgij for the unit ˆ M(D−2) is described by two functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In double null coordinates, they are Ω(u, v) and r(u, v), while in GEF coordinates, they are σ(v, r) and f(v, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The usage of function f(v, r) is convenient since it picks up the important function Irr = ∇µr∇µr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Further, the determinant of Iab in the GEF coordinates is simply I = −σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then √ −I equals to σ−1 up to a sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, the Laplacian of r in ¯ M(2) is ¯∇2r = σ∂(σ−1Ivr) ∂v + σ∂(σ−1Irr) ∂r = f′ − σ′ σ f , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) where f′ = ∂f/∂r and σ′ = ∂σ/∂r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The result leads to a simple expression (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) for the geometric surface gravity (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) in terms of f and σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The next task is to calculate expansions of null vector fields tangent to ¯ M(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Specify fields as kµ ∂ ∂Xµ = ∂ ∂v + f 2σ ∂ ∂r , lµ ∂ ∂Xµ = −σ ∂ ∂r , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) and require the condition kµlν = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Assuming the increasing direction of v is future, kµ and lν are all future-pointed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Their expansion can be easily calculated by the trick θ(k) = (D − 2) ka ¯∇ar/r without dealing with gµν∇µkν θ(k) = (D − 2) f 2σr , θ(l) = −(D − 2) σ r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) Such a method is also used in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The hypersurface Irr = f = 0 leads to θ(k) = 0, thus determining a trapping horizon, which is defined as a hypersurface foliated by marginal surfaces [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A marginal surface is a 2-codimensional spatial surface with vanishing expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' One can further classify types of trapping horizons according to the behavior of θ(l) and Llθ(k), see Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [12,13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 33 It seems there is a problem that the vector lµ vanishes at location σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' However, such location also implies a singular line element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' To handle this issue, let us back to the non-singular double null coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Another choice for two null vector fields is ˜kµ ∂ ∂Xµ = √ 2 Ω ∂ ∂v , ˜lµ ∂ ∂Xµ = √ 2 Ω ∂ ∂u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) Their expansions are θ(˜k) = √ 2(D − 2) Ω r r,v , θ(˜l) = √ 2(D − 2) Ω r r,u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) Apply the coordinates transformation and carefully deal with the chain rule ∂ ∂vDN = ∂ ∂vGEF + r,v ∂ ∂r , ∂ ∂u = r,u ∂ ∂r , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) where vGEF donates the coordinate v in GEF frame and vDN donates the v in double null frame, one confirms the following relation ˜kµ = √ 2 Ω kµ , ˜lµ = Ω √ 2 lµ , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) such that θ(˜k) = √ 2 Ω θ(k) , θ(˜l) = Ω √ 2 θ(l) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) Since Ω ̸= 0, σ = 0 is just a coordinate singularity, implying that r,u = 0, which is another trapping horizon which satisfies θ(l) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' However, the relationship Irr = −2( r D − 2)2θ(k)θ(l) , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13) is covariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The normalization condition kµlµ forces that the construction θ(k)θ(l) does not change under a regular rescaling like Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Switching the role of u and v changes the concerned null vector field from ˜k to ˜l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, the equation Irr = 0 always picks up the hypersurface with vanishing expansion (θ(k) = 0 or θ(l) = 0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', the trapping horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Appendix D: Design the field space metric GIJ This appendix gives examples of designing the field space metric GIJ for a given ˆgij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53] modifies the field space metric to let the global monopole becomes an exact solution and further generalizes it to planar and hyperbolic situations in higher dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such research serves as a good example of designing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This appendix aims to repeat results in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53] through the approach of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [47] overstated the approach of generating 34 solutions from thermodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It was thought that the approach cannot derive the global monopole solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is going to show the validity of the improved approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Consider a D dimensional spacetime with metric (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) and the ansatz φI = η nI(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As what has been discussed in section 3, such ansatz implies the vanishing energy supply vector and the work term depending on ua only through r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, according to the theorem in subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3, the line element Iabduadub must be −f(r)dt2 +dr2/f(r) with the function f(r) = c − 2M2−D Pl (D − 2) M Ω(D−2) 1 rD−3 − 2M2−D Pl Vmin (D − 1)(D − 2)r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1) The only problem is to seek the suitable field space metric GIJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Suppose the ˆgij part is a (D − 2)-dimensional sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The simplest choice is GIJ = δIJ in (D − 1) dimensions where I, J = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' , D − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Demanding δIJnInJ = 1 respects the symmetry of rotation, no matter in ˆ M(D−2) or the field space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It means embedding the unit sphere ˆgijdxidxj into a higher dimensional Euclidean space δIJdφIdφJ, such that δIJ ∂inI ∂jnJ = ˆgij , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2) However, a flat field space metric δIJ does not satisfy the goal of exact solutions [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It inspires the choice of GIJ = F(X) δIJ , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3) where X = δIJφIφJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Then the induced metric due to φI = η nI(x) is ˆΦij = F(η2) η2 ∂inI∂jnI = F(η2) η2 ˆgij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4) Thus, the work term of the model is Wφ = (D − 2) η2 F(η2) 2r2 + Vmin , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='5) which implies c = k − M2−D Pl η2F(η2)/(D − 3) according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The final check is the Klein-Gordon (KG) equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since the field space metric GIJ is conformally flat, the field space connection is Γ I φ JK = 1 F dF dX (φJ δI K + φK δI J − φIδJK) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='6) Thus, the KG equations give ˆ∇2nI(x) = ˆΦ nI F(η2)( dF dX )X=η2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='7) Tricks in appendix A lead to ˆ∇2nI = −(D − 2)nI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Consider the following line element ds2 = f(ρ)dρ2 + ρ2ˆgijdxidxj , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) 35 in which the Iab part is only one dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Since the ˆgij is supposed as a (D − 2)- dimensional metric in this article, the metric (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) has D − 1 dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Results in appendix A implies Γρ ρρ = 1 2f df dρ , Γa ij = − ρ f ˆgij , Γi aj = 1 ρδi j , Γi jk = ˆΓi jk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='9) and Rρ iρj = − ρ 2f2 df dρ ˆgij , Ri ρjρ = 1 2ρf df dρδi j , Ri jkl = ˆRi jkl − 1 f (δi kˆgjl − δi lˆgjk) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10) If f = 1 and the ˆgijdxidxj part is a sphere, the metric (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) describes a Euclidean space ds2 = δIJdXIdXJ in spherical coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Thus, flatness requires vanishing curvature, so there should be ˆRi jkl = δi kˆgjl−δi lˆgjk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The case for a Minkowski space ds2 = ηIJdXIdXJ has f = −1 and the ˆgijdxidxj part is a hyperbolic surface, such that ˆRi jkl = −(δi kˆgjl − δi lˆgjk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' This is a quick way to ensure the curvature of the maximum symmetric space is ˆRi jkl = k(δi kˆgjl − δi lˆgjk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As for the Laplacian, its expression under coordinates {ρ, xi} is ∇I∇Iφ = 1 fρD−2 ∂ ∂ρ(ρD−2 ∂φ ∂ρ) + ˆ∇2φ ρ2 , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='11) where ∇I donates the covariant derivative with respect to the metric (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' If choosing the scalar φ as one of the coordinates XI = ρnI, then ∇J∇JXI = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' In coordinates {ρ, xi}, the vanishing Laplacian in a flat space implies ˆ∇2nI = −D − 2 f nI .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12) For sphere, f = 1, so ˆ∇2nI = −(D − 2)nI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Therefore, to be consistent, there should be ( dF dX )X=η2 = − 1 η2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='13) For simplicity, one can further require F(η2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' These are conditions for the field space metric F(X)δIJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Such an argument repeats the results of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53] for the spherical case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' For the hyper- bolic case, ˆgijdxidxj has k = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It can only be embedded into one higher dimensional Minkowski space rather than the Euclidean space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The above argument is valid by simply replacing δIJ with ηIJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' As for the planar case k = 0, there is no need to introduce higher dimensional field space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Simply using the ansatz φI = ηxI leads to a similar result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The unified expression for the metric is ds2 = − (k − M2−D Pl η2 D − 3 − 2M2−D Pl (D − 2) M Ω(D−2) 1 rD−3 − Vminr2 3MD−2 Pl )dt2 + dr2 k − M2−D Pl η2 D−3 − 2M2−D Pl (D−2) M Ω(D−2) 1 rD−3 − Vminr2 3MD−2 Pl + r2ˆgijdxidxj , (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='14) 36 where k = −1, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It completes deriving solutions and finding suitable field space metrics, and obtains the same results with Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Acknowledgments The author thanks Hyat Huang and Hongwei Tan for their helpful and inspiring discus- sion, and the support of Mayumi Aoki and Ryoko Nishikawa regarding personnel affairs at Kanazawa University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' It is also grateful for the invitation from Yi Wang to visit HKUST Jockey Club Institute for Advanced Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The author thanks for the useful comment from Ali Akil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' The author was supported by the China Scholarship Council and the Japanese Government (Monbukagakusho-MEXT) scholarship during the initial stage of the research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 9 (1974) 3292–3300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Bardeen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Carter, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hawking, The Four laws of black hole mechanics, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 31 (1973) 161–170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hawking, Black Holes and Thermodynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 13 (1976) 191–197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Maldacena, The Large N limit of superconformal field theories and supergravity, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2 (1998) 231–252, [hep-th/9711200].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Gubser, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Klebanov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Polyakov, Gauge theory correlators from noncritical string theory, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B 428 (1998) 105–114, [hep-th/9802109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Witten, Anti-de Sitter space and holography, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2 (1998) 253–291, [hep-th/9802150].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ryu and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 96 (2006) 181602, [hep-th/0603001].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Wald, Black hole entropy is the Noether charge, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 48 (1993), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 8 R3427–R3431, [gr-qc/9307038].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [9] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Iyer and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Wald, Some properties of the noether charge and a proposal for dynamical black hole entropy, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 50 (Jul, 1994) 846–864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 37 [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hawking, Black holes in general relativity, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 25 (1972) 152–166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Misner and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 136 (Oct, 1964) B571–B576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hayward, Gravitational energy in spherical symmetry, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 53 (1996) 1938–1949, [gr-qc/9408002].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hayward, Unified first law of black hole dynamics and relativistic thermodynamics, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 15 (1998) 3147–3162, [gr-qc/9710089].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nakao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yoo, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Harada, Gravastar formation: What can be the evidence of a black hole?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 99 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 4 044027, [1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='00124].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' H¨utsi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Koivisto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Raidal, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vaskonen, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Veerm¨ae, Cosmological black holes are not described by the Thakurta metric: LIGO-Virgo bounds on PBHs remain unchanged, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' C 81 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 11 999, [2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='09328].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Harada, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Maeda, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Sato, Thakurta metric does not describe a cosmological black hole, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B 833 (2022) 137332, [2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='06651].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yoo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Harada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hirano, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Okawa, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Sasaki, Primordial black hole formation from massless scalar isocurvature, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 105 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 10 103538, [2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='12335].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Sato, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Maeda, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Harada, Conformally Schwarzschild cosmological black holes, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 39 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 21 215011, [2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10998].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Escriv`a, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yokoyama, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yoo, Simulation of primordial black holes with large negative non-Gaussianity, JCAP 05 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 05 012, [2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='01028].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ren and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, Unified first law and thermodynamics of dynamical black hole in n-dimensional Vaidya spacetime, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A 23 (2008) 3265–3270, [0705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4339].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ke-Xia, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' San-Min, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Dan-Tao, Hawking Radiation as tunneling and the unified first law of thermodynamics for a class of dynamical black holes, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 18 (2009) 1707–1717, [1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0595].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 38 [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Di Criscienzo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hayward, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nadalini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vanzo, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zerbini, Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate gauges, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 27 (2010) 015006, [0906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1725].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' di Criscienzo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nadalini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vanzo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zerbini, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hayward, Invariance of the Tunneling Method for Dynamical Black Holes, in 12th Marcel Grossmann Meeting on General Relativity, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 1166–1168, 6, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 1006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vanzo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Acquaviva, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Di Criscienzo, Tunnelling Methods and Hawking’s radiation: achievements and prospects, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 28 (2011) 183001, [1106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4153].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Cai and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP 02 (2005) 050, [hep-th/0501055].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Cai and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Cao, Unified first law and thermodynamics of apparent horizon in FRW universe, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 75 (2007) 064008, [gr-qc/0611071].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [27] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hayward, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhai, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, Schwarzschild solution as a result of thermodynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 89 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 6 064052, [1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3647].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Horowitz and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Strominger, Black strings and P-branes, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B 360 (1991) 197–209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [29] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vanzo, Black holes with unusual topology, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 56 (1997) 6475–6483, [gr-qc/9705004].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [30] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Galloway, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Schleich, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Witt, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Woolgar, Topological censorship and higher genus black holes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 60 (1999) 104039, [gr-qc/9902061].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [31] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Emparan and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Reall, A Rotating black ring solution in five-dimensions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 88 (2002) 101101, [hep-th/0110260].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [32] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Elvang and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Figueras, Black Saturn, JHEP 05 (2007) 050, [hep-th/0701035].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Emparan and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Reall, Black Holes in Higher Dimensions, Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 11 (2008) 6, [0801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3471].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [34] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Mann, Pair production of topological anti-de Sitter black holes, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 14 (1997) L109–L114, [gr-qc/9607071].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 39 [35] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Birmingham, Topological black holes in Anti-de Sitter space, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 16 (1999) 1197–1205, [hep-th/9808032].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [36] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Emparan, AdS / CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036, [hep-th/9906040].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [37] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Birmingham and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Mokhtari, Stability of topological black holes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 76 (2007) 124039, [0709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='2388].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [38] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Morley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Taylor, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Winstanley, Vacuum polarization on topological black holes, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 35 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 23 235010, [1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='04386].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [39] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Bai and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ren, Holographic Renyi entropies from hyperbolic black holes with scalar hair, 2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='03732.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [40] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Peng, New topological Gauss-Bonnet black holes in five dimensions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 104 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 8 084004, [2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='08482].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [41] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Gutperle and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Strominger, Space - like branes, JHEP 04 (2002) 018, [hep-th/0202210].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hartnoll, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Herzog, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Horowitz, Building a Holographic Superconductor, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 101 (2008) 031601, [0803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='3295].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hartnoll, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Herzog, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Horowitz, Holographic Superconductors, JHEP 12 (2008) 015, [0810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1563].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [44] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Maeda and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Nozawa, Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 77 (2008) 064031, [0709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1199].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [45] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, Misner-Sharp Mass in N-dimensional f(R) Gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 90 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2 024062, [1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='0577].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [46] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hu and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Misner-Sharp Mass and the Unified First Law in Massive Gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 92 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2 024006, [1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='00069].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [47] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' He, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, A Modified Thermodynamics Method to Generate Exact Solutions of Einstein Equations, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 67 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 1 41, [1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='04181].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [48] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Wu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Holographic Entropy Production, JHEP 10 (2014) 170, [1407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='8273].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 40 [49] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tian, A topological charge of black holes, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 36 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 24 245001, [1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='00249].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [50] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Wald, General relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [51] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Liang and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhou, Differential geometry and general relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [52] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Kodama, Conserved Energy Flux for the Spherically Symmetric System and the Backreaction Problem in the Black Hole Evaporation, Progress of Theoretical Physics 63 (04, 1980) 1217–1228, [https://academic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='oup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='com/ptp/article-pdf/63/4/1217/5243205/63-4-1217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='pdf].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [53] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' He, The global monopole spacetime and its topological charge, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B 27 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 3 030401, [1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='00817].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [54] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Kong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Abdusattar, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hu, The P − V phase transition of the FRW universe, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' C 82 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 11 1047, [2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='09411].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [55] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Abdusattar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Kong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yin, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hu, The Hawking-Page-like phase transition from FRW spacetime to McVittie black hole, JCAP 08 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 08 060, [2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10868].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [56] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hawking and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ellis, The large scale structure of space-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [57] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Mai and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yang, Rechargeable black hole battery, 2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='10587.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [58] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Fan, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' L¨u, Static and Dynamic Charged Black Holes, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' C 79 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 11 975, [1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='07970].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [59] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Brown and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' York, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=', Quasilocal energy and conserved charges derived from the gravitational action, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 47 (1993) 1407–1419, [gr-qc/9209012].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [60] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Visser, Holographic thermodynamics requires a chemical potential for color, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 105 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 10 106014, [2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='04145].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [61] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Kong, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhao, Topological black holes in Einstein-Maxwell and 4D conformal gravities revisited, 2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='16904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [62] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Caldarelli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Cognola, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 17 (2000) 399–420, [hep-th/9908022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 41 [63] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Klemm, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Moretti, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vanzo, Rotating topological black holes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 57 (1998) 6127–6137, [gr-qc/9710123].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='D 60, 109902 (1999)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [64] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tasinato, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zavala, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Burgess, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Quevedo, Regular S-brane backgrounds, JHEP 04 (2004) 038, [hep-th/0403156].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [65] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Vazquez-Poritz, Nonsingular twisted S-branes from rotating branes, JHEP 07 (2004) 050, [hep-th/0403248].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [66] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Tan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' He, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Symmetric Space-times from Thermodynamics, 1701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='02876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [67] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Guica, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hartman, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Song, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Strominger, The Kerr/CFT Correspondence, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 80 (2009) 124008, [0809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='4266].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [68] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Song, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Ma, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Entropy of black holes with arbitrary shapes in loop quantum gravity, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' China Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 64 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 12 120411, [2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='08869].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [69] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, From thermodynamics to the solutions in gravity theory, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' B 737 (2014) 395–400, [1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='1553].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [70] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Solutions in Gravity Theories Emerge from Thermodynamics: A Mini Review of a Recent Progress in Graviti-Thermodynamics, The Universe 3 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 1 30–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [71] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Wu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Zhang, Generalized Vaidya Solutions and Misner-Sharp mass for n-dimensional massive gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' D 95 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 8 084002, [1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='09042].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [72] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Baggioli and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Buchel, Holographic Viscoelastic Hydrodynamics, JHEP 03 (2019) 146, [1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='06756].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' [73] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Baggioli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Kim, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Li, Holographic Axion Model: a simple gravitational tool for quantum matter, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' China Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 64 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 7 270001, [2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content='01892].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
+page_content=' 42' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dAzT4oBgHgl3EQfvf3k/content/2301.01709v1.pdf'}
diff --git a/_tAyT4oBgHgl3EQfdveI/content/tmp_files/2301.00308v1.pdf.txt b/_tAyT4oBgHgl3EQfdveI/content/tmp_files/2301.00308v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e4ca86c7397f9e7c2ab30705c498727692979197
--- /dev/null
+++ b/_tAyT4oBgHgl3EQfdveI/content/tmp_files/2301.00308v1.pdf.txt
@@ -0,0 +1,2509 @@
+High-Accuracy Absolute-Position-Aided Code Phase
+Tracking Based on RTK/INS Deep Integration in
+Challenging Static Scenarios
+A Preprint
+Yiran Luo
+Department of Geomatics Engineering
+University of Calgary
+Calgary T2N1N4, Canada
+yiran.luo@ucalgary.ca
+Li-Ta Hsu
+Department of Aeronautical and Aviation Engineering
+The Hong Kong Polytechnic University
+Hung Hom, Hong Kong SAR, China
+lt.hsu@polyu.edu.hk
+Yang Jiang
+Department of Geomatics Engineering
+University of Calgary
+Calgary T2N1N4, Canada
+yang.jiang1@ucalgary.ca
+Baoyu Liu
+Department of Geomatics Engineering
+University of Calgary
+Calgary T2N1N4, Canada
+baoyu.liu@ucalgary.ca
+Zhetao Zhang
+School of Earth Sciences and Engineering
+Hohai University
+Nanjing 211100, China
+ztzhang@hhu.edu.cn
+Yan Xiang
+School of Electronic Information
+and Electrical Engineering
+Shanghai Jiao Tong University
+Shanghai 200240, China
+yan.xiang@sjtu.edu.cn
+Naser El-Sheimy
+Department of Geomatics Engineering
+University of Calgary
+Calgary T2N1N4, Canada
+elsheimy@ucalgary.ca
+January 3, 2023
+Abstract
+Many multi-sensor navigation systems urgently demand accurate positioning initialization
+from global navigation satellite systems (GNSSs) in challenging static scenarios. How-
+ever, ground blockages against line-of-sight (LOS) signal reception make it difficult for
+GNSS users. Steering local codes in GNSS basebands is a desiring way to correct instanta-
+neous signal phase misalignment, efficiently gathering useful signal power and increasing
+positioning accuracy. Besides, inertial navigation systems (INSs) have been used as a well-
+complementary dead reckoning (DR) sensor for GNSS receivers in kinematic scenarios
+resisting various interferences since early. But little work focuses on the case of whether the
+INS can improve GNSS receivers in static scenarios. Thus, this paper proposes an enhanced
+navigation system deeply integrated with low-cost INS solutions and GNSS high-accuracy
+carrier-based positioning. First, an absolute code phase is predicted from base station
+information, and integrated solution of the INS DR and real-time kinematic (RTK) results
+through an extended Kalman filter (EKF). Then, a numerically controlled oscillator (NCO)
+leverages the predicted code phase to improve the alignment between instantaneous local
+arXiv:2301.00308v1 [eess.SP] 31 Dec 2022
+
+A Preprint
+code phases and received ones. The proposed algorithm is realized in a vector-tracking
+GNSS software-defined radio (SDR). Real-world experiments demonstrate the proposed
+SDR regarding estimating time-of-arrival (TOA) and positioning accuracy.
+Keywords GNSS baseband · code phase domain · vector tracking · vector receiver · positioning · float RTK ·
+multipath mitigation · deep integration · low-cost IMU
+1
+Introduction
+Demands for GNSS devices will keep increasing over the following decades due to the explosion of
+smartphone-based navigation Sharma et al. [2020] and intelligent transportation construction Zhang et al.
+[2020]. Therefore, realizing accurate positioning in challenging environments using global navigation satel-
+lite system (GNSS) devices is a hot debate these days. However, current GNSS receiver techniques are uneasy
+to achieve a next-generation positioning, navigation, and timing (PNT) performance due to the intrinsic
+mechanism of GNSS electromagnetic waveforms. For instance, unlike LTE/5G wireless communication
+signals with an orthogonal frequency division multiple access (OFDMA) and substantial transmission power
+Liu et al. [2014], Cimini [1985], the GNSS signals are transmitted at the same frequency. Differently, each
+signal channel is divided through the code division multiple access (CDMA). The GNSS signals are also
+confronted with severe channel fading over a long-distance transmission (approximately 20,000 km for the
+GNSS satellites operated in the medium Earth orbit). The former is naturally immune to the multipath
+effect, while the GNSS signals are less capable of resisting these interferences in the transmission. Due to
+this, recent research proposed a hybrid optical–wireless network that achieves a decimeter-level terrestrial
+positioning and sub-nanosecond timing aiming to enact as a supplement or even substitute the GNSS device
+in the future commercial market Koelemeij et al. [2022].
+Against this background, there are many remaining problems and vast space regarding new GNSS receiver
+design, especially in challenging cases, and it is urgent to embark on renewing the current commercial
+receiver architecture. The CDMA signals are sensitive to the non-line-of-sight (NLOS) ray within one chip
+range causing big issues in channel estimation. In recent years, super-resolution algorithms (SRAs) emerged
+in GNSS signal processing to separate line-of-sight (LOS) and NLOS signals into different orthogonal spaces
+Krasner and McBurney [2022], Luo et al. [2021a], Da Rosa Zanatta et al. [2020]. Recent work presented
+a graph Fourier transform (GFT) filter denoising the complex correlator outputs to replace the old GNSS
+tracking loop, which can be considered as a direct way to steer the code phase in challenging cases Luo and
+El-Sheimy [2022]. Except for the separation using the state-of-the-art SRAs or the GNSS antenna changes
+Suzuki et al. [2020], Hong et al. [2020], Daneshmand et al. [2013], modeling the superposition signals
+formed with LOS and NLOS rays is mainstream in the current GNSS community to overcome multipath
+interference Lau and Cross [2007], Yan et al. [2022], Smolyakov et al. [2020].
+Early in the 1990s, research revealed the prominence of GNSS products to overcome the predicament of
+tracking accurate Doppler frequency between the users’ end and the satellite——vector delay lock loop
+(VDLL) Spilker Jr [1996]. The vector approach is an intelligent choice to model the LOS Doppler frequency
+into a more proper shape. The basic idea of this technique is to leverage the user’s navigation estimates
+to predict the Doppler frequency as compensation for the time of arrival (TOA) estimation in the GNSS
+baseband processing, stepping into a more accurate single-point positioning (SPP) solution. The VDLL
+allows GNSS researchers to optimize baseband signal modeling with information from multiple channels
+instead of a conservative loop filter algorithm in a single channel. Later, this idea was extended to assist
+the carrier phase modeling, for which it was nominated as a vector phase lock loop (VPLL) Zhodzishsky
+et al. [1998]. Improved versions and more specific experimental results based on the VPLL techniques have
+been presented over the following years Henkel et al. [2009], Shafaati et al. [2018]. However, the stability
+and convergence of the VPLL are vulnerable to being destroyed when the biased error in the code phase
+modeling cannot be well removed (meaning that a multipath effect interferes with the GNSS baseband and
+its high-precision navigation solutions). It can be explained that the GNSS carrier and code signals are
+synchronized and significantly interact with each other.
+The wireless communication theory indicates that the fast fading Satyanarayana et al. [2012], such as the
+multipath effect on carrier signals, causes a modeling error of a maximum of approximately one-fourth
+of a signal wavelength, e.g., about 5 cm for global positioning system (GPS) L1 signals Kelly and Braasch
+[2001]. This value is much smaller than the GNSS code phase error. For example, a typical value of the
+multipath effect on the code signal is commonly at the meter level, which is two orders of the magnitude of
+the carrier phase VAN NEE [1992]. Partially resorting to this mentioning, carrier-aiding is always used in
+2
+
+A Preprint
+a traditional GNSS baseband to support the code signal estimation Kaplan and Hegarty [2017]. Similarly,
+a vector delay/frequency lock loop (VDFLL) was also presented to enhance the code phase tracking by
+combining the carrier-aiding and the VDLL approaches Lashley [2009].
+The conventional vector tracking techniques impose an indirect approach to improving the TOA modeling
+over the code tracking process inside a GNSS receiver. The vector tracking has the potential to enable the
+baseband to yield a more accurate code Doppler frequency production. Then, the improved code Doppler
+replicates instantaneous code phases (i.e., TOA modeling) more precisely, contributing to a higher-quality
+navigation solution. This type of vector receiver can ultimately alleviate the harmful interference to the
+LOS signal estimation, especially when the user’s end is moving DIetmayer et al. [2020]. Nevertheless,
+little efficiency will be available in the traditional vector tracking loop once the received LOS and NLOS
+rays cannot be well discriminated in terms of the Doppler frequency feature (i.e., the frequency or Fourier
+domain). Unfortunately, this case often occurs to a GNSS user today.
+The authors’ recent research presented a method to optimize the TOA model in the GNSS tracking process
+assisted by an absolute position solution, not simply relying on the code frequency error between the
+baseband signal replica and the mapped code signal prediction from the user’s navigation solution Luo
+et al. [2022a]. More specifically, we take advantage of the high-accuracy positioning solution (more accurate
+than the code-based-only positioning result) to improve the TOA modeling aided by the vector tracking
+technique in the code phase domain instead of the code frequency domain. By coincidence, a recent paper
+using the classic SRA, i.e., root MUSIC, was also published aiming to achieve an analogous goal as stated
+before Krasner and McBurney [2022].
+An inertial navigation system (INS) can resist the high-frequency random noise in the user’s navigation as it
+works upon autonomous dead reckoning (DR), not relying on external information Groves [2013]. Hence,
+integrating INS has been a prevalent way to rug the GNSS-based navigation system since early. To date, it has
+attracted much attention in the navigation field to what extent the low-cost INS increases the GNSS-based
+navigation Harke and O’Keefe [2022], Zhang et al. [2022]. However, research space remains in terms of the
+influence of the low-cost INS on GNSS baseband signal processing.
+Regarding these discussions, this work proposes an improved version of the authors’ previous research Luo
+et al. [2022a, 2021b]. More specifically, a low-cost inertial measurement unit (IMU) is deeply integrated into
+a GNSS vector delay/frequency/phase lock loop (VDFPLL) software-defined radio (SDR). Meanwhile, an
+extended Kalman filter (EKF) is used to fuse float-RTK solutions and INS DR results. Hence, compared to
+our previous research Luo et al. [2022a], the main contributions of this work include the following:
+1. A low-cost IMU is combined with the float-RTK solutions via an EKF; integrated navigation solutions
+are used to improve the GNSS code phase domain TOA modeling directly;
+2. An RTK/INS VDFPLL SDR is proposed and developed where the integration of RTK solutions and
+INS dead reckoning results, traditional scalar tracking loop (STL), VDFLL, and VDFPLL are realized
+and combined;
+3. An approach showing how the INS enhances the GNSS baseband in a static scenario is presented
+based on real-world experiments, which few previous research discussed.
+A diagram explaining the difference between the proposed and traditional algorithms towards the code
+phase estimation in the GNSS baseband is provided in Figure 1. Before explaining Figure 1, it is worthwhile
+to emphasize that the instantaneous code phase error consists of two primary parts regarding standard
+GNSS baseband processing. They are an absolute one from the initial code phase error and a relative one
+caused by the Doppler frequency error in which the received signal subtracts the local replica. These lead to
+the following discussions.
+At first, the conventional STL causes an apparent code Doppler frequency error and initial code phase error
+(see Figure 1(a)) Kaplan and Hegarty [2017]; then, the traditional vector tracking compensates for parts
+of the Doppler frequency error reducing the relative code phase error (see Figure 1(b)) Spilker Jr [1996],
+Lashley et al. [2021]; next, when the vector tracking technique is further aided with an IMU sensor, the
+GNSS baseband becomes more capable of alleviating the frequency error Lashley and Bevly [2013], but the
+initial code phase error is remained (see Figure 1(c)); after that, when the RTK-based absolute-position-aided
+(APA) technique is involved in tracking, the initial code phase error can be reduced (see Figure 1(d)) Luo
+et al. [2022a]; finally, this work proposes a deep integration method of INS and GNSS RTK processing to
+correct a more absolute code phase error in the local replica (see Figure 1(e)).
+3
+
+A Preprint
+Figure 1: Diagrammatic sketch reflecting the actual and locally replicated code signals varying with the time
+regarding different algorithms where colored curves correspond to the locally replicated code signals. (a)
+code phase misalignment is caused by the code frequency error and the initial (absolute) code phase error;
+(b) moderate frequency error is reduced (c) significant frequency error is reduced (d) significant frequency
+error and moderate initial code phase error are reduced (e) significant frequency error and significant initial
+code phase error are reduced.
+4
+
+0.5
+Timestamp
+11
+Replicated signal
+based on STL
+0.5
+-1
+1
+0.5
+Replicated signal
+1
+based on standalone
+traditional VT
+0.5
+0.5
+Replicated signal
+01
+based on RTK/IMU
+traditional VT
+0.5
+0.5
+Replicated signal
+based on RTK
+VDFPLL
+-0.5
+1
+1
+0.5
+Replicated signal
+1
+based on proposed
+RTK/IMU VDFPLL
+-0.5A Preprint
+Figure 2 further depicts the code phase errors at the timestamp (see the dashed red lines in Figure 1) in the
+tracking process regarding the RTK-only APA and RTK/INS APA techniques. It is worth emphasizing that
+the timestamp denotes the local clock count to get the TOA estimation in the GNSS baseband (i.e., the time
+to extract the instantaneous GNSS measurements). Compared to our previous work Luo et al. [2022a], the
+proposed algorithm can improve the code phase estimation by removing the initial code phase error related
+to the multipath/NLOS effect and the carrier cycle slip (because of the involvement of the RTK-based APA
+technique). However, the case always occurs in the real world: for example, the multipath interference in a
+static GNSS user’s receiver will cause such an absolute code phase error issue which is challenging in the
+current GNSS community. Therefore, this research comes up with a method to solve it.
+Figure 2: Comparison of the code phase error at the timestamp (see the dashed red line in Figure 4) for
+extracting the instantaneous GNSS measurements (e.g., pseudoranges and carrier phases).
+The remaining of this paper is organized as follows: Section 2 introduces the methodology where the
+proposed VDFPLL based on RTK/INS deep integration is discussed in detail; before that, the RTK-position-
+aided VDFPLL is briefly introduced; then, two real-world stationary experiments are provided, and discussed
+in Section 3; finally, Section 4 concludes this work.
+2
+Materials and Methods
+This section will investigate how the APA code phase tracking in a GNSS baseband is realized with the
+proposed VDFPLL (deeply integrated with the float-RTK positioning and the INS DR). We will first recap
+the VDFPLL based on standalone GNSS RTK solutions; then, its improved form, deeply integrating the INS
+DR navigation solutions, will be discussed. Finally, how the proposed RTK/INS VDFPLL are combined with
+the STL and the VDFLL in a GPS SDR will be elaborated on.
+2.1
+RTK-position-aided VDFPLL
+As mentioned earlier, the VDFPLL provides a way to directly steer the local code replica with the user’s
+absolute position in the code phase domain instead of the conventional code frequency domain. Our previous
+work achieved this goal by presenting a practical means in the baseband that applies the user’s RTK solution
+as a source of high-accuracy code phase prediction. This technique will be briefly stated in the following for
+the integrity of this work.
+5
+
+Codephaseerror(differencebetweenthelocallyreplicated
+signal andthereceived signal)at thetimestamp
+元/2
+Improvedcode
+phase error (dueto
+multipath/NLOS
+errorandcarrier
+cycle slip)
+0
+Codephase
+Codephaseerror
+errorbased
+basedonRTK
+onthe
+VDFPLL
+RTKIIMU
+(Luo et al. [2022a])
+VDFPLL
+(proposed)
+3元/2A Preprint
+The architecture of the RTK-position-aided VDFPLL is illustrated in Figure 3, where APA and RPA corre-
+spond to absolute- and relative-position-aided, respectively. It is worth noting that the RPA is achieved
+with the traditional VDFLL technique. Besides, the absolute code phase is also tracked aided by the vector
+tracking technique in the code phase domain. In this case, the following discriminates the entire code phase
+error
+∆ ˆτi
+r,k = ∆ ˆτi,(S)
+r,k
++ ∆ ˆτi,(RT K)
+r,k
+(1)
+with
+∆ ˆτi,(RT K)
+r,k
+= fc
+c
+�
+˜ρi
+r,k−1 − ˆρi,(RT K)
+r,k−1
+�
+(2)
+ˆρi,(RTK)
+r,k−1
+= ˆri,(RTK)
+r,k−1
++
+� ˆBr,ρ,t,k−1 + ˆBi
+ρ,sys,k−1
+�
+− κD ˆBr,mp,k−1
+ˆri,(RT K)
+r,k−1
+=
+����ˆpi
+k−1 − ˆp(RT K)
+r,k−1
+����
+where subscript k denotes the index of tracking epochs; ∆ ˆτi,(S)
+r,k
+is the traditional discriminated code phase
+error through an early-minus-late-envelope code discriminator; ∆ ˆτi,(RT K)
+r,k
+is the code phase error obtained
+from the APA approach; ˜ρi
+r,k−1 and ˆρi,(RTK)
+r,k−1
+are the pseudoranges measured from the code tracking filter and
+predicted from the float RTK solution, respectively; ˆri,(RT K)
+r,k−1
+is the predicted geometry distance; ˆpi
+k−1 is the
+vector of satellite position; ˆp(RTK)
+r,k−1 is the vector of the estimated float RTK position;
+� ˆBr,ρ,t,k−1 + ˆBi
+ρ,sys,k−1
+�
+is
+the summation of the local clock bias error estimation and systematic error estimation, and it is computed
+from base station information and master satellite measurements Luo et al. [2022a]; ˆBr,mp,k−1 is the estimated
+multipath delay error imposed on the absolute code phase error via a between-satellite single difference
+algorithm, and κD is its tuned coefficient constant based on the involved early-late spacing Luo et al. [2021b].
+Next, the work process of the RTK-position-aided VDFPLL in the GPS SDR within the same tracking epoch
+is stated as follows:
+Step 1: the SDR receives the incoming intermediate frequency (IF) GPS L1 C/A data via front-end equipment;
+Step 2: integration and dumping (I&D) procedures upon correlators are implemented between the local
+code replica and the incoming IF GPS signals;
+Step 3: the correlator output passing through the traditional code discriminator yields ∆ ˆτ(S)
+r,k ;
+Step 4: the bias of the discriminated code error compensated by the RTK-position aided (i.e., the APA
+operation) code error estimation ∆ ˆτi,(RTK)
+r,k
+gives ∆ ˆτi
+r,k;
+Step 5: a code tracking loop filter denoises the code phase error from Step 4;
+Step 6: an RPA technique (i.e., the VDFLL) is executed to alleviate the code frequency error in the code-
+tracking process;
+Step 7: a numerically controlled oscillator (NCO) leverages the output of Step 6 to produce the TOA
+estimation (the raw output of the code loop filter aided by the Doppler prediction), the pseudorange
+measurements (be de-noised by the carrier smoothing technique);
+Step 8: the RTK engine leverages the pseudoranges and carrier phases (the raw output of the carrier loop
+filter aided by the Doppler prediction) from all the tracking channels, navigation data, and the base station
+information to compute the float RTK solutions;
+Step 9: the APA code phase error ∆ ˆτi,(RTK)
+r,k
+is computed with the float-RTK solutions and the pseudorange
+measurement by (2);
+Step 10: repeating Step 2, the RTK-position-aided VDFPLL is working for the next tracking epoch.
+To conclude, the work process of the VDFPLL based on the float-RTK solutions executed in a GNSS SDR has
+been browsed.
+6
+
+A Preprint
+Figure 3: Overview of the GNSS baseband architecture with the RTK-position-aided VDFPLL Luo et al.
+[2022a, 2021b].
+2.2
+The proposed VDFPLL based on RTK/INS deep integration
+2.2.1
+Architectures of the proposed VDFPLL SDR
+The architectures of the proposed APA VDFPLL GPS SDR deeply integrated with the float RTK solutions
+and INS dead reckoning results are displayed in Figure 4. It is worthwhile to mention that hybrid tracking
+loops are adopted here due to the data rates discrepancy corresponded to various sources, i.e., the proposed
+SDR tracking, the base station, and the IMU sensor raw data.
+First, there are two procedures for updating the code tracking loop with the APA method in the SDR. On the
+one hand, the TOA model is predicted from the integrated float RTK/INS EKF, as depicted in Figure 4(a).
+On the other hand, the proposed VDFPLL updating rate is 5 Hz, that is higher than the RTK solution rate,
+so the INS DR navigation solutions (with a rate of 50 Hz) are interpolated in the updating process when the
+RTK solutions (with a rate of 1 Hz) are absent. It is worth noting that we take two samples of the IMU raw
+data per update to compensate for coning and sculling errors, so the raw data rate of the IMU is 100 Hz,
+while the DR navigation results are at the rate of 50 Hz.
+Finally, as the tracking loop updating rate in the proposed SDR baseband is 200 Hz, much higher than the
+VDFPLL rate, the traditional STLs for code and carrier tracking are interpolated across the intervals where
+the VDFPLL is not activated.
+As a result, the three tracking loops are jointly working in the proposed RTK/INS-based VDFPLL SDR, and
+they are the VDFPLL based on the RTK/INS integrated EKF (see Figure 4(a)), the VDFPLL based on the INS
+DR (see Figure 4(b)), and the traditional STL (see Figure 4(c)).
+7
+
+Channel 1
+Ephemeris
+B
+Channel L
+p,t,k-1
+Clock error
+BL
+p,sys,k-1
+Systematic
+Predicted APA code
+error
+phase error
+Multipath
+error
+ APA
+Base station
+coming
+r,k
+RTK
+Code
+signals
+engine
+tracking
+4tL
+r,k
+loop filter
+I&D
+At(s)
+r,k
+Local
+Code
+Base
+discriminator
+carrier
+station
+RPA
+replica
+Local code
+Code NCO
+replica
+APA VDFPLLA Preprint
+Figure 4: Architectures of the proposed VDFPLL-enhanced GPS SDR based on the deep integration of float
+RTK solutions and INS DR navigation results (detailed discussions refer to the Algorithm 1 stated later.)
+8
+
+Base
+station
+Channel 1
+1 Hz
+Channel L
+Pseudo
+Incoming
+APA
+ranges
+Integrated
+RTK
+signals
+VDFPLL
+EKF
+engine
+(Figure 3)
+navigator
+rier aiding
+Hz
+/DFLL)
+Carrier
+--
+1Hz
+Carrier
+phases
+NLS
+tracking
+velocity
+loop
+estimator
+Low-cost
+100 Hz
+50 Hz
+IMU raw
+Mechanization
+dataChannel 1
+5 Hz
+Channel L
+Pseudo
+Incoming
+APA
+ranges
+signals
+VDFPLL
+(Figure 3)
+rier aiding
+C
+5 Hz
+/DFLL)
+p
+Carrier
+D
+z
+tracking
+loop
+Str,k-1
+Pik'-1 or
+5 Hz
+PG/I|DR,'-1
+Low-cost
+100 Hz
+IMU raw
+Mechanization
+dataChannel 1
+Channel L
+200 Hz
+Pseudo
+Incoming
+Code
+ranges
+signals
+tracking
+loop
+Carrier
+C
+200 Hz
+aiding
+p
+Carrier
+D
+tracking
+loopA Preprint
+2.2.2
+RTK/INS EKF Navigator and INS DR
+As illustrated in Figure 4, there are three types of TOA estimation formed in the proposed GNSS SDR
+corresponding to Figures 4(a), 4(b), and 4(c), respectively. They will be elaborated on one by one in the
+following.
+At first, one is formed using the absolute position estimated from the integrated RTK/INS EKF navigator
+(see Figure 4(a)). The RTK engine comes from an open-source package goGPS v0.4.3 Herrera et al. [2016].
+Then, the float RTK deeply integrated into the proposed SDR has been introduced in the authors’ previous
+work Luo et al. [2022a]. Then, the SDR platform to realize the deep integration of RTK and INS has also
+been built and investigated in the authors’ previous publications Luo et al. [2019a, 2021c].
+Besides, we will discuss the EKF algorithm used in this work. The state transition equation is given by
+δxe
+k′′ = Φe
+k′′,k′′−1δxe
+k′′−1 + we
+k′′−1
+with
+k′′ =
+�
+k
+′/K
+�
+k′ = ⌊k/M⌋
+where superscript e represents the Earth-centered, Earth-fixed (ECEF) coordinate frame; subscript k′′ denotes
+the epoch index of the EKF updates; K is the integer ratio of the INS DR and the EKF updating rates, where
+the former and the latter are 50 Hz and 1 Hz (constrained by the rate of the base station information),
+respectively; k′ is the epoch index of INS DR solutions; M is the integer ratio of the GNSS tracking rate and
+the INS updating rate where the tracking rate (200 Hz) is no lower than the INS updating rate (50 Hz) here;
+so it satisfies K,M ∈ Z+; Φe
+k′′,k′′−1 is the transition matrix; we
+k′′−1 is the process noise vector. Then, the state
+vector of the EKF model in the ECEF frame is given by
+δxe
+k′′ =
+�
+(δψe)T ,(δve)T ,(δpe)T ,
+�
+δbg
+�T ,(δba)T �T
+k′′
+where δψe is the attitude error vector; δve is the 3D velocity error vector; δpe is the 3D position error vector;
+δbg and δba are the respective gyro and accelerometer bias error vectors.
+Next, the observation equation is provided as
+δzk′′ = He
+k′′δxe
+k′′ + vk′′
+where He
+k′′ is the observation matrix; vk′′ is the observation noise vector. The observation vector, including
+position errors and velocity errors, is provided as
+δzk′′ =
+�
+��������
+�
+�������
+˜˙xI − ˜˙xG,NLS
+˜˙yI − ˜˙yG,NLS
+˜˙zI − ˜˙zG,NLS
+�
+�������
+T
+,
+�
+������
+˜xI − ˜xG,RT K
+˜yI − ˜yG,RT K
+˜zI − ˜zG,RT K
+�
+������
+T �
+��������
+k′′
+T
+where [ ˜x, ˜y, ˜z] and
+� ˜˙x, ˜˙y, ˜˙z
+�
+correspond to the 3D positions and velocities w.r.t. the ECEF frame, respectively;
+subscript I and G correspond to the solutions obtained from the INS and the GNSS, respectively; the
+subscript “RTK” means that the GNSS position results are solved by the float RTK algorithm Luo et al.
+[2022a], and the subscript “NLS” represents that the GNSS velocity results are calculated from the standard
+non-linear squared (NLS) method Luo et al. [2019b]. How to build Φe
+k′′ ,k′′−1 and He
+k′′, as well as how to
+form the process noise covariance matrix and the observation noise covariance matrix can refer to Luo et al.
+[2019a].
+After the system model is built, the recursive estimation of the EKF algorithm is to predict and update the
+state vector Faragher [2012]. Finally, upon the time epoch where base station information is available for the
+RTK algorithm, the navigation solutions corresponding to the velocity, position, and attitude information
+from the EKF algorithm are given by
+ˆCe
+G/I,b,k′′−1 ≈
+�
+I3 −
+�
+δ ˆψe
+k′′−1
+�
+×
+� ˆCe
+I,b,k′−1
+ˆve
+G/I,k′′−1 = ˆve
+I,k′−1 − δˆve
+k′′−1
+ˆpe
+G/I,k′′−1 = ˆpe
+I,k′−1 − δ ˆpe
+k′′−1
+9
+
+A Preprint
+where (·)× denotes the skew matrix operator; I3 is the 3-order identity matrix; δˆve
+k′′−1 δ ˆpe
+k′′−1, and δ ˆψe
+k′′−1 are
+the estimated state vectors about velocity and position errors, and attitude errors, and ˆve
+G/I,k′′−1, ˆpe
+G/I,k′′−1
+and ˆCe
+G/I,k′′−1 are the estimated navigation vectors (corresponding to the respective velocity, position, and
+attitude); ˆve
+I,k′−1, ˆpe
+I,k′−1 and ˆCe
+I,b,k′−1 are the counterparts solely upon the INS DR process, which will be
+introduced subsequently.
+Within the epochs where the base station information is missing, the EKF-based results at the previous
+epoch can contribute to the INS DR process at the current epoch as the following
+ˆve
+G/I|DR,k′ = ˆve
+G/I,k′′−1 +
+�
+C
+e
+G/I,k′′−1˜fb
+ib,k′−1 − 2(ωie) × ˆve
+G/I,k′′−1 + ge �
+ˆpe
+G/I,k′′−1
+��
+∆tI
+ˆpe
+G/I|DR,k′ = ˆpe
+G/I,k′′−1 +
+�
+ˆve
+G/I|DR,k′ + ˆve
+G/I,k′′−1
+� ∆tI
+2
+ˆCe
+G/I|DR,b,k′ = Ce
+i (∆tI) ˆCe
+G/I,b,k′′−1
+�
+I3 +
+�
+˜ωb
+ib,k′−1∆tI
+�
+×
+�
+with
+ωie = � 0
+0
+ωie
+�T
+Ce
+i (∆tI) =
+�
+������
+cos(ωie∆tI)
+sin(ωie∆tI)
+0
+−sin(ωie∆tI)
+cos(ωie∆tI)
+0
+0
+0
+1
+�
+������
+where ∆tI is the updating interval of the EKF; ˜fb
+ib,k′−1 and ˜ωb
+ib,k′−1 are the specific force and angular rate
+measurement vectors of the body frame w.r.t. ECEF frame; ωie is the Earth rotation rate, i.e., 7.292115e-5
+rad/s and ωie is its vector form; ge �
+ˆpe
+G/I,k′′−1
+�
+is the gravity acceleration vector function in the ECEF frame
+varying with the user’s position ˆpe
+G/I ,k′′−1 (see Equations (2.133) and (2.142) in Groves [2013]); Ce
+i (∆tI) is
+the Earth rotation matrix from the Earth-centered inertial (ECI) to the ECEF coordinate frame varying with
+the updating interval ∆tI; C
+e
+G/I,b,k′′−1 is the averaging transformation matrix w.r.t. the body-to-ECEF-frame
+coordinate obtained from ˆCe
+G/I,b,k′′−1 (see Equations (5.84) and (5.85) in Groves [2013]).
+Then, considering the case where the navigating solutions are derived from the INS DR process (see Figure
+4(b)), the mechanization in the ECEF frame can be expressed as
+ˆve
+I,k′ = ˆve
+G/I|DR,k′−1 +
+�
+C
+e
+I,b,k′−1˜fb
+ib,k′−1 − 2(ωie) × ˆve
+G/I|DR,k′−1 + ge �
+ˆpe
+G/I|DR,k′−1
+��
+∆tI
+ˆpe
+I,k′ = ˆpe
+G/I|DR,k′−1 +
+�
+ˆve
+I,k′ + ˆve
+G/I|DR,k′−1
+� ∆tI
+2
+ˆCe
+I,b,k′ = Ce
+i (∆tI) ˆCe
+G/I|DR,b,k′−1
+�
+I3 +
+�
+˜ωb
+ib,k′−1∆tI
+�
+×
+�
+or
+ˆve
+I,k′ = ˆve
+I,k′−1 +
+�
+C
+e
+I,b,k′−1˜fb
+ib,k′−1 − 2(ωie) × ˆve
+I,k′−1 + ge �
+ˆpe
+I,k′−1
+��
+∆tI
+ˆpe
+I,k′ = ˆpe
+I,k′−1 +
+�
+ˆve
+I,k′ + ˆve
+I,k′−1
+� ∆tI
+2
+ˆCe
+I,b,k′ = Ce
+i (∆tI) ˆCe
+I,b,k′−1
+�
+I3 +
+�
+˜ωb
+ib,k′−1∆tI
+�
+×
+�
+where C
+e
+I,b,k′−1 is the averaging transformation matrix computed from ˆCe
+I,b,k′−1.
+It is worth mentioning that the tracking rate (200 Hz) is higher than the INS DR updating rate (50 Hz).
+So, three out of four tracking intervals do not have an update for the INS DR. Assuming that the user’s
+navigation results are not changed significantly over the time 0.02s (i.e.,
+1
+50Hz), when k′ = k/M, we make an
+approximation that the navigation estimations in the following (k + 1)th, (k + 2)th, and (k + 3)th tracking
+epochs are identical to the ones computed at the kth, to interpolate the tracking epochs without the INS
+updating.
+10
+
+A Preprint
+2.2.3
+RTK/INS APA Code Phase Tracking
+The baseband TOA modeling at the start of the kth epoch aided by the absolute positions from the integrated
+RTK/INS EKF and the INS DR is estimated through
+�
+TOA
+i
+k = c−1 ˜ρi
+k − δˆtr,k
+(3)
+with the pseudorange model of
+˜ρi
+k ≜ ˜ρi
+k−1 + cf −1
+c
+��
+fc + ˆf i
+code,dop,k
+�
+Tcoh + ∆ ˆτi+,(RT K/INS)
+code,k,0
+�
+(4)
+where ˜ρi
+k−1 and ˜ρi
+k are the instantaneous pseudorange measurements at the respective previous and current
+epochs; δˆtr,k is the estimated local clock bias error; fc and c are the spreading code rate and the speed of
+light, respectively; Tcoh is the coherent integration time ˆf i
+code,dop,k is the estimated code Doppler frequency
+and ∆ ˆτi+,(RTK/INS)
+code,k,0
+is the proposed initial code phase error estimate in chips at the start of the kth epoch,
+and the estimation processes of them will be subsequently elaborated.
+On the one hand, ˆf i
+code,dop,k can be written as
+ˆf i
+code,dop,k = −fc
+fr
+˜fcarr,dop,k + T −1
+coh∆ ˆτi+
+r,k
+(5)
+˜f i
+carr,dop,k = ∆ ˆf i,(aid)
+carr,k + T −1
+coh∆ ˆϕi+
+r,k
+(6)
+with
+∆ ˆf i,(aid)
+carr,k =fr
+c
+�
+ˆve
+G/I,k′′−1 · ˆei
+k
+�
+ˆpe
+G/I,k′′−1
+�
+− ˆvi
+k · ˆei
+k
+�
+ˆpe
+G/I,k′′−1
+�
++ cδˆ˙tr,k − cδˆ˙t
+i
+k
+�
+(7)
+or
+∆ ˆf i,(aid)
+carr,k =fr
+c
+�
+ˆve
+G/I|DR,k′−1 · ˆei
+k
+�
+ˆpe
+G/I|DR,k′−1
+�
+− ˆvi
+k · ˆei
+k
+�
+ˆpe
+G/I|DR,k′−1
+�
++ cδˆ˙tr,k − cδˆ˙t
+i
+k
+�
+(8)
+∆ ˆf i,(aid)
+carr,k =fr
+c
+�
+ˆve
+G/I|DR,k′ · ˆei
+k
+�
+ˆpe
+G/I|DR,k′
+�
+− ˆvi
+k · ˆei
+k
+�
+ˆpe
+G/I|DR,k′
+�
++ cδˆ˙tr,k − cδˆ˙t
+i
+k
+�
+(9)
+∆ ˆf i,(aid)
+carr,k =fr
+c
+�
+ˆve
+I,k′ · ˆei
+k
+�
+ˆpe
+I,k′
+�
+− ˆvi
+k · ˆei
+k
+�
+ˆpe
+I,k′
+�
++ cδˆ˙tr,k − cδˆ˙t
+i
+k
+�
+(10)
+∆ ˆf i,(aid)
+carr,k =fr
+c
+�
+ˆve
+I,k′−1 · ˆei
+k
+�
+ˆpe
+I,k′−1
+�
+− ˆvi
+k · ˆei
+k
+�
+ˆpe
+I,k′−1
+�
++ cδˆ˙tr,k − cδˆ˙t
+i
+k
+�
+(11)
+where ˜fcarr,dop,k denotes the carrier Doppler frequency measurement;
+�
+T −1
+coh∆ ˆτi+
+r,k
+�
+and
+�
+T −1
+coh∆ ˆϕi+
+r,k
+�
+are the
+filtered code phase error and the filtered carrier phase error through the loop filters, respectively, which have
+accounted for the coherent integration interval in tracking, and its input is ∆ ˆτi
+x,k which will be explained
+later, with x ∈ {I,G/I,G/I|DR}; ∆ ˆf i,(aid)
+carr,k is the aided Doppler frequency computed via the user’s velocity
+estimation, known as a VDFLL technique Lashley et al. [2021]; ˆvx,k′ / ˆvx,k′′ and δˆ˙tr,k are the predicted user’s
+velocity vector and the predicted user’s clock drift; ˆvi
+k and δˆ˙t
+i
+k are the satellite velocity vector and the satellite
+clock drift predicted with the broadcast ephemeris; ˆei
+k (·) is the operator of the unit cosine vector varied with
+the position estimation.
+As mentioned above, ∆ ˆτi
+x,k is the APA discriminated code phase error, and there are three ways to obtain
+this estimate in the code tracking loop. For instance, the ones estimated via the respective RTK/INS EKF
+solution, the two-consecutive-epoch INS DR, and INS DR right after the EKF are computed as
+∆ ˆτi
+G/I,k = ∆ ˆτi,(S)
+r,k
++ ∆ ˆτi,(APA)
+r,k
+�
+ˆri
+G/I,k−1
+�
+(12)
+11
+
+A Preprint
+∆ ˆτi
+I,k = ∆ ˆτi,(S)
+r,k
++ ∆ ˆτi,(APA)
+r,k
+�
+ˆri
+I,k−1
+�
+(13)
+∆ ˆτi
+G/I|DR,k = ∆ ˆτi,(S)
+r,k
++ ∆ ˆτi,(APA)
+r,k
+�
+ˆri
+G/I|DR,k−1
+�
+(14)
+with
+ˆri
+G/I,k−1 =
+���ˆpi
+k−1 − ˆpe
+G/I,k′′−1
+���
+ˆri
+I,k−1 =
+���ˆpi
+k−1 − ˆpe
+I,k′−1
+���
+ˆri
+G/I|DR,k−1 =
+���ˆpi
+k−1 − ˆpe
+G/I|DR,k′−1
+���
+where ∆ ˆτi,(S)
+r,k
+is the traditional discriminated code phase error as introduced earlier; ˆpi
+k−1 is the satellite
+position vector computed from the broadcast ephemeris; ∆ ˆτi,(APA)
+x,k
+(·) is the operator to obtain the absolute
+code phase error with the geometry distance prediction (i.e., the APA process) and the error models, and its
+analytical expression is defined as
+∆ ˆτi,(APA)
+r,k
+�
+ˆri
+x,k−1
+�
+≜ fc
+c
+�
+˜ρi
+r,k−1 −
+�
+ˆri
+x,k−1 +
+� ˆBr,ρ,t,k−1 + ˆBi
+ρ,sys,k−1
+�
+− κD ˆBr,mp,k−1
+��
+(15)
+Therefore, based on these discussions, it is easy to find that the absolute code phase error estimate
+∆ ˆτi+,(RTK/INS)
+code,0,k
+in (4) (i.e., the difference between the received initial code phase and the counterpart of
+the local code replica synthesized with the NCO) can be alleviated by the proposed algorithm.
+Finally, the proposed algorithm in this paper is summarized in Algorithm 1. This algorithm is realized in a
+GPS SDR prototype where L1 C/A signals are used to validate the TOA and position estimation performance.
+3
+Results and Discussion
+The experimental equipment is set up as shown in Figure 5. Two stationary data sets were collected in
+the real world to verify the proposed algorithm. A NovAtel antenna was used to receive the GPS L1 C/A
+IF signals through a Fraunhofer IIS RF frond-end, where the IF sampling rate is 10.125 MHz. The IMU
+raw data were collected from the Crossbow Nav 440 device, where the IMU’s gyro and accelerometer bias
+stabilities are 10 deg/h and 1 mg, respectively. Besides, it is worth mentioning that two samples are taken
+for updating the inertial sensor data for our navigation equation, so the updating rate of the INS DR is half
+(50 Hz) of the IMU raw data rate (100 Hz). The reference positions of the two experiments are obtained by
+averaging the results provided by the Crossbow Nav440 GPS/INS integration solutions (the centers of the
+IMU sensor and the GNSS antenna are sufficiently close in the setup and neglected in this experiment).
+The proposed algorithm is tested in a GPS SDR platform where the coherent integration time is 5 ms, the
+classic discriminators are chosen as the noncoherent-early-minus-late-amplitude code discriminator and
+Costas carrier discriminator, and the early-late spacing is four IF sample intervals. Five types of tracking
+algorithms are compared in the same SDR conditions except for the parameter adjustment in Table 1.
+First, an open sky area is chosen to carry out the experiment where the test spot in Google Map and the sky
+plot of the available GPS satellites are shown in Figure 6.
+We first assess the SPP results for this open-sky case. The SPP is based on the weighted NLS algorithm in the
+tested SDR, which refers to an open-source package RTKLIB Takasu and Yasuda [2009]. Figure 7 depicts the
+dilution of precision (DOP) results, SPP errors, and the 3D position cumulative distribution function (CDF)
+curves of 3D SPP root-mean-squared errors (RMSEs).
+Although the results show that the proposed algorithm does not increase the SPP accuracy compared to
+the classic STL algorithm in the open sky, it proves that the APA-based VDFPLL algorithms enhance the
+traditional RPA-based VDFLL in the static situation. Meanwhile, using the INS can moderately enhance the
+RTK-based APA tracking process.
+Then, the RTK position errors for the different SDR algorithms are compared in Figure 8, where the position
+errors, horizontal position results for a Google Map show, and the CDF curves of 3D and 2D position
+estimates RMSE are included. The traditional RPA VDFLL does not help the RTK position accuracy in
+this open-sky and static case. The finding is that the RTK-only-based VDFPLL improves the RTK results
+within a 3D range while the RTK/INS-based VDFPLL slightly makes it outperform the STL-based horizontal
+12
+
+A Preprint
+Algorithm 1 High-accuracy APA GNSS code phase tracking based on RTK/INS deep integration
+Require:
+k∗ ≜ k mod KM, subject to K,M ∈ Z+ and k,k∗ ∈ N
+1:
+while new digital IF samples (for a coherent processing interval) are received at the kth
+epoch do
+2:
+Synthesize the code and carrier local replicas with the code/carrier NCOs;
+3:
+Produce the early- prompt- and late-branch samples through the I&D using the local replicas
+and the received IF samples;
+4:
+Discriminate the code/carrier phase errors with the outputs of the I&D (i.e., correlator outputs);
+5:
+if the base station information is available at the tracking epoch(s) {k∗ − 2M, ...,k∗ − M − 1} then
+6:
+Compensate for the discriminated code phase error with (14);
+7:
+else if the base station information is available at the tracking epoch(s) {k∗ − M,..., k∗ − 1} then
+8:
+Compensate for the discriminated code phase error with (12);
+9:
+else
+10:
+Compensate for the discriminated code phase error with (13);
+11:
+end if
+12:
+Optimize the compensated code phase error from Step 6/8/10 with a 1-Hz 2nd-order loop filter;
+13:
+if the vector tracking trigger (5 Hz) is activated then
+14:
+Optimize the discriminated carrier phase error with a 0.5-Hz 1st-order loop filter;
+15:
+if the RTK/INS EKF is updated at the epoch(s) {k∗,k∗ − 2M,k∗ − 3M,...,k∗ − (K − 1)M} then
+16:
+Predict the carrier Doppler with (10);
+17:
+else if the RTK/INS EKF is updated at the epoch(s) {k∗ − 2M + 1,...,k∗ − M − 1} then
+18:
+Predict the carrier Doppler with (8);
+19:
+else if the RTK/INS EKF is updated at the epoch(s) {k∗ − M} then
+20:
+Predict the carrier Doppler with (9);
+21:
+else if the RTK/INS EKF is updated at the epoch(s) {k∗ − M + 1,...,k∗ − 1} then
+22:
+Predict the carrier Doppler with (7);
+23:
+else
+24:
+Predict the carrier Doppler with (11);
+25:
+end if
+26:
+Compute the carrier frequency with (6) (for carrier NCO);
+27:
+else
+28:
+Optimize and predict the carrier Doppler with a 15-Hz 3rd-order loop filter (for carrier NCO);
+29:
+end if
+30:
+Compute the code frequency with (5) (for code NCO);
+31:
+end while
+Figure 5: Setup for the stationary experiments.
+13
+
+GNSS Satellite
+CrossbowNav440
+NovAtel
+Antenna
+GPSSDR
+Fraunhofer IIS
+RFFront-EndA Preprint
+Figure 6: Open-sky test spot (Google Map show) and sky plot of available GPS satellites.
+Figure 7: Single point navigation results and statistical analysis of different SDRs in the open-sky situation
+where dashed lines correspond to outlier epochs. (a) DOP values (b) SPP results (c) CDF curves of 3D SPP
+RMSE.
+14
+
+N
+30
+330
+15.
+300
+30
+G25
+45.
+60
+7.5
+G23
+G31
+G03
+G14
+G321
+G22
+G01
+G26
+210
+150SDR:STL
+SDR:RTK-basedVDFLL
+Initializationof
+SDR:RTK/INS-basedVDFLL
+theSDR
+(a)
+SDR:RTK-basedVDFPLL
+SDR:RTK/INS-baSedVDFPLL
+3
+East
+2
+3
+North
+2
+2
+20
+40
+60
+80
+100wW
+East [m]
+50
+North [m]
+10
+20
+E
+21
+20
+40
+60
+80
+100
+Epoch [s]0.8
+robability
+0.6
+0.4
+n
+Datafrom522555s
+0.2
+to522645s
+10
+20
+30
+40
+50
+3D SPPRASErailNw
+51.0824
+51.0822
+51.082
+0
+1A
+1A
+St Davids United Church
+0
+51.0818
+★
+titude
+51.0816
+Testspot
+51.0814
+CrowchildT
+Close park
+51.0812
+20 m
+114.125
+114.1245
+114.124
+114.1235
+-114.123
+Longitude ldegreeA Preprint
+Table 1: Parameter settings of the SDR regarding the real-world experimental validation
+SDR Type
+Relative
+position/
+velocity
+aiding
+RTK
+absolute
+position
+aiding
+INS deep
+integration
+RTK/INS
+integration
+navigation
+solution
+Tracking
+loop filter
+STL (traditional)
+Kaplan and Hegarty [2017]
+No
+No
+No
+No
+1-Hz 2nd-order DLL &
+18-Hz 3rd-order PLL
+RTK-based VDFLL
+Lashley et al. [2021]
+Yes
+No
+No
+No
+1-Hz 2nd-order DLL &
+0.5-Hz 1st-order PLL &
+15-Hz 3rd-order PLL
+(see Algorithm 1)
+RTK/INS-based VDFLL
+Lashley et al. [2021]
+Yes
+Yes
+Yes
+Yes
+RTK-based VDFPLL
+Luo et al. [2022a]
+Yes
+Yes
+No
+No
+RTK/INS-based VDFPLL
+(proposed)
+Yes
+Yes
+Yes
+Yes
+Figure 8: RTK position results and statistical analysis of different SDRs in the open-sky situation where
+dashed lines correspond to the outlier epochs. (a) RTK position errors (b) horizontal RTK results in Google
+Map (c) CDF curves of 3D RTK RMSE (d) CDF curves of horizontal (2D) RTK RMSE.
+15
+
+SDR:STL
+SDR:RTK-basedVDFLL
+Initializationof
+(a)
+SDR:RTK/INS-basedVDFLL
+the SDR
+SDR:RTK-basedVDFPLL
+SDR:RTK/INS-baSedVDFPLL
+East[m]
+t
+4
+2
+0
+LO
+North [m]
+5
+up [m]
+5
+20
+40
+60
+80
+100
+GPStimesince522535s
+Epoch[s]SDR.STL
+Datafrom522555s
+SDR.RTK-based VDFLL
+31.0819
+to522645s
+SDR.RTKINS-based VDFLL
+SDR.RTK-basedVDFPLL
+SDR.RTKINS-basedVDFPLL
+☆
+Ground truth
+5108185
+51.0818
+☆
+08173
+5 m
+51.0817
+114.1238
+114.123
+114.1236
+114.1285
+-114.1234
+ongtuce0.8
+Pro bability
+0.6
+0.4.
+0.2
+0
+2
+80.8
+Probability
+0.6
+0.4
+0.2
+8A Preprint
+positioning. It can be explained that the vertical INS DR position solution would cause more code phase
+errors (compared to the STL tracking in a static open-sky case) in terms of the vertical position estimation.
+Next, we compare the RTK/INS integrated results of three SDRs in Figure 9, where “Ground-truth-based
+VDFPLL” means that the SDR leverages the actual position coordinates instead of on-the-fly RTK or
+integrated RTK/INS position estimates. It is a hardware-in-the-loop (HIL) simulation strategy to provide a
+reference for the proposed algorithm under the same SDR conditions. In other words, the HIL simulation
+results represent the upper bound of the performance that the used SDR platform can achieve.
+Based on the CDF curves in Figure 9(d), the proposed accuracy slightly exceeds the traditional STL-based
+integrated RTK/INS solution within the 78% probability. So, the large errors can be alleviated in the
+integration results using the proposed algorithm in the open sky area. In contrast, the traditional VDFLL-
+based integrated RTK/INS positioning accuracy drops much in this well-condition static scenario.
+Figure 9: RTK position results and statistical analysis of different SDRs in the open-sky situation where
+dashed lines correspond to the outlier epochs. (a) RTK position errors (b) horizontal RTK results in Google
+Map (c) CDF curves of 3D RTK RMSE (d) CDF curves of horizontal (2D) RTK RMSE.
+TOA curves will be evaluated in the following parts to examine the baseband processing discrepancy. The
+TOA estimation from the GPS SDR is computed via (3), where it is worth noting that the ˜ρi
+k here is the raw
+data from the loop filter output without the carrier-smoothing algorithm. Therefore, the measurement and
+reference TOA residuals in meters are computed as follows
+(TOA measurement residual)i
+k
+∆= ˜ρi
+k − c
+�
+TOAi
+0 + δˆtr,0
+�
+− c
+�
+−f i
+d,0f −1
+r
++ δˆ˙tr,0
+�
+kTcoh
+(TOA reference residual)i
+k
+∆= cTOAi
+k − cTOAi
+0 − c
+�
+−f i
+d,0f −1
+r
+�
+kTcoh
+TOA residual error ∆= (TOA measurement residual)i
+k − (TOA reference residual)i
+k
+where the TOA residuals exclude the initial pseudorange and initial Doppler frequency for the simplicity of
+analysis; subscript 0 and k denote the initial and the kth epoch, respectively; TOAi
+0 and f i
+d,0 represent the
+16
+
+Initialization
+SDR:STL,POS:RTK/IMUIntegration
+SDR:RTK/INS-basedVDFLL,POS:RTK/IMUIntegration
+of the SDR
+SDR:RTK/INS-basedVDFPLL,POS:RTK/IMUIntegration
+(a)
+SDR:Ground-truth-basedYDFPLL.POS:RTK/iMUIntegratior
+East [m]
+2
+0
+North [m]
+-2
+[]
+dn
+20
+40
+60
+80
+100
+GPStimesince522535s
+Epoch[s]SDR:STL, POS:RTK/IMU Integration
+SDR:RTK/INS-based VDFLL, POS:RTK/IMU Integration
+51.0819
+SDR:RTK/INS-based VDFPLL, POS:RTK/IMU Integration
+0
+SDR:Ground-truth-based VDFPLL, POS:RTK/IMU Integration
+★
+ground truth
+51.08185
+2
+Datafrom522555sto522645s
+ep.
+51.0818
+★
+51.08175
+5 m
+51.0817
+-114.1238
+-114.1237
+-114.1236
+-114.1235
+114.1234
+Longitude Tdegree0.8
+Probability
+0.6
+0.4
+0.20.8
+Probability
+0.6
+0.4
+0.2A Preprint
+TOA and Doppler frequency reference at the initial epoch, and they are computed as
+T OAi
+0=c−1 ����pgt,0 − pi
+0
+��� + ˆBI,0 + ˆBT ,0 − cδˆti
+0
+�
+f i
+d,0 = fr
+c
+�
+vgt,0 · ˆei
+0 − ˆvi
+0 · ˆei
+0 − cδˆ˙t
+i
+0
+�
+where pgt,0 and vgt,0 are the ground truth vectors in the ECEF coordinate frame for the user’s position and
+velocity in the stationary experiments, with vgt,0 = [0,0,0]T ; pi
+0, vi
+0, δˆti
+0, and δˆ˙t
+i
+0 are the satellite position and
+velocity vectors, satellite clock bias and drift errors, respectively, which are obtained and computed using the
+broadcast ephemeris; meanwhile, ˆBI,0 and ˆBT ,0 are the ionospheric error derived from the Klobuchar model
+and the tropospheric error calculated via the Saastamoninen model; ˆei
+0 is the unit cosine vector computed
+from pgt,0; δˆti
+0 and δˆ˙t
+i
+0 are the estimated user’s clock bias and drift errors computed as
+δˆtr,0 = averaging clock bias error − (navigation time spanning)
+2
+× δˆ˙tr,0
+where δˆ˙tr,0 is the averaging value of the clock drift estimates from the “Ground-truth-based VDFPLL” SDR.
+It is worthwhile to say that the given δˆ˙t
+i
+0 and δˆti
+0 references are not sufficiently accurate, but they are
+satisfactory in validating the TOA performance amid different SDR algorithms.
+Figure 10 shows the error curves of the TOA residuals for the signals from the satellite of PRN1 (low
+elevation angle) and PRN22 (high elevation angle). It proves that the APA-based vector tracking algorithms
+perform better in interference mitigation for the signals from the low satellite.
+In summary, even if the proposed algorithm does not manifest much better than the traditional STL in an
+open-sky static environment, it demonstrates a significant improvement in comparison with the traditional
+RPA vector tracking in the same condition. More specifically, it can be used as boosting complement for the
+existing vector GNSS receivers.
+Another set of data was collected under a semi-open-sky situation where the GPS antenna was receiving the
+signals affected by the eastern CCIT building at the campus of the University of Calgary. The Google Map
+show of the test spot and the corresponding satellite sky plot are provided in Figure 11.
+In this test, where the results are displayed in Figure 12, we also give the DOP values to offer the satellite
+geometry status; the SPP error curves and their 3D CDF are provided as well.
+First, it can be observed that the two VDFPLLs and the STL produce more reliable solutions as the position
+outliers occur to the two VDFLLs at around the 95th epoch. Then, it is evident that the proposed algorithm
+embraces the highest SPP accuracy.
+We also assess the RTK solution accuracy related to the different SDRs. The RTK position error curves, posi-
+tion results in Google Map, and the 3D CDF curves are provided in Figure 13. After the SDR RTK solutions
+become stable, the RTK accuracy from the proposed SDR solutions still shows the highest performance. The
+RTK-only-based APA algorithm can reduce the random noise, but it is more biased than the traditional STL
+algorithm. The two RPA-only vector tracking techniques are still less capable of offering efficient assistance
+in the static test.
+Next, the integrated RTK/INS solutions are compared in the semi-open-sky environment as shown in Figure
+14. In this case, the proposed algorithm significantly improved the 2D positioning performance. At the same
+time, the RTK/INS-based RPA method elevates the 3D positioning accuracy compared to the STL-based
+integration. The RPA- and APA-based integrated navigation accuracies over the error range of approximately
+55% probability outperform the traditional STL one. Furthermore, the positioning results with the proposed
+algorithm perform more stable than the traditional vector tracking. Another finding is that RTK/INS-based
+APA vector tracking yields a much more ideal horizontal positioning estimate than the RPA one. By contrast,
+the latter is superior to the former in the vertical direction. By comparing to the upper bound (i.e., the
+estimation from the ground-truth-based VDFPLL SDR), it can be explained that the fusion of the low-cost
+IMU has a side effect on the vertical position solution when it is applied to the proposed RTK/INS-based
+VDFPLL SDR in this stationary experiment.
+Then, the raw TOA performance in terms of the signal from the high-elevation-angle satellite (PRN3) and
+the one with a low elevation angle affected by the multipath interference (PRN6) are plotted in Figure 15.
+17
+
+A Preprint
+Figure 10: Error curves of the TOA residuals for the GPS satellites PRN1 and PRN22 in the open-sky
+situation.
+Figure 11: Semi-open-sky test spot (Google Map show) and the sky plot of available GPS satellites.
+18
+
+PRN1
+350
+300
+SDR:STL
+SDR:RTK-basedVDFLL
+SDR:RTK/INS-basedVDFLL
+[w]
+250
+SDR:RTK-basedVDFPLL
+SDR:RTK/INS-basedVDFPLL
+200
+150
+Residuals
+100
+50
+0
+Timesince522536s
+-50
+0
+20
+40
+60
+80
+100
+Time [s]PRN1
+Error of Residuals of TOA [m]
+-10
+20
+30
+40
+50
+-60
+40
+60
+80
+100
+Timesince522536s
+Time [s]PRN22
+700
+600
+Residuals of TOA [m]
+500
+400
+300
+200
+100
+0
+Timesince522536s
+-100
+0
+20
+40
+60
+80
+100
+Time [s]PRN22
+-5
+-10
+Error of Residuals of TOA [m]
+-15
+-20
+25
+30
+35
+40
+45
+-50
+-55
+0
+20
+40
+60
+80
+100
+Time [s]51.0812
+51.081
+Blockage
+CCITbuilding
+51.0808
+1
+1
+68
+51.0806
+★
+tud
+51.0804
+PIN
+CcIT BuIding
+Test spot
+EnergiSimulation/
+51.0802
+FrankandSarahMe
+51.08
+20 m
+114.1355
+114.135
+-114.1345
+-114.134
+334.4335
+Longitude [degreeN
+30
+330
+15
+G25
+G06
+300
+30
+45
+60
+G31
+75
+G23
+G14.
+G03
+E
+G22
+G26
+2
+G16
+210
+150
+SA Preprint
+Figure 12: Single point navigation results and statistical analysis of different SDRs in the semi-open-sky
+situation where dashed lines correspond to the outlier epochs. (a) DOP values (b) SPP results (c) CDF curves
+of 3D SPP RMSE.
+A more significant fluctuation in the TOA curves emerges at the PRN6 in this semi-open-sky experiment
+compared to the open-sky PRN1 (see Figure 10). Also, both APA-based tracking loops are more capable of
+alleviating the TOA error varying with a long-term time spanning (i.e., the level of dozens of seconds) than
+the RPA-based vector tracking and the STL. Nevertheless, the curves computed from the high-quality signal,
+PRN3, are highly homogeneous regarding all the tested tracking loop algorithms.
+The next part will quantitatively examine the exact improvement the proposed algorithm can offer for the
+GNSS baseband estimation. As mentioned, an upper bound of the instantaneous integrated positioning
+performance is obtained from the SDR under the HIL test using the “Ground-truth-based VDFPLL”.
+Therefore, the corresponding TOA error curve representing the upper bound can also be extracted from
+the tracking results. Then, we compute the TOA error of the PRN22 and PRN3 (with the highest elevation
+angles during the experiments) in the open-sky and semi-open-sky cases as the respective references. The
+proposed TOA error references reasonably model the remained local clock errors in meters varying with the
+time where the other biased errors, like the atmospheric delay and initial TOA errors, are assumed to be
+well removed by the given models.
+Ultimately, the TOA curve references are derived and illustrated in Figure 16. After that, the TOA accuracy
+of different satellites in the two testing situations will be analyzed via these references in the following.
+Table 2 summarizes the statistical analysis of the TOA performances of different tracking algorithms where
+the RMSE results are computed for the used satellites. Then, in regard to the traditional STL, the TOA
+accuracy improvements of the two RPA- and APA-based vector tracking algorithms operated in the GPS
+SDR are computed and depicted in Figure 17.
+19
+
+SDR:STL
+SDR:RTK-basedVDFLL
+Initializationof
+SDR:RTK/INS-baSedVDFLL
+SDR:RTK-basedVDFPLL
+theSDR
+(a)
+SDR:RTK/INS-basedVDFPLL
+2.5
+East
+2
+1.5
+1.5
+North
+3
+-
+20
+40
+60
+80
+100
+GPStimesince524045sEpoch[s]Initialization of
+the SDR
+21
+[m
+181
+20
+North [m]
+40
+20
+20
+40
+60
+80
+100
+Epoch [s]0.8
+robability
+0.6
+0.4
+Datafrom524055s
+to524160s
+0.2
+0
+10
+20
+30
+40
+5.0
+3 spprmsuA Preprint
+Figure 13: RTK position results and statistical analysis of different SDRs in the semi-open-sky situation
+where dashed lines correspond to the outlier epochs. (a) RTK position error (b) horizontal RTK position
+results in Google Map (c) CDF curves of 3D RTK RMSE.
+The curves in Figure 17 indicate that both APA tracking methods outperform two RPA ones in elevating the
+TOA accuracy. Furthermore, regarding the lower-elevation satellites and the smaller-TOA-error channels,
+the TOA errors induced by the navigation results through the vector feedback procedure are more likely to
+drop in the proposed RTK/INS-based APA approach than in the RTK-only APA one.
+Figure 18 plots the APA error curves estimated from the proposed RTK/INS-based VDFPLL modeling the
+instantaneous initial/absolute code phase error in meters at each tracking epoch of which the analytical
+expression is given by (15). Compared to the traditional tracking algorithms (scalar and old vector tracking
+loops), the proposed algorithm can individually discriminate the absolute code phase error unrelating to
+the frequency error given by the same-epoch local replica subtracting incoming signals. This operation
+established through the proposed architecture is reasonable and it proves efficient. The implied information
+that the RTK/INS integrated EKF navigator provides more accurate positioning than the code-based-only
+SPP method can adequately explain the results.
+So, the dashed black lines in Figure 18 mean that the traditional scalar and vector tracking loops have
+nothing to recognize the code phase error not varying with the time spanning (the error residual remained
+by the traditional code discriminating process). However, the proposed RTK/INS-based APA vector tracking
+can directly estimate the absolute code phase error at every tracking epoch. The APA code discriminated
+results can show how the code phases are corrected by the accurate user’s position solution, especially for
+the satellites facing the deterministic biased error changing as the cycles of dozens of seconds or longer.
+This phenomenon commonly occurs to the static user’s antenna receiving incoming signals affected by the
+multipath effect.
+20
+
+SDR:STL
+SDR:RTK-basedVDFLL
+Initialization.of
+SDR:RTK/INS-based VDFLL
+theSDR
+SDR:RTK-baSedVDFPLL
+(a)
+SDR:RTK/INS-basedVDFPLL
+10
+5
+0
+10
+North [m]
+5
+0
+20
+E
+10
+0
+-10
+20
+40
+60
+80
+100
+GPS time since 524045s Epoch [s]51.0807
+SDR:STL
+SDR:RTK-based VDFLL
+SDR:RTK/INS-based VDFLL
+SDR:RTK-based VDFPL
+51.08065
+★
+SDR:RTK/INS-based VDFPLL
+Ground truth
+atitude [degree]
+allegiatePINV
+51.0806
+Datafrom524055sto524160s
+5.08055
+51.0805
+5 m
+-114.1345
+114.1344
+114.1343
+114.1342
+334.34
+Longitude [degreel0.8
+robability
+0.6
+0.4
+n
+0.2
+5
+10
+15
+20
+3DRKRASEA Preprint
+Figure 14: RTK/INS integration position results and statistical analysis of different SDRs where dashed lines
+correspond to the outlier epochs in the semi-open-sky situation. (a) RTK/INS integration position error (b)
+horizontal RTK/INS integration position results in Google Map (c) CDF curves of 2D RTK/INS integration
+position RMSE (d) CDF curves of 3D RTK/INS integration position RMSE.
+Finally, it is worth mentioning that the proposed RTK/INS-based VDFPLL is a simplified prototype applying
+the APA discriminated error relying on the INS and RTK to the GNSS baseband processing. The tracking
+performance still has space to be further improved by redoing loop filter algorithms (e.g., the EKF) or other
+GNSS baseband optimizing methods (e.g., snapshot processing Luo et al. [2022b], Fernández-Hernández
+et al. [2022] and open-loop tracking Tsang et al. [2022], van Graas et al. [2009]). In other words, the
+proposed algorithm has a broad scope of use towards the GNSS signals at all frequencies and constellations,
+potentially contributing to the development of next-generation GNSS receivers and GNSS-based multi-sensor
+integrating navigation systems.
+4
+Conclusions
+This work proposes a deep integration of RTK and INS, enhancing the instantaneous code phase tracking
+performance in challenging static environments. In the presented algorithm, the navigation solutions,
+especially the absolute position solution, from the integrated EKF navigator are deeply fused into the GNSS
+tracking loop, forming an APA code phase discriminator. The RTK/INS-based APA discriminator combined
+with the vector tracking technique realized upon a GPS L1 C/A SDR can serve for more satisfactory tracking
+and positioning results than the RTK-based-only APA vector tracking approach. Two real-world stationary
+experiments have verified the performance. Finally, the conclusions of this work can be drawn as follows:
+21
+
+SDR:STL,POS:RTK/IMUIntegration
+Initialization
+SDR:RTK/INS-basedVDFLL,POS:RTK/IMUIntegration
+of the SDR
+SDR:RTK/INS-basedVDFPLL,POS:RTK/IMUIntegration
+SDR:Ground-truth-basedVDFPLL,POS:RTK/IMUIntegration
+(a)
+3
+East[m]
+2
+North [m]
+2
+0
+.2
+[u]
+0
+-5
+-10
+20
+40
+60
+80
+100
+GPStimesince524045s
+Epoch[s]51.0807
+SDR:STL, POS:RTK/IMU Integration
+SDR:RTK/INS-based VDFLL, POS:RTK/IMU Integration
+O
+SDR:RTK/INS-based VDFPLL, POS:RTK/IMU Integration
+SDR:Ground-truth-based VDFPLL, POS:RTK/IMU Integration
+★
+51.08065
+ground truth
+llegiatePINW
+51.0806
+Datafrom524055sto524160s
+53.08055
+51.0805
+5 m
+-114.1345
+114.1344
+114.1343
+114.1342
+24.334
+Longitude [degree0.8
+0.6
+0.4
+0.2
+2
+30.8
+Probabil
+0.6
+0.4
+0.2
+-
+.6A Preprint
+Figure 15: Error curves of the TOA residuals for the GPS satellites PRN6 and PRN3 in the semi-open-sky
+situation.
+Figure 16: TOA curve references (regarding the error curves of the TOA residuals) derived from the ground-
+truth-based VDFPLL SDR. (a) TOA reference from PRN22 for the open-sky experiment (b) TOA reference
+from PRN3 for the semi-open-sky experiment.
+22
+
+PRN6
+800
+700
+SDR:STL
+SDR:RTK-based VDFLL
+600
+SDR:RTK/INS-baSedVDFLL
+[]
+SDR:RTK-basedVDFPLL
+500
+SDR:RTK/INS-baSedVDEPLL
+TOA
+Residualsof
+400
+300
+200
+100
+0
+Timesince524042s
+-100
+0
+20
+40
+60
+80
+100
+Time [s]PRN6
+40
+Error of Residuals of TOA [m]
+20
+20
+40
+60
+Timesince524042s
+-80
+0
+20
+40
+60
+80
+100
+Time [s]PRN3
+900
+800
+700
+Residuals of TOA [m]
+600
+500
+400
+300
+200
+100
+0
+Timesince524042s
+-100
+0
+20
+40
+60
+80
+100
+Time [s]PRN3
+-
+Error of Residuals of TOA [m]
+-10
+20
+30
+40
+-50
+Timesince524042s
+-60
+0
+20
+40
+60
+80
+100
+Time [s]PRN22
+Error of Residuals of TOA (reference) [m]
+-10
+20
+30
+Timesince522536s
+40
+50
+-60
+0
+20
+40
+60
+80
+100
+Time [s]PRN3
+Error of Residuals of TOA (reference) [m]
+-10
+20
+Timesince524042s
+30
+40
+50
+-60
+0
+20
+40
+60
+80
+100
+Time [s]A Preprint
+Table 2: RMSEs of the TOA estimates from the active satellites regarding the two stationary experiments
+where the reference curves for the error of residuals of TOA refer to Figure 16 (“OS” and” SOS” correspond
+to “open-sky” and “semi-open-sky” testing situations, respectively; “Averaging C/N0” is estimated from the
+“Ground-truth-based VDFPLL” SDR).
+PRN
+numbers
+Elevation
+angle [◦]
+Averaging
+C/N0
+[dB-Hz]
+PRN
+numbers
+of the
+TOA error
+reference
+RMSE for the error of residuals of TOA [m]
+STL
+RTK
+VDFLL
+RTK/INS
+VDFLL
+RTK
+VDFPLL
+Proposed
+RTK/INS
+VDFPLL
+SOS-25
+8.2
+43.4
+SOS-03
+10.92
+9.03
+9.12
+14.17
+11.85
+OS-32
+13.9
+45.2
+OS-22
+2.62
+4.21
+4.17
+1.80
+1.80
+SOS-06
+15.0
+39.6
+SOS-03
+14.49
+13.31
+13.24
+7.18
+9.05
+OS-25
+15.2
+44.8
+OS-22
+13.23
+12.12
+12.16
+14.08
+13.22
+SOS-16
+17.4
+43.5
+SOS-03
+3.89
+9.39
+9.22
+9.81
+8.08
+OS-01
+24.1
+37.4
+OS-22
+8.31
+9.18
+9.19
+4.80
+4.61
+SOS-14
+26.2
+44.2
+SOS-03
+15.18
+16.92
+16.89
+12.87
+13.67
+OS-26
+26.5
+41.0
+OS-22
+19.45
+24.68
+24.54
+18.96
+18.97
+OS-23
+32.3
+47.4
+OS-22
+19.23
+23.96
+23.91
+20.07
+19.24
+SOS-26
+36.0
+46.8
+SOS-03
+3.47
+7.66
+7.51
+6.22
+5.65
+OS-14
+36.2
+46.9
+OS-22
+4.78
+6.19
+6.17
+4.31
+4.46
+SOS-23
+42.2
+45.6
+SOS-03
+8.30
+5.06
+5.10
+2.75
+3.23
+SOS-31
+49.0
+51.4
+SOS-03
+12.64
+11.34
+11.38
+14.12
+14.17
+OS-31
+59.3
+52.9
+OS-22
+2.16
+2.49
+2.49
+1.63
+1.67
+SOS-22
+61.6
+48.2
+SOS-03
+2.54
+2.57
+2.58
+3.58
+3.54
+OS-03
+65.4
+49.8
+OS-22
+7.63
+10.23
+10.18
+7.87
+7.52
+Figure 17: Comparison of TOA accuracy improvements varying with the satellite elevation angles and the
+TOA errors (positive and negative values represent the improved and reduced performance percentages,
+respectively).
+23
+
+100
+of TOA Accuracy (RMSE) [%]
+50
+50
+.100
+150
+SDR:RTK-based VDFLL
+SDR:RTK/INS-based VDFLL
+SDR:RTK-based VDFPLL
+SDR:RTK/INS-based VDFPLL
+200
+0
+10
+20
+30
+40
+50
+60
+70
+Satellite Elevation Angle [Degrees]100
+of TOA Accuracy (RMSE) [%]
+50
+50
+100
+mproement
+-150
+200
+2
+4
+6
+8
+10
+12
+14
+16
+18
+20
+STL sR TOA RMsE [mA Preprint
+Figure 18: APA code phase errors from the proposed RTK/INS-based VDFPLL SDR where the numbers
+correspond to the satellite PRN numbers and dashed black lines correspond to the estimates from the
+traditional scalar and vector tracking algorithms (a) open sky (b) semi-open sky.
+1. The proposed RTK/INS APA vector tracking has improved the multipath mitigation performance of
+the GNSS baseband in static situations compared to the traditional scalar/vector tracking and the
+RTK-aided-only APA vector tracking;
+2. The deeply integrated INS in the proposed high-accuracy APA GPS SDR has enhanced the TOA
+estimation accuracy more significantly regarding the satellites with low elevation angles;
+3. The technique regarding the tested low-cost IMU deeply integrated into the RTK-position-aided
+vector GPS has proved to be inferior in improving the vertical positioning accuracy but can efficiently
+increase the horizontal positioning accuracy in challenging static environments.
+Our future work will focus on base-station-free APA GNSS tracking upon INS DR and precise point
+positioning (PPP) technique.
+References
+H. Sharma, C. A. Lichtenberger, and T. Pany. Multipath Error Modelling and Position Error Over-bounding
+for Precise RTK Positioning using GNSS Raw Measurements from Smartphone for Automotive Navigation.
+In Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation
+(ION GNSS+ 2020), pages 1902–1924, oct 2020. ISBN 0936406267. doi:10.33012/2020.17627. URL
+https://www.ion.org/publications/abstract.cfm?articleID=17627.
+Guohao Zhang, Weisong Wen, Bing Xu, and Li-ta Hsu. Extending Shadow Matching to Tightly-Coupled
+GNSS/INS Integration System. IEEE Transactions on Vehicular Technology, 69(5):4979–4991, may 2020.
+ISSN 0018-9545.
+doi:10.1109/TVT.2020.2981093.
+URL https://ieeexplore.ieee.org/document/
+9040648/.
+Xiaoli Liu, Muqing Liang, Yu Morton, Pau Closas, Ting Zhang, and Zhigang Hong. Performance evaluation
+of MSK and OFDM modulations for future GNSS signals. GPS Solutions, 18(2):163–175, 2014. ISSN
+15211886. doi:10.1007/s10291-014-0368-6.
+L. Cimini.
+Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Divi-
+sion Multiplexing. IEEE Transactions on Communications, 33(7):665–675, jul 1985. ISSN 0096-2244.
+doi:10.1109/TCOM.1985.1096357. URL http://ieeexplore.ieee.org/document/1096357/.
+Jeroen C. J. Koelemeij, Han Dun, Cherif E. V. Diouf, Erik F. Dierikx, Gerard J. M. Janssen, and Christian
+C. J. M. Tiberius. A hybrid optical–wireless network for decimetre-level terrestrial positioning. Nature,
+611(7936):473–478, nov 2022. ISSN 0028-0836. doi:10.1038/s41586-022-05315-7. URL https://www.
+nature.com/articles/s41586-022-05315-7.
+Norman Krasner and Paul McBurney. Application of Super Resolution Correlation to Multipath Mitigation
+in an L5 Channel. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The
+24
+
+OS-1
+(a)
+30
+OS-26
+Mastersatellite
+OS-23
+OS-14
+OS-25
+20
+OS-32
+code phase error [m]
+OS-3
+OS-31
+10
+OS-22
+-10
+APA
+Timesince522535s
+-20
+Traditional scalarandvector
+trackingestimates
+zeros
+-30
+0
+20
+40
+60
+80
+100
+120
+Time[s]sos-3
+30
+sos-6
+sOs-14
+SOs-16
+sOs-22
+Mastersatellite
+20
+SOS-23
+sos-25
+SOS-26
+SOS-31
+10.
+ap0o:
+:10
+PA:
+2.1
+Traditional scalar and vector
+trackingestimates
+zeros
+Timesince524041s
+20
+40
+60
+80
+100
+120A Preprint
+Institute of Navigation (ION GNSS+ 2022), pages 3249–3269, oct 2022. doi:10.33012/2022.18584. URL
+https://www.ion.org/publications/abstract.cfm?articleID=18584.
+Yiran Luo, Li-Ta Hsu, and Yi Pan. A Super-Resolution Algorithm with FRFT Towards GNSS TOA Estimation
+for Multipath Channel. In Proceedings of the ION GNSS+ 2021, St. Louis, Missouri, USA, Sep 20-24, pages
+3350–3359, oct 2021a. doi:10.33012/2021.17951. URL https://www.ion.org/publications/abstract.
+cfm?articleID=17951.
+Mateus Da Rosa Zanatta, Joao Paulo Carvalho Lustosa Da Costa, Felix Antreich, Martin Haardt, Gordon Elger,
+Fabio Lucio Lopes De Mendonca, and Rafael Timoteo De Sousa. Tensor-Based Framework With Model Or-
+der Selection and High Accuracy Factor Decomposition for Time-Delay Estimation in Dynamic Multipath
+Scenarios. IEEE Access, 8:174931–174942, 2020. ISSN 2169-3536. doi:10.1109/ACCESS.2020.3024597.
+URL https://ieeexplore.ieee.org/document/9200326/.
+Yiran Luo and Naser El-Sheimy.
+Improving GNSS Positioning by De-noising Consecutive Correlator
+Outputs Using Graph Fourier Transform Filtering. In Proceedings of the ION GNSS+ 2022, Denver,
+Colorado, USA, September 19-23, pages 3340–3348, sep 2022. doi:10.33012/2022.18397. URL https:
+//www.ion.org/publications/abstract.cfm?articleID=18397.
+Taro Suzuki, Kazuki Matsuo, and Yoshiharu Amano. Rotating GNSS Antennas: Simultaneous LOS and
+NLOS Multipath Mitigation. GPS Solutions, 24(3):86, jul 2020. ISSN 15211886. doi:10.1007/s10291-
+020-01006-w. URL https://doi.org/10.1007/s10291-020-01006-whttp://link.springer.com/10.
+1007/s10291-020-01006-w.
+Xi Hong, Wenjie Wang, Ning Chang, and Qinye Yin. A subspace-based code tracking loop design for GPS
+multi-antenna receiver in multipath environment. GPS Solutions, 24(4):109, oct 2020. ISSN 1080-5370.
+doi:10.1007/s10291-020-01020-y. URL https://link.springer.com/10.1007/s10291-020-01020-y.
+S. Daneshmand, A. Broumandan, N. Sokhandan, and G. Lachapelle. GNSS multipath mitigation with a
+moving antenna array. IEEE Transactions on Aerospace and Electronic Systems, 49(1):693–698, 2013. ISSN
+00189251. doi:10.1109/TAES.2013.6404136.
+Lawrence Lau and Paul Cross. Development and testing of a new ray-tracing approach to GNSS carrier-phase
+multipath modelling. Journal of Geodesy, 81(11):713–732, oct 2007. ISSN 0949-7714. doi:10.1007/s00190-
+007-0139-z. URL http://link.springer.com/10.1007/s00190-007-0139-z.
+Zhe Yan, Xiyuan Chen, Xinhua Tang, and Xuefen Zhu. Design and Performance Evaluation of the Improved
+INS-Assisted Vector Tracking for the Multipath in Urban Canyons. IEEE Transactions on Instrumentation
+and Measurement, 71, 2022. ISSN 15579662. doi:10.1109/TIM.2022.3204107.
+Ivan Smolyakov, Mohammad Rezaee, and Richard B. Langley. Resilient multipath prediction and detection
+architecture for low-cost navigation in challenging urban areas. Navigation, Journal of the Institute of
+Navigation, 67(2):397–409, jun 2020. ISSN 00281522. doi:10.1002/navi.362.
+James J Spilker Jr. Fundamentals of signal tracking theory. In Bradford W. Parkinson, James J Spilker
+Jr, Penina Axelrad, and Per Enge, editors, Global Positioning System: Theory And Applications, Volume 1,
+chapter 7. American Institute of Aeronautics and Astronautics, Inc., Washington, DC, 1996.
+M Zhodzishsky, S Yudanov, V Veitsel, and J Ashjaee. Co-OP Tracking for Carrier Phase. In Proceedings of the
+ION GPS 1998, Nashville, USA, Sep 15-18, pages 653–664, 1998.
+Patrick Henkel, Kaspar Giger, and Christoph Gunther. Multifrequency, Multisatellite Vector Phase-Locked
+Loop for Robust Carrier Tracking. IEEE Journal of Selected Topics in Signal Processing, 3(4):674–681,
+aug 2009. ISSN 1932-4553. doi:10.1109/JSTSP.2009.2025637. URL http://ieeexplore.ieee.org/
+document/5166551/.
+Ahmad Shafaati, Tao Lin, Ali Broumandan, and Gérard Lachapelle. Design and Implementation of an RTK-
+Based Vector Phase Locked Loop. Sensors, 18(3):845, mar 2018. ISSN 1424-8220. doi:10.3390/s18030845.
+URL http://www.mdpi.com/1424-8220/18/3/845.
+Shashank Satyanarayana, Daniele Borio, and Gerard Lachapelle. A Composite Model for Indoor GNSS
+Signals: Characterization, Experimental Validation and Simulation. Navigation, 59(2):77–92, jun 2012.
+ISSN 00281522. doi:10.1002/navi.8. URL https://onlinelibrary.wiley.com/doi/10.1002/navi.8.
+J.M. Kelly and M.S. Braasch. Validation of theoretical GPS multipath bias characteristics. In 2001 IEEE
+Aerospace Conference Proceedings (Cat. No.01TH8542), volume 3, pages 3/1317–3/1325. IEEE, 2001. ISBN 0-
+7803-6599-2. doi:10.1109/AERO.2001.931362. URL http://ieeexplore.ieee.org/document/931362/.
+25
+
+A Preprint
+RICHARD D. J. VAN NEE. Multipath Effects on GPS Code Phase Measurements. Navigation, 39(2):177–190,
+jun 1992. ISSN 00281522. doi:10.1002/j.2161-4296.1992.tb01873.x. URL https://onlinelibrary.
+wiley.com/doi/10.1002/j.2161-4296.1992.tb01873.x.
+Elliott D. Kaplan and Christopher Hegarty. Understanding GPS/GNSS. Principles and applications. Artech
+house, 3rd edition, 2017. ISBN 1580538940. doi:10.1016/s1364-6826(97)83337-8.
+Matthew Lashley. Modelling and performance analysis of GPS vector tracking algorithms. Ph.d. thesis, Auburn
+University, Auburn, USA, 2009. URL http://ezproxy.lib.ucalgary.ca/login?url=https://search.
+proquest.com/docview/304830161?accountid=9838.
+Katrin DIetmayer, Florian Kunzi, Fabio Garzia, Matthias Overbeck, and Wolfgang Felber. Real Time Results
+of Vector Delay Lock Loop in a Light Urban Scenario. 2020 IEEE/ION Position, Location and Navigation
+Symposium, PLANS 2020, pages 1230–1236, 2020. doi:10.1109/PLANS46316.2020.9109832.
+Yiran Luo, Li-Ta Hsu, Zhetao Zhang, and Naser El-Sheimy. Improving GNSS baseband using an RTK-position-
+aided code tracking algorithm. GPS Solutions, 26(4):125, oct 2022a. ISSN 1080-5370. doi:10.1007/s10291-
+022-01305-4. URL https://link.springer.com/10.1007/s10291-022-01305-4.
+Paul D Groves. Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech House,
+Boston&London, 2nd edition, 2013. ISBN 1608070050.
+Kelly Harke and Kyle O’Keefe.
+Gyroscope Drift Estimation of a GPS/MEMSINS Smartphone Sensor
+Integration Navigation System for Kayaking. In Proceedings of the ION GNSS+ 2022, pages 1413–1427,
+Denver, the US, oct 2022. doi:10.33012/2022.18324.
+Tisheng Zhang, Shan Liu, Qijin Chen, Xin Feng, and Xiaoji Niu. Carrier-Phase-Based Initial Heading
+Alignment for Land Vehicular MEMS GNSS/INS Navigation System. IEEE Transactions on Instrumentation
+and Measurement, 71:1–13, 2022. ISSN 0018-9456. doi:10.1109/TIM.2022.3208646. URL https://
+ieeexplore.ieee.org/document/9899471/.
+Yiran Luo, Li-Ta Hsu, Yan Xiang, Bing Xu, and Chunyang Yu. An Absolute-Position-Aided Code Dis-
+criminator Towards GNSS Receivers for Multipath Mitigation.
+In Proceedings of the ION GNSS+
+2021, St. Louis, Missouri, USA, Sep 20-24, pages 3772–3782, 2021b. doi:10.33012/2021.18001. URL
+https://www.ion.org/publications/abstract.cfm?articleID=18001.
+Matthew V. Lashley, Scott Martin, and James Sennott. Vector Processing. In Y. T. Jade Morton, Frank
+van Diggelen, James J. Spilker Jr., Bradford W. Parkinson, and Grace Lo, ShermanGao, editors, Position,
+Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and
+Civil Applications, volume 1. John Wiley & Sons, 2021.
+Matthew Lashley and David M. Bevly. Performance comparison of deep integration and tight coupling. Navi-
+gation, Journal of the Institute of Navigation, 60(3):159–178, sep 2013. ISSN 00281522. doi:10.1002/navi.43.
+URL https://onlinelibrary.wiley.com/doi/10.1002/navi.43.
+Antonio M. Herrera, Hendy F. Suhandri, Eugenio Realini, Mirko Reguzzoni, and M. Clara de Lacy. goGPS:
+open-source MATLAB software. GPS Solutions, 20(3):595–603, 2016. ISSN 15211886. doi:10.1007/s10291-
+015-0469-x.
+Yiran Luo, Chunyang Yu, Bing Xu, Jian Li, Guang-Je Tsai, You Li, and Naser El-Sheimy. Assessment of
+Ultra-Tightly Coupled GNSS/INS Integration System towards Autonomous Ground Vehicle Navigation
+Using Smartphone IMU. In 2019 IEEE International Conference on Signal, Information and Data Processing
+(ICSIDP), pages 1–6. IEEE, dec 2019a. ISBN 978-1-7281-2345-5. doi:10.1109/ICSIDP47821.2019.9173292.
+URL https://ieeexplore.ieee.org/document/9173292/.
+Yiran Luo, You Li, Jin Wang, and Naser El-Sheimy. Supporting GNSS Baseband Using Smartphone IMU
+and Ultra-Tight Integration. arXiv preprint arXiv:2111.02613, 2021c. URL http://arxiv.org/abs/2111.
+02613.
+Yiran Luo, Jian Li, Chunyang Yu, Zhitao Lyu, Zhe Yue, and Naser El-Sheimy.
+A GNSS software-
+defined receiver with vector tracking techniques for land vehicle navigation. In Proc. ION 2019 Pacific
+PNT Meeting, Honolulu, Hawaii, USA, April 8-11, volume 2019-April, pages 713–727, 2019b. ISBN
+0936406224. doi:10.33012/2019.16834. URL https://www.ion.org/publications/abstract.cfm?
+articleID=16834.
+Ramsey Faragher.
+Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Deriva-
+tion [Lecture Notes].
+IEEE Signal Processing Magazine, 29(5):128–132, sep 2012.
+ISSN 1053-5888.
+doi:10.1109/MSP.2012.2203621. URL http://ieeexplore.ieee.org/document/6279585/.
+26
+
+A Preprint
+Tomoji Takasu and Akio Yasuda. Development of the low-cost RTK-GPS receiver with an open source
+program package RTKLIB. In Proceedings of the International symposium on GPS/GNSS, Jeju, Korea, pages
+4–6, 2009.
+Yiran Luo, Li-Ta Hsu, and Naser El-Sheimy. A Baseband MLE for Snapshot GNSS Receiver Using Super-
+Long-Coherent Correlation in a Fractional Fourier Domain. unpublished, 2022b.
+Ignacio Fernández-Hernández, José A López-Salcedo, and Gonzalo Seco-Granados.
+9 Snapshot Re-
+ceivers.
+In Kai Borre, Ignacio Fernández-Hernández, José A. López-Salcedo, and M. Zahidul H.
+Bhuiyan, editors, GNSS Software Receivers. Cambridge University Press, oct 2022. ISBN 9781108934176.
+doi:10.1017/9781108934176.
+Chin Lok Tsang, Yiran Luo, and Li-Ta Hsu. Long Coherent Open-Loop GPS L5Q Signal Positioning: A Case
+Study for an Urban Area in Hong Kong. In Proceedings of the ION GNSS+ 2022, Denver, Colorado, USA,
+September 19-23, pages 2025–2041, oct 2022. doi:10.33012/2022.18326.
+Frank van Graas, Andrey Soloviev, Maarten Uijt de Haag, and Sanjeev Gunawardena. Closed-loop sequential
+signal processing and open-loop batch processing approaches for GNSS receiver design. IEEE Journal on
+Selected Topics in Signal Processing, 3(4):571–586, 2009. ISSN 19324553. doi:10.1109/JSTSP.2009.2023350.
+27
+
diff --git a/_tAyT4oBgHgl3EQfdveI/content/tmp_files/load_file.txt b/_tAyT4oBgHgl3EQfdveI/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f213b19a38aa03f7c0e393d7db1c58282e02ffe4
--- /dev/null
+++ b/_tAyT4oBgHgl3EQfdveI/content/tmp_files/load_file.txt
@@ -0,0 +1,1478 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf,len=1477
+page_content='High-Accuracy Absolute-Position-Aided Code Phase Tracking Based on RTK/INS Deep Integration in Challenging Static Scenarios A Preprint Yiran Luo Department of Geomatics Engineering University of Calgary Calgary T2N1N4, Canada yiran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='luo@ucalgary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ca Li-Ta Hsu Department of Aeronautical and Aviation Engineering The Hong Kong Polytechnic University Hung Hom, Hong Kong SAR, China lt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='hsu@polyu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='hk Yang Jiang Department of Geomatics Engineering University of Calgary Calgary T2N1N4, Canada yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='jiang1@ucalgary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ca Baoyu Liu Department of Geomatics Engineering University of Calgary Calgary T2N1N4, Canada baoyu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='liu@ucalgary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ca Zhetao Zhang School of Earth Sciences and Engineering Hohai University Nanjing 211100, China ztzhang@hhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cn Yan Xiang School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240, China yan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='xiang@sjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cn Naser El-Sheimy Department of Geomatics Engineering University of Calgary Calgary T2N1N4, Canada elsheimy@ucalgary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ca January 3, 2023 Abstract Many multi-sensor navigation systems urgently demand accurate positioning initialization from global navigation satellite systems (GNSSs) in challenging static scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' How- ever, ground blockages against line-of-sight (LOS) signal reception make it difficult for GNSS users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Steering local codes in GNSS basebands is a desiring way to correct instanta- neous signal phase misalignment, efficiently gathering useful signal power and increasing positioning accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Besides, inertial navigation systems (INSs) have been used as a well- complementary dead reckoning (DR) sensor for GNSS receivers in kinematic scenarios resisting various interferences since early.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' But little work focuses on the case of whether the INS can improve GNSS receivers in static scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Thus, this paper proposes an enhanced navigation system deeply integrated with low-cost INS solutions and GNSS high-accuracy carrier-based positioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' First, an absolute code phase is predicted from base station information, and integrated solution of the INS DR and real-time kinematic (RTK) results through an extended Kalman filter (EKF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, a numerically controlled oscillator (NCO) leverages the predicted code phase to improve the alignment between instantaneous local arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='00308v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SP] 31 Dec 2022 A Preprint code phases and received ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The proposed algorithm is realized in a vector-tracking GNSS software-defined radio (SDR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Real-world experiments demonstrate the proposed SDR regarding estimating time-of-arrival (TOA) and positioning accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Keywords GNSS baseband · code phase domain · vector tracking · vector receiver · positioning · float RTK · multipath mitigation · deep integration · low-cost IMU 1 Introduction Demands for GNSS devices will keep increasing over the following decades due to the explosion of smartphone-based navigation Sharma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020] and intelligent transportation construction Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Therefore, realizing accurate positioning in challenging environments using global navigation satel- lite system (GNSS) devices is a hot debate these days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' However, current GNSS receiver techniques are uneasy to achieve a next-generation positioning, navigation, and timing (PNT) performance due to the intrinsic mechanism of GNSS electromagnetic waveforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' For instance, unlike LTE/5G wireless communication signals with an orthogonal frequency division multiple access (OFDMA) and substantial transmission power Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2014], Cimini [1985], the GNSS signals are transmitted at the same frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Differently, each signal channel is divided through the code division multiple access (CDMA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The GNSS signals are also confronted with severe channel fading over a long-distance transmission (approximately 20,000 km for the GNSS satellites operated in the medium Earth orbit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The former is naturally immune to the multipath effect, while the GNSS signals are less capable of resisting these interferences in the transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Due to this, recent research proposed a hybrid optical–wireless network that achieves a decimeter-level terrestrial positioning and sub-nanosecond timing aiming to enact as a supplement or even substitute the GNSS device in the future commercial market Koelemeij et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Against this background, there are many remaining problems and vast space regarding new GNSS receiver design, especially in challenging cases, and it is urgent to embark on renewing the current commercial receiver architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The CDMA signals are sensitive to the non-line-of-sight (NLOS) ray within one chip range causing big issues in channel estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In recent years, super-resolution algorithms (SRAs) emerged in GNSS signal processing to separate line-of-sight (LOS) and NLOS signals into different orthogonal spaces Krasner and McBurney [2022], Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2021a], Da Rosa Zanatta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Recent work presented a graph Fourier transform (GFT) filter denoising the complex correlator outputs to replace the old GNSS tracking loop, which can be considered as a direct way to steer the code phase in challenging cases Luo and El-Sheimy [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Except for the separation using the state-of-the-art SRAs or the GNSS antenna changes Suzuki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020], Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020], Daneshmand et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2013], modeling the superposition signals formed with LOS and NLOS rays is mainstream in the current GNSS community to overcome multipath interference Lau and Cross [2007], Yan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022], Smolyakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Early in the 1990s, research revealed the prominence of GNSS products to overcome the predicament of tracking accurate Doppler frequency between the users’ end and the satellite——vector delay lock loop (VDLL) Spilker Jr [1996].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The vector approach is an intelligent choice to model the LOS Doppler frequency into a more proper shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The basic idea of this technique is to leverage the user’s navigation estimates to predict the Doppler frequency as compensation for the time of arrival (TOA) estimation in the GNSS baseband processing, stepping into a more accurate single-point positioning (SPP) solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The VDLL allows GNSS researchers to optimize baseband signal modeling with information from multiple channels instead of a conservative loop filter algorithm in a single channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Later, this idea was extended to assist the carrier phase modeling, for which it was nominated as a vector phase lock loop (VPLL) Zhodzishsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [1998].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Improved versions and more specific experimental results based on the VPLL techniques have been presented over the following years Henkel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2009], Shafaati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2018].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' However, the stability and convergence of the VPLL are vulnerable to being destroyed when the biased error in the code phase modeling cannot be well removed (meaning that a multipath effect interferes with the GNSS baseband and its high-precision navigation solutions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It can be explained that the GNSS carrier and code signals are synchronized and significantly interact with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The wireless communication theory indicates that the fast fading Satyanarayana et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2012], such as the multipath effect on carrier signals, causes a modeling error of a maximum of approximately one-fourth of a signal wavelength, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', about 5 cm for global positioning system (GPS) L1 signals Kelly and Braasch [2001].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' This value is much smaller than the GNSS code phase error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' For example, a typical value of the multipath effect on the code signal is commonly at the meter level, which is two orders of the magnitude of the carrier phase VAN NEE [1992].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Partially resorting to this mentioning, carrier-aiding is always used in 2 A Preprint a traditional GNSS baseband to support the code signal estimation Kaplan and Hegarty [2017].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Similarly, a vector delay/frequency lock loop (VDFLL) was also presented to enhance the code phase tracking by combining the carrier-aiding and the VDLL approaches Lashley [2009].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The conventional vector tracking techniques impose an indirect approach to improving the TOA modeling over the code tracking process inside a GNSS receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The vector tracking has the potential to enable the baseband to yield a more accurate code Doppler frequency production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, the improved code Doppler replicates instantaneous code phases (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', TOA modeling) more precisely, contributing to a higher-quality navigation solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' This type of vector receiver can ultimately alleviate the harmful interference to the LOS signal estimation, especially when the user’s end is moving DIetmayer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Nevertheless, little efficiency will be available in the traditional vector tracking loop once the received LOS and NLOS rays cannot be well discriminated in terms of the Doppler frequency feature (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the frequency or Fourier domain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Unfortunately, this case often occurs to a GNSS user today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The authors’ recent research presented a method to optimize the TOA model in the GNSS tracking process assisted by an absolute position solution, not simply relying on the code frequency error between the baseband signal replica and the mapped code signal prediction from the user’s navigation solution Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' More specifically, we take advantage of the high-accuracy positioning solution (more accurate than the code-based-only positioning result) to improve the TOA modeling aided by the vector tracking technique in the code phase domain instead of the code frequency domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' By coincidence, a recent paper using the classic SRA, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', root MUSIC, was also published aiming to achieve an analogous goal as stated before Krasner and McBurney [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' An inertial navigation system (INS) can resist the high-frequency random noise in the user’s navigation as it works upon autonomous dead reckoning (DR), not relying on external information Groves [2013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Hence, integrating INS has been a prevalent way to rug the GNSS-based navigation system since early.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' To date, it has attracted much attention in the navigation field to what extent the low-cost INS increases the GNSS-based navigation Harke and O’Keefe [2022], Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' However, research space remains in terms of the influence of the low-cost INS on GNSS baseband signal processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Regarding these discussions, this work proposes an improved version of the authors’ previous research Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a, 2021b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' More specifically, a low-cost inertial measurement unit (IMU) is deeply integrated into a GNSS vector delay/frequency/phase lock loop (VDFPLL) software-defined radio (SDR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Meanwhile, an extended Kalman filter (EKF) is used to fuse float-RTK solutions and INS DR results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Hence, compared to our previous research Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a], the main contributions of this work include the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A low-cost IMU is combined with the float-RTK solutions via an EKF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' integrated navigation solutions are used to improve the GNSS code phase domain TOA modeling directly;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' An RTK/INS VDFPLL SDR is proposed and developed where the integration of RTK solutions and INS dead reckoning results, traditional scalar tracking loop (STL), VDFLL, and VDFPLL are realized and combined;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' An approach showing how the INS enhances the GNSS baseband in a static scenario is presented based on real-world experiments, which few previous research discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A diagram explaining the difference between the proposed and traditional algorithms towards the code phase estimation in the GNSS baseband is provided in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Before explaining Figure 1, it is worthwhile to emphasize that the instantaneous code phase error consists of two primary parts regarding standard GNSS baseband processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' They are an absolute one from the initial code phase error and a relative one caused by the Doppler frequency error in which the received signal subtracts the local replica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' These lead to the following discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' At first, the conventional STL causes an apparent code Doppler frequency error and initial code phase error (see Figure 1(a)) Kaplan and Hegarty [2017];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' then, the traditional vector tracking compensates for parts of the Doppler frequency error reducing the relative code phase error (see Figure 1(b)) Spilker Jr [1996], Lashley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' next, when the vector tracking technique is further aided with an IMU sensor, the GNSS baseband becomes more capable of alleviating the frequency error Lashley and Bevly [2013], but the initial code phase error is remained (see Figure 1(c));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' after that, when the RTK-based absolute-position-aided (APA) technique is involved in tracking, the initial code phase error can be reduced (see Figure 1(d)) Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' finally, this work proposes a deep integration method of INS and GNSS RTK processing to correct a more absolute code phase error in the local replica (see Figure 1(e)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 3 A Preprint Figure 1: Diagrammatic sketch reflecting the actual and locally replicated code signals varying with the time regarding different algorithms where colored curves correspond to the locally replicated code signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) code phase misalignment is caused by the code frequency error and the initial (absolute) code phase error;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (b) moderate frequency error is reduced (c) significant frequency error is reduced (d) significant frequency error and moderate initial code phase error are reduced (e) significant frequency error and significant initial code phase error are reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 Timestamp 11 Replicated signal based on STL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 Replicated signal 1 based on standalone traditional VT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 Replicated signal 01 based on RTK/IMU traditional VT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 Replicated signal based on RTK VDFPLL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 Replicated signal 1 based on proposed RTK/IMU VDFPLL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5A Preprint Figure 2 further depicts the code phase errors at the timestamp (see the dashed red lines in Figure 1) in the tracking process regarding the RTK-only APA and RTK/INS APA techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is worth emphasizing that the timestamp denotes the local clock count to get the TOA estimation in the GNSS baseband (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the time to extract the instantaneous GNSS measurements).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Compared to our previous work Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a], the proposed algorithm can improve the code phase estimation by removing the initial code phase error related to the multipath/NLOS effect and the carrier cycle slip (because of the involvement of the RTK-based APA technique).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' However, the case always occurs in the real world: for example, the multipath interference in a static GNSS user’s receiver will cause such an absolute code phase error issue which is challenging in the current GNSS community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Therefore, this research comes up with a method to solve it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 2: Comparison of the code phase error at the timestamp (see the dashed red line in Figure 4) for extracting the instantaneous GNSS measurements (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', pseudoranges and carrier phases).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The remaining of this paper is organized as follows: Section 2 introduces the methodology where the proposed VDFPLL based on RTK/INS deep integration is discussed in detail;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' before that, the RTK-position- aided VDFPLL is briefly introduced;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' then, two real-world stationary experiments are provided, and discussed in Section 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' finally, Section 4 concludes this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 2 Materials and Methods This section will investigate how the APA code phase tracking in a GNSS baseband is realized with the proposed VDFPLL (deeply integrated with the float-RTK positioning and the INS DR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' We will first recap the VDFPLL based on standalone GNSS RTK solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' then, its improved form, deeply integrating the INS DR navigation solutions, will be discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Finally, how the proposed RTK/INS VDFPLL are combined with the STL and the VDFLL in a GPS SDR will be elaborated on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1 RTK-position-aided VDFPLL As mentioned earlier, the VDFPLL provides a way to directly steer the local code replica with the user’s absolute position in the code phase domain instead of the conventional code frequency domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Our previous work achieved this goal by presenting a practical means in the baseband that applies the user’s RTK solution as a source of high-accuracy code phase prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' This technique will be briefly stated in the following for the integrity of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 5 Codephaseerror(differencebetweenthelocallyreplicated signal andthereceived signal)at thetimestamp 元/2 Improvedcode phase error (dueto multipath/NLOS errorandcarrier cycle slip) 0 Codephase Codephaseerror errorbased basedonRTK onthe VDFPLL RTKIIMU (Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a]) VDFPLL (proposed) 3元/2A Preprint The architecture of the RTK-position-aided VDFPLL is illustrated in Figure 3, where APA and RPA corre- spond to absolute- and relative-position-aided, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is worth noting that the RPA is achieved with the traditional VDFLL technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Besides, the absolute code phase is also tracked aided by the vector tracking technique in the code phase domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In this case, the following discriminates the entire code phase error ∆ ˆτi r,k = ∆ ˆτi,(S) r,k + ∆ ˆτi,(RT K) r,k (1) with ∆ ˆτi,(RT K) r,k = fc c � ˜ρi r,k−1 − ˆρi,(RT K) r,k−1 � (2) ˆρi,(RTK) r,k−1 = ˆri,(RTK) r,k−1 + � ˆBr,ρ,t,k−1 + ˆBi ρ,sys,k−1 � − κD ˆBr,mp,k−1 ˆri,(RT K) r,k−1 = ����ˆpi k−1 − ˆp(RT K) r,k−1 ���� where subscript k denotes the index of tracking epochs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ∆ ˆτi,(S) r,k is the traditional discriminated code phase error through an early-minus-late-envelope code discriminator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ∆ ˆτi,(RT K) r,k is the code phase error obtained from the APA approach;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˜ρi r,k−1 and ˆρi,(RTK) r,k−1 are the pseudoranges measured from the code tracking filter and predicted from the float RTK solution, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆri,(RT K) r,k−1 is the predicted geometry distance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆpi k−1 is the vector of satellite position;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆp(RTK) r,k−1 is the vector of the estimated float RTK position;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' � ˆBr,ρ,t,k−1 + ˆBi ρ,sys,k−1 � is the summation of the local clock bias error estimation and systematic error estimation, and it is computed from base station information and master satellite measurements Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆBr,mp,k−1 is the estimated multipath delay error imposed on the absolute code phase error via a between-satellite single difference algorithm, and κD is its tuned coefficient constant based on the involved early-late spacing Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2021b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Next, the work process of the RTK-position-aided VDFPLL in the GPS SDR within the same tracking epoch is stated as follows: Step 1: the SDR receives the incoming intermediate frequency (IF) GPS L1 C/A data via front-end equipment;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 2: integration and dumping (I&D) procedures upon correlators are implemented between the local code replica and the incoming IF GPS signals;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 3: the correlator output passing through the traditional code discriminator yields ∆ ˆτ(S) r,k ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 4: the bias of the discriminated code error compensated by the RTK-position aided (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the APA operation) code error estimation ∆ ˆτi,(RTK) r,k gives ∆ ˆτi r,k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 5: a code tracking loop filter denoises the code phase error from Step 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 6: an RPA technique (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the VDFLL) is executed to alleviate the code frequency error in the code- tracking process;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 7: a numerically controlled oscillator (NCO) leverages the output of Step 6 to produce the TOA estimation (the raw output of the code loop filter aided by the Doppler prediction), the pseudorange measurements (be de-noised by the carrier smoothing technique);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 8: the RTK engine leverages the pseudoranges and carrier phases (the raw output of the carrier loop filter aided by the Doppler prediction) from all the tracking channels, navigation data, and the base station information to compute the float RTK solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 9: the APA code phase error ∆ ˆτi,(RTK) r,k is computed with the float-RTK solutions and the pseudorange measurement by (2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Step 10: repeating Step 2, the RTK-position-aided VDFPLL is working for the next tracking epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' To conclude, the work process of the VDFPLL based on the float-RTK solutions executed in a GNSS SDR has been browsed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 6 A Preprint Figure 3: Overview of the GNSS baseband architecture with the RTK-position-aided VDFPLL Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a, 2021b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 The proposed VDFPLL based on RTK/INS deep integration 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1 Architectures of the proposed VDFPLL SDR The architectures of the proposed APA VDFPLL GPS SDR deeply integrated with the float RTK solutions and INS dead reckoning results are displayed in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is worthwhile to mention that hybrid tracking loops are adopted here due to the data rates discrepancy corresponded to various sources, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the proposed SDR tracking, the base station, and the IMU sensor raw data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' First, there are two procedures for updating the code tracking loop with the APA method in the SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' On the one hand, the TOA model is predicted from the integrated float RTK/INS EKF, as depicted in Figure 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' On the other hand, the proposed VDFPLL updating rate is 5 Hz, that is higher than the RTK solution rate, so the INS DR navigation solutions (with a rate of 50 Hz) are interpolated in the updating process when the RTK solutions (with a rate of 1 Hz) are absent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is worth noting that we take two samples of the IMU raw data per update to compensate for coning and sculling errors, so the raw data rate of the IMU is 100 Hz, while the DR navigation results are at the rate of 50 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Finally, as the tracking loop updating rate in the proposed SDR baseband is 200 Hz, much higher than the VDFPLL rate, the traditional STLs for code and carrier tracking are interpolated across the intervals where the VDFPLL is not activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' As a result, the three tracking loops are jointly working in the proposed RTK/INS-based VDFPLL SDR, and they are the VDFPLL based on the RTK/INS integrated EKF (see Figure 4(a)), the VDFPLL based on the INS DR (see Figure 4(b)), and the traditional STL (see Figure 4(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 7 Channel 1 Ephemeris B Channel L p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k-1 Clock error BL p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='sys,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k-1 Systematic Predicted APA code error phase error Multipath error APA Base station coming r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k RTK Code signals engine tracking 4tL r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k loop filter I&D At(s) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k Local Code Base discriminator carrier station RPA replica Local code Code NCO replica APA VDFPLLA Preprint Figure 4: Architectures of the proposed VDFPLL-enhanced GPS SDR based on the deep integration of float RTK solutions and INS DR navigation results (detailed discussions refer to the Algorithm 1 stated later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=') 8 Base station Channel 1 1 Hz Channel L Pseudo Incoming APA ranges Integrated RTK signals VDFPLL EKF engine (Figure 3) navigator rier aiding Hz /DFLL) Carrier -- 1Hz Carrier phases NLS tracking velocity loop estimator Low-cost 100 Hz 50 Hz IMU raw Mechanization dataChannel 1 5 Hz Channel L Pseudo Incoming APA ranges signals VDFPLL (Figure 3) rier aiding C 5 Hz /DFLL) p Carrier D z tracking loop Str,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content="k-1 Pik'-1 or 5 Hz PG/I|DR," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content="'-1 Low-cost 100 Hz IMU raw Mechanization dataChannel 1 Channel L 200 Hz Pseudo Incoming Code ranges signals tracking loop Carrier C 200 Hz aiding p Carrier D tracking loopA Preprint 2." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 RTK/INS EKF Navigator and INS DR As illustrated in Figure 4, there are three types of TOA estimation formed in the proposed GNSS SDR corresponding to Figures 4(a), 4(b), and 4(c), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' They will be elaborated on one by one in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' At first, one is formed using the absolute position estimated from the integrated RTK/INS EKF navigator (see Figure 4(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The RTK engine comes from an open-source package goGPS v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3 Herrera et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2016].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, the float RTK deeply integrated into the proposed SDR has been introduced in the authors’ previous work Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, the SDR platform to realize the deep integration of RTK and INS has also been built and investigated in the authors’ previous publications Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2019a, 2021c].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Besides, we will discuss the EKF algorithm used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The state transition equation is given by δxe k′′ = Φe k′′,k′′−1δxe k′′−1 + we k′′−1 with k′′ = � k ′/K � k′ = ⌊k/M⌋ where superscript e represents the Earth-centered, Earth-fixed (ECEF) coordinate frame;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' subscript k′′ denotes the epoch index of the EKF updates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' K is the integer ratio of the INS DR and the EKF updating rates, where the former and the latter are 50 Hz and 1 Hz (constrained by the rate of the base station information), respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' k′ is the epoch index of INS DR solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' M is the integer ratio of the GNSS tracking rate and the INS updating rate where the tracking rate (200 Hz) is no lower than the INS updating rate (50 Hz) here;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' so it satisfies K,M ∈ Z+;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Φe k′′,k′′−1 is the transition matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' we k′′−1 is the process noise vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, the state vector of the EKF model in the ECEF frame is given by δxe k′′ = � (δψe)T ,(δve)T ,(δpe)T , � δbg �T ,(δba)T �T k′′ where δψe is the attitude error vector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' δve is the 3D velocity error vector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' δpe is the 3D position error vector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' δbg and δba are the respective gyro and accelerometer bias error vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Next, the observation equation is provided as δzk′′ = He k′′δxe k′′ + vk′′ where He k′′ is the observation matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' vk′′ is the observation noise vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The observation vector, including position errors and velocity errors, is provided as δzk′′ = � �������� � ������� ˜˙xI − ˜˙xG,NLS ˜˙yI − ˜˙yG,NLS ˜˙zI − ˜˙zG,NLS � ������� T , � ������ ˜xI − ˜xG,RT K ˜yI − ˜yG,RT K ˜zI − ˜zG,RT K � ������ T � �������� k′′ T where [ ˜x, ˜y, ˜z] and � ˜˙x, ˜˙y, ˜˙z � correspond to the 3D positions and velocities w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the ECEF frame, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' subscript I and G correspond to the solutions obtained from the INS and the GNSS, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the subscript “RTK” means that the GNSS position results are solved by the float RTK algorithm Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a], and the subscript “NLS” represents that the GNSS velocity results are calculated from the standard non-linear squared (NLS) method Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2019b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' How to build Φe k′′ ,k′′−1 and He k′′, as well as how to form the process noise covariance matrix and the observation noise covariance matrix can refer to Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2019a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' After the system model is built, the recursive estimation of the EKF algorithm is to predict and update the state vector Faragher [2012].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Finally, upon the time epoch where base station information is available for the RTK algorithm, the navigation solutions corresponding to the velocity, position, and attitude information from the EKF algorithm are given by ˆCe G/I,b,k′′−1 ≈ � I3 − � δ ˆψe k′′−1 � × � ˆCe I,b,k′−1 ˆve G/I,k′′−1 = ˆve I,k′−1 − δˆve k′′−1 ˆpe G/I,k′′−1 = ˆpe I,k′−1 − δ ˆpe k′′−1 9 A Preprint where (·)× denotes the skew matrix operator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' I3 is the 3-order identity matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' δˆve k′′−1 δ ˆpe k′′−1, and δ ˆψe k′′−1 are the estimated state vectors about velocity and position errors, and attitude errors, and ˆve G/I,k′′−1, ˆpe G/I,k′′−1 and ˆCe G/I,k′′−1 are the estimated navigation vectors (corresponding to the respective velocity, position, and attitude);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆve I,k′−1, ˆpe I,k′−1 and ˆCe I,b,k′−1 are the counterparts solely upon the INS DR process, which will be introduced subsequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Within the epochs where the base station information is missing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the EKF-based results at the previous epoch can contribute to the INS DR process at the current epoch as the following ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = ˆve G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 + � C e G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1˜fb ib,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 − 2(ωie) × ˆve G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 + ge � ˆpe G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 �� ∆tI ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = ˆpe G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 + � ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ + ˆve G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 � ∆tI 2 ˆCe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = Ce i (∆tI) ˆCe G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 � I3 + � ˜ωb ib,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1∆tI � × � with ωie = � 0 0 ωie �T Ce i (∆tI) = � ������ cos(ωie∆tI) sin(ωie∆tI) 0 −sin(ωie∆tI) cos(ωie∆tI) 0 0 0 1 � ������ where ∆tI is the updating interval of the EKF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˜fb ib,k′−1 and ˜ωb ib,k′−1 are the specific force and angular rate measurement vectors of the body frame w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ECEF frame;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ωie is the Earth rotation rate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='292115e-5 rad/s and ωie is its vector form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ge � ˆpe G/I,k′′−1 � is the gravity acceleration vector function in the ECEF frame varying with the user’s position ˆpe G/I ,k′′−1 (see Equations (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='133) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='142) in Groves [2013]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ce i (∆tI) is the Earth rotation matrix from the Earth-centered inertial (ECI) to the ECEF coordinate frame varying with the updating interval ∆tI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' C e G/I,b,k′′−1 is the averaging transformation matrix w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the body-to-ECEF-frame coordinate obtained from ˆCe G/I,b,k′′−1 (see Equations (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='84) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='85) in Groves [2013]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' considering the case where the navigating solutions are derived from the INS DR process (see Figure 4(b)),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the mechanization in the ECEF frame can be expressed as ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 + � C e I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1˜fb ib,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 − 2(ωie) × ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 + ge � ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 �� ∆tI ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 + � ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ + ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � ∆tI 2 ˆCe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = Ce i (∆tI) ˆCe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � I3 + � ˜ωb ib,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1∆tI � × � or ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 + � C e I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1˜fb ib,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 − 2(ωie) × ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 + ge � ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 �� ∆tI ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 + � ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ + ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � ∆tI 2 ˆCe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ = Ce i (∆tI) ˆCe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � I3 + � ˜ωb ib,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1∆tI � × � where C e I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 is the averaging transformation matrix computed from ˆCe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is worth mentioning that the tracking rate (200 Hz) is higher than the INS DR updating rate (50 Hz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' So, three out of four tracking intervals do not have an update for the INS DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Assuming that the user’s navigation results are not changed significantly over the time 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='02s (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', 1 50Hz), when k′ = k/M, we make an approximation that the navigation estimations in the following (k + 1)th, (k + 2)th, and (k + 3)th tracking epochs are identical to the ones computed at the kth, to interpolate the tracking epochs without the INS updating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 10 A Preprint 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3 RTK/INS APA Code Phase Tracking The baseband TOA modeling at the start of the kth epoch aided by the absolute positions from the integrated RTK/INS EKF and the INS DR is estimated through � TOA i k = c−1 ˜ρi k − δˆtr,k (3) with the pseudorange model of ˜ρi k ≜ ˜ρi k−1 + cf −1 c �� fc + ˆf i code,dop,k � Tcoh + ∆ ˆτi+,(RT K/INS) code,k,0 � (4) where ˜ρi k−1 and ˜ρi k are the instantaneous pseudorange measurements at the respective previous and current epochs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' δˆtr,k is the estimated local clock bias error;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' fc and c are the spreading code rate and the speed of light, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Tcoh is the coherent integration time ˆf i code,dop,k is the estimated code Doppler frequency and ∆ ˆτi+,(RTK/INS) code,k,0 is the proposed initial code phase error estimate in chips at the start of the kth epoch, and the estimation processes of them will be subsequently elaborated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' On the one hand,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆf i code,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='dop,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k can be written as ˆf i code,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='dop,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k = −fc fr ˜fcarr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='dop,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k + T −1 coh∆ ˆτi+ r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k (5) ˜f i carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='dop,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k = ∆ ˆf i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(aid) carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k + T −1 coh∆ ˆϕi+ r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k (6) with ∆ ˆf i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(aid) carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k =fr c � ˆve G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 · ˆei k � ˆpe G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 � − ˆvi k · ˆei k � ˆpe G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 � + cδˆ˙tr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k − cδˆ˙t i k � (7) or ∆ ˆf i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(aid) carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k =fr c � ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 · ˆei k � ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � − ˆvi k · ˆei k � ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � + cδˆ˙tr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k − cδˆ˙t i k � (8) ∆ ˆf i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(aid) carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k =fr c � ˆve G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ · ˆei k � ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ � − ˆvi k · ˆei k � ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ � + cδˆ˙tr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k − cδˆ˙t i k � (9) ∆ ˆf i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(aid) carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k =fr c � ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ · ˆei k � ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ � − ˆvi k · ˆei k � ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′ � + cδˆ˙tr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k − cδˆ˙t i k � (10) ∆ ˆf i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(aid) carr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k =fr c � ˆve I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 · ˆei k � ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � − ˆvi k · ˆei k � ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 � + cδˆ˙tr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k − cδˆ˙t i k � (11) where ˜fcarr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='dop,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k denotes the carrier Doppler frequency measurement;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' � T −1 coh∆ ˆτi+ r,k � and � T −1 coh∆ ˆϕi+ r,k � are the filtered code phase error and the filtered carrier phase error through the loop filters, respectively, which have accounted for the coherent integration interval in tracking, and its input is ∆ ˆτi x,k which will be explained later, with x ∈ {I,G/I,G/I|DR};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ∆ ˆf i,(aid) carr,k is the aided Doppler frequency computed via the user’s velocity estimation, known as a VDFLL technique Lashley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆvx,k′ / ˆvx,k′′ and δˆ˙tr,k are the predicted user’s velocity vector and the predicted user’s clock drift;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆvi k and δˆ˙t i k are the satellite velocity vector and the satellite clock drift predicted with the broadcast ephemeris;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆei k (·) is the operator of the unit cosine vector varied with the position estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' As mentioned above, ∆ ˆτi x,k is the APA discriminated code phase error, and there are three ways to obtain this estimate in the code tracking loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' For instance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the ones estimated via the respective RTK/INS EKF solution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the two-consecutive-epoch INS DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' and INS DR right after the EKF are computed as ∆ ˆτi G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k = ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(S) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k + ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(APA) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k � ˆri G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k−1 � (12) 11 A Preprint ∆ ˆτi I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k = ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(S) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k + ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(APA) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k � ˆri I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k−1 � (13) ∆ ˆτi G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k = ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(S) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k + ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(APA) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k � ˆri G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k−1 � (14) with ˆri G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k−1 = ���ˆpi k−1 − ˆpe G/I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′′−1 ��� ˆri I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k−1 = ���ˆpi k−1 − ˆpe I,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 ��� ˆri G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k−1 = ���ˆpi k−1 − ˆpe G/I|DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k′−1 ��� where ∆ ˆτi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='(S) r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k is the traditional discriminated code phase error as introduced earlier;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆpi k−1 is the satellite position vector computed from the broadcast ephemeris;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ∆ ˆτi,(APA) x,k (·) is the operator to obtain the absolute code phase error with the geometry distance prediction (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the APA process) and the error models, and its analytical expression is defined as ∆ ˆτi,(APA) r,k � ˆri x,k−1 � ≜ fc c � ˜ρi r,k−1 − � ˆri x,k−1 + � ˆBr,ρ,t,k−1 + ˆBi ρ,sys,k−1 � − κD ˆBr,mp,k−1 �� (15) Therefore, based on these discussions, it is easy to find that the absolute code phase error estimate ∆ ˆτi+,(RTK/INS) code,0,k in (4) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the difference between the received initial code phase and the counterpart of the local code replica synthesized with the NCO) can be alleviated by the proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Finally, the proposed algorithm in this paper is summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' This algorithm is realized in a GPS SDR prototype where L1 C/A signals are used to validate the TOA and position estimation performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 3 Results and Discussion The experimental equipment is set up as shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Two stationary data sets were collected in the real world to verify the proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A NovAtel antenna was used to receive the GPS L1 C/A IF signals through a Fraunhofer IIS RF frond-end, where the IF sampling rate is 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='125 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The IMU raw data were collected from the Crossbow Nav 440 device, where the IMU’s gyro and accelerometer bias stabilities are 10 deg/h and 1 mg, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Besides, it is worth mentioning that two samples are taken for updating the inertial sensor data for our navigation equation, so the updating rate of the INS DR is half (50 Hz) of the IMU raw data rate (100 Hz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The reference positions of the two experiments are obtained by averaging the results provided by the Crossbow Nav440 GPS/INS integration solutions (the centers of the IMU sensor and the GNSS antenna are sufficiently close in the setup and neglected in this experiment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The proposed algorithm is tested in a GPS SDR platform where the coherent integration time is 5 ms, the classic discriminators are chosen as the noncoherent-early-minus-late-amplitude code discriminator and Costas carrier discriminator, and the early-late spacing is four IF sample intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Five types of tracking algorithms are compared in the same SDR conditions except for the parameter adjustment in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' First, an open sky area is chosen to carry out the experiment where the test spot in Google Map and the sky plot of the available GPS satellites are shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' We first assess the SPP results for this open-sky case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The SPP is based on the weighted NLS algorithm in the tested SDR, which refers to an open-source package RTKLIB Takasu and Yasuda [2009].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 7 depicts the dilution of precision (DOP) results, SPP errors, and the 3D position cumulative distribution function (CDF) curves of 3D SPP root-mean-squared errors (RMSEs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Although the results show that the proposed algorithm does not increase the SPP accuracy compared to the classic STL algorithm in the open sky, it proves that the APA-based VDFPLL algorithms enhance the traditional RPA-based VDFLL in the static situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Meanwhile, using the INS can moderately enhance the RTK-based APA tracking process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, the RTK position errors for the different SDR algorithms are compared in Figure 8, where the position errors, horizontal position results for a Google Map show, and the CDF curves of 3D and 2D position estimates RMSE are included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The traditional RPA VDFLL does not help the RTK position accuracy in this open-sky and static case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The finding is that the RTK-only-based VDFPLL improves the RTK results within a 3D range while the RTK/INS-based VDFPLL slightly makes it outperform the STL-based horizontal 12 A Preprint Algorithm 1 High-accuracy APA GNSS code phase tracking based on RTK/INS deep integration Require: k∗ ≜ k mod KM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' subject to K,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='M ∈ Z+ and k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='k∗ ∈ N 1: while new digital IF samples (for a coherent processing interval) are received at the kth epoch do 2: Synthesize the code and carrier local replicas with the code/carrier NCOs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 3: Produce the early- prompt- and late-branch samples through the I&D using the local replicas and the received IF samples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 4: Discriminate the code/carrier phase errors with the outputs of the I&D (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', correlator outputs);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 5: if the base station information is available at the tracking epoch(s) {k∗ − 2M, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=',k∗ − M − 1} then 6: Compensate for the discriminated code phase error with (14);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 7: else if the base station information is available at the tracking epoch(s) {k∗ − M,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', k∗ − 1} then 8: Compensate for the discriminated code phase error with (12);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 9: else 10: Compensate for the discriminated code phase error with (13);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 11: end if 12: Optimize the compensated code phase error from Step 6/8/10 with a 1-Hz 2nd-order loop filter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 13: if the vector tracking trigger (5 Hz) is activated then 14: Optimize the discriminated carrier phase error with a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5-Hz 1st-order loop filter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 15: if the RTK/INS EKF is updated at the epoch(s) {k∗,k∗ − 2M,k∗ − 3M,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=',k∗ − (K − 1)M} then 16: Predict the carrier Doppler with (10);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 17: else if the RTK/INS EKF is updated at the epoch(s) {k∗ − 2M + 1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=',k∗ − M − 1} then 18: Predict the carrier Doppler with (8);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 19: else if the RTK/INS EKF is updated at the epoch(s) {k∗ − M} then 20: Predict the carrier Doppler with (9);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 21: else if the RTK/INS EKF is updated at the epoch(s) {k∗ − M + 1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=',k∗ − 1} then 22: Predict the carrier Doppler with (7);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 23: else 24: Predict the carrier Doppler with (11);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 25: end if 26: Compute the carrier frequency with (6) (for carrier NCO);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 27: else 28: Optimize and predict the carrier Doppler with a 15-Hz 3rd-order loop filter (for carrier NCO);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 29: end if 30: Compute the code frequency with (5) (for code NCO);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 31: end while Figure 5: Setup for the stationary experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 13 GNSS Satellite CrossbowNav440 NovAtel Antenna GPSSDR Fraunhofer IIS RFFront-EndA Preprint Figure 6: Open-sky test spot (Google Map show) and sky plot of available GPS satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 7: Single point navigation results and statistical analysis of different SDRs in the open-sky situation where dashed lines correspond to outlier epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) DOP values (b) SPP results (c) CDF curves of 3D SPP RMSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 14 N 30 330 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 300 30 G25 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 60 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 G23 G31 G03 G14 G321 G22 G01 G26 210 150SDR:STL SDR:RTK-basedVDFLL Initializationof SDR:RTK/INS-basedVDFLL theSDR (a) SDR:RTK-basedVDFPLL SDR:RTK/INS-baSedVDFPLL 3 East 2 3 North 2 2 20 40 60 80 100wW East [m] 50 North [m] 10 20 E 21 20 40 60 80 100 Epoch [s]0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 robability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 n Datafrom522555s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 to522645s 10 20 30 40 50 3D SPPRASErailNw 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0824 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0822 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='082 0 1A 1A St Davids United Church 0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0818 ★ titude 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0816 Testspot 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0814 CrowchildT Close park 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0812 20 m 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='125 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1245 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='124 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1235 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='123 Longitude ldegreeA Preprint Table 1: Parameter settings of the SDR regarding the real-world experimental validation SDR Type Relative position/ velocity aiding RTK absolute position aiding INS deep integration RTK/INS integration navigation solution Tracking loop filter STL (traditional) Kaplan and Hegarty [2017] No No No No 1-Hz 2nd-order DLL & 18-Hz 3rd-order PLL RTK-based VDFLL Lashley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2021] Yes No No No 1-Hz 2nd-order DLL & 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5-Hz 1st-order PLL & 15-Hz 3rd-order PLL (see Algorithm 1) RTK/INS-based VDFLL Lashley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2021] Yes Yes Yes Yes RTK-based VDFPLL Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022a] Yes Yes No No RTK/INS-based VDFPLL (proposed) Yes Yes Yes Yes Figure 8: RTK position results and statistical analysis of different SDRs in the open-sky situation where dashed lines correspond to the outlier epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) RTK position errors (b) horizontal RTK results in Google Map (c) CDF curves of 3D RTK RMSE (d) CDF curves of horizontal (2D) RTK RMSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 15 SDR:STL SDR:RTK-basedVDFLL Initializationof (a) SDR:RTK/INS-basedVDFLL the SDR SDR:RTK-basedVDFPLL SDR:RTK/INS-baSedVDFPLL East[m] t 4 2 0 LO North [m] 5 up [m] 5 20 40 60 80 100 GPStimesince522535s Epoch[s]SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='STL Datafrom522555s SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='RTK-based VDFLL 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0819 to522645s SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='RTKINS-based VDFLL SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='RTK-basedVDFPLL SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='RTKINS-basedVDFPLL ☆ Ground truth 5108185 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0818 ☆ 08173 5 m 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0817 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1238 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='123 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1236 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1285 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1234 ongtuce0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 Pro bability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 0 2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 Probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 8A Preprint positioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It can be explained that the vertical INS DR position solution would cause more code phase errors (compared to the STL tracking in a static open-sky case) in terms of the vertical position estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Next, we compare the RTK/INS integrated results of three SDRs in Figure 9, where “Ground-truth-based VDFPLL” means that the SDR leverages the actual position coordinates instead of on-the-fly RTK or integrated RTK/INS position estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is a hardware-in-the-loop (HIL) simulation strategy to provide a reference for the proposed algorithm under the same SDR conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In other words, the HIL simulation results represent the upper bound of the performance that the used SDR platform can achieve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Based on the CDF curves in Figure 9(d), the proposed accuracy slightly exceeds the traditional STL-based integrated RTK/INS solution within the 78% probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' So, the large errors can be alleviated in the integration results using the proposed algorithm in the open sky area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In contrast, the traditional VDFLL- based integrated RTK/INS positioning accuracy drops much in this well-condition static scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 9: RTK position results and statistical analysis of different SDRs in the open-sky situation where dashed lines correspond to the outlier epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) RTK position errors (b) horizontal RTK results in Google Map (c) CDF curves of 3D RTK RMSE (d) CDF curves of horizontal (2D) RTK RMSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' TOA curves will be evaluated in the following parts to examine the baseband processing discrepancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The TOA estimation from the GPS SDR is computed via (3), where it is worth noting that the ˜ρi k here is the raw data from the loop filter output without the carrier-smoothing algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the measurement and reference TOA residuals in meters are computed as follows (TOA measurement residual)i k ∆= ˜ρi k − c � TOAi 0 + δˆtr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 � − c � −f i d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0f −1 r + δˆ˙tr,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 � kTcoh (TOA reference residual)i k ∆= cTOAi k − cTOAi 0 − c � −f i d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0f −1 r � kTcoh TOA residual error ∆= (TOA measurement residual)i k − (TOA reference residual)i k where the TOA residuals exclude the initial pseudorange and initial Doppler frequency for the simplicity of analysis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' subscript 0 and k denote the initial and the kth epoch, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' TOAi 0 and f i d,0 represent the 16 Initialization SDR:STL,POS:RTK/IMUIntegration SDR:RTK/INS-basedVDFLL,POS:RTK/IMUIntegration of the SDR SDR:RTK/INS-basedVDFPLL,POS:RTK/IMUIntegration (a) SDR:Ground-truth-basedYDFPLL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='POS:RTK/iMUIntegratior East [m] 2 0 North [m] 2 [] dn 20 40 60 80 100 GPStimesince522535s Epoch[s]SDR:STL, POS:RTK/IMU Integration SDR:RTK/INS-based VDFLL, POS:RTK/IMU Integration 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0819 SDR:RTK/INS-based VDFPLL, POS:RTK/IMU Integration 0 SDR:Ground-truth-based VDFPLL, POS:RTK/IMU Integration ★ ground truth 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08185 2 Datafrom522555sto522645s ep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0818 ★ 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08175 5 m 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0817 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1238 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1237 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1236 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1235 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1234 Longitude Tdegree0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 Probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 Probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2A Preprint TOA and Doppler frequency reference at the initial epoch, and they are computed as T OAi 0=c−1 ����pgt,0 − pi 0 ��� + ˆBI,0 + ˆBT ,0 − cδˆti 0 � f i d,0 = fr c � vgt,0 · ˆei 0 − ˆvi 0 · ˆei 0 − cδˆ˙t i 0 � where pgt,0 and vgt,0 are the ground truth vectors in the ECEF coordinate frame for the user’s position and velocity in the stationary experiments, with vgt,0 = [0,0,0]T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' pi 0, vi 0, δˆti 0, and δˆ˙t i 0 are the satellite position and velocity vectors, satellite clock bias and drift errors, respectively, which are obtained and computed using the broadcast ephemeris;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' meanwhile, ˆBI,0 and ˆBT ,0 are the ionospheric error derived from the Klobuchar model and the tropospheric error calculated via the Saastamoninen model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ˆei 0 is the unit cosine vector computed from pgt,0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' δˆti 0 and δˆ˙t i 0 are the estimated user’s clock bias and drift errors computed as δˆtr,0 = averaging clock bias error − (navigation time spanning) 2 × δˆ˙tr,0 where δˆ˙tr,0 is the averaging value of the clock drift estimates from the “Ground-truth-based VDFPLL” SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It is worthwhile to say that the given δˆ˙t i 0 and δˆti 0 references are not sufficiently accurate, but they are satisfactory in validating the TOA performance amid different SDR algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 10 shows the error curves of the TOA residuals for the signals from the satellite of PRN1 (low elevation angle) and PRN22 (high elevation angle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' It proves that the APA-based vector tracking algorithms perform better in interference mitigation for the signals from the low satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In summary, even if the proposed algorithm does not manifest much better than the traditional STL in an open-sky static environment, it demonstrates a significant improvement in comparison with the traditional RPA vector tracking in the same condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' More specifically, it can be used as boosting complement for the existing vector GNSS receivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Another set of data was collected under a semi-open-sky situation where the GPS antenna was receiving the signals affected by the eastern CCIT building at the campus of the University of Calgary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The Google Map show of the test spot and the corresponding satellite sky plot are provided in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In this test, where the results are displayed in Figure 12, we also give the DOP values to offer the satellite geometry status;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' the SPP error curves and their 3D CDF are provided as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' First, it can be observed that the two VDFPLLs and the STL produce more reliable solutions as the position outliers occur to the two VDFLLs at around the 95th epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, it is evident that the proposed algorithm embraces the highest SPP accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' We also assess the RTK solution accuracy related to the different SDRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The RTK position error curves, posi- tion results in Google Map, and the 3D CDF curves are provided in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' After the SDR RTK solutions become stable, the RTK accuracy from the proposed SDR solutions still shows the highest performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The RTK-only-based APA algorithm can reduce the random noise, but it is more biased than the traditional STL algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The two RPA-only vector tracking techniques are still less capable of offering efficient assistance in the static test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Next, the integrated RTK/INS solutions are compared in the semi-open-sky environment as shown in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In this case, the proposed algorithm significantly improved the 2D positioning performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' At the same time, the RTK/INS-based RPA method elevates the 3D positioning accuracy compared to the STL-based integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The RPA- and APA-based integrated navigation accuracies over the error range of approximately 55% probability outperform the traditional STL one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Furthermore, the positioning results with the proposed algorithm perform more stable than the traditional vector tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Another finding is that RTK/INS-based APA vector tracking yields a much more ideal horizontal positioning estimate than the RPA one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' By contrast, the latter is superior to the former in the vertical direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' By comparing to the upper bound (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the estimation from the ground-truth-based VDFPLL SDR), it can be explained that the fusion of the low-cost IMU has a side effect on the vertical position solution when it is applied to the proposed RTK/INS-based VDFPLL SDR in this stationary experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, the raw TOA performance in terms of the signal from the high-elevation-angle satellite (PRN3) and the one with a low elevation angle affected by the multipath interference (PRN6) are plotted in Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 17 A Preprint Figure 10: Error curves of the TOA residuals for the GPS satellites PRN1 and PRN22 in the open-sky situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 11: Semi-open-sky test spot (Google Map show) and the sky plot of available GPS satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='PRN1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='350 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:STL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK-basedVDFLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK/INS-basedVDFLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='[w] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK-basedVDFPLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK/INS-basedVDFPLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Residuals ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince522536s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Error of Residuals of TOA [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince522536s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Residuals of TOA [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince522536s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Error of Residuals of TOA [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0812 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='081 Blockage CCITbuilding 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0808 1 1 68 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0806 ★ tud 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0804 PIN CcIT BuIding Test spot EnergiSimulation/ 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0802 FrankandSarahMe 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08 20 m 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1355 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='135 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1345 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='134 334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4335 Longitude [degreeN 30 330 15 G25 G06 300 30 45 60 G31 75 G23 G14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' G03 E G22 G26 2 G16 210 150 SA Preprint Figure 12: Single point navigation results and statistical analysis of different SDRs in the semi-open-sky situation where dashed lines correspond to the outlier epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) DOP values (b) SPP results (c) CDF curves of 3D SPP RMSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A more significant fluctuation in the TOA curves emerges at the PRN6 in this semi-open-sky experiment compared to the open-sky PRN1 (see Figure 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Also, both APA-based tracking loops are more capable of alleviating the TOA error varying with a long-term time spanning (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the level of dozens of seconds) than the RPA-based vector tracking and the STL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Nevertheless, the curves computed from the high-quality signal, PRN3, are highly homogeneous regarding all the tested tracking loop algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The next part will quantitatively examine the exact improvement the proposed algorithm can offer for the GNSS baseband estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' As mentioned, an upper bound of the instantaneous integrated positioning performance is obtained from the SDR under the HIL test using the “Ground-truth-based VDFPLL”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Therefore, the corresponding TOA error curve representing the upper bound can also be extracted from the tracking results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, we compute the TOA error of the PRN22 and PRN3 (with the highest elevation angles during the experiments) in the open-sky and semi-open-sky cases as the respective references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The proposed TOA error references reasonably model the remained local clock errors in meters varying with the time where the other biased errors, like the atmospheric delay and initial TOA errors, are assumed to be well removed by the given models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ultimately, the TOA curve references are derived and illustrated in Figure 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' After that, the TOA accuracy of different satellites in the two testing situations will be analyzed via these references in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Table 2 summarizes the statistical analysis of the TOA performances of different tracking algorithms where the RMSE results are computed for the used satellites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Then, in regard to the traditional STL, the TOA accuracy improvements of the two RPA- and APA-based vector tracking algorithms operated in the GPS SDR are computed and depicted in Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 19 SDR:STL SDR:RTK-basedVDFLL Initializationof SDR:RTK/INS-baSedVDFLL SDR:RTK-basedVDFPLL theSDR (a) SDR:RTK/INS-basedVDFPLL 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 East 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 North 3 20 40 60 80 100 GPStimesince524045sEpoch[s]Initialization of the SDR 21 [m 181 20 North [m] 40 20 20 40 60 80 100 Epoch [s]0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 robability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 Datafrom524055s to524160s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 0 10 20 30 40 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 3 spprmsuA Preprint Figure 13: RTK position results and statistical analysis of different SDRs in the semi-open-sky situation where dashed lines correspond to the outlier epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) RTK position error (b) horizontal RTK position results in Google Map (c) CDF curves of 3D RTK RMSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The curves in Figure 17 indicate that both APA tracking methods outperform two RPA ones in elevating the TOA accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Furthermore, regarding the lower-elevation satellites and the smaller-TOA-error channels, the TOA errors induced by the navigation results through the vector feedback procedure are more likely to drop in the proposed RTK/INS-based APA approach than in the RTK-only APA one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 18 plots the APA error curves estimated from the proposed RTK/INS-based VDFPLL modeling the instantaneous initial/absolute code phase error in meters at each tracking epoch of which the analytical expression is given by (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Compared to the traditional tracking algorithms (scalar and old vector tracking loops), the proposed algorithm can individually discriminate the absolute code phase error unrelating to the frequency error given by the same-epoch local replica subtracting incoming signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' This operation established through the proposed architecture is reasonable and it proves efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The implied information that the RTK/INS integrated EKF navigator provides more accurate positioning than the code-based-only SPP method can adequately explain the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' So, the dashed black lines in Figure 18 mean that the traditional scalar and vector tracking loops have nothing to recognize the code phase error not varying with the time spanning (the error residual remained by the traditional code discriminating process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' However, the proposed RTK/INS-based APA vector tracking can directly estimate the absolute code phase error at every tracking epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The APA code discriminated results can show how the code phases are corrected by the accurate user’s position solution, especially for the satellites facing the deterministic biased error changing as the cycles of dozens of seconds or longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' This phenomenon commonly occurs to the static user’s antenna receiving incoming signals affected by the multipath effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 20 SDR:STL SDR:RTK-basedVDFLL Initialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='of SDR:RTK/INS-based VDFLL theSDR SDR:RTK-baSedVDFPLL (a) SDR:RTK/INS-basedVDFPLL 10 5 0 10 North [m] 5 0 20 E 10 0 10 20 40 60 80 100 GPS time since 524045s Epoch [s]51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0807 SDR:STL SDR:RTK-based VDFLL SDR:RTK/INS-based VDFLL SDR:RTK-based VDFPL 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08065 ★ SDR:RTK/INS-based VDFPLL Ground truth atitude [degree] allegiatePINV 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0806 Datafrom524055sto524160s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08055 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0805 5 m 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1345 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1344 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1343 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1342 334.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='34 Longitude [degreel0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 robability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 5 10 15 20 3DRKRASEA Preprint Figure 14: RTK/INS integration position results and statistical analysis of different SDRs where dashed lines correspond to the outlier epochs in the semi-open-sky situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) RTK/INS integration position error (b) horizontal RTK/INS integration position results in Google Map (c) CDF curves of 2D RTK/INS integration position RMSE (d) CDF curves of 3D RTK/INS integration position RMSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Finally, it is worth mentioning that the proposed RTK/INS-based VDFPLL is a simplified prototype applying the APA discriminated error relying on the INS and RTK to the GNSS baseband processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The tracking performance still has space to be further improved by redoing loop filter algorithms (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', the EKF) or other GNSS baseband optimizing methods (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', snapshot processing Luo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022b], Fernández-Hernández et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022] and open-loop tracking Tsang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2022], van Graas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' [2009]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In other words, the proposed algorithm has a broad scope of use towards the GNSS signals at all frequencies and constellations, potentially contributing to the development of next-generation GNSS receivers and GNSS-based multi-sensor integrating navigation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 4 Conclusions This work proposes a deep integration of RTK and INS, enhancing the instantaneous code phase tracking performance in challenging static environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In the presented algorithm, the navigation solutions, especially the absolute position solution, from the integrated EKF navigator are deeply fused into the GNSS tracking loop, forming an APA code phase discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The RTK/INS-based APA discriminator combined with the vector tracking technique realized upon a GPS L1 C/A SDR can serve for more satisfactory tracking and positioning results than the RTK-based-only APA vector tracking approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Two real-world stationary experiments have verified the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Finally, the conclusions of this work can be drawn as follows: 21 SDR:STL,POS:RTK/IMUIntegration Initialization SDR:RTK/INS-basedVDFLL,POS:RTK/IMUIntegration of the SDR SDR:RTK/INS-basedVDFPLL,POS:RTK/IMUIntegration SDR:Ground-truth-basedVDFPLL,POS:RTK/IMUIntegration (a) 3 East[m] 2 North [m] 2 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 [u] 0 5 10 20 40 60 80 100 GPStimesince524045s Epoch[s]51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0807 SDR:STL, POS:RTK/IMU Integration SDR:RTK/INS-based VDFLL, POS:RTK/IMU Integration O SDR:RTK/INS-based VDFPLL, POS:RTK/IMU Integration SDR:Ground-truth-based VDFPLL, POS:RTK/IMU Integration ★ 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08065 ground truth llegiatePINW 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0806 Datafrom524055sto524160s 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08055 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0805 5 m 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1345 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1344 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1343 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1342 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='334 Longitude [degree0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 Probabil 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6A Preprint Figure 15: Error curves of the TOA residuals for the GPS satellites PRN6 and PRN3 in the semi-open-sky situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Figure 16: TOA curve references (regarding the error curves of the TOA residuals) derived from the ground- truth-based VDFPLL SDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' (a) TOA reference from PRN22 for the open-sky experiment (b) TOA reference from PRN3 for the semi-open-sky experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='PRN6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:STL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK-based VDFLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK/INS-baSedVDFLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='[] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK-basedVDFPLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK/INS-baSedVDEPLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='TOA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Residualsof ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince524042s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Error of Residuals of TOA [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince524042s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='900 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Residuals of TOA [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince524042s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN3 Error of Residuals of TOA [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince524042s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Error of Residuals of TOA (reference) [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince522536s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]PRN3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Error of Residuals of TOA (reference) [m] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Timesince524042s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Time [s]A Preprint ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Table 2: RMSEs of the TOA estimates from the active satellites regarding the two stationary experiments ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='where the reference curves for the error of residuals of TOA refer to Figure 16 (“OS” and” SOS” correspond ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='to “open-sky” and “semi-open-sky” testing situations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' “Averaging C/N0” is estimated from the “Ground-truth-based VDFPLL” SDR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' PRN numbers Elevation angle [◦] Averaging C/N0 [dB-Hz] PRN numbers of the TOA error reference RMSE for the error of residuals of TOA [m] STL RTK VDFLL RTK/INS VDFLL RTK VDFPLL Proposed RTK/INS VDFPLL SOS-25 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 SOS-03 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='92 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='03 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='12 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='17 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='85 OS-32 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 OS-22 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='62 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 SOS-06 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 SOS-03 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='49 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='31 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='24 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='05 OS-25 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 OS-22 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='23 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='12 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='16 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='22 SOS-16 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 SOS-03 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='89 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='39 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='22 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='81 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='08 OS-01 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 OS-22 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='31 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='19 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='80 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='61 SOS-14 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 SOS-03 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='92 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='89 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='87 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='67 OS-26 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='5 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 OS-22 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='45 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='68 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='54 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='96 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='97 OS-23 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 OS-22 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='23 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='96 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='91 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='07 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='24 SOS-26 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 SOS-03 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='47 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='66 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='51 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='22 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='65 OS-14 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='9 OS-22 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='78 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='19 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='46 SOS-23 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 SOS-03 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='06 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='75 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='23 SOS-31 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 SOS-03 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='64 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='34 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='38 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='12 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='17 OS-31 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='9 OS-22 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='49 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='63 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='67 SOS-22 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 SOS-03 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='54 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='57 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='58 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='58 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='54 OS-03 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 OS-22 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='63 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='23 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='87 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='52 Figure 17: Comparison of TOA accuracy improvements varying with the satellite elevation angles and the TOA errors (positive and negative values represent the improved and reduced performance percentages, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 23 100 of TOA Accuracy (RMSE) [%] 50 50 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK-based VDFLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK/INS-based VDFLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK-based VDFPLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='SDR:RTK/INS-based VDFPLL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Satellite Elevation Angle [Degrees]100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='of TOA Accuracy (RMSE) [%] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='mproement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='STL sR TOA RMsE [mA Preprint ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='Figure 18: APA code phase errors from the proposed RTK/INS-based VDFPLL SDR where the numbers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='correspond to the satellite PRN numbers and dashed black lines correspond to the estimates from the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='traditional scalar and vector tracking algorithms (a) open sky (b) semi-open sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The proposed RTK/INS APA vector tracking has improved the multipath mitigation performance of the GNSS baseband in static situations compared to the traditional scalar/vector tracking and the RTK-aided-only APA vector tracking;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The deeply integrated INS in the proposed high-accuracy APA GPS SDR has enhanced the TOA estimation accuracy more significantly regarding the satellites with low elevation angles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' The technique regarding the tested low-cost IMU deeply integrated into the RTK-position-aided vector GPS has proved to be inferior in improving the vertical positioning accuracy but can efficiently increase the horizontal positioning accuracy in challenging static environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Our future work will focus on base-station-free APA GNSS tracking upon INS DR and precise point positioning (PPP) technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' References H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Sharma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Lichtenberger, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Pany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Multipath Error Modelling and Position Error Over-bounding for Precise RTK Positioning using GNSS Raw Measurements from Smartphone for Automotive Navigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), pages 1902–1924, oct 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 0936406267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='17627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/publications/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='articleID=17627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Guohao Zhang, Weisong Wen, Bing Xu, and Li-ta Hsu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Extending Shadow Matching to Tightly-Coupled GNSS/INS Integration System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Transactions on Vehicular Technology, 69(5):4979–4991, may 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 0018-9545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/TVT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2981093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/ 9040648/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Xiaoli Liu, Muqing Liang, Yu Morton, Pau Closas, Ting Zhang, and Zhigang Hong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Performance evaluation of MSK and OFDM modulations for future GNSS signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' GPS Solutions, 18(2):163–175, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 15211886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291-014-0368-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Cimini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Divi- sion Multiplexing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Transactions on Communications, 33(7):665–675, jul 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 0096-2244.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/TCOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1096357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/1096357/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Jeroen C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Koelemeij, Han Dun, Cherif E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Diouf, Erik F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Dierikx, Gerard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Janssen, and Christian C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Tiberius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A hybrid optical–wireless network for decimetre-level terrestrial positioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Nature, 611(7936):473–478, nov 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 0028-0836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1038/s41586-022-05315-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/articles/s41586-022-05315-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Norman Krasner and Paul McBurney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Application of Super Resolution Correlation to Multipath Mitigation in an L5 Channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the 35th International Technical Meeting of the Satellite Division of The 24 OS-1 (a) 30 OS-26 Mastersatellite OS-23 OS-14 OS-25 20 OS-32 code phase error [m] OS-3 OS-31 10 OS-22 10 APA Timesince522535s 20 Traditional scalarandvector trackingestimates zeros 30 0 20 40 60 80 100 120 Time[s]sos-3 30 sos-6 sOs-14 SOs-16 sOs-22 Mastersatellite 20 SOS-23 sos-25 SOS-26 SOS-31 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ap0o: :10 PA: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1 Traditional scalar and vector trackingestimates zeros Timesince524041s 20 40 60 80 100 120A Preprint Institute of Navigation (ION GNSS+ 2022), pages 3249–3269, oct 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/publications/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='articleID=18584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, Li-Ta Hsu, and Yi Pan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A Super-Resolution Algorithm with FRFT Towards GNSS TOA Estimation for Multipath Channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the ION GNSS+ 2021, St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Louis, Missouri, USA, Sep 20-24, pages 3350–3359, oct 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='17951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/publications/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='articleID=17951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Mateus Da Rosa Zanatta, Joao Paulo Carvalho Lustosa Da Costa, Felix Antreich, Martin Haardt, Gordon Elger, Fabio Lucio Lopes De Mendonca, and Rafael Timoteo De Sousa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Tensor-Based Framework With Model Or- der Selection and High Accuracy Factor Decomposition for Time-Delay Estimation in Dynamic Multipath Scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Access, 8:174931–174942, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 2169-3536.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/ACCESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3024597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/9200326/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo and Naser El-Sheimy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Improving GNSS Positioning by De-noising Consecutive Correlator Outputs Using Graph Fourier Transform Filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the ION GNSS+ 2022, Denver, Colorado, USA, September 19-23, pages 3340–3348, sep 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18397.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/publications/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='articleID=18397.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Taro Suzuki, Kazuki Matsuo, and Yoshiharu Amano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Rotating GNSS Antennas: Simultaneous LOS and NLOS Multipath Mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' GPS Solutions, 24(3):86, jul 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 15211886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291- 020-01006-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291-020-01006-whttp://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 1007/s10291-020-01006-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Xi Hong, Wenjie Wang, Ning Chang, and Qinye Yin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A subspace-based code tracking loop design for GPS multi-antenna receiver in multipath environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' GPS Solutions, 24(4):109, oct 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 1080-5370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291-020-01020-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291-020-01020-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Daneshmand, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Broumandan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Sokhandan, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Lachapelle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' GNSS multipath mitigation with a moving antenna array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Transactions on Aerospace and Electronic Systems, 49(1):693–698, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 00189251.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/TAES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='6404136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Lawrence Lau and Paul Cross.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Journal of Geodesy, 81(11):713–732, oct 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 0949-7714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s00190- 007-0139-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s00190-007-0139-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Zhe Yan, Xiyuan Chen, Xinhua Tang, and Xuefen Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Design and Performance Evaluation of the Improved INS-Assisted Vector Tracking for the Multipath in Urban Canyons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Transactions on Instrumentation and Measurement, 71, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 15579662.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/TIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3204107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ivan Smolyakov, Mohammad Rezaee, and Richard B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Langley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Resilient multipath prediction and detection architecture for low-cost navigation in challenging urban areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Navigation, Journal of the Institute of Navigation, 67(2):397–409, jun 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 00281522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/navi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' James J Spilker Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Fundamentals of signal tracking theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Bradford W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Parkinson, James J Spilker Jr, Penina Axelrad, and Per Enge, editors, Global Positioning System: Theory And Applications, Volume 1, chapter 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' American Institute of Aeronautics and Astronautics, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', Washington, DC, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' M Zhodzishsky, S Yudanov, V Veitsel, and J Ashjaee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Co-OP Tracking for Carrier Phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the ION GPS 1998, Nashville, USA, Sep 15-18, pages 653–664, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Patrick Henkel, Kaspar Giger, and Christoph Gunther.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Multifrequency, Multisatellite Vector Phase-Locked Loop for Robust Carrier Tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Journal of Selected Topics in Signal Processing, 3(4):674–681, aug 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 1932-4553.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/JSTSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2025637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/ document/5166551/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ahmad Shafaati, Tao Lin, Ali Broumandan, and Gérard Lachapelle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Design and Implementation of an RTK- Based Vector Phase Locked Loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Sensors, 18(3):845, mar 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 1424-8220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3390/s18030845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='mdpi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/1424-8220/18/3/845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Shashank Satyanarayana, Daniele Borio, and Gerard Lachapelle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A Composite Model for Indoor GNSS Signals: Characterization, Experimental Validation and Simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Navigation, 59(2):77–92, jun 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 00281522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/navi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/navi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Kelly and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Braasch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Validation of theoretical GPS multipath bias characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In 2001 IEEE Aerospace Conference Proceedings (Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='01TH8542), volume 3, pages 3/1317–3/1325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 0- 7803-6599-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/AERO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='931362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/931362/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 25 A Preprint RICHARD D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' VAN NEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Multipath Effects on GPS Code Phase Measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Navigation, 39(2):177–190, jun 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 00281522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2161-4296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='tb01873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2161-4296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='tb01873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Elliott D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Kaplan and Christopher Hegarty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Understanding GPS/GNSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Principles and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Artech house, 3rd edition, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 1580538940.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1016/s1364-6826(97)83337-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Matthew Lashley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Modelling and performance analysis of GPS vector tracking algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' thesis, Auburn University, Auburn, USA, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://ezproxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='lib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ucalgary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ca/login?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='url=https://search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' proquest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/docview/304830161?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='accountid=9838.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Katrin DIetmayer, Florian Kunzi, Fabio Garzia, Matthias Overbeck, and Wolfgang Felber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Real Time Results of Vector Delay Lock Loop in a Light Urban Scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 2020 IEEE/ION Position, Location and Navigation Symposium, PLANS 2020, pages 1230–1236, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/PLANS46316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='9109832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, Li-Ta Hsu, Zhetao Zhang, and Naser El-Sheimy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Improving GNSS baseband using an RTK-position- aided code tracking algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' GPS Solutions, 26(4):125, oct 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 1080-5370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291- 022-01305-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291-022-01305-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Paul D Groves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Principles of GNSS, inertial, and multisensor integrated navigation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Artech House, Boston&London, 2nd edition, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 1608070050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Kelly Harke and Kyle O’Keefe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Gyroscope Drift Estimation of a GPS/MEMSINS Smartphone Sensor Integration Navigation System for Kayaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the ION GNSS+ 2022, pages 1413–1427, Denver, the US, oct 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Tisheng Zhang, Shan Liu, Qijin Chen, Xin Feng, and Xiaoji Niu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Carrier-Phase-Based Initial Heading Alignment for Land Vehicular MEMS GNSS/INS Navigation System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Transactions on Instrumentation and Measurement, 71:1–13, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 0018-9456.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/TIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='3208646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https:// ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/9899471/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, Li-Ta Hsu, Yan Xiang, Bing Xu, and Chunyang Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' An Absolute-Position-Aided Code Dis- criminator Towards GNSS Receivers for Multipath Mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the ION GNSS+ 2021, St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Louis, Missouri, USA, Sep 20-24, pages 3772–3782, 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/publications/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='articleID=18001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Matthew V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Lashley, Scott Martin, and James Sennott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Vector Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Jade Morton, Frank van Diggelen, James J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Spilker Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=', Bradford W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Parkinson, and Grace Lo, ShermanGao, editors, Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications, volume 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' John Wiley & Sons, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Matthew Lashley and David M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Bevly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Performance comparison of deep integration and tight coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Navi- gation, Journal of the Institute of Navigation, 60(3):159–178, sep 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 00281522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/navi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='com/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1002/navi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Antonio M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Herrera, Hendy F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Suhandri, Eugenio Realini, Mirko Reguzzoni, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Clara de Lacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' goGPS: open-source MATLAB software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' GPS Solutions, 20(3):595–603, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 15211886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1007/s10291- 015-0469-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, Chunyang Yu, Bing Xu, Jian Li, Guang-Je Tsai, You Li, and Naser El-Sheimy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Assessment of Ultra-Tightly Coupled GNSS/INS Integration System towards Autonomous Ground Vehicle Navigation Using Smartphone IMU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), pages 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE, dec 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 978-1-7281-2345-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/ICSIDP47821.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='9173292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/9173292/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, You Li, Jin Wang, and Naser El-Sheimy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Supporting GNSS Baseband Using Smartphone IMU and Ultra-Tight Integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='02613, 2021c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/abs/2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 02613.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, Jian Li, Chunyang Yu, Zhitao Lyu, Zhe Yue, and Naser El-Sheimy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A GNSS software- defined receiver with vector tracking techniques for land vehicle navigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ION 2019 Pacific PNT Meeting, Honolulu, Hawaii, USA, April 8-11, volume 2019-April, pages 713–727, 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 0936406224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='16834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/publications/abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='cfm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' articleID=16834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ramsey Faragher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Deriva- tion [Lecture Notes].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Signal Processing Magazine, 29(5):128–132, sep 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 1053-5888.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/MSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2203621.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' URL http://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='org/document/6279585/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 26 A Preprint Tomoji Takasu and Akio Yasuda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the International symposium on GPS/GNSS, Jeju, Korea, pages 4–6, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Yiran Luo, Li-Ta Hsu, and Naser El-Sheimy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' A Baseband MLE for Snapshot GNSS Receiver Using Super- Long-Coherent Correlation in a Fractional Fourier Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' unpublished, 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Ignacio Fernández-Hernández, José A López-Salcedo, and Gonzalo Seco-Granados.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 9 Snapshot Re- ceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Kai Borre, Ignacio Fernández-Hernández, José A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' López-Salcedo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Zahidul H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Bhuiyan, editors, GNSS Software Receivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Cambridge University Press, oct 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISBN 9781108934176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1017/9781108934176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Chin Lok Tsang, Yiran Luo, and Li-Ta Hsu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Long Coherent Open-Loop GPS L5Q Signal Positioning: A Case Study for an Urban Area in Hong Kong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' In Proceedings of the ION GNSS+ 2022, Denver, Colorado, USA, September 19-23, pages 2025–2041, oct 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='33012/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='18326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Frank van Graas, Andrey Soloviev, Maarten Uijt de Haag, and Sanjeev Gunawardena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' Closed-loop sequential signal processing and open-loop batch processing approaches for GNSS receiver design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' IEEE Journal on Selected Topics in Signal Processing, 3(4):571–586, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' ISSN 19324553.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='1109/JSTSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content='2023350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
+page_content=' 27' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tAyT4oBgHgl3EQfdveI/content/2301.00308v1.pdf'}
diff --git a/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf b/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..082ccd70344548843a704dbb40ef0ebc5207589a
--- /dev/null
+++ b/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:92718ad296cac36eaaff1a18490c0b351ba568ff079c1db5e748c3060fe78149
+size 564112
diff --git a/atFJT4oBgHgl3EQf8S2B/vector_store/index.pkl b/atFJT4oBgHgl3EQf8S2B/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..24b345cbac1b980ae337be4adac80e9081b88cad
--- /dev/null
+++ b/atFJT4oBgHgl3EQf8S2B/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:157729e5ee3ff9398a9fdf73c9d3775e20da82d5f929341797a38be739de5300
+size 215748
diff --git a/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf b/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..15d12b38595fe5c194b05ebe34e519330571bd4e
--- /dev/null
+++ b/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bf6afcbd1fe301770726943526c434288c18a749339cf54d01f37ec48bd2d433
+size 922786
diff --git a/bdE3T4oBgHgl3EQfdgpw/vector_store/index.pkl b/bdE3T4oBgHgl3EQfdgpw/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..b69fc08b460a6e956b387b3b769605e8af3d4d88
--- /dev/null
+++ b/bdE3T4oBgHgl3EQfdgpw/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c4ca4eaca740f1acea591cd5c2ffc2b9ab3da117062f8a52b117e3d069d38f3e
+size 120781
diff --git a/bdFAT4oBgHgl3EQf5B6R/content/tmp_files/2301.08731v1.pdf.txt b/bdFAT4oBgHgl3EQf5B6R/content/tmp_files/2301.08731v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2d30182ee80a7c10c80bd1f7be42ffd4e310a16f
--- /dev/null
+++ b/bdFAT4oBgHgl3EQf5B6R/content/tmp_files/2301.08731v1.pdf.txt
@@ -0,0 +1,1188 @@
+Can Peanuts Fall in Love with Distributional Semantics?
+James A. Michaelov (j1michae@ucsd.edu)
+Seana Coulson (scoulson@ucsd.edu)
+Benjamin K. Bergen (bkbergen@ucsd.edu)
+Department of Cognitive Science, University of California, San Diego
+9500 Gilman Dr, La Jolla, CA 92093, USA
+Abstract
+The context in which a sentence appears can drastically alter
+our expectations about upcoming words—for example, follow-
+ing a short story involving an anthropomorphic peanut, exper-
+imental participants are more likely to expect the sentence the
+peanut was in love than the peanut was salted, as indexed by
+N400 amplitude (Nieuwland & van Berkum, 2006). This rapid
+and dynamic updating of comprehenders’ expectations about
+the kind of events that a peanut may take part in based on
+context has been explained using the construct of Situation
+Models—updated mental representations of key elements of
+an event under discussion, in this case, the peanut protago-
+nist. However, recent work showing that N400 amplitude can
+be predicted based on distributional information alone raises
+the question whether situation models are in fact necessary for
+the kinds of contextual effects observed in previous work. To
+investigate this question, we attempt to model the results of
+Nieuwland and van Berkum (2006) using six computational
+language models and three sets of word vectors, none of which
+have explicit situation models or semantic grounding. We find
+that the effect found by Nieuwland and van Berkum (2006)
+can be fully modeled by two language models and two sets of
+word vectors, with others showing a reduced effect. Thus, at
+least some processing effects normally explained through situ-
+ation models may not in fact require explicit situation models.
+Keywords: psycholinguistics; human language comprehen-
+sion; event-related brain potentials; N400; natural language
+processing; deep learning; language models; word vectors
+Introduction
+It is widely believed that prediction plays a key role in lan-
+guage processing, with more predictable words being pro-
+cessed more easily (Fischler & Bloom, 1979; Kutas & Hill-
+yard, 1984; Levy, 2008; Kutas, DeLong, & Smith, 2011;
+Van Petten & Luka, 2012; DeLong, Troyer, & Kutas, 2014;
+Luke & Christianson, 2016; Kuperberg, Brothers, & Wlotko,
+2020). Perhaps the strongest evidence for this comes from the
+N400, a neural signal of processing difficulty that is highly
+correlated with lexical probability—contextually probable
+words elicit an N400 response of smaller (less negative) am-
+plitude than contextually improbable words, whether pre-
+dictability is determined based on human judgements (Kutas
+& Hillyard, 1984; for review see Van Petten & Luka, 2012)
+or a corpus (Parviz, Johnson, Johnson, & Brock, 2011; Frank,
+Otten, Galli, & Vigliocco, 2015; Aurnhammer & Frank,
+2019b; Merkx & Frank, 2021; Szewczyk & Federmeier,
+2022; Michaelov, Coulson, & Bergen, 2022).
+A striking feature of the predictions indexed by the N400
+is how flexible they can be. Under normal circumstances, a
+sentence such as the peanut was in love would be highly im-
+probable, much more so than the peanut was salted. Follow-
+ing the short story in (1), however, this changes (Nieuwland
+& van Berkum, 2006).
+(1) A woman saw a dancing peanut who had a big smile on
+his face. The peanut was singing about a girl he had just
+met. And judging from the song, the peanut was totally
+crazy about her. The woman thought it was really cute to
+see the peanut singing and dancing like that.
+In fact, Nieuwland and van Berkum (2006), who tested this
+in Dutch, found that in the context of (1), the last word of
+de pinda was verliefd (‘the peanut was in love’) elicited a
+smaller N400 than de pinda was gezouten (‘the peanut was
+salted’). How does such a dramatic reversal occur?
+One possibility, that put forward by Nieuwland and van
+Berkum (2006), is that while reading the context, the reader’s
+mental representation of the peanut is altered such that it is
+treated as an animate entity.
+This, as Nieuwland and van
+Berkum (2006) note, is in line with theories of situation mod-
+els, which argue that we keep track of the entities under
+discussion, as well as their properties and relations, among
+other things. Such accounts generally involve explicitly struc-
+tures or schemata, grounding in world knowledge or expe-
+rience, extraction of propositional information, or a com-
+bination of these (see, e.g., Bransford, Barclay, & Franks,
+1972; Kintsch & van Dijk, 1978; Johnson-Laird, 1980; Gar-
+nham, 1981; Johnson-Laird, 1983; van Dijk & Kintsch, 1983;
+Kintsch, 1988; Zwaan, Langston, & Graesser, 1995; Zwaan,
+Magliano, & Graesser, 1995; Radvansky, Zwaan, Federico,
+& Franklin, 1998; Kintsch, 1998; Zwaan & Radvansky,
+1998; Zwaan & Madden, 2004; Kintsch, 2005; Van Berkum,
+Koornneef, Otten, & Nieuwland, 2007; Kintsch & Man-
+galath, 2011; Butcher & Kintsch, 2012; Zwaan, 2014, 2016;
+Zacks & Ferstl, 2016; Kintsch, 2018; Hoeben Mannaert &
+Dijkstra, 2021). Under a situation model account, the reader
+alters their semantic representation of the peanut such that it
+has animate features in accordance with the information that
+it can sing, dance, and show emotions, facilitating the pro-
+cessing of in love.
+While this hypothesis—that structured or grounded situ-
+ation models explain N400 effects such as those found by
+Nieuwland and van Berkum (2006)—is generally accepted
+(e.g., by Hagoort & van Berkum, 2007; Filik & Leuthold,
+arXiv:2301.08731v1 [cs.CL] 20 Jan 2023
+
+2008; Warren, McConnell, & Rayner, 2008; Rosenbach,
+2008; Ferguson & Sanford, 2008; Ferguson, Sanford, &
+Leuthold, 2008; Menenti, Petersson, Scheeringa, & Hagoort,
+2009; Bicknell, Elman, Hare, McRae, & Kutas, 2010; de
+Groot, 2011; Metusalem et al., 2012; Aravena et al., 2014;
+Zwaan, 2014; Xiang & Kuperberg, 2015; Kuperberg et al.,
+2020) and has been shown to be viable using computational
+modeling (Venhuizen, Crocker, & Brouwer, 2019), there are
+also alternative explanations.
+The possibility that we explore in the present study is that
+the effect is explained by lexical prediction based on distri-
+butional linguistic knowledge. A number of researchers have
+found that modeling the amplitude of the N400 based on the
+statistics of language can both be used to model N400 effects
+(Ettinger, Feldman, Resnik, & Phillips, 2016; Michaelov &
+Bergen, 2020; Michaelov, Bardolph, Coulson, & Bergen,
+2021; Michaelov & Bergen, 2022; Uchida, Lair, Ishiguro, &
+Dominey, 2021) and to predict single-trial N400 amplitude
+(Chwilla & Kolk, 2005; Parviz et al., 2011; Van Petten, 2014;
+Frank et al., 2015; Aurnhammer & Frank, 2019a, 2019b;
+Merkx & Frank, 2021; Michaelov et al., 2021; Michaelov
+& Bergen, 2022; Szewczyk & Federmeier, 2022).
+Specifically, we look at two possible ways in which this
+might arise. One, which we refer to as event-level priming,
+refers to the idea that a word associated with a previously-
+discussed event may be more likely to be predicted by virtue
+of this. This is something that has been previously reported in
+the N400—Metusalem et al. (2012), for example, found that
+that merely being related to the event under discussion leads
+to a smaller N400 response to a word even when that word is
+inappropriate. Michaelov and Bergen (2022) model this with
+transformer language models—systems trained to calculate
+the probability of a word given its context based on the statis-
+tics of language alone—showing that this effect is explainable
+with distributional information. Thus, it may be the case that
+the fact that in love is related to, for example, being crazy
+about someone that leads to it being predicted to be more
+likely than salted. Following Michaelov and Bergen (2022),
+we investigate this using 6 Dutch transformer language mod-
+els (Havinga, 2021, 2022a, 2022b, 2022c; de Vries et al.,
+2019; Delobelle, Winters, & Berendt, 2020), testing whether
+they show the same effect as humans—that is, whether they
+predict the canonical sentence the peanut was salted to be less
+likely than the noncanonical sentence the peanut was in love.
+An alternative possibility is what we refer to as lexical
+priming. More simply than in the case of event-level prim-
+ing, it may be the case that the preceding context involving
+words such as dancing, smile, singing, crazy, and cute ex-
+erts a stronger pressure on prediction of in love than peanut
+does on salted. Because language models appear to exhibit
+lexical priming effects (Kassner & Sch¨utze, 2020; Misra, Et-
+tinger, & Rayz, 2020), we instead to turn to word vectors to
+test this. Word vectors are representations of words derived
+from their co-occurrence statistics, either directly or based
+on word embeddings learned by neural networks (see, e.g.,
+Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988;
+Landauer, Foltz, & Laham, 1998; Mikolov, Sutskever, Chen,
+Corrado, & Dean, 2013; Pennington, Socher, & Manning,
+2014; Mikolov, Grave, Bojanowski, Puhrsch, & Joulin, 2018;
+Tulkens, Emmery, & Daelemans, 2016; Grave, Bojanowski,
+Gupta, Joulin, & Mikolov, 2018). The cosine distance be-
+tween the vector of each critical word (e.g. in love or salted)
+and the mean of the vectors of the words in the preceding con-
+text can therefore be used to test how similar the critical word
+is to the words preceding it (Ettinger et al., 2016; Uchida et
+al., 2021), and thus, the extent to which it is predicted based
+on them. To do this this we used three sets of Dutch word
+vectors (from Tulkens et al., 2016; and Grave et al., 2018).
+Background
+A number of researchers have attempted to model the N400
+computationally, including using language models (Parviz
+et al., 2011; Frank et al., 2015; Aurnhammer & Frank,
+2019b; Michaelov & Bergen, 2020; Merkx & Frank, 2021;
+Michaelov et al., 2021, 2022; Szewczyk & Federmeier, 2022)
+and the distances between vector representations of words
+(Parviz et al., 2011; Van Petten, 2014; Ettinger et al., 2016;
+Uchida et al., 2021). There have also been several attempts
+to computationally model whether the amplitude of the N400
+response is impacted by situation models (Uchida et al., 2021;
+Venhuizen et al., 2019) and thematic roles (Brouwer, Crocker,
+Venhuizen, & Hoeks, 2017; Fitz & Chang, 2019; Rabovsky,
+Hansen, & McClelland, 2018).
+To the best of our knowledge, only one previous study
+(Uchida et al., 2021) has directly attempted to model the dis-
+course effect found by Nieuwland and van Berkum (2006),
+and it does not rely on purely distributional linguistic infor-
+mation. Specifically, Uchida et al. (2021) base their model on
+Wikipedia2Vec (Yamada et al., 2020) vectors—while these
+include distributional information derived from the surface-
+level statistics of language, they also include information
+about hyperlinks between Wikipedia pages, and thus struc-
+tured semantic relations based on human judgements of rel-
+evance and importance (Yamada et al., 2020). Additionally,
+Uchida et al. (2021) only look at the English-translated ver-
+sion of the single stimulus item presented in (1), and thus, it
+is unclear whether the results generalize to all the stimuli in
+the original study. The current study overcomes these infer-
+ential limitations by using the original Dutch stimuli and by
+using neural language models and word vectors trained only
+on natural language input.
+The present study
+We investigate the adequacy of distributional knowledge to
+explain the human N400 effect found by Nieuwland and van
+Berkum (2006) using predictions of neural network language
+models and the distance between the word vectors of the criti-
+cal words and their context. Specifically, we ask this question
+for two possible variants of the effect found by Nieuwland
+and van Berkum (2006).
+
+Reduction effect
+Nieuwland and van Berkum (2006) presented experimental
+participants with short stories such as those in (1) including
+“canonical” sentences like the peanut was salted or “non-
+canonical” ones like the peanut was in love. One approach
+to whether language models and human show the same pre-
+diction patterns (taken by Uchida et al., 2021) is to compare
+the statistical metrics the critical words elicit in the context of
+the full story versus in isolation. Without preceding context,
+these sentences should produce values that match the canon-
+icality of the sentence, but the difference should attenuate or
+reverse following the story context.
+Thus, we ran a statistical analysis testing for an interac-
+tion between stimulus length (full story or only the last sen-
+tence) and canonicality (canonical or noncanonical). Such
+an interaction would reveal a context-dependent difference in
+the effect of canonicality on our statistical metrics; and thus
+would replicate in neural language models the effect found by
+Nieuwland and van Berkum (2006).
+However, an interaction between stimulus length and
+canonicality in this direction could result from either a rever-
+sal or a decrease in the magnitude of the canonicality effect.
+Canonical stimuli might elicit lower surprisals or smaller co-
+sine distances in both context conditions, but of different
+magnitudes. For this reason, we label the effect measured by
+an interaction (in the expected direction) a reduction effect.
+Reversal effect
+Nieuwland and van Berkum (2006) did not employ the 2 x
+2 design that would allow them to detect an interaction—
+they compared the N400 in context only, finding that canon-
+ical stimuli actually elicited larger N400 responses than non-
+canonical stimuli. To replicate this finding, we test whether
+the canonical full-length stimuli elicit higher surprisals or
+greater cosine distances than the noncanonical full-length
+stimuli, a reversal effect.
+Implications
+If either language models or word vectors can successfully
+model the reversal effect, this would suggest that distribu-
+tional information is sufficient to explain the data reported
+by Nieuwland and van Berkum (2006). Thus, while situation
+models and extralinguistic information may be involved in the
+neurocognitive system underlying the N400, additional evi-
+dence is required to prove this. If neither can model either ef-
+fect, this would undermine the claim that distributional infor-
+mation is sufficient to explain the effect found by Nieuwland
+and van Berkum (2006). Finally, if either language models
+or word vectors can successfully model the reduction effect
+but not the full reversal effect, this may support the idea that
+distributional information could be used as part of the neu-
+rocognitive system underlying the N400 response, that it is
+not sufficient to yield the dynamic contextual sensitivity hu-
+mans display. Situation models and other sources of informa-
+tion might explain the remainder.
+Method and approach
+Original experiment and stimuli
+Stimuli were used from the original experiment, and are pro-
+vided online1 by the authors (Nieuwland & van Berkum,
+2006). We compared the effect of experimental condition on
+the N400 and on neural network surprisal (as in Michaelov
+& Bergen, 2020) and the cosine similarity between the word
+vector of the critical word and the mean of the word vectors
+in its context (as in Ettinger et al., 2016).
+The stimuli use 60 full-length story frames, each of which
+has either a canonical or noncanonical predicate, for 120
+unique stories. As the aim is to model human online compre-
+hension processes, the models only used the text before the
+critical words (e.g., in love or salted) to predict the critical
+words, so stories were truncated after the critical word. For
+the critical sentence stimuli, we isolated the last sentence of
+these truncated stories, including and up to the critical word
+in each story (e.g., The peanut was in love). This produced
+240 stimuli, as shown in Table 1.
+Predicate Type
+Stimulus Length
+Count
+Canonical
+Full-length
+60
+Canonical
+critical sentence
+60
+Noncanonical
+Full-length
+60
+Noncanonical
+critical sentence
+60
+Table 1: Experimental stimuli derived from Nieuwland and
+van Berkum (2006).
+Experiment 1: Language Models
+Language models
+In this study, we use six pretrained models available through
+the transformers package (Wolf et al., 2020). Four of these
+models—Dutch versions of the medium (Havinga, 2021) and
+large (Havinga, 2022a) GPT-2 models (Radford et al., 2019)
+and Dutch versions of the 125 million parameter (Havinga,
+2022b) and 1.3 billion parameter (Havinga, 2022c) GPT-Neo
+models (Black, Gao, Wang, Leahy, & Biderman, 2021)—
+were autoregressive, meaning that they are trained to predict
+a word based only on its preceding context.
+The remain-
+ing two models—BERTje (de Vries et al., 2019) and Rob-
+BERT v2 (Delobelle et al., 2020), based on BERT (Devlin,
+Chang, Lee, & Toutanova, 2019) and RoBERTa (Liu et al.,
+2019), respectively—are masked language models, meaning
+that they are also trained to predict a word based on the text
+following the critical word. However, as stated, in the present
+study, all models were only provided with the context preced-
+ing the critical words. We ran the stimuli through each lan-
+guage model, calculating the surprisal of each critical word
+that was in the model’s vocabulary. To do this, we calculated
+the negative of the logarithm of the probabilities provided
+1https://www.researchgate.net/publication/268208198
+
+for each critical word by each of the language models. We
+then tested for the reduction and reversal effects with these
+surprisal values. The language models were run in Python
+(Van Rossum & Drake, 2009), using the PyTorch (Paszke et
+al., 2019) implementation of each model, as provided by the
+transformers package (Wolf et al., 2020).
+Statistical analysis and data manipulation were carried out
+in R (R Core Team, 2020) using Rstudio (RStudio Team,
+2020) and the tidyverse (Wickham et al., 2019) and lme4
+(Bates, M¨achler, Bolker, & Walker, 2015) packages.
+Reduction effect
+In order to test the reduction effect, we constructed linear
+mixed-effects regression models, with the surprisal calculated
+from each language model as the dependent variable. In each
+model, predicate type (canonical or noncanonical) and stimu-
+lus length (full-length or critical sentence) were fixed effects
+and story frame (each of the 60) was a random intercept. For
+the regressions with the autoregressive models and BERTje
+surprisal as their dependent variables, we then constructed
+regressions also including an interaction between predicate
+type and stimulus length. Using likelihood ratio tests, we
+found that these regressions including the interaction fit the
+data significantly better than those without the interaction
+(GPT-2 Medium: χ2(1) = 116.0, p < 0.001; GPT-2 Large:
+χ2(1) = 107.3, p < 0.001; GPT-Neo 125M: χ2(1) = 61.7, p <
+0.001; GPT-Neo 1.3B: χ2(1) = 65.3, p < 0.001; BERTje:
+χ2(1) = 44.4, p < 0.001), indicating a significant interaction
+between predicate type and stimulus length. The regression
+with RobBERT surprisal as its dependent variable and no in-
+teraction had a singular fit, but the regression with the inter-
+action did not. Thus, instead of running a likelihood ratio
+test to investigate whether there was a significant interaction,
+we used a a Type III ANOVA with Satterthwaite’s method
+for estimating degrees of freedom (Kuznetsova, Brockhoff,
+& Christensen, 2017) on the regression with the interaction,
+finding it to be a significant predictor of RobBERT surprisal
+(F(1,71.2) = 81.0, p < 0.001).
+Note that all reported p-
+values are corrected for multiple comparisons based on false
+discovery rate (Benjamini & Yekutieli, 2001).
+For all language models, there was a significant interac-
+tion between predicate type and stimulus length. Further in-
+spection of the regressions showed that in all cases, the in-
+teraction was in the expected direction.
+Thus, all models
+displayed the reduction effect. This can be seen visually in
+Figure 1—in all models, when only the critical sentence was
+presented, the mean surprisal for critical words in canonical
+sentences is lower than for critical words in noncanonical sen-
+tences. Conversely, when the full-length story is presented to
+the language models, the critical words in the noncanonical
+sentences elicit a lower or roughly-equal surprisal than the
+critical words in the canonical sentences.
+Reversal effect
+To test for which models this latter finding was statistically
+significant, we initially attempted to fit linear mixed-effects
+regression models for each the full-length and critical sen-
+tence stimulus results for each language model; however, this
+led to several models with singular fits.
+Instead, we car-
+ried out pairwise two-tailed t-tests, comparing the surprisal of
+canonical and noncanonical stimuli for full-length and critical
+sentence stimuli for each language model.
+First, we test whether canonical critical sentence (only)
+stimuli elicit lower surprisals than noncanonical critical sen-
+tence stimuli.
+For all language models, the decontextual-
+ized canonical critical sentence stimuli elicit significantly
+lower surprisals than noncanonical critical sentence stimuli
+after correction for multiple comparisons (GPT-2 Medium:
+t(88.9) = −9.65, p < 0.001; GPT-2 Large: t(89.0) = −9.59,
+p < 0.001; GPT-Neo 125M: t(88.6) = −9.20, p < 0.001
+; GPT-Neo 1.3B: t(89.0) = −9.72, p < 0.001; BERTje:
+t(48.4) = −5.99, p < 0.001; RobBERT: t(55.1) = −7.67,
+p < 0.001).
+Next, in order to investigate the reversal effect, we test
+whether canonical full-length stimuli elicit lower surprisals
+than noncanonical full-length stimuli. After correction for
+multiple comparisons, only the Dutch GPT-2 models suc-
+cessfully model the reversal effect—they are the only mod-
+els for which canonical full-length stimuli elicit signifi-
+cantly higher surprisals than noncanonical full-length stimuli
+(GPT-2 Medium: t(86.3) = 5.61, p < 0.001; GPT-2 Large:
+t(88.5) = 5.34, p < 0.001).
+With the other models, while the difference was in the cor-
+rect direction, it was not significant after correction for mul-
+tiple comparisons (GPT-Neo 125M: t(89.0) = −0.57, p =
+1.000 ; GPT-Neo 1.3B: t(89.0) = 0.71, p = 1.000; BERTje:
+t(51.5) = 0.79, p = 1.000; RobBERT: t(46.6) = 2.31, p =
+0.120).
+However, it is worth noting that the contrast between the
+two sets of results (critical sentence only vs. full stimulus)
+means that significant canonicality effects for the critical sen-
+tence stimuli disappear in the full-length stimuli, underscor-
+ing the presence of a reduction effect in the Dutch GPT-Neo
+models, BERTje, and RobBERT.
+Discussion
+Nieuwland and van Berkum (2006) found that in a suitably
+supportive context, noncanonical stimuli like de pinda was
+verliefd (‘the peanut was in love’) elicit smaller N400 re-
+sponses than canonical stimuli such as de pinda was gezouten
+(‘the peanut was salted’)—context not only mitigated but re-
+verse the effect of animacy violation.
+We find that two language models also display this rever-
+sal effect: Dutch GPT-2 Medium (Havinga, 2021) and Dutch
+GPT-2 Large (Havinga, 2022a). When these models are pre-
+sented with the same contexts, the surprisal of critical words
+in the noncanonical condition is lower than that elicited by
+those in the canonical condition.
+This is not the case for the remaining four language mod-
+els: Dutch GPT-Neo 125M (Havinga, 2022b), Dutch GPT-
+Neo 1.3B (Havinga, 2022c), BERTje (de Vries et al., 2019),
+and RobBERT (Delobelle et al., 2020). However, these mod-
+
+GPT−2 Large
+GPT−Neo 1.3B
+RobBERT
+GPT−2 Medium
+GPT−Neo 125M
+BERTje
+Target Sentence
+Full Story
+Target Sentence
+Full Story
+Target Sentence
+Full Story
+0
+5
+10
+15
+20
+0
+5
+10
+15
+20
+Stimulus Length
+Surprisal
+Predicate Type
+Canonical
+Uncanonical
+Figure 1: Surprisal elicited by critical words for each predicate type and stimulus length.
+els do display the weaker reduction effect, and further, the ab-
+sence of a significant difference between conditions for these
+models when presented with the full stories shows that the
+difference between canonical and noncanonical critical sen-
+tence stimuli is not just reduced, but disappears entirely.
+It may be tempting to infer that the architecture of au-
+toregressive transformers, and in particular, those based on
+the GPT-2 architecture, leads to success capturing the ef-
+fect. However, it should be noted that before correction for
+multiple comparisons, RobBERT also successfully displays
+the reversal effect. In addition, not all language models had
+the same vocabulary, and thus, a different number of items
+were analyzed across models. For these reasons, and because
+these models are all of various sizes and trained on several
+different datasets, we believe it would be premature to draw
+conclusions about how language model architecture impacts
+whether a model displays the reversal effect.
+Experiment 2: Word Embeddings
+Cosine Distance
+In this study, we used 3 sets of pretrained word vectors:
+the 300-dimensional Dutch fastText vectors (Grave et al.,
+2018) trained on Dutch text from Wikipedia2 and Common
+Crawl3 and two 320-dimensional Dutch word vectors re-
+leased by Tulkens et al. (2016)—one trained on COW (COr-
+pora from the Web; Sch¨afer & Bildhauer, 2012) and one
+trained on a Combined corpus made up of the SoNaR cor-
+pus (Oostdijk, Reynaert, Hoste, & Schuurman, 2013) and text
+from Wikipedia and Roularta4. To calculate cosine distance,
+2https://nl.wikipedia.org/
+3https://commoncrawl.org/
+4https://www.roularta.be
+we calculated the cosine distance (using SciPy; Virtanen et
+al., 2020) between the mean of the word embeddings for all
+words in the preceding context and the word embedding for
+the critical word. Only critical words that were present in
+the pretrained embeddings were included, and words in the
+context that were not present in the pretrained embeddings
+were ignored when calculating cosine distance. The cosine
+distances for critical words in each condition are shown in
+Figure 2.
+Reduction effect
+As with language model surprisal, we constructed linear
+mixed-effects regressions with predicate type and stimulus
+length as fixed effects and story from as a random intercept.
+With these models, the cosine distance calculated using each
+set of pretrained embeddings was the dependent variable. The
+interaction between predicate type and stimulus length was
+significant for all embeddings after correcting for multiple
+comparisons (fastText: χ2(1) = 12.0, p = 0.003; Combined:
+χ2(1) = 40.8, p < 0.001; COW: χ2(1) = 66.4, p < 0.001).
+Reversal effect
+When comparing the cosine distances calculated between the
+embedding of the critical words and the preceding words
+of the critical sentence using two-tailed t-tests as with sur-
+prisal, there was a significant difference between canonincal
+and noncanonical critical words for Combined and COW em-
+beddings (Combined: t(116.9) = −3.48, p = 0.004; COW:
+t(116.5) = −4.45, p < 0.001), but not fastText embeddings
+(fastText: t(118.0) = −1.96, p = 0.237).
+Similarly, when comparing the cosine distances between
+the critical word and the preceding words of the full story,
+there was a significant difference between canonical and
+
+FastText
+Combined
+COW
+Target Sentence
+Full Story
+Target Sentence
+Full Story
+Target Sentence
+Full Story
+0.0
+0.2
+0.4
+0.6
+0.8
+Stimulus Length
+CosineDistance
+Predicate Type
+Canonical
+Uncanonical
+Figure 2: Cosine distance elicited by critical words for each predicate type and stimulus length.
+noncanonical critical words for Combined and COW em-
+beddings (Combined: t(117.0) = 4.82, p < 0.001; COW:
+t(117.0) = 6.78, p < 0.001), but not fastText embeddings
+(fastText: t(117.4) = 1.68, p = 0.418).
+Discussion
+The cosine distances calculated from all three sets of word
+vectors displayed the reduction effect, and two out of three
+displayed the reversal effect. Thus, the results suggest that
+the N400 effect reported by Nieuwland and van Berkum
+(2006) can be explained on the basis of distributional linguis-
+tic knowledge alone.
+The present study corroborates the finding of Uchida et al.
+(2021), and expands upon it in several ways. First, it explic-
+itly tests for the reversal effect—not just whether canonical
+and noncanonical stimuli differ depending on whether there
+is a preceding story or not, but also whether the noncanon-
+ical sentence is more expected than the canonical when the
+story is present. Second, we found that language model sur-
+prisal can model the effect for multiple stimuli, not just the
+peanut was in love example. Third, we found that the effect
+can be modeled in Dutch, the language in which the human
+study was carried out. And finally, we found that embeddings
+trained on text data only (i.e., without additional information)
+are able to model the effect.
+General Discussion
+Human comprehenders use context to update expectations
+about upcoming words, making a sentence that would be
+highly unlikely on its own more predictable than a sentence
+that would be relatively likely on its own. More strikingly,
+humans do this even when the event described is implausible,
+violating the constraint, for instance, that only animate, con-
+scious entities can fall in love. The human comprehension
+system is quite flexible if it can update expectations about
+what peanuts, for example, can do based only a story that in-
+directly implies the animacy of a fictional peanut.
+It has often been assumed that this flexibility requires sit-
+uation models that are explicitly structured (Venhuizen et al.,
+2019) or involve non-linguistic world knowledge or experi-
+ence (Uchida et al., 2021). However, the present findings
+show that it is possible for a purely linguistic model with
+no direct experiential grounding to update its expectations
+based on the linguistic context and its extant knowledge of the
+statistics of language. One possibility suggested by this re-
+sult is that that the dynamics of lexical prediction in language
+models may in some implicit, unspecified way approximate
+situation models even though they only learn from distribu-
+tional information.
+But there may be an even simpler explanation. We com-
+puted the similarity between critical words and their contexts.
+Within final sentences alone, canonical critical words were
+more similar to their contexts than noncanonical words, but
+when we include the full story context, it is the noncanoni-
+cal critical words that are more similar to their contexts. This
+could explain both the human results and the language model
+results. The amplitude of the N400 to a given word is reduced
+when it is semantically related to a previously-seen word
+(Bentin, McCarthy, & Wood, 1985; Rugg, 1985; Van Petten
+& Kutas, 1988; Kutas & Hillyard, 1989; Holcomb, 1988; Ku-
+tas, 1993; Lau, Holcomb, & Kuperberg, 2013); and similarly,
+words that are semantically related to previously-mentioned
+words are more strongly predicted by language models than
+words that are not (Misra et al., 2020; Michaelov et al., 2021).
+Overall, then, our results show that in principle, it is possible
+that the pattern in the N400 responses reported by Nieuwland
+and van Berkum (2006) may not rely on situation models at
+all, but rather reflect some form of lexical priming.
+It may still be the case that humans use structured or
+semantically-rich situation models in online language com-
+prehension (see, e.g., Kuperberg et al., 2020). However, the
+results of the study carried out by Nieuwland and van Berkum
+(2006) appear to provide weaker evidence for this than previ-
+ously believed. Language model predictions or even lexical
+priming based on language statistics appear to be sufficient.
+References
+Aravena, P., Courson, M., Frak, V., Cheylus, A., Paulignan,
+Y., Deprez, V., & Nazir, T. (2014). Action relevance in lin-
+
+guistic context drives word-induced motor activity. Fron-
+tiers in Human Neuroscience, 8.
+Aurnhammer, C., & Frank, S. L. (2019a). Comparing Gated
+and Simple Recurrent Neural Network Architectures as
+Models of Human Sentence Processing. In Proceedings of
+the 41st Annual Meeting of the Cognitive Science Society
+(CogSci 2019). doi: 10.31234/osf.io/wec74
+Aurnhammer, C., & Frank, S. L.
+(2019b).
+Evaluating
+information-theoretic measures of word prediction in natu-
+ralistic sentence reading. Neuropsychologia, 134, 107198.
+doi: 10.1016/j.neuropsychologia.2019.107198
+Bates,
+D.,
+M¨achler,
+M.,
+Bolker,
+B., & Walker,
+S.
+(2015).
+Fitting linear mixed-effects models using lme4.
+Journal of Statistical Software,
+67(1),
+1–48.
+doi:
+10.18637/jss.v067.i01
+Benjamini, Y., & Yekutieli, D. (2001). The Control of the
+False Discovery Rate in Multiple Testing under Depen-
+dency. The Annals of Statistics, 29(4), 1165–1188.
+Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-
+related potentials, lexical decision and semantic prim-
+ing. Electroencephalography and Clinical Neurophysiol-
+ogy, 60(4), 343–355. doi: 10.1016/0013-4694(85)90008-
+2
+Bicknell, K., Elman, J. L., Hare, M., McRae, K., & Kutas, M.
+(2010). Effects of event knowledge in processing verbal
+arguments. Journal of Memory and Language, 63(4), 489–
+505. doi: 10.1016/j.jml.2010.08.004
+Black, S., Gao, L., Wang, P., Leahy, C., & Biderman, S.
+(2021).
+GPT-Neo: Large scale autoregressive language
+modeling with mesh-tensorflow. Zenodo. doi: 10.5281/zen-
+odo.5297715
+Bransford, J. D., Barclay, J. R., & Franks, J. J.
+(1972).
+Sentence memory: A constructive versus interpretive ap-
+proach.
+Cognitive Psychology, 3(2), 193–209.
+doi:
+10.1016/0010-0285(72)90003-5
+Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks,
+J. C. J. (2017). A Neurocomputational Model of the N400
+and the P600 in Language Processing. Cognitive Science,
+41(S6), 1318–1352. doi: 10.1111/cogs.12461
+Butcher, K. R., & Kintsch, W. (2012). Text Comprehen-
+sion and Discourse Processing. In Handbook of Psychol-
+ogy, Second Edition (chap. 21). American Cancer Society.
+doi: 10.1002/9781118133880.hop204021
+Chwilla, D. J., & Kolk, H. H. J. (2005). Accessing world
+knowledge: Evidence from N400 and reaction time prim-
+ing.
+Cognitive Brain Research, 25(3), 589–606.
+doi:
+10.1016/j.cogbrainres.2005.08.011
+de Groot, A. M. B. (2011). Language and cognition in bilin-
+guals and multilinguals an introduction. New York [u.a.:
+Psychology Press.
+de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T.,
+van Noord, G., & Nissim, M. (2019). BERTje: A Dutch
+BERT Model. arXiv:1912.09582 [cs].
+Delobelle, P., Winters, T., & Berendt, B. (2020). RobBERT:
+A Dutch RoBERTa-based Language Model. In Findings
+of the Association for Computational Linguistics: EMNLP
+2020 (pp. 3255–3265).
+Online: Association for Com-
+putational Linguistics.
+doi: 10.18653/v1/2020.findings-
+emnlp.292
+DeLong, K. A., Troyer, M., & Kutas, M.
+(2014).
+Pre-Processing in Sentence Comprehension:
+Sensitiv-
+ity to Likely Upcoming Meaning and Structure.
+Lan-
+guage and Linguistics Compass, 8(12), 631–645.
+doi:
+10.1111/lnc3.12093
+Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
+BERT: Pre-training of Deep Bidirectional Transformers for
+Language Understanding. In Proceedings of the 2019 Con-
+ference of the North American Chapter of the Association
+for Computational Linguistics: Human Language Tech-
+nologies, Volume 1 (Long and Short Papers) (pp. 4171–
+4186). Minneapolis, Minnesota: Association for Compu-
+tational Linguistics. doi: 10.18653/v1/N19-1423
+Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester,
+S., & Harshman, R. (1988). Using latent semantic analysis
+to improve access to textual information. In Proceedings
+of the SIGCHI conference on Human factors in comput-
+ing systems - CHI ’88 (pp. 281–285). Washington, D.C.,
+United States: ACM Press. doi: 10.1145/57167.57214
+Ettinger, A., Feldman, N., Resnik, P., & Phillips, C. (2016).
+Modeling N400 amplitude using vector space models of
+word representation. In Proceedings of the 38th Annual
+Conference of the Cognitive Science Society. Philadelphia,
+USA.
+Ferguson, H. J., & Sanford, A. J.
+(2008).
+Anomalies in
+real and counterfactual worlds: An eye-movement investi-
+gation. Journal of Memory and Language, 58(3), 609–626.
+doi: 10.1016/j.jml.2007.06.007
+Ferguson,
+H.
+J.,
+Sanford,
+A.
+J.,
+&
+Leuthold,
+H.
+(2008).
+Eye-movements and ERPs reveal the time
+course of processing negation and remitting counterfac-
+tual worlds.
+Brain Research, 1236, 113–125.
+doi:
+10.1016/j.brainres.2008.07.099
+Filik, R., & Leuthold, H. (2008). Processing local pragmatic
+anomalies in fictional contexts: Evidence from the N400.
+Psychophysiology, 45(4), 554–558. doi: 10.1111/j.1469-
+8986.2008.00656.x
+Fischler, I., & Bloom, P. A. (1979). Automatic and atten-
+tional processes in the effects of sentence contexts on word
+recognition. Journal of Verbal Learning and Verbal Behav-
+ior, 18(1), 1–20. doi: 10.1016/S0022-5371(79)90534-6
+Fitz, H., & Chang, F. (2019). Language ERPs reflect learning
+through prediction error propagation. Cognitive Psychol-
+ogy, 111, 15–52. doi: 10.1016/j.cogpsych.2019.03.002
+Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015).
+The ERP response to the amount of information conveyed
+by words in sentences. Brain and Language, 140, 1–11.
+doi: 10.1016/j.bandl.2014.10.006
+Garnham, A.
+(1981).
+Mental models as representations
+of text.
+Memory & Cognition, 9(6), 560–565.
+doi:
+10.3758/BF03202350
+
+Grave, E., Bojanowski, P., Gupta, P., Joulin, A., & Mikolov,
+T.
+(2018).
+Learning Word Vectors for 157 Languages.
+In Proceedings of the Eleventh International Conference
+on Language Resources and Evaluation (LREC 2018).
+Miyazaki, Japan: European Language Resources Associ-
+ation (ELRA).
+Hagoort, P., & van Berkum, J.
+(2007).
+Beyond the sen-
+tence given. Philosophical Transactions of the Royal So-
+ciety B: Biological Sciences, 362(1481), 801–811.
+doi:
+10.1098/rstb.2007.2089
+Havinga, Y. (2021). GPT2-Medium pre-trained on cleaned
+Dutch
+mC4.
+https://huggingface.co/yhavinga/gpt2-
+medium-dutch.
+Havinga, Y. (2022a). GPT2-Large pre-trained on cleaned
+Dutch mC4.
+https://huggingface.co/yhavinga/gpt2-large-
+dutch.
+Havinga, Y.
+(2022b).
+GPT-Neo 125M pre-trained on
+cleaned Dutch mC4. https://huggingface.co/yhavinga/gpt-
+neo-125M-dutch.
+Havinga, Y.
+(2022c).
+GPT Neo 1.3B pre-trained on
+cleaned Dutch mC4. https://huggingface.co/yhavinga/gpt-
+neo-1.3B-dutch.
+Hoeben Mannaert, L., & Dijkstra, K.
+(2021).
+Situation
+model updating in young and older adults. International
+Journal of Behavioral Development, 45(5), 389–396. doi:
+10.1177/0165025419874125
+Holcomb, P. J. (1988). Automatic and attentional process-
+ing: An event-related brain potential analysis of seman-
+tic priming.
+Brain and Language, 35(1), 66–85.
+doi:
+10.1016/0093-934X(88)90101-0
+Johnson-Laird, P. N.
+(1980).
+Mental models in cog-
+nitive science.
+Cognitive Science, 4(1), 71–115.
+doi:
+10.1016/S0364-0213(81)80005-5
+Johnson-Laird, P. N.
+(1983).
+Mental models: Towards a
+cognitive science of language, inference, and conscious-
+ness (No. 6). Harvard University Press.
+Kassner, N., & Sch¨utze, H. (2020). Negated and Misprimed
+Probes for Pretrained Language Models: Birds Can Talk,
+But Cannot Fly. In Proceedings of the 58th Annual Meet-
+ing of the Association for Computational Linguistics (pp.
+7811–7818). Online: Association for Computational Lin-
+guistics. doi: 10.18653/v1/2020.acl-main.698
+Kintsch, W. (1988). The role of knowledge in discourse com-
+prehension: A construction-integration model. Psychologi-
+cal Review, 95(2), 163. doi: 10.1037/0033-295X.95.2.163
+Kintsch, W. (1998). Comprehension: A paradigm for cogni-
+tion. New York, NY, US: Cambridge University Press.
+Kintsch, W.
+(2005).
+An Overview of Top-Down and
+Bottom-Up Effects in Comprehension: The CI Perspec-
+tive.
+Discourse Processes, 39(2-3), 125–128.
+doi:
+10.1080/0163853X.2005.9651676
+Kintsch, W. (2018). Revisiting the Construction—Integration
+Model of Text Comprehension and its Implications for In-
+struction. In Theoretical Models and Processes of Literacy
+(Seventh ed.). Routledge.
+Kintsch, W., & Mangalath, P. (2011). The Construction of
+Meaning. Topics in Cognitive Science, 3(2), 346–370. doi:
+10.1111/j.1756-8765.2010.01107.x
+Kintsch, W., & van Dijk, T. A. (1978). Toward a model of
+text comprehension and production. Psychological Review,
+85(5), 363–394. doi: 10.1037/0033-295X.85.5.363
+Kuperberg, G. R., Brothers, T., & Wlotko, E. W. (2020). A
+Tale of Two Positivities and the N400: Distinct Neural Sig-
+natures Are Evoked by Confirmed and Violated Predictions
+at Different Levels of Representation. Journal of Cognitive
+Neuroscience, 32(1), 12–35.
+Kutas, M. (1993). In the company of other words: Electro-
+physiological evidence for single-word and sentence con-
+text effects. Language and Cognitive Processes, 8(4), 533–
+572. doi: 10.1080/01690969308407587
+Kutas, M., DeLong, K. A., & Smith, N. J. (2011). A look
+around at what lies ahead: Prediction and predictability
+in language processing. In M. Bar (Ed.), Predictions in
+the brain: Using our past to generate a future (pp. 190–
+207). New York, NY, US: Oxford University Press. doi:
+10.1093/acprof:oso/9780195395518.003.0065
+Kutas, M., & Hillyard, S. A. (1984). Brain potentials during
+reading reflect word expectancy and semantic association.
+Nature, 307(5947), 161–163. doi: 10.1038/307161a0
+Kutas, M., & Hillyard, S. A.
+(1989).
+An Electro-
+physiological Probe of Incidental Semantic Association.
+Journal of Cognitive Neuroscience, 1(1), 38–49.
+doi:
+10.1162/jocn.1989.1.1.38
+Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.
+(2017). lmerTest Package: Tests in Linear Mixed Effects
+Models. Journal of Statistical Software, 82, 1–26. doi:
+10.18637/jss.v082.i13
+Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An intro-
+duction to latent semantic analysis. Discourse Processes,
+25(2-3), 259–284. doi: 10.1080/01638539809545028
+Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dis-
+sociating N400 Effects of Prediction from Association in
+Single-word Contexts. Journal of Cognitive Neuroscience,
+25(3), 484–502.
+Levy, R.
+(2008).
+Expectation-based syntactic com-
+prehension.
+Cognition,
+106(3),
+1126–1177.
+doi:
+10.1016/j.cognition.2007.05.006
+Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ...
+Stoyanov, V. (2019). RoBERTa: A Robustly Optimized
+BERT Pretraining Approach. arXiv:1907.11692 [cs].
+Luke, S. G., & Christianson, K. (2016). Limits on lexical
+prediction during reading. Cognitive Psychology, 88, 22–
+60. doi: 10.1016/j.cogpsych.2016.06.002
+Menenti, L., Petersson, K. M., Scheeringa, R., & Hagoort,
+P.
+(2009).
+When Elephants Fly: Differential Sensitiv-
+ity of Right and Left Inferior Frontal Gyri to Discourse
+and World Knowledge. Journal of Cognitive Neuroscience,
+21(12), 2358–2368. doi: 10.1162/jocn.2008.21163
+Merkx, D., & Frank, S. L. (2021). Human Sentence Process-
+ing: Recurrence or Attention? In Proceedings of the Work-
+
+shop on Cognitive Modeling and Computational Linguis-
+tics (pp. 12–22). Online: Association for Computational
+Linguistics. doi: 10.18653/v1/2021.cmcl-1.2
+Metusalem, R., Kutas, M., Urbach, T. P., Hare, M., McRae,
+K., & Elman, J. L. (2012). Generalized event knowledge
+activation during online sentence comprehension.
+Jour-
+nal of Memory and Language, 66(4), 545–567.
+doi:
+10.1016/j.jml.2012.01.001
+Michaelov, J. A., Bardolph, M. D., Coulson, S., & Bergen,
+B. K.
+(2021).
+Different kinds of cognitive plausibility:
+Why are transformers better than RNNs at predicting N400
+amplitude? In Proceedings of the 43rd Annual Meeting of
+the Cognitive Science Society (pp. 300–306). University of
+Vienna, Vienna, Austria (Hybrid).
+Michaelov, J. A., & Bergen, B. K. (2020). How well does
+surprisal explain N400 amplitude under different experi-
+mental conditions? In Proceedings of the 24th Conference
+on Computational Natural Language Learning (pp. 652–
+663). Online: Association for Computational Linguistics.
+doi: 10.18653/v1/2020.conll-1.53
+Michaelov, J. A., & Bergen, B. K. (2022). Collateral facili-
+tation in humans and language models. In Proceedings of
+the 26th Conference on Computational Natural Language
+Learning (CoNLL) (pp. 13–26).
+Michaelov, J. A., Coulson, S., & Bergen, B. K.
+(2022).
+So Cloze yet so Far: N400 Amplitude is Better Predicted
+by Distributional Information than Human Predictability
+Judgements. IEEE Transactions on Cognitive and Devel-
+opmental Systems. doi: 10.1109/TCDS.2022.3176783
+Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin,
+A.
+(2018). Advances in Pre-Training Distributed Word
+Representations. In Proceedings of the Eleventh Interna-
+tional Conference on Language Resources and Evaluation
+(LREC 2018). Miyazaki, Japan: European Language Re-
+sources Association (ELRA).
+Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean,
+J.
+(2013).
+Distributed Representations of Words and
+Phrases and their Compositionality.
+In C. J. C. Burges,
+L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Wein-
+berger (Eds.), Advances in Neural Information Processing
+Systems 26 (pp. 3111–3119). Curran Associates, Inc.
+Misra, K., Ettinger, A., & Rayz, J.
+(2020).
+Exploring
+BERT’s Sensitivity to Lexical Cues using Tests from Se-
+mantic Priming. In Findings of the Association for Com-
+putational Linguistics: EMNLP 2020 (pp. 4625–4635).
+Online: Association for Computational Linguistics. doi:
+10.18653/v1/2020.findings-emnlp.415
+Nieuwland, M. S., & van Berkum, J. J. A. (2006). When
+Peanuts Fall in Love: N400 Evidence for the Power of Dis-
+course. Journal of Cognitive Neuroscience, 18(7), 1098–
+1111. doi: 10.1162/jocn.2006.18.7.1098
+Oostdijk, N., Reynaert, M., Hoste, V., & Schuurman, I.
+(2013). The Construction of a 500-Million-Word Refer-
+ence Corpus of Contemporary Written Dutch. In P. Spyns
+& J. Odijk (Eds.), Essential Speech and Language Tech-
+nology for Dutch: Results by the STEVIN programme (pp.
+219–247). Berlin, Heidelberg: Springer.
+Parviz, M., Johnson, M., Johnson, B., & Brock, J. (2011).
+Using Language Models and Latent Semantic Analysis to
+Characterise the N400m Neural Response.
+In Proceed-
+ings of the Australasian Language Technology Association
+Workshop 2011 (pp. 38–46). Canberra, Australia.
+Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
+Chanan, G., ... Chintala, S. (2019). PyTorch: An Im-
+perative Style, High-Performance Deep Learning Library.
+In Advances in Neural Information Processing Systems
+(Vol. 32). Curran Associates, Inc.
+Pennington, J., Socher, R., & Manning, C. (2014). GloVe:
+Global Vectors for Word Representation. In Proceedings
+of the 2014 Conference on Empirical Methods in Natural
+Language Processing (EMNLP) (pp. 1532–1543). Doha,
+Qatar: Association for Computational Linguistics.
+doi:
+10.3115/v1/D14-1162
+R Core Team. (2020). R: A language and environment for
+statistical computing [Manual]. Vienna, Austria.
+Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018).
+Modelling the N400 brain potential as change in a prob-
+abilistic representation of meaning.
+Nature Human Be-
+haviour, 2(9), 693–705. doi: 10.1038/s41562-018-0406-4
+Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &
+Sutskever, I. (2019). Language Models are Unsupervised
+Multitask Learners. , 24.
+Radvansky, G. A., Zwaan, R. A., Federico, T., & Franklin, N.
+(1998). Retrieval from temporally organized situation mod-
+els. Journal of Experimental Psychology: Learning, Mem-
+ory, and Cognition, 24(5), 1224–1237. doi: 10.1037/0278-
+7393.24.5.1224
+Rosenbach, A.
+(2008).
+Animacy and grammatical varia-
+tion—Findings from English genitive variation.
+Lingua,
+118(2), 151–171. doi: 10.1016/j.lingua.2007.02.002
+RStudio Team.
+(2020).
+RStudio: Integrated development
+environment for r [Manual]. Boston, MA.
+Rugg, M. D.
+(1985).
+The Effects of Semantic Priming
+and Word Repetition on Event-Related Potentials.
+Psy-
+chophysiology, 22(6), 642–647.
+doi:
+10.1111/j.1469-
+8986.1985.tb01661.x
+Sch¨afer, R., & Bildhauer, F. (2012). Building Large Cor-
+pora from the Web Using a New Efficient Tool Chain.
+In Proceedings of the Eighth International Conference on
+Language Resources and Evaluation (LREC’12) (pp. 486–
+493). Istanbul, Turkey: European Language Resources As-
+sociation (ELRA).
+Szewczyk, J. M., & Federmeier, K. D.
+(2022).
+Context-
+based facilitation of semantic access follows both logarith-
+mic and linear functions of stimulus probability.
+Jour-
+nal of Memory and Language, 123, 104311.
+doi:
+10.1016/j.jml.2021.104311
+Tulkens, S., Emmery, C., & Daelemans, W. (2016). Evaluat-
+ing Unsupervised Dutch Word Embeddings as a Linguistic
+Resource. In Proceedings of the Tenth International Con-
+
+ference on Language Resources and Evaluation (LREC’16)
+(pp. 4130–4136). Portoroˇz, Slovenia: European Language
+Resources Association (ELRA).
+Uchida, T., Lair, N., Ishiguro, H., & Dominey, P. F. (2021). A
+Model of Online Temporal-Spatial Integration for Immedi-
+acy and Overrule in Discourse Comprehension. Neurobiol-
+ogy of Language, 2(1), 83–105.
+van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse
+comprehension. New York: Academic Press.
+Van Berkum, J. J. A., Koornneef, A. W., Otten, M.,
+& Nieuwland, M. S.
+(2007).
+Establishing refer-
+ence in language comprehension: An electrophysiologi-
+cal perspective.
+Brain Research, 1146, 158–171.
+doi:
+10.1016/j.brainres.2006.06.091
+Van Petten, C.
+(2014).
+Examining the N400 seman-
+tic context effect item-by-item: Relationship to corpus-
+based measures of word co-occurrence.
+International
+Journal of Psychophysiology, 94(3), 407–419.
+doi:
+10.1016/j.ijpsycho.2014.10.012
+Van Petten, C., & Kutas, M.
+(1988).
+Tracking the time
+course of meaning activation. In S. Small, G. Cottrell, &
+M. Tanenhaus (Eds.), Lexical Ambiguity Resolution in the
+Comprehension of Human Language (pp. 431–475). San
+Mateo, California: Morgan Kaufmann Publishers.
+Van Petten, C., & Luka, B. J. (2012). Prediction during lan-
+guage comprehension: Benefits, costs, and ERP compo-
+nents. International Journal of Psychophysiology, 83(2),
+176–190. doi: 10.1016/j.ijpsycho.2011.09.015
+Van Rossum, G., & Drake, F. L. (2009). Python 3 reference
+manual. Scotts Valley, CA: CreateSpace.
+Venhuizen, N. J., Crocker, M. W., & Brouwer, H. (2019).
+Expectation-based Comprehension:
+Modeling the In-
+teraction of World Knowledge and Linguistic Experi-
+ence.
+Discourse Processes, 56(3), 229–255.
+doi:
+10.1080/0163853X.2018.1448677
+Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
+Reddy, T., Cournapeau, D., ... SciPy 1.0 Contributors
+(2020). SciPy 1.0: Fundamental algorithms for scientific
+computing in python. Nature Methods, 17, 261–272. doi:
+10.1038/s41592-019-0686-2
+Warren, T., McConnell, K., & Rayner, K. (2008). Effects
+of context on eye movements when reading about possible
+and impossible events. Journal of Experimental Psychol-
+ogy: Learning, Memory, and Cognition, 34(4), 1001–1010.
+doi: 10.1037/0278-7393.34.4.1001
+Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan,
+L. D., Franc¸ois, R., ... Yutani, H. (2019). Welcome to the
+tidyverse. Journal of Open Source Software, 4(43), 1686.
+doi: 10.21105/joss.01686
+Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
+Moi, A., . . . Rush, A. (2020). Transformers: State-of-the-
+Art Natural Language Processing. In Proceedings of the
+2020 Conference on Empirical Methods in Natural Lan-
+guage Processing: System Demonstrations (pp. 38–45).
+Online: Association for Computational Linguistics. doi:
+10.18653/v1/2020.emnlp-demos.6
+Xiang, M., & Kuperberg, G.
+(2015).
+Reversing ex-
+pectations during discourse comprehension.
+Language,
+Cognition and Neuroscience, 30(6), 648–672.
+doi:
+10.1080/23273798.2014.995679
+Yamada, I., Asai, A., Sakuma, J., Shindo, H., Takeda, H.,
+Takefuji, Y., & Matsumoto, Y. (2020). Wikipedia2Vec: An
+Efficient Toolkit for Learning and Visualizing the Embed-
+dings of Words and Entities from Wikipedia. In Proceed-
+ings of the 2020 Conference on Empirical Methods in Natu-
+ral Language Processing: System Demonstrations (pp. 23–
+30). Online: Association for Computational Linguistics.
+doi: 10.18653/v1/2020.emnlp-demos.4
+Zacks, J. M., & Ferstl, E. C. (2016). Discourse Comprehen-
+sion. In G. Hickok & S. L. Small (Eds.), Neurobiology of
+Language (pp. 661–673). San Diego: Academic Press. doi:
+10.1016/B978-0-12-407794-2.00053-5
+Zwaan, R. A. (2014). Embodiment and language compre-
+hension: Reframing the discussion. Trends in Cognitive
+Sciences, 18(5), 229–234. doi: 10.1016/j.tics.2014.02.008
+Zwaan, R. A.
+(2016).
+Situation models, mental simula-
+tions, and abstract concepts in discourse comprehension.
+Psychonomic Bulletin & Review, 23(4), 1028–1034. doi:
+10.3758/s13423-015-0864-x
+Zwaan, R. A., Langston, M. C., & Graesser, A. C.
+(1995).
+The Construction of Situation Models in Nar-
+rative Comprehension: An Event-Indexing Model.
+Psy-
+chological Science, 6(5), 292–297. doi: 10.1111/j.1467-
+9280.1995.tb00513.x
+Zwaan, R. A., & Madden, C. J.
+(2004).
+Updating sit-
+uation models.
+Journal of Experimental Psychology:
+Learning, Memory, and Cognition, 30(1), 283–288. doi:
+10.1037/0278-7393.30.1.283
+Zwaan, R. A., Magliano, J. P., & Graesser, A. C. (1995). Di-
+mensions of situation model construction in narrative com-
+prehension. Journal of experimental psychology: Learn-
+ing, memory, and cognition, 21(2), 386.
+Zwaan, R. A., & Radvansky, G. A.
+(1998).
+Situation
+models in language comprehension and memory.
+Psy-
+chological Bulletin, 123(2), 162–185. doi: 10.1037/0033-
+2909.123.2.162
+
diff --git a/bdFAT4oBgHgl3EQf5B6R/content/tmp_files/load_file.txt b/bdFAT4oBgHgl3EQf5B6R/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f8b41939a6fb6e148d551ab75526498141cd7979
--- /dev/null
+++ b/bdFAT4oBgHgl3EQf5B6R/content/tmp_files/load_file.txt
@@ -0,0 +1,1408 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf,len=1407
+page_content='Can Peanuts Fall in Love with Distributional Semantics?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' James A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov (j1michae@ucsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='edu) Seana Coulson (scoulson@ucsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='edu) Benjamin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Bergen (bkbergen@ucsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='edu) Department of Cognitive Science, University of California, San Diego 9500 Gilman Dr, La Jolla, CA 92093, USA Abstract The context in which a sentence appears can drastically alter our expectations about upcoming words—for example, follow- ing a short story involving an anthropomorphic peanut, exper- imental participants are more likely to expect the sentence the peanut was in love than the peanut was salted, as indexed by N400 amplitude (Nieuwland & van Berkum, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This rapid and dynamic updating of comprehenders’ expectations about the kind of events that a peanut may take part in based on context has been explained using the construct of Situation Models—updated mental representations of key elements of an event under discussion, in this case, the peanut protago- nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, recent work showing that N400 amplitude can be predicted based on distributional information alone raises the question whether situation models are in fact necessary for the kinds of contextual effects observed in previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' To investigate this question, we attempt to model the results of Nieuwland and van Berkum (2006) using six computational language models and three sets of word vectors, none of which have explicit situation models or semantic grounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' We find that the effect found by Nieuwland and van Berkum (2006) can be fully modeled by two language models and two sets of word vectors, with others showing a reduced effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, at least some processing effects normally explained through situ- ation models may not in fact require explicit situation models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Keywords: psycholinguistics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' human language comprehen- sion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' event-related brain potentials;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' N400;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' natural language processing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' deep learning;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' language models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' word vectors Introduction It is widely believed that prediction plays a key role in lan- guage processing, with more predictable words being pro- cessed more easily (Fischler & Bloom, 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kutas & Hill- yard, 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Levy, 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kutas, DeLong, & Smith, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Petten & Luka, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' DeLong, Troyer, & Kutas, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Luke & Christianson, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kuperberg, Brothers, & Wlotko, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Perhaps the strongest evidence for this comes from the N400, a neural signal of processing difficulty that is highly correlated with lexical probability—contextually probable words elicit an N400 response of smaller (less negative) am- plitude than contextually improbable words, whether pre- dictability is determined based on human judgements (Kutas & Hillyard, 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' for review see Van Petten & Luka, 2012) or a corpus (Parviz, Johnson, Johnson, & Brock, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Frank, Otten, Galli, & Vigliocco, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Aurnhammer & Frank, 2019b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Merkx & Frank, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Szewczyk & Federmeier, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov, Coulson, & Bergen, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A striking feature of the predictions indexed by the N400 is how flexible they can be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Under normal circumstances, a sentence such as the peanut was in love would be highly im- probable, much more so than the peanut was salted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Follow- ing the short story in (1), however, this changes (Nieuwland & van Berkum, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1) A woman saw a dancing peanut who had a big smile on his face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The peanut was singing about a girl he had just met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' And judging from the song, the peanut was totally crazy about her.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The woman thought it was really cute to see the peanut singing and dancing like that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In fact, Nieuwland and van Berkum (2006), who tested this in Dutch, found that in the context of (1), the last word of de pinda was verliefd (‘the peanut was in love’) elicited a smaller N400 than de pinda was gezouten (‘the peanut was salted’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' How does such a dramatic reversal occur?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' One possibility, that put forward by Nieuwland and van Berkum (2006), is that while reading the context, the reader’s mental representation of the peanut is altered such that it is treated as an animate entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This, as Nieuwland and van Berkum (2006) note, is in line with theories of situation mod- els, which argue that we keep track of the entities under discussion, as well as their properties and relations, among other things.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Such accounts generally involve explicitly struc- tures or schemata, grounding in world knowledge or expe- rience, extraction of propositional information, or a com- bination of these (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bransford, Barclay, & Franks, 1972;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch & van Dijk, 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Johnson-Laird, 1980;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Gar- nham, 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Johnson-Laird, 1983;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' van Dijk & Kintsch, 1983;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch, 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan, Langston, & Graesser, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan, Magliano, & Graesser, 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Radvansky, Zwaan, Federico, & Franklin, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan & Radvansky, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan & Madden, 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch, 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Berkum, Koornneef, Otten, & Nieuwland, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch & Man- galath, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Butcher & Kintsch, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan, 2014, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zacks & Ferstl, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Hoeben Mannaert & Dijkstra, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Under a situation model account, the reader alters their semantic representation of the peanut such that it has animate features in accordance with the information that it can sing, dance, and show emotions, facilitating the pro- cessing of in love.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' While this hypothesis—that structured or grounded situ- ation models explain N400 effects such as those found by Nieuwland and van Berkum (2006)—is generally accepted (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', by Hagoort & van Berkum, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Filik & Leuthold, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='08731v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='CL] 20 Jan 2023 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Warren, McConnell, & Rayner, 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Rosenbach, 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Ferguson & Sanford, 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Ferguson, Sanford, & Leuthold, 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Menenti, Petersson, Scheeringa, & Hagoort, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Bicknell, Elman, Hare, McRae, & Kutas, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' de Groot, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Metusalem et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Aravena et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Xiang & Kuperberg, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kuperberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020) and has been shown to be viable using computational modeling (Venhuizen, Crocker, & Brouwer, 2019), there are also alternative explanations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The possibility that we explore in the present study is that the effect is explained by lexical prediction based on distri- butional linguistic knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A number of researchers have found that modeling the amplitude of the N400 based on the statistics of language can both be used to model N400 effects (Ettinger, Feldman, Resnik, & Phillips, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov & Bergen, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov, Bardolph, Coulson, & Bergen, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov & Bergen, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Uchida, Lair, Ishiguro, & Dominey, 2021) and to predict single-trial N400 amplitude (Chwilla & Kolk, 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Parviz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Petten, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Frank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Aurnhammer & Frank, 2019a, 2019b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Merkx & Frank, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov & Bergen, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Szewczyk & Federmeier, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Specifically, we look at two possible ways in which this might arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' One, which we refer to as event-level priming, refers to the idea that a word associated with a previously- discussed event may be more likely to be predicted by virtue of this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This is something that has been previously reported in the N400—Metusalem et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2012), for example, found that that merely being related to the event under discussion leads to a smaller N400 response to a word even when that word is inappropriate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov and Bergen (2022) model this with transformer language models—systems trained to calculate the probability of a word given its context based on the statis- tics of language alone—showing that this effect is explainable with distributional information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, it may be the case that the fact that in love is related to, for example, being crazy about someone that leads to it being predicted to be more likely than salted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Following Michaelov and Bergen (2022), we investigate this using 6 Dutch transformer language mod- els (Havinga, 2021, 2022a, 2022b, 2022c;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' de Vries et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Delobelle, Winters, & Berendt, 2020), testing whether they show the same effect as humans—that is, whether they predict the canonical sentence the peanut was salted to be less likely than the noncanonical sentence the peanut was in love.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' An alternative possibility is what we refer to as lexical priming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' More simply than in the case of event-level prim- ing, it may be the case that the preceding context involving words such as dancing, smile, singing, crazy, and cute ex- erts a stronger pressure on prediction of in love than peanut does on salted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Because language models appear to exhibit lexical priming effects (Kassner & Sch¨utze, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Misra, Et- tinger, & Rayz, 2020), we instead to turn to word vectors to test this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Word vectors are representations of words derived from their co-occurrence statistics, either directly or based on word embeddings learned by neural networks (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Landauer, Foltz, & Laham, 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Mikolov, Sutskever, Chen, Corrado, & Dean, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Pennington, Socher, & Manning, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Mikolov, Grave, Bojanowski, Puhrsch, & Joulin, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Tulkens, Emmery, & Daelemans, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Grave, Bojanowski, Gupta, Joulin, & Mikolov, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The cosine distance be- tween the vector of each critical word (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' in love or salted) and the mean of the vectors of the words in the preceding con- text can therefore be used to test how similar the critical word is to the words preceding it (Ettinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021), and thus, the extent to which it is predicted based on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' To do this this we used three sets of Dutch word vectors (from Tulkens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' and Grave et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Background A number of researchers have attempted to model the N400 computationally, including using language models (Parviz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Frank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Aurnhammer & Frank, 2019b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov & Bergen, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Merkx & Frank, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Szewczyk & Federmeier, 2022) and the distances between vector representations of words (Parviz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Petten, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Ettinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' There have also been several attempts to computationally model whether the amplitude of the N400 response is impacted by situation models (Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Venhuizen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019) and thematic roles (Brouwer, Crocker, Venhuizen, & Hoeks, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Fitz & Chang, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Rabovsky, Hansen, & McClelland, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' To the best of our knowledge, only one previous study (Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021) has directly attempted to model the dis- course effect found by Nieuwland and van Berkum (2006), and it does not rely on purely distributional linguistic infor- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Specifically, Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021) base their model on Wikipedia2Vec (Yamada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020) vectors—while these include distributional information derived from the surface- level statistics of language, they also include information about hyperlinks between Wikipedia pages, and thus struc- tured semantic relations based on human judgements of rel- evance and importance (Yamada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Additionally, Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021) only look at the English-translated ver- sion of the single stimulus item presented in (1), and thus, it is unclear whether the results generalize to all the stimuli in the original study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The current study overcomes these infer- ential limitations by using the original Dutch stimuli and by using neural language models and word vectors trained only on natural language input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The present study We investigate the adequacy of distributional knowledge to explain the human N400 effect found by Nieuwland and van Berkum (2006) using predictions of neural network language models and the distance between the word vectors of the criti- cal words and their context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Specifically, we ask this question for two possible variants of the effect found by Nieuwland and van Berkum (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reduction effect Nieuwland and van Berkum (2006) presented experimental participants with short stories such as those in (1) including “canonical” sentences like the peanut was salted or “non- canonical” ones like the peanut was in love.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' One approach to whether language models and human show the same pre- diction patterns (taken by Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021) is to compare the statistical metrics the critical words elicit in the context of the full story versus in isolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Without preceding context, these sentences should produce values that match the canon- icality of the sentence, but the difference should attenuate or reverse following the story context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, we ran a statistical analysis testing for an interac- tion between stimulus length (full story or only the last sen- tence) and canonicality (canonical or noncanonical).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Such an interaction would reveal a context-dependent difference in the effect of canonicality on our statistical metrics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' and thus would replicate in neural language models the effect found by Nieuwland and van Berkum (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, an interaction between stimulus length and canonicality in this direction could result from either a rever- sal or a decrease in the magnitude of the canonicality effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Canonical stimuli might elicit lower surprisals or smaller co- sine distances in both context conditions, but of different magnitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' For this reason, we label the effect measured by an interaction (in the expected direction) a reduction effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reversal effect Nieuwland and van Berkum (2006) did not employ the 2 x 2 design that would allow them to detect an interaction— they compared the N400 in context only, finding that canon- ical stimuli actually elicited larger N400 responses than non- canonical stimuli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' To replicate this finding, we test whether the canonical full-length stimuli elicit higher surprisals or greater cosine distances than the noncanonical full-length stimuli, a reversal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Implications If either language models or word vectors can successfully model the reversal effect, this would suggest that distribu- tional information is sufficient to explain the data reported by Nieuwland and van Berkum (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, while situation models and extralinguistic information may be involved in the neurocognitive system underlying the N400, additional evi- dence is required to prove this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' If neither can model either ef- fect, this would undermine the claim that distributional infor- mation is sufficient to explain the effect found by Nieuwland and van Berkum (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Finally, if either language models or word vectors can successfully model the reduction effect but not the full reversal effect, this may support the idea that distributional information could be used as part of the neu- rocognitive system underlying the N400 response, that it is not sufficient to yield the dynamic contextual sensitivity hu- mans display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Situation models and other sources of informa- tion might explain the remainder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Method and approach Original experiment and stimuli Stimuli were used from the original experiment, and are pro- vided online1 by the authors (Nieuwland & van Berkum, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' We compared the effect of experimental condition on the N400 and on neural network surprisal (as in Michaelov & Bergen, 2020) and the cosine similarity between the word vector of the critical word and the mean of the word vectors in its context (as in Ettinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The stimuli use 60 full-length story frames, each of which has either a canonical or noncanonical predicate, for 120 unique stories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' As the aim is to model human online compre- hension processes, the models only used the text before the critical words (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', in love or salted) to predict the critical words, so stories were truncated after the critical word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' For the critical sentence stimuli, we isolated the last sentence of these truncated stories, including and up to the critical word in each story (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', The peanut was in love).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This produced 240 stimuli, as shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Predicate Type Stimulus Length Count Canonical Full-length 60 Canonical critical sentence 60 Noncanonical Full-length 60 Noncanonical critical sentence 60 Table 1: Experimental stimuli derived from Nieuwland and van Berkum (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Experiment 1: Language Models Language models In this study, we use six pretrained models available through the transformers package (Wolf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Four of these models—Dutch versions of the medium (Havinga, 2021) and large (Havinga, 2022a) GPT-2 models (Radford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019) and Dutch versions of the 125 million parameter (Havinga, 2022b) and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3 billion parameter (Havinga, 2022c) GPT-Neo models (Black, Gao, Wang, Leahy, & Biderman, 2021)— were autoregressive, meaning that they are trained to predict a word based only on its preceding context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The remain- ing two models—BERTje (de Vries et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019) and Rob- BERT v2 (Delobelle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020), based on BERT (Devlin, Chang, Lee, & Toutanova, 2019) and RoBERTa (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019), respectively—are masked language models, meaning that they are also trained to predict a word based on the text following the critical word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, as stated, in the present study, all models were only provided with the context preced- ing the critical words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' We ran the stimuli through each lan- guage model, calculating the surprisal of each critical word that was in the model’s vocabulary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' To do this, we calculated the negative of the logarithm of the probabilities provided 1https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='researchgate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='net/publication/268208198 for each critical word by each of the language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' We then tested for the reduction and reversal effects with these surprisal values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The language models were run in Python (Van Rossum & Drake, 2009), using the PyTorch (Paszke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019) implementation of each model, as provided by the transformers package (Wolf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Statistical analysis and data manipulation were carried out in R (R Core Team, 2020) using Rstudio (RStudio Team, 2020) and the tidyverse (Wickham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019) and lme4 (Bates, M¨achler, Bolker, & Walker, 2015) packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reduction effect In order to test the reduction effect, we constructed linear mixed-effects regression models, with the surprisal calculated from each language model as the dependent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In each model, predicate type (canonical or noncanonical) and stimu- lus length (full-length or critical sentence) were fixed effects and story frame (each of the 60) was a random intercept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' For the regressions with the autoregressive models and BERTje surprisal as their dependent variables, we then constructed regressions also including an interaction between predicate type and stimulus length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Using likelihood ratio tests, we found that these regressions including the interaction fit the data significantly better than those without the interaction (GPT-2 Medium: χ2(1) = 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-2 Large: χ2(1) = 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo 125M: χ2(1) = 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='7, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B: χ2(1) = 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' BERTje: χ2(1) = 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001), indicating a significant interaction between predicate type and stimulus length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The regression with RobBERT surprisal as its dependent variable and no in- teraction had a singular fit, but the regression with the inter- action did not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, instead of running a likelihood ratio test to investigate whether there was a significant interaction, we used a a Type III ANOVA with Satterthwaite’s method for estimating degrees of freedom (Kuznetsova, Brockhoff, & Christensen, 2017) on the regression with the interaction, finding it to be a significant predictor of RobBERT surprisal (F(1,71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2) = 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Note that all reported p- values are corrected for multiple comparisons based on false discovery rate (Benjamini & Yekutieli, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' For all language models, there was a significant interac- tion between predicate type and stimulus length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Further in- spection of the regressions showed that in all cases, the in- teraction was in the expected direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, all models displayed the reduction effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This can be seen visually in Figure 1—in all models, when only the critical sentence was presented, the mean surprisal for critical words in canonical sentences is lower than for critical words in noncanonical sen- tences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Conversely, when the full-length story is presented to the language models, the critical words in the noncanonical sentences elicit a lower or roughly-equal surprisal than the critical words in the canonical sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reversal effect To test for which models this latter finding was statistically significant, we initially attempted to fit linear mixed-effects regression models for each the full-length and critical sen- tence stimulus results for each language model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' however, this led to several models with singular fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Instead, we car- ried out pairwise two-tailed t-tests, comparing the surprisal of canonical and noncanonical stimuli for full-length and critical sentence stimuli for each language model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' First, we test whether canonical critical sentence (only) stimuli elicit lower surprisals than noncanonical critical sen- tence stimuli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' For all language models, the decontextual- ized canonical critical sentence stimuli elicit significantly lower surprisals than noncanonical critical sentence stimuli after correction for multiple comparisons (GPT-2 Medium: t(88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='9) = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='65, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-2 Large: t(89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='59, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo 125M: t(88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='6) = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='20, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B: t(89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='72, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' BERTje: t(48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4) = −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='99, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' RobBERT: t(55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1) = −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='67, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Next, in order to investigate the reversal effect, we test whether canonical full-length stimuli elicit lower surprisals than noncanonical full-length stimuli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' After correction for multiple comparisons, only the Dutch GPT-2 models suc- cessfully model the reversal effect—they are the only mod- els for which canonical full-length stimuli elicit signifi- cantly higher surprisals than noncanonical full-length stimuli (GPT-2 Medium: t(86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3) = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='61, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-2 Large: t(88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5) = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='34, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' With the other models, while the difference was in the cor- rect direction, it was not significant after correction for mul- tiple comparisons (GPT-Neo 125M: t(89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='57, p = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='000 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B: t(89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='71, p = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' BERTje: t(51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='79, p = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' RobBERT: t(46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='6) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='31, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='120).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, it is worth noting that the contrast between the two sets of results (critical sentence only vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' full stimulus) means that significant canonicality effects for the critical sen- tence stimuli disappear in the full-length stimuli, underscor- ing the presence of a reduction effect in the Dutch GPT-Neo models, BERTje, and RobBERT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Discussion Nieuwland and van Berkum (2006) found that in a suitably supportive context, noncanonical stimuli like de pinda was verliefd (‘the peanut was in love’) elicit smaller N400 re- sponses than canonical stimuli such as de pinda was gezouten (‘the peanut was salted’)—context not only mitigated but re- verse the effect of animacy violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' We find that two language models also display this rever- sal effect: Dutch GPT-2 Medium (Havinga, 2021) and Dutch GPT-2 Large (Havinga, 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' When these models are pre- sented with the same contexts, the surprisal of critical words in the noncanonical condition is lower than that elicited by those in the canonical condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This is not the case for the remaining four language mod- els: Dutch GPT-Neo 125M (Havinga, 2022b), Dutch GPT- Neo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B (Havinga, 2022c), BERTje (de Vries et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019), and RobBERT (Delobelle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, these mod- GPT−2 Large GPT−Neo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B RobBERT GPT−2 Medium GPT−Neo 125M BERTje Target Sentence Full Story Target Sentence Full Story Target Sentence Full Story 0 5 10 15 20 0 5 10 15 20 Stimulus Length Surprisal Predicate Type Canonical Uncanonical Figure 1: Surprisal elicited by critical words for each predicate type and stimulus length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' els do display the weaker reduction effect, and further, the ab- sence of a significant difference between conditions for these models when presented with the full stories shows that the difference between canonical and noncanonical critical sen- tence stimuli is not just reduced, but disappears entirely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' It may be tempting to infer that the architecture of au- toregressive transformers, and in particular, those based on the GPT-2 architecture, leads to success capturing the ef- fect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, it should be noted that before correction for multiple comparisons, RobBERT also successfully displays the reversal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In addition, not all language models had the same vocabulary, and thus, a different number of items were analyzed across models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' For these reasons, and because these models are all of various sizes and trained on several different datasets, we believe it would be premature to draw conclusions about how language model architecture impacts whether a model displays the reversal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Experiment 2: Word Embeddings Cosine Distance In this study, we used 3 sets of pretrained word vectors: the 300-dimensional Dutch fastText vectors (Grave et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2018) trained on Dutch text from Wikipedia2 and Common Crawl3 and two 320-dimensional Dutch word vectors re- leased by Tulkens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2016)—one trained on COW (COr- pora from the Web;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Sch¨afer & Bildhauer, 2012) and one trained on a Combined corpus made up of the SoNaR cor- pus (Oostdijk, Reynaert, Hoste, & Schuurman, 2013) and text from Wikipedia and Roularta4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' To calculate cosine distance, 2https://nl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='org/ 3https://commoncrawl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='org/ 4https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='roularta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='be we calculated the cosine distance (using SciPy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Virtanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020) between the mean of the word embeddings for all words in the preceding context and the word embedding for the critical word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Only critical words that were present in the pretrained embeddings were included, and words in the context that were not present in the pretrained embeddings were ignored when calculating cosine distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The cosine distances for critical words in each condition are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reduction effect As with language model surprisal, we constructed linear mixed-effects regressions with predicate type and stimulus length as fixed effects and story from as a random intercept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' With these models, the cosine distance calculated using each set of pretrained embeddings was the dependent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The interaction between predicate type and stimulus length was significant for all embeddings after correcting for multiple comparisons (fastText: χ2(1) = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Combined: χ2(1) = 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='8, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' COW: χ2(1) = 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reversal effect When comparing the cosine distances calculated between the embedding of the critical words and the preceding words of the critical sentence using two-tailed t-tests as with sur- prisal, there was a significant difference between canonincal and noncanonical critical words for Combined and COW em- beddings (Combined: t(116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='9) = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='48, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' COW: t(116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5) = −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='45, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001), but not fastText embeddings (fastText: t(118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='96, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='237).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Similarly, when comparing the cosine distances between the critical word and the preceding words of the full story, there was a significant difference between canonical and FastText Combined COW Target Sentence Full Story Target Sentence Full Story Target Sentence Full Story 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='8 Stimulus Length CosineDistance Predicate Type Canonical Uncanonical Figure 2: Cosine distance elicited by critical words for each predicate type and stimulus length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' noncanonical critical words for Combined and COW em- beddings (Combined: t(117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='82, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' COW: t(117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0) = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='78, p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001), but not fastText embeddings (fastText: t(117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='68, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='418).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Discussion The cosine distances calculated from all three sets of word vectors displayed the reduction effect, and two out of three displayed the reversal effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Thus, the results suggest that the N400 effect reported by Nieuwland and van Berkum (2006) can be explained on the basis of distributional linguis- tic knowledge alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The present study corroborates the finding of Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021), and expands upon it in several ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' First, it explic- itly tests for the reversal effect—not just whether canonical and noncanonical stimuli differ depending on whether there is a preceding story or not, but also whether the noncanon- ical sentence is more expected than the canonical when the story is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Second, we found that language model sur- prisal can model the effect for multiple stimuli, not just the peanut was in love example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Third, we found that the effect can be modeled in Dutch, the language in which the human study was carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' And finally, we found that embeddings trained on text data only (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', without additional information) are able to model the effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' General Discussion Human comprehenders use context to update expectations about upcoming words, making a sentence that would be highly unlikely on its own more predictable than a sentence that would be relatively likely on its own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' More strikingly, humans do this even when the event described is implausible, violating the constraint, for instance, that only animate, con- scious entities can fall in love.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The human comprehension system is quite flexible if it can update expectations about what peanuts, for example, can do based only a story that in- directly implies the animacy of a fictional peanut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' It has often been assumed that this flexibility requires sit- uation models that are explicitly structured (Venhuizen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2019) or involve non-linguistic world knowledge or experi- ence (Uchida et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, the present findings show that it is possible for a purely linguistic model with no direct experiential grounding to update its expectations based on the linguistic context and its extant knowledge of the statistics of language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' One possibility suggested by this re- sult is that that the dynamics of lexical prediction in language models may in some implicit, unspecified way approximate situation models even though they only learn from distribu- tional information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' But there may be an even simpler explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' We com- puted the similarity between critical words and their contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Within final sentences alone, canonical critical words were more similar to their contexts than noncanonical words, but when we include the full story context, it is the noncanoni- cal critical words that are more similar to their contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' This could explain both the human results and the language model results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The amplitude of the N400 to a given word is reduced when it is semantically related to a previously-seen word (Bentin, McCarthy, & Wood, 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Rugg, 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Petten & Kutas, 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kutas & Hillyard, 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Holcomb, 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Ku- tas, 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Lau, Holcomb, & Kuperberg, 2013);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' and similarly, words that are semantically related to previously-mentioned words are more strongly predicted by language models than words that are not (Misra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Overall, then, our results show that in principle, it is possible that the pattern in the N400 responses reported by Nieuwland and van Berkum (2006) may not rely on situation models at all, but rather reflect some form of lexical priming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' It may still be the case that humans use structured or semantically-rich situation models in online language com- prehension (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Kuperberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' However, the results of the study carried out by Nieuwland and van Berkum (2006) appear to provide weaker evidence for this than previ- ously believed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Language model predictions or even lexical priming based on language statistics appear to be sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' References Aravena, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Courson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Frak, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Cheylus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Paulignan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Deprez, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Nazir, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Action relevance in lin- guistic context drives word-induced motor activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Fron- tiers in Human Neuroscience, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Aurnhammer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Frank, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Comparing Gated and Simple Recurrent Neural Network Architectures as Models of Human Sentence Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='31234/osf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='io/wec74 Aurnhammer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Frank, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Evaluating information-theoretic measures of word prediction in natu- ralistic sentence reading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Neuropsychologia, 134, 107198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='neuropsychologia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='107198 Bates, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', M¨achler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bolker, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Walker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Fitting linear mixed-effects models using lme4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Statistical Software, 67(1), 1–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18637/jss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='v067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='i01 Benjamini, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Yekutieli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The Control of the False Discovery Rate in Multiple Testing under Depen- dency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The Annals of Statistics, 29(4), 1165–1188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Bentin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', McCarthy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Wood, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Event- related potentials, lexical decision and semantic prim- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Electroencephalography and Clinical Neurophysiol- ogy, 60(4), 343–355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/0013-4694(85)90008- 2 Bicknell, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Elman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Hare, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', McRae, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Effects of event knowledge in processing verbal arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Memory and Language, 63(4), 489– 505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='jml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='004 Black, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Gao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Leahy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Biderman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo: Large scale autoregressive language modeling with mesh-tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5281/zen- odo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5297715 Bransford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Barclay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Franks, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Sentence memory: A constructive versus interpretive ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognitive Psychology, 3(2), 193–209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/0010-0285(72)90003-5 Brouwer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Crocker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Venhuizen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Hoeks, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A Neurocomputational Model of the N400 and the P600 in Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognitive Science, 41(S6), 1318–1352.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1111/cogs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='12461 Butcher, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Text Comprehen- sion and Discourse Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Handbook of Psychol- ogy, Second Edition (chap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' American Cancer Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1002/9781118133880.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='hop204021 Chwilla, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kolk, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Accessing world knowledge: Evidence from N400 and reaction time prim- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognitive Brain Research, 25(3), 589–606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='cogbrainres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='011 de Groot, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Language and cognition in bilin- guals and multilinguals an introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' New York [u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' : Psychology Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' de Vries, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', van Cranenburgh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bisazza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Caselli, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', van Noord, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Nissim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' BERTje: A Dutch BERT Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' arXiv:1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='09582 [cs].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Delobelle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Winters, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Berendt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' RobBERT: A Dutch RoBERTa-based Language Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Findings of the Association for Computational Linguistics: EMNLP 2020 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 3255–3265).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Com- putational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='findings- emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='292 DeLong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Troyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Pre-Processing in Sentence Comprehension: Sensitiv- ity to Likely Upcoming Meaning and Structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Lan- guage and Linguistics Compass, 8(12), 631–645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1111/lnc3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='12093 Devlin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Chang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Toutanova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 2019 Con- ference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 4171– 4186).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Minneapolis, Minnesota: Association for Compu- tational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/N19-1423 Dumais, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Furnas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Landauer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Deerwester, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Harshman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Using latent semantic analysis to improve access to textual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the SIGCHI conference on Human factors in comput- ing systems - CHI ’88 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 281–285).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Washington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', United States: ACM Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1145/57167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='57214 Ettinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Feldman, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Resnik, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Phillips, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Modeling N400 amplitude using vector space models of word representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 38th Annual Conference of the Cognitive Science Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Philadelphia, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Ferguson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Sanford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Anomalies in real and counterfactual worlds: An eye-movement investi- gation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Memory and Language, 58(3), 609–626.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='jml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='007 Ferguson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Sanford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Leuthold, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Eye-movements and ERPs reveal the time course of processing negation and remitting counterfac- tual worlds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Brain Research, 1236, 113–125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='brainres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='099 Filik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Leuthold, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Processing local pragmatic anomalies in fictional contexts: Evidence from the N400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psychophysiology, 45(4), 554–558.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1469- 8986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='00656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='x Fischler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Bloom, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Automatic and atten- tional processes in the effects of sentence contexts on word recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Verbal Learning and Verbal Behav- ior, 18(1), 1–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/S0022-5371(79)90534-6 Fitz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Chang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Language ERPs reflect learning through prediction error propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognitive Psychol- ogy, 111, 15–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='cogpsych.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='002 Frank, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Otten, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Galli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Vigliocco, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The ERP response to the amount of information conveyed by words in sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Brain and Language, 140, 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='bandl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='006 Garnham, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Mental models as representations of text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Memory & Cognition, 9(6), 560–565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3758/BF03202350 Grave, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bojanowski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Gupta, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Joulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Mikolov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Learning Word Vectors for 157 Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Miyazaki, Japan: European Language Resources Associ- ation (ELRA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Hagoort, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & van Berkum, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Beyond the sen- tence given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Philosophical Transactions of the Royal So- ciety B: Biological Sciences, 362(1481), 801–811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1098/rstb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2089 Havinga, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT2-Medium pre-trained on cleaned Dutch mC4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' https://huggingface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='co/yhavinga/gpt2- medium-dutch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Havinga, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT2-Large pre-trained on cleaned Dutch mC4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' https://huggingface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='co/yhavinga/gpt2-large- dutch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Havinga, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT-Neo 125M pre-trained on cleaned Dutch mC4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' https://huggingface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='co/yhavinga/gpt- neo-125M-dutch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Havinga, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2022c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GPT Neo 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B pre-trained on cleaned Dutch mC4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' https://huggingface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='co/yhavinga/gpt- neo-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3B-dutch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Hoeben Mannaert, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Dijkstra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Situation model updating in young and older adults.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' International Journal of Behavioral Development, 45(5), 389–396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1177/0165025419874125 Holcomb, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Automatic and attentional process- ing: An event-related brain potential analysis of seman- tic priming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Brain and Language, 35(1), 66–85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/0093-934X(88)90101-0 Johnson-Laird, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Mental models in cog- nitive science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognitive Science, 4(1), 71–115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/S0364-0213(81)80005-5 Johnson-Laird, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Mental models: Towards a cognitive science of language, inference, and conscious- ness (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Harvard University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kassner, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Sch¨utze, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 7811–7818).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='698 Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The role of knowledge in discourse com- prehension: A construction-integration model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psychologi- cal Review, 95(2), 163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1037/0033-295X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='163 Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Comprehension: A paradigm for cogni- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' New York, NY, US: Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' An Overview of Top-Down and Bottom-Up Effects in Comprehension: The CI Perspec- tive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Discourse Processes, 39(2-3), 125–128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1080/0163853X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='9651676 Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Revisiting the Construction—Integration Model of Text Comprehension and its Implications for In- struction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Theoretical Models and Processes of Literacy (Seventh ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Routledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Mangalath, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The Construction of Meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Topics in Cognitive Science, 3(2), 346–370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1756-8765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='01107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='x Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & van Dijk, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Toward a model of text comprehension and production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psychological Review, 85(5), 363–394.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1037/0033-295X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='363 Kuperberg, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Brothers, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Wlotko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A Tale of Two Positivities and the N400: Distinct Neural Sig- natures Are Evoked by Confirmed and Violated Predictions at Different Levels of Representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Cognitive Neuroscience, 32(1), 12–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In the company of other words: Electro- physiological evidence for single-word and sentence con- text effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Language and Cognitive Processes, 8(4), 533– 572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1080/01690969308407587 Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', DeLong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A look around at what lies ahead: Prediction and predictability in language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Bar (Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' ), Predictions in the brain: Using our past to generate a future (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 190– 207).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' New York, NY, US: Oxford University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1093/acprof:oso/9780195395518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0065 Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Hillyard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Brain potentials during reading reflect word expectancy and semantic association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Nature, 307(5947), 161–163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1038/307161a0 Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Hillyard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' An Electro- physiological Probe of Incidental Semantic Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Cognitive Neuroscience, 1(1), 38–49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1162/jocn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='38 Kuznetsova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Brockhoff, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Christensen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' lmerTest Package: Tests in Linear Mixed Effects Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Statistical Software, 82, 1–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18637/jss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='v082.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='i13 Landauer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Foltz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Laham, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' An intro- duction to latent semantic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Discourse Processes, 25(2-3), 259–284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1080/01638539809545028 Lau, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Holcomb, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kuperberg, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Dis- sociating N400 Effects of Prediction from Association in Single-word Contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Cognitive Neuroscience, 25(3), 484–502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Levy, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Expectation-based syntactic com- prehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognition, 106(3), 1126–1177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='cognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='006 Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Ott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Du, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Joshi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Stoyanov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' RoBERTa: A Robustly Optimized BERT Pretraining Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='11692 [cs].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Luke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Christianson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Limits on lexical prediction during reading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cognitive Psychology, 88, 22– 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='cogpsych.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='002 Menenti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Petersson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Scheeringa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Hagoort, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' When Elephants Fly: Differential Sensitiv- ity of Right and Left Inferior Frontal Gyri to Discourse and World Knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Cognitive Neuroscience, 21(12), 2358–2368.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1162/jocn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='21163 Merkx, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Frank, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Human Sentence Process- ing: Recurrence or Attention?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the Work- shop on Cognitive Modeling and Computational Linguis- tics (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 12–22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='cmcl-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2 Metusalem, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Urbach, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Hare, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', McRae, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Elman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Generalized event knowledge activation during online sentence comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Jour- nal of Memory and Language, 66(4), 545–567.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='jml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='001 Michaelov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bardolph, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Coulson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Bergen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Different kinds of cognitive plausibility: Why are transformers better than RNNs at predicting N400 amplitude?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 43rd Annual Meeting of the Cognitive Science Society (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 300–306).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' University of Vienna, Vienna, Austria (Hybrid).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Bergen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' How well does surprisal explain N400 amplitude under different experi- mental conditions?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 24th Conference on Computational Natural Language Learning (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 652– 663).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='conll-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='53 Michaelov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Bergen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Collateral facili- tation in humans and language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 13–26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Michaelov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Coulson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Bergen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' So Cloze yet so Far: N400 Amplitude is Better Predicted by Distributional Information than Human Predictability Judgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' IEEE Transactions on Cognitive and Devel- opmental Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1109/TCDS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3176783 Mikolov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Grave, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bojanowski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Puhrsch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Joulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Advances in Pre-Training Distributed Word Representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the Eleventh Interna- tional Conference on Language Resources and Evaluation (LREC 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Miyazaki, Japan: European Language Re- sources Association (ELRA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Mikolov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Corrado, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Dean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Distributed Representations of Words and Phrases and their Compositionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Burges, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Bottou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Welling, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Ghahramani, & K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Wein- berger (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems 26 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 3111–3119).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Misra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Ettinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Rayz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Exploring BERT’s Sensitivity to Lexical Cues using Tests from Se- mantic Priming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Findings of the Association for Com- putational Linguistics: EMNLP 2020 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 4625–4635).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='415 Nieuwland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & van Berkum, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' When Peanuts Fall in Love: N400 Evidence for the Power of Dis- course.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Cognitive Neuroscience, 18(7), 1098– 1111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1162/jocn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1098 Oostdijk, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Reynaert, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Hoste, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Schuurman, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The Construction of a 500-Million-Word Refer- ence Corpus of Contemporary Written Dutch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Spyns & J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Odijk (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' ), Essential Speech and Language Tech- nology for Dutch: Results by the STEVIN programme (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 219–247).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Berlin, Heidelberg: Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Parviz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Johnson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Brock, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Using Language Models and Latent Semantic Analysis to Characterise the N400m Neural Response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceed- ings of the Australasian Language Technology Association Workshop 2011 (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 38–46).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Canberra, Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Paszke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Gross, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Massa, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Lerer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bradbury, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Chanan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Chintala, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' PyTorch: An Im- perative Style, High-Performance Deep Learning Library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Advances in Neural Information Processing Systems (Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Pennington, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Socher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Manning, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' GloVe: Global Vectors for Word Representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 1532–1543).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Doha, Qatar: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3115/v1/D14-1162 R Core Team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' R: A language and environment for statistical computing [Manual].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Vienna, Austria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Rabovsky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Hansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & McClelland, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Modelling the N400 brain potential as change in a prob- abilistic representation of meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Nature Human Be- haviour, 2(9), 693–705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1038/s41562-018-0406-4 Radford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Child, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Luan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Amodei, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Language Models are Unsupervised Multitask Learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' , 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Radvansky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Federico, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Franklin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Retrieval from temporally organized situation mod- els.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Experimental Psychology: Learning, Mem- ory, and Cognition, 24(5), 1224–1237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1037/0278- 7393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1224 Rosenbach, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Animacy and grammatical varia- tion—Findings from English genitive variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Lingua, 118(2), 151–171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='lingua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='002 RStudio Team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' RStudio: Integrated development environment for r [Manual].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Boston, MA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Rugg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The Effects of Semantic Priming and Word Repetition on Event-Related Potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psy- chophysiology, 22(6), 642–647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1469- 8986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='tb01661.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='x Sch¨afer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Bildhauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Building Large Cor- pora from the Web Using a New Efficient Tool Chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 486– 493).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Istanbul, Turkey: European Language Resources As- sociation (ELRA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Szewczyk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Federmeier, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Context- based facilitation of semantic access follows both logarith- mic and linear functions of stimulus probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Jour- nal of Memory and Language, 123, 104311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='jml.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='104311 Tulkens, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Emmery, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Daelemans, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Evaluat- ing Unsupervised Dutch Word Embeddings as a Linguistic Resource.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the Tenth International Con- ference on Language Resources and Evaluation (LREC’16) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 4130–4136).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Portoroˇz, Slovenia: European Language Resources Association (ELRA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Uchida, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Lair, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Ishiguro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Dominey, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A Model of Online Temporal-Spatial Integration for Immedi- acy and Overrule in Discourse Comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Neurobiol- ogy of Language, 2(1), 83–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' van Dijk, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kintsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Strategies of discourse comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' New York: Academic Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Berkum, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Koornneef, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Otten, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Nieuwland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Establishing refer- ence in language comprehension: An electrophysiologi- cal perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Brain Research, 1146, 158–171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='brainres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='091 Van Petten, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Examining the N400 seman- tic context effect item-by-item: Relationship to corpus- based measures of word co-occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' International Journal of Psychophysiology, 94(3), 407–419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='ijpsycho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='012 Van Petten, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kutas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Tracking the time course of meaning activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Small, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Cottrell, & M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Tanenhaus (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' ), Lexical Ambiguity Resolution in the Comprehension of Human Language (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 431–475).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' San Mateo, California: Morgan Kaufmann Publishers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Van Petten, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Luka, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Prediction during lan- guage comprehension: Benefits, costs, and ERP compo- nents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' International Journal of Psychophysiology, 83(2), 176–190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='ijpsycho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='015 Van Rossum, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Drake, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Python 3 reference manual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Scotts Valley, CA: CreateSpace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Venhuizen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Crocker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Brouwer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Expectation-based Comprehension: Modeling the In- teraction of World Knowledge and Linguistic Experi- ence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Discourse Processes, 56(3), 229–255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1080/0163853X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1448677 Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Oliphant, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Haberland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Reddy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Cournapeau, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' SciPy 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0 Contributors (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' SciPy 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='0: Fundamental algorithms for scientific computing in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Nature Methods, 17, 261–272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1038/s41592-019-0686-2 Warren, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', McConnell, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Rayner, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Effects of context on eye movements when reading about possible and impossible events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Experimental Psychol- ogy: Learning, Memory, and Cognition, 34(4), 1001–1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1037/0278-7393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1001 Wickham, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Averick, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Bryan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Chang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', McGowan, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Franc¸ois, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Yutani, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Welcome to the tidyverse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Open Source Software, 4(43), 1686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='21105/joss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='01686 Wolf, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Debut, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Sanh, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Chaumond, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Delangue, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Moi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Rush, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Transformers: State-of-the- Art Natural Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan- guage Processing: System Demonstrations (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 38–45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='emnlp-demos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='6 Xiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Kuperberg, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Reversing ex- pectations during discourse comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Language, Cognition and Neuroscience, 30(6), 648–672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1080/23273798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='995679 Yamada, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Asai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Sakuma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Shindo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Takeda, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Takefuji, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Matsumoto, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embed- dings of Words and Entities from Wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In Proceed- ings of the 2020 Conference on Empirical Methods in Natu- ral Language Processing: System Demonstrations (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 23– 30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Online: Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='emnlp-demos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='4 Zacks, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Ferstl, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Discourse Comprehen- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' In G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Hickok & S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Small (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' ), Neurobiology of Language (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' 661–673).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' San Diego: Academic Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/B978-0-12-407794-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='00053-5 Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Embodiment and language compre- hension: Reframing the discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Trends in Cognitive Sciences, 18(5), 229–234.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='008 Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Situation models, mental simula- tions, and abstract concepts in discourse comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psychonomic Bulletin & Review, 23(4), 1028–1034.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='3758/s13423-015-0864-x Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Langston, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Graesser, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' The Construction of Situation Models in Nar- rative Comprehension: An Event-Indexing Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psy- chological Science, 6(5), 292–297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1467- 9280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='tb00513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='x Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Madden, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Updating sit- uation models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 283–288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1037/0278-7393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='283 Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', Magliano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Graesser, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Di- mensions of situation model construction in narrative com- prehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Journal of experimental psychology: Learn- ing, memory, and cognition, 21(2), 386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Zwaan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=', & Radvansky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Situation models in language comprehension and memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' Psy- chological Bulletin, 123(2), 162–185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='1037/0033- 2909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
+page_content='162' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdFAT4oBgHgl3EQf5B6R/content/2301.08731v1.pdf'}
diff --git a/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf b/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..043b82c6073a577afa9d250bc0885176b553d8b2
--- /dev/null
+++ b/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3b0a6fb8fbbf8ffc6318628f08a2b096b5e4c660aaea4cedcb0ba601bebce723
+size 4605222
diff --git a/ctE2T4oBgHgl3EQfagfL/vector_store/index.pkl b/ctE2T4oBgHgl3EQfagfL/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..8bb635d69719c75ac97cf177380237b20babef99
--- /dev/null
+++ b/ctE2T4oBgHgl3EQfagfL/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:df5f8066a569c21702f941739123ab47523e2f80637ba371f9b0b0ecbd7bb3f1
+size 106058
diff --git a/ctFIT4oBgHgl3EQfnitG/content/tmp_files/2301.11314v1.pdf.txt b/ctFIT4oBgHgl3EQfnitG/content/tmp_files/2301.11314v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0c7706f43e3b26e60d61a633147fc2f19a918c83
--- /dev/null
+++ b/ctFIT4oBgHgl3EQfnitG/content/tmp_files/2301.11314v1.pdf.txt
@@ -0,0 +1,2349 @@
+Astronomy & Astrophysics manuscript no. Mahapatra2023
+©ESO 2023
+January 27, 2023
+From exo-Earths to exo-Venuses
+Flux and Polarization Signatures of Reflected Light
+G. Mahapatra,1,⋆, F. Abiad1, L. Rossi2, and D.M.Stam1
+1 Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
+e-mail: g.mahapatra@tudelft.nl
+2 CNRS/INSU, LATMOS-IPSL, Guyancourt, France
+Accepted 11 January, 2023
+ABSTRACT
+Context. Terrestrial-type exoplanets in or near stellar habitable zones appear to be ubiquitous. It
+is, however, unknown which of these planets have temperate, Earth-like climates or e.g. extreme,
+Venus-like climates.
+Aims. Technical tools to distinguish different types of terrestrial-type planets are crucial for deter-
+mining whether a planet could be habitable or incompatible with life as we know it. We investigate
+the potential of spectropolarimetry for distinguishing exo-Earths from exo-Venuses.
+Methods. We present numerically computed fluxes and degrees of linear polarization of starlight
+that is reflected by exoplanets with atmospheres in evolutionary states ranging from similar to the
+current Earth to similar to the current Venus, with cloud compositions ranging from pure water
+to 75% sulfuric acid solution, for wavelengths between 0.3 and 2.5 µm. We also present flux and
+polarization signals of such planets in stable but spatially unresolved orbits around the star Alpha
+Centauri A.
+Results. The degree of polarization of the reflected starlight shows larger variations with the
+planetary phase angle and wavelength than the total flux. Across the visible, the largest degree of
+polarization is reached for an Earth-like atmosphere with water clouds, due to Rayleigh scattering
+above the clouds and the rainbow feature at phase angles near 40◦. At near-infrared wavelengths,
+the planet with a Venus-like CO2 atmosphere and thin water clouds shows the most prominent
+polarization features due to Rayleigh-like scattering by the small cloud droplets. A planet in
+a stable orbit around Alpha Centauri A would leave temporal variations on the order of 10−13
+W/m3 in the total reflected flux and 10−11 in the total degree of polarization as the planet orbits
+the star and assuming a spatially unresolved star-planet system. Star-planet contrasts are in the
+order of 10−10 and vary proportionally with planetary flux.
+⋆ Now at SRON Netherlands Institute for Space Research, Leiden, The Netherlands
+Article number, page 1 of 24
+arXiv:2301.11314v1 [astro-ph.EP] 26 Jan 2023
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Conclusions. Current polarimeters appear to be incapable to distinguish between the possible
+evolutionary phases of spatially unresolved terrestrial exo-planets, as a sensitivity close to 10−10
+would be required to discern the planetary signal given the background of unpolarized starlight.
+A telescope/instrument capable of achieving planet-star contrasts lower than 10−9 should be able
+to observe the large variation of the planet’s resolved degree of polarization as a function of its
+phase angle and thus be able to discern an exo-Earth from an exo-Venus based on its clouds’
+unique polarization signatures.
+Key words. Exo-planets – Venus – Radiative transfer – Polarimetry
+1. Introduction
+Despite having similar sizes, being formed around the same time and from similar materials, it is
+clear that the Earth and Venus have evolved into dramatically different worlds. While it is generally
+acknowledged that Venus once had much larger amounts of water than today, it is still debated
+whether Venus was once more Earth-like with oceans of water before the runaway-greenhouse-
+effect took off (Donahue et al. 1982), or whether the atmospheric water vapour never actually
+condensed on the surface (Turbet et al. 2021). Bullock & Grinspoon (2001) conducted a detailed
+study of the possible evolution of Venus’s climate over long time periods starting with a water
+vapour enriched atmosphere. Terrestrial-type exoplanets are also expected to harbour a wide vari-
+ety of atmospheric compositions with maybe only a few planets hospitable to life as we know it.
+Various climate models suggest that the likelihood of a planetary atmosphere exhibiting a Venus-
+like runaway-greenhouse-effect is higher than that of an atmosphere in an Earth-like, N2-dominated
+state (Lincowski et al. 2018, and references therein). A study by Kane et al. (2020) even shows that
+Jupiter’s migration might have stimulated the runaway-greenhouse-effect on Venus, suggesting that
+there could be more Venus-analogs than Earth-analogs in planetary systems with Jupiter-like plan-
+ets.
+As planned powerful telescopes and dedicated, sensitive detection techniques will allow us to
+characterize smaller exoplanets in the near-future, it will become possible to probe terrestrial-type
+planets in and near the habitable zones of solar-type stars and to find out whether they resemble
+Earth or Venus, or something else all together. The high-altitude cloud deck on an exo-Venus would
+make it difficult to use a technique like transit spectroscopy for the characterization of the planet
+as the clouds themselves would block the transmission of the starlight and apart from a spectral
+dependence of the cloud optical thickness which could leave a wavelength dependent transmission
+through the cloud tops, the microphysical properties of the cloud particles, such as their composi-
+tion, shape and size distribution would remain a mystery. Also, the clouds would inhibit measuring
+trace gas column densities as they would block the planet’s lower atmosphere and only allow tran-
+sit spectroscopy of the highest regions of the atmosphere (see, e.g. Lustig-Yaeger et al. 2019a, and
+references therein). Indeed, a Venus-like ubiquitous cloud deck could possibly be mistaken for the
+Article number, page 2 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+planet’s surface, as one would only measure the transmittance through the gaseous atmosphere
+above the clouds, possibly inferring the atmosphere to be thin and eroding (Lustig-Yaeger et al.
+2019b).
+Jordan et al. (2021) modelled the photochemistry of some of the primary sulphuric chemical
+species that should be responsible for the formation and sustenance of Venus’s sulfuric acid solution
+clouds, such as SO2, OCS and H2S, and found that the abundances of such species above the cloud
+deck would depend heavily on the effective temperature and distance to the parent star, with their
+abundances decreasing with increasing temperature and being depleted, as we see on Venus, in
+the presence of a star like the Sun. Thus it would be challenging to rule out the possibility of
+an exoplanet being a Venus analog solely on the basis of the detection of such chemical species
+in transmission spectra (Jordan et al. 2021). Indeed, the full characterization of rocky exoplanets
+and their classification appears to require the direct imaging of starlight that is reflected by such
+planets and/or the thermal radiation that is emitted by them. While telescopes able to perform such
+measurements are not yet available, plans are underway for their development and deployment
+(Keller et al. 2010; The Luvoir Team 2019).
+While most of telescopes and instruments are designed for only measuring total fluxes of exo-
+planets, including (spectro)polarimetry is also being considered. The main reason to include (spec-
+tro)polarimetry (see e.g. Rossi et al. 2021, and references therein) is that it increases the contrast
+between star and planet, as the stellar flux will be mostly unpolarized when integrated over the disk
+(Kemp et al. 1987), while the flux of the reflected starlight will usually be (linearly) polarized. And
+in addition, (spectro)polarimetry can be used for the characterization of planetary atmospheres and
+surfaces. As a classic example of the latter, Hansen & Hovenier (1974) used Earth-based measure-
+ments of the disk-integrated degree of polarization of sunlight that was reflected by Venus in three
+spectral bands and across a broad phase angle range, to deduce that the particles forming Venus’s
+main cloud deck consist of 75% sulfuric acid solution, that the effective radius of their size dis-
+tribution is 1.05 µm, and that the effective width of the distribution is 0.07. They also derived the
+cloud top altitude (at 50 mbars) by determining the amount of Rayleigh scattering in the gas above
+the cloud tops at a wavelength of 0.365 µm. This was later confirmed by the Pioneer Venus mission
+which performed in-situ measurements using a nephelometer on a probe that descended through
+the clouds (Knollenberg & Hunten 1980).
+Polarimetry proved to be an effective technique for disentangling Venus’s cloud properties be-
+cause the scattering particles leave a unique angular polarization pattern in the reflected sunlight
+depending on the particles’ micro- and macro-physical properties (for an extensive explanation
+of the application of polarimetry for the characterization of planetary atmospheres, see Hansen
+& Travis 1974). While multiple scattered light usually has a low degree of polarization, and thus
+dilutes the angular polarization patterns of the singly scattered light, the angles where the abso-
+lute degree of polarization reaches a local maximum and/or where it is zero (the so-called ’neutral
+points’) are preserved and thus still allow for the characterization of the particles.
+Article number, page 3 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Another factor in the successful application of (spectro)polarimetry for the characterization of
+Venus’s clouds and hazes is that with Earth-based telescopes, inner planet Venus can be observed
+at a wide range of phase angles, thus allowing observations of the angular variation of the degree
+of polarization due to the light that has been singly scattered by the atmospheric constituents. In
+our solar system, only Venus, Mercury, and the Moon can be observed at a large phase angle range
+with Earth-based telescopes (ignoring the proximity of Mercury to the Sun). To effectively apply
+polarimetry to the outer planets in the solar system, a polarimeter onboard a space mission would be
+needed. An example of such an instrument was OCCP onboard NASA’s Galileo mission (Russell
+et al. 1992) that orbited Jupiter. Regarding exoplanets, however, the range of observable phase
+angles depends on the inclination angle of the planetary orbits: for a face-on orbit, the planet’s
+phase angle will be 90◦ everywhere along the orbit, while for an edge-on orbit, the phase angle will
+range from close to 0◦ (when the planetary disk is fully illuminated) to 180◦ (when the night-side
+of the planet is in view). The precise range of accessible phase angles would of course depend on
+the observational technique and e.g. the use of a coronagraph or star-shade.
+Here we investigate the total flux and degree of polarization of starlight that is reflected by
+terrestrial-type exoplanets, focusing on the possible evolutionary stages of Venus as described by
+Bullock & Grinspoon (2001). Our goal is to identify characteristic signatures that could help to
+identify the properties of exo-Venuses, thus to guide the design of future telescope instruments.
+We compute the disk-integrated total and polarized fluxes of light reflected between wavelengths
+of 0.3 to 2.5 µm. First, we study the single scattering properties of spherical cloud droplets of pure
+water (H2O) or 75% sulphuric acid (H2SO4) in order to identify potentially distinct signatures for
+each particle type as a function of wavelength and planetary phase angle. Second, we compute the
+multiple scattered flux and polarization signals that are integrated over the planet’s illuminated disk
+as functions of the planet’s phase angle. Third, we compute the signals of the planets in the four
+evolutionary phases in stable orbits around the nearby solar-type Alpha Centauri A, simulating the
+observations of such planets if they are spatially unresolved from their parent star.
+The outline of this paper is as follows. In Sect. 2, we define the fluxes and polarization of
+planets, and we describe our numerical algorithm and the four model planets in the evolutionary
+phases as described by Bullock & Grinspoon (2001). In Sect. 3, we present the total and polarized
+fluxes as computed for planets that are spatially resolved from their star and for planets that are
+spatially unresolved. In the latter case, the planet’s signal is thus combined with the stellar light.
+We specifically assume that our model planet orbits the solar-type star Alpha Centauri A. In Sect. 4,
+we summarize our results and present our conclusions.
+2. Numerical method
+2.1. Flux and polarization definitions
+In this paper, we present the flux and polarization signals of starlight that is reflected by potentially
+habitable exoplanets that orbit solar-type stars, and in particular, Alpha Centauri A. Because these
+Article number, page 4 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+planets will be very close in angular distance to their parent star, they will usually be spatially unre-
+solved, i.e. it will not be possible to spatially separate the planet’s signal from that of its parent star.
+The flux vector Fu (u= ’unresolved’) that describes the light of the star and its spatially unresolved
+planet, and that arrives at a distant observer is then written as
+Fu(λ, α) = Fs(λ) + Fp(λ, α),
+(1)
+with Fs the star’s flux vector and Fp that of the planet. Furthermore, λ is the wavelength (or wave-
+length band), and α is the planetary phase angle, i.e. the angle between the star and the observer
+as measured from the center of the planet. We assume that the light of the star is captured together
+with the starlight that is reflected by the planet. A telescope with a coronagraph or star-shade would
+of course limit the amount of captured direct starlight, depending on its design and the angular dis-
+tance between the star and the planet.
+A flux (column) vector is given by (Hansen & Travis 1974)
+F = [F, Q, U, V],
+(2)
+with F the total flux, Q and U the linearly polarized fluxes, and V the circularly polarized flux. The
+dimensions of F, Q, U, and V are W m−2, or W m−3 when defined per wavelength.
+Measurements of FGK-stars, such as the Sun and Alpha Centauri A, indicate that their (disk-
+integrated) polarized fluxes are virtually negligible (Kemp et al. 1987; Cotton et al. 2017), thus we
+describe the star’s flux (column) vector that arrives at the observer located at a distance D as
+Fs(λ) = Fs(λ) 1 = R2
+s
+D2 πB(λ, Ts) 1,
+(3)
+with πB the stellar surface flux, Ts the star’s effective temperature, Rs the stellar radius, and 1 the
+unit (column) vector. The parameter values that we adopt for the Alpha Centauri A system are
+listed in Table 1.
+Because of the huge distances to stars and their planets, flux vector Fp of the starlight that is
+reflected by an exoplanet pertains to the planet as a whole, thus integrated across the illuminated
+and visible part of the planetary disk. It is given by (see e.g. Rossi et al. 2018)
+Fp(λ, α)
+=
+AG(λ) Rp(λ, α)
+r2
+p
+D2
+R2
+s
+d2 πB(λ, Ts) 1
+(4)
+=
+AG(λ) R1p(λ, α)
+r2
+p
+D2
+R2
+s
+d2 πB(λ, Ts).
+(5)
+Here, AG is the planet’s geometric albedo, Rp the matrix describing the reflection by the planet
+and R1p its first column, rp is the planet’s radius, d the distance between the star and the planet,
+and D the distance to the observer. The planet’s reflection is normalized such that planetary phase
+function R1p, which is the first element of R1p, equals 1.0 at α = 0◦.
+Article number, page 5 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+The contrast C between the total flux of the planet and the total flux of the star is then given by
+C(λ, α) = Fp(λ, α)
+Fs(λ)
+= AG(λ) R1p(λ, α)
+r2
+p
+d2 ,
+(6)
+with Fp the first element of the planetary flux vector Fp. Using the parameters from Table 1, the con-
+trast C between a planet with the radius of Venus at a Venus-like distance from Alpha Centauri A
+equals about 2·10−9AG at α = 0◦ (at this phase angle, the planet would actually be precisely behind
+the star with respect to the observer and thus out of sight).
+The degree of polarization of the spatially resolved planet (without including any direct light
+of the star) is defined as
+Pp =
+�
+Q2p + U2p
+Fp
+,
+(7)
+where we ignore the planet’s circularly polarized flux Vp as it is expected to be very small com-
+pared to the linearly polarized fluxes (Rossi & Stam 2018). We also ignore the circularly polarized
+fluxes in our radiative transfer computations, as this saves significant amounts of computing time
+without introducing significant errors in the computed total and linearly polarized fluxes (see Stam
+& Hovenier 2005).
+Fluxes Qp and Up are defined with respect to the planetary scattering plane, which is the plane
+through the planet, the star and the observer. In case the planet is mirror-symmetric with respect to
+the planetary scattering plane, linearly polarized flux Up equals zero and we can use an alternative
+definition of the degree of polarization that includes the polarization direction as follows
+Pp = −Qp
+Fp
+.
+(8)
+If Pp > 0 (Pp < 0), the light is polarized perpendicular (parallel) to the reference plane.
+In case a planet is not completely spatially resolved from its parent star, and the background of
+the planet on the sky is thus filled with (unpolarized) starlight, the observable degree of polarization
+Pu can be written as (cf. Eqs. 6-7)
+Pu =
+�
+Q2p + U2p
+Fp + xFs
+=
+Fp
+Fp + xFs
+Pp =
+C
+C + xPp,
+(9)
+with x the fraction of the stellar flux that is in the background, which will depend on the angular
+distance between the star and the planet, on the starlight suppressing techniques that are employed,
+such as a coronagraph or star-shade, and on the spatial resolution of the telescope at the wavelength
+under consideration. This equation also holds for the signed degree of polarization as given by
+Eq. 8. If x = 1, the planetary and the stellar flux are measured together. In that case,
+Pu =
+C
+C + 1Pp ≈ CPp.
+(10)
+Article number, page 6 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Table 1. The values of the parameters describing the planetary system of Alpha Centauri A used in our
+numerical modelling1.
+Parameter (unit)
+Symbol
+Value
+Stellar radius (RSun)
+Rs
+1.2234
+Stellar effective temperature (K)
+Ts
+5790
+Planet radius (km)
+rp
+6052
+Planet orbital distance (AU)
+d
+0.86
+Planet orbital period (yr)
+P
+0.76
+Distance to the system (ly)
+D
+4.2
+Angular separation (arcsecs)
+S
+0.67
+Here we used the fact that the contrast C will usually be very small (on the order of 10−9 as shown
+earlier).
+The planet’s degree of polarization Pp and the contrast C both depend on λ and α, but generally
+in a different way. The dependence of Pu on λ and α will thus generally differ from that of either
+Pp or C.
+2.2. Our radiative transfer algorithm
+Our procedure to compute the flux vector Fp (Eq. 5) of the starlight that is reflected by the planet,
+is described in Rossi et al. (2018). The radiative transfer algorithm is based on an efficient adding-
+doubling algorithm (de Haan et al. 1987) and fully includes polarization for all orders of scattering.
+With this algorithm, through the use of a Fourier-series expansion of the planetary reflection matrix
+Rp, the reflected flux vector can be computed for any planetary phase angle α.
+Our model planetary atmospheres consist of horizontally homogeneous layers. For each layer,
+we prescribe the total optical thickness b, the single-scattering albedo a, and the single-scattering
+matrix P. Our layered model atmosphere is bounded below by a Lambertian reflecting surface (i.e.
+the light is reflected isotropically and unpolarized) with an albedo asurf.
+A layer’s optical thickness b at a wavelength λ is the sum of the optical thicknesses of the gas
+molecules, bm, and, if present, the cloud particles, bc. We ignore other atmospheric particles, such
+as haze particles. The single-scattering matrix P of a mixture of gas molecules and cloud particles
+in a layer is given by
+P(Θ, λ) = bm
+sca(λ) Pm(Θ, λ) + bc
+sca(λ) Pc(Θ, λ)
+bmsca(λ) + bcsca(λ)
+,
+(11)
+with subscript ‘sca’ referring to ‘scattering’, thus bsca = ab, with a the single scattering albedo.
+Furthermore, Pm is the single-scattering matrix of the gas molecules, and Pc that of the cloud
+particles. Θ is the single scattering angle: Θ = 180◦ − α.
+We use two types of model atmospheres to study the influence of an exoplanet’s atmospheric
+evolution on the reflected light signals: an Earth-like and a Venus-like atmosphere. For our Earth-
+like atmosphere, we define the pressure and temperature across 17 layers, representing a mid-
+1 The orbital distance d of the planet has been chosen such that it receives the same stellar flux as Venus
+receives from the Sun, and in accordance with the orbit stability requirements for a planet around Alpha
+Centauri A predicted by Quarles & Lissauer (2016). For the radius of the Sun, RSun, we use 695,700 km.
+Article number, page 7 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Fig. 1. The four evolutionary phases of the model planets (Bullock & Grinspoon 2001). In Phases 1 and 2,
+the clouds consist of liquid water droplets, and in Phases 3 and 4, of liquid sulfuric acid solution droplets.
+The cloud optical thickness is indicated by bc and the cloud particle effective radius by reff. For the effective
+variance veff of the size distributions in Phases 1-3, we use 0.1, and for Phase 4, veff = 0.07.
+latitude summer profile (following Stam 2008). For our Venus-like atmosphere, we use 71 layers
+with pressure and temperature profiles from the Venus International Reference Atmosphere (VIRA)
+(Kliore et al. 1985), representing a mid-latitude afternoon profile. With these vertical profiles, and
+assuming anisotropic Rayleigh scattering (Hansen & Travis 1974), we compute each layer’s single
+scattering matrix Pm and the scattering optical thickness bm
+sca. We neglect absorption, thus bm = bm
+sca.
+The depolarization factor for computing Pm and bm
+sca for anisotropic Rayleigh scattering depends on
+the atmospheric composition. For the Earth-like atmosphere, we use a (wavelength independent)
+depolarization factor of 0.03, which is representative for dry air, and for the Venus-like atmosphere,
+we use 0.09, which is representative for a pure CO2 atmosphere (Hansen & Travis 1974). We
+use wavelength-independent refractive indices of 1.00044 and 1.00027 for the Venus-like and the
+Earth-like model atmospheres, respectively; note that this assumption has a negligible effect on the
+reflected total and polarized fluxes.
+The cloud particles in our model atmospheres are spherical and distributed in size according
+to a two-parameter gamma size distribution (see Hansen & Travis 1974) that is described by an
+effective radius reff and an effective variance veff. The terrestrial clouds are located between 1 and
+3 km altitude, and the Venusian clouds, depending on their evolutionary phase, between 47 and
+80 km. The cloud optical thickness has a uniform vertical distribution through the altitude range
+(see Fig. 1).
+The single-scattering properties of the cloud particles are computed using Mie-theory (De Rooij
+& Van der Stap 1984), as these particles are expected to be spherical. For these computations we
+specify the wavelength λ and nr, the refractive index of the cloud particles. The cloud particles are
+composed of either pure water or a sulphuric acid solution with varying concentration. We use the
+refractive index of water from Hale & Querry (1973) and that of sulphuric acid with 75 % acid
+concentration from Palmer & Williams (1975). We use a negligible value for the imaginary part of
+the particles’ refractive indices, ni = 10−8.
+Article number, page 8 of 24
+
+Cloud
+thickness
+Ititude
+A
+Cloud top = 3 km
+Cloud top = 80 km
+Cloud top = 65 km
+Cloud top = 65 km
+bc = 2
+bc = 4
+bc = 120
+bc = 30
+reff = 10.0 μm
+reff = 0.5 μm
+reff = 2.0 μm
+reff = 1.0 μm
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+Current Earth
+Thin clouds Venus
+Thick clouds Venus
+Current VenusMahapatra et al.: From exo-Earths to exo-Venuses
+2.3. Cloud properties through the planet’s evolution
+It is suspected that early Venus had a thin, Earth-like atmosphere and (possibly) an Earth-like ocean
+that was later lost due to the runaway greenhouse effect (Donahue et al. 1982; Kasting 1988; Way &
+Del Genio 2020). As the planet’s surface heated up, the water would have evaporated and enriched
+the atmosphere with water vapor. The macroscopic cloud properties for the 4 evolutionary phases
+that we will use are illustrated in Fig. 1.
+We start our evolutionary model of Venus assuming Earth-like conditions (Phase 1), i.e. an
+atmosphere consisting of 78% N2 and 22% O2. Model simulations showed that the actual depen-
+dence of the total and polarized flux signals on the percentage of oxygen appeared to be negligible.
+Hence we used the present day Earth atmosphere as the Earth-like atmosphere model while the ac-
+tual percentage of oxygen on an exo-planet could be different. The cloud particles have an effective
+radius reff of 10 µm in agreement with ISCCP (Tselioudis 2001) and an effective variance veff of
+0.1. The total cloud optical thickness bc is 10.0 at λ = 0.55 µm and the cloud layer extends from
+2 to 4 km.
+The next evolutionary phases are also inspired by the Venus climate model of Bullock & Grin-
+spoon (2001). In Phase 2, the atmosphere is Venus-like as it consists of pure CO2 gas, and has
+relatively thin liquid water clouds with bc = 4, and with the cloud tops at 80 km. For this phase,
+we use reff of 0.5 µm, which is smaller than the present day value, because the atmosphere is ex-
+pected to be too hot for strong condensation to take place thus preventing the particles to grow
+larger. In Phase 3, the clouds are thick sulphuric-acid solution clouds, with bc = 120 and the cloud
+tops at 65 km, because the atmosphere is cool enough to allow condensation and/or coalescence
+of saturated vapour over a large altitude range. Since the region of condensation covers a large
+altitude range, the particles can grow large until they evaporate. In this phase, reff = 2 µm, which is
+twice the effective radius of the present day Venus cloud particles. For both phases 2 and 3, we use
+veff = 0.1. In Phase 4, the clouds have the present-day properties of Venus’s clouds with bc = 30
+and the cloud tops at 65 km (Rossi et al. 2015; Ragent et al. 1985). For the cloud particle sizes
+in this phase, we use reff = 1.05 µm and veff = 0.07 following the values derived by Hansen &
+Hovenier (1974). We ignore the absorption by cloud particles in the UV in all of our Venus-like
+clouds to avoid adding complexity and because the exact nature and location of the UV-absorption
+is still under debate (Titov et al. 2018).
+Figure 2 shows the phase function (i.e. single scattering matrix element P11) and the degree
+of linear polarization for unpolarized incident light (the ratio of single scattering matrix elements
+−P21/P11) that has been singly scattered by the four different types of cloud particles as functions
+of α (i.e. 180◦ - Θ), for a range of wavelengths λ.
+As can be seen in Fig. 2, the phase functions show strong forward scattering peaks (near α =
+180◦, thus when the night-side of the planet would be turned towards the observer) that decrease
+with increasing λ, thus with decreasing effective particle size parameter xeff = 2πreff/λ (for the
+large H2O cloud particles, with reff = 10 µm, this decrease is not readily apparent from the figure).
+Article number, page 9 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Fig. 2. The total flux and degree of polarization of incident unpolarized light that has been singly scattered by
+four different types of cloud particles, as functions of the phase angle α and the wavelength λ. Left column: the
+total flux or phase function (single scattering matrix element P11). Right column: the degree of polarization
+(−P21/P11). First row: H2O particles with reff = 10 µm and veff = 0.1 (belonging to the Phase 1 model planet:
+’Current Earth’); Second row: H2O particles with reff = 0.5 µm and veff = 0.1 (Phase 2: ’Thin clouds Venus’);
+Third row: 75% H2SO4 particles with reff = 2.0 µm and veff = 0.1 (Phase 3: ’Thick clouds Venus’); Fourth
+row: 75% H2SO4 particles with reff = 1.05 µm and veff = 0.07 (Phase 4: ’Current Venus’).
+The H2O particles with reff = 10 µm show a moderate local maximum in the phase function around
+α = 40◦, which is usually referred to as the primary rainbow (see e.g. Hansen & Travis 1974). The
+large H2O and the H2SO4 particles also produce higher fluxes towards α = 0◦ that are referred
+to as the glory (Laven 2008; García-Muñoz et al. 2014; Markiewicz et al. 2014; Rossi et al. 2015;
+Markiewicz et al. 2018). For the small H2O particles and the H2SO4 particles at larger wavelengths,
+the phase functions become more isotropic and the glory and other angular features disappear.
+Figure 2 also shows the degree of linear polarization of the singly scattered light. This degree
+of polarization appears to be more sensitive to the particle composition than the scattered flux,
+especially for λ between 0.5 and 2 µm, where H2O particles yield relatively high positive degrees
+of polarization (perpendicular to the scattering plane) between phase angles of about 20◦ and 100◦,
+whereas the H2SO4 particles impart a mostly negative degree of polarization through a broad range
+of phase angles, except for narrow regions around α = 20◦ and 80◦. The tiny, reff = 0.5 µm, water
+droplets have a strong, broad positive polarization region for λ ≥ 1 µm, where they are so small
+with respect to the wavelength that they scatter like Rayleigh scatterers.
+As mentioned before (see e.g. Hansen & Travis 1974; Hansen & Hovenier 1974), patterns in
+the single scattering degree of polarization are generally preserved when multiple scattered light is
+added, as the latter usually has a low degree of polarization, and thus adds mostly total flux, which
+Article number, page 10 of 24
+
+H20,reff:10.0μm
+H20,reff:10.0μm
+2.5
+0.5
+2.5
+Wavelength (μm)
+Wavelength (μm)
+0.500
+0.6
+2.0
+102
+2.0
+0.000
+Phase function
+0.4
+1.5
+0.037
+101
+1.5
+0.2
+0.000
+1.0
+0.139
+1.931
+0.0
+0.139
+7.197~
+100
+0.000
+0.500
+0.2
+0.5
+0.5
+10~1
+.82
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+H20, reff: 0.5 μm
+H20,reff: 0.5μm
+2.5
+2.5
+Wavelength (μm)
+Wavelength (μum)
+0.6
+2.0
+102
+Phase function
+0.200
+0.800
+ 0.4
+1.5
+0.518
+101
+1.5
+0.2
+1.931
+0.400
+1.0
+1.0
+0.200
+0.0
+100
+0.2
+0.5
+0.139
+0.5
+0.000
+0.000
+0200
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+75%H2SO4,reff:2.0μm
+75%H2SO4,reff:2.0μm
+2.5
+2.512
+2.5
+Wavelength (um)
+Wavelength (μm)
+0.000
+0.6
+2.0
+102
+2.0
+Phase function
+0.4
+1.5
+101
+1.5
+0.2
+1.0
+1.0
+0.0
+100
+0.398
+-0.2
+0.5
+0.5
+0.000
+0.200
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+75%H2SO4,reff:1.05μm
+75%H2S04,reff:1.05μm
+2.5
+1668-
+0.077
+E
+0.25
+Wavelength (um)
+Wavelength (μm)
+0.6
+2.0
+102
+Phase function
+2.0
+0.4
+1.5
+1.5
+0.000
+101
+0.2
+4.642-
+1.0
+1.0
+0.0
+100
+-0.2
+0.5
+10-1
+0.5
+0.028
+0.000
+0.250
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Phase angle (deg)
+Phaseangle (deg)Mahapatra et al.: From exo-Earths to exo-Venuses
+subdues angular features, but does not change the angular pattern (local maxima, minima, neutral
+points) itself. The single scattering angular features in the polarization will thus also show up in
+the polarization signature of a planet as a whole, and can be used for characterisation of the cloud
+particle properties and thus possibly of various phases in the evolution of a Venus-like exoplanet.
+This will be investigated in the next section.
+3. Results
+Here we present the disk-integrated total flux and degree of polarization of incident unpolarized
+starlight that is reflected by the model planets at different wavelengths λ and for phase angles α
+ranging from 0◦ to 180◦. The actual range of phase angles at which an exoplanet can be observed
+depends on the inclination angle i of the planet’s orbit (the angle between the normal on the orbital
+plane and the direction towards the observer): α ranges between 90◦ − i to 90◦ + i. Obviously,
+at α = 0◦, the planet would be precisely behind its star, and at 180◦ it would be precisely in
+front of its star (in transit). Other phase angles might be inaccessible due to restrictions of inner
+working angles of telescopes and/or instruments. For completeness, we include all phase angles in
+our computations.
+Section 3.1 shows results for spatially resolved planets and Sect. 3.2 for planets that are spatially
+unresolved from their star. In particular, we show these latter results for a model planet orbiting the
+star Alpha Centauri A at a distance where the incident stellar flux is similar to the solar flux that
+reaches Venus. Because our model planets are all mirror-symmetric with respect to the reference
+plane, their linearly polarized flux Up equals zero and will not be discussed further.
+3.1. Flux and polarization of spatially resolved planets
+Figure 3 shows the total flux Fp (the planetary phase function) and degree of polarization Pp as
+functions of α and λ for the four evolutionary phases illustrated in Fig. 1. The total fluxes are
+normalized such that at α = 0◦, they equal the planet’s geometric albedo AG (see Eq. 5). Figure 4
+shows AG of the planets in the four evolutionary phases as functions of the wavelength λ. Table 2
+lists the geometric albedo’s at 0.5, 1.0, 1.5 and 2.0 µm. The ’Current Earth’ (Phase 1) shows very
+little variation in AG, and the ’Thin clouds Venus’ (Phase 2) has the lowest albedo because of
+the small cloud particles and the small cloud optical thickness. The geometric albedo’s of the
+’Thick clouds Venus’ (Phase 3) and the ’Current Venus’ (Phase 4) are very similar. Thus across
+the wavelength region investigated in this paper, the ’Current Earth’ (Phase 1) has the highest
+geometric albedo.
+Table 2. The model planets’ geometric albedo’s AG for the four evolutionary phases at four wavelengths.
+λ (µm)
+0.5
+1.0
+1.5
+2.0
+Current Earth
+0.757
+0.752
+0.740
+0.739
+Thin clouds Venus
+0.186
+0.184
+0.240
+0.310
+Thick clouds Venus
+0.727
+0.627
+0.580
+0.564
+Current Venus
+0.726
+0.573
+0.500
+0.484
+Article number, page 11 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Fig. 3. Left column: The total flux (or phase function); and right column: The degree of polarization of
+incident unpolarized starlight that is reflected by the model planets in the 4 evolutionary phases as functions
+of α and λ. First row: Phase 1 (’Current Earth’); Second row: Phase 2 (’Thin clouds Venus’); Third row: Phase
+3 (’Thick clouds Venus’); Fourth row: Phase 4 (’Current Venus’). The phase functions are normalised such
+that at α = 0◦, they equal the planet’s geometric albedo AG.
+For each model planet, the total flux Fp decreases with increasing α mostly because less of
+the planet’s observable disc is illuminated. The planet with thin H2O clouds (Phase 2) is very dark
+over all α’s because the cloud optical thickness bc is small and the surface is black. The total fluxes
+show vague similarities with the single scattering phase functions of the cloud particles (Fig. 2). In
+particular, for the ’Current Earth’ (Phase 1) with large H2O particles, Fp increases slightly around
+α = 40◦, the rainbow angle. Also, the decrease of Fp with λ is stronger for the Venus-type planets
+with H2SO4 clouds (Phases 3 and 4) than for the planet with the large H2O particles (’Current
+Earth’, Phase 1), because the single scattering phase function of the sulfuric acid particles decreases
+stronger with λ than that of the water droplets (see Fig. 2).
+0.5
+1.0
+1.5
+2.0
+2.5
+( m)
+0.2
+0.4
+0.6
+0.8
+1.0
+Geometric albedo
+Phase 1 (Current Earth)
+Phase 2 (Thin clouds Venus)
+Phase 3 (Thick clouds Venus)
+Phase 4 (Current Venus)
+Fig. 4. The planets’ geometric albedo’s AG as functions of the wavelength λ for the four evolutionary phases.
+Article number, page 12 of 24
+
+Current Earth
+Current Earth
+2.5
+2.5
+0.3
+Degree of polarization
+2.0
+0.6
+2.0
+0.00
+000:0
+0.000
+入(μm)
+0.2
+1.5
+1.5
+1.0
+0.600
+0.300
+1.0
+0.1
+0.000
+ 0.2
+0.5
+0.150
+0.5
+100
+0.459
+0.0
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Thin clouds Venus
+Thin clouds Venus
+2.5
+Degree of linear polarization
+2.5
+0.3
+ 0.6
+0.300
+2.0
+2.0
+0.150
+0.000
+0.2
+入(μm)
+1.5
+0.200
+0.4
+1.5
+1.0
+1.0
+0.1
+0.2
+0.5
+0.5
+0.0
+0.000
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Thick clouds Venus
+Thick clouds Venus
+2.5
+2.5
+0.050
+Degree of polarization
+2.0
+0.8
+2.0
+0.10
+(ur)
+1.5
+0.6
+1.5
+0.05
+1.0
+1.0
+0.00
+0.5
+.500
+p.250
+0.2
+0.5
+D
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Current Venus
+CurrentVenus
+2.5
+2.5
+Degree of polarization
+2.0
+2.0
+0.20
+0.6
+0.000
+0.15
+(ur)x
+1.5
+1.5
+0.10
+1.0
+0.400
+0.200
+1.0
+0.05
+0.600
+0.2
+0.5
+0.5
+0.000
+0.00
+0.05
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Phase angle (deg)
+Phase angle (deg)Mahapatra et al.: From exo-Earths to exo-Venuses
+Unlike Fp, the degree of polarization Pp of each of the model planets, shows angular and
+spectral features that depend strongly on the cloud properties and should thus allow distinguishing
+between the different evolutionary phases. In Phase 1 (’Current Earth’), Pp is high and positive up
+till λ = 0.5 µm and around α = 90◦, which is due to Rayleigh scattering by the gas above the
+clouds. Starting at the shortest λ, Pp increases slightly with λ before decreasing. This is due to the
+slightly larger contribution of multiple scattered light, with a lower degree of polarization, at the
+shortest wavelengths. A Rayleigh-scattering peak is also seen for Phase 4 (’Current Venus’), except
+there, the peak decreases more rapidly with λ because the clouds are higher in the atmosphere and
+there is thus less gas above them. In Phase 3 (’Thick clouds Venus’), the Rayleigh-scattering peak
+is suppressed by the contribution of low polarized light that is reflected by the thicker clouds below
+the gas. In Phase 2 (’Thin clouds Venus’), the relatively thin clouds are higher in the atmosphere
+than in Phase 1 (’Current Earth’), which is why the Rayleigh-scattering peak only occurs at the
+very shortest wavelengths (the peak is hardly visible in Fig. 3). Because the Phase 2 cloud particles
+are small (reff = 0.5 µm), they themselves give rise to a Rayleigh-scattering peak at λ ≥ 1.0 µm.
+The two model planets with the H2O cloud particles (Phases 1 and 2) show a narrow region of
+positive polarization between 30◦ and 40◦, which is the rainbow peak (see Fig. 2). On exoplanets,
+this local maximum in Pp could be used to detect liquid water clouds on exoplanets (Karalidi et al.
+2011, 2012; Bailey 2007). In Phase 1 (’Current Earth’), the rainbow region starts near the Rayleigh
+scattering peak of the gas and extends towards the largest wavelengths. In Phase 2 (’Thin clouds
+Venus’), with the small water droplets, the rainbow only occurs at the shortest wavelengths. With
+increasing wavelength, it broadens and disappears into the cloud particles’ Rayleigh scattering
+peak.
+The H2SO4 cloud particles (Phases 3 and 4) have their own specific polarization patterns, such
+as the broad negative polarization region at α ⪆ 80◦, which can be traced back to their single
+scattering patterns (Fig. 2). In Phase 3 (’Thick clouds Venus’), the cloud particles give rise to a
+sharp positive polarization peak at the shortest wavelengths and for 20◦ ≤ α ≤ 30◦. In Phase 4
+(’Current Venus’), there is a broader, lower, positive polarization branch across this phase angle
+range, which resembles the positive polarization branch of the tiny H2O droplets in Phase 2 (’Thin
+clouds Venus’). However, at the longer wavelengths, the phase angle dependence of the polarization
+of the latter planet is very different which should help to distinguish between such planets. This
+emphasizes the need for measurements at a wide range of wavelengths and especially phase angles
+(if the planet’s orbital inclination angle allows this).
+3.2. Flux and polarization of spatially unresolved planets
+In the previous section, we showed the signals of spatially resolved planets, thus without back-
+ground starlight. When observing an exoplanet in the habitable zone of a solar-type star, it will
+be difficult to avoid the starlight. Here, we show the total flux of the planet Fp, the star-planet
+contrast C (see Eq. 6), the spatially resolved degree of polarization of the planet Pp (thus without
+Article number, page 13 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Fig. 5. A sketch of the geometries within the Alpha Centauri system: the orbital plane of the stars Alpha
+Centauri A and B is inclined by about 80◦ with respect to the observer on Earth. Our model planet (the blue
+dot) orbits Alpha Centauri A. In this sketch, the line of nodes of the planet’s orbit was chosen to coincide with
+that of the stellar orbits. The inclination angle im of the planet’s orbit with respect to the stellar orbital plane is
+45◦, and the inclination angle of the planet’s orbit with respect to the observer is 80◦ − 45◦ = 35◦. The phase
+angles of the planet in this sketch would range from 90◦ − 35◦ = 55◦ to 90◦ + 35◦ = 125◦.
+the starlight) and the spatially unresolved degree of polarization of the combined star-planet signal
+Pu (thus including the starlight). While the total planet fluxes shown in Fig. 3 were normalized
+at α = 0◦ to the planets’ geometric albedo’s AG, here they are computed according to Eq. 5, and
+thus depend on the parameters of the planet-star system. We assume our model planets orbit Alpha
+Centauri A.
+The solar-type star Alpha Centauri A is part of a double star system, and the orbital parameters
+of ourplanets are chosen based on the stable planet orbital distances and orbital inclination angles
+around this star as predicted by Quarles & Lissauer (2016). Figure 5 shows a sketch of the system.
+We use a planetary orbital distance d of 0.86 AU, such that each model planet receives a stellar
+flux similar to the solar flux received by Venus. Additional system parameter values are listed in
+Table 1. According to Quarles & Lissauer (2016), stable orbits around Alpha Centauri A can be
+found for a range of angles between the planetary orbital plane and the plane in which the two stars
+orbit, and thus for a range of inclination angles i of the planetary orbit.
+Figure 6 shows the variation of the planetary phase angle α along a planetary orbit for two
+values of the longitude of the orbit’s ascending node Ω: for Ω = 0◦ (the line connecting the planet’s
+ascending and descending nodes is perpendicular to the line to the observer) and for Ω = 205◦
+which represents the configuration of Earth with Alpha Centauri A. The orbital phase of the planet
+is defined such that at an orbital phase angle of 0◦, α = 180◦. The inclination angle im is the
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Alpha (deg)
+ = 0
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Alpha (deg)
+ = 205
+im = -10
+im = 80
+im = 0
+im = 35
+Fig. 6. Variation of the planet’s phase angle α along the planet’s orbit around Alpha Centauri A for different
+mutual inclination angles im of the planetary orbit with respect to the orbital plane of the two stars. Top: Ω,
+the longitude of the ascending node of the planet’s orbit, is 0◦. For im = −10◦, the planet is then in a face-on
+orbit (i = 0◦), while for im = 80◦, it is in an edge-on orbit (i = 90◦). Bottom: Ω = 205◦, and the planetary orbit
+is aligned with the node of the stellar orbital plane.
+Article number, page 14 of 24
+
+= 800
+Alpha Centauri B
+i= 35o
+to the observer
+Alpha Centauri AMahapatra et al.: From exo-Earths to exo-Venuses
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+10
+20
+30
+40
+Fp (10
+12 W m
+2m
+1)
+im = -10
+im = 80
+im = 0
+im = 35
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.01
+0.00
+0.01
+0.02
+0.03
+0.04
+Pp
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.01
+0.00
+0.01
+0.02
+0.03
+0.04
+0.05
+Pu (10
+9)
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+2
+4
+6
+8
+10
+12
+14
+16
+Fp (10
+12 W m
+2m
+1)
+im = -10
+im = 80
+im = 0
+im = 35
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.04
+0.03
+0.02
+0.01
+0.00
+0.01
+0.02
+0.03
+Pp
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.01
+0.00
+0.01
+0.02
+0.03
+Pu (10
+9)
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+1
+2
+3
+4
+5
+Fp (10
+12 W m
+2m
+1)
+im = -10
+im = 80
+im = 0
+im = 35
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
+1.0
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.03
+0.02
+0.01
+0.00
+0.01
+0.02
+0.03
+Pp
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.005
+0.000
+0.005
+0.010
+0.015
+0.020
+0.025
+0.030
+Pu (10
+9)
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+1.8
+Fp (10
+12 W m
+2m
+1)
+im = -10
+im = 80
+im = 0
+im = 35
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.02
+0.01
+0.00
+0.01
+0.02
+Pp
+im = -10
+im = 80
+im = 0
+im = 35
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.005
+0.000
+0.005
+0.010
+0.015
+0.020
+Pu (10
+9)
+im = -10
+im = 80
+im = 0
+im = 35
+Fig. 7. The total planetary flux Fp (in W m−3) and the star-planet contrast C, the degree of polarization Pp of
+the spatially resolved planet, and Pu, the degree of polarization of the star and the spatially unresolved planet,
+all for a ’Current Venus’ model planet (Phase 4) as functions of the planet’s orbital phase for four mutual
+inclination angles im and four wavelengths λ: 0.5 µm (row 1); 1.0 µm (row 2); 1.5 µm (row 3); and 2.0 µm
+(row 4). The longitude of the ascending node of the planetary orbit, Ω, is 205◦.
+angle between the plane in which the stars move and the planetary orbital plane. For Ω = 0◦,
+im = −10◦ would yield a face-on planetary orbit (i = 0◦) with α = 90◦ everywhere along the orbit.
+For im = 80◦, the orbit is edge-on (i = 90◦) and α varies between 0◦ and 180◦. Figure 6 also shows
+the range of α for im = 0◦ and 35◦. According to Quarles & Lissauer (2016), the latter is the most
+probable orientation of a stable planetary orbit. For these two cases, the accessible phase angles
+range from 80◦ to 100◦, and from 45◦ to 135◦, respectively. For Ω = 205◦, the maximum range of
+α would be from 20◦ to 160◦, depending on im.
+Figure 7 shows Fp, Pp and Pu (the spatially unresolved planet, thus with starlight included) for
+Phase 4 (’Current Venus’) as functions of the planet’s orbital phase for Ω = 205◦, four values of
+im (-10◦, 80◦, 0◦, and 35◦), and four wavelengths (0.5, 1.0, 1.5, and 2.0 µm). The plots for Fp also
+show the contrast C. Because C is the ratio of the planetary flux Fp to the stellar flux Fs (Eq. 6), its
+variation with the orbital phase is proportional to that of Fp.
+At the two orbital phases in each plot where all the lines cross, the planetary phase angles
+α are the same (see Fig. 6) and thus all Fp and Pp are the same. The plots for Fp appear to be
+very similar for the different wavelengths, apart from a difference in magnitude which is mainly
+due to the decrease of the stellar flux that is incident on the planet with increasing wavelength,
+although the planetary albedo AG and phase function R1p also decrease with increasing λ as can
+be seen in Fig. 3. This wavelength dependence of Fp also causes the decrease of the contrast C
+Article number, page 15 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+with increasing wavelength (i.e. the planet darkens with increasing λ), as C is independent of the
+wavelength dependence of the stellar flux (see Eq. 6). The shape differences between the Fp (and
+C) curves are due to the wavelength dependence of the planetary flux that can also be seen in Fig. 3.
+At each wavelength λ, the largest variation in Fp with the orbital phase is seen for im = 80◦,
+because for that configuration the variation of α along the orbit is largest (see Fig. 6). The degree of
+polarization Pp of the planet shows significant variation with the orbital phase at all wavelengths.
+A particularly striking feature for the geometry with im = 80◦ is the double peak close to the orbital
+phases of 150◦ and 200◦. As can be seen in Fig. 6 for Ω = 205◦ and im = 80◦, α decreases from
+about 160◦ at an orbital phase of 0◦, to 20◦ at an orbital phase around 175◦, to then increase again
+with increasing orbital phase. Tracing this path of α through the Pp panel in the bottom row of
+Fig. 3 explains the double peaked behaviour of Pp and its wavelength dependence as shown in
+Fig. 7. For the other values of im, the phase angle range that is covered along the orbit is smaller,
+and therefore the variation in Pp is also smaller.
+The degree of polarization of the spatially unresolved planet, Pu, shows similar variations along
+the orbital phase as Pp, except that most features are flattened out because of the addition of the
+unpolarized stellar flux, which is independent of the orbital phase angle. The double peaked feature
+for im = 80◦ remains strong, however, as at those orbital phase angles, the contrast C is relatively
+large and thus the influence of the added stellar flux relatively small. The variation in the polarisa-
+tion of the unresolved system due to the orbiting planet is on the order of 10−11.
+Figure 8 is similar to Fig. 7, except for the four model planets in the different evolutionary
+phases and all for im = 80◦ and Ω = 0◦. Because here the planetary orbits are seen edge-on
+(i = 90◦), the full range of phase angles is covered, which makes it possible to explore the full
+extent of variation of flux and polarization signals. Because of this large phase angle range, Fp
+varies strongly with the orbital phase. The wavelength dependence of the total flux can be traced
+back to Fig. 3, where in particular the Phase 2 planet (’Thin cloud Venus’) is dark at all wavelengths,
+but relatively bright at the longest wavelengths and small phase angles. As was the case in Fig. 7,
+the variation of C is the same as that of Fp, except for the off-set due to the stellar flux. The largest
+values of C (about 1.6×10−9), are found for λ = 0.5 µm and around the orbital phase of 180◦ (at
+180◦, the planets would actually be behind the star).
+Furthermore in Fig. 8, Pp depends strongly on λ and the planet’s evolutionary phase. At 0.5 µm,
+the Phase 1 planet (’Current Earth’) shows the largest values of Pp due to the Rayleigh scattering
+gas above the low altitude clouds. At the longer wavelengths, where the Rayleigh scattering is less
+prominent, the curves for the Phase 1 planet clearly show the positive polarization of the rainbow
+around the orbital phases of 140◦ and 220◦ (see Fig. 6). For the Phase 2 planet (’Thin clouds
+Venus’) and 0.5 µm, the small cloud particles cause positive polarization around 150◦ and 210◦,
+which connect the rainbow and the Rayleigh scattering maximum in Fig. 3. At longer wavelengths,
+the broad positive polarization signature of Rayleigh scattering by the cloud particles dominates the
+curves, while the curves for the Phase 3 and 4 planets show mostly negative polarization apart from
+Article number, page 16 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0
+10
+20
+30
+40
+50
+60
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.00
+0.25
+0.50
+0.75
+1.00
+1.25
+1.50
+1.75
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.05
+0.00
+0.05
+0.10
+0.15
+0.20
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.02
+0.00
+0.02
+0.04
+0.06
+0.08
+0.10
+0.12
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0
+5
+10
+15
+20
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.04
+0.02
+0.00
+0.02
+0.04
+0.06
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.02
+0.00
+0.02
+0.04
+0.06
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0
+2
+4
+6
+8
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.05
+0.00
+0.05
+0.10
+0.15
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.02
+0.00
+0.02
+0.04
+0.06
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.05
+0.00
+0.05
+0.10
+0.15
+0.20
+0.25
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.02
+0.00
+0.02
+0.04
+0.06
+0.08
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+Fig. 8. Similar to Fig. 7 except for the model planets in the four evolutionary phases and Ω = 0◦ and im = 80◦
+(thus for an edge–on orbit, i = 90◦): Phase 1 (’Current Earth’), Phase 2 (’Thin clouds Venus’), Phase 3 (’Thick
+clouds Venus’), Phase 4 (’Current Venus’). The wavelengths λ are like before: 0.5 µm (row 1); 1.0 µm (row
+2); 1.5 µm (row 3); and 2.0 µm (row 4).
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+10
+15
+20
+25
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.05
+0.00
+0.05
+0.10
+0.15
+0.20
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.00
+0.02
+0.04
+0.06
+0.08
+0.10
+0.12
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+4
+6
+8
+10
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.04
+0.02
+0.00
+0.02
+0.04
+0.06
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.015
+0.010
+0.005
+0.000
+0.005
+0.010
+0.015
+0.020
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+1.5
+2.0
+2.5
+3.0
+3.5
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.05
+0.00
+0.05
+0.10
+0.15
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.02
+0.01
+0.00
+0.01
+0.02
+0.03
+0.04
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.6
+0.8
+1.0
+1.2
+1.4
+1.6
+Fp (10
+12 W m
+2 m
+1)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0.3
+0.4
+0.5
+0.6
+0.7
+C (10
+9)
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.05
+0.00
+0.05
+0.10
+0.15
+0.20
+0.25
+Pp
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+0
+50
+100
+150
+200
+250
+300
+350
+Orbital phase (deg)
+0.00
+0.02
+0.04
+0.06
+0.08
+Pu (10
+9)
+Phase 1
+Phase 2
+Phase 3
+Phase 4
+Fig. 9. Similar to Fig. 8 except for the most probable, stable orbit around Alpha Centauri A, i.e. for Ω = 205◦
+and im= 35◦ (Quarles & Lissauer 2016). The wavelengths are like before: 0.5 µm (row 1); 1.0 µm (row 2);
+1.5 µm (row 3); and 2.0 µm (row 4).
+Article number, page 17 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+the orbital phases around 180◦. When adding the starlight, the angular features of the polarization
+Pu are suppressed along those parts of the orbits where C is smallest, thus away from the orbital
+phase angle of 180◦. In particular within 180◦ ±40◦, Pu still shows distinguishing features, although
+they are very small in absolute sense (smaller than 10−10).
+Figure 9 is similar to Fig. 8 except here the model planets are in the most probable stable orbit
+around Alpha Centauri A as predicted by Quarles & Lissauer (2016), namely with Ω = 205◦ and
+im = 35◦. As can be seen in Fig. 6, for this geometry α varies between about 60◦ and 120◦. In
+Fig. 9, Fp shows a similar variation as the curves in Fig. 8, although less prominent, as the planets
+do not reach a ’full’ phase (where α = 0◦) nor the full night phase (α = 180◦) along their orbit.
+The flux curves in Fig. 9 also miss small angular features that appear in the single scattering phase
+functions of the cloud particles (see Fig. 2), such as the glory, again because the planets do not go
+through the related phase angles.
+In this particular orbital geometry, Pp shows less pronounced angular features than for the
+same model planets in edge-on orbits (Fig. 8) because of the more limited phase angle range. For
+example, the ’Current Earth’ (Phase 1) shows no rainbow despite the H2O clouds, because the
+phase angle of about 40◦ is not reached. In the visible (λ = 0.5 µm), Pp reaches the largest values
+for the ’Current Earth’ (Phase 1). At longer wavelengths, Pp of the ’Thin clouds Venus’ (Phase 2)
+strongly dominates because of the Rayleigh scattering by the small cloud particles. The ’Thick
+clouds Venus’ (Phase 3) shows predominant negative polarization at all wavelengths and across the
+whole orbital phase angle range except at λ = 0.5 µm around an orbital phase angle of 20◦.
+The polarization of the spatially unresolved planets, Pu, clearly shows the suppression of the
+polarization features due to the added starlight towards the smaller and larger orbital phase angles,
+where the planets are darker. While the Phase 2 planet (’Thin clouds Venus’) is relatively dark (C is
+very small), its Rayleigh scattering polarization signal is so strong that its unresolved polarization
+signal is larger than that of the other planets, except the Phase 1 planet (’Current Earth’) at 1.0 µm
+and orbital phase angles close to 180◦.
+3.3. Evolutionary phases across α and λ
+In Fig. 10, we show which evolutionary phase has the highest values of |Pp| across all phase angles
+α and wavelengths λ. We find that |Pp| of the Phase 1 planet (’Current Earth’) dominates between
+30◦ and 150◦, and mostly for λ < 1.0 µm. In particular, around α = 40◦ and up to λ = 2.0 µm,
+the polarization signal of the rainbow produced by the large water cloud particles is about 0.1 (see
+the bottom plot of Fig. 10). For λ > 1.0 µm, the Phase 2 planet (’Thin clouds Venus’) shows
+the strongest polarization due to the Rayleigh scattering by the small H2O cloud particles, as can
+clearly be seen in the bottom plot. The small patches where the strongest polarization signal is from
+the ’Thick clouds Venus’ (Phase 3), for example near α = 20◦ and λ < 1.0 µm, or from the ’Current
+Venus’ (Phase 4) are due to the single scattering polarization features of the H2SO4 cloud particles,
+as can be seen in Fig. 2.
+Article number, page 18 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Fig. 10. Top: The planet models that yield the largest absolute degree of polarization |Pp| over all phase angles
+α and wavelengths λ: Phase 1 - ’Current Earth’ (blue); Phase 2 - ’Thin clouds Venus’ (light orange); Phase 3
+- ’Thick clouds Venus’ (dark orange); and Phase 4 - ’Current Venus’ (brown). Bottom: The maximum values
+of |Pp| of the four model planets as functions of α and λ.
+The accessible phase angle range for direct observations of such exoplanets obviously depends
+on the actual orientation of the planetary orbits and cannot be optimized by the observer. Precisely
+because of that, Fig. 10 clearly indicates that measurements should be performed across a broad
+wavelength range, including wavelengths below 1 µm to allow distinguishing between Earth-like
+and Venus-like planets in various evolutionary phases.
+4. Summary and conclusions
+We presented the total flux and linear polarization of starlight that is reflected by model planets
+of various atmospheric types to investigate whether different phases in the evolution of planets
+like the Earth and Venus can be distinguished from each other. We have used four planet models
+to represent possible evolutionary phases. Phase 1 (’Current Earth’) has an Earth-like atmosphere
+and liquid water clouds; Phase 2 (’Thin clouds Venus’) has a Venus-like CO2 atmosphere and thin
+water clouds; Phase 3 (’Thick clouds Venus’) has a Venus-like CO2 atmosphere and thick sulphuric
+acid solution clouds; and Phase 4 (’Current Venus’) has a CO2 atmosphere and thin sulphuric acid
+solution clouds. We have computed the total flux and polarization signals specifically for model
+Article number, page 19 of 24
+
+2.5
+Earth
+Thin clouds Venus
+ThickcloudsVenus
+Wavelength (microns)
+2.0
+Current Venus
+1.5
+1.0
+0.5
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Alpha (deg)2.5
+0.300
+Wavelength (microns)
+2.0
+0.200
+0.010
+0.050
+0.100
+0.010
+1.5
+1.0
+0.05b
+0.5
+0.100
+0.300
+0
+0.200
+100
+0
+20
+40
+60
+80
+100
+120
+140
+160
+180
+Alpha (deg)Mahapatra et al.: From exo-Earths to exo-Venuses
+planets orbiting our neighbouring solar-type star Alpha Centauri A using predicted stable orbits
+(Quarles & Lissauer 2016) in its habitable zone.
+We have computed the reflected starlight for wavelengths λ ranging from 0.3 µm to 2.5 µm and
+for planetary phase angles α from 0◦ to 180◦. We not only present the fluxes and polarization of
+spatially resolved model planets (thus without background starlight) but also of spatially unresolved
+planets, thus the combined signal of the planet and the star. For the latter cases, we also computed
+the planet-star contrast C as a function of α and λ to determine what would technically be required
+to detect the planetary signals upon the background starlight.
+The range of planetary phase angles α at which a planet can be observed (spatially resolved or
+unresolved) depends on the inclination of the planetary orbit with respect to the observer. We have
+specifically studied the reflected light signals of planets orbiting solar-type star Alpha Centauri A.
+This star is part of a double star system with solar-type star Alpha Centauri B. The distance between
+the two stars varies from 35.6 to 11.2 AU (M-dwarf Alpha Centauri C or Proxima Centauri orbits
+the pair at a distance of about 13,000 AU). Dynamical computations (Quarles & Lissauer 2016)
+predict stable planetary orbits around Alpha Centauri A in a narrow range of mutual inclination
+angles im between the orbital planes of the two stars and that of the planet. In particular, the most
+stable orbit has im = 35◦, which provides an α range from 60◦ to 120◦. We find that with this orbital
+geometry the degree of polarization of the planet would be largest for the ’Current Earth’ (Phase 1)
+across the visible (λ < 1.0 µm) due to Rayleigh scattering by the gas above the clouds. At near
+infrared wavelengths (1.0 µm < λ < 2.5 µm), the polarization of the ’Thin clouds Venus’ (Phase 2)
+is highest, because this planet has small cloud droplets that scatter like Rayleigh scatterers at the
+longer wavelengths.
+The well-known advantage of measuring the degree of polarization for the characterization of
+(exo)planets is that the angular features in the signal of the planet as a whole are similar to the
+angular features in the light that has been singly scattered by the gas molecules and cloud particles,
+which are very sensitive to the microphysical properties (such as the size distribution, composi-
+tion, shape) of the scattering molecules and cloud particles and to the atmosphere’s macrophysical
+properties (such as cloud altitude and thickness). The reflected total flux is much less sensitive to
+the atmospheric properties than the degree and direction of polarization (see e.g. Hansen & Travis
+1974, for several examples). Indeed, the variations of the planetary flux Fp along a planet’s or-
+bit appear to be mostly due to the change of the fraction of the planetary disk that is illuminated
+and visible to the observer. They provide limited information on the planet’s atmospheric charac-
+teristics, especially if one takes into account that with real observations, the planet radius will be
+unknown unless the planet happens to transit its star. The variation of the planetary flux Fp with
+phase angle α and wavelength λ is similar that of planet-star contrast C, the ratio of Fp to the stellar
+flux Fs. For a Venus-like planet orbiting Alpha Centauri A, C is on the order of 10−9.
+Article number, page 20 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Our numerical simulations show that variations in Pp, the degree of polarization of the spatially
+resolved planets (thus without any starlight), with α combined with variations with λ could be used
+to distinguish the planetary evolutionary phases explored in this paper:
+– Phase 1 planets (’Current Earth’) show strong positive (perpendicular to the reference plane
+through the star, planet, and observer) polarization around α = 40◦ due to scattering by large
+water cloud droplets (the rainbow) and also higher polarization for λ < 0.5 µm and α ≈ 90◦
+due to Rayleigh scattering by the gas above the clouds.
+– Phase 2 planets (’Thin clouds Venus’) polarize light negatively (parallel to the reference plane)
+across most phase angles and at visible wavelengths. At near-infrared wavelengths, they have
+strong positive polarization around α = 90◦ due to Rayleigh scattering by the small cloud
+droplets, and a ’bridge’ of higher polarization from the Rayleigh maximum to the rainbow
+angle (α ≈ 40◦) with decreasing λ.
+– Phase 3 planets (’Thick clouds Venus’) have predominantly negative polarization from the vis-
+ible to the near-infrared, with small regions of positive polarization for λ < 1.0 µm and for
+20◦ ≤ α ≤ 30◦, that are characteristic for the 75% H2SO4 cloud particles with reff = 2.0 µm.
+– Phase 4 planets (’Current Venus’) yield similar polarization patterns as the Phase 3 planets, ex-
+cept with more prominent negative polarization for 10◦ ≤ α ≤ 30◦ and for 0.5 µm ≤ λ ≤ 2 µm.
+Rayleigh scattering by the small cloud particles produces a maximum of positive polarization
+around α = 90◦ and for λ > 2 µm.
+Our simulations of the planetary polarisation Pp do not include any background starlight, and
+can thus reach several percent to even 20% for the ’Current Earth’ (Phase 1) planet in an edge-on
+orbit (Fig. 8). Whether or not such polarization variations could be measured depends strongly on
+the techniques used to suppress the light of the parent star. If the background of the planet signal
+contains a fraction x of the flux of the star, the degree of polarization of the light gathered by the
+detector pixel that contains the planet will equal (C/(C + x))Pp ≈ (C/x)Pp with C the contrast
+between the total fluxes of the planet and the star (Eq. 9). For a Venus-like planet orbiting Alpha
+Centauri A, C is on the order of 10−9, thus x should be as small as 10−4 to get a polarisation signal
+on the order of 10−6, assuming Pp is about 0.1. Not only excellent direct starlight suppression
+techniques, but also a very high spatial resolution would help to decrease x.
+Our simulations further show that temporal variations in the total flux Fu of Alpha Centauri A
+with a spatially unresolved terrestrial-type planet orbiting in its habitable zone would be less than
+10−12 W/m3. The degree of polarization Pu of the combined star and planet signals, would show
+variations smaller than 0.05 ppb. To identify this planetary flux on top of the stellar flux, a very
+high-sensitivity instrument would be required and an even higher sensitivity would be required to
+subsequently characterize the planetary atmosphere. Recall that the orbital period of such a planet,
+and with that the period of the signal variation and presumably the stability requirements of an
+instrument, would be about 0.76 years. Bailey et al. (2018) computed the polarization signal of
+spatially unresolved, hot, cloudy, Jupiter-like planet HD 189733b to be on the order of ∼20 ppm.
+Article number, page 21 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Because of their large size, Jupiter-like planets, and in particular those in close-in orbits that receive
+large stellar fluxes, would clearly be less challenging observing targets than terrestrial-type planets.
+The HARPS instrument on ESO’s 3.6 m telescope includes polarimetric observations with a
+polarimetric sensitivity of 10−5 (?). Planetpol on the 4.2 m William Herschel Telescope (WHT)
+on La Palma achieved a sensitivity to fractional linear polarization (the ratio of linearly polar-
+ized flux to the total flux) of 10−6. While PlanetPol did not succeed in detecting exoplanets, it
+did provide upper limits on the albedo’s of a number of exoplanets (Lucas et al. 2009). The Ex-
+treme Polarimeter (ExPo), that was also mounted on the WHT, was designed to target young stars
+embedded in protoplanetary disks and evolved stars surrounded by dusty envelopes, with a polari-
+metric sensitivity better than 10−4 (Rodenhuis et al. 2012). The HIPPI-2 instrument uses repeated
+observations of bright stars in the SDSS g’ band for achieving better than 3.5 ppm accuracy on
+the 3.9-m Anglo-Australian Telescope and better than 11 ppm on the 60-cm Western Sydney Uni-
+versity’s telescope (Bailey et al. 2020). The POLLUX-instrument on the LUVOIR space telescope
+concept aims at high-resolution (R∼120,000) spectropolarimetric observations across ultra-violet
+and visible wavelengths (100-400 nm) to characterize atmospheres of terrestrial-type exoplanets
+(The Luvoir Team 2019; Rossi et al. 2021). The EPICS instrument planned to be mounted on the
+ELT telescope, is designed to achieve a contrast of 10−10 depending the angular separation of the
+objects (Kasper et al. 2010).
+In our simulations, we have neglected absorption by atmospheric gases. Including such absorp-
+tion would yield lower total fluxes in specific spectral regions, depending on the type and amount
+of absorbing gas, its vertical distribution, and on the altitude and microphysical properties of the
+clouds and hazes. Including absorption by atmospheric gases could increase or decrease the degree
+of polarization, depending on the amount and vertical distribution of the absorbing gas and on the
+microphysical properties of the scattering particles at various altitudes (see e.g. Trees & Stam 2022;
+Stam 2008, for examples of polarization spectra of Earth-like planets). While measuring total and
+polarized fluxes of reflected starlight across gaseous absorption bands is of obvious interest for
+the characterization of planets and their atmospheres, the small numbers of photons inside gaseous
+absorption bands would make such observations extremely challenging.
+We have also neglected any intrinsic polarization of Alpha Centauri A. Measurements of the
+degree of linear polarization of FKG stars indicate that active stars like Alpha Centauri A have a
+typical mean polarization of 28.5 ± 2.2 ppm (Cotton et al. 2017). This could add to the challenges
+in distinguishing the degree of polarization of the planet from that of the star if the planet is spa-
+tially unresolved, although the phase angle variation of the planetary signal and the direction of
+polarization of the planet signal (i.e. usually either perpendicular or parallel to the plane through
+the star, the planet, and the observer) could be helpful provided of course that the instrument that is
+used for the observations has the capability to measure the extremely small variations in the signal
+as the planet orbits its star (on the order of 10−9).
+Article number, page 22 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+State-of-the-art instruments with sensitivity to polarization signals down to 10−6 (i.e. 1000 ppb)
+are still a few orders of magnitude away from detecting variations in polarization signals from
+spatially unresolved exo-Earths or exo-Venuses around nearby solar-type stars such as Alpha Cen-
+tauri A. To be able to distinguish between the different planetary evolutionary phases explored in
+this paper, e.g. between water clouds or sulphuric acid clouds, variations on the order of 10−9
+and hence significant improvements in sensitivity would be needed if the planets are spatially
+unresolved. The variation in the degree of polarization of spatially resolved planets along their
+orbital phase should be detectable by instruments capable of achieving star-planet contrasts of
+10−9 and that would allow to distinguish between water clouds or sulphuric acid clouds. Current
+high-contrast imaging instruments manage to directly image self-luminous objects such as young
+exoplanets and brown dwarfs in NIR total fluxes at contrasts of 10−2-10−6 (Bowler 2016; Nielsen
+et al. 2019; Langlois et al. 2021; van Holstein 2021). Further, instruments such as EPICS on ELT
+and concepts for instruments on future space observatories such as HabEx (Gaudi et al. 2020) and
+LUVOIR (The Luvoir Team 2019) hold the promise for attaining contrasts of ∼10−10. Reaching
+such extreme contrasts would make it possible to directly detect terrestrial-type planets and to use
+polarimetry to differentiate between exo-Earths and exo-Venuses.
+Acknowledgements. This work was supported by the Netherlands Organisation for Scientific Research (NWO) through the
+User Support Programme Space Research, project number ALW GO 15-37. We thank the referee for the valuable feedback
+that improved this paper.
+References
+Bailey, J. 2007, Astrobiology, 7, 320
+Bailey, J., Cotton, D. V., Kedziora-Chudczer, L., De Horta, A., & Maybour, D. 2020, Publications of the Astronomical
+Society of Australia, 37
+Bailey, J., Kedziora-Chudczer, L., & Bott, K. 2018, Monthly Notices of the Royal Astronomical Society, 480, 1613
+Bowler, B. P. 2016, Publications of the Astronomical Society of the Pacific, 128, 102001
+Bullock, M. A. & Grinspoon, D. H. 2001, Icarus, 150, 19
+Cotton, D. V., Marshall, J. P., Bailey, J., et al. 2017, Monthly Notices of the Royal Astronomical Society, 467, 873
+de Haan, J. F., Bosma, P., & Hovenier, J. 1987, Astronomy and Astrophysics, 183, 371
+De Rooij, W. & Van der Stap, C. 1984, Astronomy and Astrophysics, 131, 237
+Donahue, T., Hoffman, J., Hodges, R., & Watson, A. 1982, Science, 216, 630
+García-Muñoz, A., Pérez-Hoyos, S., & Sánchez-Lavega, A. 2014, Astronomy & Astrophysics, 566, L1
+Gaudi, B. S., Seager, S., Mennesson, B., et al. 2020, arXiv preprint arXiv:2001.06683
+Hale, G. M. & Querry, M. R. 1973, Applied optics, 12, 555
+Hansen, J. E. & Hovenier, J. 1974, Journal of the Atmospheric Sciences, 31, 1137
+Hansen, J. E. & Travis, L. D. 1974, Space science reviews, 16, 527
+Jordan, S., Rimmer, P. B., Shorttle, O., et al. 2021, ApJ, 922, 44. doi:10.3847/1538-4357/ac1d46
+Kane, S. R., Vervoort, P., Horner, J., & Pozuelos, F. J. 2020, The Planetary Science Journal, 1, 42
+Karalidi, T., Stam, D., & Hovenier, J. 2011, Astronomy & Astrophysics, 530, A69
+Karalidi, T., Stam, D., & Hovenier, J. 2012, Astronomy & Astrophysics, 548, A90
+Kasper, M., Beuzit, J.-L., Verinaud, C., et al. 2010, in Ground-based and Airborne Instrumentation for Astronomy III, Vol.
+7735, SPIE, 948–956
+Kasting, J. F. 1988, Icarus, 74, 472
+Article number, page 23 of 24
+
+Mahapatra et al.: From exo-Earths to exo-Venuses
+Keller, C. U., Schmid, H. M., Venema, L. B., et al. 2010, in Ground-based and airborne instrumentation for astronomy III,
+Vol. 7735, International Society for Optics and Photonics, 77356G
+Kemp, J. C., Henson, G., Steiner, C., & Powell, E. 1987, Nature, 326, 270
+Kliore, A. J., Moroz, V. I., & Keating, G. M. 1985, Advances in Space Research, 5
+Knollenberg, R. G. & Hunten, D. M. 1980, Journal of Geophysical Research: Space Physics, 85, 8039
+Langlois, M., Gratton, R., Lagrange, A.-M., et al. 2021, Astronomy & Astrophysics, 651, A71
+Laven, P. 2008, Applied optics, 47, H133
+Lincowski, A. P., Meadows, V. S., Crisp, D., et al. 2018, The Astrophysical Journal, 867, 76
+Lucas, P. W., Hough, J. H., Bailey, J. A., et al. 2009, Monthly Notices of the Royal Astronomical Society, 393, 229
+Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019a, The Astronomical Journal, 158, 27
+Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019b, The Astrophysical Journal Letters, 887, L11
+Markiewicz, W. J., Petrova, E., Shalygina, O., et al. 2014, Icarus, 234, 200
+Markiewicz, W. J., Petrova, E. V., & Shalygina, O. S. 2018, Icarus, 299, 272
+Nielsen, E. L., De Rosa, R. J., Macintosh, B., et al. 2019, The Astronomical Journal, 158, 13
+Palmer, K. F. & Williams, D. 1975, Applied Optics, 14, 208
+Quarles, B. & Lissauer, J. J. 2016, AJ, 151, 111
+Ragent, B., Esposito, L., Tomasko, M., et al. 1985, Advances in Space Research, 5, 85
+Rodenhuis, M., Canovas, H., Jeffers, S. V., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE)
+Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K.
+Ramsay, & H. Takami, 84469I
+Rossi, L., Berzosa-Molina, J., Desert, J.-M., et al. 2021, Experimental Astronomy, 1
+Rossi, L., Berzosa-Molina, J., & Stam, D. M. 2018, Astronomy & Astrophysics, 616, A147
+Rossi, L., Marcq, E., Montmessin, F., et al. 2015, Planetary and Space Science, 113, 159
+Rossi, L. & Stam, D. M. 2018, Astronomy & Astrophysics, 616, A117
+Russell, E. E., Brown, F. G., Chandos, R. A., et al. 1992, Space Sci. Rev., 60, 531
+Snik, F., Kochukhov, O., Piskunov, N., et al. 2011, Solar Polarization 6, 437, 237. doi:10.48550/arXiv.1010.0397
+Stam, D. 2008, Astronomy & Astrophysics, 482, 989
+Stam, D. & Hovenier, J. 2005, Astronomy & Astrophysics, 444, 275
+Team, L. et al. 2019, arXiv preprint arXiv:1912.06219
+Titov, D. V., Ignatiev, N. I., McGouldrick, K., Wilquet, V., & Wilson, C. F. 2018, Space Science Reviews, 214, 1
+Trees, V. J. H. & Stam, D. M. 2022, A&A, 664, A172
+Tselioudis, G. 2001, ISCCP Definition of Cloud Types
+Turbet, M., Bolmont, E., Chaverot, G., et al. 2021, Nature, 598, 276
+van Holstein, R. 2021, PhD thesis, Leiden University
+Way, M. J. & Del Genio, A. D. 2020, Journal of Geophysical Research: Planets, 125, e2019JE006276
+Article number, page 24 of 24
+
diff --git a/ctFIT4oBgHgl3EQfnitG/content/tmp_files/load_file.txt b/ctFIT4oBgHgl3EQfnitG/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0299d818421404c013f53c4466478053bdf13271
--- /dev/null
+++ b/ctFIT4oBgHgl3EQfnitG/content/tmp_files/load_file.txt
@@ -0,0 +1,1427 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf,len=1426
+page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Mahapatra2023 ©ESO 2023 January 27, 2023 From exo-Earths to exo-Venuses Flux and Polarization Signatures of Reflected Light G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Mahapatra,1,⋆, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Abiad1, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rossi2, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='Stam1 1 Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands e-mail: g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='mahapatra@tudelft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='nl 2 CNRS/INSU, LATMOS-IPSL, Guyancourt, France Accepted 11 January, 2023 ABSTRACT Context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Terrestrial-type exoplanets in or near stellar habitable zones appear to be ubiquitous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' It is, however, unknown which of these planets have temperate, Earth-like climates or e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' extreme, Venus-like climates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Aims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Technical tools to distinguish different types of terrestrial-type planets are crucial for deter- mining whether a planet could be habitable or incompatible with life as we know it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We investigate the potential of spectropolarimetry for distinguishing exo-Earths from exo-Venuses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We present numerically computed fluxes and degrees of linear polarization of starlight that is reflected by exoplanets with atmospheres in evolutionary states ranging from similar to the current Earth to similar to the current Venus, with cloud compositions ranging from pure water to 75% sulfuric acid solution, for wavelengths between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We also present flux and polarization signals of such planets in stable but spatially unresolved orbits around the star Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The degree of polarization of the reflected starlight shows larger variations with the planetary phase angle and wavelength than the total flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Across the visible, the largest degree of polarization is reached for an Earth-like atmosphere with water clouds, due to Rayleigh scattering above the clouds and the rainbow feature at phase angles near 40◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At near-infrared wavelengths, the planet with a Venus-like CO2 atmosphere and thin water clouds shows the most prominent polarization features due to Rayleigh-like scattering by the small cloud droplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A planet in a stable orbit around Alpha Centauri A would leave temporal variations on the order of 10−13 W/m3 in the total reflected flux and 10−11 in the total degree of polarization as the planet orbits the star and assuming a spatially unresolved star-planet system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Star-planet contrasts are in the order of 10−10 and vary proportionally with planetary flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' ⋆ Now at SRON Netherlands Institute for Space Research, Leiden, The Netherlands Article number, page 1 of 24 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='11314v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='EP] 26 Jan 2023 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Current polarimeters appear to be incapable to distinguish between the possible evolutionary phases of spatially unresolved terrestrial exo-planets, as a sensitivity close to 10−10 would be required to discern the planetary signal given the background of unpolarized starlight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A telescope/instrument capable of achieving planet-star contrasts lower than 10−9 should be able to observe the large variation of the planet’s resolved degree of polarization as a function of its phase angle and thus be able to discern an exo-Earth from an exo-Venus based on its clouds’ unique polarization signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Exo-planets – Venus – Radiative transfer – Polarimetry 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Introduction Despite having similar sizes, being formed around the same time and from similar materials, it is clear that the Earth and Venus have evolved into dramatically different worlds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While it is generally acknowledged that Venus once had much larger amounts of water than today, it is still debated whether Venus was once more Earth-like with oceans of water before the runaway-greenhouse- effect took off (Donahue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1982), or whether the atmospheric water vapour never actually condensed on the surface (Turbet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Bullock & Grinspoon (2001) conducted a detailed study of the possible evolution of Venus’s climate over long time periods starting with a water vapour enriched atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Terrestrial-type exoplanets are also expected to harbour a wide vari- ety of atmospheric compositions with maybe only a few planets hospitable to life as we know it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Various climate models suggest that the likelihood of a planetary atmosphere exhibiting a Venus- like runaway-greenhouse-effect is higher than that of an atmosphere in an Earth-like, N2-dominated state (Lincowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A study by Kane et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (2020) even shows that Jupiter’s migration might have stimulated the runaway-greenhouse-effect on Venus, suggesting that there could be more Venus-analogs than Earth-analogs in planetary systems with Jupiter-like plan- ets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As planned powerful telescopes and dedicated, sensitive detection techniques will allow us to characterize smaller exoplanets in the near-future, it will become possible to probe terrestrial-type planets in and near the habitable zones of solar-type stars and to find out whether they resemble Earth or Venus, or something else all together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The high-altitude cloud deck on an exo-Venus would make it difficult to use a technique like transit spectroscopy for the characterization of the planet as the clouds themselves would block the transmission of the starlight and apart from a spectral dependence of the cloud optical thickness which could leave a wavelength dependent transmission through the cloud tops,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the microphysical properties of the cloud particles,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' such as their composi- tion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' shape and size distribution would remain a mystery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Also, the clouds would inhibit measuring trace gas column densities as they would block the planet’s lower atmosphere and only allow tran- sit spectroscopy of the highest regions of the atmosphere (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Lustig-Yaeger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019a, and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Indeed, a Venus-like ubiquitous cloud deck could possibly be mistaken for the Article number, page 2 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses planet’s surface, as one would only measure the transmittance through the gaseous atmosphere above the clouds, possibly inferring the atmosphere to be thin and eroding (Lustig-Yaeger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Jordan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (2021) modelled the photochemistry of some of the primary sulphuric chemical species that should be responsible for the formation and sustenance of Venus’s sulfuric acid solution clouds,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' such as SO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' OCS and H2S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and found that the abundances of such species above the cloud deck would depend heavily on the effective temperature and distance to the parent star,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' with their abundances decreasing with increasing temperature and being depleted,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' as we see on Venus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' in the presence of a star like the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Thus it would be challenging to rule out the possibility of an exoplanet being a Venus analog solely on the basis of the detection of such chemical species in transmission spectra (Jordan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Indeed, the full characterization of rocky exoplanets and their classification appears to require the direct imaging of starlight that is reflected by such planets and/or the thermal radiation that is emitted by them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While telescopes able to perform such measurements are not yet available, plans are underway for their development and deployment (Keller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The Luvoir Team 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While most of telescopes and instruments are designed for only measuring total fluxes of exo- planets, including (spectro)polarimetry is also being considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The main reason to include (spec- tro)polarimetry (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021, and references therein) is that it increases the contrast between star and planet, as the stellar flux will be mostly unpolarized when integrated over the disk (Kemp et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1987), while the flux of the reflected starlight will usually be (linearly) polarized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' And in addition, (spectro)polarimetry can be used for the characterization of planetary atmospheres and surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As a classic example of the latter, Hansen & Hovenier (1974) used Earth-based measure- ments of the disk-integrated degree of polarization of sunlight that was reflected by Venus in three spectral bands and across a broad phase angle range, to deduce that the particles forming Venus’s main cloud deck consist of 75% sulfuric acid solution, that the effective radius of their size dis- tribution is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 µm, and that the effective width of the distribution is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' They also derived the cloud top altitude (at 50 mbars) by determining the amount of Rayleigh scattering in the gas above the cloud tops at a wavelength of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='365 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This was later confirmed by the Pioneer Venus mission which performed in-situ measurements using a nephelometer on a probe that descended through the clouds (Knollenberg & Hunten 1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Polarimetry proved to be an effective technique for disentangling Venus’s cloud properties be- cause the scattering particles leave a unique angular polarization pattern in the reflected sunlight depending on the particles’ micro- and macro-physical properties (for an extensive explanation of the application of polarimetry for the characterization of planetary atmospheres, see Hansen & Travis 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While multiple scattered light usually has a low degree of polarization, and thus dilutes the angular polarization patterns of the singly scattered light, the angles where the abso- lute degree of polarization reaches a local maximum and/or where it is zero (the so-called ’neutral points’) are preserved and thus still allow for the characterization of the particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 3 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Another factor in the successful application of (spectro)polarimetry for the characterization of Venus’s clouds and hazes is that with Earth-based telescopes, inner planet Venus can be observed at a wide range of phase angles, thus allowing observations of the angular variation of the degree of polarization due to the light that has been singly scattered by the atmospheric constituents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In our solar system, only Venus, Mercury, and the Moon can be observed at a large phase angle range with Earth-based telescopes (ignoring the proximity of Mercury to the Sun).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' To effectively apply polarimetry to the outer planets in the solar system, a polarimeter onboard a space mission would be needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' An example of such an instrument was OCCP onboard NASA’s Galileo mission (Russell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1992) that orbited Jupiter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Regarding exoplanets, however, the range of observable phase angles depends on the inclination angle of the planetary orbits: for a face-on orbit, the planet’s phase angle will be 90◦ everywhere along the orbit, while for an edge-on orbit, the phase angle will range from close to 0◦ (when the planetary disk is fully illuminated) to 180◦ (when the night-side of the planet is in view).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The precise range of accessible phase angles would of course depend on the observational technique and e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the use of a coronagraph or star-shade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Here we investigate the total flux and degree of polarization of starlight that is reflected by terrestrial-type exoplanets, focusing on the possible evolutionary stages of Venus as described by Bullock & Grinspoon (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our goal is to identify characteristic signatures that could help to identify the properties of exo-Venuses, thus to guide the design of future telescope instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We compute the disk-integrated total and polarized fluxes of light reflected between wavelengths of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' First, we study the single scattering properties of spherical cloud droplets of pure water (H2O) or 75% sulphuric acid (H2SO4) in order to identify potentially distinct signatures for each particle type as a function of wavelength and planetary phase angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Second, we compute the multiple scattered flux and polarization signals that are integrated over the planet’s illuminated disk as functions of the planet’s phase angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Third, we compute the signals of the planets in the four evolutionary phases in stable orbits around the nearby solar-type Alpha Centauri A, simulating the observations of such planets if they are spatially unresolved from their parent star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The outline of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2, we define the fluxes and polarization of planets, and we describe our numerical algorithm and the four model planets in the evolutionary phases as described by Bullock & Grinspoon (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3, we present the total and polarized fluxes as computed for planets that are spatially resolved from their star and for planets that are spatially unresolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In the latter case, the planet’s signal is thus combined with the stellar light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We specifically assume that our model planet orbits the solar-type star Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 4, we summarize our results and present our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Numerical method 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Flux and polarization definitions In this paper, we present the flux and polarization signals of starlight that is reflected by potentially habitable exoplanets that orbit solar-type stars, and in particular, Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because these Article number, page 4 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses planets will be very close in angular distance to their parent star, they will usually be spatially unre- solved, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' it will not be possible to spatially separate the planet’s signal from that of its parent star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The flux vector Fu (u= ’unresolved’) that describes the light of the star and its spatially unresolved planet, and that arrives at a distant observer is then written as Fu(λ, α) = Fs(λ) + Fp(λ, α), (1) with Fs the star’s flux vector and Fp that of the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Furthermore, λ is the wavelength (or wave- length band), and α is the planetary phase angle, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the angle between the star and the observer as measured from the center of the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We assume that the light of the star is captured together with the starlight that is reflected by the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A telescope with a coronagraph or star-shade would of course limit the amount of captured direct starlight, depending on its design and the angular dis- tance between the star and the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A flux (column) vector is given by (Hansen & Travis 1974) F = [F, Q, U, V], (2) with F the total flux, Q and U the linearly polarized fluxes, and V the circularly polarized flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The dimensions of F, Q, U, and V are W m−2, or W m−3 when defined per wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Measurements of FGK-stars, such as the Sun and Alpha Centauri A, indicate that their (disk- integrated) polarized fluxes are virtually negligible (Kemp et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Cotton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2017), thus we describe the star’s flux (column) vector that arrives at the observer located at a distance D as Fs(λ) = Fs(λ) 1 = R2 s D2 πB(λ, Ts) 1, (3) with πB the stellar surface flux, Ts the star’s effective temperature, Rs the stellar radius, and 1 the unit (column) vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The parameter values that we adopt for the Alpha Centauri A system are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because of the huge distances to stars and their planets, flux vector Fp of the starlight that is reflected by an exoplanet pertains to the planet as a whole, thus integrated across the illuminated and visible part of the planetary disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' It is given by (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018) Fp(λ, α) = AG(λ) Rp(λ, α) r2 p D2 R2 s d2 πB(λ, Ts) 1 (4) = AG(λ) R1p(λ, α) r2 p D2 R2 s d2 πB(λ, Ts).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (5) Here, AG is the planet’s geometric albedo, Rp the matrix describing the reflection by the planet and R1p its first column, rp is the planet’s radius, d the distance between the star and the planet, and D the distance to the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The planet’s reflection is normalized such that planetary phase function R1p, which is the first element of R1p, equals 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 at α = 0◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 5 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses The contrast C between the total flux of the planet and the total flux of the star is then given by C(λ, α) = Fp(λ, α) Fs(λ) = AG(λ) R1p(λ, α) r2 p d2 , (6) with Fp the first element of the planetary flux vector Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Using the parameters from Table 1, the con- trast C between a planet with the radius of Venus at a Venus-like distance from Alpha Centauri A equals about 2·10−9AG at α = 0◦ (at this phase angle, the planet would actually be precisely behind the star with respect to the observer and thus out of sight).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The degree of polarization of the spatially resolved planet (without including any direct light of the star) is defined as Pp = � Q2p + U2p Fp , (7) where we ignore the planet’s circularly polarized flux Vp as it is expected to be very small com- pared to the linearly polarized fluxes (Rossi & Stam 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We also ignore the circularly polarized fluxes in our radiative transfer computations, as this saves significant amounts of computing time without introducing significant errors in the computed total and linearly polarized fluxes (see Stam & Hovenier 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Fluxes Qp and Up are defined with respect to the planetary scattering plane, which is the plane through the planet, the star and the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In case the planet is mirror-symmetric with respect to the planetary scattering plane, linearly polarized flux Up equals zero and we can use an alternative definition of the degree of polarization that includes the polarization direction as follows Pp = −Qp Fp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (8) If Pp > 0 (Pp < 0), the light is polarized perpendicular (parallel) to the reference plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In case a planet is not completely spatially resolved from its parent star, and the background of the planet on the sky is thus filled with (unpolarized) starlight, the observable degree of polarization Pu can be written as (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6-7) Pu = � Q2p + U2p Fp + xFs = Fp Fp + xFs Pp = C C + xPp, (9) with x the fraction of the stellar flux that is in the background, which will depend on the angular distance between the star and the planet, on the starlight suppressing techniques that are employed, such as a coronagraph or star-shade, and on the spatial resolution of the telescope at the wavelength under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This equation also holds for the signed degree of polarization as given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' If x = 1, the planetary and the stellar flux are measured together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In that case, Pu = C C + 1Pp ≈ CPp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (10) Article number, page 6 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The values of the parameters describing the planetary system of Alpha Centauri A used in our numerical modelling1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Parameter (unit) Symbol Value Stellar radius (RSun) Rs 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2234 Stellar effective temperature (K) Ts 5790 Planet radius (km) rp 6052 Planet orbital distance (AU) d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='86 Planet orbital period (yr) P 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='76 Distance to the system (ly) D 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 Angular separation (arcsecs) S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='67 Here we used the fact that the contrast C will usually be very small (on the order of 10−9 as shown earlier).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The planet’s degree of polarization Pp and the contrast C both depend on λ and α, but generally in a different way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The dependence of Pu on λ and α will thus generally differ from that of either Pp or C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our radiative transfer algorithm Our procedure to compute the flux vector Fp (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 5) of the starlight that is reflected by the planet, is described in Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The radiative transfer algorithm is based on an efficient adding- doubling algorithm (de Haan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1987) and fully includes polarization for all orders of scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' With this algorithm, through the use of a Fourier-series expansion of the planetary reflection matrix Rp, the reflected flux vector can be computed for any planetary phase angle α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our model planetary atmospheres consist of horizontally homogeneous layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For each layer, we prescribe the total optical thickness b, the single-scattering albedo a, and the single-scattering matrix P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our layered model atmosphere is bounded below by a Lambertian reflecting surface (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the light is reflected isotropically and unpolarized) with an albedo asurf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A layer’s optical thickness b at a wavelength λ is the sum of the optical thicknesses of the gas molecules, bm, and, if present, the cloud particles, bc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We ignore other atmospheric particles, such as haze particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The single-scattering matrix P of a mixture of gas molecules and cloud particles in a layer is given by P(Θ, λ) = bm sca(λ) Pm(Θ, λ) + bc sca(λ) Pc(Θ, λ) bmsca(λ) + bcsca(λ) , (11) with subscript ‘sca’ referring to ‘scattering’, thus bsca = ab, with a the single scattering albedo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Furthermore, Pm is the single-scattering matrix of the gas molecules, and Pc that of the cloud particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Θ is the single scattering angle: Θ = 180◦ − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We use two types of model atmospheres to study the influence of an exoplanet’s atmospheric evolution on the reflected light signals: an Earth-like and a Venus-like atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For our Earth- like atmosphere, we define the pressure and temperature across 17 layers, representing a mid- 1 The orbital distance d of the planet has been chosen such that it receives the same stellar flux as Venus receives from the Sun, and in accordance with the orbit stability requirements for a planet around Alpha Centauri A predicted by Quarles & Lissauer (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the radius of the Sun, RSun, we use 695,700 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 7 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The four evolutionary phases of the model planets (Bullock & Grinspoon 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phases 1 and 2, the clouds consist of liquid water droplets, and in Phases 3 and 4, of liquid sulfuric acid solution droplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The cloud optical thickness is indicated by bc and the cloud particle effective radius by reff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the effective variance veff of the size distributions in Phases 1-3, we use 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1, and for Phase 4, veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' latitude summer profile (following Stam 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For our Venus-like atmosphere, we use 71 layers with pressure and temperature profiles from the Venus International Reference Atmosphere (VIRA) (Kliore et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1985), representing a mid-latitude afternoon profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' With these vertical profiles, and assuming anisotropic Rayleigh scattering (Hansen & Travis 1974), we compute each layer’s single scattering matrix Pm and the scattering optical thickness bm sca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We neglect absorption, thus bm = bm sca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The depolarization factor for computing Pm and bm sca for anisotropic Rayleigh scattering depends on the atmospheric composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the Earth-like atmosphere, we use a (wavelength independent) depolarization factor of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03, which is representative for dry air, and for the Venus-like atmosphere, we use 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='09, which is representative for a pure CO2 atmosphere (Hansen & Travis 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We use wavelength-independent refractive indices of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00044 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00027 for the Venus-like and the Earth-like model atmospheres, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' note that this assumption has a negligible effect on the reflected total and polarized fluxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The cloud particles in our model atmospheres are spherical and distributed in size according to a two-parameter gamma size distribution (see Hansen & Travis 1974) that is described by an effective radius reff and an effective variance veff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The terrestrial clouds are located between 1 and 3 km altitude, and the Venusian clouds, depending on their evolutionary phase, between 47 and 80 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The cloud optical thickness has a uniform vertical distribution through the altitude range (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The single-scattering properties of the cloud particles are computed using Mie-theory (De Rooij & Van der Stap 1984), as these particles are expected to be spherical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For these computations we specify the wavelength λ and nr, the refractive index of the cloud particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The cloud particles are composed of either pure water or a sulphuric acid solution with varying concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We use the refractive index of water from Hale & Querry (1973) and that of sulphuric acid with 75 % acid concentration from Palmer & Williams (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We use a negligible value for the imaginary part of the particles’ refractive indices, ni = 10−8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 8 of 24 Cloud thickness Ititude A Cloud top = 3 km Cloud top = 80 km Cloud top = 65 km Cloud top = 65 km bc = 2 bc = 4 bc = 120 bc = 30 reff = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 μm reff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 μm reff = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 μm reff = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 μm Phase 1 Phase 2 Phase 3 Phase 4 Current Earth Thin clouds Venus Thick clouds Venus Current VenusMahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Cloud properties through the planet’s evolution It is suspected that early Venus had a thin, Earth-like atmosphere and (possibly) an Earth-like ocean that was later lost due to the runaway greenhouse effect (Donahue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Kasting 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Way & Del Genio 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As the planet’s surface heated up, the water would have evaporated and enriched the atmosphere with water vapor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The macroscopic cloud properties for the 4 evolutionary phases that we will use are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We start our evolutionary model of Venus assuming Earth-like conditions (Phase 1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' an atmosphere consisting of 78% N2 and 22% O2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Model simulations showed that the actual depen- dence of the total and polarized flux signals on the percentage of oxygen appeared to be negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Hence we used the present day Earth atmosphere as the Earth-like atmosphere model while the ac- tual percentage of oxygen on an exo-planet could be different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The cloud particles have an effective radius reff of 10 µm in agreement with ISCCP (Tselioudis 2001) and an effective variance veff of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The total cloud optical thickness bc is 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 at λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='55 µm and the cloud layer extends from 2 to 4 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The next evolutionary phases are also inspired by the Venus climate model of Bullock & Grin- spoon (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 2, the atmosphere is Venus-like as it consists of pure CO2 gas, and has relatively thin liquid water clouds with bc = 4, and with the cloud tops at 80 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For this phase, we use reff of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm, which is smaller than the present day value, because the atmosphere is ex- pected to be too hot for strong condensation to take place thus preventing the particles to grow larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 3, the clouds are thick sulphuric-acid solution clouds, with bc = 120 and the cloud tops at 65 km, because the atmosphere is cool enough to allow condensation and/or coalescence of saturated vapour over a large altitude range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Since the region of condensation covers a large altitude range, the particles can grow large until they evaporate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In this phase, reff = 2 µm, which is twice the effective radius of the present day Venus cloud particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For both phases 2 and 3, we use veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 4, the clouds have the present-day properties of Venus’s clouds with bc = 30 and the cloud tops at 65 km (Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Ragent et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the cloud particle sizes in this phase, we use reff = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 µm and veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='07 following the values derived by Hansen & Hovenier (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We ignore the absorption by cloud particles in the UV in all of our Venus-like clouds to avoid adding complexity and because the exact nature and location of the UV-absorption is still under debate (Titov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 2 shows the phase function (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' single scattering matrix element P11) and the degree of linear polarization for unpolarized incident light (the ratio of single scattering matrix elements −P21/P11) that has been singly scattered by the four different types of cloud particles as functions of α (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 180◦ - Θ), for a range of wavelengths λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2, the phase functions show strong forward scattering peaks (near α = 180◦, thus when the night-side of the planet would be turned towards the observer) that decrease with increasing λ, thus with decreasing effective particle size parameter xeff = 2πreff/λ (for the large H2O cloud particles, with reff = 10 µm, this decrease is not readily apparent from the figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 9 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The total flux and degree of polarization of incident unpolarized light that has been singly scattered by four different types of cloud particles, as functions of the phase angle α and the wavelength λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Left column: the total flux or phase function (single scattering matrix element P11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Right column: the degree of polarization (−P21/P11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' First row: H2O particles with reff = 10 µm and veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 (belonging to the Phase 1 model planet: ’Current Earth’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Second row: H2O particles with reff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm and veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 (Phase 2: ’Thin clouds Venus’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Third row: 75% H2SO4 particles with reff = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm and veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 (Phase 3: ’Thick clouds Venus’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Fourth row: 75% H2SO4 particles with reff = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 µm and veff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='07 (Phase 4: ’Current Venus’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The H2O particles with reff = 10 µm show a moderate local maximum in the phase function around α = 40◦, which is usually referred to as the primary rainbow (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Hansen & Travis 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The large H2O and the H2SO4 particles also produce higher fluxes towards α = 0◦ that are referred to as the glory (Laven 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' García-Muñoz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Markiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Markiewicz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the small H2O particles and the H2SO4 particles at larger wavelengths, the phase functions become more isotropic and the glory and other angular features disappear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 2 also shows the degree of linear polarization of the singly scattered light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This degree of polarization appears to be more sensitive to the particle composition than the scattered flux, especially for λ between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 and 2 µm, where H2O particles yield relatively high positive degrees of polarization (perpendicular to the scattering plane) between phase angles of about 20◦ and 100◦, whereas the H2SO4 particles impart a mostly negative degree of polarization through a broad range of phase angles, except for narrow regions around α = 20◦ and 80◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The tiny, reff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm, water droplets have a strong, broad positive polarization region for λ ≥ 1 µm, where they are so small with respect to the wavelength that they scatter like Rayleigh scatterers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As mentioned before (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Hansen & Travis 1974;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Hansen & Hovenier 1974), patterns in the single scattering degree of polarization are generally preserved when multiple scattered light is added, as the latter usually has a low degree of polarization, and thus adds mostly total flux, which Article number, page 10 of 24 H20,reff:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0μm H20,reff:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0μm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Wavelength (μm) Wavelength (μm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 102 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 Phase function 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='037 101 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='139 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='139 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='197~ 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 10~1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='82 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 H20, reff: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 μm H20,reff: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5μm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Wavelength (μm) Wavelength (μum) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 102 Phase function 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='518 101 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='931 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='400 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='139 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0200 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 75%H2SO4,reff:2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0μm 75%H2SO4,reff:2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0μm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='512 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Wavelength (um) Wavelength (μm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 102 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 Phase function 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 101 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='398 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 75%H2SO4,reff:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05μm 75%H2S04,reff:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05μm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1668- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='077 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='25 Wavelength (um) Wavelength (μm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 102 Phase function 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='642- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 10-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='250 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Phase angle (deg) Phaseangle (deg)Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses subdues angular features, but does not change the angular pattern (local maxima, minima, neutral points) itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The single scattering angular features in the polarization will thus also show up in the polarization signature of a planet as a whole, and can be used for characterisation of the cloud particle properties and thus possibly of various phases in the evolution of a Venus-like exoplanet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This will be investigated in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Results Here we present the disk-integrated total flux and degree of polarization of incident unpolarized starlight that is reflected by the model planets at different wavelengths λ and for phase angles α ranging from 0◦ to 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The actual range of phase angles at which an exoplanet can be observed depends on the inclination angle i of the planet’s orbit (the angle between the normal on the orbital plane and the direction towards the observer): α ranges between 90◦ − i to 90◦ + i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Obviously, at α = 0◦, the planet would be precisely behind its star, and at 180◦ it would be precisely in front of its star (in transit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Other phase angles might be inaccessible due to restrictions of inner working angles of telescopes and/or instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For completeness, we include all phase angles in our computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 shows results for spatially resolved planets and Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 for planets that are spatially unresolved from their star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In particular, we show these latter results for a model planet orbiting the star Alpha Centauri A at a distance where the incident stellar flux is similar to the solar flux that reaches Venus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because our model planets are all mirror-symmetric with respect to the reference plane, their linearly polarized flux Up equals zero and will not be discussed further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Flux and polarization of spatially resolved planets Figure 3 shows the total flux Fp (the planetary phase function) and degree of polarization Pp as functions of α and λ for the four evolutionary phases illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The total fluxes are normalized such that at α = 0◦, they equal the planet’s geometric albedo AG (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 4 shows AG of the planets in the four evolutionary phases as functions of the wavelength λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Table 2 lists the geometric albedo’s at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The ’Current Earth’ (Phase 1) shows very little variation in AG, and the ’Thin clouds Venus’ (Phase 2) has the lowest albedo because of the small cloud particles and the small cloud optical thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The geometric albedo’s of the ’Thick clouds Venus’ (Phase 3) and the ’Current Venus’ (Phase 4) are very similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Thus across the wavelength region investigated in this paper, the ’Current Earth’ (Phase 1) has the highest geometric albedo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The model planets’ geometric albedo’s AG for the four evolutionary phases at four wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' λ (µm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 Current Earth 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='752 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='739 Thin clouds Venus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='186 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='240 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='310 Thick clouds Venus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='727 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='627 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='580 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='564 Current Venus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='726 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='573 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='484 Article number, page 11 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Left column: The total flux (or phase function);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and right column: The degree of polarization of incident unpolarized starlight that is reflected by the model planets in the 4 evolutionary phases as functions of α and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' First row: Phase 1 (’Current Earth’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Second row: Phase 2 (’Thin clouds Venus’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Third row: Phase 3 (’Thick clouds Venus’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Fourth row: Phase 4 (’Current Venus’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The phase functions are normalised such that at α = 0◦, they equal the planet’s geometric albedo AG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For each model planet, the total flux Fp decreases with increasing α mostly because less of the planet’s observable disc is illuminated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The planet with thin H2O clouds (Phase 2) is very dark over all α’s because the cloud optical thickness bc is small and the surface is black.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The total fluxes show vague similarities with the single scattering phase functions of the cloud particles (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In particular, for the ’Current Earth’ (Phase 1) with large H2O particles, Fp increases slightly around α = 40◦, the rainbow angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Also, the decrease of Fp with λ is stronger for the Venus-type planets with H2SO4 clouds (Phases 3 and 4) than for the planet with the large H2O particles (’Current Earth’, Phase 1), because the single scattering phase function of the sulfuric acid particles decreases stronger with λ than that of the water droplets (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 ( m) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 Geometric albedo Phase 1 (Current Earth) Phase 2 (Thin clouds Venus) Phase 3 (Thick clouds Venus) Phase 4 (Current Venus) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The planets’ geometric albedo’s AG as functions of the wavelength λ for the four evolutionary phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 12 of 24 Current Earth Current Earth 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 Degree of polarization 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 000:0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 入(μm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='300 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='459 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Thin clouds Venus Thin clouds Venus 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Degree of linear polarization 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='300 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 入(μm) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Thick clouds Venus Thick clouds Venus 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='050 Degree of polarization 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 (ur) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='500 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='250 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 D 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Current Venus CurrentVenus 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Degree of polarization 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 (ur)x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Phase angle (deg) Phase angle (deg)Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Unlike Fp, the degree of polarization Pp of each of the model planets, shows angular and spectral features that depend strongly on the cloud properties and should thus allow distinguishing between the different evolutionary phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 1 (’Current Earth’), Pp is high and positive up till λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm and around α = 90◦, which is due to Rayleigh scattering by the gas above the clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Starting at the shortest λ, Pp increases slightly with λ before decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This is due to the slightly larger contribution of multiple scattered light, with a lower degree of polarization, at the shortest wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A Rayleigh-scattering peak is also seen for Phase 4 (’Current Venus’), except there, the peak decreases more rapidly with λ because the clouds are higher in the atmosphere and there is thus less gas above them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 3 (’Thick clouds Venus’), the Rayleigh-scattering peak is suppressed by the contribution of low polarized light that is reflected by the thicker clouds below the gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 2 (’Thin clouds Venus’), the relatively thin clouds are higher in the atmosphere than in Phase 1 (’Current Earth’), which is why the Rayleigh-scattering peak only occurs at the very shortest wavelengths (the peak is hardly visible in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because the Phase 2 cloud particles are small (reff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm), they themselves give rise to a Rayleigh-scattering peak at λ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The two model planets with the H2O cloud particles (Phases 1 and 2) show a narrow region of positive polarization between 30◦ and 40◦, which is the rainbow peak (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' On exoplanets, this local maximum in Pp could be used to detect liquid water clouds on exoplanets (Karalidi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2011, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Bailey 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 1 (’Current Earth’), the rainbow region starts near the Rayleigh scattering peak of the gas and extends towards the largest wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 2 (’Thin clouds Venus’), with the small water droplets, the rainbow only occurs at the shortest wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' With increasing wavelength, it broadens and disappears into the cloud particles’ Rayleigh scattering peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The H2SO4 cloud particles (Phases 3 and 4) have their own specific polarization patterns, such as the broad negative polarization region at α ⪆ 80◦, which can be traced back to their single scattering patterns (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 3 (’Thick clouds Venus’), the cloud particles give rise to a sharp positive polarization peak at the shortest wavelengths and for 20◦ ≤ α ≤ 30◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Phase 4 (’Current Venus’), there is a broader, lower, positive polarization branch across this phase angle range, which resembles the positive polarization branch of the tiny H2O droplets in Phase 2 (’Thin clouds Venus’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' However, at the longer wavelengths, the phase angle dependence of the polarization of the latter planet is very different which should help to distinguish between such planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This emphasizes the need for measurements at a wide range of wavelengths and especially phase angles (if the planet’s orbital inclination angle allows this).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Flux and polarization of spatially unresolved planets In the previous section, we showed the signals of spatially resolved planets, thus without back- ground starlight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' When observing an exoplanet in the habitable zone of a solar-type star, it will be difficult to avoid the starlight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Here, we show the total flux of the planet Fp, the star-planet contrast C (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6), the spatially resolved degree of polarization of the planet Pp (thus without Article number, page 13 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A sketch of the geometries within the Alpha Centauri system: the orbital plane of the stars Alpha Centauri A and B is inclined by about 80◦ with respect to the observer on Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our model planet (the blue dot) orbits Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In this sketch, the line of nodes of the planet’s orbit was chosen to coincide with that of the stellar orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The inclination angle im of the planet’s orbit with respect to the stellar orbital plane is 45◦, and the inclination angle of the planet’s orbit with respect to the observer is 80◦ − 45◦ = 35◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The phase angles of the planet in this sketch would range from 90◦ − 35◦ = 55◦ to 90◦ + 35◦ = 125◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the starlight) and the spatially unresolved degree of polarization of the combined star-planet signal Pu (thus including the starlight).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While the total planet fluxes shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3 were normalized at α = 0◦ to the planets’ geometric albedo’s AG, here they are computed according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 5, and thus depend on the parameters of the planet-star system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We assume our model planets orbit Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The solar-type star Alpha Centauri A is part of a double star system, and the orbital parameters of ourplanets are chosen based on the stable planet orbital distances and orbital inclination angles around this star as predicted by Quarles & Lissauer (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 5 shows a sketch of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We use a planetary orbital distance d of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='86 AU, such that each model planet receives a stellar flux similar to the solar flux received by Venus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Additional system parameter values are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' According to Quarles & Lissauer (2016), stable orbits around Alpha Centauri A can be found for a range of angles between the planetary orbital plane and the plane in which the two stars orbit, and thus for a range of inclination angles i of the planetary orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 6 shows the variation of the planetary phase angle α along a planetary orbit for two values of the longitude of the orbit’s ascending node Ω: for Ω = 0◦ (the line connecting the planet’s ascending and descending nodes is perpendicular to the line to the observer) and for Ω = 205◦ which represents the configuration of Earth with Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The orbital phase of the planet is defined such that at an orbital phase angle of 0◦, α = 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The inclination angle im is the 0 50 100 150 200 250 300 350 Orbital phase (deg) 0 20 40 60 80 100 120 140 160 180 Alpha (deg) = 0 im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 0 20 40 60 80 100 120 140 160 180 Alpha (deg) = 205 im = -10 im = 80 im = 0 im = 35 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Variation of the planet’s phase angle α along the planet’s orbit around Alpha Centauri A for different mutual inclination angles im of the planetary orbit with respect to the orbital plane of the two stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Top: Ω, the longitude of the ascending node of the planet’s orbit, is 0◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For im = −10◦, the planet is then in a face-on orbit (i = 0◦), while for im = 80◦, it is in an edge-on orbit (i = 90◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Bottom: Ω = 205◦, and the planetary orbit is aligned with the node of the stellar orbital plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 14 of 24 = 800 Alpha Centauri B i= 35o to the observer Alpha Centauri AMahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses 0 50 100 150 200 250 300 350 Orbital phase (deg) 10 20 30 40 Fp (10 12 W m 2m 1) im = -10 im = 80 im = 0 im = 35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 Pp im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 Pu (10 9) im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 2 4 6 8 10 12 14 16 Fp (10 12 W m 2m 1) im = -10 im = 80 im = 0 im = 35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 Pp im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 Pu (10 9) im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 1 2 3 4 5 Fp (10 12 W m 2m 1) im = -10 im = 80 im = 0 im = 35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 Pp im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='030 Pu (10 9) im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 Fp (10 12 W m 2m 1) im = -10 im = 80 im = 0 im = 35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='9 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 Pp im = -10 im = 80 im = 0 im = 35 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='020 Pu (10 9) im = -10 im = 80 im = 0 im = 35 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The total planetary flux Fp (in W m−3) and the star-planet contrast C, the degree of polarization Pp of the spatially resolved planet, and Pu, the degree of polarization of the star and the spatially unresolved planet, all for a ’Current Venus’ model planet (Phase 4) as functions of the planet’s orbital phase for four mutual inclination angles im and four wavelengths λ: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm (row 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm (row 2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm (row 3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm (row 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The longitude of the ascending node of the planetary orbit, Ω, is 205◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' angle between the plane in which the stars move and the planetary orbital plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For Ω = 0◦, im = −10◦ would yield a face-on planetary orbit (i = 0◦) with α = 90◦ everywhere along the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For im = 80◦, the orbit is edge-on (i = 90◦) and α varies between 0◦ and 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 6 also shows the range of α for im = 0◦ and 35◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' According to Quarles & Lissauer (2016), the latter is the most probable orientation of a stable planetary orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For these two cases, the accessible phase angles range from 80◦ to 100◦, and from 45◦ to 135◦, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For Ω = 205◦, the maximum range of α would be from 20◦ to 160◦, depending on im.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 7 shows Fp, Pp and Pu (the spatially unresolved planet, thus with starlight included) for Phase 4 (’Current Venus’) as functions of the planet’s orbital phase for Ω = 205◦, four values of im (-10◦, 80◦, 0◦, and 35◦), and four wavelengths (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The plots for Fp also show the contrast C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because C is the ratio of the planetary flux Fp to the stellar flux Fs (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6), its variation with the orbital phase is proportional to that of Fp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At the two orbital phases in each plot where all the lines cross, the planetary phase angles α are the same (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6) and thus all Fp and Pp are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The plots for Fp appear to be very similar for the different wavelengths, apart from a difference in magnitude which is mainly due to the decrease of the stellar flux that is incident on the planet with increasing wavelength, although the planetary albedo AG and phase function R1p also decrease with increasing λ as can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This wavelength dependence of Fp also causes the decrease of the contrast C Article number, page 15 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses with increasing wavelength (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the planet darkens with increasing λ), as C is independent of the wavelength dependence of the stellar flux (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The shape differences between the Fp (and C) curves are due to the wavelength dependence of the planetary flux that can also be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At each wavelength λ, the largest variation in Fp with the orbital phase is seen for im = 80◦, because for that configuration the variation of α along the orbit is largest (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The degree of polarization Pp of the planet shows significant variation with the orbital phase at all wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A particularly striking feature for the geometry with im = 80◦ is the double peak close to the orbital phases of 150◦ and 200◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6 for Ω = 205◦ and im = 80◦, α decreases from about 160◦ at an orbital phase of 0◦, to 20◦ at an orbital phase around 175◦, to then increase again with increasing orbital phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Tracing this path of α through the Pp panel in the bottom row of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3 explains the double peaked behaviour of Pp and its wavelength dependence as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the other values of im, the phase angle range that is covered along the orbit is smaller, and therefore the variation in Pp is also smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The degree of polarization of the spatially unresolved planet, Pu, shows similar variations along the orbital phase as Pp, except that most features are flattened out because of the addition of the unpolarized stellar flux, which is independent of the orbital phase angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The double peaked feature for im = 80◦ remains strong, however, as at those orbital phase angles, the contrast C is relatively large and thus the influence of the added stellar flux relatively small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The variation in the polarisa- tion of the unresolved system due to the orbiting planet is on the order of 10−11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 8 is similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7, except for the four model planets in the different evolutionary phases and all for im = 80◦ and Ω = 0◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because here the planetary orbits are seen edge-on (i = 90◦), the full range of phase angles is covered, which makes it possible to explore the full extent of variation of flux and polarization signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Because of this large phase angle range, Fp varies strongly with the orbital phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The wavelength dependence of the total flux can be traced back to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3, where in particular the Phase 2 planet (’Thin cloud Venus’) is dark at all wavelengths, but relatively bright at the longest wavelengths and small phase angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As was the case in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7, the variation of C is the same as that of Fp, except for the off-set due to the stellar flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The largest values of C (about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6×10−9), are found for λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm and around the orbital phase of 180◦ (at 180◦, the planets would actually be behind the star).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Furthermore in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8, Pp depends strongly on λ and the planet’s evolutionary phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm, the Phase 1 planet (’Current Earth’) shows the largest values of Pp due to the Rayleigh scattering gas above the low altitude clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At the longer wavelengths, where the Rayleigh scattering is less prominent, the curves for the Phase 1 planet clearly show the positive polarization of the rainbow around the orbital phases of 140◦ and 220◦ (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the Phase 2 planet (’Thin clouds Venus’) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm, the small cloud particles cause positive polarization around 150◦ and 210◦, which connect the rainbow and the Rayleigh scattering maximum in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At longer wavelengths, the broad positive polarization signature of Rayleigh scattering by the cloud particles dominates the curves, while the curves for the Phase 3 and 4 planets show mostly negative polarization apart from Article number, page 16 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses 0 50 100 150 200 250 300 350 Orbital phase (deg) 0 10 20 30 40 50 60 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='75 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='20 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='12 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0 5 10 15 20 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0 2 4 6 8 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='25 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='08 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7 except for the model planets in the four evolutionary phases and Ω = 0◦ and im = 80◦ (thus for an edge–on orbit, i = 90◦): Phase 1 (’Current Earth’), Phase 2 (’Thin clouds Venus’), Phase 3 (’Thick clouds Venus’), Phase 4 (’Current Venus’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The wavelengths λ are like before: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm (row 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm (row 2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm (row 3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm (row 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 0 50 100 150 200 250 300 350 Orbital phase (deg) 10 15 20 25 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='20 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='12 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 4 6 8 10 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='7 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='020 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='7 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 Fp (10 12 W m 2 m 1) Phase 1 Phase 2 Phase 3 Phase 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='7 C (10 9) 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='25 Pp Phase 1 Phase 2 Phase 3 Phase 4 0 50 100 150 200 250 300 350 Orbital phase (deg) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='08 Pu (10 9) Phase 1 Phase 2 Phase 3 Phase 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8 except for the most probable, stable orbit around Alpha Centauri A, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' for Ω = 205◦ and im= 35◦ (Quarles & Lissauer 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The wavelengths are like before: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm (row 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm (row 2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm (row 3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm (row 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 17 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses the orbital phases around 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' When adding the starlight, the angular features of the polarization Pu are suppressed along those parts of the orbits where C is smallest, thus away from the orbital phase angle of 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In particular within 180◦ ±40◦, Pu still shows distinguishing features, although they are very small in absolute sense (smaller than 10−10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Figure 9 is similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8 except here the model planets are in the most probable stable orbit around Alpha Centauri A as predicted by Quarles & Lissauer (2016), namely with Ω = 205◦ and im = 35◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' As can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 6, for this geometry α varies between about 60◦ and 120◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 9, Fp shows a similar variation as the curves in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8, although less prominent, as the planets do not reach a ’full’ phase (where α = 0◦) nor the full night phase (α = 180◦) along their orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The flux curves in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 9 also miss small angular features that appear in the single scattering phase functions of the cloud particles (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2), such as the glory, again because the planets do not go through the related phase angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In this particular orbital geometry, Pp shows less pronounced angular features than for the same model planets in edge-on orbits (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8) because of the more limited phase angle range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For example, the ’Current Earth’ (Phase 1) shows no rainbow despite the H2O clouds, because the phase angle of about 40◦ is not reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In the visible (λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm), Pp reaches the largest values for the ’Current Earth’ (Phase 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At longer wavelengths, Pp of the ’Thin clouds Venus’ (Phase 2) strongly dominates because of the Rayleigh scattering by the small cloud particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The ’Thick clouds Venus’ (Phase 3) shows predominant negative polarization at all wavelengths and across the whole orbital phase angle range except at λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm around an orbital phase angle of 20◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The polarization of the spatially unresolved planets, Pu, clearly shows the suppression of the polarization features due to the added starlight towards the smaller and larger orbital phase angles, where the planets are darker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While the Phase 2 planet (’Thin clouds Venus’) is relatively dark (C is very small), its Rayleigh scattering polarization signal is so strong that its unresolved polarization signal is larger than that of the other planets, except the Phase 1 planet (’Current Earth’) at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm and orbital phase angles close to 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Evolutionary phases across α and λ In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 10, we show which evolutionary phase has the highest values of |Pp| across all phase angles α and wavelengths λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We find that |Pp| of the Phase 1 planet (’Current Earth’) dominates between 30◦ and 150◦, and mostly for λ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In particular, around α = 40◦ and up to λ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm, the polarization signal of the rainbow produced by the large water cloud particles is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1 (see the bottom plot of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For λ > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm, the Phase 2 planet (’Thin clouds Venus’) shows the strongest polarization due to the Rayleigh scattering by the small H2O cloud particles, as can clearly be seen in the bottom plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The small patches where the strongest polarization signal is from the ’Thick clouds Venus’ (Phase 3), for example near α = 20◦ and λ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm, or from the ’Current Venus’ (Phase 4) are due to the single scattering polarization features of the H2SO4 cloud particles, as can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 18 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Top: The planet models that yield the largest absolute degree of polarization |Pp| over all phase angles α and wavelengths λ: Phase 1 - ’Current Earth’ (blue);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Phase 2 - ’Thin clouds Venus’ (light orange);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Phase 3 ’Thick clouds Venus’ (dark orange);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and Phase 4 - ’Current Venus’ (brown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Bottom: The maximum values of |Pp| of the four model planets as functions of α and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The accessible phase angle range for direct observations of such exoplanets obviously depends on the actual orientation of the planetary orbits and cannot be optimized by the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Precisely because of that, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 10 clearly indicates that measurements should be performed across a broad wavelength range, including wavelengths below 1 µm to allow distinguishing between Earth-like and Venus-like planets in various evolutionary phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Summary and conclusions We presented the total flux and linear polarization of starlight that is reflected by model planets of various atmospheric types to investigate whether different phases in the evolution of planets like the Earth and Venus can be distinguished from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We have used four planet models to represent possible evolutionary phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Phase 1 (’Current Earth’) has an Earth-like atmosphere and liquid water clouds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Phase 2 (’Thin clouds Venus’) has a Venus-like CO2 atmosphere and thin water clouds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Phase 3 (’Thick clouds Venus’) has a Venus-like CO2 atmosphere and thick sulphuric acid solution clouds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and Phase 4 (’Current Venus’) has a CO2 atmosphere and thin sulphuric acid solution clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We have computed the total flux and polarization signals specifically for model Article number, page 19 of 24 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 Earth Thin clouds Venus ThickcloudsVenus Wavelength (microns) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 Current Venus 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0 20 40 60 80 100 120 140 160 180 Alpha (deg)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='300 Wavelength (microns) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='010 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='300 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='200 100 0 20 40 60 80 100 120 140 160 180 Alpha (deg)Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses planets orbiting our neighbouring solar-type star Alpha Centauri A using predicted stable orbits (Quarles & Lissauer 2016) in its habitable zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We have computed the reflected starlight for wavelengths λ ranging from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3 µm to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm and for planetary phase angles α from 0◦ to 180◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We not only present the fluxes and polarization of spatially resolved model planets (thus without background starlight) but also of spatially unresolved planets, thus the combined signal of the planet and the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For the latter cases, we also computed the planet-star contrast C as a function of α and λ to determine what would technically be required to detect the planetary signals upon the background starlight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The range of planetary phase angles α at which a planet can be observed (spatially resolved or unresolved) depends on the inclination of the planetary orbit with respect to the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We have specifically studied the reflected light signals of planets orbiting solar-type star Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This star is part of a double star system with solar-type star Alpha Centauri B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The distance between the two stars varies from 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 AU (M-dwarf Alpha Centauri C or Proxima Centauri orbits the pair at a distance of about 13,000 AU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Dynamical computations (Quarles & Lissauer 2016) predict stable planetary orbits around Alpha Centauri A in a narrow range of mutual inclination angles im between the orbital planes of the two stars and that of the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In particular, the most stable orbit has im = 35◦, which provides an α range from 60◦ to 120◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We find that with this orbital geometry the degree of polarization of the planet would be largest for the ’Current Earth’ (Phase 1) across the visible (λ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm) due to Rayleigh scattering by the gas above the clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At near infrared wavelengths (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm < λ < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm), the polarization of the ’Thin clouds Venus’ (Phase 2) is highest, because this planet has small cloud droplets that scatter like Rayleigh scatterers at the longer wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The well-known advantage of measuring the degree of polarization for the characterization of (exo)planets is that the angular features in the signal of the planet as a whole are similar to the angular features in the light that has been singly scattered by the gas molecules and cloud particles,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' which are very sensitive to the microphysical properties (such as the size distribution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' composi- tion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' shape) of the scattering molecules and cloud particles and to the atmosphere’s macrophysical properties (such as cloud altitude and thickness).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The reflected total flux is much less sensitive to the atmospheric properties than the degree and direction of polarization (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Hansen & Travis 1974, for several examples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Indeed, the variations of the planetary flux Fp along a planet’s or- bit appear to be mostly due to the change of the fraction of the planetary disk that is illuminated and visible to the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' They provide limited information on the planet’s atmospheric charac- teristics, especially if one takes into account that with real observations, the planet radius will be unknown unless the planet happens to transit its star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The variation of the planetary flux Fp with phase angle α and wavelength λ is similar that of planet-star contrast C, the ratio of Fp to the stellar flux Fs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For a Venus-like planet orbiting Alpha Centauri A, C is on the order of 10−9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 20 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Our numerical simulations show that variations in Pp,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' the degree of polarization of the spatially resolved planets (thus without any starlight),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' with α combined with variations with λ could be used to distinguish the planetary evolutionary phases explored in this paper: – Phase 1 planets (’Current Earth’) show strong positive (perpendicular to the reference plane through the star,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' planet,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' and observer) polarization around α = 40◦ due to scattering by large water cloud droplets (the rainbow) and also higher polarization for λ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm and α ≈ 90◦ due to Rayleigh scattering by the gas above the clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' – Phase 2 planets (’Thin clouds Venus’) polarize light negatively (parallel to the reference plane) across most phase angles and at visible wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' At near-infrared wavelengths, they have strong positive polarization around α = 90◦ due to Rayleigh scattering by the small cloud droplets, and a ’bridge’ of higher polarization from the Rayleigh maximum to the rainbow angle (α ≈ 40◦) with decreasing λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' – Phase 3 planets (’Thick clouds Venus’) have predominantly negative polarization from the vis- ible to the near-infrared, with small regions of positive polarization for λ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm and for 20◦ ≤ α ≤ 30◦, that are characteristic for the 75% H2SO4 cloud particles with reff = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' – Phase 4 planets (’Current Venus’) yield similar polarization patterns as the Phase 3 planets, ex- cept with more prominent negative polarization for 10◦ ≤ α ≤ 30◦ and for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 µm ≤ λ ≤ 2 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rayleigh scattering by the small cloud particles produces a maximum of positive polarization around α = 90◦ and for λ > 2 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our simulations of the planetary polarisation Pp do not include any background starlight, and can thus reach several percent to even 20% for the ’Current Earth’ (Phase 1) planet in an edge-on orbit (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Whether or not such polarization variations could be measured depends strongly on the techniques used to suppress the light of the parent star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' If the background of the planet signal contains a fraction x of the flux of the star, the degree of polarization of the light gathered by the detector pixel that contains the planet will equal (C/(C + x))Pp ≈ (C/x)Pp with C the contrast between the total fluxes of the planet and the star (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' For a Venus-like planet orbiting Alpha Centauri A, C is on the order of 10−9, thus x should be as small as 10−4 to get a polarisation signal on the order of 10−6, assuming Pp is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Not only excellent direct starlight suppression techniques, but also a very high spatial resolution would help to decrease x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Our simulations further show that temporal variations in the total flux Fu of Alpha Centauri A with a spatially unresolved terrestrial-type planet orbiting in its habitable zone would be less than 10−12 W/m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The degree of polarization Pu of the combined star and planet signals, would show variations smaller than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='05 ppb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' To identify this planetary flux on top of the stellar flux, a very high-sensitivity instrument would be required and an even higher sensitivity would be required to subsequently characterize the planetary atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Recall that the orbital period of such a planet, and with that the period of the signal variation and presumably the stability requirements of an instrument, would be about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='76 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Bailey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' (2018) computed the polarization signal of spatially unresolved, hot, cloudy, Jupiter-like planet HD 189733b to be on the order of ∼20 ppm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 21 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Because of their large size, Jupiter-like planets, and in particular those in close-in orbits that receive large stellar fluxes, would clearly be less challenging observing targets than terrestrial-type planets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The HARPS instrument on ESO’s 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='6 m telescope includes polarimetric observations with a polarimetric sensitivity of 10−5 (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Planetpol on the 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 m William Herschel Telescope (WHT) on La Palma achieved a sensitivity to fractional linear polarization (the ratio of linearly polar- ized flux to the total flux) of 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While PlanetPol did not succeed in detecting exoplanets, it did provide upper limits on the albedo’s of a number of exoplanets (Lucas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The Ex- treme Polarimeter (ExPo), that was also mounted on the WHT, was designed to target young stars embedded in protoplanetary disks and evolved stars surrounded by dusty envelopes, with a polari- metric sensitivity better than 10−4 (Rodenhuis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The HIPPI-2 instrument uses repeated observations of bright stars in the SDSS g’ band for achieving better than 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 ppm accuracy on the 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='9-m Anglo-Australian Telescope and better than 11 ppm on the 60-cm Western Sydney Uni- versity’s telescope (Bailey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The POLLUX-instrument on the LUVOIR space telescope concept aims at high-resolution (R∼120,000) spectropolarimetric observations across ultra-violet and visible wavelengths (100-400 nm) to characterize atmospheres of terrestrial-type exoplanets (The Luvoir Team 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rossi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The EPICS instrument planned to be mounted on the ELT telescope, is designed to achieve a contrast of 10−10 depending the angular separation of the objects (Kasper et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' In our simulations, we have neglected absorption by atmospheric gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Including such absorp- tion would yield lower total fluxes in specific spectral regions, depending on the type and amount of absorbing gas, its vertical distribution, and on the altitude and microphysical properties of the clouds and hazes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Including absorption by atmospheric gases could increase or decrease the degree of polarization, depending on the amount and vertical distribution of the absorbing gas and on the microphysical properties of the scattering particles at various altitudes (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Trees & Stam 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Stam 2008, for examples of polarization spectra of Earth-like planets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' While measuring total and polarized fluxes of reflected starlight across gaseous absorption bands is of obvious interest for the characterization of planets and their atmospheres, the small numbers of photons inside gaseous absorption bands would make such observations extremely challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We have also neglected any intrinsic polarization of Alpha Centauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Measurements of the degree of linear polarization of FKG stars indicate that active stars like Alpha Centauri A have a typical mean polarization of 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='5 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='2 ppm (Cotton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This could add to the challenges in distinguishing the degree of polarization of the planet from that of the star if the planet is spa- tially unresolved, although the phase angle variation of the planetary signal and the direction of polarization of the planet signal (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' usually either perpendicular or parallel to the plane through the star, the planet, and the observer) could be helpful provided of course that the instrument that is used for the observations has the capability to measure the extremely small variations in the signal as the planet orbits its star (on the order of 10−9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Article number, page 22 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses State-of-the-art instruments with sensitivity to polarization signals down to 10−6 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1000 ppb) are still a few orders of magnitude away from detecting variations in polarization signals from spatially unresolved exo-Earths or exo-Venuses around nearby solar-type stars such as Alpha Cen- tauri A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' To be able to distinguish between the different planetary evolutionary phases explored in this paper, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' between water clouds or sulphuric acid clouds, variations on the order of 10−9 and hence significant improvements in sensitivity would be needed if the planets are spatially unresolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' The variation in the degree of polarization of spatially resolved planets along their orbital phase should be detectable by instruments capable of achieving star-planet contrasts of 10−9 and that would allow to distinguish between water clouds or sulphuric acid clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Current high-contrast imaging instruments manage to directly image self-luminous objects such as young exoplanets and brown dwarfs in NIR total fluxes at contrasts of 10−2-10−6 (Bowler 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Nielsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Langlois et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' van Holstein 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Further, instruments such as EPICS on ELT and concepts for instruments on future space observatories such as HabEx (Gaudi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2020) and LUVOIR (The Luvoir Team 2019) hold the promise for attaining contrasts of ∼10−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Reaching such extreme contrasts would make it possible to directly detect terrestrial-type planets and to use polarimetry to differentiate between exo-Earths and exo-Venuses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' This work was supported by the Netherlands Organisation for Scientific Research (NWO) through the User Support Programme Space Research, project number ALW GO 15-37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' We thank the referee for the valuable feedback that improved this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' References Bailey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2007, Astrobiology, 7, 320 Bailey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Cotton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Kedziora-Chudczer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', De Horta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Maybour, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2020, Publications of the Astronomical Society of Australia, 37 Bailey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Kedziora-Chudczer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Bott, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, Monthly Notices of the Royal Astronomical Society, 480, 1613 Bowler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2016, Publications of the Astronomical Society of the Pacific, 128, 102001 Bullock, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Grinspoon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2001, Icarus, 150, 19 Cotton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Marshall, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Bailey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2017, Monthly Notices of the Royal Astronomical Society, 467, 873 de Haan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Bosma, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Hovenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1987, Astronomy and Astrophysics, 183, 371 De Rooij, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Van der Stap, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1984, Astronomy and Astrophysics, 131, 237 Donahue, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Hoffman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Hodges, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Watson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1982, Science, 216, 630 García-Muñoz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Pérez-Hoyos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Sánchez-Lavega, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2014, Astronomy & Astrophysics, 566, L1 Gaudi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Seager, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Mennesson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2020, arXiv preprint arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06683 Hale, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Querry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1973, Applied optics, 12, 555 Hansen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Hovenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1974, Journal of the Atmospheric Sciences, 31, 1137 Hansen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Travis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1974, Space science reviews, 16, 527 Jordan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Rimmer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Shorttle, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021, ApJ, 922, 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='3847/1538-4357/ac1d46 Kane, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Vervoort, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Horner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Pozuelos, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2020, The Planetary Science Journal, 1, 42 Karalidi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Hovenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2011, Astronomy & Astrophysics, 530, A69 Karalidi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Hovenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2012, Astronomy & Astrophysics, 548, A90 Kasper, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Beuzit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Verinaud, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2010, in Ground-based and Airborne Instrumentation for Astronomy III, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7735, SPIE, 948–956 Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1988, Icarus, 74, 472 Article number, page 23 of 24 Mahapatra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' : From exo-Earths to exo-Venuses Keller, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Schmid, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Venema, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2010, in Ground-based and airborne instrumentation for astronomy III, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 7735, International Society for Optics and Photonics, 77356G Kemp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Henson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Steiner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Powell, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1987, Nature, 326, 270 Kliore, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Moroz, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Keating, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1985, Advances in Space Research, 5 Knollenberg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Hunten, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1980, Journal of Geophysical Research: Space Physics, 85, 8039 Langlois, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Gratton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Lagrange, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021, Astronomy & Astrophysics, 651, A71 Laven, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2008, Applied optics, 47, H133 Lincowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Meadows, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Crisp, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, The Astrophysical Journal, 867, 76 Lucas, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Hough, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Bailey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2009, Monthly Notices of the Royal Astronomical Society, 393, 229 Lustig-Yaeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Meadows, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Lincowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019a, The Astronomical Journal, 158, 27 Lustig-Yaeger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Meadows, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Lincowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019b, The Astrophysical Journal Letters, 887, L11 Markiewicz, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Petrova, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Shalygina, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2014, Icarus, 234, 200 Markiewicz, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Petrova, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Shalygina, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, Icarus, 299, 272 Nielsen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', De Rosa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Macintosh, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019, The Astronomical Journal, 158, 13 Palmer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Williams, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1975, Applied Optics, 14, 208 Quarles, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Lissauer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2016, AJ, 151, 111 Ragent, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Esposito, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Tomasko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1985, Advances in Space Research, 5, 85 Rodenhuis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Canovas, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Jeffers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' McLean, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Ramsay, & H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Takami, 84469I Rossi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Berzosa-Molina, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Desert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021, Experimental Astronomy, 1 Rossi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Berzosa-Molina, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, Astronomy & Astrophysics, 616, A147 Rossi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Marcq, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Montmessin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2015, Planetary and Space Science, 113, 159 Rossi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, Astronomy & Astrophysics, 616, A117 Russell, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Brown, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Chandos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 1992, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', 60, 531 Snik, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Kochukhov, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Piskunov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2011, Solar Polarization 6, 437, 237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='0397 Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2008, Astronomy & Astrophysics, 482, 989 Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Hovenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2005, Astronomy & Astrophysics, 444, 275 Team, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2019, arXiv preprint arXiv:1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content='06219 Titov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Ignatiev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', McGouldrick, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Wilquet, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', & Wilson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2018, Space Science Reviews, 214, 1 Trees, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Stam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2022, A&A, 664, A172 Tselioudis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2001, ISCCP Definition of Cloud Types Turbet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Bolmont, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', Chaverot, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021, Nature, 598, 276 van Holstein, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2021, PhD thesis, Leiden University Way, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' & Del Genio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
+page_content=' 2020, Journal of Geophysical Research: Planets, 125, e2019JE006276 Article number, page 24 of 24' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctFIT4oBgHgl3EQfnitG/content/2301.11314v1.pdf'}
diff --git a/ddAzT4oBgHgl3EQf3f4p/content/tmp_files/2301.01829v1.pdf.txt b/ddAzT4oBgHgl3EQf3f4p/content/tmp_files/2301.01829v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8ad0b88827b0223da9701bf9f0b8c4602940ee32
--- /dev/null
+++ b/ddAzT4oBgHgl3EQf3f4p/content/tmp_files/2301.01829v1.pdf.txt
@@ -0,0 +1,1283 @@
+1
+
+Fragment-based t-SMILES for de novo molecular generation
+Juan-Ni Wu, Tong Wang, Yue Chen, Li-Juan Tang, Hai-Long Wu*, Ru-Qin Yu*
+State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering,
+Hunan University, Changsha 410082, People's Republic of China
+
+ABSTRACT
+At present, sequence-based and graph-based models are two of popular used molecular generative
+models. In this study, we introduce a general-purposed, fragment-based, hierarchical molecular
+representation named t-SMILES (tree-based SMILES) which describes molecules using a
+SMILES-type string obtained by doing breadth first search (BFS) on full binary molecular tree
+formed from fragmented molecular graph. The proposed t-SMILES combines the advantages of
+graph model paying more attention to molecular topology structure and language model possessing
+powerful learning ability. Experiments with feature tree rooted JTVAE and chemical reaction-
+based BRICS molecular decomposing algorithms using sequence-based autoregressive generation
+models on three popular molecule datasets including Zinc, QM9 and ChEMBL datasets indicate
+that t-SMILES based models significantly outperform previously proposed fragment-based
+models and being competitive with classical SMILES based and graph-based approaches. Most
+importantly, we proposed a new perspective for fragment based molecular designing. Hence,
+SOTA powerful sequence-based solutions could be easily applied for fragment based molecular
+tasks.
+Keywords: Fragment-based drug discovery, Tree-based SMILES, Sequence-based De novo
+design
+1 Introduction
+The starting point for molecular drug discovery programs is to identify initial ‘‘hit’’ compounds
+that bind to the target and have the potential for optimization of clinical candidates with the desired
+therapeutic effect. Fragment-based drug discovery (FBDD) builds drugs from small molecular
+pieces. Since the pioneering work by Fesik and coworkers in 1996[1], FBDD has become a
+
+2
+
+recognized technology in the pharmaceutical industry and within academia. More than 30 drug
+candidates derived from fragments have been reported to enter the clinic[2]. Compared with atom-
+based techniques, the size of the search space is greatly reduced by the use of the fragment strategy.
+In addition, fragments could provide fundamental insights into molecular recognition between
+proteins and ligands. As a consequence, there is a higher probability of finding molecules that
+match the known targets.
+The early FBDD was generally implemented based on fragment library using virtual screening and
+other methods. Although deep learning[3] has been widely used in molecular generation tasks[4,5]
+with fragment-based method as a research topic, the method of fragmenting molecules and coding
+molecular substructures in the form of a string-type sequence like SMILES[6] to finally generate
+molecules has not yet been fully explored.
+In recent years, various deep generative models for the task of automatically generate molecules
+have been proposed. Among deep learning-based methods, models with sequence representations
+[7-9] such as SMILES and 2D representations such as graphs [10-14] are most popular, while
+recently a plethora of models generating molecules in 3D[15] also starts to attract attention.
+As a more natural representation of molecules, generally speaking, graph neural network could
+generate 100% valid molecules as it can easily implement valence bond constraints and other
+verification rules. However, it has been shown that the expressive power of standard GNNs is
+bounded by Weisfeiler-Leman (WL) graph isomorphism phenomenon, the lack of ways to model
+long-range interactions and higher-order structures limited the use of GNNs[16], though some
+recent studies have proposed new methods such as subgraph isomorphism[17], message-passing
+simple networks[18] and many others techniques to improve the expressive power of standard
+GNNs[19].
+
+3
+
+From the perspective of graph-based computational procedure, SMILES is a linear string obtained
+by performing depth first search (DFS) on molecular graph, which is more like human natural
+language. When generating SMILES, the chemical graph is firstly trimmed to remove hydrogen
+atoms and cycles are broken turning them into a spanning tree. Where cycles have been broken,
+numeric suffix labels are included to indicate the connected nodes. Parentheses are used to indicate
+points of branching on the tree. The generation algorithm of classical SMILES directly breaks
+down the most common ring structures in molecules. As a consequence, some elements of
+SMILES syntax must occur in pairs with deep nesting to represent molecular topological structure.
+Without discussing what chemical information could be learned, models trained on SMILES
+somehow generate part chemical invalid strings, particularly when trained on small datasets, which
+some have identified as a limitation need to be addressed[20]. Two alternative solutions to the
+classical SMILES have been proposed[20]. The DeepSMILES[21] aims to remove long term
+dependencies associated with the representation of rings and branches from the SMILES syntax to
+finally increase the proportion of valid molecules generated. Self-referencing embedded strings
+(SELFIES)[22] are an entirely different molecular representation based on a Chomsky type-2
+grammar, in which every SELFIES string specifies a valid chemical graph.
+In addition, almost all substructure (motif or fragment) based methods published to date rely on a
+substructure dictionary (motif vocabulary dictionary or fragment library) of candidate
+fragments[13,23-28]. In molecules, a small group of fragments being used frequently, while most
+of fragments are rarely used. The differences among dictionary-based approaches arise solely from
+how the database is searched, or the contents of the database itself. As a result, these methods are
+inherently constrained to a set of predetermined rules or examples, limiting the exploration of
+chemical space and the learning ability of the models to a certain extent.
+
+4
+
+Recently, attention-based Transformer[29] pre-trained models have been proved to enable text
+generation with human-like capabilities, including texts with specific properties such as style or
+subject, if trained on enough data. With the rapid development of natural language processing(NLP)
+technology, and the increasing interest in larger and more complex molecules for treatment,
+language models may show a better ability to learn complex molecules than most graph generation
+models[30].
+Motivated by the success of NLP and the strategies of FBDD, we hope to adopt sequence-based
+models to handle fragment-based molecular generation tasks. So that, we propose a new molecule
+code t-SMILES based on fragmented molecule, which describes a molecule with classical
+SMILES-type string and takes language model as the main generation model. t-SMILES based
+model combines the advantages of graph model paying attention to molecular topology structure
+and language model possessing powerful NLP learning ability.
+The t-SMILES method firstly generates an acyclic molecular tree (AMT) whose role is to represent
+fragmented molecules. Fragments in this tree are chemically valid substructures automatically
+extracted from molecules using a molecular disconnection algorithm. In the second stage, the AMT
+is transformed to a full binary tree (FBT). Finally, breadth-first traversal of the FBT yields a t-
+SMILES string.
+Our proposed method is a general framework that does not limit the substructure scheme as long
+as it could be used to generate chemically valid fragments and construct valid AMT. t-SMILES
+string could be directly applied to sequence-based machine learning models without adjusting the
+model architecture in specific fields. In addition, due to the hierarchical representation of
+molecules, our model can clearly learn the high-level topology structural information of molecules
+while processing the detailed substructure information. Most importantly, by exploiting NLP
+
+5
+
+methods, t-SMILES based models opens an exploration door for fragment-based molecule tasks.
+Therefore, SOTA sequence-based language models could be easily used for fragment-based
+molecular tasks.
+To evaluate the feasibility and adaptability of t-SMILES, we break down molecules using two
+different strategies BRICS[31] based and feature tree rooted JTVAE[12] based algorithms
+respectively, and then use Transformer-decoder based autoregressive models to generate
+molecules on three popular molecular datasets Zinc[32], QM9[33] and ChEMBL[34]. Finally, we
+compare t-SMILES based models with the most popular graph neural network models, SMILES-
+based models and other baselines.
+Five metrics including validity, uniqueness, novelty, KL divergence(KLD)[35]and Fréchet
+ChemNet distance score(FCD)[36] introduced in GuacaMol[37] benchmark are used to evaluate
+the general performance of the models. In addition, we use logP, Penalized logP(plogP)[38], SA
+score(SAS)[39], BertzCT[40], QED[41], TPSA, NP Score(NPS)[42], and FractionCSP3 to
+evaluate whether the generation model could effectively learn the physical and chemical properties
+of molecules.
+The t-SMILES construction philosophy and detailed comparative experiments show that the
+validity of generated molecules by t-SMILES models could be greater than 99%. At the same time,
+using 5 layers mini GPT2[43](mGPT2) model, t-SMILES could well capture the physicochemical
+properties of molecules to maintain the similarity of the generated molecules to the distribution of
+dataset molecules, which make t-SMILES based models significantly outperforming previously
+proposed fragment-based models and being competitive with classical SMILES and graph-based
+approaches. In addition, compared with classical SMILES which is relatively difficult to be
+
+6
+
+augmented[20], t-SMILES is easily to be expanded to explore different chemical spaces by using
+different molecular fragmentation algorithms.
+Although current de novo molecular generation approaches have made impressive advances, the
+sequence-based perspectives create new opportunities to advance fragment-based molecular
+design tasks. The t-SMILES solution demonstrates that de novo generation of molecules from
+fragmented SMILES is possible. This solution challenges the current research paradigm used for
+FBDD.
+2 Methods
+In order to support t-SMILES algorithm, on the basis of the classic SMILES, we introduce a new
+character '&' to represent the end of the sub-branch, and another new character '^' to separate the
+two adjacent SMILES substructure segments. In this section, we firstly introduce the general idea
+of t-SMILES, and then introduce FBT and AMT which are the core parts of t-SMILES algorithm,
+followed with molecular fragmentation algorithms and finally discuss the molecular reconstruction
+strategy.
+2.1 t-SMILES Algorithm Overview
+In t-SMILES algorithm, molecular graph is firstly divided into chemical valid fragments (or
+substructures, clusters, subgroups, subgraphs) using a specified or more disconnection methods to
+obtain its AMT shown in the middle of Figure 1. Following with the AMT being transformed into
+a FBT shown in the right of Figure 1, and finally the FBT is traversed in breadth first search (BFS)
+to obtain the t-SMILES string. During the reconstruction, the reverse process is used, and finally
+the molecular fragments are assembled into the chemical correct molecular graph.
+
+7
+
+
+Figure 1. Overview of t-SMILES algorithm: A molecular graph G is first decomposed into its reduced graph, where
+each colored node in the tree represents a substructure in the molecule. We then generate an AMT based on reduced
+graph, following with trasnformation of AMT to FBT. Finally, the FBT is traversed in BFS to obtain its t-SMILES
+code. To reconstruct the molecule, we first rebuild FBT from t-SMILES string, and then transform FBT to AMT,
+finally assemble nodes in the tree back to the original molecule.
+We follow below steps to build t-SMILES:
+Algorithm steps to construct t-SMILES from molecule
+Step 1: Break down molecule according to the selected molecular fragmentation algorith to build
+AMT;
+Step 2: Convert the AMT to a FBT through algorithm;
+Step 3: Traverse the FBT with BFS algorithm to get t-SMILES .
+BFS algorithm for the tree is a level order traversal of tree. For any node w in the BFS tree rooted
+at v, the tree path from v to w corresponds to a shortest path from v to w in the corresponding
+graph.
+In the following, the terms nodes and subtrees are used for describing ATM and FBT, the terms
+fragment, substructure and subgroup are used to describe a part of the molecule. Subtrees,
+
+Acyclic molecular tree
+Full binary tree
+H2N
+CHe
+Decompose
+Decompose
+Decompose
+Reohstrue
+ecost
+H,S
+H3C
+CI
+CHa8
+
+fragments, substructures or subgroups are always assumed to be connected parts. FBT has two
+children named left subtree and right subtree.
+2.2 Full Binary Tree
+Tree is the core concept in proposed t-SMILES algorithm. A tree is a special type of graph in
+which there is just a single path connecting each pair of vertices, that is, there are no cycles or
+rings within the graph. The root node of a tree is the starting point while the other vertices are
+either branch nodes or leaf nodes.
+A FBT is a special type of binary tree in which every parent node/internal node has either two or
+no children. As the most trivial tree, FBT’s structure is regular and easy to calculate. The reason
+for using FBT with some redundant nodes instead of complete binary tree or other trees is that its
+algorithm and structure being easy to learn by deep learning models, and the redundant nodes
+could be used as global marker nodes. In this work, the character '&'(tree node marked as '&’)
+marking the end of the tree branch in the FBT could be regarded as the global structural
+information describing the molecular topology in t-SMILES string.
+With chemical meaningful molecular fragmentation representation using FBT, t-SMILES
+effectively reduces the nesting depth of brackets in classical SMILES codes, weakens the long-
+term dependencies in sequences, and fundamentally reduces the difficulty of learning molecular
+information for using sequence-based deep learning models. In t-SMILES algorithm, except for
+the extra two characters ‘&’ and ‘^’, no more symbols are introduced, nor are recursion and other
+sophisticated calculations with high computational complexity introduced.
+
+9
+
+2.3 Molecule Decomposition
+The key and first step in t-SMILES is to decompose molecules into chemical valid fragments
+according to a specified disconnection algorithm. According to Lounkine et al.[44], there exists
+four major strategies to fragment designing: knowledge-based, synthetically oriented, random, and
+systematic or hierarchical. The open-source molecular toolkit RDKit[45] has implemented some
+molecular fragmentation methods, such as RECAP[46] and BRICS[31] etc.
+RECAP and BRICS both disconnect a molecule to fragments on bonds based on chemical reaction
+rules. In the RECAP method, molecules are cleaved at 11 chemical bond types that correspond to
+common chemical reactions, while BRICS attempts to improve RECAP for molecule
+fragmentation by using a more elaborate set of 16 rules and additional pre- and postfilters. In this
+study, considering that the training datasets are mainly small molecules, and the molecular
+fragments segmented by BRICS are large or molecules could not be broken down, say on the
+subset of Zinc and ChEMBL, if necessary, we could further cut off the branch structures connected
+to ring structures on the basis of BRICS, and then cut off the bridge bonds between two rings.
+BRICS algorithm is not used on QM9 in this study as molecules are relatively rather small to be
+broken down. We generate reduced graph according to the cutting off logic of BRICS and then
+calculate its spanning tree as AMT.
+Another molecular decomposition algorithm in our study could find its root in feature tree[47]
+published for molecular similarity algorithm by Rarey et al. in 1998 and JTVAE[12] proposed
+later by Jin et al. Given a graph G, we first find all its simple cycles, and its edges not belonging
+to any cycles. Two simple rings are merged together if they have more than two overlapping atoms,
+as they constitute a specific structure called bridged compounds [48]. Each of those cycles or edges
+
+10
+
+is considered as a cluster. Next, a cluster graph is constructed by adding edges between all
+intersecting clusters. Finally, we select one of its spanning trees as the AMT of G.
+The t-SMILES algorithm is a general and fragment based molecular representation framework
+which does not limit the choice of molecular decomposing algorithms. Different molecular
+segmentation algorithm may require different fragment assembling algorithm to complete the
+reconstruction of the generated molecules.
+2.4 Acyclic Molecular Tree
+The idea of using tree as the base data structure of algorithms to address molecular related tasks
+has been long established in cheminformatics. In early study of molecular descriptor and similarity
+analysis, algorithms such as reduced graph[49], feature tree[47,50] not only had shown potential
+power to improve the similarity search but also being capable of retrieving more diverse active
+compounds than using Daylight fingerprints[51].Some recent works[52-55] proposed to
+incorporate tree-based deep learning models into molecular generation and synthesis tasks as well.
+AMT being capable to describe the molecule at various levels of resolution, reduced graph[56]
+provides summary representations of chemical structures by collapsing groups of connected atoms
+into single nodes while preserving the topology of the original structures. In reduced graph, the
+nodes represent groups of atoms and the edges represent the physical bonds between the groups.
+Constructing reduced graph in this way forms a hierarchical graph, whose top layer being the
+molecular topology representing global information, and the bottom layer representing molecular
+fragments of detailed information. Groups of atoms are clustered into a node in the reduced graph
+approach, which could be done based on fragmentation algorithms. The feature tree[47] is a
+representation of a molecule similar to a reduced graph. The vertices of the feature tree are
+molecular fragments and edges connect vertices that represent fragments connected in the simple
+
+11
+
+molecular graph. In t-SMILES algorithm, the minimum spanning tree of the reduced graph and
+the concept of feature tree could be regarded as an AMT in the intermediate step, and then the next
+encoding algorithm is done based on this AMT.
+Specific to our experiments, one approach is to generate AMT based on the tree logic fragmented
+by the BRICS algorithm. Another method uses junction tree[57] introduced by Jin et al. in JTVAE
+as the AMT. In the case of a junction tree, each node in the tree corresponds to a subset (subgraph,
+group, cluster or clique) in the original graph and edge is used to connect two clusters. In this study,
+nodes of Junction tree represent rings, bonds, bridged compounds, or singletons in the original
+molecular graph which are generated by fragment decomposing algorithm and edges represent the
+physical bonds between groups.
+2.5 Molecular Reconstruction and Optimization
+In the process of reconstructing the generated molecules from t-SMILES strings, we follow below
+steps:
+Algorithm steps to reconstruct molecule from t-SMILES
+Step 1: Decompose t-SMILES to reconstruct the FBT;
+Step 2: Convert the FBT to the AMT;
+Step 3: Assemble molecular fragments according to the selected algorithm to generate the correct
+molecular graph and then optimize it.
+During reconstruction, one key problem is how to assemble the molecular fragments together to
+get a ‘chemical correct’ molecule. Ideally, the assemble algorithm should be selected to match the
+molecular fragmentation algorithm. In this study, for efficiency reasons, we assemble molecular
+graph one neighborhood at a time, following the order in which the tree itself was generated. In
+other words, we start from the root node of AMT and its neighbors, then we proceed to assemble
+
+12
+
+the neighbors and their associated clusters, and so on. If there is more than one candidate when
+assembling two pieces, we simply select one randomly.
+The overall performance of t-SMILES based generative model is controlled by two main factors.
+The first one is whether t-SMILES can be learned and generated efficiently, and the other one is
+the reconstruction and molecular optimization algorithm. We evaluate the assembling algorithms
+by directly reconstructing molecules from training set data. Detailed metrics are shown in Table 1
+and Figure 2.
+Table 1. Distributional results by directly reconstructing molecules from the training dataset.
+Dataset
+Model
+Valid(↑)
+Uniq(↑)
+Novel(↑)
+KLD(↑)
+FCD(↑)
+Zinc
+JTVAE
+1.000
+0.770
+0.662
+0.982
+0.811
+BRICS
+1.000
+0.780
+0.681
+0.986
+0.849
+QM9
+JTVAE
+1.000
+0.741
+0.245
+0.976
+0.968
+ChEMBL
+JTVAE
+1.000
+0.786
+0.677
+0.969
+0.694
+BRICS
+1.000
+0.787
+0.672
+0.977
+0.792
+Data in Table 1 show that FCD scores on ChEMBL are the lowest ones while it is the highest on
+QM9.
+Figure 2. Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and
+FractionCSP3) of reconstructed molecules directly from Zinc training set. Wasserstein distance is used in this figure
+and later.
+
+13
+
+From Figure 2, it can be seen that SAS and NPS are the two most variable metrics when
+reconstituting molecules.
+If we output all possible assembly results, we could get a set of molecules which come from the
+same fragments group with different structures. From this point of view, generating new molecules
+with the desired properties (desired structure) rather than duplicating the training set is exactly the
+potential goal of the molecule generation task and not a negative aspect. MOG[58] argued that the
+common pitfall of existing molecule generation models based on distributional learning is that the
+exploration is confined to the training distribution, and the generated molecules exhibit “the
+striking similarity” with known molecules included in the training set. Models that do not require
+training molecules are free from this problem, but they introduce other problems such as long
+training time, the sensitivity of balance between exploration and exploitation, large variance, and
+importantly, a lack of information about the known distribution. Based on t-SMILES, it’s possible
+to select appropriate optimization algorithm to control how the fragments are assembled, thereby
+controlling the properties of the output molecules. Molecule optimization is another challenging
+topic which is beyond the scope of this study. Using more complex optimization algorithms instead
+of stochastic method to select target molecule would be an option for further study.
+3 Results and Discussion
+To evaluate t-SMILES and generatation models on different datasets, we firstly compare two t-
+SMILES based mGPT2 models with fragment-based baseline models and classical SMILES based
+mGPT2 models on Zinc. And then we compare t-SMILES based models with SOTA SMILES and
+GNNs baseline models on QM9 and ChEMBL datasets. Metrics used in this study are still based
+on distributional learning.
+
+14
+
+3.1 Comparison with fragment-based and SMILES-based models on Zinc
+The validity, uniqueness, novelty, KLD and FCD scores on Zinc are summarized in Table 2 and
+the distributions of eight physiochemical properties are shown in Figure 3.
+Table 2. Distributional results on Zinc, we train or retrained all these five models, t-SMILES_J_mGPT2 breaks
+molecules using the same fragmentation algorithm as JTVAE[27], t-Smiles_B_mGPT2 breaks molecules using
+BRICS, mGP2 means five layers mini GPT2 model is used.
+Model
+Valid(↑)
+Uniq(↑)
+Novel(↑)
+KLD(↑)
+FCD(↑)
+SMILES_mGPT2(Ours)
+0.853
+0.674
+0.672
+0.960
+0.830
+JTVAE[12]
+0.997
+0.989
+0.989
+0.870
+0.439
+FragDgm[27]
+1.000
+0.423
+0.422
+0.835
+0.303
+t-SMILES_J_mGPT2(Ours)
+>0.99
+0.775
+0.774
+0.970
+0.773
+t-Smiles_B_mGPT2(Ours)
+>0.99
+0.783
+0.782
+0.963
+0.790
+Classical SMILES based mGPT2 model is trained for reference in this study to evaluate t-SMILES
+based models. Compared with t-SMILES models, classical SMILES based model gets lower
+novelty and uniqueness scores. It means that t-SMILES-based models, with almost 100% validity
+and relatively high FCD scores, could improve novelty to explore a wider molecular space.
+JTVAE[12] is one key baseline model for this study, which splits molecule using a tree base data
+struct. So far as the validity is concerned, both t-SMILES and JTVAE models could generate near
+100% valid molecules. However, t-SMILES exhibits significantly higher KLD and FCD scores
+with reasonably slight lower novelty and uniqueness scores.
+t-SMILES based models significantly outperforms another fragment dictionary-based model,
+FragDgm[27], which splits molecule in a linear mode as a sequence of fragment IDs, on all five
+distribution parameters. Despite FragDgm adopting a segmented mode and based on distributional
+learning, its FCD value is the lowest among the five models.
+When more and more validity of models can reach above 0.9, it becomes more important to test
+whether the generative model can effectively learn the physicochemical properties of molecules.
+
+15
+
+Detailed distributions of eight physiochemical properties logP, plogP, SAS, BertzCT, QED, TPSA,
+NPS and FractionCSP3 on Zin are presented in Figure 3.
+
+Figure 3. Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and
+FractionCSP3) of random selected 10K molecules from Zinc data sets, JTVAE[12], FragDgm[27]
+ and molecules generated by SMILES and two t-SMILES based mGPT2 models respectively
+It can be seen from Figures 3 that the distribution of t-SMILES and classical SMILES based
+mGPT2 models are closer to training data set on all eight physiochemical properties than other
+two fragment-based models. The distribution of generated molecules by FragDgm is far from the
+training set on six physiochemical properties except NPS and FractionCSP3.
+Compared with JTVAE, besides TPSA and SAS which are comparable, two t-SMILES based
+mGPT2 models get significantly lower scores on all eight metrics, especially on FractionCSP3 and
+BertzCT. Compared with FragDgm, except NPS which are comparable, t-SMILES based models
+get significantly favorite scores in other seven physicochemical properties.
+Considering novelty, the distribution of the eight physicochemical properties suggests that the
+generated molecules by t-SMILES-based models are better fit to the training dataset, which
+obviously implies relatively low novelty.
+
+16
+
+From the comparative analysis of these models, two t-SMILES based models in this study
+significantly outperform the fragment-based baseline models, and have similar performance to the
+SMILES-based model in physicochemical properties, but validity scores could be greater than
+99%, that is to say, t-SMILES could be an effective molecular presentation for fragment based
+molecular tasks on Zinc.
+3.2 Comparison with baseline models on QM9
+The validity, uniqueness, novelty, KLD and FCD scores on QM9 are summarized in Table 3 and
+the distributions of eight physiochemical properties are shown in Figure 4.
+Table 3. Distributional results on QM9. The results of CharacterVAE[7], are taken from MolGAN[60], Transformer
+Reg[11], GraphVAE[59,11], MolGAN[60] and MGM[11] are taken from O. Mahmood et al.[11]
+Input
+Model
+Valid(↑)
+Uniq(↑)
+Novel(↑)
+KLD(↑)
+FCD(↑)
+SMILES
+CharacterVAE[7,60]
+0.103
+0.675
+0.900
+N/A
+N/A
+Transformer Reg[11]
+0.965
+0.957
+0.183
+0.994
+0.958
+SMILES_mGPT2(ours)
+0.949
+0.728
+0.172
+0.992
+0.970
+Graph
+GraphVAE[59,11]
+0.557
+0.760
+0.616
+N/A
+N/A
+MolGAN[60]
+0.981
+0.104
+0.942
+N/A
+N/A
+MGM[11]
+0.886
+0.978
+0.518
+0.966
+0.842
+t-SMILES
+t-SMILES_J_mGPT2(ours)
+>0.99
+0.720
+0.289
+0.976
+0.953
+On QM9, the score of validity of t-SMILES based mGPT2 model could be greater than 0.99, which
+is comparable to the performance of GNNs and superior to the most SOTA SMILES based models.
+FCD score of t-SMILES based mGPT2 model is one of the highest ones in all seven models, which
+is greater than 0.95.
+From the viewpoint of sequence-based models, our approach performs similarly to or better than
+existing SMILES based approaches. Our approach shows higher validity and uniqueness scores
+compared to CharacterVAE, while having a reasonable lower novelty score. Compared to the
+Transformer Reg model, t-SMILES based model has higher score in novelty, lower score in
+uniqueness, and comparable scores in KLD and FCD.
+
+17
+
+Compared to the graph-based models, our approach outperforms the existing baseline approaches.
+t-SMILES based model has comparable uniqueness score compared with respect to GraphVAE,
+and significantly outperforms MolGAN, with reasonable lower novelty score. KLD and FCD
+scores are not provided for these two models. t-SMILES based mGPT2 model has good
+performance against SOTA method MGM in validity, KLD and FCD scores, while having slightly
+lower scores in uniqueness and novelty.
+Figure 4. Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and
+FractionCSP3) of random selected 10K molecules from generated molecules on QM9 data sets by SMILES and t-
+SMILES based mGPT2 models respectively
+In general, on QM9 data set, both mGPT2 models based on t-SMILES and classical SMILES get
+high KLD and FCD scores, all greater than 0.95, that means they could maintain physiochemical
+similarity to the training distribution. However, the novelty scores of the models are relatively low,
+which could be interpreted by that the generated molecules based on distributional learning exhibit
+“the striking similarity” with known molecules included in the training set. It also indicates that
+novelty is inversely correlated with the KLD and FCD scores.
+3.3 Comparison with baseline models on ChEMBL
+The validity, uniqueness, novelty, KLD and FCD scores on ChEMBL are summarized in Table 4
+and the distributions of eight physiochemical properties are shown in Figure 5.
+
+18
+
+Table 4 Distributional results on ChEMBL, The results of ORGAN[8], LSTM[37], CharacterVAE[7], AAE[61],
+Transformer Reg[11], Graph MCTS[14], and MGM[11] are taken from O. Mahmood et al.[11] and Guacamol[37],
+the results of MolGPT is taken from Bagal et al.[9], the results of hgraph2graph[13] is calculated by us.
+Input
+Model
+Valid(↑)
+Uniq(↑)
+Novel(↑)
+KLD(↑)
+FCD(↑)
+SMILES
+ORGAN[8,37]
+0.379
+0.841
+0.687
+0.267
+0.000
+LSTM[37]
+0.959
+1
+0.912
+0.991
+0.913
+Character VAE[7,37]
+0.870
+0.999
+0.974
+0.982
+0.863
+AAE[61,37]
+0.822
+1
+0.998
+0.886
+0.529
+MolGPT[9]
+0.981
+0.998
+1
+0.992
+0.907
+Transformer Reg[11]
+0.961
+1.000
+0.846
+0.977
+0.883
+SMILES_mGPT2(Ours)
+0.850
+0.670
+0.641
+0.972
+0.809
+Graph
+Graph MCTS[14, 37]
+1.000
+1.000
+0.994
+0.522
+0.015
+MGM[11]
+0.849
+1.000
+0.722
+0.987
+0.845
+hgraph2graph[13]
+1.000
+0.994
+0.940
+0.870
+0.485
+t-SMILES
+t-SMILES_J_mGPT2(Ours)
+>0.99
+0.781
+0.765
+0.913
+0.564
+t-SMILES_B_mGPT2(Ours)
+>0.99
+0.781
+0.769
+0.935
+0.575
+On ChEMBL, two t-SMILES based mGPT2 models outperform graph-based baseline methods
+Graph MCTS and hgraph2graph, while the performance is comparable to SOTA graph mode
+MGM. Compared to Graph MCTS, t-SMILES based mGPT2 models show lower novelty scores
+while having significantly higher KLD and FCD scores. It seems difficult for this graph-based
+baseline model to capture the properties of the dataset distributions as shown by their low KLD
+scores and almost-zero FCD scores, but it gets the highest novelty score.
+Compared to hgraph2graph which is an advanced model based on JTVAE and aims to solve larger
+molecular problems with motif-based method, t-SMILES based mGPT2 modes have higher KLD
+and FCD scores and lower uniqueness and novelty scores.
+Compared to SOTA graph-based model MGM, t-SMILES based mGPT2 models have higher score
+in validity, but lower scores in uniqueness, KLD and FCD and similar score in novelty.
+In the realm of sequence-based models, the proposed t-SMILES based mGPT2 models are
+competitive with the classical SMILES based models, and firstly, our models outperform all listed
+classical SMILES based models in validity. Compared with the GAN-based model (ORGAN), t-
+SMILES based mGPT2 models have significantly higher scores in validity, KLD and FCD and
+novelty scores, while having a slightly lower score in uniqueness. Compared with AAE, t-SMILES
+
+19
+
+modes get low unique and novelty scores and higher KLD and FCD scores. Similar to Graph
+MCTS, ORGAN also get an almost-zero FCD score. Our t-SMILES based approach results in
+lower scores across most of the metrics when compared to Transformer Reg, MolGPT, LSTM,
+VAE models besides validity score. In addition, statistics data shows that SMILES-mGPT2 model
+gets a slightly lower scores compared with Transformer Reg and MolGPT, which indicates that
+the t-SMILES mGPT2 models could be optimized to get high scores as well. Such an issue could
+be severed as a starting point for further research.
+Figure 5. Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and
+FractionCSP3) of random selected 10K molecules from generated molecules on ChEMBL data sets,
+hgraph2graph(hG2G)[13] and molecules generated by SMILES and t-SMILES based mGPT2 models respectively
+Compared with hgraph2graph in Figure 5, t-SMILES based models get slightly higher scores on
+BertzCT, logP, QED and TPSA, while having comparable scores on SAS, NPS, plogP and
+FractionCSP3. Compared with classical SMILES based mGPT2 model, t-SMILES based mGPT2
+models have lower scores on seven metrics besides QED.
+On ChEMBL, one possible reason of the proposed t-SMILES models getting a relatively little
+lower scores might be that t-SMILES based mGPT2 model is not hyper-parametrically optimized
+well.
+
+20
+
+3.4 Ablation Studies
+Compared to classical SMILES, only two more characters ‘&’ and ‘^’ are introduced for t-SMILES
+to encode multiscale molecular topological structure. Therefore, we adopt the same network
+structure to conduct ablation studies on one LSTM model and two Transformer-based models
+using three downstream datasets to investigate the performance of generative models. As shown
+in Table 5, different generative models get slightly different distributional results for the same
+dataset. However, compared to SMILES based models, t-SMILES based models get higher
+validity, uniqueness and novelty scores generally. This evidence also supports one of our claims
+that t-SMILES make it possible to generate molecules fragment-by-fragment using sequence-
+based models easily.
+Table 5 Distributional results on Zinc, QM9 and ChEMBL datasets. The results of LSTM[37], MolGPT[9] and
+mGPT2 are all trained and calculated by us.
+
+Dataset
+Model
+Valid(↑)
+Uniq(↑)
+Novel(↑)
+KLD(↑)
+FCD(↑)
+Zinc
+t-SMILES_J_LSTM
+>0.99
+0.782
+0.781
+0.944
+0.670
+t-SMILES_J_MolGPT
+>0.99
+0.783
+0.780
+0.984
+0.823
+t-SMILES_J_mGPT2
+>0.99
+0.775
+0.774
+0.970
+0.773
+QM9
+t-SMILES_J_LSTM
+>0.99
+0.736
+0.325
+0.966
+0.950
+t-SMILES_J_MolGPT
+>0.99
+0.746
+0.305
+0.972
+0.964
+t-SMILES_J_mGPT2
+>0.99
+0.720
+0.289
+0.976
+0.953
+ChEMBL
+t-SMILES_J_LSTM
+>0.99
+0.782
+0.781
+0.944
+0.670
+t-SMILES_J_MolGPT
+>0.99
+0.780
+0.762
+0.964
+0.695
+t-SMILES_J_mGPT2
+>0.99
+0.781
+0.765
+0.913
+0.564
+Zinc
+SMILES_LSTM
+0.850
+0.667
+0.666
+0.966
+0.831
+SMILES_MolGPT
+0.980
+0.770
+0.766
+0.989
+0.923
+SMILES_mGPT2
+0.853
+0.674
+0.672
+0.960
+0.830
+QM9
+SMILES_LSTM
+0.899
+0.690
+0.182
+0.992
+0.965
+SMILES_MolGPT
+0.965
+0.729
+0.150
+0.986
+0.907
+SMILES_mGPT2
+0.949
+0.728
+0.172
+0.992
+0.970
+ChEMBL
+SMILES_LSTM
+0.774
+0.609
+0.598
+0.943
+0.725
+SMILES_MolGPT
+0.976
+0.768
+0.711
+0.992
+0.807
+SMILES_mGPT2
+0.850
+0.670
+0.641
+0.972
+0.809
+4 Experiments
+In this section, we briefly introduce the proposed generation models which are used to evaluate t-
+SMILES. This is then followed by the overview of three commonly used public data sets. Finally,
+
+21
+
+the details of the experiments and the metrics used for the evaluation of different models are
+provided.
+4.1 Generation models and hyperparametric optimization
+Language modelling uses probability and statistical techniques to calculate the possibility of word
+sequences in sentences and then do estimation[62]. Originally, recurrent neural network (RNN) is
+designed to address this kind of sequence problems. To address the limitation of RNN that lead to
+gradient disappearance and explosion for long sequences, cyclic models such as LSTM and GRU
+are proposed. However, it has been shown that the power of LSTMs is insufficient when the
+information has ultra-long dependencies. In 2017, the attention-based Transformer architecture
+broke through the limitations of LSTM and quickly achieved SOTA scores on multiple metrics in
+NLP and computer vision. After that, the improved models such as GPT1-3[63,43,64]and
+BERT[65] are introduced to build pre-trained model on large datasets. Although these large-size
+models have achieved unprecedented performances, they come at high computational costs.
+Consequently, some of the recent NLP architectures have utilized concepts of transfer learning,
+pruning, quantization, and knowledge distillation to achieve moderate model sizes while keeping
+nearly similar performances as achieved by their predecessors. The recent developments in the
+NLP field have a great potential to be adapted to molecular de novo generation research. Bagal et
+al.[9] has proposed a Transformer-decoder model with 10 layers to molecular generation task and
+proved it works well.
+In this study, we mainly adopt Transformer-decoder based autoregressive generation models to
+evaluate our proposed t-SMILES. For the sake of data comparability, we select one model as the
+basis using a Bayesian optimizer SigOpt[66] to optimize the hyperparameters related to the neural
+network topology in ChEMBL dataset using classical SMILES as input. This selected model is a
+
+22
+
+5 layers mini version of GPT2(mGPT2) with 512 hidden layer and 8 attention headers. All other
+mGPT2 models in different dataset with either t-SMILES or classical SMILES use the same high-
+level neural network architecture. Finally, we train all models in detail using the Adam optimizer.
+4.2 Datasets
+We evaluate t-SMILES on three commonly used public data sets including subset of Zinc[32],
+QM9[33] and ChEMBL-21[34].
+The Zinc subset used in our experiments is the same as the subset in JTVAE which contains
+approximately 250K drug-like molecules extracted from the Zinc15 database that span a wide
+range of chemistry. The molecules in this Zinc subset are composed of 10 atoms including Br,
+C,Cl,F,H,I,N,O,P and S.
+QM9 dataset contains up to 9 heavy (non hydrogen) atoms. Molecules in the subset consist of 5
+atoms including C, F, N, H and O atoms. In all, this results in about 134k druglike organic
+molecules.
+For the sake of universality, we select a subset from ChEMBL-21 with SMILES character length
+less than 120. Apart from this very simple rule, no other preprocessing is done. Molecules in
+ChEMBL subset are composed of 11 atoms including B, Br, C, Cl, F, H, I, N, O, P and S.
+4.3 Evaluation Metrics
+Despite a large number of metrics have been proposed for the evaluation of generative models of
+molecules, there is little consensus on which should be used. It is often biased to use simple indexes
+to evaluate the performance of different models [67]. From the perspective of optimization, it could
+be considered that the task can be solved once the molecules with a high score of a certain index
+are generated, but these generated molecules may not be useful. Therefore, we use five benchmarks
+
+23
+
+proposed by GuacaMol: validity (↑), uniqueness (↑), novelty (↑), KL divergence (KLD) (↑)[35]and
+Fréchet ChemNet Distance(FCD)[36] score (↑) to evaluate the general performance of the model.
+GuacaMol calculate every score using 10K randomly sampled molecules. Validity measures the
+ratio of valid molecules which could be correctly parsed by RDKit[45]; Uniqueness is the
+percentage of valid molecules that are unique; Novelty is the percentage of valid unique molecules
+that are not included in the training data set; KLD[35] score compares the distribution of a variety
+physicochemical descriptors of the training set and generated molecules. FCD[36] score measures
+the proximity of the distribution of generated molecules to the distribution of the dataset molecules
+according to the Fréchet Distance in the hidden representation space of ChemNet[68], which is
+trained to predict the chemical properties of small molecules. The values of these five parameters
+are between 0 and 1. The larger the value, the ‘better’ the model. While KLD and FCD are both
+measure of the similarity between generated molecules and molecules from the training data set.
+They are highly correlated with each other and inversely correlated with novelty[11].
+In addition, we use logP, plogP[38], SAS[39], BertzCT[40], QED[41], TPSA, NPS[42], and
+FractionCSP3 to evaluate whether the generative models could effectively learn the physical and
+chemical properties of the molecules in the training set, thereby comprehensively evaluating the
+performance of the generative model from the perspective of distributed learning knowledge.
+• logP: The logarithm of the partition coefficient. If one of the solvents is water and the other is
+a nonpolar solvent, then logP is a measure of hydrophobicity.
+• Penalized logP(plogP)[38]is the logarithm of the partition ratio of solute between octanol and
+water subtracted by synthetic accessibility score and long cycles. It has a range of (−∞,∞)
+• Synthetic Accessibility score (SAS)[39]: Measurement of the difficulty of synthesizing a
+compound. It is a score between 0 (difficult) and 1(easy).
+
+24
+
+• BertzCT[40]: A topological index meant to quantify “complexity” of molecules. It consists of
+a sum of two terms, one representing the complexity of the bonding, the other representing the
+complexity of the distribution of heteroatoms.
+• Quantitative Estimate of Drug-likeness (QED)[41]: This quantifies drug-likeness by
+considering the main molecular properties. It ranges from 0 (all properties unfavorable) to 1
+(all properties favorable).
+• Topological Polar Surface Area (TPSA): The sum of surface area over all polar atoms. It
+measures the drug’s ability to permeate cell membranes. Molecules with a TPSA greater than
+140 Å2 tend to be poor in permeating cell membranes.
+• Natural Product-likeness score (NPS)[42]: Score of similarity degree of structural space
+covered by molecules and natural products. It has a range of (0,1)
+• FractionCSP3: The fraction of C atoms that are SP3 hybridized.
+In general, we randomly select 10K molecules from generated ones to calculate five metrics from
+GuacaMol[37] and the distribution of eight physiochemical properties.
+4.4 Details of baseline models
+We train classical SMILES based mGPT2 models as relatively baseline on three datasets, which
+share the same neural network architecture with t-SMILES. If there are some SMILS-based models
+that get better scores than this SMILES-mGPT2, it means that it’s possible to build t-SMILES
+based model to get better scores.
+In ablation studies, we retrain the LSTM[37] model with 3 layers of hidden size 768, dropout of
+0.2 using the Adam optimizer with learning rate 0.001, and MolGPT[9] model with 8 layers, 8
+
+25
+
+headers with hidden size 256 using AdamW optimizer with learning rate 0.001 for both SMILES
+and t-SMILES on all three datasets.
+We retrain JTVAE[12] on Zinc using the publicly available codebase provided by the paper’s
+authors and then generate 20K molecules.
+We calculate metrics based on the molecules provided by Fragment-base-DGM[27] on Zinc.
+We generate 20K molecules using the pre-trained model provided by hgraph2graph[13] on
+ChEMBL and calculate metrics for evaluation.
+We do not train the rest of the baseline models by ourselves. For QM9 and ChEMBL, we take
+some results of baseline models from Bagal et al.[9], Cao and Kipf [60], O. Mahmood et al.[11]
+and GuacaMol[37].
+Finally, we follow the open-source implementation of the GuacaMol[37] benchmark baselines to
+calculate metrics for all baseline and new designed models.
+5 Conclusion and Outlook
+One of the challenging problems in designing drug molecules is the vast chemical space to be
+explored. Fragment-based approaches identify a subset of chemical moieties responsible for key
+molecular recognitions early on and this allows scientists to devote their time in a much reduced
+and relevant chemical space.
+In general, if atoms are analogized to characters in natural language processing, fragments could
+be analogized to words or phrases as functional "units", then molecule could be a fragment based
+discrete structured data. To train a general-purpose string generative mode to learn the knowledge
+from discrete structured data, we need to prepare large amount of valid combinations of the
+structures, which is time consuming and will also face the challenge of insufficient effective data
+
+26
+
+practical in domains like target-oriented drug discovery. Our proposed t-SMILES uses SMILES
+instead of fragment dictionaries id, re-encodes fragment-based molecular tree through a full binary
+tree and generates molecular sequence with multiscale structural information, thus providing a new
+idea for fragment-based molecular design. In this way, powerful and rapidly developing sequence-
+based solutions can be applied to fragment-based molecular tasks in the same way as classical
+SMILES.
+In addition, compared with classical SMILES which is relatively difficult to be augmented, by
+using different fragmentation algorithms, the training dataset is easier and more efficiently to be
+expanded on t-SMILES to explore different chemical spaces without having to change anything
+of the architecture of generation model.
+Scalability Our proposed t-SMILES solution supports any effective substructures types and
+patterns as long as they could be used to obtain chemically valid molecular fragments and
+ultimately construct valid acyclic molecular trees. So that, with the invaluable accumulation of
+drug fragments by experienced chemists, it’s possible that the t-SMILES algorithm combines this
+experience with a powerful sequence based deep neural network model to help chemists better
+explore chemical space. If in some special cases, only one specific fragment space needs to be
+explored, and expansion is not required, then in t-SMILES algorithm, tree nodes could be easily
+encoded by dictionary id instead of SMILES. Or we could replace the newly generated fragments
+with the fragments from the training data set according to specified rules. The encoding logic and
+algorithm flow of t-SMILES remain unchanged.
+To be improved Our experiments show that how to segment, assemble molecular fragments and
+how to optimize molecular are also key steps controlling the quality of generated molecules.
+Therefore, this challenging topic could serve as a starting point for further research.
+
+27
+
+With the rapid development of NLP technology, Transform-based models have been proved to
+enable text generation with human-like capabilities if trained on enough data. SMILES-based
+models have proved that the sequence-based NLP models are powerful tools to generate molecules.
+Then, t-SMILES makes it easily to use sequence-based NLP models to generate molecules
+fragment-by-fragment. Therefore, the investigation of t-SMILES based generation models or other
+fragment-based tasks would be served as interesting topic for further study.
+List of abbreviations
+SOTA: State-of-the-art
+FBDD: Fragment-based drug discovery
+AMT: Acyclic Molecular Tree
+FBT: Full Binary Tree
+BFS: Breadth First Search
+DFS: Depth First Search
+SMILES: Simplified Molecular Input Line Entry Specification
+plogP: Penalized logP
+SAS: Synthetic Accessibility score
+QED: Quantitative Estimate of Drug-likeness
+NPS: Natural Product-likeness score
+FCD: ChemNet distance score
+KLD: KL divergence
+
+Conflicts of Interest
+The authors declare that they have no competing interests.
+
+28
+
+Author Contributions
+Ruqin Yu and Juanni Wu designed the study and manuscript. Juanni Wu conceived the project,
+constructed the algorithms and Python script, performed the experiments, informatics analyses,
+and wrote the draft manuscript. Tong Wang and Yue Chen participated in the discussion and
+experiments. Lijuan Tang and Hailong Wu participated in the discussion and funding acquisition.
+All authors contributed to manuscript editing, revising and have approved the final version of the
+manuscript.
+Acknowledgements
+This research was funded by the National Natural Science Foundation of China including No.
+21874040 and No. 22174036.
+Data availability
+The datasets used in this study are publicly available. They are referenced in the Datasets and
+Evaluation Metrics part of the Experiments section. The processed data used in this study can be
+found at: https://github.com/juanniwu/t-SMILES/
+Code availability
+Code, pretrained t-SMILES models, training and generation scripts for this work and lists of
+generated molecules can be found at: https://github.com/juanniwu/t-SMILES/
+The code of baseline models used to in this work are publicly available. We are gratefully
+acknowledging all authors of these researches.
+[1] MolGPT[9]: https://github.com/devalab/molgpt
+[2] MGM[11]:https://github.com/nyu-dl/dl4chem-mgm
+
+29
+
+[3] JTVAE[12]:https://github.com/wengon-jin/icml18-jtnn
+[4] hgraph2graph[13]: https://github.com/wengong-jin/hgraph2graph
+[5] FragDGM[27]: https://github.com/marcopodda/fragment-based-dgm
+[6] Guacamol[37]:https://github.com/BenevolentAI/guacamol_baselines
+[7] GPT2: https://github.com/samwisegamjeee/pytorch-transformers
+
+Reference
+1.
+Shuker SB, Hajduk P, Meadows R, Fesik S (1996) Discovering High-Affinity Ligands for
+Proteins: SAR by NMR. Science (80- ) 274:1531–1534.
+https://doi.org/10.1126/science.274.5292.1531
+2.
+Erlanson DA, Fesik SW, Hubbard RE, et al (2016) Twenty years on: The impact of
+fragments on drug discovery. Nat Rev Drug Discov 15:605–619.
+https://doi.org/10.1038/nrd.2016.109
+3.
+Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature. 521:436–444
+4.
+Butler K, Davies DW, Cartwright H, et al (2018) Machine learning for molecular and
+materials science. Nature, 2018, 559(7715): 547-555.
+5.
+Schneider P, Walters WP, Plowright A, et al (2019) Rethinking drug design in the
+artificial intelligence era. Nat Rev Drug Discov 19:353–364.
+https://doi.org/10.1038/s41573-019-0050-3
+6.
+Weininger D (1988) SMILES, a Chemical Language and Information System: 1:
+Introduction to Methodology and Encoding Rules. J Chem Inf Comput Sci 28:31–36.
+https://doi.org/10.1021/ci00057a005
+
+30
+
+7.
+Gómez-Bombarelli R, Wei JN, Duvenaud D, et al (2018) Automatic Chemical Design
+Using a Data-Driven Continuous Representation of Molecules. ACS Cent Sci 4:268–276.
+https://doi.org/10.1021/acscentsci.7b00572
+8.
+Guimaraes GL, Sánchez-Lengeling B, Farias PLC, Aspuru-Guzik A (2017) Objective-
+Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models.
+ArXiv:1705.10843, 2017
+9.
+Bagal V, Aggarwal R, Vinod PK, Priyakumar UD (2021) MolGPT: Molecular Generation
+Using a Transformer-Decoder Model. J Chem Inf Model. 2021, 62(9): 2064-2076
+10.
+Xia X, Hu J, Wang Y, et al (2019) Graph-based generative models for de Novo drug
+design. Drug Discov Today Technol 32–33:45–53.2019
+https://doi.org/10.1016/j.ddtec.2020.11.004
+11.
+Mahmood O, Mansimov E, Bonneau R, Cho K (2021) Masked graph modeling for
+molecule generation. Nat Commun 12:1–36. https://doi.org/10.1038/s41467-021-23415-2
+12.
+Jin W, Barzilay R, Jaakkola T (2018) Junction Tree Variational Autoencoder for
+Molecular Graph Generation. In: International conference on machine learning. PMLR, pp
+2323–2332
+13.
+Hu Y, Hu Y, Cen E (2021) Hierarchical Generation of Molecular Graphs using Structural
+Motifs. Proc - 2021 2nd Int Conf Big Data Artif Intell Softw Eng ICBASE 2021 543–546.
+https://doi.org/10.1109/ICBASE53849.2021.00106
+14.
+Jensen JH (2019) A graph-based genetic algorithm and generative model/Monte Carlo tree
+search for the exploration of chemical space. Chem Sci 10:3567–3572.
+https://doi.org/10.1039/c8sc05372c
+
+31
+
+15.
+Hoogeboom E, Satorras VG, Vignac C, Welling M (2022) Equivariant Diffusion for
+Molecule Generation in 3D. ArXiv.2022
+16.
+Bodnar C, Frasca F, Otter N, et al (2021) Weisfeiler and Lehman go cellular: CW
+networks. Adv Neural Inf Process Syst 34:2625–2640
+17.
+Bouritsas G, Frasca F, Zafeiriou S, Bronstein M (2020) Improving Graph Neural Network
+Expressivity via Subgraph Isomorphism Counting. ArXiv abs/2006.0:
+https://doi.org/10.1109/TPAMI.2022.3154319
+18.
+Bodnar C, Frasca F, Wang Y, et al (2021) Weisfeiler and lehman go topological: Message
+passing simplicial networks. In: International Conference on Machine Learning. PMLR,
+pp 1026–1037
+19.
+Wu Z, Pan S, Chen F, et al (2021) A Comprehensive Survey on Graph Neural Networks.
+IEEE Trans Neural Networks Learn Syst 32:4–24.
+https://doi.org/10.1109/TNNLS.2020.2978386
+20.
+Skinnider M, Stacey RG, Wishart D, Foster L (2021) Chemical language models enable
+navigation in sparsely populated chemical space. Nat Mach Intell 3:759–770.
+https://doi.org/10.1038/S42256-021-00368-1
+21.
+O’Boyle NM, Dalke A (2018) DeepSMILES: An adaptation of SMILES for use in
+machine-learning of chemical structures. ChemRxiv 1–9.
+https://doi.org/10.26434/CHEMRXIV.7097960.V1
+22.
+Krenn M, Häse F, Nigam A, et al (2019) Self-Referencing Embedded Strings (SELFIES):
+A 100% robust molecular string representation. Mach Learn Sci Technol 1:045024.
+https://doi.org/10.1088/2632-2153/aba947
+
+32
+
+23.
+Mitrovic J, McWilliams B, Walker J, et al (2020) Representation Learning via Invariant
+Causal Mechanisms. ICML 1–21
+24.
+Maziarz K, Jackson-Flux H, Cameron P, et al (2021) Learning to Extend Molecular
+Scaffolds with Structural Motifs. ArXiv abs/2103.0
+25.
+Zhang Z, Liu Q, Wang H, et al (2021) Motif-based Graph Self-Supervised Learning for
+Molecular Property Prediction. ArXiv abs/2110.0
+26.
+Yu Z, Gao H (2022) Molecular Representation Learning via Heterogeneous Motif Graph
+Neural Networks. ICML
+27.
+Podda M, Bacciu D, Micheli A (2020) A deep generative model for fragment-based
+molecule generation. In: International Conference on Artificial Intelligence and Statistics.
+PMLR, pp 2240–2250
+28.
+Jin W, Barzilay R, Jaakkola T (2020) Multi-Objective Molecule Generation using
+Interpretable Substructures. 37th Int Conf Mach Learn ICML 2020 PartF16814:4799–
+4809
+29.
+Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Adv Neural Inf
+Process Syst 2017-Decem:5999–6009
+30.
+Flam-Shepherd D, Zhu K, Aspuru-Guzik A (2022) Language models can learn complex
+molecular distributions. Nat Commun 13:1–10. https://doi.org/10.1038/s41467-022-
+30839-x
+31.
+Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and
+using “drug-like” chemical fragment spaces. ChemMedChem 3:1503–1507.
+https://doi.org/10.1002/cmdc.200800178
+
+33
+
+32.
+Sterling T, Irwin JJ (2015) ZINC 15 - Ligand Discovery for Everyone. J Chem Inf Model
+55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
+33.
+Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum chemistry
+structures and properties of 134 kilo molecules. Sci Data 1:1–7.
+https://doi.org/10.1038/sdata.2014.22
+34.
+Gaulton A, Bellis LJ, Bento AP, et al (2012) ChEMBL: A large-scale bioactivity database
+for drug discovery. Nucleic Acids Res 40:. https://doi.org/10.1093/NAR/GKR777
+35.
+Kullback S, Leibler RA (1951) On Information and Sufficiency. Ann Math Stat 22:79–86.
+https://doi.org/10.1214/AOMS/1177729694
+36.
+Preuer K, Renz P, Unterthiner T, et al (2018) Fréchet ChemNet Distance: A Metric for
+Generative Models for Molecules in Drug Discovery. J Chem Inf Model 58:1736–1741.
+https://doi.org/10.1021/acs.jcim.8b00234
+37.
+Brown N, Fiscato M, Segler MHS, Vaucher A (2019) GuacaMol: Benchmarking Models
+for De Novo Molecular Design. J Chem Inf Model 59 3:1096–1108.
+https://doi.org/10.1021/acs.jcim.8b00839
+38.
+Rajasekar AA, Raman K, Ravindran B (2020) Goal directed molecule generation using
+Monte Carlo Tree Search. ArXiv abs/2010.1:
+39.
+Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like
+molecules based on molecular complexity and fragment contributions. J Cheminform 1:.
+https://doi.org/10.1186/1758-2946-1-8
+40.
+Bertz SH (1981) The First General Index of Molecular Complexity. J Am Chem Soc
+103:3599–3601.
+
+34
+
+https://doi.org/10.1021/JA00402A071/ASSET/JA00402A071.FP.PNG_V03
+41.
+Bickerton GR, Paolini G V., Besnard J, et al (2012) Quantifying the chemical beauty of
+drugs. Nat Chem 4:90–98. https://doi.org/10.1038/NCHEM.1243
+42.
+Ertl P, Roggo S, Schuffenhauer A (2008) Natural product-likeness score and its
+application for prioritization of compound libraries. J Chem Inf Model 48:68–74.
+https://doi.org/10.1021/ci700286x
+43.
+Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei IS (2020) Language
+Models are Unsupervised Multitask Learners. OpenAI 1:1–7
+44.
+Lounkine E, Batista J, Bajorath J (2008) Random Molecular Fragment Methods in
+Computational Medicinal Chemistry. Curr Med Chem 15:2108–2121.
+https://doi.org/10.2174/092986708785747607
+45.
+Landrum G (2013) RDKit: A software suite for cheminformatics, computational
+chemistry, and predictive modeling. Greg Landrum
+46.
+Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP - Retrosynthetic
+Combinatorial Analysis Procedure: A powerful new technique for identifying privileged
+molecular fragments with useful applications in combinatorial chemistry. J Chem Inf
+Comput Sci 38:511–522. https://doi.org/10.1021/ci970429i
+47.
+Rarey M, Dixon JS (1998) Feature trees: A new molecular similarity measure based on
+tree matching. J Comput Aided Mol Des 12:471–490.
+https://doi.org/10.1023/A:1008068904628
+48.
+Clayden J, Greeves N, Warren SG (2001) Organic chemistry. Oxford University Press
+49.
+Takahashi Y, Sukekawa M, Sasaki S ichi (1992) Automatic Identification of Molecular
+
+35
+
+Similarity Using Reduced-Graph Representation of Chemical Structure. J Chem Inf
+Comput Sci 32:639–643. https://doi.org/10.1021/ci00010a009
+50.
+Rarey M, Stahl M (2001) Similarity searching in large combinatorial chemistry spaces. J
+Comput Aided Mol Des 15:497–520. https://doi.org/10.1023/A:1011144622059
+51.
+Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Springer
+52.
+Gao W, Mercado R, Coley CW (2021) Amortized Tree Generation for Bottom-up
+Synthesis Planning and Synthesizable Molecular Design. arXiv Prepr arXiv211006389
+53.
+Liu Y, Mathis C, Bajczyk MD, et al (2021) Exploring and mapping chemical space with
+molecular assembly trees. Sci Adv 7:. https://doi.org/10.1126/sciadv.abj2465
+54.
+Bradshaw J, Paige B, Kusner MJ, et al (2020) Barking up the right tree: an approach to
+search over molecule synthesis DAGs. ArXiv abs/2012.1:
+https://doi.org/10.17863/CAM.69874
+55.
+Nguyen DH, Tsuda K (2021) A generative model for molecule generation based on
+chemical reaction trees. 1–12
+56.
+Ertl P, Schuffenhauer A, Renner S (2011) Reduced Graphs and Their Applications in
+Chemoinformatics. Life Sci 672:588. https://doi.org/10.1007/978-1-60761-839-3
+57.
+Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques.
+MIT press
+58.
+Mordatch I (2018) MOG: MOLECULAR OUT-OF-DISTRIBUTION GENERATION
+WITH ENERGY-BASED MODELS. 1–6
+59.
+Simonovsky M, Komodakis N (2018) GraphVAE: Towards generation of small graphs
+using variational autoencoders. Lect Notes Comput Sci (including Subser Lect Notes Artif
+
+36
+
+Intell Lect Notes Bioinformatics) 11139 LNCS:412–422. https://doi.org/10.1007/978-3-
+030-01418-6_41
+60.
+De Cao N, Kipf T (2018) MolGAN: An implicit generative model for small molecular
+graphs. ArXiv
+61
+Makhzani A, Shlens J, Jaitly N, et al (2015) Adversarial Autoencoders. arXiv,
+abs/1511.05644 (2015).
+62.
+Singh S, Mahmood A (2021) The NLP Cookbook: Modern Recipes for Transformer
+Based Deep Learning Architectures. IEEE Access 9:68675–68702.
+https://doi.org/10.1109/ACCESS.2021.3077350
+63.
+Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving Language
+Understanding by Generative Pre-Training. Homol Homotopy Appl
+64.
+Brown TB, Mann B, Ryder N, et al (2020) Language models are few-shot learners. Adv
+Neural Inf Process Syst 2020-Decem:
+65.
+Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep
+bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conf
+North Am Chapter Assoc Comput Linguist Hum Lang Technol - Proc Conf 1:4171–4186
+66.
+Dewancker I, McCourt M, Clark S, et al (2016) Evaluation System for a Bayesian
+Optimization Service. arXiv Prepr
+67.
+Renz P, Van Rompaey D, Wegner JK, et al (2019) On failure modes in molecule
+generation and optimization. Drug Discov Today Technol 32–33:55–63.
+https://doi.org/10.1016/j.ddtec.2020.09.003
+68.
+Goh GB, Siegel C, Vishnu A, Hodas NO (2017) ChemNet: A Transferable and
+
+37
+
+Generalizable Deep Neural Network for Small-Molecule Property Prediction. arXiv
+abs/1712.0:1712.02734
+
diff --git a/ddAzT4oBgHgl3EQf3f4p/content/tmp_files/load_file.txt b/ddAzT4oBgHgl3EQf3f4p/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b87d7732cb433991b063f648109da7fa4ba29b56
--- /dev/null
+++ b/ddAzT4oBgHgl3EQf3f4p/content/tmp_files/load_file.txt
@@ -0,0 +1,886 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf,len=885
+page_content="1 Fragment-based t-SMILES for de novo molecular generation Juan-Ni Wu, Tong Wang, Yue Chen, Li-Juan Tang, Hai-Long Wu*, Ru-Qin Yu* State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China ABSTRACT At present, sequence-based and graph-based models are two of popular used molecular generative models." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this study, we introduce a general-purposed, fragment-based, hierarchical molecular representation named t-SMILES (tree-based SMILES) which describes molecules using a SMILES-type string obtained by doing breadth first search (BFS) on full binary molecular tree formed from fragmented molecular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The proposed t-SMILES combines the advantages of graph model paying more attention to molecular topology structure and language model possessing powerful learning ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Experiments with feature tree rooted JTVAE and chemical reaction- based BRICS molecular decomposing algorithms using sequence-based autoregressive generation models on three popular molecule datasets including Zinc, QM9 and ChEMBL datasets indicate that t-SMILES based models significantly outperform previously proposed fragment-based models and being competitive with classical SMILES based and graph-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Most importantly, we proposed a new perspective for fragment based molecular designing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Hence, SOTA powerful sequence-based solutions could be easily applied for fragment based molecular tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Keywords: Fragment-based drug discovery, Tree-based SMILES, Sequence-based De novo design 1 Introduction The starting point for molecular drug discovery programs is to identify initial ‘‘hit’’ compounds that bind to the target and have the potential for optimization of clinical candidates with the desired therapeutic effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Fragment-based drug discovery (FBDD) builds drugs from small molecular pieces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Since the pioneering work by Fesik and coworkers in 1996[1], FBDD has become a 2 recognized technology in the pharmaceutical industry and within academia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' More than 30 drug candidates derived from fragments have been reported to enter the clinic[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with atom- based techniques, the size of the search space is greatly reduced by the use of the fragment strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, fragments could provide fundamental insights into molecular recognition between proteins and ligands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' As a consequence, there is a higher probability of finding molecules that match the known targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The early FBDD was generally implemented based on fragment library using virtual screening and other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Although deep learning[3] has been widely used in molecular generation tasks[4,5] with fragment-based method as a research topic, the method of fragmenting molecules and coding molecular substructures in the form of a string-type sequence like SMILES[6] to finally generate molecules has not yet been fully explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In recent years, various deep generative models for the task of automatically generate molecules have been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Among deep learning-based methods, models with sequence representations [7-9] such as SMILES and 2D representations such as graphs [10-14] are most popular, while recently a plethora of models generating molecules in 3D[15] also starts to attract attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' As a more natural representation of molecules, generally speaking, graph neural network could generate 100% valid molecules as it can easily implement valence bond constraints and other verification rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' However, it has been shown that the expressive power of standard GNNs is bounded by Weisfeiler-Leman (WL) graph isomorphism phenomenon, the lack of ways to model long-range interactions and higher-order structures limited the use of GNNs[16], though some recent studies have proposed new methods such as subgraph isomorphism[17], message-passing simple networks[18] and many others techniques to improve the expressive power of standard GNNs[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 3 From the perspective of graph-based computational procedure, SMILES is a linear string obtained by performing depth first search (DFS) on molecular graph, which is more like human natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' When generating SMILES, the chemical graph is firstly trimmed to remove hydrogen atoms and cycles are broken turning them into a spanning tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Where cycles have been broken, numeric suffix labels are included to indicate the connected nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Parentheses are used to indicate points of branching on the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The generation algorithm of classical SMILES directly breaks down the most common ring structures in molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' As a consequence, some elements of SMILES syntax must occur in pairs with deep nesting to represent molecular topological structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Without discussing what chemical information could be learned, models trained on SMILES somehow generate part chemical invalid strings, particularly when trained on small datasets, which some have identified as a limitation need to be addressed[20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Two alternative solutions to the classical SMILES have been proposed[20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The DeepSMILES[21] aims to remove long term dependencies associated with the representation of rings and branches from the SMILES syntax to finally increase the proportion of valid molecules generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Self-referencing embedded strings (SELFIES)[22] are an entirely different molecular representation based on a Chomsky type-2 grammar, in which every SELFIES string specifies a valid chemical graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, almost all substructure (motif or fragment) based methods published to date rely on a substructure dictionary (motif vocabulary dictionary or fragment library) of candidate fragments[13,23-28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In molecules, a small group of fragments being used frequently, while most of fragments are rarely used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The differences among dictionary-based approaches arise solely from how the database is searched, or the contents of the database itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' As a result, these methods are inherently constrained to a set of predetermined rules or examples, limiting the exploration of chemical space and the learning ability of the models to a certain extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 4 Recently, attention-based Transformer[29] pre-trained models have been proved to enable text generation with human-like capabilities, including texts with specific properties such as style or subject, if trained on enough data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' With the rapid development of natural language processing(NLP) technology, and the increasing interest in larger and more complex molecules for treatment, language models may show a better ability to learn complex molecules than most graph generation models[30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Motivated by the success of NLP and the strategies of FBDD, we hope to adopt sequence-based models to handle fragment-based molecular generation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' So that, we propose a new molecule code t-SMILES based on fragmented molecule, which describes a molecule with classical SMILES-type string and takes language model as the main generation model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' t-SMILES based model combines the advantages of graph model paying attention to molecular topology structure and language model possessing powerful NLP learning ability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The t-SMILES method firstly generates an acyclic molecular tree (AMT) whose role is to represent fragmented molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Fragments in this tree are chemically valid substructures automatically extracted from molecules using a molecular disconnection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In the second stage, the AMT is transformed to a full binary tree (FBT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, breadth-first traversal of the FBT yields a t- SMILES string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Our proposed method is a general framework that does not limit the substructure scheme as long as it could be used to generate chemically valid fragments and construct valid AMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' t-SMILES string could be directly applied to sequence-based machine learning models without adjusting the model architecture in specific fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, due to the hierarchical representation of molecules, our model can clearly learn the high-level topology structural information of molecules while processing the detailed substructure information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Most importantly, by exploiting NLP 5 methods, t-SMILES based models opens an exploration door for fragment-based molecule tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Therefore, SOTA sequence-based language models could be easily used for fragment-based molecular tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' To evaluate the feasibility and adaptability of t-SMILES, we break down molecules using two different strategies BRICS[31] based and feature tree rooted JTVAE[12] based algorithms respectively, and then use Transformer-decoder based autoregressive models to generate molecules on three popular molecular datasets Zinc[32], QM9[33] and ChEMBL[34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, we compare t-SMILES based models with the most popular graph neural network models, SMILES- based models and other baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Five metrics including validity, uniqueness, novelty, KL divergence(KLD)[35]and Fréchet ChemNet distance score(FCD)[36] introduced in GuacaMol[37] benchmark are used to evaluate the general performance of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, we use logP, Penalized logP(plogP)[38], SA score(SAS)[39], BertzCT[40], QED[41], TPSA, NP Score(NPS)[42], and FractionCSP3 to evaluate whether the generation model could effectively learn the physical and chemical properties of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The t-SMILES construction philosophy and detailed comparative experiments show that the validity of generated molecules by t-SMILES models could be greater than 99%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' At the same time, using 5 layers mini GPT2[43](mGPT2) model, t-SMILES could well capture the physicochemical properties of molecules to maintain the similarity of the generated molecules to the distribution of dataset molecules, which make t-SMILES based models significantly outperforming previously proposed fragment-based models and being competitive with classical SMILES and graph-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, compared with classical SMILES which is relatively difficult to be 6 augmented[20], t-SMILES is easily to be expanded to explore different chemical spaces by using different molecular fragmentation algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Although current de novo molecular generation approaches have made impressive advances, the sequence-based perspectives create new opportunities to advance fragment-based molecular design tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The t-SMILES solution demonstrates that de novo generation of molecules from fragmented SMILES is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' This solution challenges the current research paradigm used for FBDD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=" 2 Methods In order to support t-SMILES algorithm, on the basis of the classic SMILES, we introduce a new character '&' to represent the end of the sub-branch, and another new character '^' to separate the two adjacent SMILES substructure segments." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this section, we firstly introduce the general idea of t-SMILES, and then introduce FBT and AMT which are the core parts of t-SMILES algorithm, followed with molecular fragmentation algorithms and finally discuss the molecular reconstruction strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1 t-SMILES Algorithm Overview In t-SMILES algorithm, molecular graph is firstly divided into chemical valid fragments (or substructures, clusters, subgroups, subgraphs) using a specified or more disconnection methods to obtain its AMT shown in the middle of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Following with the AMT being transformed into a FBT shown in the right of Figure 1, and finally the FBT is traversed in breadth first search (BFS) to obtain the t-SMILES string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' During the reconstruction, the reverse process is used, and finally the molecular fragments are assembled into the chemical correct molecular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 7 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Overview of t-SMILES algorithm: A molecular graph G is first decomposed into its reduced graph, where each colored node in the tree represents a substructure in the molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We then generate an AMT based on reduced graph, following with trasnformation of AMT to FBT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, the FBT is traversed in BFS to obtain its t-SMILES code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' To reconstruct the molecule, we first rebuild FBT from t-SMILES string, and then transform FBT to AMT, finally assemble nodes in the tree back to the original molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We follow below steps to build t-SMILES: Algorithm steps to construct t-SMILES from molecule Step 1: Break down molecule according to the selected molecular fragmentation algorith to build AMT;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Step 2: Convert the AMT to a FBT through algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Step 3: Traverse the FBT with BFS algorithm to get t-SMILES .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' BFS algorithm for the tree is a level order traversal of tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' For any node w in the BFS tree rooted at v, the tree path from v to w corresponds to a shortest path from v to w in the corresponding graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In the following, the terms nodes and subtrees are used for describing ATM and FBT, the terms fragment, substructure and subgroup are used to describe a part of the molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Subtrees, Acyclic molecular tree Full binary tree H2N CHe Decompose Decompose Decompose Reohstrue ecost H,S H3C CI CHa8 fragments, substructures or subgroups are always assumed to be connected parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' FBT has two children named left subtree and right subtree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2 Full Binary Tree Tree is the core concept in proposed t-SMILES algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' A tree is a special type of graph in which there is just a single path connecting each pair of vertices, that is, there are no cycles or rings within the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The root node of a tree is the starting point while the other vertices are either branch nodes or leaf nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' A FBT is a special type of binary tree in which every parent node/internal node has either two or no children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' As the most trivial tree, FBT’s structure is regular and easy to calculate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The reason for using FBT with some redundant nodes instead of complete binary tree or other trees is that its algorithm and structure being easy to learn by deep learning models, and the redundant nodes could be used as global marker nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=" In this work, the character '&'(tree node marked as '&’) marking the end of the tree branch in the FBT could be regarded as the global structural information describing the molecular topology in t-SMILES string." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' With chemical meaningful molecular fragmentation representation using FBT, t-SMILES effectively reduces the nesting depth of brackets in classical SMILES codes, weakens the long- term dependencies in sequences, and fundamentally reduces the difficulty of learning molecular information for using sequence-based deep learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In t-SMILES algorithm, except for the extra two characters ‘&’ and ‘^’, no more symbols are introduced, nor are recursion and other sophisticated calculations with high computational complexity introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='3 Molecule Decomposition The key and first step in t-SMILES is to decompose molecules into chemical valid fragments according to a specified disconnection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' According to Lounkine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [44], there exists four major strategies to fragment designing: knowledge-based, synthetically oriented, random, and systematic or hierarchical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The open-source molecular toolkit RDKit[45] has implemented some molecular fragmentation methods, such as RECAP[46] and BRICS[31] etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' RECAP and BRICS both disconnect a molecule to fragments on bonds based on chemical reaction rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In the RECAP method, molecules are cleaved at 11 chemical bond types that correspond to common chemical reactions, while BRICS attempts to improve RECAP for molecule fragmentation by using a more elaborate set of 16 rules and additional pre- and postfilters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this study, considering that the training datasets are mainly small molecules, and the molecular fragments segmented by BRICS are large or molecules could not be broken down, say on the subset of Zinc and ChEMBL, if necessary, we could further cut off the branch structures connected to ring structures on the basis of BRICS, and then cut off the bridge bonds between two rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' BRICS algorithm is not used on QM9 in this study as molecules are relatively rather small to be broken down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We generate reduced graph according to the cutting off logic of BRICS and then calculate its spanning tree as AMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Another molecular decomposition algorithm in our study could find its root in feature tree[47] published for molecular similarity algorithm by Rarey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' in 1998 and JTVAE[12] proposed later by Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Given a graph G, we first find all its simple cycles, and its edges not belonging to any cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Two simple rings are merged together if they have more than two overlapping atoms, as they constitute a specific structure called bridged compounds [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Each of those cycles or edges 10 is considered as a cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Next, a cluster graph is constructed by adding edges between all intersecting clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, we select one of its spanning trees as the AMT of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The t-SMILES algorithm is a general and fragment based molecular representation framework which does not limit the choice of molecular decomposing algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Different molecular segmentation algorithm may require different fragment assembling algorithm to complete the reconstruction of the generated molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='4 Acyclic Molecular Tree The idea of using tree as the base data structure of algorithms to address molecular related tasks has been long established in cheminformatics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In early study of molecular descriptor and similarity analysis, algorithms such as reduced graph[49], feature tree[47,50] not only had shown potential power to improve the similarity search but also being capable of retrieving more diverse active compounds than using Daylight fingerprints[51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='Some recent works[52-55] proposed to incorporate tree-based deep learning models into molecular generation and synthesis tasks as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' AMT being capable to describe the molecule at various levels of resolution, reduced graph[56] provides summary representations of chemical structures by collapsing groups of connected atoms into single nodes while preserving the topology of the original structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In reduced graph, the nodes represent groups of atoms and the edges represent the physical bonds between the groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Constructing reduced graph in this way forms a hierarchical graph, whose top layer being the molecular topology representing global information, and the bottom layer representing molecular fragments of detailed information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Groups of atoms are clustered into a node in the reduced graph approach, which could be done based on fragmentation algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The feature tree[47] is a representation of a molecule similar to a reduced graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The vertices of the feature tree are molecular fragments and edges connect vertices that represent fragments connected in the simple 11 molecular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In t-SMILES algorithm, the minimum spanning tree of the reduced graph and the concept of feature tree could be regarded as an AMT in the intermediate step, and then the next encoding algorithm is done based on this AMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Specific to our experiments, one approach is to generate AMT based on the tree logic fragmented by the BRICS algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Another method uses junction tree[57] introduced by Jin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' in JTVAE as the AMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In the case of a junction tree, each node in the tree corresponds to a subset (subgraph, group, cluster or clique) in the original graph and edge is used to connect two clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this study, nodes of Junction tree represent rings, bonds, bridged compounds, or singletons in the original molecular graph which are generated by fragment decomposing algorithm and edges represent the physical bonds between groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='5 Molecular Reconstruction and Optimization In the process of reconstructing the generated molecules from t-SMILES strings, we follow below steps: Algorithm steps to reconstruct molecule from t-SMILES Step 1: Decompose t-SMILES to reconstruct the FBT;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Step 2: Convert the FBT to the AMT;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Step 3: Assemble molecular fragments according to the selected algorithm to generate the correct molecular graph and then optimize it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' During reconstruction, one key problem is how to assemble the molecular fragments together to get a ‘chemical correct’ molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Ideally, the assemble algorithm should be selected to match the molecular fragmentation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this study, for efficiency reasons, we assemble molecular graph one neighborhood at a time, following the order in which the tree itself was generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In other words, we start from the root node of AMT and its neighbors, then we proceed to assemble 12 the neighbors and their associated clusters, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' If there is more than one candidate when assembling two pieces, we simply select one randomly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The overall performance of t-SMILES based generative model is controlled by two main factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The first one is whether t-SMILES can be learned and generated efficiently, and the other one is the reconstruction and molecular optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We evaluate the assembling algorithms by directly reconstructing molecules from training set data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Detailed metrics are shown in Table 1 and Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributional results by directly reconstructing molecules from the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Dataset Model Valid(↑) Uniq(↑) Novel(↑) KLD(↑) FCD(↑) Zinc JTVAE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='662 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='982 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='811 BRICS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='681 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='986 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='849 QM9 JTVAE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='741 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='245 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='968 ChEMBL JTVAE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='677 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='694 BRICS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='787 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='792 Data in Table 1 show that FCD scores on ChEMBL are the lowest ones while it is the highest on QM9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and FractionCSP3) of reconstructed molecules directly from Zinc training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Wasserstein distance is used in this figure and later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 13 From Figure 2, it can be seen that SAS and NPS are the two most variable metrics when reconstituting molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' If we output all possible assembly results, we could get a set of molecules which come from the same fragments group with different structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' From this point of view, generating new molecules with the desired properties (desired structure) rather than duplicating the training set is exactly the potential goal of the molecule generation task and not a negative aspect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' MOG[58] argued that the common pitfall of existing molecule generation models based on distributional learning is that the exploration is confined to the training distribution, and the generated molecules exhibit “the striking similarity” with known molecules included in the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Models that do not require training molecules are free from this problem, but they introduce other problems such as long training time, the sensitivity of balance between exploration and exploitation, large variance, and importantly, a lack of information about the known distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Based on t-SMILES, it’s possible to select appropriate optimization algorithm to control how the fragments are assembled, thereby controlling the properties of the output molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Molecule optimization is another challenging topic which is beyond the scope of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Using more complex optimization algorithms instead of stochastic method to select target molecule would be an option for further study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 3 Results and Discussion To evaluate t-SMILES and generatation models on different datasets, we firstly compare two t- SMILES based mGPT2 models with fragment-based baseline models and classical SMILES based mGPT2 models on Zinc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' And then we compare t-SMILES based models with SOTA SMILES and GNNs baseline models on QM9 and ChEMBL datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Metrics used in this study are still based on distributional learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1 Comparison with fragment-based and SMILES-based models on Zinc The validity, uniqueness, novelty, KLD and FCD scores on Zinc are summarized in Table 2 and the distributions of eight physiochemical properties are shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributional results on Zinc, we train or retrained all these five models, t-SMILES_J_mGPT2 breaks molecules using the same fragmentation algorithm as JTVAE[27], t-Smiles_B_mGPT2 breaks molecules using BRICS, mGP2 means five layers mini GPT2 model is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Model Valid(↑) Uniq(↑) Novel(↑) KLD(↑) FCD(↑) SMILES_mGPT2(Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='674 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='830 JTVAE[12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='997 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='989 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='989 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='439 FragDgm[27] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='422 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='835 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='303 t-SMILES_J_mGPT2(Ours) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='970 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='773 t-Smiles_B_mGPT2(Ours) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='783 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='782 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='963 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='790 Classical SMILES based mGPT2 model is trained for reference in this study to evaluate t-SMILES based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with t-SMILES models, classical SMILES based model gets lower novelty and uniqueness scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It means that t-SMILES-based models, with almost 100% validity and relatively high FCD scores, could improve novelty to explore a wider molecular space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' JTVAE[12] is one key baseline model for this study, which splits molecule using a tree base data struct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' So far as the validity is concerned, both t-SMILES and JTVAE models could generate near 100% valid molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' However, t-SMILES exhibits significantly higher KLD and FCD scores with reasonably slight lower novelty and uniqueness scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' t-SMILES based models significantly outperforms another fragment dictionary-based model, FragDgm[27], which splits molecule in a linear mode as a sequence of fragment IDs, on all five distribution parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Despite FragDgm adopting a segmented mode and based on distributional learning, its FCD value is the lowest among the five models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' When more and more validity of models can reach above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='9, it becomes more important to test whether the generative model can effectively learn the physicochemical properties of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 15 Detailed distributions of eight physiochemical properties logP, plogP, SAS, BertzCT, QED, TPSA, NPS and FractionCSP3 on Zin are presented in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and FractionCSP3) of random selected 10K molecules from Zinc data sets, JTVAE[12], FragDgm[27] and molecules generated by SMILES and two t-SMILES based mGPT2 models respectively It can be seen from Figures 3 that the distribution of t-SMILES and classical SMILES based mGPT2 models are closer to training data set on all eight physiochemical properties than other two fragment-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The distribution of generated molecules by FragDgm is far from the training set on six physiochemical properties except NPS and FractionCSP3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with JTVAE, besides TPSA and SAS which are comparable, two t-SMILES based mGPT2 models get significantly lower scores on all eight metrics, especially on FractionCSP3 and BertzCT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with FragDgm, except NPS which are comparable, t-SMILES based models get significantly favorite scores in other seven physicochemical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Considering novelty, the distribution of the eight physicochemical properties suggests that the generated molecules by t-SMILES-based models are better fit to the training dataset, which obviously implies relatively low novelty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 16 From the comparative analysis of these models, two t-SMILES based models in this study significantly outperform the fragment-based baseline models, and have similar performance to the SMILES-based model in physicochemical properties, but validity scores could be greater than 99%, that is to say, t-SMILES could be an effective molecular presentation for fragment based molecular tasks on Zinc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2 Comparison with baseline models on QM9 The validity, uniqueness, novelty, KLD and FCD scores on QM9 are summarized in Table 3 and the distributions of eight physiochemical properties are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributional results on QM9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The results of CharacterVAE[7], are taken from MolGAN[60], Transformer Reg[11], GraphVAE[59,11], MolGAN[60] and MGM[11] are taken from O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mahmood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [11] Input Model Valid(↑) Uniq(↑) Novel(↑) KLD(↑) FCD(↑) SMILES CharacterVAE[7,60] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='900 N/A N/A Transformer Reg[11] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='965 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='183 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='994 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='958 SMILES_mGPT2(ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='992 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='970 Graph GraphVAE[59,11] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='557 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='616 N/A N/A MolGAN[60] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='942 N/A N/A MGM[11] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='518 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='842 t-SMILES t-SMILES_J_mGPT2(ours) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='720 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='289 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='953 On QM9, the score of validity of t-SMILES based mGPT2 model could be greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99, which is comparable to the performance of GNNs and superior to the most SOTA SMILES based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' FCD score of t-SMILES based mGPT2 model is one of the highest ones in all seven models, which is greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' From the viewpoint of sequence-based models, our approach performs similarly to or better than existing SMILES based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Our approach shows higher validity and uniqueness scores compared to CharacterVAE, while having a reasonable lower novelty score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared to the Transformer Reg model, t-SMILES based model has higher score in novelty, lower score in uniqueness, and comparable scores in KLD and FCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 17 Compared to the graph-based models, our approach outperforms the existing baseline approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' t-SMILES based model has comparable uniqueness score compared with respect to GraphVAE, and significantly outperforms MolGAN, with reasonable lower novelty score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' KLD and FCD scores are not provided for these two models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' t-SMILES based mGPT2 model has good performance against SOTA method MGM in validity, KLD and FCD scores, while having slightly lower scores in uniqueness and novelty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and FractionCSP3) of random selected 10K molecules from generated molecules on QM9 data sets by SMILES and t- SMILES based mGPT2 models respectively In general, on QM9 data set, both mGPT2 models based on t-SMILES and classical SMILES get high KLD and FCD scores, all greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='95, that means they could maintain physiochemical similarity to the training distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' However, the novelty scores of the models are relatively low, which could be interpreted by that the generated molecules based on distributional learning exhibit “the striking similarity” with known molecules included in the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It also indicates that novelty is inversely correlated with the KLD and FCD scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='3 Comparison with baseline models on ChEMBL The validity, uniqueness, novelty, KLD and FCD scores on ChEMBL are summarized in Table 4 and the distributions of eight physiochemical properties are shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 18 Table 4 Distributional results on ChEMBL, The results of ORGAN[8], LSTM[37], CharacterVAE[7], AAE[61], Transformer Reg[11], Graph MCTS[14], and MGM[11] are taken from O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mahmood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [11] and Guacamol[37], the results of MolGPT is taken from Bagal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [9], the results of hgraph2graph[13] is calculated by us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Input Model Valid(↑) Uniq(↑) Novel(↑) KLD(↑) FCD(↑) SMILES ORGAN[8,37] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='379 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='841 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='687 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='267 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 LSTM[37] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='959 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='991 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='913 Character VAE[7,37] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='999 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='974 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='982 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='863 AAE[61,37] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='822 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='998 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='529 MolGPT[9] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='998 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='992 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='907 Transformer Reg[11] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='961 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='846 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='883 SMILES_mGPT2(Ours) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='809 Graph Graph MCTS[14, 37] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='994 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='522 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='015 MGM[11] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='849 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='722 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='987 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='845 hgraph2graph[13] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='994 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='485 t-SMILES t-SMILES_J_mGPT2(Ours) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='765 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='564 t-SMILES_B_mGPT2(Ours) >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='769 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='575 On ChEMBL, two t-SMILES based mGPT2 models outperform graph-based baseline methods Graph MCTS and hgraph2graph, while the performance is comparable to SOTA graph mode MGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared to Graph MCTS, t-SMILES based mGPT2 models show lower novelty scores while having significantly higher KLD and FCD scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It seems difficult for this graph-based baseline model to capture the properties of the dataset distributions as shown by their low KLD scores and almost-zero FCD scores, but it gets the highest novelty score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared to hgraph2graph which is an advanced model based on JTVAE and aims to solve larger molecular problems with motif-based method, t-SMILES based mGPT2 modes have higher KLD and FCD scores and lower uniqueness and novelty scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared to SOTA graph-based model MGM, t-SMILES based mGPT2 models have higher score in validity, but lower scores in uniqueness, KLD and FCD and similar score in novelty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In the realm of sequence-based models, the proposed t-SMILES based mGPT2 models are competitive with the classical SMILES based models, and firstly, our models outperform all listed classical SMILES based models in validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with the GAN-based model (ORGAN), t- SMILES based mGPT2 models have significantly higher scores in validity, KLD and FCD and novelty scores, while having a slightly lower score in uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with AAE, t-SMILES 19 modes get low unique and novelty scores and higher KLD and FCD scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Similar to Graph MCTS, ORGAN also get an almost-zero FCD score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Our t-SMILES based approach results in lower scores across most of the metrics when compared to Transformer Reg, MolGPT, LSTM, VAE models besides validity score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, statistics data shows that SMILES-mGPT2 model gets a slightly lower scores compared with Transformer Reg and MolGPT, which indicates that the t-SMILES mGPT2 models could be optimized to get high scores as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Such an issue could be severed as a starting point for further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Distributions of physiochemical properties (logP, plogP, SAS, BertzCT, QED, TPSA, NPS and FractionCSP3) of random selected 10K molecules from generated molecules on ChEMBL data sets, hgraph2graph(hG2G)[13] and molecules generated by SMILES and t-SMILES based mGPT2 models respectively Compared with hgraph2graph in Figure 5, t-SMILES based models get slightly higher scores on BertzCT, logP, QED and TPSA, while having comparable scores on SAS, NPS, plogP and FractionCSP3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Compared with classical SMILES based mGPT2 model, t-SMILES based mGPT2 models have lower scores on seven metrics besides QED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' On ChEMBL, one possible reason of the proposed t-SMILES models getting a relatively little lower scores might be that t-SMILES based mGPT2 model is not hyper-parametrically optimized well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='4 Ablation Studies Compared to classical SMILES, only two more characters ‘&’ and ‘^’ are introduced for t-SMILES to encode multiscale molecular topological structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Therefore, we adopt the same network structure to conduct ablation studies on one LSTM model and two Transformer-based models using three downstream datasets to investigate the performance of generative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' As shown in Table 5, different generative models get slightly different distributional results for the same dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' However, compared to SMILES based models, t-SMILES based models get higher validity, uniqueness and novelty scores generally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' This evidence also supports one of our claims that t-SMILES make it possible to generate molecules fragment-by-fragment using sequence- based models easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Table 5 Distributional results on Zinc, QM9 and ChEMBL datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The results of LSTM[37], MolGPT[9] and mGPT2 are all trained and calculated by us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Dataset Model Valid(↑) Uniq(↑) Novel(↑) KLD(↑) FCD(↑) Zinc t-SMILES_J_LSTM >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='782 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='944 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='670 t-SMILES_J_MolGPT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='783 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='984 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='823 t-SMILES_J_mGPT2 >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='970 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='773 QM9 t-SMILES_J_LSTM >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='736 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='950 t-SMILES_J_MolGPT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='746 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='305 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='964 t-SMILES_J_mGPT2 >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='720 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='289 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='953 ChEMBL t-SMILES_J_LSTM >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='782 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='944 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='670 t-SMILES_J_MolGPT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='762 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='964 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='695 t-SMILES_J_mGPT2 >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='765 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='564 Zinc SMILES_LSTM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='666 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='831 SMILES_MolGPT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='980 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='770 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='989 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='923 SMILES_mGPT2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='674 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='960 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='830 QM9 SMILES_LSTM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='690 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='182 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='992 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='965 SMILES_MolGPT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='965 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='986 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='907 SMILES_mGPT2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='949 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='992 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='970 ChEMBL SMILES_LSTM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='609 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='598 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='943 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='725 SMILES_MolGPT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='976 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='768 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='711 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='992 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='807 SMILES_mGPT2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='972 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='809 4 Experiments In this section, we briefly introduce the proposed generation models which are used to evaluate t- SMILES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' This is then followed by the overview of three commonly used public data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, 21 the details of the experiments and the metrics used for the evaluation of different models are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1 Generation models and hyperparametric optimization Language modelling uses probability and statistical techniques to calculate the possibility of word sequences in sentences and then do estimation[62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Originally, recurrent neural network (RNN) is designed to address this kind of sequence problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' To address the limitation of RNN that lead to gradient disappearance and explosion for long sequences, cyclic models such as LSTM and GRU are proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' However, it has been shown that the power of LSTMs is insufficient when the information has ultra-long dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In 2017, the attention-based Transformer architecture broke through the limitations of LSTM and quickly achieved SOTA scores on multiple metrics in NLP and computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' After that, the improved models such as GPT1-3[63,43,64]and BERT[65] are introduced to build pre-trained model on large datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Although these large-size models have achieved unprecedented performances, they come at high computational costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Consequently, some of the recent NLP architectures have utilized concepts of transfer learning, pruning, quantization, and knowledge distillation to achieve moderate model sizes while keeping nearly similar performances as achieved by their predecessors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The recent developments in the NLP field have a great potential to be adapted to molecular de novo generation research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bagal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [9] has proposed a Transformer-decoder model with 10 layers to molecular generation task and proved it works well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this study, we mainly adopt Transformer-decoder based autoregressive generation models to evaluate our proposed t-SMILES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' For the sake of data comparability, we select one model as the basis using a Bayesian optimizer SigOpt[66] to optimize the hyperparameters related to the neural network topology in ChEMBL dataset using classical SMILES as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' This selected model is a 22 5 layers mini version of GPT2(mGPT2) with 512 hidden layer and 8 attention headers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' All other mGPT2 models in different dataset with either t-SMILES or classical SMILES use the same high- level neural network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, we train all models in detail using the Adam optimizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2 Datasets We evaluate t-SMILES on three commonly used public data sets including subset of Zinc[32], QM9[33] and ChEMBL-21[34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The Zinc subset used in our experiments is the same as the subset in JTVAE which contains approximately 250K drug-like molecules extracted from the Zinc15 database that span a wide range of chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The molecules in this Zinc subset are composed of 10 atoms including Br, C,Cl,F,H,I,N,O,P and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' QM9 dataset contains up to 9 heavy (non hydrogen) atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Molecules in the subset consist of 5 atoms including C, F, N, H and O atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In all, this results in about 134k druglike organic molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' For the sake of universality, we select a subset from ChEMBL-21 with SMILES character length less than 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Apart from this very simple rule, no other preprocessing is done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Molecules in ChEMBL subset are composed of 11 atoms including B, Br, C, Cl, F, H, I, N, O, P and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='3 Evaluation Metrics Despite a large number of metrics have been proposed for the evaluation of generative models of molecules, there is little consensus on which should be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It is often biased to use simple indexes to evaluate the performance of different models [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' From the perspective of optimization, it could be considered that the task can be solved once the molecules with a high score of a certain index are generated, but these generated molecules may not be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Therefore, we use five benchmarks 23 proposed by GuacaMol: validity (↑), uniqueness (↑), novelty (↑), KL divergence (KLD) (↑)[35]and Fréchet ChemNet Distance(FCD)[36] score (↑) to evaluate the general performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' GuacaMol calculate every score using 10K randomly sampled molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Validity measures the ratio of valid molecules which could be correctly parsed by RDKit[45];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Uniqueness is the percentage of valid molecules that are unique;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Novelty is the percentage of valid unique molecules that are not included in the training data set;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' KLD[35] score compares the distribution of a variety physicochemical descriptors of the training set and generated molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' FCD[36] score measures the proximity of the distribution of generated molecules to the distribution of the dataset molecules according to the Fréchet Distance in the hidden representation space of ChemNet[68], which is trained to predict the chemical properties of small molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The values of these five parameters are between 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The larger the value, the ‘better’ the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' While KLD and FCD are both measure of the similarity between generated molecules and molecules from the training data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' They are highly correlated with each other and inversely correlated with novelty[11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, we use logP, plogP[38], SAS[39], BertzCT[40], QED[41], TPSA, NPS[42], and FractionCSP3 to evaluate whether the generative models could effectively learn the physical and chemical properties of the molecules in the training set, thereby comprehensively evaluating the performance of the generative model from the perspective of distributed learning knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' logP: The logarithm of the partition coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' If one of the solvents is water and the other is a nonpolar solvent, then logP is a measure of hydrophobicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Penalized logP(plogP)[38]is the logarithm of the partition ratio of solute between octanol and water subtracted by synthetic accessibility score and long cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It has a range of (−∞,∞) Synthetic Accessibility score (SAS)[39]: Measurement of the difficulty of synthesizing a compound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It is a score between 0 (difficult) and 1(easy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 24 BertzCT[40]: A topological index meant to quantify “complexity” of molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It consists of a sum of two terms, one representing the complexity of the bonding, the other representing the complexity of the distribution of heteroatoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Quantitative Estimate of Drug-likeness (QED)[41]: This quantifies drug-likeness by considering the main molecular properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It ranges from 0 (all properties unfavorable) to 1 (all properties favorable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Topological Polar Surface Area (TPSA): The sum of surface area over all polar atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It measures the drug’s ability to permeate cell membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Molecules with a TPSA greater than 140 Å2 tend to be poor in permeating cell membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Natural Product-likeness score (NPS)[42]: Score of similarity degree of structural space covered by molecules and natural products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' It has a range of (0,1) FractionCSP3: The fraction of C atoms that are SP3 hybridized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In general, we randomly select 10K molecules from generated ones to calculate five metrics from GuacaMol[37] and the distribution of eight physiochemical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='4 Details of baseline models We train classical SMILES based mGPT2 models as relatively baseline on three datasets, which share the same neural network architecture with t-SMILES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' If there are some SMILS-based models that get better scores than this SMILES-mGPT2, it means that it’s possible to build t-SMILES based model to get better scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In ablation studies, we retrain the LSTM[37] model with 3 layers of hidden size 768, dropout of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2 using the Adam optimizer with learning rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='001, and MolGPT[9] model with 8 layers, 8 25 headers with hidden size 256 using AdamW optimizer with learning rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='001 for both SMILES and t-SMILES on all three datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We retrain JTVAE[12] on Zinc using the publicly available codebase provided by the paper’s authors and then generate 20K molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We calculate metrics based on the molecules provided by Fragment-base-DGM[27] on Zinc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We generate 20K molecules using the pre-trained model provided by hgraph2graph[13] on ChEMBL and calculate metrics for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We do not train the rest of the baseline models by ourselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' For QM9 and ChEMBL, we take some results of baseline models from Bagal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [9], Cao and Kipf [60], O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mahmood et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [11] and GuacaMol[37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Finally, we follow the open-source implementation of the GuacaMol[37] benchmark baselines to calculate metrics for all baseline and new designed models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 5 Conclusion and Outlook One of the challenging problems in designing drug molecules is the vast chemical space to be explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Fragment-based approaches identify a subset of chemical moieties responsible for key molecular recognitions early on and this allows scientists to devote their time in a much reduced and relevant chemical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In general, if atoms are analogized to characters in natural language processing, fragments could be analogized to words or phrases as functional "units", then molecule could be a fragment based discrete structured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' To train a general-purpose string generative mode to learn the knowledge from discrete structured data, we need to prepare large amount of valid combinations of the structures, which is time consuming and will also face the challenge of insufficient effective data 26 practical in domains like target-oriented drug discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Our proposed t-SMILES uses SMILES instead of fragment dictionaries id, re-encodes fragment-based molecular tree through a full binary tree and generates molecular sequence with multiscale structural information, thus providing a new idea for fragment-based molecular design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In this way, powerful and rapidly developing sequence- based solutions can be applied to fragment-based molecular tasks in the same way as classical SMILES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In addition, compared with classical SMILES which is relatively difficult to be augmented, by using different fragmentation algorithms, the training dataset is easier and more efficiently to be expanded on t-SMILES to explore different chemical spaces without having to change anything of the architecture of generation model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Scalability Our proposed t-SMILES solution supports any effective substructures types and patterns as long as they could be used to obtain chemically valid molecular fragments and ultimately construct valid acyclic molecular trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' So that, with the invaluable accumulation of drug fragments by experienced chemists, it’s possible that the t-SMILES algorithm combines this experience with a powerful sequence based deep neural network model to help chemists better explore chemical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' If in some special cases, only one specific fragment space needs to be explored, and expansion is not required, then in t-SMILES algorithm, tree nodes could be easily encoded by dictionary id instead of SMILES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Or we could replace the newly generated fragments with the fragments from the training data set according to specified rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The encoding logic and algorithm flow of t-SMILES remain unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' To be improved Our experiments show that how to segment, assemble molecular fragments and how to optimize molecular are also key steps controlling the quality of generated molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Therefore, this challenging topic could serve as a starting point for further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 27 With the rapid development of NLP technology, Transform-based models have been proved to enable text generation with human-like capabilities if trained on enough data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' SMILES-based models have proved that the sequence-based NLP models are powerful tools to generate molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Then, t-SMILES makes it easily to use sequence-based NLP models to generate molecules fragment-by-fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Therefore, the investigation of t-SMILES based generation models or other fragment-based tasks would be served as interesting topic for further study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='List of abbreviations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='SOTA: State-of-the-art ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='FBDD: Fragment-based drug discovery ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='AMT: Acyclic Molecular Tree ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='FBT: Full Binary Tree ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='BFS: Breadth First Search ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='DFS: Depth First Search ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='SMILES: Simplified Molecular Input Line Entry Specification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='plogP: Penalized logP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='SAS: Synthetic Accessibility score ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='QED: Quantitative Estimate of Drug-likeness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='NPS: Natural Product-likeness score ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='FCD: ChemNet distance score ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='KLD: KL divergence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='Conflicts of Interest ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='The authors declare that they have no competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 28 Author Contributions Ruqin Yu and Juanni Wu designed the study and manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Juanni Wu conceived the project, constructed the algorithms and Python script, performed the experiments, informatics analyses, and wrote the draft manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Tong Wang and Yue Chen participated in the discussion and experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Lijuan Tang and Hailong Wu participated in the discussion and funding acquisition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' All authors contributed to manuscript editing, revising and have approved the final version of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Acknowledgements This research was funded by the National Natural Science Foundation of China including No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 21874040 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 22174036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Data availability The datasets used in this study are publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' They are referenced in the Datasets and Evaluation Metrics part of the Experiments section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' The processed data used in this study can be found at: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/juanniwu/t-SMILES/ Code availability Code, pretrained t-SMILES models, training and generation scripts for this work and lists of generated molecules can be found at: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/juanniwu/t-SMILES/ The code of baseline models used to in this work are publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' We are gratefully acknowledging all authors of these researches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' [1] MolGPT[9]: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/devalab/molgpt [2] MGM[11]:https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/nyu-dl/dl4chem-mgm 29 [3] JTVAE[12]:https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/wengon-jin/icml18-jtnn [4] hgraph2graph[13]: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/wengong-jin/hgraph2graph [5] FragDGM[27]: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/marcopodda/fragment-based-dgm [6] Guacamol[37]:https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/BenevolentAI/guacamol_baselines [7] GPT2: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='com/samwisegamjeee/pytorch-transformers Reference 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Shuker SB, Hajduk P, Meadows R, Fesik S (1996) Discovering High-Affinity Ligands for Proteins: SAR by NMR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Science (80- ) 274:1531–1534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='5292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1531 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Erlanson DA, Fesik SW, Hubbard RE, et al (2016) Twenty years on: The impact of fragments on drug discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nat Rev Drug Discov 15:605–619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/nrd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='109 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Lecun Y, Bengio Y, Hinton G (2015) Deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 521:436–444 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Butler K, Davies DW, Cartwright H, et al (2018) Machine learning for molecular and materials science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nature, 2018, 559(7715): 547-555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Schneider P, Walters WP, Plowright A, et al (2019) Rethinking drug design in the artificial intelligence era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nat Rev Drug Discov 19:353–364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/s41573-019-0050-3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Weininger D (1988) SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Comput Sci 28:31–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/ci00057a005 30 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Gómez-Bombarelli R, Wei JN, Duvenaud D, et al (2018) Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ACS Cent Sci 4:268–276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/acscentsci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='7b00572 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Guimaraes GL, Sánchez-Lengeling B, Farias PLC, Aspuru-Guzik A (2017) Objective- Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='10843, 2017 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bagal V, Aggarwal R, Vinod PK, Priyakumar UD (2021) MolGPT: Molecular Generation Using a Transformer-Decoder Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 2021, 62(9): 2064-2076 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Xia X, Hu J, Wang Y, et al (2019) Graph-based generative models for de Novo drug design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Drug Discov Today Technol 32–33:45–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2019 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='ddtec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='004 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mahmood O, Mansimov E, Bonneau R, Cho K (2021) Masked graph modeling for molecule generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nat Commun 12:1–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/s41467-021-23415-2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Jin W, Barzilay R, Jaakkola T (2018) Junction Tree Variational Autoencoder for Molecular Graph Generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In: International conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' PMLR, pp 2323–2332 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Hu Y, Hu Y, Cen E (2021) Hierarchical Generation of Molecular Graphs using Structural Motifs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Proc - 2021 2nd Int Conf Big Data Artif Intell Softw Eng ICBASE 2021 543–546.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1109/ICBASE53849.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='00106 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Jensen JH (2019) A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Chem Sci 10:3567–3572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1039/c8sc05372c 31 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Hoogeboom E, Satorras VG, Vignac C, Welling M (2022) Equivariant Diffusion for Molecule Generation in 3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2022 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bodnar C, Frasca F, Otter N, et al (2021) Weisfeiler and Lehman go cellular: CW networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Adv Neural Inf Process Syst 34:2625–2640 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bouritsas G, Frasca F, Zafeiriou S, Bronstein M (2020) Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv abs/2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='0: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1109/TPAMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='3154319 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bodnar C, Frasca F, Wang Y, et al (2021) Weisfeiler and lehman go topological: Message passing simplicial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In: International Conference on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' PMLR, pp 1026–1037 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Wu Z, Pan S, Chen F, et al (2021) A Comprehensive Survey on Graph Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' IEEE Trans Neural Networks Learn Syst 32:4–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1109/TNNLS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2978386 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Skinnider M, Stacey RG, Wishart D, Foster L (2021) Chemical language models enable navigation in sparsely populated chemical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nat Mach Intell 3:759–770.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/S42256-021-00368-1 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' O’Boyle NM, Dalke A (2018) DeepSMILES: An adaptation of SMILES for use in machine-learning of chemical structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ChemRxiv 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='26434/CHEMRXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='7097960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='V1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Krenn M, Häse F, Nigam A, et al (2019) Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mach Learn Sci Technol 1:045024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1088/2632-2153/aba947 32 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mitrovic J, McWilliams B, Walker J, et al (2020) Representation Learning via Invariant Causal Mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ICML 1–21 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Maziarz K, Jackson-Flux H, Cameron P, et al (2021) Learning to Extend Molecular Scaffolds with Structural Motifs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv abs/2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Zhang Z, Liu Q, Wang H, et al (2021) Motif-based Graph Self-Supervised Learning for Molecular Property Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv abs/2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Yu Z, Gao H (2022) Molecular Representation Learning via Heterogeneous Motif Graph Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ICML 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Podda M, Bacciu D, Micheli A (2020) A deep generative model for fragment-based molecule generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' In: International Conference on Artificial Intelligence and Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' PMLR, pp 2240–2250 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Jin W, Barzilay R, Jaakkola T (2020) Multi-Objective Molecule Generation using Interpretable Substructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 37th Int Conf Mach Learn ICML 2020 PartF16814:4799– 4809 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Adv Neural Inf Process Syst 2017-Decem:5999–6009 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Flam-Shepherd D, Zhu K, Aspuru-Guzik A (2022) Language models can learn complex molecular distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nat Commun 13:1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/s41467-022- 30839-x 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and using “drug-like” chemical fragment spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ChemMedChem 3:1503–1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1002/cmdc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='200800178 33 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Sterling T, Irwin JJ (2015) ZINC 15 - Ligand Discovery for Everyone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Model 55:2324–2337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='jcim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='5b00559 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum chemistry structures and properties of 134 kilo molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Sci Data 1:1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/sdata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='22 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Gaulton A, Bellis LJ, Bento AP, et al (2012) ChEMBL: A large-scale bioactivity database for drug discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nucleic Acids Res 40:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1093/NAR/GKR777 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Kullback S, Leibler RA (1951) On Information and Sufficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Ann Math Stat 22:79–86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1214/AOMS/1177729694 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Preuer K, Renz P, Unterthiner T, et al (2018) Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Model 58:1736–1741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='jcim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='8b00234 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Brown N, Fiscato M, Segler MHS, Vaucher A (2019) GuacaMol: Benchmarking Models for De Novo Molecular Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Model 59 3:1096–1108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='jcim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='8b00839 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Rajasekar AA, Raman K, Ravindran B (2020) Goal directed molecule generation using Monte Carlo Tree Search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv abs/2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1: 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Cheminform 1:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1186/1758-2946-1-8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bertz SH (1981) The First General Index of Molecular Complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Am Chem Soc 103:3599–3601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 34 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/JA00402A071/ASSET/JA00402A071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='FP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='PNG_V03 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bickerton GR, Paolini G V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=', Besnard J, et al (2012) Quantifying the chemical beauty of drugs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nat Chem 4:90–98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1038/NCHEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1243 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Ertl P, Roggo S, Schuffenhauer A (2008) Natural product-likeness score and its application for prioritization of compound libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Model 48:68–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/ci700286x 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei IS (2020) Language Models are Unsupervised Multitask Learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' OpenAI 1:1–7 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Lounkine E, Batista J, Bajorath J (2008) Random Molecular Fragment Methods in Computational Medicinal Chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Curr Med Chem 15:2108–2121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2174/092986708785747607 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Landrum G (2013) RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Greg Landrum 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP - Retrosynthetic Combinatorial Analysis Procedure: A powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Comput Sci 38:511–522.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/ci970429i 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Rarey M, Dixon JS (1998) Feature trees: A new molecular similarity measure based on tree matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Comput Aided Mol Des 12:471–490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1023/A:1008068904628 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Clayden J, Greeves N, Warren SG (2001) Organic chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Oxford University Press 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Takahashi Y, Sukekawa M, Sasaki S ichi (1992) Automatic Identification of Molecular 35 Similarity Using Reduced-Graph Representation of Chemical Structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Chem Inf Comput Sci 32:639–643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1021/ci00010a009 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Rarey M, Stahl M (2001) Similarity searching in large combinatorial chemistry spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' J Comput Aided Mol Des 15:497–520.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1023/A:1011144622059 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Leach AR, Gillet VJ (2007) An introduction to chemoinformatics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Springer 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Gao W, Mercado R, Coley CW (2021) Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' arXiv Prepr arXiv211006389 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Liu Y, Mathis C, Bajczyk MD, et al (2021) Exploring and mapping chemical space with molecular assembly trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Sci Adv 7:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1126/sciadv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='abj2465 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Bradshaw J, Paige B, Kusner MJ, et al (2020) Barking up the right tree: an approach to search over molecule synthesis DAGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv abs/2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='17863/CAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='69874 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Nguyen DH, Tsuda K (2021) A generative model for molecule generation based on chemical reaction trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 1–12 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Ertl P, Schuffenhauer A, Renner S (2011) Reduced Graphs and Their Applications in Chemoinformatics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Life Sci 672:588.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1007/978-1-60761-839-3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' MIT press 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Mordatch I (2018) MOG: MOLECULAR OUT-OF-DISTRIBUTION GENERATION WITH ENERGY-BASED MODELS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 1–6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Simonovsky M, Komodakis N (2018) GraphVAE: Towards generation of small graphs using variational autoencoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Lect Notes Comput Sci (including Subser Lect Notes Artif 36 Intell Lect Notes Bioinformatics) 11139 LNCS:412–422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1007/978-3- 030-01418-6_41 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' De Cao N, Kipf T (2018) MolGAN: An implicit generative model for small molecular graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' ArXiv 61 Makhzani A, Shlens J, Jaitly N, et al (2015) Adversarial Autoencoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' arXiv, abs/1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='05644 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Singh S, Mahmood A (2021) The NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' IEEE Access 9:68675–68702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1109/ACCESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='3077350 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving Language Understanding by Generative Pre-Training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Homol Homotopy Appl 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Brown TB, Mann B, Ryder N, et al (2020) Language models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Adv Neural Inf Process Syst 2020-Decem: 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' NAACL HLT 2019 - 2019 Conf North Am Chapter Assoc Comput Linguist Hum Lang Technol - Proc Conf 1:4171–4186 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Dewancker I, McCourt M, Clark S, et al (2016) Evaluation System for a Bayesian Optimization Service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' arXiv Prepr 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Renz P, Van Rompaey D, Wegner JK, et al (2019) On failure modes in molecule generation and optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Drug Discov Today Technol 32–33:55–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='ddtec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='003 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' Goh GB, Siegel C, Vishnu A, Hodas NO (2017) ChemNet: A Transferable and 37 Generalizable Deep Neural Network for Small-Molecule Property Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content=' arXiv abs/1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='0:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
+page_content='02734' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ddAzT4oBgHgl3EQf3f4p/content/2301.01829v1.pdf'}
diff --git a/dtA0T4oBgHgl3EQfG__M/content/tmp_files/2301.02056v1.pdf.txt b/dtA0T4oBgHgl3EQfG__M/content/tmp_files/2301.02056v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0a3e5c0599391064c8b9f607c87a37f9a4797907
--- /dev/null
+++ b/dtA0T4oBgHgl3EQfG__M/content/tmp_files/2301.02056v1.pdf.txt
@@ -0,0 +1,2187 @@
+Benchmarking universal quantum gates via channel spectrum
+Yanwu Gu,1, 2, ∗ Wei-Feng Zhuang,1 Xudan Chai,1, 2 and Dong E. Liu2, 1, 3, †
+1Beijing Academy of Quantum Information Sciences, Beijing 100193, China
+2State Key Laboratory of Low Dimensional Quantum Physics,
+Department of Physics, Tsinghua University, Beijing, 100084, China
+3Frontier Science Center for Quantum Information, Beijing 100184, China
+(Dated: January 6, 2023)
+Noise remains the major obstacle to scalable quantum computation. Quantum benchmarking
+methods provide key information on noise properties for quantum processor calibration, quantum
+error mitigation, and quantum error correction. However, current benchmarking methods, such as
+randomized benchmarking or its variants, can only evaluate the performance of some particular
+subsets of quantum gates.
+Moreover, due to the randomization inherent in these protocols, the
+figure of merit they actually measure is not the fidelity of individual target gate but the average
+of the fidelities of some random circuit cycles incorporating the target. To overcome these limits,
+we propose the channel spectrum benchmarking (CSB), a method to infer the noise properties of
+the target quantum process, such as process fidelity, from the eigenvalues of its noisy quantum
+channel. The noisy eigenvalues can be estimated by the circuits of control-free phase estimation
+in a state-preparation and measurement error resilient manner. Our method can benchmark uni-
+versal quantum processes and is scalable to many-qubit quantum processes. We demonstrate the
+performance of our method using simulated experiments, including the single-qubit Pauli rotations,
+2-qubit fermionic simulation gates, a 3-qubit cycle implementing the Toffoli gate, and a 10-qubit
+cycle implementing the Ising Hamiltonian evolution operator. Our method will pave an important
+way for the development of cleaner and large-scale quantum devices.
+I.
+INTRODUCTION
+The performance of today’s quantum computers is
+severely affected by noise and the limited number of
+qubits [1]. Quantum error correction and fault-tolerant
+schemes may someday unlock the full potential of quan-
+tum computation [2–7], but more precise gate opera-
+tions must be developed beforehand.
+It is crucial and
+necessary to obtain information on the gate noise char-
+acteristics and their performance benchmarks in order
+to calibrate and optimize these gate operations [8–10].
+Nonetheless, there is a trade-off between noise informa-
+tion obtained and the resource overhead for their testing
+experiments [11]. Process tomography [12, 13] is a typical
+technique for reconstructing the matrix representation of
+a quantum process, with which the full information of
+noise is at hand. However, process tomography has expo-
+nentially increasing experimental costs and suffers from
+state-preparation and measurement (SPAM) errors. Al-
+though its variant, the gate-set tomography [14–18], can
+handle SPAM errors, the experimental costs cannot be
+reduced.
+In reality, for probing noise strength or noise types
+of a gate, the full reconstruction of the noisy process is
+not necessary [19, 20]. For instance, the average gate fi-
+delity, that measures the average performance of the im-
+plemented noisy gates, can be efficiently obtained by ran-
+domized benchmarking (RB) [21–26]. The RB protocol
+is insensitive to SPAM errors and its variants [8, 27–29]
+∗ guyw@baqis.ac.cn
+† dongeliu@mail.tsinghua.edu.cn
+can be applied to benchmark devices with larger system
+size. It is important to note that protocols like random-
+ized benchmarking do not directly measure the fidelity of
+individual quantum gates, but rather the average fidelity
+of some random circuit fragments [30–32]. To determine
+the fidelity of a specific gate, additional techniques such
+as interleaved RB [33] or modifying the sampling distri-
+bution of random circuits [27, 29] must be used, which
+can induce more experimental cost and is prone to a large
+systematic uncertainty [34]. Additionally, to simplify the
+functional form of measured signals in RB methods, it
+is often necessary to use group twirling, which limits the
+types of gates that can be benchmarked.
+As a conse-
+quence, the RB protocols based on random Clifford cir-
+cuits can only be applied to benchmark the Clifford gates;
+however, the important non-Clifford gates have to rely
+on more complicated random circuit sets in which their
+native gates belong to other groups instead of Clifford
+group, e.g. dihedral groups [35, 36].
+In order to overcome the two limitations, we intro-
+duce channel spectrum benchmarking (CSB), a scalable
+protocol to estimate the individual noise properties of
+a universal quantum process from the noisy eigenvalues
+of its corresponding quantum channel. We estimate the
+noisy eigenvalues by control-free phase estimation cir-
+cuits [40–44] that is robust to SPAM errors. With a re-
+lationship between ideal and noisy eigenvalues, which is
+derived from the first order perturbation theory [45], we
+can infer the diagonal entries of the matrix of pure noise
+process under a basis composed of the eigen-operators
+of the ideal gate. From these diagonal entries, we can
+estimate some noise properties, for examples, process in-
+fidelity, stochastic infidelity (a quantity similar to uni-
+arXiv:2301.02056v1 [quant-ph] 5 Jan 2023
+
+2
+Gates
+Fidelity
+Conditions for Scalablity
+CSB
+universal
+• General case: target
+• Strong unitary error and RC:
+target + twirling gates
+• eigen-decomposition of target gate is possible
+• initial state preparation is efficient
+Clifford RB [22, 23] Clifford
+ave. among Clifford gates
+not scalable due to compilation issue [27]
+Mirror RB [29]
+Clifford
+ave. among rand. cycles
+only applicable to Clifford gates
+CB [28]
+U m = I
+target + twirling gates
+target gate is Clifford
+XEB [8]
+universal
+ave. among rand. cycles
+circuits can be classically simulated
+TABLE I. Comparison with other leading benchmarking protocols. We compare our CSB protocol with other benchmarking
+protocols under three aspects: (1) what gates they can benchmark; (2) what type of fidelity they actually measure; (3) under
+what conditions they can be scalable to many-qubit systems. Usually, our CSB measures the fidelity of the target gate. But
+for strong unitary error, we need to perform randomized compiling (RC) [37, 38] with twirling gates to convert unitary error
+to stochastic error in order to obtain a better performance. When benchmarking a circuit fragment, the twirling gates can be
+merged into target gate, our method still measures the individual fidelity of the target as shown in Sec. IV C and IV D. But,
+when benchmarking native gates, the twirling gates can not be merged (see Appendix. C). In this case, our method measures the
+average fidelity of the compositions of the target gate and twirling gates. Our CSB is scalable as long as eigen-decomposition of
+target is possible and the number of single and two-qubit gates in the circuits preparing initial states scales at most polynomial
+with the number of qubits. Clifford RB and Mirror RB use random Clifford circuits to simplify noise and thus only apply to
+Clifford gates. The fidelity they actually measure is the average of fidelities among random Clifford cycles. Mirror RB can
+be scalable but Clifford RB cannot. For cycle benchmarking (CB), the gate or cycle U that can be benchmarked must satisfy
+U m = I where m is an integer. CB uses Pauli twirling to simplify noise and thus measures the fidelity of composition of target
+and twirling gates. It needs to compute the output Pauli operator of ideal circuits, which is possible only when the target
+gate is Clifford for large systems. XEB uses random universal circuits to simplify noise, so it measures the average of fidelities
+among some random circuit cycles generated with a same sampling distribution. It requires the classical simulation of circuits
+to obtain the ideal probabilities of sampled bit strings, which limits its scalability. Additionally, our CSB and XEB can directly
+measure how close the noise is to unitary error, while RB methods need extra procedures to measure this information [39].
+tarity [39]) and over-rotation angle. We demonstrate the
+performance of our method with some simulated exper-
+iments, 1-qubit Pauli rotaional gates, 2-qubit fermionic-
+simulation (Fsim) gates, 3-qubit circuit fragment imple-
+menting Toffoli gate, and 10-qubit circuit fragment im-
+plementing Ising evolution operator. In all experiments,
+our CSB method can accurately estimate the noise prop-
+erties. To get a more clear picture of the performance
+of our CSB, in Table I, we compare our CSB protocol
+with other leading benchmarking protocols under three
+aspects: (1) what gates they can benchmark; (2) what
+type of fidelity they actually measure; (3) under what
+conditions they can be scalable to many-qubit systems.
+II.
+QUANTUM CHANNEL, FIDELITY, AND
+CHANNEL SPECTRUM
+In this section, we provide some preliminaries about
+quantum channel, the fidelity of implemented noisy gates,
+and the relationship between the fidelity of a gate and the
+channel spectrum of its noisy implementation.
+Consider a quantum gate U acting on a d-dimensional
+space with eigenvalues eiλa and eigenstates |φa⟩ such that
+U|φa⟩ = eiλa|φa⟩. Because of noise, the actual imple-
+mentation of the gate should be denoted as a quantum
+channel �U = EU, or say completely-positive and trace-
+preserving (CPTP) map [12], where U is the correspond-
+ing quantum channel of the ideal gate U and E is a pure
+noise process.
+Quantum channels are usually denoted
+by a set of Kraus operators, for example, U = UρU †
+and E(ρ) = �
+k EkρE†
+k where ρ is an arbitrary operator.
+Quantum channels can also be represented by a matrix
+on the basis of d2 dimensional operator space, for ex-
+ample, Pauli operators. We will use the two representa-
+tions interchangeably and the same symbols for both the
+abstract quantum channels and their matrix representa-
+tions.
+One can use some fidelity measures to assess the per-
+formance of the implemented noisy gate �U, such as the
+process fidelity (or referred to as entanglement fidelity)
+which is defined as
+F(U, �U) = tr
+�
+I ⊗ U(|α⟩⟨α|) I ⊗ �U(|α⟩⟨α|)
+�
+(1)
+where |α⟩ =
+1
+√
+d
+�d
+i=1 |i⟩⊗|i⟩ is the maximally entangled
+state. The process fidelity is closely related to another
+ubiquitous measure, the average gate fidelity [46]
+Fave(U, �U) =
+ˆ
+dψ tr
+�
+U(|ψ⟩⟨ψ|) �U(|ψ⟩⟨ψ|)
+�
+= dF + 1
+d + 1 .
+(2)
+It has been proven that the process fidelity only depends
+on the trace of the pure noise E [46], that is
+F(U, �U) =
+tr
+�
+U† �U
+�
+d2
+= tr{E}
+d2
+.
+(3)
+Current benchmarking methods, for example, random-
+ized benchmarking and its variants, measure the infor-
+mation of tr{E} on a basis composed of Pauli operators.
+
+3
+In these protocols, Clifford twirling or Pauli twirling are
+used to simplify the noise matrix E, that is, only diag-
+onal entries of E on the Pauli basis are kept, such that
+the relevant figure of merit can be extracted easily from
+measured signals. The twirling operations need to be per-
+formed by running some random circuits. This causes RB
+type of methods only apply to some subsets of quantum
+gates and only measure the average fidelity of a set of
+gates.
+Distracting from the Pauli operator basis, one can note
+that the ideal channel U also induces a natural opera-
+tor basis composed of its eigen-operators |φa⟩⟨φb| (corre-
+sponding eigenvalues are ei(λa−λb)). If we can measure
+the diagonal entries of noise E in this basis, we can also
+estimate the gate fidelity. This can be achievable by a
+relationship between the eigenvalues of noisy gate �U and
+those of ideal gate U [45], that is
+gabeiλab ≈ ei(λa−λb)tr
+�
+(|φa⟩⟨φb|)†E(|φa⟩⟨φb|)
+�
+(4)
+where gab and λab is the amplitude and phase of an eigen-
+value of �U with eigen-operator Mab, that is �U(Mab) =
+gabeiλabMab.
+For the spectrum of quantum channels,
+there are some useful properties [47]: (1) the eigenval-
+ues lie in the unit disc of complex plain, i.e., 0 ≤ gab ≤ 1
+(2) the eigenvalues and eigen-operators always come in
+conjugate pairs, i.e., for every eigenvalue gabeiλab we have
+�U(M †
+ab) = gabe−iλabM †
+ab.
+The relationship Eq. (4) is derived from the first order
+perturbation theory [45] (also see Appendix A). Thus a
+diagonal entry of E in the basis composed of |φa⟩⟨φb| can
+be obtained
+Eab,ab ≈ gabeiλabe−i(λa−λb) .
+(5)
+As long as we can measure the noisy eigenvalues gabeiλab
+of �U and identify their corresponding ideal eigenvalues
+ei(λa−λb), we obtain the diagonal entries of Eab,ab by
+Eq. (5).
+If we can uniformly at random sample some
+noisy eigenvalues gabeiλab or equivalently Eab,ab, then we
+can use the average of these samples to obtain an esti-
+mate of process fidelity F = tr{E}/d2. Because all the
+diagonal entries have amplitude smaller than 1, we can
+infer the number of samples needed from the Hoeffding’s
+inequality [48], that is, let X1, · · · , XK be independent
+bounded random variables with ai ≤ Xi ≤ bi for all
+i ∈ [K] and denote their average X = 1
+K
+�
+i Xi, then for
+any ϵ > 0 it holds that
+P
+������X − 1
+K
+�
+i
+E(Xi)
+����� ≥ ϵ
+�
+≤ 2 exp
+�
+−
+−2K2ϵ2
+�
+i(bi − ai)2
+�
+.
+(6)
+This inequality bounds the probability that the empirical
+average X deviates from the average of expectation val-
+ues of these random variables with a distance ϵ. Assume
+we have K samples of diagonal entries Eab,ab sampled
+from a uniform distribution, so the expectation value of
+each sampled diagonal entry is E(Eab,ab) = tr{E}
+d2
+= F.
+We take the average value of these samples as our esti-
+mate of the process fidelity, that is ˆF =
+1
+K
+�
+ab Eab,ab.
+Thus, the needed number of diagonal entries Eab,ab to
+estimate the process fidelity within an error ϵ with the
+probability 1 − δ, or say P(| ˆF − F| ≤ ϵ) = 1 − δ, is
+K = log(2/δ)
+2ϵ2
+,
+(7)
+which is independent of the system dimension.
+Besides the process fidelity, the noisy eigenvalues can
+also be used to infer the noise strength of stochastic noise
+only.
+Since the amplitudes of eigenvalues are only af-
+fected by stochastic noise and not changed under unitary
+noise, we can use those amplitudes to define a quantity
+referred as stochastic fidelity
+Fsto =
+�
+1
+d2
+�
+ab
+g2
+ab .
+(8)
+to assess the impact of stochastic noise only. As shown
+in Ref. [49], the stochastic fidelity is related to the uni-
+tarity defined in Ref. [39]. Both quantities measure how
+close the noise E is to a unitary channel and are use-
+ful for error-budget. We emphasize that, compared to
+the stochastic errors, the unitary errors may cause more
+subtle and complicated problems in quantum error cor-
+rection and fault-tolerant quantum computation [50–54].
+As a result, differentiating between stochastic and uni-
+tary errors can assist us in recognizing their respective
+impacts, and in addition, can help to calibrate and tailor
+the error types.
+We can also estimate the actual values of some uni-
+tary parameters of a native gate, from the phases λab
+of noisy eigenvalues. This is achieved by identifying the
+relationship between these unitary parameters and some
+eigenvalues of the gate, which is similar as the robust
+phase estimation [40] and Floquet calibration [43].
+III.
+CHANNEL SPECTRUM BENCHMARKING
+In this section, we present a practical procedure, which
+we refer as Channel Spectrum Benchmarking (CSB), to
+measure the individual fidelity of a universal process U
+no matter it’s a native gate or a circuit fragment.
+The estimate of fidelity of the gate U requires a uni-
+form sample of diagonal entries of E, which is identical to
+a uniform sample of noisy eigenvalues gabeiλab. The noisy
+eigenvalues can be estimated by the circuits of control-
+free phase estimation depicted in Fig. 1. In these circuits,
+we first prepare a state ρ, then repeatedly apply the tar-
+get gate U for L times, and finally measure the expecta-
+tion value of an operator O. We denote the noisy version
+of ρ and O as �ρ and �O. The noisy eigen-operators Mab
+of �U can be used as a basis (not necessarily orthonormal)
+to expand the initial state �ρ, that is
+�ρ =
+�
+ab
+tr
+�
+G†
+ab�ρ
+�
+Mab
+(9)
+
+4
+|0⟩
+𝑈𝑠
+𝑈
+𝐿
+prepare 𝑐𝑎 𝜙𝑎 + 𝑐𝑏|𝜙𝑏⟩
+measurement
+𝑈
+𝑈𝑠
+†
+Estimate noisy eigenvalues with
+matrix pencil method and compute
+diagonal entries by Eq. (5) .
+1. Uniformly at random sample 𝐾
+pairs of eigenstates 𝜙𝑎 , 𝜙𝑏 }.
+2. For each pair of eigenstates,
+do step 3.
+4. Compute process fidelity and
+stochastic fidelity by Eq. (13) and
+Eq. (14) .
+|0⟩
+𝑈
+𝐿
+prepare 𝑐𝑎 𝜙𝑎 + 𝑐𝑏|𝜙𝑏⟩
+measurement
+|0⟩
+𝑈
+𝐿
+prepare 𝑐𝑎 𝜙𝑎 + 𝑐𝑏|𝜙𝑏⟩
+measurement
+3. For each length 𝐿 in [0, 𝐿max],
+run benchmarking circuits.
+FIG. 1. The procedures of channel spectrum benchmarking. The benchmarking circuits are composed of three parts: the first
+part Us prepares the initial state |ψ⟩ = ca|φa⟩ + cb|φb⟩, which is a superposition of two eigenstates of target gate U; then the
+target gate U is repeated L times, where L is an integer in [0, Lmax]; finally, the operator O = |ψ⟩⟨ψ| is measured.
+where Gab is the corresponding left eigen-operator of Mab
+and they satisfy tr
+�
+G†
+abMa′b′
+�
+= δab,a′b′. Then we can
+show that the expectation value of O at length L under
+noise is
+�
+�O
+�
+L = tr
+�
+�O �UL(�ρ)
+�
+=
+�
+ab
+tr
+�
+�OMab
+�
+tr
+�
+G†
+ab�ρ
+�
+(gabeiλab)L
+(10)
+This is a damping oscillating function. From the time
+series data
+�
+�O
+�
+L at different depth L, we can extract the
+noisy eigenvalues via signal processing methods, such as
+matrix pencil method [55–57].
+By selecting an appropriate initial state ρ and measure-
+ment operator O, we can control the number of eigenval-
+ues presented in the resulting signals. The presence of
+too many different eigenvalues in the signals can pose
+some difficulties. These include: (1) it may be difficult
+to extract the eigenvalues from the measured signals, as
+this may require more data or equivalently a larger depth
+L (which is limited by the damping rate gab); (2) it can
+be harder to identify the corresponding ideal eigenvalue
+for a given noisy counterpart; (3) it can be difficult to
+maintain a uniform sample of the diagonal entries of E.
+To address these issues, we prepare the initial state and
+measurement operator as follows:
+|ψ⟩ = ca|φa⟩ + cb|φb⟩
+ρ = O = |ψ⟩⟨ψ|
+(11)
+which are superposition of two eigenvectors only.
+For
+this type of initial state and measurement operator,
+only the corresponding noisy eigenvalues of these ideal
+eigen-operators
+{|φa⟩⟨φb|, |φb⟩⟨φa|, |φa⟩⟨φa|, |φb⟩⟨φb|}
+(presented in the selected initial state) possess a major
+portion in the measured signal.
+Thus, as illustrated in Fig. 1, we propose the proce-
+dures of channel spectrum benchmarking below.
+1. Uniformly at random sample K pairs of eigenstates
+{|φa⟩, |φb⟩} of target unitary operator U.
+2. For each pair of eigenstates, do step 3, i.e., running
+phase estimation circuits.
+3. In phase estimation circuits, one first prepares the
+initial state |ψ⟩ = ca|φa⟩ + cb|φb⟩, then repeatedly
+apply the target gate U for L times where L takes
+successive integers in [0, Lmax] , finally measure the
+probability ⟨O⟩L of obtaining O = |ψ⟩⟨ψ|.
+3a. Estimate the noisy eigenvalues gabeiλab (am-
+plitudes and phases) from the time series data
+�
+�O
+�
+L by matrix pencil method.
+
+5
+3b. Identify the ideal counterparts of the mea-
+sured noisy eigenvalues.
+3c. Compute the diagonal entries of E by Eq. (5).
+4. Compute the process fidelity by Eq. (13) and
+stochastic fidelity by Eq. (14).
+Step 1 ensures the estimated diagonal entries are uni-
+form samples. We require the amplitude of two coeffi-
+cients ca, cb are comparable and the initial state |ψ⟩ can
+be efficiently prepared.
+In the simulated experiments,
+we always choose ca = cb =
+1
+√
+2. The number of initial
+states K is independent of system dimension d and only
+depends on desired precision referring to Eq. (7), which
+is guaranteed by Hoeffding’s inequality. So our method
+has the potential scalable to many-qubit systems.
+In the phase estimation circuits of step 3, we choose
+the length L from [0, Lmax]. The maximum length Lmax
+and the number of initial states K determine the total
+number of benchmarking circuits Nc = K(Lmax + 1).
+When combined with the number of shots Ns needed to
+run each circuit to collect statistic, the total experimen-
+tal cost is NcNs = K(Lmax + 1)Ns. The choice of Lmax
+and Ns also depend only on desired precision and not on
+the system dimension. Previous work has shown that the
+uncertainty of estimated eigenvalues is inversely propor-
+tional to the length L, the so-called Heisenberg scaling
+[40, 43]. Therefore, if higher precision is desired, it is gen-
+erally better to increase Lmax rather than the number of
+shots Ns per circuit, before the signals are completely
+degraded.
+In step 3a, the noisy eigenvalues are estimated using
+the matrix pencil method [55–57]. This method is well-
+suited for this task because it involves a singular value
+decomposition of the data Hankel matrix, which allows
+us to keep only the components with non-trivial singu-
+lar values, i.e., those caused by noisy eigenvalues of ideal
+eigen-operators shown in initial state. This process can
+reduce sampling error and eliminate unwanted eigenval-
+ues due to SPAM errors or the effect of degenerate eigen-
+values (for both the phase and the amplitude) of ideal
+channel. In our simulated experiments, when using an
+initial state with unequal phases λa, λb, the number of
+obtained noisy eigenvalues is at most four.
+In step 3b, our goal is to match the obtained noisy
+eigenvalues from matrix pencil method to their corre-
+sponding ideal counterparts such that we can compute
+the diagonal entries of E by Eq. (5). For a initial state
+whose two eigenstates |φa⟩, |φb⟩ have equal eigenvalues,
+this process is not needed because all ideal channel eigen-
+values are 1. However, for a initial state with unequal
+two eigenvalues, there are three ideal channel eigenvalues
+{ei(λa−λb), e−i(λa−λb), 1}. To match the obtained noisy
+eigenvalues to the three ideal ones, we calculate the dis-
+tance between the phases of the estimated noisy eigen-
+values and the ideal phase λa − λb of the eigenvalue of
+the particular eigen-operator |φa⟩⟨φb|. The noisy eigen-
+value with the smallest distance is chosen as the noisy
+counterpart of the ideal eigenvalue ei(λa−λb). Similarly,
+the noisy counterpart of e−i(λa−λb) is also determined.
+The remaining noisy eigenvalues are considered as the
+counterparts of the ideal eigenvalue 1.
+This criterion
+assumes that the magnitude of the actual phase error
+δλ = λab − (λa − λb) is small, more precisely we require
+|δλ| ≪ |λa − λb|.
+(12)
+After calculating the diagonal entries using Eq. (5),
+we divide them into two categories based on the ideal
+eigenvalue of the associated basis |φa⟩⟨φb|: one is the
+trivial operator subspace with λa = λb (or say the opera-
+tor subspace spanned by the eigen-operators with eigen-
+value 1), the other is the non-trivial operator subspace
+with λa ̸= λb.
+Because the dimension of trivial sub-
+space dts is usually very different from the dimension of
+non-trivial subspace dns, the probability of sampling an
+entry in the two subspace are very different. For exam-
+ple, for a many-qubit gate U with non-degenerate oper-
+ator spectrum, the trivial subspace is spanned by all the
+eigen-operators with the form |φa⟩⟨φa|, whose dimension
+dts = d is much smaller than dns = d2 − d. If there are
+some degeneracy in the spectrum of the operator U, that
+is λa = λb for two different eigenstates |φa⟩, |φb⟩, the
+trivial subspace can include the eigen-operators of the
+form |φa⟩⟨φb|. In step 1, we assign the same probability
+for the two subspaces. Therefore, we need to separately
+compute the average of the diagonal entries in the triv-
+ial and non-trivial subspaces. Finally, the estimator of
+the process fidelity is obtained by combining these two
+averages, that is
+ˆF = dts Eab,ab|λa=λb + dns Eab,ab|λa̸=λb
+d2
+(13)
+where Eab,ab is the average value of sampled entries. Sim-
+ilarly, the estimator for stochastic fidelity is
+ˆFsto =
+�
+dts g2
+ab,ab|λa=λb + dns g2
+ab,ab|λa̸=λb
+d2
+.
+(14)
+IV.
+SIMULATED EXPERIMENTS
+In this section, we perform simulated experiments to
+show the performance of our CSB protocol, including
+single-qubit Pauli rotation gates, two-qubit Fermionic
+simulation (Fsim) gates, three-qubit Toffoli gate, and
+an Ising Hamiltonian evolution operator with 10 qubits.
+Throughout this work, each benchmarking circuit is re-
+peated Ns = 104 times to collect enough statistic.
+A.
+Single-qubit Pauli rotation gates
+Here we measure the fidelity of single-qubit rotation
+gates, that is
+Rσ(θ) = e−i θ
+2 σ
+(15)
+
+6
+10
+3
+10
+2
+10
+1
+Probability of stochastic error p
+10
+3
+10
+2
+Infidelity
+(a)
+Act. proc. infidelity
+Act. stoch. infidelity
+Est. proc. infidelity
+Est. stoch. infidelity
+0.02
+0.01
+0.00
+0.01
+0.02
+Angle error
+Act. angle error
+Est. angle error
+10
+3
+10
+2
+10
+1
+Angle of unitary error
+10
+3
+6 × 10
+4
+2 × 10
+3
+3 × 10
+3
+Infidelity
+(b)
+10
+3
+10
+2
+10
+1
+Angle error
+FIG. 2.
+Benchmarking of T gate.
+In (a), we fix the uni-
+tary error (δθ = −0.01) and vary the probability of stochastic
+error. In (b), we fix the stochastic error (δp = 0.001) and
+vary the angle of unitary error. The actual process infidelity
+and stochastic infidelity is obtained by first computing the
+channel of noisy gate and then using Eq. (3) and Eq. (8). In
+both cases, we accurately estimate process infidelity, stochas-
+tic infidelity and the angle of unitary error. The accuracy of
+estimation can be further improved by increasing the circuit
+length or shots for each circuit.
+where θ is the rotational angle and σ is a Pauli matrix
+describing the direction of the rotational axis. This type
+of unitary operator has two eigenvalues e−i θ
+2 and ei θ
+2 .
+The dimension of the trivial eigen-operator subspace is
+2, which is the same as the dimension of the non-trivial
+eigen-operator subspace. Our choice of initial state only
+generates one operator 1
+2(|φa⟩⟨φa| + |φb⟩⟨φb|) in the triv-
+ial subspace, which means that we may only obtain one
+noisy eigenvalue in this subspace, potentially leading to
+an inaccurate estimation of the process fidelity. To ad-
+dress this issue, we also prepare another initial state to
+run phase estimation circuits, that is one of the eigen-
+states of Rσ(θ) in addition to the superposition state.
+This results in a value of K = 2. At the same circuit
+length, we sum the measured probabilities of the two
+types of circuits with the two initial states, allowing us
+to extract all the noisy eigenvalues simultaneously.
+Fig. 2 shows the results of benchmarking RZ( π
+4 ) (also
+known as T gate). In this simulation, the noise model
+consists of a combination of stochastic errors (includ-
+ing T1 and T2 errors with equal probabilities δp) and
+over/under-rotation errors with angle δθ. In Fig. 2(a), we
+fix the unitary error (δθ = −0.01) and vary the probabil-
+ity of stochastic error. In Fig. 2(b), we fix the stochastic
+error (δp = 0.001) and vary the angle of unitary error. In
+both cases, we are able to accurately estimate the pro-
+cess fidelity of the gate.
+As a byproduct, we can also
+estimate the angle of the unitary error by comparing the
+phases of some noisy eigenvalues to their corresponding
+ideal values. This is a more sensitive probe of unitary
+errors than infidelity, as shown in Fig. 2(b), where the
+process infidelity remains almost unchanged when δθ is
+varied from 10−3 to 10−2.
+In this simulation, we set Lmax = 50, except when
+stochastic probability δp = 10−3, where Lmax = 100. It
+is worth noting that the accuracy of the estimation can be
+further improved by increasing the length of the bench-
+marking circuits. However, increasing Lmax directly also
+increases the number of circuits used, which leads to
+higher costs. Instead, we can repeat the target gate U a
+certain number of times (Nrep times) to create a new tar-
+get gate, U ′ = U Nrep. Correspondingly, the noisy eigen-
+value we estimate becomes (gabeiλab)Nrep. But remember
+we need to determine the ideal eigenvalue from phase
+difference, thus as a result of Eq. (12), we require
+Nrep|δλ| ≪ |λa − λb|.
+(16)
+B.
+Two-qubit Fsim gates
+Here,
+we
+benchmark
+the
+two-qubit
+fermionic-
+simulation (Fsim) gates [8], i.e.,
+Fsim(θ, φ) =
+�
+��
+1
+0
+0
+0
+0
+cos θ
+−i sin θ
+0
+0 −i sin θ
+cos θ
+0
+0
+0
+0
+eiφ
+�
+��
+(17)
+where θ is the iswap angle and φ is the control phase
+angle. We omit some phase parameters that can be freely
+adjusted by Z rotations.
+For the preparation of initial states, we consider all
+pairs of eigenstates (K = 6). The choice of Lmax is 50
+or 100 (for δp = 10−3).
+In this simulation, the noise
+model includes T1, T2 noise with equal probabilities δp
+for all single-qubit gates. For two-qubit gates, each qubit
+experiences the same errors as single-qubit gates, as well
+as an over-rotation unitary error with angle errors δθ and
+δφ.
+We benchmark a specific Fsim gates with θ = π
+4 , φ = π
+2 ,
+as shown in Fig. 3. In Fig. 3(a), we fix the unitary error
+with δθ = −0.01, δφ = −0.02 and vary the probability of
+stochastic error δp. We accurately estimate all infidelities
+in this case. However, the estimation of the angle of the
+unitary error becomes less accurate when the stochastic
+error is too strong, as the signal decays too quickly to
+accumulate enough information to estimate the angle.
+In Fig. 3(b), we fix the probability of stochastic error
+with δp = 0.001 and vary the angles of unitary error
+with δθ = 0.5δφ = 10−3 ∼ 10−1. Again, we accurately
+estimate all infidelities and angles of the unitary error.
+
+7
+10
+3
+10
+2
+10
+1
+Probability of stochastic error p
+10
+3
+10
+2
+10
+1
+Infidelity
+(a)
+Act. proc. infidelity
+Act. stoch. infidelity
+Est. proc. infidelity
+Est. stoch. infidelity
+0.04
+0.03
+0.02
+0.01
+0.00
+Angle error
+Act. error
+Act. error
+Est. error
+Est. error
+10
+3
+10
+2
+10
+1
+Angle of unitary error
+10
+3
+10
+2
+Infidelity
+(b)
+10
+3
+10
+2
+10
+1
+Angle error
+FIG. 3. Benchmarking of a Fsim gate with θ =
+π
+4 , φ =
+π
+2 .
+In (a), we fix the unitary error with δθ = −0.01, δφ = −0.02
+and vary the probability of stochastic error δp. In Fig. 3(b),
+we fix the probability of stochastic error with δp = 0.001 and
+vary the angles of unitary error with δθ = 0.5δφ = 10−3 ∼
+10−1.
+We always accurately estimate the process infidelity
+and the stochastic infidelity of the gate. But, the accuracy
+of estimating the angles of the unitary error is compromised
+when there is a high level of stochastic noise, as the signal
+degrades quickly and there is not enough data to accurately
+estimate the angles.
+C.
+Three-qubit Toffoli gate
+In this study, we evaluate the performance of the three-
+qubit Toffoli gate, which is not a native gate but rather
+a circuit fragment composed of 1-qubit and 2-qubit gates
+as shown in Fig. 4(c). We randomly select K = 10 pairs
+of eigenstates as the initial state and set Lmax = 50.
+In the simulated noise model, all single-qubit gates are
+subject to T1, T2 noise with equal probability δp. For the
+two-qubit gates, each qubit experiences the same type of
+stochastic error as the single-qubit gates, followed by a
+unitary error of the Fsim type with error angles δθ = δφ.
+The Toffoli operator has a highly degenerate spectrum,
+which creates two challenges for our method. First, when
+sampling noisy eigen-operators, we need them to be uni-
+formly distributed, but for degenerate eigenvalues, the
+noisy eigen-operators are superpositions of ideal ones in
+the degenerate subspace, which are determined by the de-
+tails of the noise, see Appendix A. This makes it difficult
+to generate a uniform sample of noisy eigen-operators.
+Second, the degenerate eigenvalue may be split by noise
+into many eigenvalues in the signal, making it harder to
+extract the noisy eigenvalues and each eigenvalue may
+only occupy a small portion of the signal, making them
+0.002
+0.004
+0.006
+0.008
+0.010
+Probability of stochastic error p
+0.00
+0.05
+0.10
+0.15
+0.20
+0.25
+0.30
+0.35
+0.40
+Infidelity
+Act. proc. infidelity
+Act. stoch. infidelity
+Est. proc. infidelity
+Est. stoch. infidelity
+Est. proc. infidelity (varied circ)
+Est. stoch. infidelity (varied circ)
+0.02
+0.04
+0.06
+0.08
+0.10
+Angle of unitary error
+0.02
+0.03
+0.04
+0.05
+0.06
+0.07
+0.08
+0.09
+0.10
+Infidelity
+Est. proc. infidelity (varied circ; RC)
+Est. stoch. infidelity (varied circ; RC)
+(a)
+(b)
+(c)
+q0
+q1
+q2
+0, 0, 0
+U3
+0, 0, 0
+U3
+/2, 0,
+U3
+0, 0, 0
+U3
+0, 0, 0
+U3
+0, 0,
+/4
+U3
+0, 0, 0
+U3
+0, 0, 0
+U3
+0, 0, /4
+U3
+0, 0, 0
+U3
+0, 0, 0
+U3
+0, 0,
+/4
+U3
+0, 0, 0
+U3
+0, 0,
+/4
+U3
+0, 0, /4
+U3
+0, 0, 0
+U3
+0, 0,
+/4
+U3
+/2, 0,
+U3
+0, 0, /4
+U3
+0, 0, /2
+U3
+0, 0, 0
+U3
+FIG. 4. Bechmarking of Toffoli circuit fragment. We fix the
+unitary error (δθ = 0.01) and vary stochastic error in (a), and
+fix stochastic error (δp = 0.001) and vary unitary error in
+(b). The circuit implementing Toffoli gate is presented in (c).
+Due to the highly degenerate spectrum of the Toffoli gate, the
+estimate of the infidelity is unreliable. However, the degener-
+acy can be removed by changing the last layer of single-qubit
+gates. With the varied circuit, we accurately estimate the in-
+fidelity of the Toffoli circuit under weak unitary error in (a).
+For strong unitary error, we perform randomized compiling to
+the benchmarking circuits, converting the unitary error into
+stochastic error. As a result, the varied circuit also accurately
+estimates the process infidelity of Toffoli circuit under strong
+unitary error, as shown in (b).
+more susceptible to errors. The impact of the highly de-
+generate spectrum on the estimate of gate noise is demon-
+strated by the simulated results in Fig. 4(a),(b).
+Usually, some of degeneracy can be removed by ap-
+pending a layer of single-qubit gates to the target gate
+or circuit fragment. For the Toffoli circuit, we append
+RZ( π
+2 )⊗RZ( 2π
+3 )⊗RX( 4π
+5 ) to the Toffoli circuit and com-
+bine this layer with the last layer of the Toffoli circuit.
+The choice of appended layer should keep the state prepa-
+ration of the new target gate efficient. Here our choice
+does not change the eigenstates. For the angle parame-
+ters in the appended gates, one can design an optimiza-
+tion algorithm to choose the parameters that maximize
+the distance between eigenvalues. The appended layer of
+gates results in a varied circuit with a similar structure to
+
+8
+0.002
+0.004
+0.006
+0.008
+0.010
+Probability of stochastic error p
+0.05
+0.10
+0.15
+0.20
+0.25
+0.30
+0.35
+0.40
+0.45
+Infidelity
+Act. proc. infidelity
+Est. proc. infidelity
+Est. stoch. infidelity
+0.02
+0.04
+0.06
+0.08
+0.10
+Angle of unitary error
+0.06
+0.08
+0.10
+0.12
+0.14
+0.16
+0.18
+0.20
+Infidelity
+Act. proc. infidelity
+Est. proc. infidelity
+Est. stoch. infidelity
+Est. proc. infidelity (RC)
+Est. stoch. infidelity (RC)
+(a)
+(b)
+(c) q0
+q1
+q2
+q3
+q4
+q5
+q6
+q7
+q8
+q9
+0, 0,
+0.628
+U3
+0, 0, 0.929
+U3
+0, 0,
+1.17
+U3
+0, 0, 0.626
+U3
+0, 0, 1.79
+U3
+0, 0,
+0.745
+U3
+0, 0, 0.487
+U3
+0, 0, 0.742
+U3
+0, 0,
+0.758
+U3
+0, 0,
+1.68
+U3
+0, 0, 0
+U3
+0, 0, 1.4
+U3
+0, 0, 0
+U3
+0, 0, 0.198
+U3
+0, 0, 0
+U3
+0, 0, 1.25
+U3
+0, 0, 0
+U3
+0, 0,
+1.05
+U3
+0, 0, 0
+U3
+0, 0,
+0.0943
+U3
+0, 0, 0
+U3
+0, 0, 1.01
+U3
+0, 0, 0
+U3
+0, 0, 1.03
+U3
+0, 0, 0
+U3
+0, 0,
+1.93
+U3
+0, 0, 0
+U3
+0, 0, 0.222
+U3
+0, 0, 0
+U3
+0, 0,
+0.393
+U3
+FIG. 5. Benchmarking of a 10-qubit Ising evolution operator. We fix unitary error (δθ = 0.01) and vary stochastic error in
+(a), and fix stochastic error (δp = 0.001) and vary unitary error in (b). The circuit implementing Ising evolution operator is
+presented in (c). The actual fidelity is not computed from the channel of the circuit, but rather inferred from the product of
+the fidelity of all single-qubit and two-qubit gates. However, the actual stochastic infidelity can not be reliably inferred by this
+procedure. We accurately estimate infidelity of the Ising evolution operator under weak unitary error (a) and strong unitary
+error with RC (b).
+the original Toffoli circuit (only the last layer is changed)
+and they should possess similar noise properties. In the
+case of strong stochastic error and weak unitary error
+(δθ = 0.01) in Fig. 4(a), the benchmarking of the varied
+circuit provides a very accurate estimate of the process
+infidelity and the stochastic infidelity of the original Tof-
+foli circuit.
+However, there is a significant difference between the
+estimated and actual process infidelity when the unitary
+error is very strong, as shown in Fig. 4(b) (with fixed
+stochastic error δp = 0.001).
+In the Appendix B, we
+show that our method may under-estimate the process
+infidelity in the presence of certain strong unitary errors.
+One way to address this issue is to introduce random
+gates into the benchmarking circuits to convert the uni-
+tary errors to stochastic errors [37, 38, 58].
+The Ap-
+pendix C describes a procedure for transforming noise in
+the native gates to stochastic errors using random gates
+from the symmetry group of the target U. For bench-
+marking circuit fragments, we use a technique called ran-
+domized compiling [37, 38] to achieve this. Randomized
+compiling (RC) is a method that transforms the noise
+in the circuit into stochastic Pauli errors while maintain-
+ing the circuit structure and depth. After RC, the noise
+type of a circuit cycle is changed, but the fidelity of the
+cycle and the circuit structure remains unchanged. As
+long as there is no repeated structure in U where unitary
+error can coherently build up and increase the infidelity
+quadratically with the circuit depth [59] (this is a case
+where RC should be introduced to suppress the unitary
+noise), we expect the fidelity of the circuit U to remain
+unchanged after RC. For each original circuit, we gener-
+ate Nr = 10 random circuits by RC and each random
+circuit is run 103 times to keep the cost unchanged. As
+shown in Fig. 4(b), after RC the varied circuit can ac-
+curately estimate the process infidelity of Toffoli circuit
+under unitary noise.
+D.
+Ten-qubit Ising evolution operator
+Our method is practically scalable if the following two
+requirements are met:
+1. The eigenvalues and eigenvectors of target unitary
+operator U can be efficiently computed.
+2. The initial state can be efficiently prepared, i.e., the
+number of 1-qubit and 2-qubit gates needed for the
+preparation should at most scale polynomial with
+the number of qubits.
+In general, these two requirements are not always sat-
+isfied. However, for certain types of unitary operators,
+such as the evolution operator of an Ising Hamiltonian,
+these requirements can be met. For an Ising Hamiltonian,
+the eigenvectors are known and are simply the computa-
+tional basis states. Given an eigenstate, the eigenvalue
+can be efficiently computed.
+The initial state of a superposition of two computa-
+tional basis states |x⟩ = |x0, · · · , xi, · · · , xN−1⟩, |y⟩ =
+|y0, · · · , yi, · · · , yN−1⟩ can be prepared as follows: first,
+for the qubit i, if xi = yi, the state can be prepared
+by an X gate if xi = yi = 1; then, for the state of re-
+maining qubits with xi ̸= yi, if we only have one such
+qubit, a Hadamard gate H can be applied; if there is
+more than one qubit with xi ̸= yi, one can first prepare
+a GHZ state on these qubits and then apply some X
+gates to obtain the target state. Therefore, the prepa-
+ration of such states cost at most N 1-qubit and N 2-
+qubit gates. Additionally, for the evolution operator of
+the Hamiltonian that can be obtained by performing lo-
+cal unitary transformation on an Ising Hamiltonian, i.e.,
+H = �
+i UiHIsing
+�
+i U †
+i , the initial states can also be
+obtained in the similar way with additional two layers
+of single-qubit gates � Ui, � U †
+i .
+Thus, this type of
+evolution operators is a good example for benchmarking
+many-qubit quantum systems.
+
+9
+Here we benchmark the evolution operator of a 1-
+dimensional Ising ring H = �10
+i=1 hiZi + Ji,i+1ZiZi+1,
+where hi, Ji,i+1 are randomly chosen.
+The circuit is
+shown as in Fig. 5(c). We sample K = 10 pairs of eigen-
+states and set Lmax = 50. The noise model is the same as
+the case in Sec. IV C. The actual infidelity is inferred from
+the infidelity of single-qubit and two-qubit gates, because
+our computer is not powerful enough to compute the
+quantum channel of a 10-qubit circuit. Our method ac-
+curately estimates process infidelity under both weak and
+strong unitary error (with RC), as shown in Fig. 5(a),(b).
+V.
+CONCLUSION AND OUTLOOK
+In this work, we introduced a procedure called chan-
+nel spectrum benchmarking, which infers the noise prop-
+erties of a quantum gate from the eigenvalues of noisy
+channel representing the gate. In the protocol, we first
+choose the initial state using a superposition of randomly
+sampled pair of eigenstates of the target gate, and then,
+we use control-free phase estimation circuits to estimate
+the noisy eigenvalues in a SPAM error-resistant manner.
+This choice of initial state simplifies the data processing
+because the measured signal only contains a few eigen-
+values, which can be extracted using signal processing
+methods such as the matrix pencil method. By compar-
+ing the noisy eigenvalues to their ideal counterparts, we
+can estimate noise properties such as the process infi-
+delity, stochastic infidelity, and some over-rotation angle
+errors. Our method can be applied to any quantum gate,
+but performs better on gates with non-degenerate oper-
+ator spectrum. For gates with highly degenerate spec-
+trum, we can append a layer of single-qubit gates to re-
+move the degeneracy while maintaining a similar circuit
+structure. Some types of unitary error can also affect the
+performance, which can be addressed using randomiza-
+tion techniques like randomized compiling. Our method
+is scalable to many-qubit systems as long as the eigen-
+decomposition can be computed and the initial state can
+be efficiently prepared, such as the evolution operator of
+an Ising-type Hamiltonian.
+The requirements for the scalability of our method
+could be relaxed. In principle, we do not need to obtain
+the complete set of the eigenmodes for the target gate
+operator, a few samples of eigenvalues and eigenstates
+are sufficient. For initial state preparation, there are ex-
+isting methods for preparing arbitrary states [60–63], but
+it would be interesting to develop a more efficient algo-
+rithm for preparing the particular type of initial states
+in our method. A variational algorithm [64] may be able
+to efficiently prepare these states for most target gates,
+because we have the freedom to choose the coefficients of
+the superposition states and do not need perfect prepa-
+ration. Our method can be scaled up in a way similar to
+simultaneous randomized benchmarking [65, 66], where
+some few-qubit gates are simultaneously benchmarked on
+different subsets of a many-qubit system such that the ef-
+fect of crosstalk [67] can be detected.
+One immediate use of benchmarking is to calibrate
+quantum gates using the measured figures of merit as a
+cost function [8–10]. Our method can provide more spe-
+cific information (process infidelity, stochastic infidelity
+and over-rotation angle of the target gate) about the cal-
+ibrating gate, so it is expected to perform better on this
+task than other benchmarking methods. A detailed com-
+parison of different benchmarks for calibration will be a
+topic for future research. Additionally, our method can
+be used to calibrate universal gates, including not only 1
+or 2-qubit native gates, but also many-qubit native gates
+such as MS gates [68, 69] used in ion trap systems. It
+may also be interesting to use our method to calibrate
+certain circuit fragments that are commonly used in al-
+gorithms, such as the trotterized Hamiltonian evolution
+operator in quantum simulation and the Grover iteration
+operator in Grover’s search algorithm.
+ACKNOWLEDGMENTS
+The work is supported by the National Natural Sci-
+ence Foundation of China (Grant No.
+12147123 and
+11974198) and Beijing Natural Science Foundation (No.
+Z220002).
+Source code for the simulated experiments
+is available at this site https://github.com/yanwu-gu/
+channel-spectrum-benchmarking.
+Appendix A: The relationship between noisy and
+ideal eigenvalues of quantum channels
+In this section, we derive the relationship between the
+noisy channel eigenvalues of a gate and its correspond-
+ing ideal counterparts with the first order perturbation
+theory.
+Consider a gate U acting on a d-dimensional space with
+eigen-decomposition U|φa⟩ = eiλa|φa⟩. As the actual im-
+plementation of a gate U is inevitably associated with
+some noise, it is more convenient to use quantum chan-
+nels rather than quantum operators. Quantum channels
+are completely-positive trace-preserving (CPTP) maps,
+which transform one operator to another. The action of
+a quantum channel E on an arbitrary operator O can
+be characterized by a set of Kraus operators Ek, i.e.,
+E(O) = �
+k EkOE†
+k. We denote the corresponding uni-
+tary channel of the unitary operator U as U, whose action
+on an operator O is U(O) = UOU †. Thus, the unitary
+channel U has the eigen-decomposition
+U(|φa⟩⟨φb|) = U|φa⟩⟨φb|U † = ei(λa−λb)|φa⟩⟨φb|.
+(A1)
+Quantum channels are linear maps that can be repre-
+sented as matrices under a set of the basis operators
+of the operator space, such as eigen-operators |φa⟩⟨φb|.
+Meanwhile, operators are represented as vectors. The as-
+sociated inner product between two operators A and B is
+
+10
+the Hilbert-Schmidt inner product tr
+�
+A†B
+�
+. Therefore,
+in this representation U is a unitary matrix.
+Let us append a noise channel E to U, with the noisy
+version of U denoted as �U = EU. We investigate the re-
+lationship between the eigenvalues of �U and those of U.
+If the noise is relatively weak, the problem is an eigen-
+value perturbation of unitary matrix. Given the close re-
+lationship between unitary and Hermitian matrices, one
+can use Hermitian matrix perturbation theory to get the
+correction of eigenvalues and eigenstates, assuming a di-
+agonalizable noisy gate �U. In most cases, the assumption
+should be met in actual devices, since diagonalizable ma-
+trices are dense in the space of all matrices, meaning that
+any non-diagonalizable matrix can be deformed into a di-
+agonalizable one by a small perturbation. In the follow-
+ing, we apply Hermitian perturbation theory to obtain
+the first order correction of the eigenvalues, and obtain
+the relationship between the noisy eigenvalues and ideal
+ones.
+Define the eigenvalues and eigen-operators of �U as
+gabeiλab and Mab, that is
+�U(Mab) = gabeiλabMab .
+(A2)
+The perturbation matrix is
+∆ = �U − U = (E − I) U .
+(A3)
+We assume the perturbation is small in terms of some
+norm, such as the diamond norm ∥∆∥⋄ = δ [46]. Then,
+for a non-degenerate eigenvalue ei(λa−λb) with eigen-
+operator |φa⟩⟨φb|, the first order correction is
+ϵab
+1 = tr
+�
+(|φa⟩⟨φb|)†∆(|φa⟩⟨φb|)
+�
+= tr
+�
+(|φa⟩⟨φb|)†(E − I) U(|φa⟩⟨φb|)
+�
+= ei(λa−λb) �
+tr
+�
+(|φa⟩⟨φb|)†E(|φa⟩⟨φb|)
+�
+− 1
+�
+.(A4)
+Thus, the noisy eigenvalue is approximated as
+gabeiλab ≈ ei(λa−λb) + ϵab
+1
+= ei(λa−λb)tr
+�
+(|φa⟩⟨φb|)†E(|φa⟩⟨φb|)
+�
+. (A5)
+In this case, the noisy eigen-operator Mab is approxi-
+mated by
+Mab ≈ |φa⟩⟨φb| + O(δ)
+(A6)
+where O(δ) are some correction terms with the first order
+of δ.
+For degenerate eigenvalues eiλn with eigen-operators
+|φa⟩⟨φb| satisfying λa − λb = λn, these eigen-operators
+span a subspace. The ab, a′b′-entry of the perturbation
+matrix projected in this subspace is
+∆(n)
+ab,a′b′ = tr
+�
+(|φa⟩⟨φb|)†(E − I) U(|φa′⟩⟨φb′|)
+�
+= eiλn �
+tr
+�
+(|φa⟩⟨φb|)†E(|φa′⟩⟨φb′|)
+�
+− δaa′δbb′�
+= eiλn(E(n)
+ab,a′b′ − I(n)
+ab,a′b′)
+(A7)
+where E(n)
+ab,a′b′ and I(n)
+ab,a′b′ are the entries of pure noise
+map E and Identity map I projected in this degenerate
+subspace. In the degenerate case, the first order correc-
+tions to the eigenvalue eiλn of U are the eigenvalues of
+the perturbation matrix ∆(n). It’s easy to find that the
+matrix ∆(n) and the matrix E(n) have the same eigen-
+operators M 0
+pq, which are the superposition of eigen-
+operators |φa⟩⟨φb| in this degenerate subspace. They are
+also the corresponding unperturbed eigen-operators of
+noisy eigen-operator Mpq of �U, that is Mpq ≈ M 0
+pq+O(δ).
+In this case, the eigenvalue gpqeiλpq of �U is
+gpqeiλpq ≈ eiλn + tr
+�
+G0†
+pq∆(n)(M 0
+pq)
+�
+= eiλn + eiλn �
+tr
+�
+G0†
+pqE(n)(M 0
+pq)
+�
+− 1
+�
+= eiλntr
+�
+G0†
+pqE(n)(M 0
+pq)
+�
+(A8)
+where G0
+pq is the corresponding left eigen-operator of M 0
+pq
+and they satisfy tr
+�
+G0†
+pqM 0
+p′q′
+�
+= δpq,p′q′. Therefore, the
+Eq. (A8) has the same form as Eq. (A5) but with a basis
+of a different form.
+Appendix B: Perturbation of channel eigenvalues
+under pure unitary error
+Here we consider the noisy eigenvalues of a quantum
+gate under a pure unitary error
+V = e−iHeδ
+(B1)
+where He is the Hamiltonian of error and δ characterize
+the error strength. Assume the target gate U = e−iHθ.
+Thus the operator of noisy gate is �U = V U. In this case,
+the process fidelity is
+F = |tr{V }|2
+d2
+≈ |tr
+�
+I − iHeδ − 1
+2H2
+e )δ2�
+|2
+d2
+= d2 − dtr
+�
+H2
+e
+�
+δ2
+d2
+= 1 − tr
+�
+H2
+e
+�
+d
+δ2
+(B2)
+where we use the property tr{He} = 0 and keep the term
+up to O(δ2). This is a well-known result that unitary
+error with some matrix norm δ has process infidelity of
+order O(δ2) [46].
+We then analyze how eigenvalues of a quantum chan-
+nel U change under such unitary error with perturbation
+theory. Now the effect of the noisy gate �U on an oper-
+ator O is �U(O) = V UOU †V †. Represent all quantum
+channels as matrices, the perturbation matrix is
+∆ = �U − U .
+(B3)
+
+11
+For a non-degenerate eigen-operator |φa⟩⟨φb| with eigen-
+value ei(λa−λb), the first order correction is
+ϵab
+1 = tr
+�
+(|φa⟩⟨φb|)†∆(|φa⟩⟨φb|)
+�
+= ei(λa−λb) �
+tr
+�
+(|φa⟩⟨φb|)†V |φa⟩⟨φb|V †�
+− 1
+�
+.
+(B4)
+To further expand this equation, we will use the Baker-
+Hausdorff (BH) lemma
+eXY e−X = eadX(Y ) =
+∞
+�
+n=0
+adn
+X(Y )
+n!
+(B5)
+where ad is a map on operators with the effect adX(Y ) =
+[X, Y ]. Then the first order correction is
+ϵab
+1 = ei(λa−λb) �
+tr
+�
+(|φa⟩⟨φb|)†e−iδadHe (|φa⟩⟨φb|)
+�
+− 1
+�
+≈ ei(λa−λb)
+�
+tr
+�
+(|φa⟩⟨φb|)†
+�
+I − iδadHe − 1
+2δ2ad2
+He
+�
+(|φa⟩⟨φb|)
+�
+− 1
+�
+= ei(λa−λb)
+�
+����−iδ (⟨φa|He|φa⟩ − ⟨φb|He|φb⟩)
+�
+��
+�
+ϵab
+1,1
+−1
+2δ2tr
+�
+(|φa⟩⟨φb|)†ad2
+He(|φa⟩⟨φb|)
+�
+�
+��
+�
+ϵab
+1,2
+�
+���� .
+(B6)
+If we consider only the first-order correction, the noisy
+eigenvalue is
+gabeiλab ≈ ei(λa−λb) + ϵab
+1 = ei(λa−λb)(1 + ϵab
+1,1 + ϵab
+1,2).
+(B7)
+From Eq. (3) and Eq. (5), we get the estimate of process
+fidelity
+ˆF = 1 + 1
+d2
+�
+ab
+ϵab
+1,1 + 1
+d2
+�
+ab
+ϵab
+1,2
+(B8)
+where the term with order O(δ) is
+1
+d2
+�
+ab
+ϵab
+1,1
+= 1
+d2
+�
+ab
+−iδ (⟨φa|He|φa⟩ − ⟨φb|He|φb⟩)
+= 0
+(B9)
+and the term with order O(δ2) is
+1
+d2
+�
+ab
+ϵab
+1,2
+= − δ2
+2d2
+�
+ab
+tr
+�
+(|φa⟩⟨φb|)†[He, [He, |φa⟩⟨φb|]]
+�
+= − δ2
+2d2
+�
+ab
+⟨φa|H2
+e |φa⟩ − 2⟨φa|He|φa⟩⟨φb|He|φb⟩ + ⟨φb|H2
+e |φb⟩
+= − δ2
+2d2 (2dtr
+�
+H2
+e
+�
+− 2tr{He}2)
+= −1
+dtr
+�
+H2
+e
+�
+δ2 .
+(B10)
+This coincides with the expression in Eq. (B2).
+However, due to the first order correction only contributing a term with order O(δ2), we must also take into account
+the second order correction to the eigenvalues. The second order correction is
+
+12
+ϵab
+2 =
+�
+mn̸=ab
+|tr
+�
+(|φm⟩⟨φn|)†∆(|φa⟩⟨φb|)
+�
+|2
+ei(λa−λb) − ei(λm−λn)
+=
+�
+mn̸=ab
+|tr
+�
+(|φm⟩⟨φn|)†V |φa⟩⟨φb|V †�
+|2
+ei(λa−λb) − ei(λm−λn)
+=
+�
+mn̸=ab
+|⟨φm|V |φa⟩|2|⟨φn|V |φb⟩|2
+ei(λa−λb) − ei(λm−λn)
+≈
+�
+mn̸=ab
+�
+δam + (⟨φm|He|φa⟩⟨φa|He|φm⟩ − ⟨φm|H2
+e |φa⟩δam)δ2� �
+δbn + (⟨φn|He|φb⟩⟨φb|He|φn⟩ − ⟨φn|H2
+e |φb⟩δbn)δ2�
+ei(λa−λb) − ei(λm−λn)
+=
+�
+m̸=a
+⟨φm|He|φa⟩⟨φa|He|φm⟩δ2
+ei(λa−λb) − ei(λm−λb)
++
+�
+n̸=b
+⟨φn|He|φb⟩⟨φb|He|φn⟩δ2
+ei(λa−λb) − ei(λa−λn)
+.
+(B11)
+If the error Hamiltonian He is diagonal under the basis of
+eigenvectors of U, the second order correction is ϵab
+2 = 0
+up to the second order O(δ2). There is no problem for
+our method.
+However, except the special case, there is some dis-
+crepancy between the process fidelity estimated using our
+method and the actual value, due to the presence of the
+term ϵab
+2 in the noisy eigenvalue gabeiλab.
+Here, we can directly compute the noisy eigenvalues of
+the channel �U from the eigenvalues of the operator �U and
+give the analytical form of estimated process fidelity by
+our method. We first compute the Hamiltonian of �U by
+Baker-Campbell-Hausdorff formula
+H′ = log (V U) = log (e−iHeδe−iHθ)
+≈ −iHθ − iHeδ − 1
+2ad−iHθ(−iHeδ) + 1
+12ad2
+−iHθ(−iHeδ) −
+1
+720ad4
+−iHθ(−iHeδ) + · · ·
+(B12)
+where we only keep the terms up to the order O(δ) and
+omit some terms with the ad map.
+We can compute
+the eigenvalues of H′ comparing to those of the −iHθ
+with the first order perturbation theory . The first order
+correction to the eigenvalue iλa with eigenstate |φa⟩ is
+ϵa
+1 = ⟨φa|H′ − (−iHθ)|φa⟩
+= −iδ⟨φa|He|φa⟩
+(B13)
+where these terms with ad map are all zeros because
+⟨φa|ad−iHθ(O)|φa⟩
+= −iθ⟨φa|(HO − OH)|φa⟩
+= iλa(⟨φa|O|φa⟩ − ⟨φa|O|φa⟩) = 0
+(B14)
+where O is an any operator. Then the noisy eigenvalue
+of |φa⟩⟨φb| is
+gabeiλab ≈ eiλa+ϵa
+1−iλb−ϵb
+1 .
+(B15)
+Thus our estimator for process fidelity is
+ˆF = 1
+d2
+�
+ab
+eϵa
+1−ϵb
+1
+= 1 −
+�
+a⟨φa|He|φa⟩2
+d
+δ2 .
+(B16)
+Because the term �
+a⟨φa|He|φa⟩2 is always smaller than
+the term tr
+�
+H2
+e
+�
+except when He is a diagonal matrix un-
+der the basis |φa⟩, our method under-estimates process
+infidelity under unitary error in general. This problem
+can be fixed by introducing some randomization proce-
+dure into the benchmarking circuits to convert unitary
+errors to stochastic errors [37, 38, 58].
+Appendix C: Randomized compiling with the
+symmetric group of the target gate
+For a circuit composed of single-qubit and two-qubit
+gates, randomized compiling (RC) is a standard proce-
+dure to tailor the noise into stochastic Pauli noise with
+Pauli twirling. Here, we consider another case that the
+circuit is repetitions of a native gate U, that is U L. In
+the spirit of RC, if considering U as hard gate, we need
+a twirling group T, whose element Ti should be trans-
+formed to another Tj under the conjugate operation of
+U, that is UTiU † = Tj.
+A simple example of this type of groups is a symmetric
+group of U
+T = {T : U †TU = T} .
+(C1)
+
+13
+0.02
+0.04
+0.06
+0.08
+0.10
+Angle of unitary error
+0.0005
+0.0010
+0.0015
+0.0020
+0.0025
+0.0030
+0.0035
+Infidelity
+Act. proc. infidelity
+Est. proc. infidelity (RC)
+Est. stoch. infidelity (RC)
+FIG. 6. Benchmarking of T gate with randomized compiling.
+In simulation, stochastic error is fixed (δp = 0.001) and uni-
+tary is RX(δθ) with varied error angle δθ. The twirling group
+is T = {I, Z}. For each original circuit, we generate Nr = 10
+random circuits and each random circuit is run for Ns = 103
+times.
+For the sequence of U L, random gates from the twirling
+group T are introduced before each application of U, but
+the effect of these random gates should be cancelled be-
+fore the next U is applied. Finally, we get a new random
+sequence
+T †
+LU(TLT †
+L−1) · · · U(TiT †
+i−1) · · · U(T2T †
+1 )UT1
+(C2)
+where the gates in parentheses should be implemented as
+one gate. In actual implementation, all the gates should
+be associated with a noise, and the gate sequence is de-
+noted as composition of quantum channels
+T †
+LET EUTLT †
+L−1ET · · · EUT2T †
+1 ET EUT1ET
+= T †
+LET ETLUT †
+L−1ET · · · ET2UT †
+1 ET ET1UET
+(C3)
+where we use the property that the gates in group T
+commute with U. We assume the noise of each twirling
+gate is the same quantum channel ET for simplicity, but
+this assumption can be relaxed [37].
+After averaging many such random sequences we get
+�
+1
+NT
+�
+TL
+T †
+LET ETL
+�
+U · · ·
+�
+1
+NT
+�
+T1
+T †
+1 ET ET1
+�
+UET
+(C4)
+where NT is the number of gates in the twirling group T.
+The effect of this randomization procedure is to trans-
+form the noise to stochastic noise, that is applying a
+random quantum channel T †ET ET with probability
+1
+NT .
+One can use group representation theory to get a sim-
+pler form of the noise. But in our case, this subtlety is
+not necessary. This procedure is similar to the Ref. [58].
+However, we do not require the twirling group is abelian
+and do not need the assumption that there is no equal ir-
+reducible representation for symmetric group. Thus our
+method has high flexibility to choose twirling group.
+We use a simulated experiment to show the perfor-
+mance of this procedure. We benchmark T gate under
+a unitary error RX(δθ) with varied error angle δθ and
+fixed stochastic error δp = 0.001. We choose T = {I, Z}
+as twirling group. For each original circuit, we generate
+Nr = 10 random circuits and each random circuit is run
+for Ns = 103 times.
+The theory in Appendix B shows that the process in-
+fidelity estimated by our method is of the order O(δθ4)
+without the use of randomized compiling. However, by
+introducing randomized compiling, our method can ac-
+curately estimate the process infidelity, as demonstrated
+in Fig. 6. It is important to note that the process in-
+fidelity measured using randomized compiling on native
+gate includes the noise from both the target gate and the
+twirling gates, since the twirling gates are not merged
+into the original circuit in the same way as when using
+randomized compiling on circuit fragments. For simplic-
+ity, we did not add noise to the twirling gates in this
+case. To obtain the infidelity of the target gate alone, it
+is necessary to benchmark the twirling gates separately
+and subtract their contribution from the overall infidelity,
+similar to the process used in interleaved RB [34].
+[1] John Preskill, “Quantum Computing in the NISQ era and
+beyond,” Quantum 2, 79 (2018).
+[2] P.W. Shor, “Fault-tolerant quantum computation,” in
+Proceedings of 37th Conference on Foundations of Com-
+puter Science (1996) pp. 56–65.
+[3] Dorit Aharonov and Michael Ben-Or, “Fault-tolerant
+quantum computation with constant error rate,” SIAM
+Journal on Computing 38, 1207–1282 (2008).
+[4] John Preskill, “Reliable quantum computers,” Proc. R.
+Soc. London, Ser. A 454, 385 (1998).
+[5] E. Knill, R. Laflamme,
+and W. H. Zurek, “Resilient
+quantum computation:
+error models and thresholds,”
+Proc. R. Soc. London, Ser. A 454, 365 (1998).
+[6] A.Yu. Kitaev, “Fault-tolerant quantum computation by
+anyons,” Annals of Physics 303, 2–30 (2003).
+[7] Austin G. Fowler, Matteo Mariantoni, John M. Martinis,
+and Andrew N. Cleland, “Surface codes: Towards practi-
+cal large-scale quantum computation,” Phys. Rev. A 86,
+032324 (2012).
+[8] F. Arute, K. Arya, R. Babbush,
+and et al., “Quantum
+supremacy using a programmable superconducting pro-
+cessor,” Nature 574 (2019), 10.1038/s41586-019-1666-5.
+[9] Yulin Wu and et al., “Strong quantum computational
+advantage using a superconducting quantum processor,”
+Phys. Rev. Lett. 127, 180501 (2021).
+[10] J. M. Pino, J. M. Dreiling, C. Figgatt,
+and et al.,
+“Demonstration of the trapped-ion quantum ccd com-
+puter architecture,” Nature 592, 209–213 (2021).
+
+14
+[11] Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo
+Roth, Damian Markham, Rhea Parekh, Ulysse Chabaud,
+and Elham Kashefi, “Quantum certification and bench-
+marking,” Nature Reviews Physics 2, 382–390 (2020).
+[12] Michael A. Nielsen and Isaac L. Chuang, Quantum com-
+putation and quantum information, 1st ed. (Cambridge
+University Press, 2004).
+[13] Matteo Paris and Jaroslav Rehacek, Quantum state es-
+timation, Vol. 649 (Springer Science & Business Media,
+2004).
+[14] Seth T. Merkel, Jay M. Gambetta, John A. Smolin, Ste-
+fano Poletto, Antonio D. Córcoles, Blake R. Johnson,
+Colm A. Ryan,
+and Matthias Steffen, “Self-consistent
+quantum process tomography,” Phys. Rev. A 87, 062119
+(2013).
+[15] Robin Blume-Kohout, John King Gamble, Erik Nielsen,
+Kenneth Rudinger, Jonathan Mizrahi, Kevin Fortier,
+and Peter Maunz, “Demonstration of qubit operations
+below a rigorous fault tolerance threshold with gate set
+tomography,” Nature communications 8, 1–13 (2017).
+[16] Kenneth Rudinger, Craig W. Hogle, Ravi K. Naik, Akel
+Hashim, Daniel Lobser, David I. Santiago, Matthew D.
+Grace, Erik Nielsen, Timothy Proctor, Stefan Seritan,
+Susan M. Clark, Robin Blume-Kohout, Irfan Siddiqi,
+and Kevin C. Young, “Experimental characterization of
+crosstalk errors with simultaneous gate set tomography,”
+PRX Quantum 2, 040338 (2021).
+[17] Yanwu Gu, Rajesh Mishra, Berthold-Georg Englert, and
+Hui Khoon Ng, “Randomized linear gate-set tomogra-
+phy,” PRX Quantum 2, 030328 (2021).
+[18] Raphael Brieger,
+Ingo Roth,
+and Martin Kliesch,
+“Compressive gate set tomography,”
+arXiv preprint
+arXiv:2112.05176 (2021).
+[19] Steven T. Flammia and Yi-Kai Liu, “Direct fidelity esti-
+mation from few pauli measurements,” Phys. Rev. Lett.
+106, 230501 (2011).
+[20] Marcus P. da Silva, Olivier Landon-Cardinal, and David
+Poulin, “Practical characterization of quantum devices
+without tomography,” Phys. Rev. Lett. 107, 210404
+(2011).
+[21] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
+Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Sei-
+delin, and D. J. Wineland, “Randomized benchmarking
+of quantum gates,” Phys. Rev. A 77, 012307 (2008).
+[22] Easwar Magesan, J. M. Gambetta, and Joseph Emerson,
+“Scalable and robust randomized benchmarking of quan-
+tum processes,” Phys. Rev. Lett. 106, 180504 (2011).
+[23] Easwar Magesan, Jay M. Gambetta, and Joseph Emer-
+son, “Characterizing quantum gates via randomized
+benchmarking,” Phys. Rev. A 85, 042311 (2012).
+[24] Osama Moussa, Marcus P. da Silva, Colm A. Ryan, and
+Raymond Laflamme, “Practical experimental certifica-
+tion of computational quantum gates using a twirling
+procedure,” Phys. Rev. Lett. 109, 070504 (2012).
+[25] J. Helsen, I. Roth, E. Onorati, A.H. Werner, and J. Eis-
+ert, “General framework for randomized benchmarking,”
+PRX Quantum 3, 020357 (2022).
+[26] Jianxin Chen, Dawei Ding,
+and Cupjin Huang, “Ran-
+domized benchmarking beyond groups,” PRX Quantum
+3, 030320 (2022).
+[27] Timothy J. Proctor, Arnaud Carignan-Dugas, Kenneth
+Rudinger, Erik Nielsen, Robin Blume-Kohout,
+and
+Kevin Young, “Direct randomized benchmarking for mul-
+tiqubit devices,” Phys. Rev. Lett. 123, 030503 (2019).
+[28] Alexander Erhard,
+Joel J Wallman,
+Lukas Postler,
+Michael Meth, Roman Stricker, Esteban A Martinez,
+Philipp Schindler, Thomas Monz, Joseph Emerson, and
+Rainer Blatt, “Characterizing large-scale quantum com-
+puters via cycle benchmarking,” Nature communications
+10, 1–7 (2019).
+[29] Timothy Proctor, Stefan Seritan, Kenneth Rudinger,
+Erik Nielsen, Robin Blume-Kohout,
+and Kevin Young,
+“Scalable randomized benchmarking of quantum comput-
+ers using mirror circuits,” Phys. Rev. Lett. 129, 150502
+(2022).
+[30] Timothy Proctor, Kenneth Rudinger, Kevin Young, Mo-
+han Sarovar, and Robin Blume-Kohout, “What random-
+ized benchmarking actually measures,” Phys. Rev. Lett.
+119, 130502 (2017).
+[31] Joel J. Wallman, “Randomized benchmarking with gate-
+dependent noise,” Quantum 2, 47 (2018).
+[32] Jiaan Qi and Hui Khoon Ng, “Comparing the random-
+ized benchmarking figure with the average infidelity of
+a quantum gate-set,” International Journal of Quantum
+Information 17, 1950031 (2019).
+[33] Easwar Magesan, Jay M. Gambetta, B. R. Johnson,
+Colm A. Ryan, Jerry M. Chow, Seth T. Merkel, Mar-
+cus P. da Silva, George A. Keefe, Mary B. Rothwell,
+Thomas A. Ohki, Mark B. Ketchen,
+and M. Steffen,
+“Efficient measurement of quantum gate error by inter-
+leaved randomized benchmarking,” Phys. Rev. Lett. 109,
+080505 (2012).
+[34] Arnaud Carignan-Dugas, Joel J Wallman,
+and Joseph
+Emerson, “Bounding the average gate fidelity of compos-
+ite channels using the unitarity,” New Journal of Physics
+21, 053016 (2019).
+[35] Arnaud Carignan-Dugas, Joel J. Wallman, and Joseph
+Emerson, “Characterizing universal gate sets via dihedral
+benchmarking,” Phys. Rev. A 92, 060302 (2015).
+[36] Andrew W Cross, Easwar Magesan, Lev S Bishop,
+John A Smolin,
+and Jay M Gambetta, “Scalable ran-
+domised benchmarking of non-clifford gates,” npj Quan-
+tum Information 2, 1–5 (2016).
+[37] Joel J. Wallman and Joseph Emerson, “Noise tailoring
+for scalable quantum computation via randomized com-
+piling,” Phys. Rev. A 94, 052325 (2016).
+[38] Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup
+Ville, Bradley Mitchell, John Mark Kreikebaum, Marc
+Davis, Ethan Smith, Costin Iancu, Kevin P. O’Brien, Ian
+Hincks, Joel J. Wallman, Joseph Emerson, and Irfan Sid-
+diqi, “Randomized compiling for scalable quantum com-
+puting on a noisy superconducting quantum processor,”
+Phys. Rev. X 11, 041039 (2021).
+[39] Joel Wallman, Chris Granade, Robin Harper,
+and
+Steven T Flammia, “Estimating the coherence of noise,”
+New Journal of Physics 17, 113020 (2015).
+[40] Shelby Kimmel, Guang Hao Low, and Theodore J. Yo-
+der, “Robust calibration of a universal single-qubit gate
+set via robust phase estimation,” Phys. Rev. A 92, 062315
+(2015).
+[41] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas,
+A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro,
+A. Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jef-
+frey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quin-
+tana, D. Sank, A. Vainsencher, J. Wenner, T. White,
+H. Neven, D. G. Angelakis,
+and J. Martinis, “Spec-
+troscopic signatures of localization with interacting pho-
+tons in superconducting qubits,” Science 358, 1175–1179
+
+15
+(2017).
+[42] A. E. Russo, K. M. Rudinger, B. C. A. Morrison,
+and
+A. D. Baczewski, “Evaluating energy differences on a
+quantum computer with robust phase estimation,” Phys.
+Rev. Lett. 126, 210501 (2021).
+[43] C
+Neill,
+T
+McCourt,
+X
+Mi,
+Z
+Jiang,
+MY
+Niu,
+W Mruczkiewicz, I Aleiner, F Arute, K Arya, J Atalaya,
+et al., “Accurately computing the electronic properties of
+a quantum ring,” Nature 594, 508–512 (2021).
+[44] Sirui Lu, Mari Carmen Bañuls,
+and J. Ignacio Cirac,
+“Algorithms for quantum simulation at finite energies,”
+PRX Quantum 2, 020321 (2021).
+[45] Yanwu Gu, Yunheng Ma, Nicolo Forcellini, and Dong E
+Liu, “Noise-resilient phase estimation with randomized
+compiling,” arXiv preprint arXiv:2208.04100 (2022).
+[46] Martin Kliesch and Ingo Roth, “Theory of quantum sys-
+tem certification,” PRX Quantum 2, 010201 (2021).
+[47] Michael M Wolf, “Quantum channels & operations:
+Guided tour,” Lecture notes available at http://www-m5.
+ma. tum. de/foswiki/pub M 5 (2012).
+[48] Wassily Hoeffding, “Probability inequalities for sums of
+bounded random variables,” Journal of the American
+Statistical Association 58 (1963), 10.2307/2282952.
+[49] Łukasz Rudnicki, Zbigniew Puchała,
+and Karol Zy-
+czkowski, “Gauge invariant information concerning quan-
+tum channels,” Quantum 2, 60 (2018).
+[50] Jeff P. Barnes, Colin J. Trout, Dennis Lucarelli,
+and
+B. D. Clader, “Quantum error-correction failure distribu-
+tions: Comparison of coherent and stochastic error mod-
+els,” Phys. Rev. A 95, 062338 (2017).
+[51] Stefanie J. Beale, Joel J. Wallman, Mauricio Gutiérrez,
+Kenneth R. Brown, and Raymond Laflamme, “Quantum
+error correction decoheres noise,” Phys. Rev. Lett. 121,
+190501 (2018).
+[52] Sergey Bravyi, Matthias Englbrecht, Robert König,
+and Nolan Peard, “Correcting coherent errors with
+surface codes,” npj Quantum Information 4 (2018),
+10.1038/s41534-018-0106-y.
+[53] Eric Huang, Andrew C. Doherty, and Steven Flammia,
+“Performance of quantum error correction with coherent
+errors,” Phys. Rev. A 99, 022313 (2019).
+[54] Qinghong Yang and Dong E. Liu, “Effect of quantum
+error correction on detection-induced coherent errors,”
+Phys. Rev. A 105, 022434 (2022).
+[55] T.K. Sarkar and O. Pereira, “Using the matrix pencil
+method to estimate the parameters of a sum of complex
+exponentials,” IEEE Antennas and Propagation Maga-
+zine 37, 48–55 (1995).
+[56] Daniel Potts and Manfred Tasche, “Parameter estimation
+for nonincreasing exponential sums by prony-like meth-
+ods,” Linear Algebra and its Applications 439, 1024–1039
+(2013), 17th Conference of the International Linear Al-
+gebra Society, Braunschweig, Germany, August 2011.
+[57] Jonas Helsen, Francesco Battistel, and Barbara M Ter-
+hal, “Spectral quantum tomography,” npj Quantum In-
+formation 5, 1–11 (2019).
+[58] E. Onorati, A. H. Werner, and J. Eisert, “Randomized
+benchmarking for individual quantum gates,” Phys. Rev.
+Lett. 123, 060501 (2019).
+[59] Sarah Sheldon, Lev S. Bishop, Easwar Magesan, Stefan
+Filipp, Jerry M. Chow, and Jay M. Gambetta, “Charac-
+terizing errors on qubit operations via iterative random-
+ized benchmarking,” Phys. Rev. A 93, 012301 (2016).
+[60] Gui-Lu Long and Yang Sun, “Efficient scheme for initial-
+izing a quantum register with an arbitrary superposed
+state,” Phys. Rev. A 64, 014303 (2001).
+[61] Gregory Rosenthal, “Query and depth upper bounds for
+quantum unitaries via grover search,” arXiv preprint
+arXiv:2111.07992 (2021).
+[62] Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and
+Shengyu Zhang, “Asymptotically optimal circuit depth
+for quantum state preparation and general unitary syn-
+thesis,” arXiv preprint arXiv:2108.06150 (2021).
+[63] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan, “Quan-
+tum state preparation with optimal circuit depth: Im-
+plementations and applications,” Phys. Rev. Lett. 129,
+230504 (2022).
+[64] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
+and Alán Aspuru-Guzik, “The theory of variational
+hybrid quantum-classical algorithms,” New Journal of
+Physics 18, 023023 (2016).
+[65] Jay M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R.
+Johnson, John A. Smolin, Jerry M. Chow, Colm A. Ryan,
+Chad Rigetti, S. Poletto, Thomas A. Ohki, Mark B.
+Ketchen,
+and M. Steffen, “Characterization of ad-
+dressability by simultaneous randomized benchmarking,”
+Phys. Rev. Lett. 109, 240504 (2012).
+[66] Robin Harper, Steven T Flammia, and Joel J Wallman,
+“Efficient learning of quantum noise,” Nature Physics 16,
+1184–1188 (2020).
+[67] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger,
+Kevin Young, Erik Nielsen,
+and Robin Blume-Kohout,
+“Detecting crosstalk errors in quantum information pro-
+cessors,” Quantum 4, 321 (2020).
+[68] Anders Sørensen and Klaus Mølmer, “Quantum compu-
+tation with ions in thermal motion,” Phys. Rev. Lett. 82,
+1971–1974 (1999).
+[69] Anders Sørensen and Klaus Mølmer, “Entanglement and
+quantum computation with ions in thermal motion,”
+Phys. Rev. A 62, 022311 (2000).
+
diff --git a/dtA0T4oBgHgl3EQfG__M/content/tmp_files/load_file.txt b/dtA0T4oBgHgl3EQfG__M/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2bf1eeeeffb5a64315eb2d8533c4b37474cd97e5
--- /dev/null
+++ b/dtA0T4oBgHgl3EQfG__M/content/tmp_files/load_file.txt
@@ -0,0 +1,1011 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf,len=1010
+page_content='Benchmarking universal quantum gates via channel spectrum Yanwu Gu,1, 2, ∗ Wei-Feng Zhuang,1 Xudan Chai,1, 2 and Dong E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Liu2, 1, 3, † 1Beijing Academy of Quantum Information Sciences, Beijing 100193, China 2State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China 3Frontier Science Center for Quantum Information, Beijing 100184, China (Dated: January 6, 2023) Noise remains the major obstacle to scalable quantum computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Quantum benchmarking methods provide key information on noise properties for quantum processor calibration, quantum error mitigation, and quantum error correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, current benchmarking methods, such as randomized benchmarking or its variants, can only evaluate the performance of some particular subsets of quantum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Moreover, due to the randomization inherent in these protocols, the figure of merit they actually measure is not the fidelity of individual target gate but the average of the fidelities of some random circuit cycles incorporating the target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To overcome these limits, we propose the channel spectrum benchmarking (CSB), a method to infer the noise properties of the target quantum process, such as process fidelity, from the eigenvalues of its noisy quantum channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The noisy eigenvalues can be estimated by the circuits of control-free phase estimation in a state-preparation and measurement error resilient manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method can benchmark uni- versal quantum processes and is scalable to many-qubit quantum processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We demonstrate the performance of our method using simulated experiments, including the single-qubit Pauli rotations, 2-qubit fermionic simulation gates, a 3-qubit cycle implementing the Toffoli gate, and a 10-qubit cycle implementing the Ising Hamiltonian evolution operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method will pave an important way for the development of cleaner and large-scale quantum devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' INTRODUCTION The performance of today’s quantum computers is severely affected by noise and the limited number of qubits [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Quantum error correction and fault-tolerant schemes may someday unlock the full potential of quan- tum computation [2–7], but more precise gate opera- tions must be developed beforehand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It is crucial and necessary to obtain information on the gate noise char- acteristics and their performance benchmarks in order to calibrate and optimize these gate operations [8–10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Nonetheless, there is a trade-off between noise informa- tion obtained and the resource overhead for their testing experiments [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Process tomography [12, 13] is a typical technique for reconstructing the matrix representation of a quantum process, with which the full information of noise is at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, process tomography has expo- nentially increasing experimental costs and suffers from state-preparation and measurement (SPAM) errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Al- though its variant, the gate-set tomography [14–18], can handle SPAM errors, the experimental costs cannot be reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In reality, for probing noise strength or noise types of a gate, the full reconstruction of the noisy process is not necessary [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For instance, the average gate fi- delity, that measures the average performance of the im- plemented noisy gates, can be efficiently obtained by ran- domized benchmarking (RB) [21–26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The RB protocol is insensitive to SPAM errors and its variants [8, 27–29] ∗ guyw@baqis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='cn † dongeliu@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='cn can be applied to benchmark devices with larger system size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It is important to note that protocols like random- ized benchmarking do not directly measure the fidelity of individual quantum gates, but rather the average fidelity of some random circuit fragments [30–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To determine the fidelity of a specific gate, additional techniques such as interleaved RB [33] or modifying the sampling distri- bution of random circuits [27, 29] must be used, which can induce more experimental cost and is prone to a large systematic uncertainty [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Additionally, to simplify the functional form of measured signals in RB methods, it is often necessary to use group twirling, which limits the types of gates that can be benchmarked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As a conse- quence, the RB protocols based on random Clifford cir- cuits can only be applied to benchmark the Clifford gates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' however, the important non-Clifford gates have to rely on more complicated random circuit sets in which their native gates belong to other groups instead of Clifford group, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' dihedral groups [35, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In order to overcome the two limitations, we intro- duce channel spectrum benchmarking (CSB), a scalable protocol to estimate the individual noise properties of a universal quantum process from the noisy eigenvalues of its corresponding quantum channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We estimate the noisy eigenvalues by control-free phase estimation cir- cuits [40–44] that is robust to SPAM errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' With a re- lationship between ideal and noisy eigenvalues, which is derived from the first order perturbation theory [45], we can infer the diagonal entries of the matrix of pure noise process under a basis composed of the eigen-operators of the ideal gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' From these diagonal entries, we can estimate some noise properties, for examples, process in- fidelity, stochastic infidelity (a quantity similar to uni- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02056v1 [quant-ph] 5 Jan 2023 2 Gates Fidelity Conditions for Scalablity CSB universal General case: target Strong unitary error and RC: target + twirling gates eigen-decomposition of target gate is possible initial state preparation is efficient Clifford RB [22, 23] Clifford ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' among Clifford gates not scalable due to compilation issue [27] Mirror RB [29] Clifford ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' among rand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' cycles only applicable to Clifford gates CB [28] U m = I target + twirling gates target gate is Clifford XEB [8] universal ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' among rand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' cycles circuits can be classically simulated TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Comparison with other leading benchmarking protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We compare our CSB protocol with other benchmarking protocols under three aspects: (1) what gates they can benchmark;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (2) what type of fidelity they actually measure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (3) under what conditions they can be scalable to many-qubit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Usually, our CSB measures the fidelity of the target gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' But for strong unitary error, we need to perform randomized compiling (RC) [37, 38] with twirling gates to convert unitary error to stochastic error in order to obtain a better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' When benchmarking a circuit fragment, the twirling gates can be merged into target gate, our method still measures the individual fidelity of the target as shown in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' IV C and IV D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' But, when benchmarking native gates, the twirling gates can not be merged (see Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In this case, our method measures the average fidelity of the compositions of the target gate and twirling gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our CSB is scalable as long as eigen-decomposition of target is possible and the number of single and two-qubit gates in the circuits preparing initial states scales at most polynomial with the number of qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Clifford RB and Mirror RB use random Clifford circuits to simplify noise and thus only apply to Clifford gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The fidelity they actually measure is the average of fidelities among random Clifford cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Mirror RB can be scalable but Clifford RB cannot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For cycle benchmarking (CB), the gate or cycle U that can be benchmarked must satisfy U m = I where m is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' CB uses Pauli twirling to simplify noise and thus measures the fidelity of composition of target and twirling gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It needs to compute the output Pauli operator of ideal circuits, which is possible only when the target gate is Clifford for large systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' XEB uses random universal circuits to simplify noise, so it measures the average of fidelities among some random circuit cycles generated with a same sampling distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It requires the classical simulation of circuits to obtain the ideal probabilities of sampled bit strings, which limits its scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Additionally, our CSB and XEB can directly measure how close the noise is to unitary error, while RB methods need extra procedures to measure this information [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' tarity [39]) and over-rotation angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We demonstrate the performance of our method with some simulated exper- iments, 1-qubit Pauli rotaional gates, 2-qubit fermionic- simulation (Fsim) gates, 3-qubit circuit fragment imple- menting Toffoli gate, and 10-qubit circuit fragment im- plementing Ising evolution operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In all experiments, our CSB method can accurately estimate the noise prop- erties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To get a more clear picture of the performance of our CSB, in Table I, we compare our CSB protocol with other leading benchmarking protocols under three aspects: (1) what gates they can benchmark;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (2) what type of fidelity they actually measure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (3) under what conditions they can be scalable to many-qubit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' QUANTUM CHANNEL, FIDELITY, AND CHANNEL SPECTRUM In this section, we provide some preliminaries about quantum channel, the fidelity of implemented noisy gates, and the relationship between the fidelity of a gate and the channel spectrum of its noisy implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Consider a quantum gate U acting on a d-dimensional space with eigenvalues eiλa and eigenstates |φa⟩ such that U|φa⟩ = eiλa|φa⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Because of noise, the actual imple- mentation of the gate should be denoted as a quantum channel �U = EU, or say completely-positive and trace- preserving (CPTP) map [12], where U is the correspond- ing quantum channel of the ideal gate U and E is a pure noise process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Quantum channels are usually denoted by a set of Kraus operators, for example, U = UρU † and E(ρ) = � k EkρE† k where ρ is an arbitrary operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Quantum channels can also be represented by a matrix on the basis of d2 dimensional operator space, for ex- ample, Pauli operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We will use the two representa- tions interchangeably and the same symbols for both the abstract quantum channels and their matrix representa- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' One can use some fidelity measures to assess the per- formance of the implemented noisy gate �U, such as the process fidelity (or referred to as entanglement fidelity) which is defined as F(U, �U) = tr � I ⊗ U(|α⟩⟨α|) I ⊗ �U(|α⟩⟨α|) � (1) where |α⟩ = 1 √ d �d i=1 |i⟩⊗|i⟩ is the maximally entangled state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The process fidelity is closely related to another ubiquitous measure, the average gate fidelity [46] Fave(U, �U) = ˆ dψ tr � U(|ψ⟩⟨ψ|) �U(|ψ⟩⟨ψ|) � = dF + 1 d + 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (2) It has been proven that the process fidelity only depends on the trace of the pure noise E [46], that is F(U, �U) = tr � U† �U � d2 = tr{E} d2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (3) Current benchmarking methods, for example, random- ized benchmarking and its variants, measure the infor- mation of tr{E} on a basis composed of Pauli operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3 In these protocols, Clifford twirling or Pauli twirling are used to simplify the noise matrix E, that is, only diag- onal entries of E on the Pauli basis are kept, such that the relevant figure of merit can be extracted easily from measured signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The twirling operations need to be per- formed by running some random circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This causes RB type of methods only apply to some subsets of quantum gates and only measure the average fidelity of a set of gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Distracting from the Pauli operator basis, one can note that the ideal channel U also induces a natural opera- tor basis composed of its eigen-operators |φa⟩⟨φb| (corre- sponding eigenvalues are ei(λa−λb)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' If we can measure the diagonal entries of noise E in this basis, we can also estimate the gate fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This can be achievable by a relationship between the eigenvalues of noisy gate �U and those of ideal gate U [45], that is gabeiλab ≈ ei(λa−λb)tr � (|φa⟩⟨φb|)†E(|φa⟩⟨φb|) � (4) where gab and λab is the amplitude and phase of an eigen- value of �U with eigen-operator Mab, that is �U(Mab) = gabeiλabMab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For the spectrum of quantum channels, there are some useful properties [47]: (1) the eigenval- ues lie in the unit disc of complex plain, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', 0 ≤ gab ≤ 1 (2) the eigenvalues and eigen-operators always come in conjugate pairs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', for every eigenvalue gabeiλab we have �U(M † ab) = gabe−iλabM † ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The relationship Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (4) is derived from the first order perturbation theory [45] (also see Appendix A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus a diagonal entry of E in the basis composed of |φa⟩⟨φb| can be obtained Eab,ab ≈ gabeiλabe−i(λa−λb) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5) As long as we can measure the noisy eigenvalues gabeiλab of �U and identify their corresponding ideal eigenvalues ei(λa−λb), we obtain the diagonal entries of Eab,ab by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' If we can uniformly at random sample some noisy eigenvalues gabeiλab or equivalently Eab,ab, then we can use the average of these samples to obtain an esti- mate of process fidelity F = tr{E}/d2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Because all the diagonal entries have amplitude smaller than 1, we can infer the number of samples needed from the Hoeffding’s inequality [48], that is, let X1, · · · , XK be independent bounded random variables with ai ≤ Xi ≤ bi for all i ∈ [K] and denote their average X = 1 K � i Xi, then for any ϵ > 0 it holds that P ������X − 1 K � i E(Xi) ����� ≥ ϵ � ≤ 2 exp � − −2K2ϵ2 � i(bi − ai)2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (6) This inequality bounds the probability that the empirical average X deviates from the average of expectation val- ues of these random variables with a distance ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Assume we have K samples of diagonal entries Eab,ab sampled from a uniform distribution, so the expectation value of each sampled diagonal entry is E(Eab,ab) = tr{E} d2 = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We take the average value of these samples as our esti- mate of the process fidelity, that is ˆF = 1 K � ab Eab,ab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus, the needed number of diagonal entries Eab,ab to estimate the process fidelity within an error ϵ with the probability 1 − δ, or say P(| ˆF − F| ≤ ϵ) = 1 − δ, is K = log(2/δ) 2ϵ2 , (7) which is independent of the system dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Besides the process fidelity, the noisy eigenvalues can also be used to infer the noise strength of stochastic noise only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Since the amplitudes of eigenvalues are only af- fected by stochastic noise and not changed under unitary noise, we can use those amplitudes to define a quantity referred as stochastic fidelity Fsto = � 1 d2 � ab g2 ab .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (8) to assess the impact of stochastic noise only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As shown in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [49], the stochastic fidelity is related to the uni- tarity defined in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Both quantities measure how close the noise E is to a unitary channel and are use- ful for error-budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We emphasize that, compared to the stochastic errors, the unitary errors may cause more subtle and complicated problems in quantum error cor- rection and fault-tolerant quantum computation [50–54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As a result, differentiating between stochastic and uni- tary errors can assist us in recognizing their respective impacts, and in addition, can help to calibrate and tailor the error types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We can also estimate the actual values of some uni- tary parameters of a native gate, from the phases λab of noisy eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This is achieved by identifying the relationship between these unitary parameters and some eigenvalues of the gate, which is similar as the robust phase estimation [40] and Floquet calibration [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' CHANNEL SPECTRUM BENCHMARKING In this section, we present a practical procedure, which we refer as Channel Spectrum Benchmarking (CSB), to measure the individual fidelity of a universal process U no matter it’s a native gate or a circuit fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The estimate of fidelity of the gate U requires a uni- form sample of diagonal entries of E, which is identical to a uniform sample of noisy eigenvalues gabeiλab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The noisy eigenvalues can be estimated by the circuits of control- free phase estimation depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In these circuits, we first prepare a state ρ, then repeatedly apply the tar- get gate U for L times, and finally measure the expecta- tion value of an operator O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We denote the noisy version of ρ and O as �ρ and �O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The noisy eigen-operators Mab of �U can be used as a basis (not necessarily orthonormal) to expand the initial state �ρ, that is �ρ = � ab tr � G† ab�ρ � Mab (9) 4 |0⟩ 𝑈𝑠 𝑈 𝐿 prepare 𝑐𝑎 𝜙𝑎 + 𝑐𝑏|𝜙𝑏⟩ measurement 𝑈 𝑈𝑠 † Estimate noisy eigenvalues with matrix pencil method and compute diagonal entries by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Uniformly at random sample 𝐾 pairs of eigenstates 𝜙𝑎 , 𝜙𝑏 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For each pair of eigenstates, do step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Compute process fidelity and stochastic fidelity by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (13) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (14) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' |0⟩ 𝑈 𝐿 prepare 𝑐𝑎 𝜙𝑎 + 𝑐𝑏|𝜙𝑏⟩ measurement |0⟩ 𝑈 𝐿 prepare 𝑐𝑎 𝜙𝑎 + 𝑐𝑏|𝜙𝑏⟩ measurement 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For each length 𝐿 in [0, 𝐿max], run benchmarking circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The procedures of channel spectrum benchmarking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The benchmarking circuits are composed of three parts: the first part Us prepares the initial state |ψ⟩ = ca|φa⟩ + cb|φb⟩, which is a superposition of two eigenstates of target gate U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' then the target gate U is repeated L times, where L is an integer in [0, Lmax];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' finally, the operator O = |ψ⟩⟨ψ| is measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' where Gab is the corresponding left eigen-operator of Mab and they satisfy tr � G† abMa′b′ � = δab,a′b′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Then we can show that the expectation value of O at length L under noise is � �O � L = tr � �O �UL(�ρ) � = � ab tr � �OMab � tr � G† ab�ρ � (gabeiλab)L (10) This is a damping oscillating function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' From the time series data � �O � L at different depth L, we can extract the noisy eigenvalues via signal processing methods, such as matrix pencil method [55–57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' By selecting an appropriate initial state ρ and measure- ment operator O, we can control the number of eigenval- ues presented in the resulting signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The presence of too many different eigenvalues in the signals can pose some difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' These include: (1) it may be difficult to extract the eigenvalues from the measured signals, as this may require more data or equivalently a larger depth L (which is limited by the damping rate gab);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (2) it can be harder to identify the corresponding ideal eigenvalue for a given noisy counterpart;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (3) it can be difficult to maintain a uniform sample of the diagonal entries of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To address these issues, we prepare the initial state and measurement operator as follows: |ψ⟩ = ca|φa⟩ + cb|φb⟩ ρ = O = |ψ⟩⟨ψ| (11) which are superposition of two eigenvectors only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For this type of initial state and measurement operator, only the corresponding noisy eigenvalues of these ideal eigen-operators {|φa⟩⟨φb|, |φb⟩⟨φa|, |φa⟩⟨φa|, |φb⟩⟨φb|} (presented in the selected initial state) possess a major portion in the measured signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus, as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 1, we propose the proce- dures of channel spectrum benchmarking below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Uniformly at random sample K pairs of eigenstates {|φa⟩, |φb⟩} of target unitary operator U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For each pair of eigenstates, do step 3, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', running phase estimation circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In phase estimation circuits, one first prepares the initial state |ψ⟩ = ca|φa⟩ + cb|φb⟩, then repeatedly apply the target gate U for L times where L takes successive integers in [0, Lmax] , finally measure the probability ⟨O⟩L of obtaining O = |ψ⟩⟨ψ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Estimate the noisy eigenvalues gabeiλab (am- plitudes and phases) from the time series data � �O � L by matrix pencil method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 5 3b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Identify the ideal counterparts of the mea- sured noisy eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Compute the diagonal entries of E by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Compute the process fidelity by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (13) and stochastic fidelity by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Step 1 ensures the estimated diagonal entries are uni- form samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We require the amplitude of two coeffi- cients ca, cb are comparable and the initial state |ψ⟩ can be efficiently prepared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the simulated experiments, we always choose ca = cb = 1 √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The number of initial states K is independent of system dimension d and only depends on desired precision referring to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (7), which is guaranteed by Hoeffding’s inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' So our method has the potential scalable to many-qubit systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the phase estimation circuits of step 3, we choose the length L from [0, Lmax].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The maximum length Lmax and the number of initial states K determine the total number of benchmarking circuits Nc = K(Lmax + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' When combined with the number of shots Ns needed to run each circuit to collect statistic, the total experimen- tal cost is NcNs = K(Lmax + 1)Ns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The choice of Lmax and Ns also depend only on desired precision and not on the system dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Previous work has shown that the uncertainty of estimated eigenvalues is inversely propor- tional to the length L, the so-called Heisenberg scaling [40, 43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Therefore, if higher precision is desired, it is gen- erally better to increase Lmax rather than the number of shots Ns per circuit, before the signals are completely degraded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In step 3a, the noisy eigenvalues are estimated using the matrix pencil method [55–57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This method is well- suited for this task because it involves a singular value decomposition of the data Hankel matrix, which allows us to keep only the components with non-trivial singu- lar values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', those caused by noisy eigenvalues of ideal eigen-operators shown in initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This process can reduce sampling error and eliminate unwanted eigenval- ues due to SPAM errors or the effect of degenerate eigen- values (for both the phase and the amplitude) of ideal channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In our simulated experiments, when using an initial state with unequal phases λa, λb, the number of obtained noisy eigenvalues is at most four.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In step 3b, our goal is to match the obtained noisy eigenvalues from matrix pencil method to their corre- sponding ideal counterparts such that we can compute the diagonal entries of E by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For a initial state whose two eigenstates |φa⟩, |φb⟩ have equal eigenvalues, this process is not needed because all ideal channel eigen- values are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, for a initial state with unequal two eigenvalues, there are three ideal channel eigenvalues {ei(λa−λb), e−i(λa−λb), 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To match the obtained noisy eigenvalues to the three ideal ones, we calculate the dis- tance between the phases of the estimated noisy eigen- values and the ideal phase λa − λb of the eigenvalue of the particular eigen-operator |φa⟩⟨φb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The noisy eigen- value with the smallest distance is chosen as the noisy counterpart of the ideal eigenvalue ei(λa−λb).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Similarly, the noisy counterpart of e−i(λa−λb) is also determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The remaining noisy eigenvalues are considered as the counterparts of the ideal eigenvalue 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This criterion assumes that the magnitude of the actual phase error δλ = λab − (λa − λb) is small, more precisely we require |δλ| ≪ |λa − λb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (12) After calculating the diagonal entries using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5), we divide them into two categories based on the ideal eigenvalue of the associated basis |φa⟩⟨φb|: one is the trivial operator subspace with λa = λb (or say the opera- tor subspace spanned by the eigen-operators with eigen- value 1), the other is the non-trivial operator subspace with λa ̸= λb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Because the dimension of trivial sub- space dts is usually very different from the dimension of non-trivial subspace dns, the probability of sampling an entry in the two subspace are very different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For exam- ple, for a many-qubit gate U with non-degenerate oper- ator spectrum, the trivial subspace is spanned by all the eigen-operators with the form |φa⟩⟨φa|, whose dimension dts = d is much smaller than dns = d2 − d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' If there are some degeneracy in the spectrum of the operator U, that is λa = λb for two different eigenstates |φa⟩, |φb⟩, the trivial subspace can include the eigen-operators of the form |φa⟩⟨φb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In step 1, we assign the same probability for the two subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Therefore, we need to separately compute the average of the diagonal entries in the triv- ial and non-trivial subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Finally, the estimator of the process fidelity is obtained by combining these two averages, that is ˆF = dts Eab,ab|λa=λb + dns Eab,ab|λa̸=λb d2 (13) where Eab,ab is the average value of sampled entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Sim- ilarly, the estimator for stochastic fidelity is ˆFsto = � dts g2 ab,ab|λa=λb + dns g2 ab,ab|λa̸=λb d2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (14) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' SIMULATED EXPERIMENTS In this section, we perform simulated experiments to show the performance of our CSB protocol, including single-qubit Pauli rotation gates, two-qubit Fermionic simulation (Fsim) gates, three-qubit Toffoli gate, and an Ising Hamiltonian evolution operator with 10 qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Throughout this work, each benchmarking circuit is re- peated Ns = 104 times to collect enough statistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Single-qubit Pauli rotation gates Here we measure the fidelity of single-qubit rotation gates, that is Rσ(θ) = e−i θ 2 σ (15) 6 10 3 10 2 10 1 Probability of stochastic error p 10 3 10 2 Infidelity (a) Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 Angle error Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' angle error Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' angle error 10 3 10 2 10 1 Angle of unitary error 10 3 6 × 10 4 2 × 10 3 3 × 10 3 Infidelity (b) 10 3 10 2 10 1 Angle error FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Benchmarking of T gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In (a), we fix the uni- tary error (δθ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01) and vary the probability of stochastic error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In (b), we fix the stochastic error (δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001) and vary the angle of unitary error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The actual process infidelity and stochastic infidelity is obtained by first computing the channel of noisy gate and then using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (3) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In both cases, we accurately estimate process infidelity, stochas- tic infidelity and the angle of unitary error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The accuracy of estimation can be further improved by increasing the circuit length or shots for each circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' where θ is the rotational angle and σ is a Pauli matrix describing the direction of the rotational axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This type of unitary operator has two eigenvalues e−i θ 2 and ei θ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The dimension of the trivial eigen-operator subspace is 2, which is the same as the dimension of the non-trivial eigen-operator subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our choice of initial state only generates one operator 1 2(|φa⟩⟨φa| + |φb⟩⟨φb|) in the triv- ial subspace, which means that we may only obtain one noisy eigenvalue in this subspace, potentially leading to an inaccurate estimation of the process fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To ad- dress this issue, we also prepare another initial state to run phase estimation circuits, that is one of the eigen- states of Rσ(θ) in addition to the superposition state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This results in a value of K = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' At the same circuit length, we sum the measured probabilities of the two types of circuits with the two initial states, allowing us to extract all the noisy eigenvalues simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2 shows the results of benchmarking RZ( π 4 ) (also known as T gate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In this simulation, the noise model consists of a combination of stochastic errors (includ- ing T1 and T2 errors with equal probabilities δp) and over/under-rotation errors with angle δθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2(a), we fix the unitary error (δθ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01) and vary the probabil- ity of stochastic error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2(b), we fix the stochastic error (δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001) and vary the angle of unitary error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In both cases, we are able to accurately estimate the pro- cess fidelity of the gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As a byproduct, we can also estimate the angle of the unitary error by comparing the phases of some noisy eigenvalues to their corresponding ideal values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This is a more sensitive probe of unitary errors than infidelity, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2(b), where the process infidelity remains almost unchanged when δθ is varied from 10−3 to 10−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In this simulation, we set Lmax = 50, except when stochastic probability δp = 10−3, where Lmax = 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It is worth noting that the accuracy of the estimation can be further improved by increasing the length of the bench- marking circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, increasing Lmax directly also increases the number of circuits used, which leads to higher costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Instead, we can repeat the target gate U a certain number of times (Nrep times) to create a new tar- get gate, U ′ = U Nrep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Correspondingly, the noisy eigen- value we estimate becomes (gabeiλab)Nrep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' But remember we need to determine the ideal eigenvalue from phase difference, thus as a result of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (12), we require Nrep|δλ| ≪ |λa − λb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (16) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Two-qubit Fsim gates Here, we benchmark the two-qubit fermionic- simulation (Fsim) gates [8], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', Fsim(θ, φ) = � �� 1 0 0 0 0 cos θ −i sin θ 0 0 −i sin θ cos θ 0 0 0 0 eiφ � �� (17) where θ is the iswap angle and φ is the control phase angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We omit some phase parameters that can be freely adjusted by Z rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For the preparation of initial states, we consider all pairs of eigenstates (K = 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The choice of Lmax is 50 or 100 (for δp = 10−3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In this simulation, the noise model includes T1, T2 noise with equal probabilities δp for all single-qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For two-qubit gates, each qubit experiences the same errors as single-qubit gates, as well as an over-rotation unitary error with angle errors δθ and δφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We benchmark a specific Fsim gates with θ = π 4 , φ = π 2 , as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3(a), we fix the unitary error with δθ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01, δφ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 and vary the probability of stochastic error δp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We accurately estimate all infidelities in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, the estimation of the angle of the unitary error becomes less accurate when the stochastic error is too strong, as the signal decays too quickly to accumulate enough information to estimate the angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3(b), we fix the probability of stochastic error with δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001 and vary the angles of unitary error with δθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='5δφ = 10−3 ∼ 10−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Again, we accurately estimate all infidelities and angles of the unitary error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 7 10 3 10 2 10 1 Probability of stochastic error p 10 3 10 2 10 1 Infidelity (a) Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='00 Angle error Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' error Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' error Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' error Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' error 10 3 10 2 10 1 Angle of unitary error 10 3 10 2 Infidelity (b) 10 3 10 2 10 1 Angle error FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Benchmarking of a Fsim gate with θ = π 4 , φ = π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In (a), we fix the unitary error with δθ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01, δφ = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 and vary the probability of stochastic error δp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 3(b), we fix the probability of stochastic error with δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001 and vary the angles of unitary error with δθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='5δφ = 10−3 ∼ 10−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We always accurately estimate the process infidelity and the stochastic infidelity of the gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' But, the accuracy of estimating the angles of the unitary error is compromised when there is a high level of stochastic noise, as the signal degrades quickly and there is not enough data to accurately estimate the angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Three-qubit Toffoli gate In this study, we evaluate the performance of the three- qubit Toffoli gate, which is not a native gate but rather a circuit fragment composed of 1-qubit and 2-qubit gates as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We randomly select K = 10 pairs of eigenstates as the initial state and set Lmax = 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the simulated noise model, all single-qubit gates are subject to T1, T2 noise with equal probability δp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For the two-qubit gates, each qubit experiences the same type of stochastic error as the single-qubit gates, followed by a unitary error of the Fsim type with error angles δθ = δφ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The Toffoli operator has a highly degenerate spectrum, which creates two challenges for our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' First, when sampling noisy eigen-operators, we need them to be uni- formly distributed, but for degenerate eigenvalues, the noisy eigen-operators are superpositions of ideal ones in the degenerate subspace, which are determined by the de- tails of the noise, see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This makes it difficult to generate a uniform sample of noisy eigen-operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Second, the degenerate eigenvalue may be split by noise into many eigenvalues in the signal, making it harder to extract the noisy eigenvalues and each eigenvalue may only occupy a small portion of the signal, making them 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='010 Probability of stochastic error p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='40 Infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (varied circ) Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (varied circ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 Angle of unitary error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 Infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (varied circ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' RC) Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (varied circ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' RC) (a) (b) (c) q0 q1 q2 0, 0, 0 U3 0, 0, 0 U3 /2, 0, U3 0, 0, 0 U3 0, 0, 0 U3 0, 0, /4 U3 0, 0, 0 U3 0, 0, 0 U3 0, 0, /4 U3 0, 0, 0 U3 0, 0, 0 U3 0, 0, /4 U3 0, 0, 0 U3 0, 0, /4 U3 0, 0, /4 U3 0, 0, 0 U3 0, 0, /4 U3 /2, 0, U3 0, 0, /4 U3 0, 0, /2 U3 0, 0, 0 U3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Bechmarking of Toffoli circuit fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We fix the unitary error (δθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01) and vary stochastic error in (a), and fix stochastic error (δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001) and vary unitary error in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The circuit implementing Toffoli gate is presented in (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Due to the highly degenerate spectrum of the Toffoli gate, the estimate of the infidelity is unreliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, the degener- acy can be removed by changing the last layer of single-qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' With the varied circuit, we accurately estimate the in- fidelity of the Toffoli circuit under weak unitary error in (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For strong unitary error, we perform randomized compiling to the benchmarking circuits, converting the unitary error into stochastic error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As a result, the varied circuit also accurately estimates the process infidelity of Toffoli circuit under strong unitary error, as shown in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' more susceptible to errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The impact of the highly de- generate spectrum on the estimate of gate noise is demon- strated by the simulated results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4(a),(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Usually, some of degeneracy can be removed by ap- pending a layer of single-qubit gates to the target gate or circuit fragment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For the Toffoli circuit, we append RZ( π 2 )⊗RZ( 2π 3 )⊗RX( 4π 5 ) to the Toffoli circuit and com- bine this layer with the last layer of the Toffoli circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The choice of appended layer should keep the state prepa- ration of the new target gate efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Here our choice does not change the eigenstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For the angle parame- ters in the appended gates, one can design an optimiza- tion algorithm to choose the parameters that maximize the distance between eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The appended layer of gates results in a varied circuit with a similar structure to 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='010 Probability of stochastic error p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='45 Infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 Angle of unitary error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='20 Infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (RC) Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (RC) (a) (b) (c) q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='628 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='929 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='17 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='626 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='79 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='745 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='487 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='742 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='758 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='68 U3 0, 0, 0 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='4 U3 0, 0, 0 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='198 U3 0, 0, 0 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='25 U3 0, 0, 0 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='05 U3 0, 0, 0 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0943 U3 0, 0, 0 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01 U3 0, 0, 0 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='03 U3 0, 0, 0 U3 0, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='93 U3 0, 0, 0 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='222 U3 0, 0, 0 U3 0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='393 U3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Benchmarking of a 10-qubit Ising evolution operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We fix unitary error (δθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01) and vary stochastic error in (a), and fix stochastic error (δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001) and vary unitary error in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The circuit implementing Ising evolution operator is presented in (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The actual fidelity is not computed from the channel of the circuit, but rather inferred from the product of the fidelity of all single-qubit and two-qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, the actual stochastic infidelity can not be reliably inferred by this procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We accurately estimate infidelity of the Ising evolution operator under weak unitary error (a) and strong unitary error with RC (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' the original Toffoli circuit (only the last layer is changed) and they should possess similar noise properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the case of strong stochastic error and weak unitary error (δθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='01) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4(a), the benchmarking of the varied circuit provides a very accurate estimate of the process infidelity and the stochastic infidelity of the original Tof- foli circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, there is a significant difference between the estimated and actual process infidelity when the unitary error is very strong, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4(b) (with fixed stochastic error δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the Appendix B, we show that our method may under-estimate the process infidelity in the presence of certain strong unitary errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' One way to address this issue is to introduce random gates into the benchmarking circuits to convert the uni- tary errors to stochastic errors [37, 38, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The Ap- pendix C describes a procedure for transforming noise in the native gates to stochastic errors using random gates from the symmetry group of the target U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For bench- marking circuit fragments, we use a technique called ran- domized compiling [37, 38] to achieve this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Randomized compiling (RC) is a method that transforms the noise in the circuit into stochastic Pauli errors while maintain- ing the circuit structure and depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' After RC, the noise type of a circuit cycle is changed, but the fidelity of the cycle and the circuit structure remains unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As long as there is no repeated structure in U where unitary error can coherently build up and increase the infidelity quadratically with the circuit depth [59] (this is a case where RC should be introduced to suppress the unitary noise), we expect the fidelity of the circuit U to remain unchanged after RC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For each original circuit, we gener- ate Nr = 10 random circuits by RC and each random circuit is run 103 times to keep the cost unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 4(b), after RC the varied circuit can ac- curately estimate the process infidelity of Toffoli circuit under unitary noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ten-qubit Ising evolution operator Our method is practically scalable if the following two requirements are met: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The eigenvalues and eigenvectors of target unitary operator U can be efficiently computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The initial state can be efficiently prepared, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', the number of 1-qubit and 2-qubit gates needed for the preparation should at most scale polynomial with the number of qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In general, these two requirements are not always sat- isfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, for certain types of unitary operators, such as the evolution operator of an Ising Hamiltonian, these requirements can be met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For an Ising Hamiltonian, the eigenvectors are known and are simply the computa- tional basis states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Given an eigenstate, the eigenvalue can be efficiently computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The initial state of a superposition of two computa- tional basis states |x⟩ = |x0, · · · , xi, · · · , xN−1⟩, |y⟩ = |y0, · · · , yi, · · · , yN−1⟩ can be prepared as follows: first, for the qubit i, if xi = yi, the state can be prepared by an X gate if xi = yi = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' then, for the state of re- maining qubits with xi ̸= yi, if we only have one such qubit, a Hadamard gate H can be applied;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' if there is more than one qubit with xi ̸= yi, one can first prepare a GHZ state on these qubits and then apply some X gates to obtain the target state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Therefore, the prepa- ration of such states cost at most N 1-qubit and N 2- qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Additionally, for the evolution operator of the Hamiltonian that can be obtained by performing lo- cal unitary transformation on an Ising Hamiltonian, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', H = � i UiHIsing � i U † i , the initial states can also be obtained in the similar way with additional two layers of single-qubit gates � Ui, � U † i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus, this type of evolution operators is a good example for benchmarking many-qubit quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 9 Here we benchmark the evolution operator of a 1- dimensional Ising ring H = �10 i=1 hiZi + Ji,i+1ZiZi+1, where hi, Ji,i+1 are randomly chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The circuit is shown as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 5(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We sample K = 10 pairs of eigen- states and set Lmax = 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The noise model is the same as the case in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' IV C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The actual infidelity is inferred from the infidelity of single-qubit and two-qubit gates, because our computer is not powerful enough to compute the quantum channel of a 10-qubit circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method ac- curately estimates process infidelity under both weak and strong unitary error (with RC), as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 5(a),(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' CONCLUSION AND OUTLOOK In this work, we introduced a procedure called chan- nel spectrum benchmarking, which infers the noise prop- erties of a quantum gate from the eigenvalues of noisy channel representing the gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the protocol, we first choose the initial state using a superposition of randomly sampled pair of eigenstates of the target gate, and then, we use control-free phase estimation circuits to estimate the noisy eigenvalues in a SPAM error-resistant manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This choice of initial state simplifies the data processing because the measured signal only contains a few eigen- values, which can be extracted using signal processing methods such as the matrix pencil method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' By compar- ing the noisy eigenvalues to their ideal counterparts, we can estimate noise properties such as the process infi- delity, stochastic infidelity, and some over-rotation angle errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method can be applied to any quantum gate, but performs better on gates with non-degenerate oper- ator spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For gates with highly degenerate spec- trum, we can append a layer of single-qubit gates to re- move the degeneracy while maintaining a similar circuit structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Some types of unitary error can also affect the performance, which can be addressed using randomiza- tion techniques like randomized compiling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method is scalable to many-qubit systems as long as the eigen- decomposition can be computed and the initial state can be efficiently prepared, such as the evolution operator of an Ising-type Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The requirements for the scalability of our method could be relaxed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In principle, we do not need to obtain the complete set of the eigenmodes for the target gate operator, a few samples of eigenvalues and eigenstates are sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For initial state preparation, there are ex- isting methods for preparing arbitrary states [60–63], but it would be interesting to develop a more efficient algo- rithm for preparing the particular type of initial states in our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A variational algorithm [64] may be able to efficiently prepare these states for most target gates, because we have the freedom to choose the coefficients of the superposition states and do not need perfect prepa- ration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method can be scaled up in a way similar to simultaneous randomized benchmarking [65, 66], where some few-qubit gates are simultaneously benchmarked on different subsets of a many-qubit system such that the ef- fect of crosstalk [67] can be detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' One immediate use of benchmarking is to calibrate quantum gates using the measured figures of merit as a cost function [8–10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Our method can provide more spe- cific information (process infidelity, stochastic infidelity and over-rotation angle of the target gate) about the cal- ibrating gate, so it is expected to perform better on this task than other benchmarking methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A detailed com- parison of different benchmarks for calibration will be a topic for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Additionally, our method can be used to calibrate universal gates, including not only 1 or 2-qubit native gates, but also many-qubit native gates such as MS gates [68, 69] used in ion trap systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It may also be interesting to use our method to calibrate certain circuit fragments that are commonly used in al- gorithms, such as the trotterized Hamiltonian evolution operator in quantum simulation and the Grover iteration operator in Grover’s search algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' ACKNOWLEDGMENTS The work is supported by the National Natural Sci- ence Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 12147123 and 11974198) and Beijing Natural Science Foundation (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Z220002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Source code for the simulated experiments is available at this site https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='com/yanwu-gu/ channel-spectrum-benchmarking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Appendix A: The relationship between noisy and ideal eigenvalues of quantum channels In this section, we derive the relationship between the noisy channel eigenvalues of a gate and its correspond- ing ideal counterparts with the first order perturbation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Consider a gate U acting on a d-dimensional space with eigen-decomposition U|φa⟩ = eiλa|φa⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' As the actual im- plementation of a gate U is inevitably associated with some noise, it is more convenient to use quantum chan- nels rather than quantum operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Quantum channels are completely-positive trace-preserving (CPTP) maps, which transform one operator to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The action of a quantum channel E on an arbitrary operator O can be characterized by a set of Kraus operators Ek, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', E(O) = � k EkOE† k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We denote the corresponding uni- tary channel of the unitary operator U as U, whose action on an operator O is U(O) = UOU †.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus, the unitary channel U has the eigen-decomposition U(|φa⟩⟨φb|) = U|φa⟩⟨φb|U † = ei(λa−λb)|φa⟩⟨φb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A1) Quantum channels are linear maps that can be repre- sented as matrices under a set of the basis operators of the operator space, such as eigen-operators |φa⟩⟨φb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Meanwhile, operators are represented as vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The as- sociated inner product between two operators A and B is 10 the Hilbert-Schmidt inner product tr � A†B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Therefore, in this representation U is a unitary matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Let us append a noise channel E to U, with the noisy version of U denoted as �U = EU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We investigate the re- lationship between the eigenvalues of �U and those of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' If the noise is relatively weak, the problem is an eigen- value perturbation of unitary matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Given the close re- lationship between unitary and Hermitian matrices, one can use Hermitian matrix perturbation theory to get the correction of eigenvalues and eigenstates, assuming a di- agonalizable noisy gate �U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In most cases, the assumption should be met in actual devices, since diagonalizable ma- trices are dense in the space of all matrices, meaning that any non-diagonalizable matrix can be deformed into a di- agonalizable one by a small perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the follow- ing, we apply Hermitian perturbation theory to obtain the first order correction of the eigenvalues, and obtain the relationship between the noisy eigenvalues and ideal ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Define the eigenvalues and eigen-operators of �U as gabeiλab and Mab, that is �U(Mab) = gabeiλabMab .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A2) The perturbation matrix is ∆ = �U − U = (E − I) U .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A3) We assume the perturbation is small in terms of some norm, such as the diamond norm ∥∆∥⋄ = δ [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Then, for a non-degenerate eigenvalue ei(λa−λb) with eigen- operator |φa⟩⟨φb|, the first order correction is ϵab 1 = tr � (|φa⟩⟨φb|)†∆(|φa⟩⟨φb|) � = tr � (|φa⟩⟨φb|)†(E − I) U(|φa⟩⟨φb|) � = ei(λa−λb) � tr � (|φa⟩⟨φb|)†E(|φa⟩⟨φb|) � − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A4) Thus, the noisy eigenvalue is approximated as gabeiλab ≈ ei(λa−λb) + ϵab 1 = ei(λa−λb)tr � (|φa⟩⟨φb|)†E(|φa⟩⟨φb|) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A5) In this case, the noisy eigen-operator Mab is approxi- mated by Mab ≈ |φa⟩⟨φb| + O(δ) (A6) where O(δ) are some correction terms with the first order of δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For degenerate eigenvalues eiλn with eigen-operators |φa⟩⟨φb| satisfying λa − λb = λn, these eigen-operators span a subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The ab, a′b′-entry of the perturbation matrix projected in this subspace is ∆(n) ab,a′b′ = tr � (|φa⟩⟨φb|)†(E − I) U(|φa′⟩⟨φb′|) � = eiλn � tr � (|φa⟩⟨φb|)†E(|φa′⟩⟨φb′|) � − δaa′δbb′� = eiλn(E(n) ab,a′b′ − I(n) ab,a′b′) (A7) where E(n) ab,a′b′ and I(n) ab,a′b′ are the entries of pure noise map E and Identity map I projected in this degenerate subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the degenerate case, the first order correc- tions to the eigenvalue eiλn of U are the eigenvalues of the perturbation matrix ∆(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It’s easy to find that the matrix ∆(n) and the matrix E(n) have the same eigen- operators M 0 pq, which are the superposition of eigen- operators |φa⟩⟨φb| in this degenerate subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' They are also the corresponding unperturbed eigen-operators of noisy eigen-operator Mpq of �U, that is Mpq ≈ M 0 pq+O(δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In this case, the eigenvalue gpqeiλpq of �U is gpqeiλpq ≈ eiλn + tr � G0† pq∆(n)(M 0 pq) � = eiλn + eiλn � tr � G0† pqE(n)(M 0 pq) � − 1 � = eiλntr � G0† pqE(n)(M 0 pq) � (A8) where G0 pq is the corresponding left eigen-operator of M 0 pq and they satisfy tr � G0† pqM 0 p′q′ � = δpq,p′q′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Therefore, the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A8) has the same form as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (A5) but with a basis of a different form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Appendix B: Perturbation of channel eigenvalues under pure unitary error Here we consider the noisy eigenvalues of a quantum gate under a pure unitary error V = e−iHeδ (B1) where He is the Hamiltonian of error and δ characterize the error strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Assume the target gate U = e−iHθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus the operator of noisy gate is �U = V U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In this case, the process fidelity is F = |tr{V }|2 d2 ≈ |tr � I − iHeδ − 1 2H2 e )δ2� |2 d2 = d2 − dtr � H2 e � δ2 d2 = 1 − tr � H2 e � d δ2 (B2) where we use the property tr{He} = 0 and keep the term up to O(δ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This is a well-known result that unitary error with some matrix norm δ has process infidelity of order O(δ2) [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We then analyze how eigenvalues of a quantum chan- nel U change under such unitary error with perturbation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Now the effect of the noisy gate �U on an oper- ator O is �U(O) = V UOU †V †.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Represent all quantum channels as matrices, the perturbation matrix is ∆ = �U − U .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B3) 11 For a non-degenerate eigen-operator |φa⟩⟨φb| with eigen- value ei(λa−λb), the first order correction is ϵab 1 = tr � (|φa⟩⟨φb|)†∆(|φa⟩⟨φb|) � = ei(λa−λb) � tr � (|φa⟩⟨φb|)†V |φa⟩⟨φb|V †� − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B4) To further expand this equation, we will use the Baker- Hausdorff (BH) lemma eXY e−X = eadX(Y ) = ∞ � n=0 adn X(Y ) n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B5) where ad is a map on operators with the effect adX(Y ) = [X, Y ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Then the first order correction is ϵab 1 = ei(λa−λb) � tr � (|φa⟩⟨φb|)†e−iδadHe (|φa⟩⟨φb|) � − 1 � ≈ ei(λa−λb) � tr � (|φa⟩⟨φb|)† � I − iδadHe − 1 2δ2ad2 He � (|φa⟩⟨φb|) � − 1 � = ei(λa−λb) � ����−iδ (⟨φa|He|φa⟩ − ⟨φb|He|φb⟩) � �� � ϵab 1,1 −1 2δ2tr � (|φa⟩⟨φb|)†ad2 He(|φa⟩⟨φb|) � � �� � ϵab 1,2 � ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B6) If we consider only the first-order correction, the noisy eigenvalue is gabeiλab ≈ ei(λa−λb) + ϵab 1 = ei(λa−λb)(1 + ϵab 1,1 + ϵab 1,2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B7) From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (3) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (5), we get the estimate of process fidelity ˆF = 1 + 1 d2 � ab ϵab 1,1 + 1 d2 � ab ϵab 1,2 (B8) where the term with order O(δ) is 1 d2 � ab ϵab 1,1 = 1 d2 � ab −iδ (⟨φa|He|φa⟩ − ⟨φb|He|φb⟩) = 0 (B9) and the term with order O(δ2) is 1 d2 � ab ϵab 1,2 = − δ2 2d2 � ab tr � (|φa⟩⟨φb|)†[He, [He, |φa⟩⟨φb|]] � = − δ2 2d2 � ab ⟨φa|H2 e |φa⟩ − 2⟨φa|He|φa⟩⟨φb|He|φb⟩ + ⟨φb|H2 e |φb⟩ = − δ2 2d2 (2dtr � H2 e � − 2tr{He}2) = −1 dtr � H2 e � δ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B10) This coincides with the expression in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, due to the first order correction only contributing a term with order O(δ2), we must also take into account the second order correction to the eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The second order correction is ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ϵab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='2 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='mn̸=ab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='|tr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='(|φm⟩⟨φn|)†∆(|φa⟩⟨φb|) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ei(λa−λb) − ei(λm−λn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='mn̸=ab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='|tr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='(|φm⟩⟨φn|)†V |φa⟩⟨φb|V †� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ei(λa−λb) − ei(λm−λn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='mn̸=ab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='|⟨φm|V |φa⟩|2|⟨φn|V |φb⟩|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ei(λa−λb) − ei(λm−λn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='≈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='mn̸=ab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='δam + (⟨φm|He|φa⟩⟨φa|He|φm⟩ − ⟨φm|H2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e |φa⟩δam)δ2� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='δbn + (⟨φn|He|φb⟩⟨φb|He|φn⟩ − ⟨φn|H2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='e |φb⟩δbn)δ2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ei(λa−λb) − ei(λm−λn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='m̸=a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='⟨φm|He|φa⟩⟨φa|He|φm⟩δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ei(λa−λb) − ei(λm−λb) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='n̸=b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='⟨φn|He|φb⟩⟨φb|He|φn⟩δ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='ei(λa−λb) − ei(λa−λn) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B11) If the error Hamiltonian He is diagonal under the basis of eigenvectors of U, the second order correction is ϵab 2 = 0 up to the second order O(δ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' There is no problem for our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, except the special case, there is some dis- crepancy between the process fidelity estimated using our method and the actual value, due to the presence of the term ϵab 2 in the noisy eigenvalue gabeiλab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Here, we can directly compute the noisy eigenvalues of the channel �U from the eigenvalues of the operator �U and give the analytical form of estimated process fidelity by our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We first compute the Hamiltonian of �U by Baker-Campbell-Hausdorff formula H′ = log (V U) = log (e−iHeδe−iHθ) ≈ −iHθ − iHeδ − 1 2ad−iHθ(−iHeδ) + 1 12ad2 −iHθ(−iHeδ) − 1 720ad4 −iHθ(−iHeδ) + · · · (B12) where we only keep the terms up to the order O(δ) and omit some terms with the ad map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We can compute the eigenvalues of H′ comparing to those of the −iHθ with the first order perturbation theory .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The first order correction to the eigenvalue iλa with eigenstate |φa⟩ is ϵa 1 = ⟨φa|H′ − (−iHθ)|φa⟩ = −iδ⟨φa|He|φa⟩ (B13) where these terms with ad map are all zeros because ⟨φa|ad−iHθ(O)|φa⟩ = −iθ⟨φa|(HO − OH)|φa⟩ = iλa(⟨φa|O|φa⟩ − ⟨φa|O|φa⟩) = 0 (B14) where O is an any operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Then the noisy eigenvalue of |φa⟩⟨φb| is gabeiλab ≈ eiλa+ϵa 1−iλb−ϵb 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B15) Thus our estimator for process fidelity is ˆF = 1 d2 � ab eϵa 1−ϵb 1 = 1 − � a⟨φa|He|φa⟩2 d δ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (B16) Because the term � a⟨φa|He|φa⟩2 is always smaller than the term tr � H2 e � except when He is a diagonal matrix un- der the basis |φa⟩, our method under-estimates process infidelity under unitary error in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This problem can be fixed by introducing some randomization proce- dure into the benchmarking circuits to convert unitary errors to stochastic errors [37, 38, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Appendix C: Randomized compiling with the symmetric group of the target gate For a circuit composed of single-qubit and two-qubit gates, randomized compiling (RC) is a standard proce- dure to tailor the noise into stochastic Pauli noise with Pauli twirling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Here, we consider another case that the circuit is repetitions of a native gate U, that is U L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In the spirit of RC, if considering U as hard gate, we need a twirling group T, whose element Ti should be trans- formed to another Tj under the conjugate operation of U, that is UTiU † = Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A simple example of this type of groups is a symmetric group of U T = {T : U †TU = T} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (C1) 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='10 Angle of unitary error 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='0035 Infidelity Act.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (RC) Est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' stoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' infidelity (RC) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Benchmarking of T gate with randomized compiling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In simulation, stochastic error is fixed (δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001) and uni- tary is RX(δθ) with varied error angle δθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The twirling group is T = {I, Z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For each original circuit, we generate Nr = 10 random circuits and each random circuit is run for Ns = 103 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For the sequence of U L, random gates from the twirling group T are introduced before each application of U, but the effect of these random gates should be cancelled be- fore the next U is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Finally, we get a new random sequence T † LU(TLT † L−1) · · · U(TiT † i−1) · · · U(T2T † 1 )UT1 (C2) where the gates in parentheses should be implemented as one gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' In actual implementation, all the gates should be associated with a noise, and the gate sequence is de- noted as composition of quantum channels T † LET EUTLT † L−1ET · · · EUT2T † 1 ET EUT1ET = T † LET ETLUT † L−1ET · · · ET2UT † 1 ET ET1UET (C3) where we use the property that the gates in group T commute with U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We assume the noise of each twirling gate is the same quantum channel ET for simplicity, but this assumption can be relaxed [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' After averaging many such random sequences we get � 1 NT � TL T † LET ETL � U · · · � 1 NT � T1 T † 1 ET ET1 � UET (C4) where NT is the number of gates in the twirling group T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The effect of this randomization procedure is to trans- form the noise to stochastic noise, that is applying a random quantum channel T †ET ET with probability 1 NT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' One can use group representation theory to get a sim- pler form of the noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' But in our case, this subtlety is not necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' This procedure is similar to the Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, we do not require the twirling group is abelian and do not need the assumption that there is no equal ir- reducible representation for symmetric group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Thus our method has high flexibility to choose twirling group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We use a simulated experiment to show the perfor- mance of this procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We benchmark T gate under a unitary error RX(δθ) with varied error angle δθ and fixed stochastic error δp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' We choose T = {I, Z} as twirling group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For each original circuit, we generate Nr = 10 random circuits and each random circuit is run for Ns = 103 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' The theory in Appendix B shows that the process in- fidelity estimated by our method is of the order O(δθ4) without the use of randomized compiling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' However, by introducing randomized compiling, our method can ac- curately estimate the process infidelity, as demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' It is important to note that the process in- fidelity measured using randomized compiling on native gate includes the noise from both the target gate and the twirling gates, since the twirling gates are not merged into the original circuit in the same way as when using randomized compiling on circuit fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' For simplic- ity, we did not add noise to the twirling gates in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' To obtain the infidelity of the target gate alone, it is necessary to benchmark the twirling gates separately and subtract their contribution from the overall infidelity, similar to the process used in interleaved RB [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [1] John Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Shor, “Fault-tolerant quantum computation,” in Proceedings of 37th Conference on Foundations of Com- puter Science (1996) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 56–65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [3] Dorit Aharonov and Michael Ben-Or, “Fault-tolerant quantum computation with constant error rate,” SIAM Journal on Computing 38, 1207–1282 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [4] John Preskill, “Reliable quantum computers,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' London, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 454, 385 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Knill, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Laflamme, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Zurek, “Resilient quantum computation: error models and thresholds,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' London, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 454, 365 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 303, 2–30 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [7] Austin G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Fowler, Matteo Mariantoni, John M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Martinis, and Andrew N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Cleland, “Surface codes: Towards practi- cal large-scale quantum computation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 86, 032324 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [8] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Arute, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Arya, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Babbush, and et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', “Quantum supremacy using a programmable superconducting pro- cessor,” Nature 574 (2019), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='1038/s41586-019-1666-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [9] Yulin Wu and et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', “Strong quantum computational advantage using a superconducting quantum processor,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 127, 180501 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Pino, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Dreiling, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Figgatt, and et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', “Demonstration of the trapped-ion quantum ccd com- puter architecture,” Nature 592, 209–213 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 14 [11] Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea Parekh, Ulysse Chabaud, and Elham Kashefi, “Quantum certification and bench- marking,” Nature Reviews Physics 2, 382–390 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [12] Michael A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Nielsen and Isaac L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chuang, Quantum com- putation and quantum information, 1st ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' (Cambridge University Press, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [13] Matteo Paris and Jaroslav Rehacek, Quantum state es- timation, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 649 (Springer Science & Business Media, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [14] Seth T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Merkel, Jay M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Gambetta, John A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Smolin, Ste- fano Poletto, Antonio D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Córcoles, Blake R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Johnson, Colm A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ryan, and Matthias Steffen, “Self-consistent quantum process tomography,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 87, 062119 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [15] Robin Blume-Kohout, John King Gamble, Erik Nielsen, Kenneth Rudinger, Jonathan Mizrahi, Kevin Fortier, and Peter Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,” Nature communications 8, 1–13 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [16] Kenneth Rudinger, Craig W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Hogle, Ravi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Naik, Akel Hashim, Daniel Lobser, David I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Santiago, Matthew D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Grace, Erik Nielsen, Timothy Proctor, Stefan Seritan, Susan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Clark, Robin Blume-Kohout, Irfan Siddiqi, and Kevin C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Young, “Experimental characterization of crosstalk errors with simultaneous gate set tomography,” PRX Quantum 2, 040338 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [17] Yanwu Gu, Rajesh Mishra, Berthold-Georg Englert, and Hui Khoon Ng, “Randomized linear gate-set tomogra- phy,” PRX Quantum 2, 030328 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [18] Raphael Brieger, Ingo Roth, and Martin Kliesch, “Compressive gate set tomography,” arXiv preprint arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='05176 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [19] Steven T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Flammia and Yi-Kai Liu, “Direct fidelity esti- mation from few pauli measurements,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 106, 230501 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [20] Marcus P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' da Silva, Olivier Landon-Cardinal, and David Poulin, “Practical characterization of quantum devices without tomography,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 107, 210404 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Knill, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Leibfried, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Reichle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Britton, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Blakestad, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Jost, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Langer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ozeri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Sei- delin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wineland, “Randomized benchmarking of quantum gates,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 77, 012307 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [22] Easwar Magesan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Gambetta, and Joseph Emerson, “Scalable and robust randomized benchmarking of quan- tum processes,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 106, 180504 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [23] Easwar Magesan, Jay M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Gambetta, and Joseph Emer- son, “Characterizing quantum gates via randomized benchmarking,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 85, 042311 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [24] Osama Moussa, Marcus P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' da Silva, Colm A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ryan, and Raymond Laflamme, “Practical experimental certifica- tion of computational quantum gates using a twirling procedure,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 109, 070504 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Helsen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Roth, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Onorati, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Werner, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Eis- ert, “General framework for randomized benchmarking,” PRX Quantum 3, 020357 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [26] Jianxin Chen, Dawei Ding, and Cupjin Huang, “Ran- domized benchmarking beyond groups,” PRX Quantum 3, 030320 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [27] Timothy J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Proctor, Arnaud Carignan-Dugas, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young, “Direct randomized benchmarking for mul- tiqubit devices,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 123, 030503 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [28] Alexander Erhard, Joel J Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer Blatt, “Characterizing large-scale quantum com- puters via cycle benchmarking,” Nature communications 10, 1–7 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [29] Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young, “Scalable randomized benchmarking of quantum comput- ers using mirror circuits,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 129, 150502 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [30] Timothy Proctor, Kenneth Rudinger, Kevin Young, Mo- han Sarovar, and Robin Blume-Kohout, “What random- ized benchmarking actually measures,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 119, 130502 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [31] Joel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wallman, “Randomized benchmarking with gate- dependent noise,” Quantum 2, 47 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [32] Jiaan Qi and Hui Khoon Ng, “Comparing the random- ized benchmarking figure with the average infidelity of a quantum gate-set,” International Journal of Quantum Information 17, 1950031 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [33] Easwar Magesan, Jay M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Gambetta, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Johnson, Colm A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ryan, Jerry M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chow, Seth T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Merkel, Mar- cus P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' da Silva, George A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Keefe, Mary B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rothwell, Thomas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ohki, Mark B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ketchen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Steffen, “Efficient measurement of quantum gate error by inter- leaved randomized benchmarking,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 109, 080505 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [34] Arnaud Carignan-Dugas, Joel J Wallman, and Joseph Emerson, “Bounding the average gate fidelity of compos- ite channels using the unitarity,” New Journal of Physics 21, 053016 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [35] Arnaud Carignan-Dugas, Joel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wallman, and Joseph Emerson, “Characterizing universal gate sets via dihedral benchmarking,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 92, 060302 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [36] Andrew W Cross, Easwar Magesan, Lev S Bishop, John A Smolin, and Jay M Gambetta, “Scalable ran- domised benchmarking of non-clifford gates,” npj Quan- tum Information 2, 1–5 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [37] Joel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wallman and Joseph Emerson, “Noise tailoring for scalable quantum computation via randomized com- piling,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 94, 052325 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [38] Akel Hashim, Ravi K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' O’Brien, Ian Hincks, Joel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wallman, Joseph Emerson, and Irfan Sid- diqi, “Randomized compiling for scalable quantum com- puting on a noisy superconducting quantum processor,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' X 11, 041039 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [39] Joel Wallman, Chris Granade, Robin Harper, and Steven T Flammia, “Estimating the coherence of noise,” New Journal of Physics 17, 113020 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [40] Shelby Kimmel, Guang Hao Low, and Theodore J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Yo- der, “Robust calibration of a universal single-qubit gate set via robust phase estimation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 92, 062315 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Roushan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Neill, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Tangpanitanon, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Bastidas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Megrant, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Barends, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chiaro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Dunsworth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Fowler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Foxen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Giustina, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Jef- frey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Kelly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lucero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Mutus, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Neeley, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Quin- tana, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Sank, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Vainsencher, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wenner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' White, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Neven, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Angelakis, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Martinis, “Spec- troscopic signatures of localization with interacting pho- tons in superconducting qubits,” Science 358, 1175–1179 15 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [42] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Russo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rudinger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Morrison, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Baczewski, “Evaluating energy differences on a quantum computer with robust phase estimation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 126, 210501 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [43] C Neill, T McCourt, X Mi, Z Jiang, MY Niu, W Mruczkiewicz, I Aleiner, F Arute, K Arya, J Atalaya, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=', “Accurately computing the electronic properties of a quantum ring,” Nature 594, 508–512 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [44] Sirui Lu, Mari Carmen Bañuls, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ignacio Cirac, “Algorithms for quantum simulation at finite energies,” PRX Quantum 2, 020321 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [45] Yanwu Gu, Yunheng Ma, Nicolo Forcellini, and Dong E Liu, “Noise-resilient phase estimation with randomized compiling,” arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='04100 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [46] Martin Kliesch and Ingo Roth, “Theory of quantum sys- tem certification,” PRX Quantum 2, 010201 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [47] Michael M Wolf, “Quantum channels & operations: Guided tour,” Lecture notes available at http://www-m5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' ma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' tum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' de/foswiki/pub M 5 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [48] Wassily Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association 58 (1963), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='2307/2282952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [49] Łukasz Rudnicki, Zbigniew Puchała, and Karol Zy- czkowski, “Gauge invariant information concerning quan- tum channels,” Quantum 2, 60 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [50] Jeff P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Barnes, Colin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Trout, Dennis Lucarelli, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Clader, “Quantum error-correction failure distribu- tions: Comparison of coherent and stochastic error mod- els,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 95, 062338 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [51] Stefanie J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Beale, Joel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Wallman, Mauricio Gutiérrez, Kenneth R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Brown, and Raymond Laflamme, “Quantum error correction decoheres noise,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 121, 190501 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [52] Sergey Bravyi, Matthias Englbrecht, Robert König, and Nolan Peard, “Correcting coherent errors with surface codes,” npj Quantum Information 4 (2018), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='1038/s41534-018-0106-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [53] Eric Huang, Andrew C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Doherty, and Steven Flammia, “Performance of quantum error correction with coherent errors,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 99, 022313 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [54] Qinghong Yang and Dong E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Liu, “Effect of quantum error correction on detection-induced coherent errors,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 105, 022434 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [55] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Sarkar and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antennas and Propagation Maga- zine 37, 48–55 (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [56] Daniel Potts and Manfred Tasche, “Parameter estimation for nonincreasing exponential sums by prony-like meth- ods,” Linear Algebra and its Applications 439, 1024–1039 (2013), 17th Conference of the International Linear Al- gebra Society, Braunschweig, Germany, August 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [57] Jonas Helsen, Francesco Battistel, and Barbara M Ter- hal, “Spectral quantum tomography,” npj Quantum In- formation 5, 1–11 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [58] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Onorati, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Werner, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Eisert, “Randomized benchmarking for individual quantum gates,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 123, 060501 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [59] Sarah Sheldon, Lev S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Bishop, Easwar Magesan, Stefan Filipp, Jerry M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chow, and Jay M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Gambetta, “Charac- terizing errors on qubit operations via iterative random- ized benchmarking,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 93, 012301 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [60] Gui-Lu Long and Yang Sun, “Efficient scheme for initial- izing a quantum register with an arbitrary superposed state,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 64, 014303 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [61] Gregory Rosenthal, “Query and depth upper bounds for quantum unitaries via grover search,” arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='07992 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [62] Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu Zhang, “Asymptotically optimal circuit depth for quantum state preparation and general unitary syn- thesis,” arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content='06150 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [63] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan, “Quan- tum state preparation with optimal circuit depth: Im- plementations and applications,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 129, 230504 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [64] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics 18, 023023 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [65] Jay M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Gambetta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Córcoles, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Merkel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Johnson, John A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Smolin, Jerry M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Chow, Colm A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ryan, Chad Rigetti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Poletto, Thomas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ohki, Mark B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Ketchen, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Steffen, “Characterization of ad- dressability by simultaneous randomized benchmarking,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 109, 240504 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [66] Robin Harper, Steven T Flammia, and Joel J Wallman, “Efficient learning of quantum noise,” Nature Physics 16, 1184–1188 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [67] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout, “Detecting crosstalk errors in quantum information pro- cessors,” Quantum 4, 321 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [68] Anders Sørensen and Klaus Mølmer, “Quantum compu- tation with ions in thermal motion,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' 82, 1971–1974 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' [69] Anders Sørensen and Klaus Mølmer, “Entanglement and quantum computation with ions in thermal motion,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
+page_content=' A 62, 022311 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtA0T4oBgHgl3EQfG__M/content/2301.02056v1.pdf'}
diff --git a/dtFAT4oBgHgl3EQf6x4A/content/tmp_files/2301.08740v1.pdf.txt b/dtFAT4oBgHgl3EQf6x4A/content/tmp_files/2301.08740v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d598728b4b66a9d55725be8483cab4419bf36959
--- /dev/null
+++ b/dtFAT4oBgHgl3EQf6x4A/content/tmp_files/2301.08740v1.pdf.txt
@@ -0,0 +1,2316 @@
+Scaling approaches to steady wall-induced turbulence
+Paul C. Fife
+August 12, 2006
+Abstract
+The problem of discerning key features of steady turbulent flow adjacent to a wall has drawn
+the attention of some of the most noted fluid dynamicists of all time. Standard examples of
+such features are found in the mean velocity profiles of turbulent flow in channels, pipes or
+boundary layers. The aim of this review article is to expound the essence of some elementary
+theoretical efforts in this regard. Possibly the best known of them, and certainly the simplest,
+is the argument (obtained independently) by Izakson (1937) and Millikan (1939). They showed
+that if an inner scaling and an outer scaling for the profile are valid near the wall and near the
+center of the flow (or the edge of the boundary layer), respectively, and if there is an overlap
+region where both scalings are valid, then the profile must be logarithmic in that common region.
+That theoretical justification has been used and expanded upon by innumerable authors for over
+60 years, and at the present time is still rightly enjoying popularity.
+Although background discussions of several related topics are included in the present article,
+for example the classical ideas of Prandtl and von Karman, the main foci will be on (i) a
+careful examination of the Izakson-Millikan argument, together with a presentation of a better
+mathematical justification for its conclusion; and (ii) a detailed clarification of a newer approach
+to gaining theoretical understanding of the mean velocity and Reynolds stress profiles based on
+the “search for scaling patches”.
+The two approaches share common goals, they are both heavily involved with scaling con-
+cepts, and many results are similar, but the logical trains of thought are entirely different. The
+first, as mentioned, dates back to the 30’s and the second was introduced in a series of recent
+papers by Fife et al, Wei et al, and Klewicki et al.
+Our emphasis will be on the question of how and how well these arguments supply insight
+into the structure of the mean flow profiles. Although empirical results may initiate the search
+for explanations, they will be viewed simply as means to that end.
+Contents
+1
+Introduction
+2
+2
+The Navier-Stokes equations and Reynolds averaging
+3
+3
+Early scaling concepts of Prandtl and von Karman
+5
+4
+The notion of scaling
+7
+4.1
+Scaling patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+8
+4.2
+A classical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+9
+4.3
+Inner, outer, and overlapping regions . . . . . . . . . . . . . . . . . . . . . . . . . . .
+11
+4.4
+A uniform approximation
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+13
+1
+
+4.5
+A generalization
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+13
+4.6
+The Izakson-Millikan observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+14
+4.7
+A more realistic version
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+15
+5
+The mean structure of turbulent Couette flow in a channel
+16
+5.1
+The differential equations
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+17
+5.2
+The friction velocity and boundary conditions . . . . . . . . . . . . . . . . . . . . . .
+18
+5.3
+Dimensionless variables in the core region . . . . . . . . . . . . . . . . . . . . . . . .
+19
+5.4
+The wall layer, rescaling, and law of the wall
+. . . . . . . . . . . . . . . . . . . . . .
+20
+5.5
+Velocity in the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+21
+5.6
+Application of the Izakson-Millikan reasoning . . . . . . . . . . . . . . . . . . . . . .
+22
+5.7
+Observations on the foregoing procedure . . . . . . . . . . . . . . . . . . . . . . . . .
+23
+5.8
+The uniformizing effect of turbulence and some possible implications. . . . . . . . . .
+24
+6
+The search for scaling patches
+24
+6.1
+Adjusted Reynolds stresses, balance exchange phenomena, and the identification of
+patches
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+25
+6.2
+The locations of the scaling patches
+. . . . . . . . . . . . . . . . . . . . . . . . . . .
+28
+6.3
+More on the locations of the patches . . . . . . . . . . . . . . . . . . . . . . . . . . .
+29
+6.4
+The case A = constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+30
+6.4.1
+Characteristic length as it depends on location
+. . . . . . . . . . . . . . . . .
+30
+6.4.2
+The Reynolds stress
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+31
+6.4.3
+The mean velocity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+31
+6.5
+Relaxing the assumption that A is constant . . . . . . . . . . . . . . . . . . . . . . .
+32
+6.6
+Approximate constancy of A in interior zones . . . . . . . . . . . . . . . . . . . . . .
+33
+6.7
+Evidence for logarithmic growth, i.e. σ = 0
+. . . . . . . . . . . . . . . . . . . . . . .
+33
+6.8
+The inner scaling patch at the wall and the outer scaling patch at the midline . . . .
+34
+6.9
+Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+34
+7
+Turbulent Poiseuille flow in a channel
+35
+7.1
+Differences from Couette flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+35
+7.2
+Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+36
+7.3
+Behavior near the wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+37
+8
+Other applications and conclusion
+39
+1
+Introduction
+Every theoretical investigation of highly turbulent fluid dynamics is necessarily incomplete, because
+accepted accurate models such as the Navier-Stokes equations lie beyond the scope of full solution
+by existing methods, whether those methods be numerical or analytical.
+Faced with this failing, researchers have often turned to seeking theoretical information through
+partial analyses, incomplete models, or reasoning which is not fully based on rigorous deduction.
+The search for such approaches is bound to yield, and historically has yielded, some fruitful avenues
+leading to insightful, though perhaps tentative, conclusions.
+The goals of this paper are to examine, and elaborate on, some of the major elementary attempts
+in this vein to gain some understanding of the mechanisms behind steady (in the mean) turbulent
+2
+
+incompressible flow bounded by a wall, as well as to expound some recent developments.
+The
+prototypical examples will be rapid flow in a channel or pipe forced by an imposed pressure gradient
+or the differential motion of the walls, and turbulent boundary layers of various types. There has
+been an enormous amount of work along these lines, and a complete review of it will not be given.
+Rather we look only at some efforts to gain insight into these mechanisms as they affect simple
+mean flow quantities, through the use of scaling concepts and averaged Navier-Stokes equations.
+These efforts have been diverse, and when compared one with another have sometimes relied on
+assumptions which appear to be incompatible. Nevertheless despite any seeming incongruities, the
+various approaches should not necessarily be thought of as competing among themselves. Rather by
+contributing their individual insights, they collectively add to our understanding. No one approach
+can ever rationally be viewed as the last word on the subject.
+So to summarize, the goal in these notes is to understand what phenomena relating to average
+events occur in wall-bounded turbulent flow and, more importantly, why they occur. This means
+that our approach will focus on supplying theoretical explanations for observed features of the
+flow, as well as providing predictions of features which can then be correlated with empirical data.
+When possible, we will not be content with pointing to experimental evidence for properties of the
+flow, but will strive to develop reasons why those properties should hold. These reasons will not
+generally be rigorous, and at times, of necessity, they will be partly based on empirical findings.
+But to advance the goal of basic understanding, they will, as far as possible, be grounded in
+theory, i.e. in accepted mathematical models. Mostly, these models will be built from the averaged
+Navier-Stokes equations.
+2
+The Navier-Stokes equations and Reynolds averaging
+Our mathematical models use the symbols u = (u1, u2, u3), p, t and x = (x1, x2, x3) to denote the
+velocity, pressure, time and space variables, with µ and ρ the material constants of viscosity and
+fluid density.
+The standard incompressible Navier-Stokes equations when there is no body force can be written
+as follows:
+∂u
+∂t + (u·∇)u = ν∇2u − 1
+ρ∇p,
+(1)
+where ν = µ/ρ is the kinematic viscosity; and
+div u = 0.
+(2)
+The equations (1) (a vector equation which has three components) and (2) are four equations in
+all, for four unknown functions: the three components of u plus the pressure p.
+These equations are almost universally recognized as an accurate representation, on the macro-
+scopic level, of flows of many standard kinds of incompressible fluids. Generalizations exist in many
+forms. The second (nonlinear) term on the left of (1) is called the “inertia term”, and the first
+term on the right is the “viscosity term”. Broad features of the solutions are typically governed by
+the order of magnitude of the Reynolds number, a ratio of the effects of these terms.
+Here we start with a very common framework for studying turbulent motions called Reynolds
+averaging [1]. It is a short cut, and as such does not supply all the desired information about any
+given flow scenario. A wealth of details about fluid motions is erased. The modeler is left with the
+task of partially filling the resulting deficiency with assumptions about features of the fluid motion
+in its disorganized state. These attempts are bound to be hit or miss to some extent, but as we
+3
+
+will see, there may be tests which one can apply to gauge the validity of such assumptions. For
+example, two or more avenues to obtaining models may yield similar results, which would tend
+to corroborate both. A very common remedy for the underdetermined nature of the Reynolds
+averaged equations is to posit closure relations. That approach is especially useful in numerical
+simulations. But the magnitude of these endeavors precludes their inclusion here.
+The goal, then, is to use the Navier-Stokes equations in their averaged form, together with scal-
+ing considerations, to gain insight into some basic properties of wall-induced turbulence. Specifi-
+cally, we focus on features of the mean velocity and Reynolds stress profiles, as functions of distance
+from the wall. The Reynolds stress is one of the measures of turbulence activity. There have in fact
+been several distinct approaches to the task of using the averaged equations to provide insight into
+wall-induced turbulence. That fact, together with the apparent simplicity of the formulation within
+that framework, makes the latter an ideal arena in which to explore the interaction of mathematical
+and intuitive tools to tackle a very complex problem.
+We now review the well-known ideas behind the process of Reynolds averaging [1]. One supposes
+that at each spatial location x and time t, the velocity and the other flow quantities have well defined
+average values. This could be an imagined “ensemble” average over many similar observations, or
+over some small (but not too small) region in space-time containing the point in question. In the
+case of “steady” fully developed turbulence, it could be the time average. The mean (average)
+values may then depend on space and time, but on scales perhaps larger than those over which the
+average is taken.
+Thus, we can write the velocity vector as its mean plus its fluctuation about the mean:
+u(x, t) = U(x, t) + u′(x, t),
+(3)
+with a similar decomposition for vorticity, pressure, etc. Averages will be taken of not only primary
+flow variables, but also of products of them. The averaging operation is denoted by angle brackets—
+for example ⟨u⟩ = U; ⟨∂iu⟩ = ∂iU for any derivative ∂i =
+∂
+∂xi or
+∂
+∂t; ⟨u′⟩ = 0; ⟨Uiu′
+j⟩ = 0.
+We substitute (3) into the Navier-Stokes equations (1), (2) and then take the average of the
+resulting equations to obtain
+∂tU − ν∇2U + (U·∇)U + ⟨u′·∇u′⟩ + 1
+ρ∇P = 0,
+(4)
+∇·U = 0.
+(5)
+Note also that
+∇·u′ = 0.
+(6)
+The i-th component of the 4th term in (4) is
+⟨u′
+j∂ju′
+i⟩ = ∂j⟨u′
+iu′
+j⟩
+(summing over the repeated index), the equality by virtue of (6). This shows that the 4th term,
+being a divergence, acts as a pseudo-stress gradient. Accordingly, we define the “Reynolds stress
+tensor” τ by
+τij = −⟨u′
+iu′
+j⟩,
+(7)
+which is symmetric, as any stress tensor should be. Therefore (4) becomes
+∂tU − ν∇2U + (U·∇)U + ∇
+�1
+ρP − τ
+�
+= 0,
+(8)
+4
+
+where the last term can also be written ∇·T , where
+Tij = 1
+ρPδij − τij.
+An intuitive feel for the role of the tensor τ in the transport of momentum can be gained by
+looking closely at the case i = 1, j = 2. We relabel u′
+i = u′, u′
+2 = v′, x1 = x, x2 = y, and think
+of the coordinates x1 and x2 as being horizontal and vertical, respectively. Then the average ⟨u′v′⟩
+appearing in (7) involves the horizontal and vertical components of the fluctuating part of the
+velocity. Imagine a particle whose instantaneous velocity has both a positive x-component u′ and
+a positive y component v′. The former says that the particle is bearing some x-momentum, and
+the latter says that what it bears is being transported in the vertical (y) direction. The magnitude
+of this vertical transport of momentum is proportional to the product of the two components, u′v′.
+If one or both of these two components changes sign, this proportionality property is still seen to
+hold. Therefore ⟨u′v′⟩ is proportional to the mean vertical transport of x-momentum (which could
+be positive or negative) by means of turbulent fluctuations. This vertical transport represents the
+mean force per unit area exerted by the fluid above the point under consideration on the fluid
+below that point. Newton’s first law characterizes a force as a rate of change of momentum; in this
+case, that rate of change is given by vertical transport of horizontal momentum-bearing particles.
+Finally, the y-derivative
+∂
+∂y⟨u′v′⟩, being a scaled difference of forces exerted at two nearby points,
+is the net x-component of the mean force per unit mass exerted on particles at that location by
+the turbulent fluctuations.
+Generalizing these notions leads to an intuitive recognition of the last term in (8), −∇τ, as a
+force produced by turbulent fluctuations.
+If we knew the tensor τ, then we could use that knowledge in (8) so that (8) and (5) would
+constitute a closed system for the determination of U and P. But nature is not so kind, and τ
+is not known. Many attempts have been made in the past to remedy this basic defect, by writing
+down other equations for the determination of τ. These models propose a “closure” mechanism to
+produce a closed system for the mean values of various flow quantities. In all cases, these other
+equations are at least partly ad hoc, and in most cases partly empirical.
+3
+Early scaling concepts of Prandtl and von Karman
+There have been many turbulence theories utilizing the ideas of Reynolds averaging; in fact the
+ones to be discussed in this paper are important examples. Prandtl and von Karman were, at an
+early stage, responsible for well known models in this category. Their concepts also included types
+of characteristic lengths, which are allied to the scaling theme to be developed below. Therefore
+we begin with brief discussions of some of their ideas.
+In 1925, Prandtl [2] proposed a conceptual framework designed to provide insight into the
+mechanisms producing turbulence in shear flow, and also to provide relationships among key fluid
+dynamical quantities.
+One aim of his was to relate the flux of momentum caused by turbulent fluctuations to the
+gradient of mean momentum. That there is such a relationship was simply an assumption springing
+from an analogy with conventional diffusion of quantities like heat in a stationary medium. In that
+setting, Fick’s law asserts that the flux is proportional to the gradient of the concentration of
+the substance (like heat) that is being transported. In the present situation, since ⟨u′v′⟩ is (see
+previous section) a measure of the mean turbulent transport, in the vertical direction, of horizontal
+5
+
+momentum, the analog of the heat equation for the mean x-momentum U would be
+⟨u′v′⟩ = −ǫdU
+dy .
+(9)
+for some pseudo-diffusion coefficient ǫ. That coefficient is generally called the coefficient of eddy
+diffusion, because one could argue that the transfer of momentum is caused by many eddies in the
+fluid.
+To say more about ǫ, Prandtl introduced the concept of mixing length ℓ, which more or less
+represents the distance a fluid particle typically travels before transferring its momentum to another
+particle. Various versions of Prandl’s theory have been involved with characterizing ℓ as it depends
+on local or global properties of the flow.
+Since we will be dealing with vague definitions, the symbol “∼” will be used to indicate a
+relation which is not precisely defined, but rather should be considered as part of a modeling
+concept. Moreover if numerical values are given to the two sides of the relation, they will be equal
+only in order of magnitude.
+Prandtl’s ideas related the left side of (9) directly to other local quantities as follows.
+Suppose that the gradient dU
+dy is responsible, in a linear manner, for the local characteristic mag-
+nitude of the velocity fluctuations: |u′| ∼ k1
+���dU
+dy
+��� ; |v′| ∼ k2
+��� dU
+dy
+���. The proportionality coefficients ki
+in these relations have to have the dimensions of length, and the most natural local characteristic
+length is the mixing length ℓ. So we set ki ∼ ℓ to obtain
+|u′| ∼ ℓ
+����
+dU
+dy
+���� ; |v′| ∼ ℓ
+����
+dU
+dy
+���� .
+(10)
+Then the average |⟨u′v′⟩| will be related to the quantity on the right of (10) squared:
+|⟨u′v′⟩| ∼ ℓ2
+����
+dU
+dy
+����
+2
+.
+(11)
+Now apply this to (9), at the same time ensuring that signs are chosen so that ǫ > 0. We find
+that
+ǫ ∼ ℓ2
+����
+dU
+dy
+���� ,
+(12)
+so that
+⟨u′v′⟩ ∼ −ℓ2
+����
+dU
+dy
+����
+dU
+dy .
+(13)
+It seems intuitive that the local distance ℓ should grow shorter as one draws near the wall,
+because the wall exerts a constraint on the motions; and Prandtl sometimes proposed a linear
+relation
+ℓ ∼ y.
+(14)
+This is probably not a good approximation very near the wall, because it would predict that ⟨u′v′⟩
+grows like y2 as one moves away from the wall, whereas there is abundant evidence that the growth
+rate is like y3.
+This, then, is how Prandtl and others proposed handling a truly complex phenomenon (forces
+caused by the turbulent transport of momentum) by relating it to a much simpler quantity (the
+gradient of mean velocity). This proposal had very limited success in explaining the processes of
+turbulence, although there was often good correlation with experimental data.
+6
+
+Von Karman [3] proposed his similarity hypothesis in 1930; a prominent ingredient was the
+assumption that ǫ and ℓ should be characterizable in terms of local properties of the fluid. For
+example, (14) would not qualify because the distance y from the wall is not a local property. One
+might argue that the similarity hypothesis may approximate conditions far enough away from the
+walls and centerline.
+This hypothesis proceeds from rescaling considerations, the idea being that if lengths for the
+velocity fluctuations in a neighborhood of a point in the flow are rescaled with a characteristic
+length ℓ (which we can identify as essentially the mixing length above), then key hydrodynamic
+quantities in that neighborhood are, except for an appropriate rescaling factor, functions only of
+the rescaled lengths; not of the position in the flow.
+One then searches for a local quantity with the dimensions of length that one could use to
+characterize ℓ. The possibly simplest choice would be the ratio
+ℓ ∼ −dU
+dy
+�
+d2U
+dy2 .
+(15)
+(The minus sign comes about from noting that the ratio itself is always negative.)
+Note that if this and (14) are both true, one could solve for U(y) to get
+U(y) ∼ C1| ln y| + C2,
+(16)
+an example of the renowned logarithmic profile.
+Other theories, as we shall see, are in partial agreement with this result and suggest other
+information as well. In particular, the theories brought out here in Secs. 5 and 6 involve ideas
+reminiscent of those of Prandtl and von Karman, but the differences outweigh the similarities.
+The main approaches to wall-induced turbulence that we shall examine are heavily involved
+with various scaling concepts, and so we make a digression here to discuss some ideas basic to that
+subject.
+4
+The notion of scaling
+Much of this section will consist of a review of scaling concepts, mostly well known, relating to the
+remainder of the paper. It will be useful to give a formal definition of scaling patch (less well known)
+in Sec. 4.1 and to formulate many of our results in terms of those patches. For example, it will be
+important to know that the overlapping regions of the classical example sketched in Secs. 4.2 and
+4.3 are not scaling patches. The classical Izakson-Millikan observation covered in Sec. 4.6 is best
+known in the setting of turbulent flows, but is given here in a more general mathematical context
+and in the form of an approximative statement (Sec. 4.7) which is mathematically rigorous. The
+implications for wall-induced turbulent flow are discussed later in Sec. 5.6 and, more importantly,
+in Sec. 5.7.
+Models involving small or large parameters are commonplace in the natural sciences; in more
+cases than not there are processes making up the action which operate on more than one, often
+many, different space and time scales. The phenomenon being studied can then most clearly and
+naturally be represented, in certain subdomains, in terms of functions of “rescaled variables”, or
+of a combination of rescaled variables. Here rescaling means that new dependent and independent
+variables are defined, in differential form, as linear transformations of the original ones, the coef-
+ficients in the transformation generally being functions of the original small or large parameters.
+7
+
+Multiscaling refers to the event that more than one scaling are appropriately used, either in different
+subdomains or simultaneously in the same subdomain.
+Our focus will be on differential equations containing parameters which are supposed to be
+small or large.
+The ultimate goal here will be to gain some understanding of fluid motions by applying scaling
+concepts to the averaged Navier-Stokes equations. The recognition that the dynamics of turbulent
+fluids operate on a great many space and time scales has been a cornerstone of well known investi-
+gations into those processes, including the construction of mathematical models. Our goal is more
+limited, yet still daunting: to surmise information about important mean flow quantities on the
+basis of the averaged, rather than the original, Navier-Stokes equations. Rather than positing, at
+each specific location in the flow domain, an array of length scales, as would be the case for the
+microscopic turbulent motions, the mean flow profiles will themselves have unique characteristic
+lengths associated with each such location.
+Our principal technique will be, first, to attempt to ascertain the local scaling behavior of those
+mean quantities by means of the averaged equations together with judicious assumptions, and then
+to derive further information about the mean profiles themselves.
+In most of the following, there will be one independent small parameter called ǫ, although
+another parameter β, which will also be small, will appear in some sections. The coefficients in
+the scaling transformations will depend on ǫ, and possibly on β, and their orders of magnitude will
+be of primary importance. The notation O(1) will refer to a quantity or function which generally
+depends on ǫ, but is bounded above and below by positive constants independent of ǫ and β as those
+parameters approach 0. When the lower bound is not assumed, we will generally write ≤ O(1).
+The meaning of other order relations hopefully will be clear from the context.
+4.1
+Scaling patches
+We shall be dealing with functions of a single independent variable, and so the following discussion
+will apply to that case only. Moreover, the independent variable will represent a space coordinate.
+Finally, all statements about magnitudes in the following are to be understood in the order of
+magnitude sense relative to the small or large parameter under consideration. For example if ǫ is
+a small parameter, then ǫ has smaller order of magnitude than ǫ1/2 as ǫ → 0. To repeat what was
+said above, we shall use the convention that a quantity is O(1) with respect to ǫ if it is bounded,
+and also bounded away from zero, by positive constants independent of ǫ as ǫ → 0.
+Consider an interval in the domain of the independent space variable, and a single rescaling (of
+dependent and independent variables) in that subdomain. The interval may depend on the scaling,
+hence on ǫ, and we assume the interval has size O(1) when measured in the rescaled distance
+variable.
+A “characteristic length” for the interval can be defined in terms of the scaling of the original
+space variable (call it x), which produces a new space variable (call it ˆx). Using differentials, we
+have, say, dx = α dˆx, with scaling coefficient α. Then a characteristic length for that subdomain
+will be α. As ˆx traverses the O(1) length of the interval, x changes by an amount O(α). The
+stipulation that the size of the subdomain (called a “patch” below) be of size O(1) in the rescaled
+variable is designed thereby so that α is a proper definition of characteristic length. Importantly,
+a patch cannot be artificially enlarged by adjoining a section in which the characteristic length is
+larger.
+The rescaling (including that of the dependent as well as of the independent variables) can
+be thought of as being “natural” for a given problem if, when the solution is expressed in terms
+8
+
+of the rescaled variables, the scaled dependent variables are seen to undergo, in that subdomain,
+variations which are not too large and not too small. This rate of variation could be gauged by
+the magnitude of the rescaled derivatives. The requirement “not too large” then would be taken
+to mean that all derivatives, of orders 1 up to some appropriate order, are bounded in magnitude
+independently of the parameters in the problem. It usually happens that some of these derivatives
+are necessarily zero or very small in places, so the corresponding (opposite) criterion cannot be
+imposed to gauge the satisfaction of the requirement “not too small”. Instead, a proper criterion
+would be that the characteristic length α associated with the scaling under consideration cannot be
+decreased without the above criterion “not too large” being violated. In this, “decreased” means
+in the order of magnitude sense: if α is replaced by a different function of ǫ with smaller order of
+magnitude, so that in the newly scaled variables the derivatives are correspondingly larger, then
+the magnitudes of some of these derivatives must not be bounded independently of ǫ.
+Such an interval, together with its natural scaling, will in the following be called a scaling patch.
+This appears to be a reasonable meaning for the concept of natural scaling in patches, but it
+ignores, so far, the important question, how does one find the scaling patches? That is, how does
+one determine the proper scaling in the proper locations? The search for scaling patches in wall-
+bounded turbulent flow will be the primary activity in Section 6. But it is not an easy question in
+general, and there are few easy mathematically rigorous criteria which can be applied to determine
+them. Nevertheless, there are nonrigorous arguments, most easily introduced through examples.
+Here is a straightforward one.
+4.2
+A classical example
+The following is an elementary textbook model example of a problem in which scaling consider-
+ations, and in particular scaling patches, are very pertinent to understanding salient features of
+the solution. The solution, it turns out, can be written down explicitly, but we choose a different
+approach in order to better bring forth the ideas. Although it is well known, this example is chosen
+because we want to put forward a slightly nonstandard point of view, and it bears some similarity
+with the much more difficult averaged wall-induced turbulence problems which will be discussed
+later. Both scenarios have traditional inner and outer scaling regions. On the other hand there are
+also striking differences.
+Let ǫ be a small positive parameter, i.e. 0 < ǫ ≪ 1. We wish to solve the following boundary
+value problem for u(η):
+ǫ2 d2u
+dη2 − u + g(η) = 0
+for 0 < η < 1,
+(17)
+u(0) = α,
+u(1) = β,
+(18)
+where α and β are fixed numbers and g is any given smooth function. To make things simple, we
+suppose that g is independent of ǫ, and that it is not a constant (i.e. it has nontrivial variation).
+The solution of course will depend on ǫ as well as on η, and the desire is to find that dependence for
+all small enough values of ǫ, say for 0 < ǫ ≤ ǫ0, where ǫ0 is a fixed small number. This dependence
+of the solution on both η and ǫ is sometimes expressed by writing u(η; ǫ).
+As a first guess for an approximate solution, we try discarding the first term in (17), which has
+a small factor ǫ2. We obtain the “reduced” problem
+u = g(η).
+(19)
+9
+
+The function u = g(η) approximately satisfies (17) in a formal sense, but is generally far from
+satisfying the two boundary conditions (18) (unless by unlikely accident g(0) = α or g(1) = β). So
+we must either scrap that solution altogether, or doctor it up. The latter is possible.
+This is where the search for scaling patches comes in. Two things are clear: the locations of
+the trouble are at the two boundaries η = 0 and η = 1. And secondly, somehow the discarded
+term ǫ2 d2u
+dη2 at those two locations must be important after all. We try constructing an “internal”
+patch by excluding neighborhoods of the two troublesome boundary points as follows. Take any
+number δ > 0 independent of ǫ, and use, for the patch, the original scaling, leading to (19), in the
+subdomain defined by {η : δ < η < 1−δ}. This interval, together with the original scaling in which
+the variables η and u remain unchanged, will be the first scaling patch. To lowest approximation in
+the parameter ǫ, the differential equation (17) becomes (19). An important part of our argument
+later will be centered around the issue of how far we can enlarge this interval by letting δ depend
+on ǫ.
+Now let us also try to construct a scaling patch which encompasses the left boundary η = 0.
+The appearance of the differential equation can be changed by rescaling in such a way as to render
+the derivative term overtly important. The most natural way is by passing to a new independent
+variable y by
+y = η
+ǫ ,
+U = u.
+(20)
+Then we consider U to be a function of y in some subdomain consisting of values of η near 0.
+We shall be conservative at first and take that subdomain as {0 ≤ y < y0}, where y0 is independent
+of ǫ. Later, we see about extending the interval by letting y0 depend on ǫ
+The rescaled differential equation is
+d2U
+dy2 − U(y) + g(ǫy) = 0.
+(21)
+Neglecting ǫ in (21) leads to
+d2U
+dy2 − U(y) + g(0) = 0.
+(22)
+The boundary condition at η = 0 (the same as y = 0) now becomes
+U(0) = α.
+(23)
+It is proposed, then, that the scaling given by (20) in the interval {0 ≤ y < y0} be our second
+scaling patch, and that the solution in that patch be approximately a solution of (22) and (23).
+Moreover it is reasonable to impose the condition that U be bounded when y grows large (like
+O(1/ǫ)). This provides a unique solution and the formal approximation
+U(y) ≈ g(0)
+�1 − e−y� + αe−y.
+(24)
+This, of course, is only an approximation which is put forward for further verification. For
+one thing, notice that limy→∞ U(y) = g(0) and that the original approximation u = g(η) is also
+close to the value g(0) for η ≪ 1. Thus in a sense the approximation at the left boundary meshes
+smoothly with the supposed approximation in the interior of the interval. Let us dwell on the idea
+of smooth meshing a little more carefully. Let ω be any positive number, arbitrarily small. We will
+show that there are large values of y and small values of ǫ for which the boundary approximation
+U(y) and the interior approximation g(η) = g(ǫy) are both closer than ω to g(0), hence arbitrarily
+10
+
+close to each other. Let y1 be a large number, depending on ω, such that |U(y) − g(0)| < 1
+2ω for
+all y > y1. Such a number exists, as you can see from (24). Next, let η1 be a small number, again
+depending on ω, such that |g(η) − g(0)| < 1
+2ω for all η < η1. Such a number η1 exists because of
+the continuity of the function g. Since η = ǫy, both of these statements will be valid if ǫ is chosen
+such that ǫ < η1
+y1 , and y is in the interval y1 < y < η1/ǫ. Since both are valid for these values of y,
+necessarily |U(y)−g(0)| < ω. The conclusion is that if ǫ is small enough, depending on ω, there are
+places where the inner and outer approximations are closer together than ω, which can be chosen
+as small as desired. This is what we mean by the two approximations meshing smoothly together.
+In summary, we have found (a) what appears to be a reasonable approximation for the solution
+u(η; ǫ) in regions of the interval [0, 1] not too close to either boundary, and also (b) a reasonable
+approximation in regions close to the left boundary.
+The same procedure yields a third scaling patch near the right hand boundary. The solution in
+it undergoes a similar exponential (in terms of a rescaled variable) transition from the value β to
+g(1) as we move left from that point. The rescaling in that case is
+z = 1 − η
+ǫ
+,
+V (z) = u(η) = u(1 − ǫz),
+and the right inner solution in that patch is
+V (z) ≈ g(1)
+�1 − e−z� + βe−z.
+(25)
+In the interior, the solution is approximately a function of only η with no ǫ-dependence, so
+no new scaling is necessary. In a region which excludes small neighborhoods of each boundary
+(we will discuss how small later), the original variables are the natural ones in our adopted sense.
+That region, together with the original unscaled variables, constitutes one scaling patch. The small
+interval y < y0, i.e. η < ǫy0), together with the rescaling (20), constitutes a second scaling patch,
+in which the solution undergoes, in an exponential manner, a transition from the imposed value α
+to the value g(0) associated with the first scaling patch, but extended to the forbidden boundary
+point. At this point the two patches do not touch each other but, as we shall see, the ranges of
+validity of the corresponding approximations can be enlarged so that they overlap.
+Thus through proper “scaling”, the original problem may be clarified and simplified in certain
+subranges of the range of independent variables.
+The outlined procedure for finding scaling patches in the example problem is only heuristic,
+but it can be made rigorous in this and other cases.
+Moreover, we have only found the most
+basic (lowest order) approximation. Successive higher order approximations, with errors of orders
+O(ǫ), O(ǫ2), etc., can be found and proved to be correct in this and in a large class of similar
+problems, such as elliptic boundary value problems when there are several independent variables.
+4.3
+Inner, outer, and overlapping regions
+We have constructed independent approximate representations of the solution in three subdomains:
+(19) for η not too close to either boundary point, (24) near the left boundary, and (25) near the
+right one.
+Traditionally, these three approximate solutions are called the outer, left inner, and right inner
+solutions. We denote the outer solution by uo(η) and the left inner by U(y). In the following, we
+shall usually disregard the right inner approximation because its analysis follows that of the left
+inner solution.
+11
+
+We now ask about the possibility of extending those subdomains, while retaining the validity
+of the approximate representations. We do this by introducing a family of possible intermediate
+scalings parameterized by an exponent γ in the range 0 < γ < 1. The independent variable η is
+rescaled to obtain a new variable s by
+η = ǫγs,
+y = ǫγ−1s.
+(26)
+We are excluding the choice γ = 0, which would correspond to the original scaling, and γ = 1,
+corresponding to (20). Set Uγ(s) = u(η) = u(ǫγs).
+The rescaled differential equation (17) becomes
+ǫ2−2γ d2Uγ
+ds2 − Uγ + g(ǫγs) = 0,
+(27)
+and the boundary condition is U(0) = α. We ask, can the region defined by {0 < s0 < s < s1},
+where s0, s1 are independent of ǫ, be the location of a new scaling patch? (The answer will turn
+out to be no in the strict sense, but we can try.) If so, the corresponding solution should, to lowest
+order as ǫ→0, hence ǫγ→0, satisfy (27), which to lowest order comes out to be
+Uγ(s) = g(0)
+(28)
+(since 0 < γ < 1). That is a very simple approximate solution indeed.
+Keeping that in mind, we now examine the left inner and the outer solutions (24) and (19) in the
+proposed patch. For the left inner, we obtain the expression U
+�ǫγ−1s
+� ≈ [g(0) (1 − e−y) + αe−yg(0)]y=eγ−1s.
+To find the lowest order version of this expression, just let ǫ→0. We get, again to lowest order, the
+same result as (28):
+U
+�
+ǫγ−1s
+�
+≈ g(0).
+(29)
+In the case of the outer solution, a similar procedure yields
+uo (ǫγs) ≈ g(0).
+(30)
+This means that in any of the proposed intermediate scaling patches (as it will turn out, they
+are not true patches), the inner and outer solutions are both approximate solutions of the rescaled
+equation (27), so that in this sense each of them is a valid approximation to the true solution, for
+small enough ǫ .
+This verifies that the original subdomains of the inner and outer scalings can be extended to
+include the intermediate regions, the corresponding approximations continuing to be valid. In other
+words, there is a region of overlap, in which both the inner and outer solutions are valid. In fact,
+there are many overlap regions, depending on the choices of γ, s0, and s1. These are all approximate
+solutions, and the main effective differences among them lies in the accuracy of the approximation.
+Bear in mind that ǫγ is approximated by 0 better when γ is larger.
+Finally, note that the approximate solutions in any of these overlap regions are not very interest-
+ing: they are all constant to lowest order, equal to g(0)! This implies that the regions {s0 < s < s1},
+together with the scaling (26), do not form legitimate scaling patches! The reason is that the solu-
+tion does not satisfy one of the stated criteria in section 4.1, namely that the length scale α, which
+by (26) is equal to ǫγ, can certainly be reduced without the scaled dependent variable, which we
+have seen is constant, having unbounded derivatives.
+The same procedure yields overlapping regions near the right boundary point, in which the
+approximate solutions are all another constant, g(1).
+12
+
+4.4
+A uniform approximation
+The separate approximations in the three specified regions, namely uo(η) = g(η) (19), U(y) (24) and
+V (z) (25), can be combined into a single expression, providing a uniform approximation throughout
+the interval [0, 1]. For this, we define
+F(y) = U(y) − g(0),
+H(z) = V (z) − g(1).
+(31)
+The uniform approximation is then
+Uunif(η; ǫ) = uo(η) + F(y) + H(z) = uo(η) + F(η/ǫ) + H((1 − η)/ǫ).
+(32)
+Its validity can be verified directly in each of the regions considered above. This form consists of a
+sum of terms, each a function of one of the scaled variables.
+4.5
+A generalization
+It is natural to ask whether the outlined features in the overlap region of that classical example
+apply also to a wider class of functions, and indeed they do. Rather than starting with a differential
+equation, we take a general class of functions expressed in the form of a sum of individual functions
+of the three scaled variables η, y, z separately, as in (32). So we consider any function in the
+form (32), irrespective of whether it is a solution or approximate solution of some problem. Such
+a function may still have, depending on uo, F and H, an outer approximation and two inner
+approximations.
+It may also have a region of overlap between the outer and one of the inner
+solutions.
+No generality is lost by taking H = 0, and we do that. Let ǫ ≪ 1, y = η
+ǫ, and uo(η) and F(y)
+be any functions such that uo(η) has a limit as η→0 and F has a limit as y→∞:
+lim
+η→0 uo(η) = uo(0);
+lim
+y→∞ F(y) = G.
+(33)
+We call η the outer variable and y the inner variable. Finally, let
+u(η; ǫ) = uo(η) + F(y) = uo(η) + F(η/ǫ).
+(34)
+This will be the central prototypical two-scaled function which will be approximated differently in
+an inner and an outer region.
+In a region {η > δ} for any fixed δ > 0, η/ǫ→∞ uniformly as ǫ→0, so that F can be approxi-
+mated by G:
+u(η, ǫ) ≈ uo(η) + G ≡ uout(η),
+(35)
+which we call the outer representation of u. Similarly near η = 0, we replace η by 0 in the first
+term on the right of (34) to obtain the inner representation
+uin(y) ≡ uo(0) + F(y).
+(36)
+Now consider a family of intermediate regions parameterized by γ ∈ (0, 1) in which s, defined
+by (26), is confined to the interval s0 ≤ s ≤ s1, the si being specified constants. In such a region,
+we find the approximations
+uin ≈ uo(0) + F(ǫγ−1s) ≈ uo(0) + G,
+(37)
+13
+
+uout ≈ uo(ǫγs) + G ≈ uo(0) + G,
+(38)
+u(η, ǫ) ≈ uo(ǫγs) + F(ǫγ−1s) ≈ uo(0) + G.
+(39)
+The conclusions are, first, that the inner and outer representations are both valid in the interme-
+diate region, which is therefore an overlap zone. Secondly, in the overlap region, the approximation
+is equal to the constant uo(0) + G.
+These conclusions are the same, in our generic class of examples, as those for the classical
+example in section 4.2.
+4.6
+The Izakson-Millikan observation
+In [4] and [5], Izakson and Millikan independently considered functions of the form (34) without
+imposing limit conditions such as (33). Their context was the averaged equations of wall-induced
+turbulence, but their reasoning is valid in the present more general scenario. They showed, more
+or less, that an assumption of the existence of an overlap region is sufficient to imply that the
+approximations in that region are either constant or logarithmic. Beginning in Sec. 6, a different
+approach, but with a similar objective, will be discussed in detail.
+Its method, limited to the
+turbulence problem, will be based on a search for scaling patches
+In the Izakson-Millikan argument, then, no special conditions are required at either boundary
+of the interval I (below) on which our functions are defined.
+Moreover, instead of providing
+functions of inner and outer variables and asking whether there is an overlap region of validity
+of the corresponding inner and outer approximations, we now do just the opposite. We assume
+that there is such a region of common validity, and ask what more, if anything, that implies about
+those approximations. The answer is surprising.
+Assume, for some unknown functions uo(η), U(y) (where y = η/ǫ as always), G(ǫ) and interval
+I, that
+uo(η) + G(ǫ) = U(y)
+(40)
+for all values of η ∈ I and all values of ǫ in some interval K. Since η and ǫ can vary independently
+of each other in their respective domains, η and y also vary independently of each other, for η ∈ I
+and y ∈ J, J here being the set of all values of y = η/ǫ for η ∈ I and ǫ in its previously allocated
+interval of variation K. The assumed identity (40) asserts that there is a region of overlap where
+the outer function uo(η) (plus a correction G(ǫ)) equals the inner function U(y). All these functions
+are at present unknown. It turns out that the correction G is necessary to include, because without
+it, (40) is too stringent a condition to be fulfilled in general.
+First, in (40) make ǫ a fixed number in K, and of course y = η/ǫ for all η ∈ I. Differentiating
+(40) with respect to η and multiplying by η, we obtain
+ηu′
+o(η) = η
+ǫ U′(y) = yU′(y).
+(41)
+This is valid for every chosen value of ǫ ∈ K, so is true for all y ∈ J as well as η ∈ I. But since, as
+remarked before, η and y vary independently of each other, each side of (41) must be a constant.
+For example η can be allowed to vary throughout I while y is held constant, which of course implies
+that the right side of (41) is held constant. That means the left side is also constant. Therefore for
+some constant A,
+ηu′
+o(η) = A;
+yU′(y) = A.
+(42)
+Integrating these two equations, we find, for some other constants B and C,
+uo(η) = A ln η + B,
+U(y) = A ln y + C = A ln η + C − A ln ǫ,
+(43)
+14
+
+the last equation a result of the identity y = η/ǫ. Since uo is assumed to be a function only of η,
+necessarily B is a constant independent of ǫ, and the same holds true of C for a similar reason.
+The function G can now be determined if we substitute the expressions (43) back into (40). Doing
+so while noting that ln y = ln η − ln ǫ yields
+G(ǫ) = −A ln ǫ + C − B.
+(44)
+In short, the three functions in question must be of the form (43), (44), where A, B, C are
+constants. The original assumed identity (40) dictates a great amount of information about these
+functions, while not specifying them exactly.
+What this result says is that functions which are simultaneously regular functions of an inner
+and an outer variable, for all values of those variables in certain intervals, are either constant or
+logarithmic. If it is known that the function is not constant, then this property of simultaneity is
+equivalent to being logarithmic.
+4.7
+A more realistic version
+The result of Izakson and Millikan is mathematically rigorous, in the sense that if (40) holds in
+some intervals as specified, i.e. if some function can be expressed exactly in terms of either an inner
+or an outer variable in some overlap region, then the logarithmic properties (43) and (44) also hold
+in that same region.
+However, the assumption (40) probably never holds exactly in practice, so that the conclusion
+is vacuous. In any concrete situation, it will be far more reasonable to assume that (40) is only
+approximately satisfied. Then the suggestion, which is not yet proved, is that the functions involved
+will be approximately logarithmic.
+Fortunately, such a conclusion can also be rigorously established, provided that appropriate
+senses are given to the two approximations (the one in the hypothesis, and the one in the conclusion).
+That will be done in this section. Note also that Gill in [6] provided such a proof under more involved
+assumptions and with entirely different methods.
+In place of (40), we now assume that (40) holds with an additional small error term r(η, y, ǫ),
+which will be written r(η, y), since ǫ can be expressed in terms of η and y. The function r is not
+known exactly, but that does not prevent estimates about the accuracy of (43) and (44) being
+deduced in terms of the magnitude of r (and, as it turns out, of its derivatives). Thus we start with
+uo(η) + G(ǫ) = U(y) + r(η, y).
+(45)
+As we shall show, although (43) and (44) no longer hold, one can still find upper and lower bounds
+of logarithmic type for the functions uo, U, G in terms of bounds on r and its derivatives.
+Differentiating (45) as before, one obtains
+ηu′
+o(η) = yU′(y) + R(η, y),
+(46)
+where R(η, y) = ηrη + yry, subscripts denoting derivatives. Let ρ be an upper bound for |R|, valid
+for all η, y in the intervals I, J respectively. Choose any y0 ∈ J and let A = y0U′(y0). Then
+setting y = y0 in (46), we get
+|ηu′
+o(η) − A| ≤ ρ.
+(47)
+This holds for all η ∈ I. Also from (46),
+yU′(y) − A = ηu′
+o − A − R,
+15
+
+so that by (47)
+|yU′(y) − A| ≤ |ηu′
+o − A| + ρ ≤ 2ρ.
+(48)
+This says that when ρ is small, the quantities on the left sides of (42) are almost constant, the
+deviation from constancy being no greater than ρ and 2ρ, respectively. Dividing (47) by η and
+rearranging terms, we get
+A − ρ
+η
+≤ u′
+o(η) ≤ A + ρ
+η
+,
+and after integrating,
+(A − ρ) ln η + B1 ≤ uo(η) ≤ (A + ρ) ln η + B2,
+(49)
+where Bi are integration constants. In this sense, uo is almost logarithmic when ρ is small. In the
+same way we obtain
+(A − 2ρ) ln y + C1 ≤ U(y) ≤ (A + 2ρ) ln y + C2,
+(50)
+with similar upper and lower bounds for G.
+In short, assuming R, i.e. ρ, is small in the intervals selected, one concludes that U(y) is bounded
+above and below by logarithmic expressions with coefficients of the logarithm functions which are
+close to each other, the discrepancy being smaller than 2ρ. It must be admitted, however, that one
+generally does not know the nature of the error term R, its magnitude ρ, or indeed the interval
+of overlap, if any. If the intervals I, J, hence K are chosen to be shorter and well placed, one
+might expect ρ to be smaller and therefore the logarithmic approximations to be better. There
+is a tradeoff between the accuracy of the logarithmic approximation and the size of the interval
+where that approximation is valid. It can be guessed that as one moves closer to the canonical
+outer domain, r increases in magnitude because although the outer approximation uo(η) + G(ǫ) is
+more exact, the inner expression U(y) is not a good approximation, so the two cannot be close to
+each other, as (45) would seem to imply. Somewhere between the outer and the inner domains, r
+would be minimal, but still not zero. This was with ǫ fixed. A natural further question, therefore,
+is whether, in such fixed intervals of the space variable η, the error r and its relative R approach
+0 as ǫ→0. The present argument does not answer that question, but an argument in support of a
+similar conclusion in the context of wall-induced turbulence will be given below in Sec. 6.6.
+5
+The mean structure of turbulent Couette flow in a channel
+At this point we leave the mathematical digression about scaling and turn to the main issue of this
+paper, namely the application of scaling ideas to turbulence induced by wall friction. Turbulent
+Couette flow is possibly the simplest nontrivial example. From this point through Sec. 5.6, we
+will be repeating well-known standard arguments but with different emphases. Newer, hence lesser
+known, material will be found in sections beyond that.
+Denote the components of x and u by (x, y, z) and (u, v, w) respectively. Consider a channel
+bounded on top and bottom by horizontal planes {y = 0; y = 2δ}. The top plane moves with
+given steady velocity in the streamwise direction x, while the lower plane remains stationary. This
+causes a shear stress in the fluid between the two planes. In the mean, fluid particles which are
+vertically aligned at one moment of time slide past each other horizontally.
+If the velocity is sufficiently large, the resulting shear causes the flow to be turbulent. We seek
+to understand the “scaling structure” of the mean velocity of the fluid, and other quantities, when
+the flow has reached “equilibrium”. The scaling analysis of turbulent Couette flow described here,
+was developed in [7, 8, 9, 10, 11]. Here scaling structure will mean that we will look for scaling
+16
+
+patches for the mean velocity and Reynolds stress profiles, or other relevant ways to scale those
+functions. And the term equilibrium will refer to the state in which the mean velocity is everywhere
+horizontal and depends, with Reynolds stress, only on the normal coordinate y. Although there
+will be perhaps violent particle fluctuations in all directions, the prevailing (mean) motion will be
+only horizontal.
+The dependence only on y implies that all averaged quantities are uniform along the channel
+and do not change in time. The upshot is that the averaged Navier-Stokes equations have only one
+independent variable (y).
+Before we get into the turbulence analysis, consider the corresponding laminar flow, in which
+all fluctuation parts vanish, and in fact the velocity has only an x-component, which is simply a
+linear function of y, the coefficients being adjusted to match the given velocities of the bounding
+planes. This is a very simple solution, and can be verified to be a solution of the Navier-Stokes
+equations (1) with 0 pressure gradient. In fact the inertia terms of the conservation equation for
+the x-component of momentum vanish automatically because each velocity component is either 0
+or has x-derivative 0. For a similar reason, the viscosity terms also vanish.
+The analogous problem for turbulent flow is orders of magnitude more difficult, and can only
+be solved imprecisely. We will examine it in the framework of Reynolds averaging.
+But a possible paradox appears. It was just brought out that the eminently simple laminar
+flow, in which u is a linear function of y, is an exact solution of the Navier-Stokes equations, and
+those equations govern the flow, laminar or turbulent. So if we have a solution, why do we need to
+look for a “turbulent” one? The answer is because (a) as we set up the problem, there are more
+solutions than just the laminar one; solutions are not unique; and (b) the laminar one happens to
+be very unstable at high Reynolds numbers, therefore not seen in practice and hence unphysical.
+5.1
+The differential equations
+To proceed, suppose the turbulent flow to be “fully developed,” statistically stationary and two-
+dimensional in the channel. All averaged quantities except pressure do not depend on x, z, or t;
+just on y. Moreover, we suppose that the only nonzero component of the mean velocity will be the
+x-component, which we denote by U(y). (This part is the same as the laminar case.)
+The x and y components of (8) are greatly simplified, because of the independence of τ on
+x, z, t:
+−ν d2U
+dy2 + 1
+ρ
+∂P
+∂x + d
+dy⟨u′v′⟩ = 0,
+(51)
+1
+ρ
+∂P
+∂y − d
+dy⟨(v′)2⟩ = 0.
+(52)
+At the two walls {y = 0, y = 2δ}, all the fluctuating parts of u are 0, so the Reynolds stress
+⟨u′v′⟩ vanishes as well. At the lower wall, U = 0 and its derivative is related to the frictional stress
+exerted on the wall by the fluid (or vice versa).
+We have here two equations for the four unknown functions U, P, ⟨u′v′⟩ and ⟨(v′)2⟩. Actually,
+Couette flow is characterized by the absence of an applied pressure gradient; the sole impetus for
+the flow is the differential motion of the two walls. Therefore we set ∂P
+∂x = 0 (P itself depends on
+y, however, as one can see from (52)). In the case of other steady channel flows, ∂P
+∂x may not be
+zero, but it would turn out necessarily to be constant.
+The equation (51) becomes
+−ν d2U
+dy2 + d
+dy⟨u′v′⟩ = 0.
+(53)
+17
+
+It is important to recognize that this is a simple balance of forces, which must occur at each point
+of this steady (in the mean) flow. The two forces exerted on the fluid are (1) the friction, or viscous,
+force ν d2U
+dy2 , and (2) the force − d
+dy⟨u′v′⟩ caused by the turbulent fluctuations, i.e. the gradient of
+the appropriate Reynolds stress, by which x-momentum is transported in the y (perpendicular)
+direction by the fluid’s fluctuations in both directions. An intuitive description of the two forces
+can be given. (1) The derivative dU
+dy measures the magnitude of the shearing motion, i.e. the rate
+at which nearby x-directed particles are moving relative to one another. This shearing magnitude,
+times the kinematic viscosity ν, is proportional to the force per unit area that the fluid lying above
+the horizontal plane through the point under consideration is exerting on the fluid below (and vice
+versa). This is called the shear stress. The difference between the shear stress at two nearby values
+of y, say y1 and y2, is the net effective force per unit area experienced by the slab of fluid in the
+intermediate region {y1 ≤ y ≤ y2}. Dividing this expression by y2 − y1 and passing to the limit, we
+obtain the net force per unit mass acting on fluid particles at that location, and see that it equals
+ν d2U
+dy2 . Again, this is termed the viscous force.
+(2) As shown in Sec. 2, the y-derivative
+d
+dy⟨u′v′⟩ is the x-component of the mean force per unit
+mass exerted on particles at that location by the turbulent fluctuations.
+Since there are only these two forces in balance, it can be said, contrary to some assertions, that
+the viscous forces and those due to Reynolds stresses are both equal players, hence both important,
+everywhere in the flow.
+At this point we have reduced the problem to a single equation (53) for U and ⟨u′v′⟩. There are
+still more unknowns (2) than equations (1). But we shall nevertheless be able to at least surmise
+some important information just from the simple mean balance law (53) plus known boundary
+conditions, in concert with educated assumptions.
+5.2
+The friction velocity and boundary conditions
+We start with some crucially important concepts and constants associated with the interaction of
+the fluid with the wall. Let τw denote the mean stress exerted on the wall by the fluid flowing past
+it. It is proportional to the viscosity µ, as well as the magnitude of the mean velocity’s shear at
+the wall. It is given by
+τw = µ d
+dy⟨u⟩ = µ
+�dU
+dy + d
+dy⟨u′⟩
+�
+= µdU
+dy ,
+(54)
+since ⟨ d
+dyu′⟩ =
+d
+dy⟨u′⟩ = 0. At y = 0, ν dU
+dy = 1
+ρ(µ dU
+dy ) = 1
+ρτw > 0. Now the quantity 1
+ρτw has the
+dimensions of velocity squared; it therefore defines a characteristic velocity u∗, called the friction
+velocity, by
+1
+ρτw = (u∗)2.
+(55)
+From this relation and the previous one, we can express
+dU
+dy = u∗2
+ν
+at y = 0.
+(56)
+This, together with the stipulation that
+U(0) = 0,
+(57)
+provide a pair of boundary conditions at the wall for U(y). It seems natural to treat the velocity of
+the upper wall as a given quantity to be built into the mathematical formulation; but analytically
+18
+
+the simpler route is instead to think of the velocity u∗ (in (56)) as given, and the upper wall velocity
+as to be determined. It is clear from physical considerations that either of these two velocities is a
+monotone function of the other.
+As noted before, the fact that all fluctuations vanish at the wall imply similar conditions for
+the Reynolds stress. In fact,
+⟨u′v′⟩ = d
+dy⟨u′v′⟩ = d2
+dy2 ⟨u′v′⟩ = 0
+(58)
+at y = 0. The first two conditions here follow from u′ = v′ = 0 at the wall. The third condition
+comes about because, using subscripts y to denote derivatives, we have ⟨u′v′⟩yy = ⟨u′
+yyv′⟩+2⟨u′
+yv′
+y⟩+
+⟨u′v′
+yy⟩. The first and third terms in this expression vanish at the wall because u′ and v′ do; and
+the second term also vanishes because (6) together with u′
+x = 0 implies v′
+y = 0.
+Finally at the center of the channel at y = δ, we invoke the symmetry of the flow to conclude
+that
+d
+dy⟨u′v′⟩ = 0 at y = δ,
+(59)
+since every vertical fluctuation v′ is matched, and canceled during the averaging process, by another
+one in the opposite direction. From (53), U has an inflection point. In fact, consistent with (59),
+the Reynolds stress ⟨u′v′⟩ increases in magnitude from 0 at the wall to a maximal value at the
+centerline.
+5.3
+Dimensionless variables in the core region
+For better insight, we now seek to nondimensionalize (53). That is, we rescale the variables by
+multiplying them by typical and meaningful characteristic dimensional constants so that the results
+are dimensionless. There are at least two traditional and natural ways to do this. In any case,
+we argue that the characteristic velocity in this turbulent flow should probably be u∗, because the
+former’s magnitude should be directly related to the wall stress, which is what slows the fluid down
+at the lower wall and causes it to go forward at the upper wall, and so in some sense causes the
+turbulence. So we nondimensionalize U by u∗. (As brought out above, another natural, but less
+convenient velocity unit would be the maximum mean velocity or the average mean velocity.)
+In the interior of the channel, it is intuitive that y should probably be scaled by the channel
+half-width δ, simply because that is the only immediately obvious characteristic length appropriate
+to that part of the channel (further justification will be given in Sec. 6.8). And everywhere, the
+Reynolds shear stress should be scaled by the shear stress at the boundary, so by (u∗)2. We therefore
+define
+U+ = U
+u∗ ,
+η = y
+δ ,
+T = −⟨u′v′⟩
+(u∗)2 .
+(60)
+The centerline of the flow region is at η = 1, and by symmetry considerations, the mathematical
+problem can be set up in the half-channel 0 ≤ η ≤ 1. The superscript “+” in U+ is the traditional
+way to signify that this variable is normalized with parameters related to what happens at the
+wall: the friction velocity u∗ and/or τw. The scaled distance η is the first natural way to nondi-
+mensionalize the y-coordinate, and η will be called the “outer distance variable”. This, along with
+the “inner distance variable” y+ to be discussed in Sec. 5.4 below, have been standard choices for
+dimensionless distance since the beginning of theoretical investigations of wall-induced turbulence.
+However, the existence of scaling patches as defined in Sec. 4.1 employing these scaled distances
+remains to be established. That will be done in Section 6.8.
+19
+
+With the normalization (60) we obtain in place of (53),
+dT
+dη + ν
+u∗δ
+d2U+
+dη2
+= 0.
+(61)
+We also use u∗ and δ to define our Reynolds number R∗ = u∗δ
+ν
+and small parameter ǫ2 = (R∗)−1.
+Using this notation, we get
+dT
+dη + (R∗)−1 d2U+
+dη2
+= dT
+dη + ǫ2 d2U+
+dη2
+= 0.
+(62)
+As noted earlier, we have an underdetermined problem—a single equation for the two unknowns
+T and U+. But there is even more bad news: the boundary condition at η = 0 is in trouble. Naively
+assuming the formally small second term can be neglected across the whole channel, we get that
+T is constant, and since it vanishes at the wall, we would obtain that T = 0 everywhere. This is
+incorrect, of course, for a reason similar to that which applies to the classical example in Sec. 4.2:
+a different scaling applies near the wall.
+We construct now a second scaling domain, near the wall, to partially remedy this defect, as
+was done for the classical example in Sec. 4.2.
+5.4
+The wall layer, rescaling, and law of the wall
+It is traditionally recognized that we do have at least two space scales in the channel—one of them
+associated with δ and another one close to the wall; we’ll get to that shortly. We will have an “outer”
+and an “inner” approximate solution. Finding out how to connect them makes an interesting story.
+However, we cannot carry out a full-blown asymptotic analysis because too much is unknown.
+Much of the following proceeds by “reasonable suppositions”, which can also be verified to some
+extent by experiments.
+It is natural to choose the inner scaling in such a way that the two terms on the left of (62)
+have the same orders of magnitude. After all, those two terms represent the two forces in the fluid
+which have to balance (note, that’s not what we did to get (61)). Thus we define
+y+ = ηR∗ = u∗
+ν y.
+(63)
+Then (62) becomes
+dT
+dy+ + d2U+
+dy+2 = 0.
+(64)
+In this, there is no incompatibility with the boundary conditions at y+ = 0:
+T = 0 and dU+
+dy+ = 1 at y+ = 0.
+(65)
+The integrated form of (64) is
+T + dU+
+dy+ = 1.
+(66)
+To summarize, we have the traditional approximation that asserts that T is constant (but no
+approximation as yet for U+) in the outer region near the channel’s centerline, and an equation
+(64) or (66) relating T and U+ in the inner region.
+20
+
+The region next to the wall where the spatial variations (in y) have characteristic length
+ν
+u∗, is
+call the wall layer (as opposed to boundary layer). The choice (63) of scaling in this region says
+that we are treating the scaled Reynolds stress T on the same footing as the wall stress or skin
+friction (R∗)−1 dU+
+dη . The former arises from the inertia terms in the Navier-Stokes equations and
+the latter from the viscosity terms.
+In the wall layer, then, it is reasonable to suppose that U+ and T are (approximately) functions
+only of the inner variable y+. This property is called the law of the wall.
+5.5
+Velocity in the core
+The law of the wall is no longer valid for large R∗ as we move into the interior of the channel and
+on into the core region. The outer scaling will turn out to be valid there.
+But remember, at this point we only have that T is approximately constant there. U+ may be
+unbounded as a function of ǫ; the traditional way to incorporate the validity of the outer coordinate
+η in an expression for U+ is to postulate the defect law
+U+ = U+(1) + h(η),
+(67)
+where h is unknown, except that h(1) = 0.
+The concept of thickness of the wall and the core scaling regions should be clarified.
+One
+interpretation of these regions would be where the solution’s characteristic length is unity in the
+appropriate scaled coordinate.
+Then the thickness would be O(1) as measured in that scaled
+variable, be it y+ or η. In particular, the wall region is characterized by {y+ ≤ O(1)}, and that
+of the outer scaling region is characterized by η0 < η ≤ 1 for some arbitrary positive number η0
+independent of ǫ. Note that the ratio of the thickness of the wall layer to that of the core is O
+�
+1
+R∗
+�
+;
+this contrasts with the laminar hydrodynamic boundary layer (Prandtl theory), where the ratio is
+O
+�
+Re−1/2�
+.
+Another interpretation of the two regions would be where one or the other of the approximate
+representations of the solution, namely the law of the wall or the defect law, are valid.
+This
+interpretation yields, as it turns out, larger regions.
+Let us assume that these two laws are correct in their respective domains; better justification
+for this will be given later in Sec. 6.8. Recall
+ǫ = (R∗)−1/2;
+(68)
+since U+(1) will depend on ǫ, we set U+(1) = G(ǫ).
+In the outer region, then, we may posit the representation
+U+ = G(ǫ) + uo(η).
+(69)
+In the inner region, on the other hand, we are using the law of the wall approximation
+U+ = p(y+),
+(70)
+i.e. U+ is a function only of y+.
+The unknown quantities here are p, G, uo.
+21
+
+ 0
+ 5
+ 10
+ 15
+ 20
+ 25
+ 30
+ 35
+ 40
+ 0.1
+ 1
+ 10
+ 100
+ 1000
+ 10000
+ 100000
+ 1e+06
+U
+y
+Reτ=181 (Kawamura et al.)
+Reτ=642 (Iwamoto et al.)
+Reτ=1655 (Wei and Willmarth)
+Reτ=11062 (McKeon et al.)
+Reτ=103340 (McKeon et al.)
+Reτ=534538 (McKeon et al.)
+1./0.41*ln(y)+5.
+Figure 1: Inner normalized mean streamwise velocity in Couette flow, pressure-driven channel flow
+and pipe flow. Couette flow data are from DNS of Kawamura’s group [13, 14]. Pressure-driven
+channel flow DNS data are from Iwamoto et al [15] and experimental data are from Wei and
+Willmarth [16]. Pipe flow data are from superpipe data of McKeon et al [17].
+5.6
+Application of the Izakson-Millikan reasoning
+A great number of analytical and semianalytical studies of turbulent mean profiles have utilized the
+Izakson-Millikan observation as an essential ingredient. It has also been generalized and elaborated
+upon in many ways. For example the idea of composite expansions in more traditional settings of
+two-scale problems has been extended to the present scenario. We recommend the review paper
+[12].
+Given the two approximations (69) and (70), they can be thought of as the inner and outer func-
+tions specified in the two sides of (40).The variables p, uo, G, y+, η are analogous to U, uo, G, y, η.
+Thus the left side of (40), uo(x) + G(ǫ), is analogous to the right side of (69), and the right side of
+(40), U(y), is analogous to the right side of (70).
+If we now make the Izakson-Millikan hypothesis that there exists a common region in which the
+two expressions are almost equal, then the three functions in question must be either approximately
+constant or approximately logarithmic, as in (43) and (44).
+In the present context, the conclusion is that in the common region, whatever it is, the following
+hold:
+uo(η) ≈ A ln η + B,
+p(y+) ≈ A ln y+ + C,
+G(ǫ) ≈ − A ln ǫ + C − B.
+(71)
+Therefore the functions are approximately either constant (A = 0) or logarithmic.
+This is a well-known conclusion, and indeed the mean velocity profile in wall-bounded turbulent
+flows is seen to exhibit logarithmic type behavior in certain regions which can be estimated on the
+basis of experimental data. Examples of the logarithmic property can be seen from the empirical
+data shown in Fig. 1. The coefficients A, B, C can also be so estimated. All in all, the Isakson-
+Millikan observation, in all its simplicity, should be counted as one of the great success stories of
+22
+
+theoretical turbulence.
+Focussing on our stated objective to at least try to answer the question why?, we discuss the
+given derivation of the logarithmic property in some detail. In particular, we ask whether it can
+be supported by alternative trains of thought.
+5.7
+Observations on the foregoing procedure
+The conclusion (71) gives a surprising amount of information about the inner and outer approxi-
+mations, based on what appears to be a small amount of input.
+The basis for the argument rests on very little physics or fluid dynamics; it is simply an as-
+sumption about inner and outer approximations agreeing somewhere. If one is willing to admit the
+existence of those inner and outer approximations, what remains is simply a mathematical issue,
+and could apply to any situation where there are two space scales with different but overlapping
+domains representing a strictly monotone function.
+Let us rephrase what has been found in terms of the more realistic conclusion corresponding to
+Sec. 4.7. If the mean velocity profile is everywhere monotone and there is a region in the flow where
+that profile can be expressed approximately and simultaneously as a function of the inner variable
+alone and the outer variable alone (up to an additive function of ǫ alone), then these functions must
+be approximately logarithmic, the degree of the latter approximation being dependent on that of
+the former.
+Let us take for granted the monotone part; that property of the mean velocity profile is well
+known and can be rationalized by the supposition that the viscous stress is everywhere positive
+and a decreasing function of distance from the wall, which is the site of the imposition of such
+stress by outside means. Given the monotonicity, what other information can we use to determine
+the profile, at least approximately? The needed additional information should be theoretical in
+nature, because our aim is to explain the reasons for observed behavior. We know the Izakson-
+Millikan implication, which, stated succinctly, says, “overlap implies logarithmic”. It is a simple
+piece of reasoning which is classical and, again, well-known. Being so simple and direct, it places
+the hypothesis that a particular region is an overlap region very close to the conclusion, namely
+close to assuming logarithmic behavior. Either property can be substituted for the other. If this
+is true, the argument is close to being circular. If available, independent arguments to determine
+properties of the mean velocity and Reynolds stress profiles, not relying on the overlap hypothesis,
+would be highly desirable. That will be a principal aim in the following sections.
+One direction of enquiry which is suggested is to consider all possible increasing profiles which
+are functions of the inner variable near the wall and of the outer variable near the centerline;
+and try to use some reasonable selection criterion to at least make a good argument for what the
+actual profile should be. The set of profiles which have the overlap property, hence the logarithmic
+property, is only a small part of the set of all conceivable profiles, because the latter includes an
+ample collection of arbitrary non-logarithmic ones. If the overlapping logarithmic ones are to be
+selected, as empirical evidence suggests in some regions, then theory should be able to supply a
+reason for that choice.
+We should mention in passing a small cloud hanging over the search process: it seems on the
+basis of examples explored in Sec. 4 that overlap regions, if they exist, are usually characterized
+by the functions being constants in those regions. Given that U is nowhere constant, one wonders
+whether the assumption that an overlap region exists is itself reasonable.
+Another possible direction of enquiry is to ask whether a unified approach is possible, which
+gives more justification to the inner and outer scalings themselves, and at the same time is capable
+23
+
+of handling all other parts of the profile as well.
+In the next subsection we draw attention to an intuitive and vague train of thought which may
+be relevant to the question of why the mean profiles might have certain features. In Section 6,
+a relatively new approach to this and other questions will be explored. It involves a systematic
+search for scaling patches and does not require separate assumptions about the validity of inner
+and outer scales.
+Apart from the above, another consideration to be kept in mind is that the overlap hypothesis
+provides no theoretical basis for determining the location of any expected overlap region, nor the
+accuracy of (69) in that region (neither does the scaling patch approach, for that matter). It is
+expected that the size of the region is related to the accuracy of the basic hypothesis. Increas-
+ing the region where the two expressions are approximately valid decreases the accuracy of the
+approximation in that region.
+5.8
+The uniformizing effect of turbulence and some possible implications.
+The turbulent nature of the fluid motion, which is not explicit in the averaged equation under
+study, has a mixing and hence uniformizing effect. This, it may be argued, tends to smooth out
+or eliminate abrupt spatial changes in the average properties of the flow as one moves from one
+location to another. The flow properties at one place will be similar to what they are at nearby
+places.
+Although sources of stress which are imposed from the outside, such as wall friction and en-
+joined pressure gradients, are often also sources of turbulence, they may work in opposition to the
+uniformizing action. For example the generation of stress due to the wall in channel flow acts at
+a different location from an imposed pressure gradient, and this difference results in a nonuniform
+distribution of Reynolds and viscous stress.
+Still, the claim of uniformization seems without much doubt to be valid for some properties if
+the vague terms “properties” and “similar” are given some appropriate definition.
+If we assume that this principle holds for the local scaling properties of the variables, including
+for the local characteristic length as it depends on location, then there should be a whole continuum
+of characteristic lengths, each appropriate to a specific locale, i.e. specific distance from the wall.
+Thus as we pass from the wall to the centerline of the channel, the uniformizing principle suggests
+that the characteristic length encountered during the passage should change continuously from the
+one for the inner scaling to the one for the outer scaling.
+In fact, this is one of the main conclusions to be brought out by a different reasoning in the
+next section, which introduces and develops a very different approach to the problem of determining
+the nature of the profiles. It uses scaling and order of magnitude arguments in a major way, but
+does not assume a priori the validity of the inner or outer approximations. Rather, it presents an
+alternative criterion for “scaling patches” and shows that the inner and outer regions, among many
+others, fit that criterion. In this sense, the identification of patches is derived from the assumed
+criterion rather than presupposed.
+6
+The search for scaling patches
+The more recent approach to understanding of the scaling structure of the mean velocity and
+Reynolds stress profiles presented here was introduced in [7, 8, 9, 10, 11]. It forms an alternative
+to the approaches considered above, not in any sense of replacing them, but rather in the spirit of
+24
+
+-1
+-0.5
+ 0
+ 0.5
+ 1
+ 0
+ 20
+ 40
+ 60
+ 80
+ 100
+ 120
+ 140
+ 160
+ 180
+ 200
+Tβ = T+ - βy+
+y+
+Couette: T+
+β=0.1000
+β=0.0700
+β=0.0465
+β=0.0150
+β=0.0055
+β=0.0020
+β=0.0004
+Figure 2: Adjusted Reynolds stress profile for various values of β. The case β = ǫ4 corresponds
+within O(ǫ2) to the genuine Reynolds stress for Couette flow and β = ǫ2 is an approximation to
+that for pressure driven channel flow. The DNS data are from [18], δ+ = Reτ = 181.3 and ǫ = .074.
+adding to them new information and insights. Finally, it is applicable to a wide variety of wall-
+induced turbulence scenarios. For the time being, we continue to operate within the context of
+turbulent Couette flow through a channel.
+6.1
+Adjusted Reynolds stresses, balance exchange phenomena, and the identi-
+fication of patches
+Let β be a small positive number. Restrictions on it will be given later. In terms of the originally
+defined dimensionless Reynolds stress T, let
+T β(y+) = T(y+) − βy+.
+(72)
+(Note that β is a superscript not an exponent.) The function T β is simply a mathematical construct
+that will be called an adjusted Reynolds stress. It satisfies
+dT β
+dy+ = dT
+dy+ − β,
+(73)
+and from (64)
+d2U+
+dy+2 + dT β
+dy+ + β = 0.
+(74)
+The T β are plotted for various values of β in Fig. 2.
+The genuine Reynolds stress, which
+corresponds to the case β = 0, vanishes with its derivative at the wall and rises to attain a
+maximum at the centerline. As β increases, the position of the maximum moves toward the wall,
+eventually disappearing. The main interest is in those adjusted stress functions that exhibit local
+maxima—which will be the case when β is not too large—because, as it turns out, scaling patches
+Lβ with characteristic lengths with orders of magnitude O(β−1/2) (as β → 0) exist at those peak
+locations. The reasoning below will justify this assertion. Part of the argument involves obtaining
+25
+
+an exact differential equation in rescaled variables having no explicit dependence on ǫ or β. Another
+part entails the recognition that (74) expresses an approximate balance between its first two terms
+(since β is small), and that this balance is necessarily broken at some point and changed to another
+kind of balance, because y+ eventually attains a value such that the three terms in (74) have the
+same order of magnitude.
+Let us pursue this idea of balance exchange. As was brought out in Sec. 5.2 following (59),
+the function T(y+) increases from being 0 at the wall to attain its maximal value at the centerline
+η = 1, i.e. y+ = ǫ−2 = δ+. Assuming that β is small and positive, therefore, we see that the
+adjusted stress T β has negative derivative at y+ = δ+, so must attain its maximal value Tm(β) at
+a point y+
+β < δ+. Moreover, the location of this maximum decreases as β increases, because when
+β increases, the zero derivative at any maximum becomes negative.
+Within the inner scaling region where the law of the wall holds, for example when y+ ≤ O(1),
+the two derivatives in (74) will generally have magnitudes O(1) except very near the wall in the
+viscous sublayer, where they are both very small. Since β ≪ 1, those two derivatives will balance,
+except for an error represented by the last term in (74). Both derivatives will therefore generally
+be O(1) quantities, except as noted above. This occurs within the inner scaling region. However as
+y+ increases to a neighborhood of y+
+β , this necessarily changes, because the value of dT β
+dy+ decreases
+to zero at y+ = y+
+β . For points near enough to that value, the second term in (74) must take on
+values ≤ O(β), and therefore by (74) again, the first term does as well. It is therefore natural to
+propose that there may be a scaling patch occupying that neighborhood with respect to which all
+three terms of (74) have the same formal order of magnitude. To be more precise, the last term
+balances the sum of the first two terms, each of which is ≤ O(β).
+It turns out that it is possible to construct a candidate for such a patch. It will be centered at
+the location y+ = y+
+β , where dT β
+dy+ = 0. At that point, the derivatives appearing in (74) annihilate
+the linear terms in the Taylor series of the functions U+ and T about y+ = y+
+β (in fact the linear
+term in T is identically zero). As a result, those linear parts do not play a role in the rescaling
+process, and one may work only with the remainders after those parts have been separated off.
+With this in mind, we write, for some coefficients α(β), γ(β), λ(β) to be determined,
+y+ = y+
+β + αˆy,
+T(y+) = Tm(β) + γ ˆT(ˆy),
+U+(y+) = U+(y+
+β ) + m(y+ − y+
+β ) + λ ˆU(ˆy),
+(75)
+where m is the slope m(β) = dU+
+dy+ (y+
+β ) of the mean velocity profile. The slope m is unknown at this
+point, but will be found later in Sec. 6.4.3. The linear parts, which have been segregated in (75), are
+Tm(β) and U+(y+
+β ) + m(β)(y+ − y+), respectively. They are separated off because the derivatives
+appearing in (74) annihilate them and they take no part in the present calculation. That is also
+why m is not determinable until later in Sec. 6.4.3 (see (93)). The new rescaled variables are ˆy, ˆT
+and ˆU. Then (74) becomes
+λ
+α2
+d2 ˆU
+dˆy2 + γ
+α
+d ˆT
+dˆy + β = 0.
+(76)
+In order for the three terms to be formally equal in order of magnitude, one can specify
+α =
+�λ
+β
+�1/2
+,
+γ = (λβ)1/2,
+(77)
+so that
+y+ = y+
+β +
+�λ
+β
+�1/2
+ˆy,
+T(y+) = Tm(β) + (λβ)1/2 ˆT(ˆy),
+U+ = U+(y+
+β ) + my+ + λ ˆU(ˆy),
+(78)
+26
+
+and (74) is transformed into the parameterless equation
+d2 ˆU
+dˆy2 + d ˆT
+dˆy + 1 = 0.
+(79)
+The criterion of equal formal orders of magnitude, therefore, does not by itself determine
+uniquely the three scaling factors α, γ, λ; (77) leaves the factor λ undetermined.
+This sug-
+gests that there may be a one parameter family of potential scaling patches at the location y+
+β , the
+parameter being λ. We are confronted with an extra degree of indeterminacy, because the present
+line of reasoning does not offer a way to determine which of the potential patches represent actual
+ones. However there is considerable evidence, to be summarized in Sec. 6.7, that the correct scaling
+at this location y+
+β is given by (77) with λ = 1. The analysis to follow in this and the next two
+subsections holds for other choices of λ as well.
+We assume that λ(β), like α and γ, is a power of β, and define, in place of λ, the parameter
+σ by λ = β−σ. (No constant coefficient is needed with this power law because we are dealing only
+with orders of magnitude.) It will be shown that the case σ = 0 leads to a logarithmic-like profile
+for the mean velocity U+, and when σ is positive, we get behavior like a power law with exponent
+depending on σ.
+For reference, the prototypical case is σ = 0, when
+y+ = y+
+β + β−1/2ˆy,
+T(y+) = Tm(β) + β1/2 ˆT(ˆy),
+U+ = U+(y+
+β ) + m(β)(y+ − y+
+β ) + ˆU(ˆy).
+(80)
+No information is available at this point about the slope m, which bears on the profile of U+.
+However, information about it will be found later (93).
+We argue that the scaling (78), for some choice of σ, is the natural one in a neighborhood of y+
+β ,
+and that this neighborhood is a scaling patch. On the basis of the explanation in Sec. 4.1 together
+with (75) and (77), it will follow that the characteristic length in that patch will be
+ℓ(β) =
+�λ
+β
+�1/2
+= β−(σ+1)/2.
+(81)
+In fact not only does the scaling produce a parameter-free exact form (79) of the momentum balance
+equation, but at locations in the proposed patch it can be verified that the individual derivatives
+in (79) have the right order of magnitude, namely ≤ 1 with at least some of them = O(1)). For
+example, at the peak location, the three terms on the left of (79) are −1, 0, 1 respectively. Leading
+up to that peak, the middle term is positive but still ≤ O(1), which makes the first term also O(1),
+according to (79) again.
+In a scaling patch, as defined originally, all derivatives using the scaled variables are ≤ O(1),
+and in the case of at least one of those variables, the magnitudes of its derivatives are not all
+strictly < O(1). If that were not the case, the scaling factor α could be decreased without forcing
+some of the new rescaled derivatives to be unbounded as β→0. In the present case, we have shown
+that these order of magnitude relations hold for the particular derivatives appearing in (79). That
+fact makes the scaled neighborhood of y+
+β with width O(1)) in ˆy a candidate for a scaling patch,
+provided the correct choice of σ is taken. This will be our accepted criterion for the existence of a
+patch.
+Thus if the correct σ is taken, then given any suitable small number β, one concludes that there
+is a corresponding scaling patch, which we shall call Lβ, with characteristic length ℓ(β) = β−(1+σ)/2
+located at the point y+
+β where T β achieves its maximum.
+27
+
+W=β-εt
+2
+ym
+β
+Ι
+y+
+W(y+)
+Figure 3: Schematic diagram showing the role of the function W(y+), which is called P(y+) in the
+text, in determining the relation between β and the location yβ
+m of the corresponding scaling patch.
+The interval I shown here is one of many choices of interval on which W(= P) is decreasing. See
+(82).
+One may question whether this characteristic length ℓ, for the correct choice of σ, is comparable
+to the mixing length of Prandtl in Sec. 3 or the scaling parameter introduced by von Karman (15).
+They arise from apparently different considerations; the lengths used by von Karman and Prandtl
+are characteristic lengths vaguely associated with the fluctuating velocity, simply postulated to
+exist, whereas the present one is related to the function T. And yet T is in essence something
+which is defined in terms of those fluctuations, and so one may surmise that the two concepts are
+related somehow. Because of the vagueness of mixing length concepts, that may be all that can be
+said.
+6.2
+The locations of the scaling patches
+In the following the analysis will be done only for the case σ = 0. Analogous calculations may
+be done in the other cases as well; we will simply provide some key equations in the general case,
+without derivations.
+At this point one should ask how to determine the range of parameter values β for which the
+foregoing construction of scaling patches is possible. This is best answered at first in terms of the
+known qualitative properties of the function P(y+) ≡
+dT
+dy+ (y+); later a more complete answer will
+be given. The function P vanishes at the wall (y+ = 0) and, by symmetry of the function T, also at
+the centerline y+ = δ+ = ǫ−2. As y+ passes from the wall to the centerline, T rises to its maximum
+at the latter location; during the transition, T and P are both positive. Since P = 0 at those two
+locations, it must attain a positive maximum at some intermediate point; call it y+
+p . Being the
+gradient of T, P is expected take on its greatest values in the inner region, where the length scale
+is shortest and gradients are largest. Therefore the location y+
+p of the positive maximum of P will
+be expected to lie in the inner region, so that y+
+p = O(1).
+28
+
+-0.01
+ 0
+ 0.01
+ 0.02
+ 0.03
+ 0.04
+ 0.05
+ 0.06
+ 0.07
+ 0
+ 10
+ 20
+ 30
+ 40
+ 50
+ 60
+ 70
+ 80
+ 90
+ 100
+dT+/dy+
+y+
+y+=7.0
+Reτ=82 (Bech et al.)
+Reτ=128 (Kawamura et al.)
+Reτ=181 (Kawamura et al.)
+ReΘ=1410 (Spalart)
+dT+/dy+=0.007
+Figure 4: Inner normalized Reynolds stress gradient for a variety of flows. The turbulent Couette
+flow data are from [19] and [18]. Also included are the turbulent channel DNS data from [20] and
+turbulent boundary layer DNS from [21].
+For y+ > y+
+p , P(y+) will decrease from its maximum. Let us assume it is a decreasing function
+on the entire interval (y+
+p , δ+). Given any point y∗ in that interval, let β(y∗) be the corresponding
+value of P, i.e.
+P(y∗) = β.
+(82)
+According to (73), which can be written dT β
+dy+ = P(y+) − β, the function dT β
+dy+ = 0 at the point y∗
+under consideration, and since P is a decreasing function, dT β
+dy+ changes from being positive to being
+negative as y+ increases past the point y∗. Therefore T β has a maximum, which we may call T β
+m,
+at that point. The point y∗ in question may therefore also be labeled y+
+β . This is illustrated in Fig.
+3, with plots of typical functions P in Fig. 4.
+What has been shown is that any value y∗ ∈ (y+
+p , δ+) will serve as y+
+β if β is chosen to be
+P(y∗). The set of all such values of β is the set for which the above construction of a scaling patch
+will work, namely the set of all values of P(y+) for y+ ∈ (y+
+p , δ+). That range in y+ provides,
+then, the locations where we have succeeded in finding a scaling patch; moreover we have found
+the characteristic lengths of all these patches; they are given according to (80) in the case σ = 0
+by β−1/2. These characteristic lengths increase with increasing distance from the wall, since P
+decreases with distance. It will be argued in Sec. 6.4, in fact, that asymptotically as β→0, they are
+proportional to distance from the wall.
+6.3
+More on the locations of the patches
+It will be desirable to correlate the locations y+
+β of the scaling patches with the characteristic lengths
+given by (81). The above discussion accomplishes this in terms of the function P. We now ask
+whether information can be obtained even if P is not known.
+In order to proceed we now further exploit the facts that T β has a maximum at y+ = y+
+β , and
+that (80) expresses the normal (natural) scaling near that point. In terms of the rescaled variables
+given in (80), we have that ˆT has a maximum of 0 at ˆy = 0. We are going to emphasize the
+29
+
+variation of β and the dependence of the rescaling shown in (78) on β. Then the fact that T β(y+)
+has a maximum at y+
+β implies that for all β in the allowed interval of values,
+dT β(y+)
+dy+
+(y+
+β ) = dT(y+)
+dy+
+(y+
+β ) − β = 0.
+(83)
+This may be differentiated with respect to β to yield
+d2T(y+)
+(dy+)2 (y+
+β )
+dy+
+β
+dβ − 1 = 0.
+(84)
+Writing the second derivative on the left in terms of the scaled variables, we find
+β3/2 d2 ˆT(ˆy)
+(dˆy)2
+�����(ˆy=0)
+dy+
+β
+dβ − 1 = 0.
+(85)
+In the patch Lβ, the scaled variables satisfy (79), which is parameter-independent; moreover ˆT
+satisfies the two equations ˆT(0) = d ˆT
+dˆy (0) = 0, which are also parameter-independent relations. One
+can therefore argue that the second derivative on the left of (85), which we shall designate by
+−A ≡ d2 ˆT(ˆy)
+(dˆy)2
+�����
+(ˆy=0)
+,
+(86)
+should not depend in any major way on the parameter β. This is reminiscent of similarity hy-
+potheses, since an assumption that A is constant is an assumption that the quantity A is invariant
+under certain transformations associated with changing β. Certainly the order of magnitude of A
+(with respect to β)) is O(1), hence β-independent, and we shall argue below in Sec. 6.6 that in
+some regions any β-independence should vanish in the limit as ǫ→0. From (85), then,
+dy+
+β
+dβ = −A−1β−3/2.
+(87)
+Recall that y+
+β is the location, in the original inner variable, of the scaling patch with charac-
+teristic length β−1/2. The equation (87), therefore, provides some insight into the dependence of
+that characteristic length on location, without using much knowledge about the function P.
+6.4
+The case A = constant
+If A, as it depends on β, were known, the locations y+
+β could be found by solving differential
+equations. It is not known, of course; but its order of magnitude is known to be unity. That
+knowledge provides order of magnitude information about the profiles and about the locations y+
+β .
+It is most instructive at this point to look at the calculations in the easiest case A = constant.
+After that, we can see how the results so obtained are still valid in an order of magnitude sense.
+6.4.1
+Characteristic length as it depends on location
+As mentioned, the scaling given in (78) shows, among other things, that the characteristic length
+ℓ of a patch is given by (81). We shall sometimes write relations below in terms of ℓ instead of β.
+The symbol C, with or without subscript, will denote a variety of different constants, sometimes
+integration constants, which depend on σ but not on β or A.
+30
+
+If A is constant in some given interval, then in that interval (87) may be integrated to obtain
+y+
+β = −A−1
+�
+β−3/2dβ = A−1C0β−1/2 + C1 = A−1C0ℓ + C,
+(88)
+where the final C is an integration constant. We now drop the subscript β from y+
+β and obtain the
+relation
+ℓ = CA(y+ − C).
+(89)
+This same relation in fact holds as well for other choices of σ. The left side is the characteristic
+length of the patch located at y+; except for a shift in the independent variable y+, that length is
+proportional to distance from the wall.
+6.4.2
+The Reynolds stress
+In (82) the point y∗ may be identified with the general point y+ in (89), the location of the patch
+Lβ. Substituting the expression for β given in (89) into the right side of (82) and recalling the
+definition of P, we obtain
+dT
+dy+ = β = C1A−2(y+ − C2)−2.
+(90)
+Integrating this provides T as a function of y+:
+T(y+) = −C3A−2(y+ − C)−1 + C4,
+(91)
+with another integration constant C4. The relation (91) holds only under the assumption that A is
+constant, and only for values of y+ in the interval where T is a decreasing function, because that
+is where the scaling patches were found. This range extends up to the channel midline at y+ = δ+,
+at which point the left side of (91) vanishes. This gives a relation among δ+ and the integration
+constants. Since the right side of (90) cannot vanish and the left side does, the assumption that A
+is constant is incorrect at least near the centerline.
+6.4.3
+The mean velocity profile
+From (66) and (91) we find
+dU+
+dy+ = 1 + CA−2(y+ − C)−1 − C5.
+(92)
+We require this derivative to be small for large y+; this simply means that at the centerline U+
+must become flat as ǫ→0. Therefore it appears that C5 ≈ 1 and
+dU+
+dy+ ≈ CA−2(y+ − C)−1.
+(93)
+Combining (93) with (89) yields an asymptotic relation between the characteristic length ℓ and
+the slope of the mean velocity profile:
+dU+
+dy+ (y+) ≈ CA−2ℓ−1.
+(94)
+For other values of σ the right side should be replaced by CA−2/(1+σ)ℓ−(1−σ)/(1+σ). In any case,
+we may express this in terms of β and identify it with the slope m in (78). Note that in the case
+31
+
+σ = 0, m ≈ ℓ−1, which says that the characteristic length of the linear part of U+ in (78) is the
+same, ℓ, as that of the nonlinear part. More generally, in any case if the latter is true, then m
+should also be identified with the ratio of characteristic increments ∆U+/∆y+, which from (78) is
+λ/α = β(1−σ)/2 = ℓ−(1−σ)/(1+σ). This is in agreement with (94). The conclusion is that for any
+choice of σ, the characteristic slope of the U+ profile calculated by integrating (87) on the basis
+of the nonlinear increments is the same as that which one would surmise by assuming that the
+characteristic increments for the linear parts of (78) are the same as for the nonlinear parts. This
+fact lends credence to that assumption.
+Integrating (93) again gives
+U+ ≈
+�
+CA−2/(1+σ)(y+ − C)2σ/(σ+1) + C6,
+σ > 0,
+CA−2 ln (y+ − C) + C6,
+σ = 0.
+(95)
+This expression (95) in the case σ = 0 is similar to that (71) for the mean velocity in a
+hypothesized overlap region given by the Izakson–Millikan argument. In the case 0 < σ ≪ 1 it
+gives a power law with small exponent; that also has been suggested in the past, but experimental
+or DNS data has left the resolution of the question unclear.
+In both the Izakson–Millikan argument and the present argument, questionable assumptions
+lead to the derivation of (95), or at least part of it. In the I-M case, those assumptions have been
+reviewed in Section 4.6. In the present case it is mainly, but not solely, the assumption that A
+is constant. The crucial assumption in either case must realistically be only approximate, with
+unknown error. In the present scenario, however, there is a good reason to believe that in some
+regions, the error in the assumption about A approaches 0 as ǫ→0, i.e. in the limit of large Reynolds
+numbers. That reasoning will be given below in Sec. 6.6.
+6.5
+Relaxing the assumption that A is constant
+Although the similarity assumption A ∼ 1 is true in order of magnitude, it is unlikely to be strictly
+true except in interior regions at high Reynolds numbers, as shown below in Sec. 6.6.
+If A = A(β) depends on β, then (87) is still valid. Moreover if A remains O(1), i.e. bounded
+above and below by positive constants independent of β or ǫ, then (88) and (91) still hold in a
+weakened sense. They are replaced by pairs of inequalities for some constants Ki independent of
+all parameters. In the logarithmic case σ = 0, we have
+K1ℓ ≤ y+
+β ≤ K2ℓ,
+(96)
+K3(y+ − C)−2 ≤ dT
+dy+ = β ≤ K4(y+ − C)−2.
+(97)
+Thus in an asymptotic sense as y+→∞, the characteristic length is still proportional to distance
+from the wall.
+Similar transformations to pairs of inequalities are valid for (90)–(95). For example if σ = 0
+the latter becomes
+K5 ln y+ ≤ U+ ≤ K6 ln y+.
+(98)
+In domains where A is nearer to being constant, such inequalities are valid with constants Ki
+which are closer to one another. In fact the error in assuming K5 = K6, for example, can be
+estimated in terms of any assumed error bound in assuming that A = constant in the domain being
+considered. This is parallel to the error consideration in the Izakson-Millikan argument, which was
+32
+
+detailed in Sec. 4.7. In both cases the conclusion of logarithmic growth is probably never exact;
+it should be considered an approximate statement, with the accuracy of the statement dependent
+on the accuracy of the underlying assumption. In the I-M case, the underlying assumption is that
+the outer and inner approximations are both exact in some domain; in the present case, it is that
+the quantity A is constant in some domain. In both cases there is no theoretical way to gauge how
+accurate the approximations are (see, however, the following subsection).
+6.6
+Approximate constancy of A in interior zones
+As was brought out before, the order of magnitude of the quantity A remains O(1) in β and ǫ.
+In locations far away from the endpoints of the range of the continuum of scaling patches, it can
+be argued that A should be almost constant. The reason is that the data we have for A, namely
+the differential equation it satisfies and the known exact values of the terms in that equation,
+are parameter-independent. Therefore any variation in A due to changes in β will be caused not
+from those sources. This invariance as β changes suggests, by a similarity consideration, that A
+is constant if it is not subject to other influences. Those would be influences from neighboring
+patches, hence ultimately from locations, on either side of the continuum, where the boundary
+would introduce “external” influences. Only at those places would the similarity suffer external
+disruption. And the effects of that disruption would be most likely to happen near those disrupting
+sites, either toward the outer or the inner zones. That leaves interior regions far away from those
+zones as candidates for places where A is nearly constant. It was shown above in Sec. 6.4.3 that
+those are the regions where the mean velocity profile is logarithmic-like.
+The extent (in inner units) of these zones of near similarity will grow as ǫ becomes smaller,
+because there will be a larger range of patches far away from the extremal patches.
+6.7
+Evidence for logarithmic growth, i.e. σ = 0
+The possibility that the mean velocity profile grows in parts of the flow according to a power
+law, rather than a logarithmic law, has been discussed by other authors. In either case, the actual
+expression for the mean velocity will depend somewhat on the Reynolds number and is very unlikely
+to be exactly logarithmic or a power function. These may represent approximations, but that is all.
+What we are concerned with are trends, brought about by relations such as (98) and its analog for
+power functions. They are generated by the scaling parameter λ = β−σ in (78). Here we summarize
+the evidence in favor of choosing σ = 0.
+• The Izakson-Millikan argument (Sec. 5.6).
+• It was shown from empirical data in [7] that the increment in U+ across the mesolayer is
+O(1), in fact near 1 independently of the (large) Reynolds number. The mesolayer is one
+example of a scaling patch for turbulent Poiseuille flow. The analysis of that flow in Sec. 7
+follows the present analysis (which has been for Couette flow). The role of the parameter σ
+in determining the increment in U+ across any scaling patch, including the mesolayer, is seen
+from (75). The nonlinear part of the increment is simply O(λ) = O(β−σ), and it was brought
+out following (94) that in all cases the linear part of the increment, governed by m, is the
+same. Therefore the only case in which this increment is O(1), as apparently required in the
+mesolayer, is the case σ = 0.
+33
+
+6.8
+The inner scaling patch at the wall and the outer scaling patch at the
+midline
+The construction of the patches given in section 6 has, as a primary ingredient, the fact that as the
+peak in the adjusted Reynolds stress is approached, a region must appear in which all three terms
+in the mean momentum balance equation, which in this case is (74), will have the same order of
+magnitude. This is simply because the gradient dT β
+dy+ approaches 0. (There will, of course, be a
+smaller region encompassing the peak in which the last term on the left of (74) has smaller order
+of magnitude than the others, because it vanishes at the peak.)
+Curiously, a somewhat similar phenomenon happens when y+→0, since the gradient of the
+actual Reynolds stress, rather the adjusted one, is zero at the wall (y+ = 0) and positive for small
+values of y+ > 0. We are speaking of the first term
+dT
+dy+ in (64). With the inner scaling, both terms
+in (64) have equal orders of magnitude, both actual and formal. This in itself provides evidence
+that this wall region, together with the inner scaling used in (64), defines a scaling patch. But
+there is further evidence from the boundary condition (65) for U+. That condition of course was
+engineered by our very choice of inner scaling. But whatever its origin, it furnishes decisive evidence
+that a scaling patch exists there. As before, the width of this patch is O(1), measured in y+. As
+was brought out before, it also encompasses the crucial point y+
+p discussed in Sec. 6.2.
+To summarize, at the wall, U+, T, and
+dT
+dy+ are all 0, but dU+
+dy+ = 1 (that is how the inner scaling
+was selected). Thus all derivatives of interest in the scaled variables at that point either vanish, or
+(in one case) are unity. This circumstance is an adequate criterion for the validity of that scaling.
+On the other end of the continuum, where ℓ is large, we know that ℓ reaches a maximum of
+ǫ−2, because that is the half-width of the channel and no larger scaling patch could fit into the
+latter. According to (81), it corresponds to β = ǫ4/(1+σ). That forms a lower bound on the possible
+values of β. In the case σ = 0 for example, when β = ǫ4 the existence of a scaling patch can be
+ascertained by the previous argument in Sec. 6.1, which still holds true (y+
+β for that value of β must
+lie a distance ≤ O(1) from the centerline).
+It should be noted that this “outer” patch encompassing the centerline is not the same as the
+traditional outer length scaling spoken of in Sec. 5.3, although the two ideas are compatible. The
+present concept of outer patch is that of an interval in the core together with a rescaling of all
+the variables, not just y+, which will produce a parameter-free version of the mean momentum
+balance, namely (79), at that location.
+Thus our construction of scaling patches is valid up to and including the centerline, and down
+to the inner region. In all, the scaling patches cover the entire channel.
+6.9
+Discussion
+We have found that at each point in the Couette flow, the Reynolds stress and mean velocity profiles
+have a natural scaling; in other words, a scaling patch is located at that point. In order of mag-
+nitude, its characteristic length, which is essentially the width of the patch, increases continuously
+from 1 (in inner units) in the inner region where the law of the wall holds, to ǫ−2 at the centerline
+of the channel, where the outer scaling holds. Each patch is associated with a peak in one of the
+adjusted Reynolds stresses, and with a balance exchange event that occurs there involving that
+same adjusted stress.
+The patches can be parameterized by their characteristic lengths, which increase monotonically
+with distance from the wall. Asymptotically as y+→∞ (since y+ is limited by ǫ−2, necessarily
+ǫ→0), the characteristic length is proportional to that distance, and in any case up to order of
+34
+
+magnitude, is given by a solution of an ordinary differential equation.
+Again up to order of magnitude, the mean velocity and Reynolds stress profiles are determined.
+In certain regions in the limit as the Reynolds number approaches ∞, these order of magnitude
+results are replaced by explicit functions.
+This is really a statement about the validity of an
+approximation for large Reynolds number.
+The argument can be framed as a similarity and invariance issue. There is a family of rescalings
+depending on a parameter β, applied at β-dependent locations, which leave the governing rescaled
+momentum balance equation and associated numerical values of the derivatives appearing in that
+equation invariant as β is varied. The statement then is that another derivative, denoted by A,
+is, in order of magnitude, invariant as well, and in some regions in fact approximately numerically
+invariant.
+These results are consistent with logarithmic growth predicted by the Izakson–Millikan argu-
+ment, which by hypothesis is to hold in some overlap zone between the inner and outer regions. The
+scaling patch and order of magnitude results presented here, on the other hand, are true throughout
+the channel; they generally differ from the exact logarithmic law except where and if the quantity
+A is constant. Finally, this constancy condition is unlikely to hold exactly anywhere, except in the
+limit as ǫ→0.
+7
+Turbulent Poiseuille flow in a channel
+In this idealized picture, the two walls at y = 0, y = 2δ are stationary, so that their motion no
+longer provides impetus for the flow; however such an impetus is provided by a given pressure
+gradient streamwise along the channel. The treatment here follows that in [8, 9].
+7.1
+Differences from Couette flow
+Mathematically, the differences between Couette and Poiseuille flows lie in the facts that Px is no
+longer 0 in (51), and the boundary conditions at the two walls are changed. Namely,
+U = ⟨u′v′⟩ = d
+dy⟨u′v′⟩ = d2
+dy2 ⟨u′v′⟩ = 0
+(99)
+at y = 0 and 2δ; and at the centerline y = δ by symmetry,
+dU
+dy = ⟨u′v′⟩ = 0.
+(100)
+In fact U(y) rises from 0 at y = 0 to attain a maximum at y = δ. The function is even about that
+latter location, which means that for y > δ, U(y) = U(2δ − y). Similarly, ⟨u′v′⟩ is odd about that
+point. These properties allow us to formulate the problem entirely on the half channel {0 ≤ y ≤ δ}.
+If the solution is known in the half channel, it can be found by reflection in the other half.
+A standard argument shows that the pressure gradient term in the mean momentum balance
+equation (51) must be constant. Specifically, we refer back to that equation and (52). Setting
+Q
+ρ = P
+ρ − ⟨(v′)2⟩, we see that(52) implies that Q depends only on x; however by stationarity ⟨(v′)2⟩
+does not depend on x. The pressure gradient term in (51) can be written 1
+ρ
+∂Q
+∂x , which as noted is
+independent of y. It is also independent of x, since the other two terms in (51) are.
+The friction velocity, Reynolds number R∗, small parameter ǫ = (R∗)−1/2, inner scaling (law of
+the wall) and outer scaling, valid in the channel’s center, are all the same as before. Integrating
+35
+
+(51) across the half channel produces a global force balance, resulting in the dimensionless form ǫ2
+for the pressure gradient. The dimensionless form (64) becomes
+dT
+dη + 1 + ǫ2 d2U
+dη2 = 0,
+(101)
+and that of (66) is
+T + ǫ2 dU+
+dη
+= 1 − η.
+(102)
+The traditional outer approximation is
+Tout = 1 − η,
+0 < η ≤ 1.
+(103)
+The momentum balance equation with inner normalization is
+d2U+
+dy+2 + dT
+dy+ + ǫ2 = 0.
+(104)
+7.2
+Hierarchy
+To exhibit a continuous family of scaling patches covering the channel flow profile, all that is needed
+is to revise slightly the definition of the adjusted Reynolds stresses (72). The new one is
+T β(y+) = T(y+) + ǫ2y+ − βy+.
+(105)
+It is remarkable that the mathematical problems for the mean velocity and Reynolds stress in these
+two scenarios—pressure gradient driven and shear driven—can be almost completely transformed
+one into the other by such a simple device as (105). It transforms the basic momentum balance
+equation (104) into
+d2U+
+dy+2 + dT β
+dy+ + β = 0,
+(106)
+which is of the same form as (74).
+Therefore, with the newly adjusted Reynolds stresses, the channel flow context is amenable
+to the balance exchange processes described in Section 6.1, the construction of a continuum of
+scalings with associated scaling patches Lβ in Sections 6.1 to 6.3, and (under some assumptions)
+the derivation of logarithmic-like profiles in Section 6.4.3. The scaling in Lβ is still given by (78).
+The mean profile calculations are given here only under the simplifying approximation A =
+constant, although analogs of the more general case can be derived. The expressions (78) and (79)
+are valid in the present setting as well.
+As far as estimating the locations of the patches and the profiles, there are some changes.
+The relation (90) becomes
+dT
+dy+ = 4A−2(y+ − C)−2 − ǫ2.
+(107)
+The constant C in (107) can be related to the location y+ = y+
+m of the maximum of the original
+unadjusted function T. This is because it is required that
+dT
+dy+ = 0 at y+ = y+
+m.
+We obtain
+dT
+dy+ = 4A−2
+�
+y+ − y+
+m + 2
+Aǫ
+�−2
+− ǫ2,
+(108)
+36
+
+or alternatively by eliminating ǫ,
+dT
+dy+ = 4A−2 �
+(y+ − C)−2 − (y+
+m − C)−2�
+.
+(109)
+When one inserts this into (104) and integrates twice, using the requirement dU+
+dy+ →0 as y+→∞,
+the result is
+U(y+) = 4
+A2 ln
+�
+y+ − y+
+m + 2
+Aǫ
+�
++ C2
+(110)
+for another integration constant C2.
+Strictly speaking, there is another required condition, due to the symmetry of the configuration
+at the centerline:
+dU+
+dy+ = 0 at y+ = ǫ−2. It cannot be satisfied exactly within the framework of
+(110), which indicates that the approximation A = constant cannot be exact near the centerline.
+The expression (110) is only expected to give a good representation of the real profile in some
+regions away from both the wall and the centerline.
+To reiterate, the most we can say theoretically is that this is suggestive of a logarithmic ap-
+proximation to some segment of the mean velocity profile. More specifically, this is all under the
+(doubtful) assumption that A is exactly constant. In the case that it is almost constant, one gets
+a pair of upper and lower bounds as before, valid now for the mean velocity in channel flow for the
+range of y+ constructed as before.
+Note that in the case β = ǫ2, by (105) T β = T. The scaling patch in this particular case is
+traditionally called the “mesolayer”, and it occurs near the peak in Reynolds stress, because for
+this case T β = T. The characteristic length in that patch is O(ǫ−1), which is the geometric mean
+of those in the inner (O(1)) and outer (O(ǫ−2)) regions.
+7.3
+Behavior near the wall
+The construction of the patches given in sections 6.1 and 7.2 by means of a balance exchange has,
+as a primary ingredient, the fact that as the peak in adjusted Reynolds stress is approached, a
+region must appear in which all three terms in the mean momentum balance equation, (61), will
+have the same order of magnitude. This is simply because the gradient dT +
+dy+ approaches 0. There
+will, of course, be a smaller region encompassing the peak in which the last term on the left of (61)
+has smaller order of magnitude than the others, because it vanishes at the peak.
+A similar phenomenon happens when y+→0, since that same gradient is zero at the wall (y+ =
+0) and positive for small values of y+ > 0. The same conclusion may therefore be deduced: in a
+small region near the wall, all three terms in (61) will have the same order of magnitude. But the
+argument in Section 6.1 can only partially be continued beyond this stage to produce a patch with
+different scaling; in fact it is well known (see also the reason given below) that the characteristic
+length scale arbitrarily near the wall remains the inner scale. The reason the argument is no longer
+completely valid will now be explained. In addition, the correctly scaled mean momentum balance
+very near the wall will be derived.
+There have been many analytical, empirical, and computational studies of the properties of the
+near wall region; we mention only [22], as our results fit particularly well with theirs. Our purpose
+here is to show that a scaling patch exists there, whose derivation and description fits within the
+framework of the methodology developed here and in our previous papers.
+37
+
+At the wall, additional constraints are imposed on the functions U+ and T +, besides the ba-
+sic differential equation (61). First of all, the very definition of inner scaling requires an auto-
+matic boundary condition dU+
+dy+ (0) = 1. The inner scaling was chosen just so that condition holds.
+Secondly, the no-slip condition requires the boundary conditions U+(0) = T +(0) =
+dT +
+dy+ (0) =
+d2T +
+dy+2 (0) = 0. The first requirement is simply a result of our choice of normalized variables y+ and
+U+, and is not a statement of any physical constraint. The other boundary conditions result from
+a physical effect located at the wall. They have no analog at the mesoscaling patch, and constitute
+the basic reason that the present construction is different from the mesoscale construction.
+If one proceeds in the same vein as before on the basis of (75) and (76), the effect of the first
+boundary condition dU+
+dy+ (0) = 1 is that the length scale in that patch is given by α = 1. This means
+that ˆy = y+: the length scale in that patch is the same as that with the original inner normalized
+scaling. This is of course almost a tautology.
+But then the rest of the argument, following (61), in which α and γ are determined, can no
+longer be carried out as it stands, since α has already been determined. However, one can proceed
+after some reformulation of the problem.
+At this point, the first substantial difference in method emerges between the derivation of the
+patches in Sec. 6.1 and the present argument for what we shall call the wall patch. As mentioned,
+it is allied with the physical no-slip constraint. In both cases, we look for scaled solutions of (74)
+or its analog (104) in a neighborhood of a maximum or minimum of T + or Tβ.
+In both the case in Sec. 6.1 and the present wall case, a scaling, namely a choice of α, γ, λ
+in (75), (76), is sought which will render the three terms of (74) or (104) of forms which have
+the same formal order of magnitude. A unique choice is only possible if one of these three factors
+is specified by other means. In the previous case, empirical data having to do with the velocity
+increment across the patch, and also the rate of growth of U+ in the hierarchy, was used to motivate
+selection of the value λ = 1, while leaving open the additional possibility of other choices leading
+to different growth rates. This serves to determine the other two factors. In the wall patch, where
+this argument is not applicable, the definition of the inner scaling requires α = 1, and the equality
+criterion now can be used to determine γ and λ. Namely, evaluating the three terms of (104) under
+the transformation (75), (76) with α = 1 tells us that γ = λ = ǫ2. In neither case does this provide
+the value of m, because the derivatives in (74) or (104) annihilate the linear terms. However, the
+value of m was obtained by other means: through use of (91) and the connection T has with the
+slope, in the case of patches embedded in the hierarchy, and by means of the boundary condition
+giving the slope at the wall, in the present case.
+The scaled version of (104) in the wall patch is
+1 + d2 ˆU
+dy+2 + d ˆT
+dy+ = 0.
+(111)
+The individual terms of this equation are known only at y+ = 0; but it provides a linear relation
+between the two derivatives. This equation is the analog of (79), and is in the form of a balance of
+three rescaled forces.
+In short, there is a scaling patch near the wall, no doubt including the traditional viscous
+sublayer, in which the inner length scale is correct, but the deviations of the functions U+ and T +
+from their linear parts depend on R∗ like ǫ2 ≈ (R∗)−1.
+Finally, as y+ enters the patch from above, there is a balance exchange from Layer II (in the
+terminology used in [7]), where the viscous and turbulent forces balance, to Layer I, where the
+pressure gradient balances the viscous plus turbulence force.
+38
+
+The location of this exchange, and in fact the size of Layer I, is ≤ O(1) in wall units, because
+that is the length scale for the parameterless (111).
+In terms of the traditional buffer and logarithmic layer, we surmise that they lie outside Layer I,
+which can be identified as the viscous sublayer (although at its outer edge the viscous and turbulent
+forces are equal in order of magnitude). Outside that layer is approximately where the hierarchy
+begins (say y+ ≈ 7), which is also where the traditionally defined buffer layer begins. The loga-
+rithmic mean profile approximation associated with the hierarchy, however, does not become valid
+until distances from the beginning of the hierarchy are sufficient for A in (87) to be approximately
+constant.
+8
+Other applications and conclusion
+The analysis covered in Secs. 6 and 7 has been applied not only to Couette and Poiseuille flow, but
+also to
+• combined Couette-Poiseuille turbulent flow [23];
+• favorable pressure gradient boundary layers (Metzger and Fife, in preparation);
+• transport of heat through turbulent channel flow [24].
+It should again be emphasized that our goal has been not so much to discover numerical values
+associated with the profiles, but rather to gain theoretical understanding of why important features
+occur. We look for answers to why? in preference to what?
+The greatest emphasis has been placed on two approaches to this question:
+• the classical Izakson-Millikan observation; and
+• the search for scaling patches.
+Each of these results is based on an assumption that another approximation is valid. The first
+relies on the standard inner and outer approximations being simultaneously valid somewhere. The
+second approach is an argument involving matters of similarity and invariance. There is a family of
+rescalings depending on a parameter β, applied at β-dependent locations, which leave the governing
+rescaled momentum balance equation and associated numerical values of the derivatives appearing
+in that equation invariant as β is varied. The statement then is that another derivative is, in order
+of magnitude, invariant as well, and in some regions is in fact approximately numerically invariant.
+In neither case is there a theoretical way to gauge the error of the assumed approximation, or the
+extent of the region where it is valid. Some qualitative conclusions on the latter issue are provided
+in the second case.
+The various approaches to answering our basic question all contribute a portion of insight. All
+of them leave unanswered questions, but they add to one another.
+No one of them should be
+considered the final word on the subject.
+Acknowledgments
+The results in Secs. 6, 7, and 8 were obtained in collaboration with Joe Klewicki, Tie Wei, Meredith
+Metzger, and Pat McMurtry. I thank them all for their invaluable exchange of ideas.
+39
+
+References
+[1] O. Reynolds. On the dynamical theory of incompressible viscous fluids and the determination
+of the criterion. Phil. Trans. Roy. Soc. London, 186:123–161, 1894.
+[2] L. Prandtl. Bericht uber die Entstehung der Turbulenz. Z. Angew. Math. Mech., 5:136–139,
+1925.
+[3] Von Karman. Mechanische Ahnlichkeit und Turbulenz. Nachr. Ges. Wiss. Gottingen, Math-
+Phys. Klasse, pages 58–76, 1930.
+[4] A. Izakson. On the formula for the velocity distribution near walls. Tech. Phys. U. S. S. R.,
+IV, 2:155, 1937.
+[5] C. B. Millikan.
+A critical discussion of turbulent flows in channel and circular tubes.
+In
+J. P. Den Hartog and H. Peters, editors, Proceedings of the Fifth International Congress of
+applied Mechanics, pages 386–392. Wiley, New York, 1939.
+[6] A. E. Gill. The Reynolds number similarity argument. Journal of Mathematics and Physics,
+47:437–441, 1968.
+[7] T. Wei, P. Fife, J. Klewicki, and P. McMurtry. Properties of the mean momentum balance in
+turbulent boundary layer, pipe and channel flows. J. Fluid Mech., 522:303–327, 2005.
+[8] P. Fife, T. Wei, J. Klewicki, and P. McMurtry.
+Stress gradient balance layers and scale
+hierarchies in wall-bounded turbulent flows. J. Fluid Mech., 532:165–189, 2005.
+[9] P. Fife, J. Klewicki, P. McMurtry, and T. Wei. Multiscaling in the presence of indeterminacy:
+wall-induced turbulence. Multiscale Modeling and Simulation, 4:936–959, 2005.
+[10] T. Wei, P. McMurtry, J. Klewicki, and P. Fife.
+Meso scaling of Reynolds shear stress in
+turbulent channel and pipe flows. AIAA Jour., 43:2350–2353, 2005.
+[11] J. Klewicki, P. McMurtry, P. Fife, and T. Wei. A physical model of the turbulent boundary
+layer consonant with the structure of the mean momentum balance. In 15th Australasian Fluid
+Mechanics Conference, The University of Sydney, Sydney, Australia, 2004.
+[12] R. L. Panton.
+Review of wall turbulence as described by composite expansions.
+Applied
+Mechanics Review, 2005. To appear.
+[13] R. Kawamura, H. Abe, and K. Shingai. DNS of turbulence and heat transport in a channel
+flow with different Reynolds and Prandtl numbers and boundary conditions. In Turbulence,
+Heat and Mass Transfer 3 (Proc. of the 3rd International Symposium of Turbulence, Heat and
+Mass Transfer), pages 15–32, 2000.
+[14] K. Shingai, H. Kawamura, and Y. Matsuo. DNS of turbulent Couette flow and its comparison
+with turbulent Poiseuille flow. In C. Dopazo et al, editor, Advances in Turbulence 8 (Proc. of
+the 8th European Turbulence Conference), page 972. CIMNE, 2000.
+[15] K. Iwamoto, Y. Suzuki, and N. Kasagi. Reynolds number effect on wall turbulence: Toward
+effective feedback control. Int. J. Heat and Fluid Flow, 23:678–689, 2002.
+40
+
+[16] T. Wei and W. W. Willmarth. Reynolds number effects on the structure of turbulent channel
+flow. J. Fluid Mech., 204:57–95, 1989.
+[17] B. J. McKeon, J. F. Morrison, J. Li, W. Jiang, and A. J. Smits. Further observations on the
+mean velocity in fully-developed pipe flow. J. Fluid Mech., 501:135–147, 2004.
+[18] H. Kawamura, H. Abe, and K. Shingai. DNS of turbulence and heat transport in a channel
+flow with different Reynolds and Prandtl numbers and boundary conditions. In Y. Nagano,
+K. Hanjalic, and T. Tsuji, editors, Turbulence, Heat and Mass Transfer 3 (Proc. of the 3rd
+International Symposium on Turbulence, Heat and Mass Transfer), 2000.
+[19] K. H. Bech, N. Tillmark, P. H. Alfredsson, and H. I. Andersson. An investigation of turbulent
+plane Couette flow at low Reynolds numbers. J. Fluid Mech., 304:285–319, 1995.
+[20] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent channel
+flow up to Reτ = 590. Physics of Fluids, 11(4):943–945, 1999.
+[21] P. R. Spalart. Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid
+Mech., 187:61–98, 1988.
+[22] A. Cenedese, G. P. Romano, and R. A. Antonia. A comment on the linear law of the wall for
+fully developed turbulent channel flow. Experiments in Fluids, 25:165–170, 1998.
+[23] T. Wei, P. Fife, and J. Klewicki. On scaling the mean momentum balance and its solutions in
+turbulent Couette-Poiseuille flow. J. Fluid Mech. to appear.
+[24] T. Wei, P. Fife, J. Klewicki, and P. McMurtry. Scaling heat transfer in fully developed turbulent
+channel flow. Int. Jour. Heat Mass Trans., 48:5284–5296, 2005.
+41
+
diff --git a/dtFAT4oBgHgl3EQf6x4A/content/tmp_files/load_file.txt b/dtFAT4oBgHgl3EQf6x4A/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f31c6b1cf5aeba65fc06e48cd839d2c4dc8c9433
--- /dev/null
+++ b/dtFAT4oBgHgl3EQf6x4A/content/tmp_files/load_file.txt
@@ -0,0 +1,2202 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf,len=2201
+page_content='Scaling approaches to steady wall-induced turbulence Paul C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife August 12, 2006 Abstract The problem of discerning key features of steady turbulent flow adjacent to a wall has drawn the attention of some of the most noted fluid dynamicists of all time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Standard examples of such features are found in the mean velocity profiles of turbulent flow in channels, pipes or boundary layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The aim of this review article is to expound the essence of some elementary theoretical efforts in this regard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Possibly the best known of them, and certainly the simplest, is the argument (obtained independently) by Izakson (1937) and Millikan (1939).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They showed that if an inner scaling and an outer scaling for the profile are valid near the wall and near the center of the flow (or the edge of the boundary layer), respectively, and if there is an overlap region where both scalings are valid, then the profile must be logarithmic in that common region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That theoretical justification has been used and expanded upon by innumerable authors for over 60 years, and at the present time is still rightly enjoying popularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Although background discussions of several related topics are included in the present article, for example the classical ideas of Prandtl and von Karman, the main foci will be on (i) a careful examination of the Izakson-Millikan argument, together with a presentation of a better mathematical justification for its conclusion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and (ii) a detailed clarification of a newer approach to gaining theoretical understanding of the mean velocity and Reynolds stress profiles based on the “search for scaling patches”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The two approaches share common goals, they are both heavily involved with scaling con- cepts, and many results are similar, but the logical trains of thought are entirely different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The first, as mentioned, dates back to the 30’s and the second was introduced in a series of recent papers by Fife et al, Wei et al, and Klewicki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Our emphasis will be on the question of how and how well these arguments supply insight into the structure of the mean flow profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Although empirical results may initiate the search for explanations, they will be viewed simply as means to that end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Contents 1 Introduction 2 2 The Navier-Stokes equations and Reynolds averaging 3 3 Early scaling concepts of Prandtl and von Karman 5 4 The notion of scaling 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Scaling patches .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 A classical example .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 Inner, outer, and overlapping regions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 A uniform approximation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 13 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 A generalization .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 The Izakson-Millikan observation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7 A more realistic version .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 15 5 The mean structure of turbulent Couette flow in a channel 16 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 The differential equations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 17 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 The friction velocity and boundary conditions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 Dimensionless variables in the core region .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 19 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 The wall layer, rescaling, and law of the wall .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 Velocity in the core .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 21 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 Application of the Izakson-Millikan reasoning .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 22 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7 Observations on the foregoing procedure .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 23 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8 The uniformizing effect of turbulence and some possible implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 24 6 The search for scaling patches 24 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Adjusted Reynolds stresses, balance exchange phenomena, and the identification of patches .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 25 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 The locations of the scaling patches .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 28 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 More on the locations of the patches .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 29 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 The case A = constant .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 30 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Characteristic length as it depends on location .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 30 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 The Reynolds stress .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 31 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 The mean velocity profile .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 31 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 Relaxing the assumption that A is constant .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 32 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 Approximate constancy of A in interior zones .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 33 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7 Evidence for logarithmic growth, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' σ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 33 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8 The inner scaling patch at the wall and the outer scaling patch at the midline .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 34 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='9 Discussion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 34 7 Turbulent Poiseuille flow in a channel 35 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Differences from Couette flow .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 35 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 Hierarchy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 36 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 Behavior near the wall .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 37 8 Other applications and conclusion 39 1 Introduction Every theoretical investigation of highly turbulent fluid dynamics is necessarily incomplete, because accepted accurate models such as the Navier-Stokes equations lie beyond the scope of full solution by existing methods, whether those methods be numerical or analytical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Faced with this failing, researchers have often turned to seeking theoretical information through partial analyses, incomplete models, or reasoning which is not fully based on rigorous deduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The search for such approaches is bound to yield, and historically has yielded, some fruitful avenues leading to insightful, though perhaps tentative, conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The goals of this paper are to examine, and elaborate on, some of the major elementary attempts in this vein to gain some understanding of the mechanisms behind steady (in the mean) turbulent 2 incompressible flow bounded by a wall, as well as to expound some recent developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The prototypical examples will be rapid flow in a channel or pipe forced by an imposed pressure gradient or the differential motion of the walls, and turbulent boundary layers of various types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There has been an enormous amount of work along these lines, and a complete review of it will not be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Rather we look only at some efforts to gain insight into these mechanisms as they affect simple mean flow quantities, through the use of scaling concepts and averaged Navier-Stokes equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These efforts have been diverse, and when compared one with another have sometimes relied on assumptions which appear to be incompatible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Nevertheless despite any seeming incongruities, the various approaches should not necessarily be thought of as competing among themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Rather by contributing their individual insights, they collectively add to our understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' No one approach can ever rationally be viewed as the last word on the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' So to summarize, the goal in these notes is to understand what phenomena relating to average events occur in wall-bounded turbulent flow and, more importantly, why they occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This means that our approach will focus on supplying theoretical explanations for observed features of the flow, as well as providing predictions of features which can then be correlated with empirical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' When possible, we will not be content with pointing to experimental evidence for properties of the flow, but will strive to develop reasons why those properties should hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These reasons will not generally be rigorous, and at times, of necessity, they will be partly based on empirical findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But to advance the goal of basic understanding, they will, as far as possible, be grounded in theory, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in accepted mathematical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Mostly, these models will be built from the averaged Navier-Stokes equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 2 The Navier-Stokes equations and Reynolds averaging Our mathematical models use the symbols u = (u1, u2, u3), p, t and x = (x1, x2, x3) to denote the velocity, pressure, time and space variables, with µ and ρ the material constants of viscosity and fluid density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The standard incompressible Navier-Stokes equations when there is no body force can be written as follows: ∂u ∂t + (u·∇)u = ν∇2u − 1 ρ∇p, (1) where ν = µ/ρ is the kinematic viscosity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and div u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (2) The equations (1) (a vector equation which has three components) and (2) are four equations in all, for four unknown functions: the three components of u plus the pressure p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These equations are almost universally recognized as an accurate representation, on the macro- scopic level, of flows of many standard kinds of incompressible fluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Generalizations exist in many forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The second (nonlinear) term on the left of (1) is called the “inertia term”, and the first term on the right is the “viscosity term”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Broad features of the solutions are typically governed by the order of magnitude of the Reynolds number, a ratio of the effects of these terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Here we start with a very common framework for studying turbulent motions called Reynolds averaging [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is a short cut, and as such does not supply all the desired information about any given flow scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A wealth of details about fluid motions is erased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The modeler is left with the task of partially filling the resulting deficiency with assumptions about features of the fluid motion in its disorganized state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These attempts are bound to be hit or miss to some extent, but as we 3 will see, there may be tests which one can apply to gauge the validity of such assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example, two or more avenues to obtaining models may yield similar results, which would tend to corroborate both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A very common remedy for the underdetermined nature of the Reynolds averaged equations is to posit closure relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That approach is especially useful in numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But the magnitude of these endeavors precludes their inclusion here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The goal, then, is to use the Navier-Stokes equations in their averaged form, together with scal- ing considerations, to gain insight into some basic properties of wall-induced turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Specifi- cally, we focus on features of the mean velocity and Reynolds stress profiles, as functions of distance from the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The Reynolds stress is one of the measures of turbulence activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There have in fact been several distinct approaches to the task of using the averaged equations to provide insight into wall-induced turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That fact, together with the apparent simplicity of the formulation within that framework, makes the latter an ideal arena in which to explore the interaction of mathematical and intuitive tools to tackle a very complex problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We now review the well-known ideas behind the process of Reynolds averaging [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One supposes that at each spatial location x and time t, the velocity and the other flow quantities have well defined average values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This could be an imagined “ensemble” average over many similar observations, or over some small (but not too small) region in space-time containing the point in question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the case of “steady” fully developed turbulence, it could be the time average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The mean (average) values may then depend on space and time, but on scales perhaps larger than those over which the average is taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus, we can write the velocity vector as its mean plus its fluctuation about the mean: u(x, t) = U(x, t) + u′(x, t), (3) with a similar decomposition for vorticity, pressure, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Averages will be taken of not only primary flow variables, but also of products of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The averaging operation is denoted by angle brackets— for example ⟨u⟩ = U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ⟨∂iu⟩ = ∂iU for any derivative ∂i = ∂ ∂xi or ∂ ∂t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ⟨u′⟩ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ⟨Uiu′ j⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We substitute (3) into the Navier-Stokes equations (1), (2) and then take the average of the resulting equations to obtain ∂tU − ν∇2U + (U·∇)U + ⟨u′·∇u′⟩ + 1 ρ∇P = 0, (4) ∇·U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (5) Note also that ∇·u′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (6) The i-th component of the 4th term in (4) is ⟨u′ j∂ju′ i⟩ = ∂j⟨u′ iu′ j⟩ (summing over the repeated index), the equality by virtue of (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This shows that the 4th term, being a divergence, acts as a pseudo-stress gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Accordingly, we define the “Reynolds stress tensor” τ by τij = −⟨u′ iu′ j⟩, (7) which is symmetric, as any stress tensor should be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore (4) becomes ∂tU − ν∇2U + (U·∇)U + ∇ �1 ρP − τ � = 0, (8) 4 where the last term can also be written ∇·T , where Tij = 1 ρPδij − τij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' An intuitive feel for the role of the tensor τ in the transport of momentum can be gained by looking closely at the case i = 1, j = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We relabel u′ i = u′, u′ 2 = v′, x1 = x, x2 = y, and think of the coordinates x1 and x2 as being horizontal and vertical, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then the average ⟨u′v′⟩ appearing in (7) involves the horizontal and vertical components of the fluctuating part of the velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Imagine a particle whose instantaneous velocity has both a positive x-component u′ and a positive y component v′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The former says that the particle is bearing some x-momentum, and the latter says that what it bears is being transported in the vertical (y) direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The magnitude of this vertical transport of momentum is proportional to the product of the two components, u′v′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If one or both of these two components changes sign, this proportionality property is still seen to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore ⟨u′v′⟩ is proportional to the mean vertical transport of x-momentum (which could be positive or negative) by means of turbulent fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This vertical transport represents the mean force per unit area exerted by the fluid above the point under consideration on the fluid below that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Newton’s first law characterizes a force as a rate of change of momentum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in this case, that rate of change is given by vertical transport of horizontal momentum-bearing particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, the y-derivative ∂ ∂y⟨u′v′⟩, being a scaled difference of forces exerted at two nearby points, is the net x-component of the mean force per unit mass exerted on particles at that location by the turbulent fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Generalizing these notions leads to an intuitive recognition of the last term in (8), −∇τ, as a force produced by turbulent fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If we knew the tensor τ, then we could use that knowledge in (8) so that (8) and (5) would constitute a closed system for the determination of U and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But nature is not so kind, and τ is not known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Many attempts have been made in the past to remedy this basic defect, by writing down other equations for the determination of τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These models propose a “closure” mechanism to produce a closed system for the mean values of various flow quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In all cases, these other equations are at least partly ad hoc, and in most cases partly empirical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 3 Early scaling concepts of Prandtl and von Karman There have been many turbulence theories utilizing the ideas of Reynolds averaging;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in fact the ones to be discussed in this paper are important examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Prandtl and von Karman were, at an early stage, responsible for well known models in this category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Their concepts also included types of characteristic lengths, which are allied to the scaling theme to be developed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore we begin with brief discussions of some of their ideas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In 1925, Prandtl [2] proposed a conceptual framework designed to provide insight into the mechanisms producing turbulence in shear flow, and also to provide relationships among key fluid dynamical quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One aim of his was to relate the flux of momentum caused by turbulent fluctuations to the gradient of mean momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That there is such a relationship was simply an assumption springing from an analogy with conventional diffusion of quantities like heat in a stationary medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In that setting, Fick’s law asserts that the flux is proportional to the gradient of the concentration of the substance (like heat) that is being transported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the present situation, since ⟨u′v′⟩ is (see previous section) a measure of the mean turbulent transport, in the vertical direction, of horizontal 5 momentum, the analog of the heat equation for the mean x-momentum U would be ⟨u′v′⟩ = −ǫdU dy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (9) for some pseudo-diffusion coefficient ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That coefficient is generally called the coefficient of eddy diffusion, because one could argue that the transfer of momentum is caused by many eddies in the fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To say more about ǫ, Prandtl introduced the concept of mixing length ℓ, which more or less represents the distance a fluid particle typically travels before transferring its momentum to another particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Various versions of Prandl’s theory have been involved with characterizing ℓ as it depends on local or global properties of the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since we will be dealing with vague definitions, the symbol “∼” will be used to indicate a relation which is not precisely defined, but rather should be considered as part of a modeling concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover if numerical values are given to the two sides of the relation, they will be equal only in order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Prandtl’s ideas related the left side of (9) directly to other local quantities as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Suppose that the gradient dU dy is responsible, in a linear manner, for the local characteristic mag- nitude of the velocity fluctuations: |u′| ∼ k1 ���dU dy ��� ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' |v′| ∼ k2 ��� dU dy ���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The proportionality coefficients ki in these relations have to have the dimensions of length, and the most natural local characteristic length is the mixing length ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' So we set ki ∼ ℓ to obtain |u′| ∼ ℓ ���� dU dy ���� ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' |v′| ∼ ℓ ���� dU dy ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (10) Then the average |⟨u′v′⟩| will be related to the quantity on the right of (10) squared: |⟨u′v′⟩| ∼ ℓ2 ���� dU dy ���� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (11) Now apply this to (9), at the same time ensuring that signs are chosen so that ǫ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We find that ǫ ∼ ℓ2 ���� dU dy ���� , (12) so that ⟨u′v′⟩ ∼ −ℓ2 ���� dU dy ���� dU dy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (13) It seems intuitive that the local distance ℓ should grow shorter as one draws near the wall, because the wall exerts a constraint on the motions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and Prandtl sometimes proposed a linear relation ℓ ∼ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (14) This is probably not a good approximation very near the wall, because it would predict that ⟨u′v′⟩ grows like y2 as one moves away from the wall, whereas there is abundant evidence that the growth rate is like y3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This, then, is how Prandtl and others proposed handling a truly complex phenomenon (forces caused by the turbulent transport of momentum) by relating it to a much simpler quantity (the gradient of mean velocity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This proposal had very limited success in explaining the processes of turbulence, although there was often good correlation with experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6 Von Karman [3] proposed his similarity hypothesis in 1930;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' a prominent ingredient was the assumption that ǫ and ℓ should be characterizable in terms of local properties of the fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example, (14) would not qualify because the distance y from the wall is not a local property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One might argue that the similarity hypothesis may approximate conditions far enough away from the walls and centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This hypothesis proceeds from rescaling considerations, the idea being that if lengths for the velocity fluctuations in a neighborhood of a point in the flow are rescaled with a characteristic length ℓ (which we can identify as essentially the mixing length above), then key hydrodynamic quantities in that neighborhood are, except for an appropriate rescaling factor, functions only of the rescaled lengths;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' not of the position in the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One then searches for a local quantity with the dimensions of length that one could use to characterize ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The possibly simplest choice would be the ratio ℓ ∼ −dU dy � d2U dy2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (15) (The minus sign comes about from noting that the ratio itself is always negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Note that if this and (14) are both true, one could solve for U(y) to get U(y) ∼ C1| ln y| + C2, (16) an example of the renowned logarithmic profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Other theories, as we shall see, are in partial agreement with this result and suggest other information as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In particular, the theories brought out here in Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5 and 6 involve ideas reminiscent of those of Prandtl and von Karman, but the differences outweigh the similarities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The main approaches to wall-induced turbulence that we shall examine are heavily involved with various scaling concepts, and so we make a digression here to discuss some ideas basic to that subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4 The notion of scaling Much of this section will consist of a review of scaling concepts, mostly well known, relating to the remainder of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It will be useful to give a formal definition of scaling patch (less well known) in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 and to formulate many of our results in terms of those patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example, it will be important to know that the overlapping regions of the classical example sketched in Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 are not scaling patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The classical Izakson-Millikan observation covered in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 is best known in the setting of turbulent flows, but is given here in a more general mathematical context and in the form of an approximative statement (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7) which is mathematically rigorous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The implications for wall-induced turbulent flow are discussed later in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 and, more importantly, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Models involving small or large parameters are commonplace in the natural sciences;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in more cases than not there are processes making up the action which operate on more than one, often many, different space and time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The phenomenon being studied can then most clearly and naturally be represented, in certain subdomains, in terms of functions of “rescaled variables”, or of a combination of rescaled variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Here rescaling means that new dependent and independent variables are defined, in differential form, as linear transformations of the original ones, the coef- ficients in the transformation generally being functions of the original small or large parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 7 Multiscaling refers to the event that more than one scaling are appropriately used, either in different subdomains or simultaneously in the same subdomain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Our focus will be on differential equations containing parameters which are supposed to be small or large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The ultimate goal here will be to gain some understanding of fluid motions by applying scaling concepts to the averaged Navier-Stokes equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The recognition that the dynamics of turbulent fluids operate on a great many space and time scales has been a cornerstone of well known investi- gations into those processes, including the construction of mathematical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Our goal is more limited, yet still daunting: to surmise information about important mean flow quantities on the basis of the averaged, rather than the original, Navier-Stokes equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Rather than positing, at each specific location in the flow domain, an array of length scales, as would be the case for the microscopic turbulent motions, the mean flow profiles will themselves have unique characteristic lengths associated with each such location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Our principal technique will be, first, to attempt to ascertain the local scaling behavior of those mean quantities by means of the averaged equations together with judicious assumptions, and then to derive further information about the mean profiles themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In most of the following, there will be one independent small parameter called ǫ, although another parameter β, which will also be small, will appear in some sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The coefficients in the scaling transformations will depend on ǫ, and possibly on β, and their orders of magnitude will be of primary importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The notation O(1) will refer to a quantity or function which generally depends on ǫ, but is bounded above and below by positive constants independent of ǫ and β as those parameters approach 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' When the lower bound is not assumed, we will generally write ≤ O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The meaning of other order relations hopefully will be clear from the context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Scaling patches We shall be dealing with functions of a single independent variable, and so the following discussion will apply to that case only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover, the independent variable will represent a space coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, all statements about magnitudes in the following are to be understood in the order of magnitude sense relative to the small or large parameter under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example if ǫ is a small parameter, then ǫ has smaller order of magnitude than ǫ1/2 as ǫ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To repeat what was said above, we shall use the convention that a quantity is O(1) with respect to ǫ if it is bounded, and also bounded away from zero, by positive constants independent of ǫ as ǫ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Consider an interval in the domain of the independent space variable, and a single rescaling (of dependent and independent variables) in that subdomain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The interval may depend on the scaling, hence on ǫ, and we assume the interval has size O(1) when measured in the rescaled distance variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A “characteristic length” for the interval can be defined in terms of the scaling of the original space variable (call it x), which produces a new space variable (call it ˆx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Using differentials, we have, say, dx = α dˆx, with scaling coefficient α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then a characteristic length for that subdomain will be α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As ˆx traverses the O(1) length of the interval, x changes by an amount O(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The stipulation that the size of the subdomain (called a “patch” below) be of size O(1) in the rescaled variable is designed thereby so that α is a proper definition of characteristic length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Importantly, a patch cannot be artificially enlarged by adjoining a section in which the characteristic length is larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The rescaling (including that of the dependent as well as of the independent variables) can be thought of as being “natural” for a given problem if, when the solution is expressed in terms 8 of the rescaled variables, the scaled dependent variables are seen to undergo, in that subdomain, variations which are not too large and not too small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This rate of variation could be gauged by the magnitude of the rescaled derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The requirement “not too large” then would be taken to mean that all derivatives, of orders 1 up to some appropriate order, are bounded in magnitude independently of the parameters in the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It usually happens that some of these derivatives are necessarily zero or very small in places, so the corresponding (opposite) criterion cannot be imposed to gauge the satisfaction of the requirement “not too small”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Instead, a proper criterion would be that the characteristic length α associated with the scaling under consideration cannot be decreased without the above criterion “not too large” being violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In this, “decreased” means in the order of magnitude sense: if α is replaced by a different function of ǫ with smaller order of magnitude, so that in the newly scaled variables the derivatives are correspondingly larger, then the magnitudes of some of these derivatives must not be bounded independently of ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Such an interval, together with its natural scaling, will in the following be called a scaling patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This appears to be a reasonable meaning for the concept of natural scaling in patches, but it ignores, so far, the important question, how does one find the scaling patches?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That is, how does one determine the proper scaling in the proper locations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The search for scaling patches in wall- bounded turbulent flow will be the primary activity in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But it is not an easy question in general, and there are few easy mathematically rigorous criteria which can be applied to determine them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Nevertheless, there are nonrigorous arguments, most easily introduced through examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Here is a straightforward one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 A classical example The following is an elementary textbook model example of a problem in which scaling consider- ations, and in particular scaling patches, are very pertinent to understanding salient features of the solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The solution, it turns out, can be written down explicitly, but we choose a different approach in order to better bring forth the ideas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Although it is well known, this example is chosen because we want to put forward a slightly nonstandard point of view, and it bears some similarity with the much more difficult averaged wall-induced turbulence problems which will be discussed later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Both scenarios have traditional inner and outer scaling regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' On the other hand there are also striking differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let ǫ be a small positive parameter, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 0 < ǫ ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We wish to solve the following boundary value problem for u(η): ǫ2 d2u dη2 − u + g(η) = 0 for 0 < η < 1, (17) u(0) = α, u(1) = β, (18) where α and β are fixed numbers and g is any given smooth function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To make things simple, we suppose that g is independent of ǫ, and that it is not a constant (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' it has nontrivial variation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The solution of course will depend on ǫ as well as on η, and the desire is to find that dependence for all small enough values of ǫ, say for 0 < ǫ ≤ ǫ0, where ǫ0 is a fixed small number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This dependence of the solution on both η and ǫ is sometimes expressed by writing u(η;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As a first guess for an approximate solution, we try discarding the first term in (17), which has a small factor ǫ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We obtain the “reduced” problem u = g(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (19) 9 The function u = g(η) approximately satisfies (17) in a formal sense, but is generally far from satisfying the two boundary conditions (18) (unless by unlikely accident g(0) = α or g(1) = β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' So we must either scrap that solution altogether, or doctor it up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The latter is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is where the search for scaling patches comes in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Two things are clear: the locations of the trouble are at the two boundaries η = 0 and η = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' And secondly, somehow the discarded term ǫ2 d2u dη2 at those two locations must be important after all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We try constructing an “internal” patch by excluding neighborhoods of the two troublesome boundary points as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Take any number δ > 0 independent of ǫ, and use, for the patch, the original scaling, leading to (19), in the subdomain defined by {η : δ < η < 1−δ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This interval, together with the original scaling in which the variables η and u remain unchanged, will be the first scaling patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To lowest approximation in the parameter ǫ, the differential equation (17) becomes (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' An important part of our argument later will be centered around the issue of how far we can enlarge this interval by letting δ depend on ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Now let us also try to construct a scaling patch which encompasses the left boundary η = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The appearance of the differential equation can be changed by rescaling in such a way as to render the derivative term overtly important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The most natural way is by passing to a new independent variable y by y = η ǫ , U = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (20) Then we consider U to be a function of y in some subdomain consisting of values of η near 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We shall be conservative at first and take that subdomain as {0 ≤ y < y0}, where y0 is independent of ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Later, we see about extending the interval by letting y0 depend on ǫ The rescaled differential equation is d2U dy2 − U(y) + g(ǫy) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (21) Neglecting ǫ in (21) leads to d2U dy2 − U(y) + g(0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (22) The boundary condition at η = 0 (the same as y = 0) now becomes U(0) = α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (23) It is proposed, then, that the scaling given by (20) in the interval {0 ≤ y < y0} be our second scaling patch, and that the solution in that patch be approximately a solution of (22) and (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover it is reasonable to impose the condition that U be bounded when y grows large (like O(1/ǫ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This provides a unique solution and the formal approximation U(y) ≈ g(0) �1 − e−y� + αe−y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (24) This, of course, is only an approximation which is put forward for further verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For one thing, notice that limy→∞ U(y) = g(0) and that the original approximation u = g(η) is also close to the value g(0) for η ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus in a sense the approximation at the left boundary meshes smoothly with the supposed approximation in the interior of the interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let us dwell on the idea of smooth meshing a little more carefully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let ω be any positive number, arbitrarily small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We will show that there are large values of y and small values of ǫ for which the boundary approximation U(y) and the interior approximation g(η) = g(ǫy) are both closer than ω to g(0), hence arbitrarily 10 close to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let y1 be a large number, depending on ω, such that |U(y) − g(0)| < 1 2ω for all y > y1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Such a number exists, as you can see from (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Next, let η1 be a small number, again depending on ω, such that |g(η) − g(0)| < 1 2ω for all η < η1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Such a number η1 exists because of the continuity of the function g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since η = ǫy, both of these statements will be valid if ǫ is chosen such that ǫ < η1 y1 , and y is in the interval y1 < y < η1/ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since both are valid for these values of y, necessarily |U(y)−g(0)| < ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The conclusion is that if ǫ is small enough, depending on ω, there are places where the inner and outer approximations are closer together than ω, which can be chosen as small as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is what we mean by the two approximations meshing smoothly together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In summary, we have found (a) what appears to be a reasonable approximation for the solution u(η;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ǫ) in regions of the interval [0, 1] not too close to either boundary, and also (b) a reasonable approximation in regions close to the left boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The same procedure yields a third scaling patch near the right hand boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The solution in it undergoes a similar exponential (in terms of a rescaled variable) transition from the value β to g(1) as we move left from that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The rescaling in that case is z = 1 − η ǫ , V (z) = u(η) = u(1 − ǫz), and the right inner solution in that patch is V (z) ≈ g(1) �1 − e−z� + βe−z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (25) In the interior, the solution is approximately a function of only η with no ǫ-dependence, so no new scaling is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In a region which excludes small neighborhoods of each boundary (we will discuss how small later), the original variables are the natural ones in our adopted sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That region, together with the original unscaled variables, constitutes one scaling patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The small interval y < y0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' η < ǫy0), together with the rescaling (20), constitutes a second scaling patch, in which the solution undergoes, in an exponential manner, a transition from the imposed value α to the value g(0) associated with the first scaling patch, but extended to the forbidden boundary point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At this point the two patches do not touch each other but, as we shall see, the ranges of validity of the corresponding approximations can be enlarged so that they overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus through proper “scaling”, the original problem may be clarified and simplified in certain subranges of the range of independent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The outlined procedure for finding scaling patches in the example problem is only heuristic, but it can be made rigorous in this and other cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover, we have only found the most basic (lowest order) approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Successive higher order approximations, with errors of orders O(ǫ), O(ǫ2), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', can be found and proved to be correct in this and in a large class of similar problems, such as elliptic boundary value problems when there are several independent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 Inner, outer, and overlapping regions We have constructed independent approximate representations of the solution in three subdomains: (19) for η not too close to either boundary point, (24) near the left boundary, and (25) near the right one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Traditionally, these three approximate solutions are called the outer, left inner, and right inner solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We denote the outer solution by uo(η) and the left inner by U(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the following, we shall usually disregard the right inner approximation because its analysis follows that of the left inner solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 11 We now ask about the possibility of extending those subdomains, while retaining the validity of the approximate representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We do this by introducing a family of possible intermediate scalings parameterized by an exponent γ in the range 0 < γ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The independent variable η is rescaled to obtain a new variable s by η = ǫγs, y = ǫγ−1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (26) We are excluding the choice γ = 0, which would correspond to the original scaling, and γ = 1, corresponding to (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Set Uγ(s) = u(η) = u(ǫγs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The rescaled differential equation (17) becomes ǫ2−2γ d2Uγ ds2 − Uγ + g(ǫγs) = 0, (27) and the boundary condition is U(0) = α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We ask, can the region defined by {0 < s0 < s < s1}, where s0, s1 are independent of ǫ, be the location of a new scaling patch?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (The answer will turn out to be no in the strict sense, but we can try.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') If so, the corresponding solution should, to lowest order as ǫ→0, hence ǫγ→0, satisfy (27), which to lowest order comes out to be Uγ(s) = g(0) (28) (since 0 < γ < 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That is a very simple approximate solution indeed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Keeping that in mind, we now examine the left inner and the outer solutions (24) and (19) in the proposed patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For the left inner, we obtain the expression U �ǫγ−1s � ≈ [g(0) (1 − e−y) + αe−yg(0)]y=eγ−1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To find the lowest order version of this expression, just let ǫ→0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We get, again to lowest order, the same result as (28): U � ǫγ−1s � ≈ g(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (29) In the case of the outer solution, a similar procedure yields uo (ǫγs) ≈ g(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (30) This means that in any of the proposed intermediate scaling patches (as it will turn out, they are not true patches), the inner and outer solutions are both approximate solutions of the rescaled equation (27), so that in this sense each of them is a valid approximation to the true solution, for small enough ǫ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This verifies that the original subdomains of the inner and outer scalings can be extended to include the intermediate regions, the corresponding approximations continuing to be valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In other words, there is a region of overlap, in which both the inner and outer solutions are valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In fact, there are many overlap regions, depending on the choices of γ, s0, and s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These are all approximate solutions, and the main effective differences among them lies in the accuracy of the approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Bear in mind that ǫγ is approximated by 0 better when γ is larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, note that the approximate solutions in any of these overlap regions are not very interest- ing: they are all constant to lowest order, equal to g(0)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This implies that the regions {s0 < s < s1}, together with the scaling (26), do not form legitimate scaling patches!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The reason is that the solu- tion does not satisfy one of the stated criteria in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1, namely that the length scale α, which by (26) is equal to ǫγ, can certainly be reduced without the scaled dependent variable, which we have seen is constant, having unbounded derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The same procedure yields overlapping regions near the right boundary point, in which the approximate solutions are all another constant, g(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 A uniform approximation The separate approximations in the three specified regions, namely uo(η) = g(η) (19), U(y) (24) and V (z) (25), can be combined into a single expression, providing a uniform approximation throughout the interval [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For this, we define F(y) = U(y) − g(0), H(z) = V (z) − g(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (31) The uniform approximation is then Uunif(η;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ǫ) = uo(η) + F(y) + H(z) = uo(η) + F(η/ǫ) + H((1 − η)/ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (32) Its validity can be verified directly in each of the regions considered above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This form consists of a sum of terms, each a function of one of the scaled variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 A generalization It is natural to ask whether the outlined features in the overlap region of that classical example apply also to a wider class of functions, and indeed they do.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Rather than starting with a differential equation, we take a general class of functions expressed in the form of a sum of individual functions of the three scaled variables η, y, z separately, as in (32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' So we consider any function in the form (32), irrespective of whether it is a solution or approximate solution of some problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Such a function may still have, depending on uo, F and H, an outer approximation and two inner approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It may also have a region of overlap between the outer and one of the inner solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' No generality is lost by taking H = 0, and we do that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let ǫ ≪ 1, y = η ǫ, and uo(η) and F(y) be any functions such that uo(η) has a limit as η→0 and F has a limit as y→∞: lim η→0 uo(η) = uo(0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' lim y→∞ F(y) = G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (33) We call η the outer variable and y the inner variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, let u(η;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ǫ) = uo(η) + F(y) = uo(η) + F(η/ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (34) This will be the central prototypical two-scaled function which will be approximated differently in an inner and an outer region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In a region {η > δ} for any fixed δ > 0, η/ǫ→∞ uniformly as ǫ→0, so that F can be approxi- mated by G: u(η, ǫ) ≈ uo(η) + G ≡ uout(η), (35) which we call the outer representation of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Similarly near η = 0, we replace η by 0 in the first term on the right of (34) to obtain the inner representation uin(y) ≡ uo(0) + F(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (36) Now consider a family of intermediate regions parameterized by γ ∈ (0, 1) in which s, defined by (26), is confined to the interval s0 ≤ s ≤ s1, the si being specified constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In such a region, we find the approximations uin ≈ uo(0) + F(ǫγ−1s) ≈ uo(0) + G, (37) 13 uout ≈ uo(ǫγs) + G ≈ uo(0) + G, (38) u(η, ǫ) ≈ uo(ǫγs) + F(ǫγ−1s) ≈ uo(0) + G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (39) The conclusions are, first, that the inner and outer representations are both valid in the interme- diate region, which is therefore an overlap zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Secondly, in the overlap region, the approximation is equal to the constant uo(0) + G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These conclusions are the same, in our generic class of examples, as those for the classical example in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 The Izakson-Millikan observation In [4] and [5], Izakson and Millikan independently considered functions of the form (34) without imposing limit conditions such as (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Their context was the averaged equations of wall-induced turbulence, but their reasoning is valid in the present more general scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They showed, more or less, that an assumption of the existence of an overlap region is sufficient to imply that the approximations in that region are either constant or logarithmic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Beginning in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6, a different approach, but with a similar objective, will be discussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Its method, limited to the turbulence problem, will be based on a search for scaling patches In the Izakson-Millikan argument, then, no special conditions are required at either boundary of the interval I (below) on which our functions are defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover, instead of providing functions of inner and outer variables and asking whether there is an overlap region of validity of the corresponding inner and outer approximations, we now do just the opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We assume that there is such a region of common validity, and ask what more, if anything, that implies about those approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The answer is surprising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Assume, for some unknown functions uo(η), U(y) (where y = η/ǫ as always), G(ǫ) and interval I, that uo(η) + G(ǫ) = U(y) (40) for all values of η ∈ I and all values of ǫ in some interval K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since η and ǫ can vary independently of each other in their respective domains, η and y also vary independently of each other, for η ∈ I and y ∈ J, J here being the set of all values of y = η/ǫ for η ∈ I and ǫ in its previously allocated interval of variation K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The assumed identity (40) asserts that there is a region of overlap where the outer function uo(η) (plus a correction G(ǫ)) equals the inner function U(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' All these functions are at present unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It turns out that the correction G is necessary to include, because without it, (40) is too stringent a condition to be fulfilled in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' First, in (40) make ǫ a fixed number in K, and of course y = η/ǫ for all η ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Differentiating (40) with respect to η and multiplying by η, we obtain ηu′ o(η) = η ǫ U′(y) = yU′(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (41) This is valid for every chosen value of ǫ ∈ K, so is true for all y ∈ J as well as η ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But since, as remarked before, η and y vary independently of each other, each side of (41) must be a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example η can be allowed to vary throughout I while y is held constant, which of course implies that the right side of (41) is held constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That means the left side is also constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore for some constant A, ηu′ o(η) = A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' yU′(y) = A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (42) Integrating these two equations, we find, for some other constants B and C, uo(η) = A ln η + B, U(y) = A ln y + C = A ln η + C − A ln ǫ, (43) 14 the last equation a result of the identity y = η/ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since uo is assumed to be a function only of η, necessarily B is a constant independent of ǫ, and the same holds true of C for a similar reason.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The function G can now be determined if we substitute the expressions (43) back into (40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Doing so while noting that ln y = ln η − ln ǫ yields G(ǫ) = −A ln ǫ + C − B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (44) In short, the three functions in question must be of the form (43), (44), where A, B, C are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The original assumed identity (40) dictates a great amount of information about these functions, while not specifying them exactly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' What this result says is that functions which are simultaneously regular functions of an inner and an outer variable, for all values of those variables in certain intervals, are either constant or logarithmic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If it is known that the function is not constant, then this property of simultaneity is equivalent to being logarithmic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7 A more realistic version The result of Izakson and Millikan is mathematically rigorous, in the sense that if (40) holds in some intervals as specified, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' if some function can be expressed exactly in terms of either an inner or an outer variable in some overlap region, then the logarithmic properties (43) and (44) also hold in that same region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However, the assumption (40) probably never holds exactly in practice, so that the conclusion is vacuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In any concrete situation, it will be far more reasonable to assume that (40) is only approximately satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then the suggestion, which is not yet proved, is that the functions involved will be approximately logarithmic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fortunately, such a conclusion can also be rigorously established, provided that appropriate senses are given to the two approximations (the one in the hypothesis, and the one in the conclusion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That will be done in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Note also that Gill in [6] provided such a proof under more involved assumptions and with entirely different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In place of (40), we now assume that (40) holds with an additional small error term r(η, y, ǫ), which will be written r(η, y), since ǫ can be expressed in terms of η and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The function r is not known exactly, but that does not prevent estimates about the accuracy of (43) and (44) being deduced in terms of the magnitude of r (and, as it turns out, of its derivatives).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus we start with uo(η) + G(ǫ) = U(y) + r(η, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (45) As we shall show, although (43) and (44) no longer hold, one can still find upper and lower bounds of logarithmic type for the functions uo, U, G in terms of bounds on r and its derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Differentiating (45) as before, one obtains ηu′ o(η) = yU′(y) + R(η, y), (46) where R(η, y) = ηrη + yry, subscripts denoting derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let ρ be an upper bound for |R|, valid for all η, y in the intervals I, J respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Choose any y0 ∈ J and let A = y0U′(y0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then setting y = y0 in (46), we get |ηu′ o(η) − A| ≤ ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (47) This holds for all η ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Also from (46), yU′(y) − A = ηu′ o − A − R, 15 so that by (47) |yU′(y) − A| ≤ |ηu′ o − A| + ρ ≤ 2ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (48) This says that when ρ is small, the quantities on the left sides of (42) are almost constant, the deviation from constancy being no greater than ρ and 2ρ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Dividing (47) by η and rearranging terms, we get A − ρ η ≤ u′ o(η) ≤ A + ρ η , and after integrating, (A − ρ) ln η + B1 ≤ uo(η) ≤ (A + ρ) ln η + B2, (49) where Bi are integration constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In this sense, uo is almost logarithmic when ρ is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the same way we obtain (A − 2ρ) ln y + C1 ≤ U(y) ≤ (A + 2ρ) ln y + C2, (50) with similar upper and lower bounds for G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In short, assuming R, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' ρ, is small in the intervals selected, one concludes that U(y) is bounded above and below by logarithmic expressions with coefficients of the logarithm functions which are close to each other, the discrepancy being smaller than 2ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It must be admitted, however, that one generally does not know the nature of the error term R, its magnitude ρ, or indeed the interval of overlap, if any.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If the intervals I, J, hence K are chosen to be shorter and well placed, one might expect ρ to be smaller and therefore the logarithmic approximations to be better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There is a tradeoff between the accuracy of the logarithmic approximation and the size of the interval where that approximation is valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It can be guessed that as one moves closer to the canonical outer domain, r increases in magnitude because although the outer approximation uo(η) + G(ǫ) is more exact, the inner expression U(y) is not a good approximation, so the two cannot be close to each other, as (45) would seem to imply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Somewhere between the outer and the inner domains, r would be minimal, but still not zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This was with ǫ fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A natural further question, therefore, is whether, in such fixed intervals of the space variable η, the error r and its relative R approach 0 as ǫ→0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The present argument does not answer that question, but an argument in support of a similar conclusion in the context of wall-induced turbulence will be given below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5 The mean structure of turbulent Couette flow in a channel At this point we leave the mathematical digression about scaling and turn to the main issue of this paper, namely the application of scaling ideas to turbulence induced by wall friction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Turbulent Couette flow is possibly the simplest nontrivial example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' From this point through Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6, we will be repeating well-known standard arguments but with different emphases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Newer, hence lesser known, material will be found in sections beyond that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Denote the components of x and u by (x, y, z) and (u, v, w) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Consider a channel bounded on top and bottom by horizontal planes {y = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' y = 2δ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The top plane moves with given steady velocity in the streamwise direction x, while the lower plane remains stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This causes a shear stress in the fluid between the two planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the mean, fluid particles which are vertically aligned at one moment of time slide past each other horizontally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If the velocity is sufficiently large, the resulting shear causes the flow to be turbulent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We seek to understand the “scaling structure” of the mean velocity of the fluid, and other quantities, when the flow has reached “equilibrium”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The scaling analysis of turbulent Couette flow described here, was developed in [7, 8, 9, 10, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Here scaling structure will mean that we will look for scaling 16 patches for the mean velocity and Reynolds stress profiles, or other relevant ways to scale those functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' And the term equilibrium will refer to the state in which the mean velocity is everywhere horizontal and depends, with Reynolds stress, only on the normal coordinate y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Although there will be perhaps violent particle fluctuations in all directions, the prevailing (mean) motion will be only horizontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The dependence only on y implies that all averaged quantities are uniform along the channel and do not change in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The upshot is that the averaged Navier-Stokes equations have only one independent variable (y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Before we get into the turbulence analysis, consider the corresponding laminar flow, in which all fluctuation parts vanish, and in fact the velocity has only an x-component, which is simply a linear function of y, the coefficients being adjusted to match the given velocities of the bounding planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is a very simple solution, and can be verified to be a solution of the Navier-Stokes equations (1) with 0 pressure gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In fact the inertia terms of the conservation equation for the x-component of momentum vanish automatically because each velocity component is either 0 or has x-derivative 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For a similar reason, the viscosity terms also vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The analogous problem for turbulent flow is orders of magnitude more difficult, and can only be solved imprecisely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We will examine it in the framework of Reynolds averaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But a possible paradox appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It was just brought out that the eminently simple laminar flow, in which u is a linear function of y, is an exact solution of the Navier-Stokes equations, and those equations govern the flow, laminar or turbulent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' So if we have a solution, why do we need to look for a “turbulent” one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The answer is because (a) as we set up the problem, there are more solutions than just the laminar one;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' solutions are not unique;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and (b) the laminar one happens to be very unstable at high Reynolds numbers, therefore not seen in practice and hence unphysical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 The differential equations To proceed, suppose the turbulent flow to be “fully developed,” statistically stationary and two- dimensional in the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' All averaged quantities except pressure do not depend on x, z, or t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' just on y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover, we suppose that the only nonzero component of the mean velocity will be the x-component, which we denote by U(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (This part is the same as the laminar case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') The x and y components of (8) are greatly simplified, because of the independence of τ on x, z, t: −ν d2U dy2 + 1 ρ ∂P ∂x + d dy⟨u′v′⟩ = 0, (51) 1 ρ ∂P ∂y − d dy⟨(v′)2⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (52) At the two walls {y = 0, y = 2δ}, all the fluctuating parts of u are 0, so the Reynolds stress ⟨u′v′⟩ vanishes as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At the lower wall, U = 0 and its derivative is related to the frictional stress exerted on the wall by the fluid (or vice versa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We have here two equations for the four unknown functions U, P, ⟨u′v′⟩ and ⟨(v′)2⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Actually, Couette flow is characterized by the absence of an applied pressure gradient;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' the sole impetus for the flow is the differential motion of the two walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore we set ∂P ∂x = 0 (P itself depends on y, however, as one can see from (52)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the case of other steady channel flows, ∂P ∂x may not be zero, but it would turn out necessarily to be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The equation (51) becomes −ν d2U dy2 + d dy⟨u′v′⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (53) 17 It is important to recognize that this is a simple balance of forces, which must occur at each point of this steady (in the mean) flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The two forces exerted on the fluid are (1) the friction, or viscous, force ν d2U dy2 , and (2) the force − d dy⟨u′v′⟩ caused by the turbulent fluctuations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' the gradient of the appropriate Reynolds stress, by which x-momentum is transported in the y (perpendicular) direction by the fluid’s fluctuations in both directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' An intuitive description of the two forces can be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (1) The derivative dU dy measures the magnitude of the shearing motion, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' the rate at which nearby x-directed particles are moving relative to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This shearing magnitude, times the kinematic viscosity ν, is proportional to the force per unit area that the fluid lying above the horizontal plane through the point under consideration is exerting on the fluid below (and vice versa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is called the shear stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The difference between the shear stress at two nearby values of y, say y1 and y2, is the net effective force per unit area experienced by the slab of fluid in the intermediate region {y1 ≤ y ≤ y2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Dividing this expression by y2 − y1 and passing to the limit, we obtain the net force per unit mass acting on fluid particles at that location, and see that it equals ν d2U dy2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Again, this is termed the viscous force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (2) As shown in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 2, the y-derivative d dy⟨u′v′⟩ is the x-component of the mean force per unit mass exerted on particles at that location by the turbulent fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since there are only these two forces in balance, it can be said, contrary to some assertions, that the viscous forces and those due to Reynolds stresses are both equal players, hence both important, everywhere in the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At this point we have reduced the problem to a single equation (53) for U and ⟨u′v′⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There are still more unknowns (2) than equations (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But we shall nevertheless be able to at least surmise some important information just from the simple mean balance law (53) plus known boundary conditions, in concert with educated assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 The friction velocity and boundary conditions We start with some crucially important concepts and constants associated with the interaction of the fluid with the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let τw denote the mean stress exerted on the wall by the fluid flowing past it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is proportional to the viscosity µ, as well as the magnitude of the mean velocity’s shear at the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is given by τw = µ d dy⟨u⟩ = µ �dU dy + d dy⟨u′⟩ � = µdU dy , (54) since ⟨ d dyu′⟩ = d dy⟨u′⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At y = 0, ν dU dy = 1 ρ(µ dU dy ) = 1 ρτw > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Now the quantity 1 ρτw has the dimensions of velocity squared;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' it therefore defines a characteristic velocity u∗, called the friction velocity, by 1 ρτw = (u∗)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (55) From this relation and the previous one, we can express dU dy = u∗2 ν at y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (56) This, together with the stipulation that U(0) = 0, (57) provide a pair of boundary conditions at the wall for U(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It seems natural to treat the velocity of the upper wall as a given quantity to be built into the mathematical formulation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' but analytically 18 the simpler route is instead to think of the velocity u∗ (in (56)) as given, and the upper wall velocity as to be determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is clear from physical considerations that either of these two velocities is a monotone function of the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As noted before, the fact that all fluctuations vanish at the wall imply similar conditions for the Reynolds stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In fact, ⟨u′v′⟩ = d dy⟨u′v′⟩ = d2 dy2 ⟨u′v′⟩ = 0 (58) at y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The first two conditions here follow from u′ = v′ = 0 at the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The third condition comes about because, using subscripts y to denote derivatives, we have ⟨u′v′⟩yy = ⟨u′ yyv′⟩+2⟨u′ yv′ y⟩+ ⟨u′v′ yy⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The first and third terms in this expression vanish at the wall because u′ and v′ do;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and the second term also vanishes because (6) together with u′ x = 0 implies v′ y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally at the center of the channel at y = δ, we invoke the symmetry of the flow to conclude that d dy⟨u′v′⟩ = 0 at y = δ, (59) since every vertical fluctuation v′ is matched, and canceled during the averaging process, by another one in the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' From (53), U has an inflection point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In fact, consistent with (59), the Reynolds stress ⟨u′v′⟩ increases in magnitude from 0 at the wall to a maximal value at the centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 Dimensionless variables in the core region For better insight, we now seek to nondimensionalize (53).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That is, we rescale the variables by multiplying them by typical and meaningful characteristic dimensional constants so that the results are dimensionless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There are at least two traditional and natural ways to do this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In any case, we argue that the characteristic velocity in this turbulent flow should probably be u∗, because the former’s magnitude should be directly related to the wall stress, which is what slows the fluid down at the lower wall and causes it to go forward at the upper wall, and so in some sense causes the turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' So we nondimensionalize U by u∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (As brought out above, another natural, but less convenient velocity unit would be the maximum mean velocity or the average mean velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') In the interior of the channel, it is intuitive that y should probably be scaled by the channel half-width δ, simply because that is the only immediately obvious characteristic length appropriate to that part of the channel (further justification will be given in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' And everywhere, the Reynolds shear stress should be scaled by the shear stress at the boundary, so by (u∗)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We therefore define U+ = U u∗ , η = y δ , T = −⟨u′v′⟩ (u∗)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (60) The centerline of the flow region is at η = 1, and by symmetry considerations, the mathematical problem can be set up in the half-channel 0 ≤ η ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The superscript “+” in U+ is the traditional way to signify that this variable is normalized with parameters related to what happens at the wall: the friction velocity u∗ and/or τw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The scaled distance η is the first natural way to nondi- mensionalize the y-coordinate, and η will be called the “outer distance variable”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This, along with the “inner distance variable” y+ to be discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 below, have been standard choices for dimensionless distance since the beginning of theoretical investigations of wall-induced turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However, the existence of scaling patches as defined in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 employing these scaled distances remains to be established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That will be done in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 19 With the normalization (60) we obtain in place of (53), dT dη + ν u∗δ d2U+ dη2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (61) We also use u∗ and δ to define our Reynolds number R∗ = u∗δ ν and small parameter ǫ2 = (R∗)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Using this notation, we get dT dη + (R∗)−1 d2U+ dη2 = dT dη + ǫ2 d2U+ dη2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (62) As noted earlier, we have an underdetermined problem—a single equation for the two unknowns T and U+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But there is even more bad news: the boundary condition at η = 0 is in trouble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Naively assuming the formally small second term can be neglected across the whole channel, we get that T is constant, and since it vanishes at the wall, we would obtain that T = 0 everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is incorrect, of course, for a reason similar to that which applies to the classical example in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2: a different scaling applies near the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We construct now a second scaling domain, near the wall, to partially remedy this defect, as was done for the classical example in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 The wall layer, rescaling, and law of the wall It is traditionally recognized that we do have at least two space scales in the channel—one of them associated with δ and another one close to the wall;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' we’ll get to that shortly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We will have an “outer” and an “inner” approximate solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finding out how to connect them makes an interesting story.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However, we cannot carry out a full-blown asymptotic analysis because too much is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Much of the following proceeds by “reasonable suppositions”, which can also be verified to some extent by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is natural to choose the inner scaling in such a way that the two terms on the left of (62) have the same orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' After all, those two terms represent the two forces in the fluid which have to balance (note, that’s not what we did to get (61)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus we define y+ = ηR∗ = u∗ ν y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (63) Then (62) becomes dT dy+ + d2U+ dy+2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (64) In this, there is no incompatibility with the boundary conditions at y+ = 0: T = 0 and dU+ dy+ = 1 at y+ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (65) The integrated form of (64) is T + dU+ dy+ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (66) To summarize, we have the traditional approximation that asserts that T is constant (but no approximation as yet for U+) in the outer region near the channel’s centerline, and an equation (64) or (66) relating T and U+ in the inner region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 20 The region next to the wall where the spatial variations (in y) have characteristic length ν u∗, is call the wall layer (as opposed to boundary layer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The choice (63) of scaling in this region says that we are treating the scaled Reynolds stress T on the same footing as the wall stress or skin friction (R∗)−1 dU+ dη .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The former arises from the inertia terms in the Navier-Stokes equations and the latter from the viscosity terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the wall layer, then, it is reasonable to suppose that U+ and T are (approximately) functions only of the inner variable y+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This property is called the law of the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 Velocity in the core The law of the wall is no longer valid for large R∗ as we move into the interior of the channel and on into the core region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The outer scaling will turn out to be valid there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But remember, at this point we only have that T is approximately constant there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' U+ may be unbounded as a function of ǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' the traditional way to incorporate the validity of the outer coordinate η in an expression for U+ is to postulate the defect law U+ = U+(1) + h(η), (67) where h is unknown, except that h(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The concept of thickness of the wall and the core scaling regions should be clarified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One interpretation of these regions would be where the solution’s characteristic length is unity in the appropriate scaled coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then the thickness would be O(1) as measured in that scaled variable, be it y+ or η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In particular, the wall region is characterized by {y+ ≤ O(1)}, and that of the outer scaling region is characterized by η0 < η ≤ 1 for some arbitrary positive number η0 independent of ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Note that the ratio of the thickness of the wall layer to that of the core is O � 1 R∗ � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' this contrasts with the laminar hydrodynamic boundary layer (Prandtl theory), where the ratio is O � Re−1/2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Another interpretation of the two regions would be where one or the other of the approximate representations of the solution, namely the law of the wall or the defect law, are valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This interpretation yields, as it turns out, larger regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let us assume that these two laws are correct in their respective domains;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' better justification for this will be given later in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Recall ǫ = (R∗)−1/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (68) since U+(1) will depend on ǫ, we set U+(1) = G(ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the outer region, then, we may posit the representation U+ = G(ǫ) + uo(η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (69) In the inner region, on the other hand, we are using the law of the wall approximation U+ = p(y+), (70) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' U+ is a function only of y+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The unknown quantities here are p, G, uo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 21 0 5 10 15 20 25 30 35 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 1 10 100 1000 10000 100000 1e+06 U y Reτ=181 (Kawamura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Reτ=642 (Iwamoto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Reτ=1655 (Wei and Willmarth) Reτ=11062 (McKeon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Reτ=103340 (McKeon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Reτ=534538 (McKeon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='41*ln(y)+5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Figure 1: Inner normalized mean streamwise velocity in Couette flow, pressure-driven channel flow and pipe flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Couette flow data are from DNS of Kawamura’s group [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Pressure-driven channel flow DNS data are from Iwamoto et al [15] and experimental data are from Wei and Willmarth [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Pipe flow data are from superpipe data of McKeon et al [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 Application of the Izakson-Millikan reasoning A great number of analytical and semianalytical studies of turbulent mean profiles have utilized the Izakson-Millikan observation as an essential ingredient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It has also been generalized and elaborated upon in many ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example the idea of composite expansions in more traditional settings of two-scale problems has been extended to the present scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We recommend the review paper [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Given the two approximations (69) and (70), they can be thought of as the inner and outer func- tions specified in the two sides of (40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='The variables p, uo, G, y+, η are analogous to U, uo, G, y, η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus the left side of (40), uo(x) + G(ǫ), is analogous to the right side of (69), and the right side of (40), U(y), is analogous to the right side of (70).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If we now make the Izakson-Millikan hypothesis that there exists a common region in which the two expressions are almost equal, then the three functions in question must be either approximately constant or approximately logarithmic, as in (43) and (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the present context, the conclusion is that in the common region, whatever it is, the following hold: uo(η) ≈ A ln η + B, p(y+) ≈ A ln y+ + C, G(ǫ) ≈ − A ln ǫ + C − B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (71) Therefore the functions are approximately either constant (A = 0) or logarithmic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is a well-known conclusion, and indeed the mean velocity profile in wall-bounded turbulent flows is seen to exhibit logarithmic type behavior in certain regions which can be estimated on the basis of experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Examples of the logarithmic property can be seen from the empirical data shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The coefficients A, B, C can also be so estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' All in all, the Isakson- Millikan observation, in all its simplicity, should be counted as one of the great success stories of 22 theoretical turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Focussing on our stated objective to at least try to answer the question why?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', we discuss the given derivation of the logarithmic property in some detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In particular, we ask whether it can be supported by alternative trains of thought.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7 Observations on the foregoing procedure The conclusion (71) gives a surprising amount of information about the inner and outer approxi- mations, based on what appears to be a small amount of input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The basis for the argument rests on very little physics or fluid dynamics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' it is simply an as- sumption about inner and outer approximations agreeing somewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If one is willing to admit the existence of those inner and outer approximations, what remains is simply a mathematical issue, and could apply to any situation where there are two space scales with different but overlapping domains representing a strictly monotone function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let us rephrase what has been found in terms of the more realistic conclusion corresponding to Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If the mean velocity profile is everywhere monotone and there is a region in the flow where that profile can be expressed approximately and simultaneously as a function of the inner variable alone and the outer variable alone (up to an additive function of ǫ alone), then these functions must be approximately logarithmic, the degree of the latter approximation being dependent on that of the former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let us take for granted the monotone part;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' that property of the mean velocity profile is well known and can be rationalized by the supposition that the viscous stress is everywhere positive and a decreasing function of distance from the wall, which is the site of the imposition of such stress by outside means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Given the monotonicity, what other information can we use to determine the profile, at least approximately?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The needed additional information should be theoretical in nature, because our aim is to explain the reasons for observed behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We know the Izakson- Millikan implication, which, stated succinctly, says, “overlap implies logarithmic”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is a simple piece of reasoning which is classical and, again, well-known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Being so simple and direct, it places the hypothesis that a particular region is an overlap region very close to the conclusion, namely close to assuming logarithmic behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Either property can be substituted for the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If this is true, the argument is close to being circular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If available, independent arguments to determine properties of the mean velocity and Reynolds stress profiles, not relying on the overlap hypothesis, would be highly desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That will be a principal aim in the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One direction of enquiry which is suggested is to consider all possible increasing profiles which are functions of the inner variable near the wall and of the outer variable near the centerline;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and try to use some reasonable selection criterion to at least make a good argument for what the actual profile should be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The set of profiles which have the overlap property, hence the logarithmic property, is only a small part of the set of all conceivable profiles, because the latter includes an ample collection of arbitrary non-logarithmic ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If the overlapping logarithmic ones are to be selected, as empirical evidence suggests in some regions, then theory should be able to supply a reason for that choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We should mention in passing a small cloud hanging over the search process: it seems on the basis of examples explored in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4 that overlap regions, if they exist, are usually characterized by the functions being constants in those regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Given that U is nowhere constant, one wonders whether the assumption that an overlap region exists is itself reasonable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Another possible direction of enquiry is to ask whether a unified approach is possible, which gives more justification to the inner and outer scalings themselves, and at the same time is capable 23 of handling all other parts of the profile as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the next subsection we draw attention to an intuitive and vague train of thought which may be relevant to the question of why the mean profiles might have certain features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In Section 6, a relatively new approach to this and other questions will be explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It involves a systematic search for scaling patches and does not require separate assumptions about the validity of inner and outer scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Apart from the above, another consideration to be kept in mind is that the overlap hypothesis provides no theoretical basis for determining the location of any expected overlap region, nor the accuracy of (69) in that region (neither does the scaling patch approach, for that matter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is expected that the size of the region is related to the accuracy of the basic hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Increas- ing the region where the two expressions are approximately valid decreases the accuracy of the approximation in that region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8 The uniformizing effect of turbulence and some possible implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The turbulent nature of the fluid motion, which is not explicit in the averaged equation under study, has a mixing and hence uniformizing effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This, it may be argued, tends to smooth out or eliminate abrupt spatial changes in the average properties of the flow as one moves from one location to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The flow properties at one place will be similar to what they are at nearby places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Although sources of stress which are imposed from the outside, such as wall friction and en- joined pressure gradients, are often also sources of turbulence, they may work in opposition to the uniformizing action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example the generation of stress due to the wall in channel flow acts at a different location from an imposed pressure gradient, and this difference results in a nonuniform distribution of Reynolds and viscous stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Still, the claim of uniformization seems without much doubt to be valid for some properties if the vague terms “properties” and “similar” are given some appropriate definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If we assume that this principle holds for the local scaling properties of the variables, including for the local characteristic length as it depends on location, then there should be a whole continuum of characteristic lengths, each appropriate to a specific locale, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' specific distance from the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus as we pass from the wall to the centerline of the channel, the uniformizing principle suggests that the characteristic length encountered during the passage should change continuously from the one for the inner scaling to the one for the outer scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In fact, this is one of the main conclusions to be brought out by a different reasoning in the next section, which introduces and develops a very different approach to the problem of determining the nature of the profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It uses scaling and order of magnitude arguments in a major way, but does not assume a priori the validity of the inner or outer approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Rather, it presents an alternative criterion for “scaling patches” and shows that the inner and outer regions, among many others, fit that criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In this sense, the identification of patches is derived from the assumed criterion rather than presupposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6 The search for scaling patches The more recent approach to understanding of the scaling structure of the mean velocity and Reynolds stress profiles presented here was introduced in [7, 8, 9, 10, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It forms an alternative to the approaches considered above, not in any sense of replacing them, but rather in the spirit of 24 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 1 0 20 40 60 80 100 120 140 160 180 200 Tβ = T+ - βy+ y+ Couette: T+ β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1000 β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0700 β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0465 β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0150 β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0055 β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0020 β=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0004 Figure 2: Adjusted Reynolds stress profile for various values of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The case β = ǫ4 corresponds within O(ǫ2) to the genuine Reynolds stress for Couette flow and β = ǫ2 is an approximation to that for pressure driven channel flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The DNS data are from [18], δ+ = Reτ = 181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 and ǫ = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' adding to them new information and insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, it is applicable to a wide variety of wall- induced turbulence scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For the time being, we continue to operate within the context of turbulent Couette flow through a channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Adjusted Reynolds stresses, balance exchange phenomena, and the identi- fication of patches Let β be a small positive number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Restrictions on it will be given later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In terms of the originally defined dimensionless Reynolds stress T, let T β(y+) = T(y+) − βy+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (72) (Note that β is a superscript not an exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') The function T β is simply a mathematical construct that will be called an adjusted Reynolds stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It satisfies dT β dy+ = dT dy+ − β, (73) and from (64) d2U+ dy+2 + dT β dy+ + β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (74) The T β are plotted for various values of β in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The genuine Reynolds stress, which corresponds to the case β = 0, vanishes with its derivative at the wall and rises to attain a maximum at the centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As β increases, the position of the maximum moves toward the wall, eventually disappearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The main interest is in those adjusted stress functions that exhibit local maxima—which will be the case when β is not too large—because, as it turns out, scaling patches Lβ with characteristic lengths with orders of magnitude O(β−1/2) (as β → 0) exist at those peak locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The reasoning below will justify this assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Part of the argument involves obtaining 25 an exact differential equation in rescaled variables having no explicit dependence on ǫ or β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Another part entails the recognition that (74) expresses an approximate balance between its first two terms (since β is small), and that this balance is necessarily broken at some point and changed to another kind of balance, because y+ eventually attains a value such that the three terms in (74) have the same order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let us pursue this idea of balance exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As was brought out in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 following (59), the function T(y+) increases from being 0 at the wall to attain its maximal value at the centerline η = 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' y+ = ǫ−2 = δ+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Assuming that β is small and positive, therefore, we see that the adjusted stress T β has negative derivative at y+ = δ+, so must attain its maximal value Tm(β) at a point y+ β < δ+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover, the location of this maximum decreases as β increases, because when β increases, the zero derivative at any maximum becomes negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Within the inner scaling region where the law of the wall holds, for example when y+ ≤ O(1), the two derivatives in (74) will generally have magnitudes O(1) except very near the wall in the viscous sublayer, where they are both very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since β ≪ 1, those two derivatives will balance, except for an error represented by the last term in (74).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Both derivatives will therefore generally be O(1) quantities, except as noted above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This occurs within the inner scaling region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However as y+ increases to a neighborhood of y+ β , this necessarily changes, because the value of dT β dy+ decreases to zero at y+ = y+ β .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For points near enough to that value, the second term in (74) must take on values ≤ O(β), and therefore by (74) again, the first term does as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is therefore natural to propose that there may be a scaling patch occupying that neighborhood with respect to which all three terms of (74) have the same formal order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To be more precise, the last term balances the sum of the first two terms, each of which is ≤ O(β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It turns out that it is possible to construct a candidate for such a patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It will be centered at the location y+ = y+ β , where dT β dy+ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At that point, the derivatives appearing in (74) annihilate the linear terms in the Taylor series of the functions U+ and T about y+ = y+ β (in fact the linear term in T is identically zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As a result, those linear parts do not play a role in the rescaling process, and one may work only with the remainders after those parts have been separated off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' With this in mind, we write, for some coefficients α(β), γ(β), λ(β) to be determined, y+ = y+ β + αˆy, T(y+) = Tm(β) + γ ˆT(ˆy), U+(y+) = U+(y+ β ) + m(y+ − y+ β ) + λ ˆU(ˆy), (75) where m is the slope m(β) = dU+ dy+ (y+ β ) of the mean velocity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The slope m is unknown at this point, but will be found later in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The linear parts, which have been segregated in (75), are Tm(β) and U+(y+ β ) + m(β)(y+ − y+), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They are separated off because the derivatives appearing in (74) annihilate them and they take no part in the present calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That is also why m is not determinable until later in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 (see (93)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The new rescaled variables are ˆy, ˆT and ˆU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then (74) becomes λ α2 d2 ˆU dˆy2 + γ α d ˆT dˆy + β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (76) In order for the three terms to be formally equal in order of magnitude, one can specify α = �λ β �1/2 , γ = (λβ)1/2, (77) so that y+ = y+ β + �λ β �1/2 ˆy, T(y+) = Tm(β) + (λβ)1/2 ˆT(ˆy), U+ = U+(y+ β ) + my+ + λ ˆU(ˆy), (78) 26 and (74) is transformed into the parameterless equation d2 ˆU dˆy2 + d ˆT dˆy + 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (79) The criterion of equal formal orders of magnitude, therefore, does not by itself determine uniquely the three scaling factors α, γ, λ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (77) leaves the factor λ undetermined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This sug- gests that there may be a one parameter family of potential scaling patches at the location y+ β , the parameter being λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We are confronted with an extra degree of indeterminacy, because the present line of reasoning does not offer a way to determine which of the potential patches represent actual ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However there is considerable evidence, to be summarized in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7, that the correct scaling at this location y+ β is given by (77) with λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The analysis to follow in this and the next two subsections holds for other choices of λ as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We assume that λ(β), like α and γ, is a power of β, and define, in place of λ, the parameter σ by λ = β−σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (No constant coefficient is needed with this power law because we are dealing only with orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') It will be shown that the case σ = 0 leads to a logarithmic-like profile for the mean velocity U+, and when σ is positive, we get behavior like a power law with exponent depending on σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For reference, the prototypical case is σ = 0, when y+ = y+ β + β−1/2ˆy, T(y+) = Tm(β) + β1/2 ˆT(ˆy), U+ = U+(y+ β ) + m(β)(y+ − y+ β ) + ˆU(ˆy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (80) No information is available at this point about the slope m, which bears on the profile of U+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However, information about it will be found later (93).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We argue that the scaling (78), for some choice of σ, is the natural one in a neighborhood of y+ β , and that this neighborhood is a scaling patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' On the basis of the explanation in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 together with (75) and (77), it will follow that the characteristic length in that patch will be ℓ(β) = �λ β �1/2 = β−(σ+1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (81) In fact not only does the scaling produce a parameter-free exact form (79) of the momentum balance equation, but at locations in the proposed patch it can be verified that the individual derivatives in (79) have the right order of magnitude, namely ≤ 1 with at least some of them = O(1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example, at the peak location, the three terms on the left of (79) are −1, 0, 1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Leading up to that peak, the middle term is positive but still ≤ O(1), which makes the first term also O(1), according to (79) again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In a scaling patch, as defined originally, all derivatives using the scaled variables are ≤ O(1), and in the case of at least one of those variables, the magnitudes of its derivatives are not all strictly < O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If that were not the case, the scaling factor α could be decreased without forcing some of the new rescaled derivatives to be unbounded as β→0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the present case, we have shown that these order of magnitude relations hold for the particular derivatives appearing in (79).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That fact makes the scaled neighborhood of y+ β with width O(1)) in ˆy a candidate for a scaling patch, provided the correct choice of σ is taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This will be our accepted criterion for the existence of a patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus if the correct σ is taken, then given any suitable small number β, one concludes that there is a corresponding scaling patch, which we shall call Lβ, with characteristic length ℓ(β) = β−(1+σ)/2 located at the point y+ β where T β achieves its maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 27 W=β-εt 2 ym β Ι y+ W(y+) Figure 3: Schematic diagram showing the role of the function W(y+), which is called P(y+) in the text, in determining the relation between β and the location yβ m of the corresponding scaling patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The interval I shown here is one of many choices of interval on which W(= P) is decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' See (82).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One may question whether this characteristic length ℓ, for the correct choice of σ, is comparable to the mixing length of Prandtl in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 3 or the scaling parameter introduced by von Karman (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They arise from apparently different considerations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' the lengths used by von Karman and Prandtl are characteristic lengths vaguely associated with the fluctuating velocity, simply postulated to exist, whereas the present one is related to the function T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' And yet T is in essence something which is defined in terms of those fluctuations, and so one may surmise that the two concepts are related somehow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Because of the vagueness of mixing length concepts, that may be all that can be said.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 The locations of the scaling patches In the following the analysis will be done only for the case σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Analogous calculations may be done in the other cases as well;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' we will simply provide some key equations in the general case, without derivations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At this point one should ask how to determine the range of parameter values β for which the foregoing construction of scaling patches is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is best answered at first in terms of the known qualitative properties of the function P(y+) ≡ dT dy+ (y+);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' later a more complete answer will be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The function P vanishes at the wall (y+ = 0) and, by symmetry of the function T, also at the centerline y+ = δ+ = ǫ−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As y+ passes from the wall to the centerline, T rises to its maximum at the latter location;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' during the transition, T and P are both positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since P = 0 at those two locations, it must attain a positive maximum at some intermediate point;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' call it y+ p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Being the gradient of T, P is expected take on its greatest values in the inner region, where the length scale is shortest and gradients are largest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore the location y+ p of the positive maximum of P will be expected to lie in the inner region, so that y+ p = O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='07 0 10 20 30 40 50 60 70 80 90 100 dT+/dy+ y+ y+=7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='0 Reτ=82 (Bech et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Reτ=128 (Kawamura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Reτ=181 (Kawamura et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') ReΘ=1410 (Spalart) dT+/dy+=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='007 Figure 4: Inner normalized Reynolds stress gradient for a variety of flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The turbulent Couette flow data are from [19] and [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Also included are the turbulent channel DNS data from [20] and turbulent boundary layer DNS from [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For y+ > y+ p , P(y+) will decrease from its maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Let us assume it is a decreasing function on the entire interval (y+ p , δ+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Given any point y∗ in that interval, let β(y∗) be the corresponding value of P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' P(y∗) = β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (82) According to (73), which can be written dT β dy+ = P(y+) − β, the function dT β dy+ = 0 at the point y∗ under consideration, and since P is a decreasing function, dT β dy+ changes from being positive to being negative as y+ increases past the point y∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore T β has a maximum, which we may call T β m, at that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The point y∗ in question may therefore also be labeled y+ β .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 3, with plots of typical functions P in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' What has been shown is that any value y∗ ∈ (y+ p , δ+) will serve as y+ β if β is chosen to be P(y∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The set of all such values of β is the set for which the above construction of a scaling patch will work, namely the set of all values of P(y+) for y+ ∈ (y+ p , δ+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That range in y+ provides, then, the locations where we have succeeded in finding a scaling patch;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' moreover we have found the characteristic lengths of all these patches;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' they are given according to (80) in the case σ = 0 by β−1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These characteristic lengths increase with increasing distance from the wall, since P decreases with distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It will be argued in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4, in fact, that asymptotically as β→0, they are proportional to distance from the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 More on the locations of the patches It will be desirable to correlate the locations y+ β of the scaling patches with the characteristic lengths given by (81).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The above discussion accomplishes this in terms of the function P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We now ask whether information can be obtained even if P is not known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In order to proceed we now further exploit the facts that T β has a maximum at y+ = y+ β , and that (80) expresses the normal (natural) scaling near that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In terms of the rescaled variables given in (80), we have that ˆT has a maximum of 0 at ˆy = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We are going to emphasize the 29 variation of β and the dependence of the rescaling shown in (78) on β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Then the fact that T β(y+) has a maximum at y+ β implies that for all β in the allowed interval of values, dT β(y+) dy+ (y+ β ) = dT(y+) dy+ (y+ β ) − β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (83) This may be differentiated with respect to β to yield d2T(y+) (dy+)2 (y+ β ) dy+ β dβ − 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (84) Writing the second derivative on the left in terms of the scaled variables, we find β3/2 d2 ˆT(ˆy) (dˆy)2 �����(ˆy=0) dy+ β dβ − 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (85) In the patch Lβ, the scaled variables satisfy (79), which is parameter-independent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' moreover ˆT satisfies the two equations ˆT(0) = d ˆT dˆy (0) = 0, which are also parameter-independent relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' One can therefore argue that the second derivative on the left of (85), which we shall designate by −A ≡ d2 ˆT(ˆy) (dˆy)2 ����� (ˆy=0) , (86) should not depend in any major way on the parameter β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is reminiscent of similarity hy- potheses, since an assumption that A is constant is an assumption that the quantity A is invariant under certain transformations associated with changing β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Certainly the order of magnitude of A (with respect to β)) is O(1), hence β-independent, and we shall argue below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 that in some regions any β-independence should vanish in the limit as ǫ→0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' From (85), then, dy+ β dβ = −A−1β−3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (87) Recall that y+ β is the location, in the original inner variable, of the scaling patch with charac- teristic length β−1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The equation (87), therefore, provides some insight into the dependence of that characteristic length on location, without using much knowledge about the function P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4 The case A = constant If A, as it depends on β, were known, the locations y+ β could be found by solving differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is not known, of course;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' but its order of magnitude is known to be unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That knowledge provides order of magnitude information about the profiles and about the locations y+ β .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is most instructive at this point to look at the calculations in the easiest case A = constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' After that, we can see how the results so obtained are still valid in an order of magnitude sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Characteristic length as it depends on location As mentioned, the scaling given in (78) shows, among other things, that the characteristic length ℓ of a patch is given by (81).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We shall sometimes write relations below in terms of ℓ instead of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The symbol C, with or without subscript, will denote a variety of different constants, sometimes integration constants, which depend on σ but not on β or A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 30 If A is constant in some given interval, then in that interval (87) may be integrated to obtain y+ β = −A−1 � β−3/2dβ = A−1C0β−1/2 + C1 = A−1C0ℓ + C, (88) where the final C is an integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We now drop the subscript β from y+ β and obtain the relation ℓ = CA(y+ − C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (89) This same relation in fact holds as well for other choices of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The left side is the characteristic length of the patch located at y+;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' except for a shift in the independent variable y+, that length is proportional to distance from the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 The Reynolds stress In (82) the point y∗ may be identified with the general point y+ in (89), the location of the patch Lβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Substituting the expression for β given in (89) into the right side of (82) and recalling the definition of P, we obtain dT dy+ = β = C1A−2(y+ − C2)−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (90) Integrating this provides T as a function of y+: T(y+) = −C3A−2(y+ − C)−1 + C4, (91) with another integration constant C4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The relation (91) holds only under the assumption that A is constant, and only for values of y+ in the interval where T is a decreasing function, because that is where the scaling patches were found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This range extends up to the channel midline at y+ = δ+, at which point the left side of (91) vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This gives a relation among δ+ and the integration constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Since the right side of (90) cannot vanish and the left side does, the assumption that A is constant is incorrect at least near the centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 The mean velocity profile From (66) and (91) we find dU+ dy+ = 1 + CA−2(y+ − C)−1 − C5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (92) We require this derivative to be small for large y+;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' this simply means that at the centerline U+ must become flat as ǫ→0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore it appears that C5 ≈ 1 and dU+ dy+ ≈ CA−2(y+ − C)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (93) Combining (93) with (89) yields an asymptotic relation between the characteristic length ℓ and the slope of the mean velocity profile: dU+ dy+ (y+) ≈ CA−2ℓ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (94) For other values of σ the right side should be replaced by CA−2/(1+σ)ℓ−(1−σ)/(1+σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In any case, we may express this in terms of β and identify it with the slope m in (78).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Note that in the case 31 σ = 0, m ≈ ℓ−1, which says that the characteristic length of the linear part of U+ in (78) is the same, ℓ, as that of the nonlinear part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' More generally, in any case if the latter is true, then m should also be identified with the ratio of characteristic increments ∆U+/∆y+, which from (78) is λ/α = β(1−σ)/2 = ℓ−(1−σ)/(1+σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is in agreement with (94).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The conclusion is that for any choice of σ, the characteristic slope of the U+ profile calculated by integrating (87) on the basis of the nonlinear increments is the same as that which one would surmise by assuming that the characteristic increments for the linear parts of (78) are the same as for the nonlinear parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This fact lends credence to that assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Integrating (93) again gives U+ ≈ � CA−2/(1+σ)(y+ − C)2σ/(σ+1) + C6, σ > 0, CA−2 ln (y+ − C) + C6, σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (95) This expression (95) in the case σ = 0 is similar to that (71) for the mean velocity in a hypothesized overlap region given by the Izakson–Millikan argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the case 0 < σ ≪ 1 it gives a power law with small exponent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' that also has been suggested in the past, but experimental or DNS data has left the resolution of the question unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In both the Izakson–Millikan argument and the present argument, questionable assumptions lead to the derivation of (95), or at least part of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the I-M case, those assumptions have been reviewed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the present case it is mainly, but not solely, the assumption that A is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The crucial assumption in either case must realistically be only approximate, with unknown error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the present scenario, however, there is a good reason to believe that in some regions, the error in the assumption about A approaches 0 as ǫ→0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in the limit of large Reynolds numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That reasoning will be given below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='5 Relaxing the assumption that A is constant Although the similarity assumption A ∼ 1 is true in order of magnitude, it is unlikely to be strictly true except in interior regions at high Reynolds numbers, as shown below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If A = A(β) depends on β, then (87) is still valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moreover if A remains O(1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' bounded above and below by positive constants independent of β or ǫ, then (88) and (91) still hold in a weakened sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They are replaced by pairs of inequalities for some constants Ki independent of all parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the logarithmic case σ = 0, we have K1ℓ ≤ y+ β ≤ K2ℓ, (96) K3(y+ − C)−2 ≤ dT dy+ = β ≤ K4(y+ − C)−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (97) Thus in an asymptotic sense as y+→∞, the characteristic length is still proportional to distance from the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Similar transformations to pairs of inequalities are valid for (90)–(95).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' For example if σ = 0 the latter becomes K5 ln y+ ≤ U+ ≤ K6 ln y+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (98) In domains where A is nearer to being constant, such inequalities are valid with constants Ki which are closer to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In fact the error in assuming K5 = K6, for example, can be estimated in terms of any assumed error bound in assuming that A = constant in the domain being considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is parallel to the error consideration in the Izakson-Millikan argument, which was 32 detailed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In both cases the conclusion of logarithmic growth is probably never exact;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' it should be considered an approximate statement, with the accuracy of the statement dependent on the accuracy of the underlying assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the I-M case, the underlying assumption is that the outer and inner approximations are both exact in some domain;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in the present case, it is that the quantity A is constant in some domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In both cases there is no theoretical way to gauge how accurate the approximations are (see, however, the following subsection).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6 Approximate constancy of A in interior zones As was brought out before, the order of magnitude of the quantity A remains O(1) in β and ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In locations far away from the endpoints of the range of the continuum of scaling patches, it can be argued that A should be almost constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The reason is that the data we have for A, namely the differential equation it satisfies and the known exact values of the terms in that equation, are parameter-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore any variation in A due to changes in β will be caused not from those sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This invariance as β changes suggests, by a similarity consideration, that A is constant if it is not subject to other influences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Those would be influences from neighboring patches, hence ultimately from locations, on either side of the continuum, where the boundary would introduce “external” influences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Only at those places would the similarity suffer external disruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' And the effects of that disruption would be most likely to happen near those disrupting sites, either toward the outer or the inner zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That leaves interior regions far away from those zones as candidates for places where A is nearly constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It was shown above in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 that those are the regions where the mean velocity profile is logarithmic-like.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The extent (in inner units) of these zones of near similarity will grow as ǫ becomes smaller, because there will be a larger range of patches far away from the extremal patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='7 Evidence for logarithmic growth, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' σ = 0 The possibility that the mean velocity profile grows in parts of the flow according to a power law, rather than a logarithmic law, has been discussed by other authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In either case, the actual expression for the mean velocity will depend somewhat on the Reynolds number and is very unlikely to be exactly logarithmic or a power function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These may represent approximations, but that is all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' What we are concerned with are trends, brought about by relations such as (98) and its analog for power functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They are generated by the scaling parameter λ = β−σ in (78).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Here we summarize the evidence in favor of choosing σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The Izakson-Millikan argument (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It was shown from empirical data in [7] that the increment in U+ across the mesolayer is O(1), in fact near 1 independently of the (large) Reynolds number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The mesolayer is one example of a scaling patch for turbulent Poiseuille flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The analysis of that flow in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 7 follows the present analysis (which has been for Couette flow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The role of the parameter σ in determining the increment in U+ across any scaling patch, including the mesolayer, is seen from (75).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The nonlinear part of the increment is simply O(λ) = O(β−σ), and it was brought out following (94) that in all cases the linear part of the increment, governed by m, is the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore the only case in which this increment is O(1), as apparently required in the mesolayer, is the case σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 33 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='8 The inner scaling patch at the wall and the outer scaling patch at the midline The construction of the patches given in section 6 has, as a primary ingredient, the fact that as the peak in the adjusted Reynolds stress is approached, a region must appear in which all three terms in the mean momentum balance equation, which in this case is (74), will have the same order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is simply because the gradient dT β dy+ approaches 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (There will, of course, be a smaller region encompassing the peak in which the last term on the left of (74) has smaller order of magnitude than the others, because it vanishes at the peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=') Curiously, a somewhat similar phenomenon happens when y+→0, since the gradient of the actual Reynolds stress, rather the adjusted one, is zero at the wall (y+ = 0) and positive for small values of y+ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We are speaking of the first term dT dy+ in (64).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' With the inner scaling, both terms in (64) have equal orders of magnitude, both actual and formal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This in itself provides evidence that this wall region, together with the inner scaling used in (64), defines a scaling patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But there is further evidence from the boundary condition (65) for U+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That condition of course was engineered by our very choice of inner scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But whatever its origin, it furnishes decisive evidence that a scaling patch exists there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As before, the width of this patch is O(1), measured in y+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As was brought out before, it also encompasses the crucial point y+ p discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To summarize, at the wall, U+, T, and dT dy+ are all 0, but dU+ dy+ = 1 (that is how the inner scaling was selected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus all derivatives of interest in the scaled variables at that point either vanish, or (in one case) are unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This circumstance is an adequate criterion for the validity of that scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' On the other end of the continuum, where ℓ is large, we know that ℓ reaches a maximum of ǫ−2, because that is the half-width of the channel and no larger scaling patch could fit into the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' According to (81), it corresponds to β = ǫ4/(1+σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' That forms a lower bound on the possible values of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the case σ = 0 for example, when β = ǫ4 the existence of a scaling patch can be ascertained by the previous argument in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1, which still holds true (y+ β for that value of β must lie a distance ≤ O(1) from the centerline).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It should be noted that this “outer” patch encompassing the centerline is not the same as the traditional outer length scaling spoken of in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3, although the two ideas are compatible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The present concept of outer patch is that of an interval in the core together with a rescaling of all the variables, not just y+, which will produce a parameter-free version of the mean momentum balance, namely (79), at that location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Thus our construction of scaling patches is valid up to and including the centerline, and down to the inner region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In all, the scaling patches cover the entire channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='9 Discussion We have found that at each point in the Couette flow, the Reynolds stress and mean velocity profiles have a natural scaling;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in other words, a scaling patch is located at that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In order of mag- nitude, its characteristic length, which is essentially the width of the patch, increases continuously from 1 (in inner units) in the inner region where the law of the wall holds, to ǫ−2 at the centerline of the channel, where the outer scaling holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Each patch is associated with a peak in one of the adjusted Reynolds stresses, and with a balance exchange event that occurs there involving that same adjusted stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The patches can be parameterized by their characteristic lengths, which increase monotonically with distance from the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Asymptotically as y+→∞ (since y+ is limited by ǫ−2, necessarily ǫ→0), the characteristic length is proportional to that distance, and in any case up to order of 34 magnitude, is given by a solution of an ordinary differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Again up to order of magnitude, the mean velocity and Reynolds stress profiles are determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In certain regions in the limit as the Reynolds number approaches ∞, these order of magnitude results are replaced by explicit functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is really a statement about the validity of an approximation for large Reynolds number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The argument can be framed as a similarity and invariance issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There is a family of rescalings depending on a parameter β, applied at β-dependent locations, which leave the governing rescaled momentum balance equation and associated numerical values of the derivatives appearing in that equation invariant as β is varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The statement then is that another derivative, denoted by A, is, in order of magnitude, invariant as well, and in some regions in fact approximately numerically invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These results are consistent with logarithmic growth predicted by the Izakson–Millikan argu- ment, which by hypothesis is to hold in some overlap zone between the inner and outer regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The scaling patch and order of magnitude results presented here, on the other hand, are true throughout the channel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' they generally differ from the exact logarithmic law except where and if the quantity A is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, this constancy condition is unlikely to hold exactly anywhere, except in the limit as ǫ→0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 7 Turbulent Poiseuille flow in a channel In this idealized picture, the two walls at y = 0, y = 2δ are stationary, so that their motion no longer provides impetus for the flow;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' however such an impetus is provided by a given pressure gradient streamwise along the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The treatment here follows that in [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 Differences from Couette flow Mathematically, the differences between Couette and Poiseuille flows lie in the facts that Px is no longer 0 in (51), and the boundary conditions at the two walls are changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Namely, U = ⟨u′v′⟩ = d dy⟨u′v′⟩ = d2 dy2 ⟨u′v′⟩ = 0 (99) at y = 0 and 2δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and at the centerline y = δ by symmetry, dU dy = ⟨u′v′⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (100) In fact U(y) rises from 0 at y = 0 to attain a maximum at y = δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The function is even about that latter location, which means that for y > δ, U(y) = U(2δ − y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Similarly, ⟨u′v′⟩ is odd about that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' These properties allow us to formulate the problem entirely on the half channel {0 ≤ y ≤ δ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If the solution is known in the half channel, it can be found by reflection in the other half.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A standard argument shows that the pressure gradient term in the mean momentum balance equation (51) must be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Specifically, we refer back to that equation and (52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Setting Q ρ = P ρ − ⟨(v′)2⟩, we see that(52) implies that Q depends only on x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' however by stationarity ⟨(v′)2⟩ does not depend on x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The pressure gradient term in (51) can be written 1 ρ ∂Q ∂x , which as noted is independent of y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It is also independent of x, since the other two terms in (51) are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The friction velocity, Reynolds number R∗, small parameter ǫ = (R∗)−1/2, inner scaling (law of the wall) and outer scaling, valid in the channel’s center, are all the same as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Integrating 35 (51) across the half channel produces a global force balance, resulting in the dimensionless form ǫ2 for the pressure gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The dimensionless form (64) becomes dT dη + 1 + ǫ2 d2U dη2 = 0, (101) and that of (66) is T + ǫ2 dU+ dη = 1 − η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (102) The traditional outer approximation is Tout = 1 − η, 0 < η ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (103) The momentum balance equation with inner normalization is d2U+ dy+2 + dT dy+ + ǫ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (104) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 Hierarchy To exhibit a continuous family of scaling patches covering the channel flow profile, all that is needed is to revise slightly the definition of the adjusted Reynolds stresses (72).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The new one is T β(y+) = T(y+) + ǫ2y+ − βy+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (105) It is remarkable that the mathematical problems for the mean velocity and Reynolds stress in these two scenarios—pressure gradient driven and shear driven—can be almost completely transformed one into the other by such a simple device as (105).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It transforms the basic momentum balance equation (104) into d2U+ dy+2 + dT β dy+ + β = 0, (106) which is of the same form as (74).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Therefore, with the newly adjusted Reynolds stresses, the channel flow context is amenable to the balance exchange processes described in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1, the construction of a continuum of scalings with associated scaling patches Lβ in Sections 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 to 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3, and (under some assumptions) the derivation of logarithmic-like profiles in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The scaling in Lβ is still given by (78).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The mean profile calculations are given here only under the simplifying approximation A = constant, although analogs of the more general case can be derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The expressions (78) and (79) are valid in the present setting as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As far as estimating the locations of the patches and the profiles, there are some changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The relation (90) becomes dT dy+ = 4A−2(y+ − C)−2 − ǫ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (107) The constant C in (107) can be related to the location y+ = y+ m of the maximum of the original unadjusted function T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is because it is required that dT dy+ = 0 at y+ = y+ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We obtain dT dy+ = 4A−2 � y+ − y+ m + 2 Aǫ �−2 − ǫ2, (108) 36 or alternatively by eliminating ǫ, dT dy+ = 4A−2 � (y+ − C)−2 − (y+ m − C)−2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (109) When one inserts this into (104) and integrates twice, using the requirement dU+ dy+ →0 as y+→∞, the result is U(y+) = 4 A2 ln � y+ − y+ m + 2 Aǫ � + C2 (110) for another integration constant C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Strictly speaking, there is another required condition, due to the symmetry of the configuration at the centerline: dU+ dy+ = 0 at y+ = ǫ−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It cannot be satisfied exactly within the framework of (110), which indicates that the approximation A = constant cannot be exact near the centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The expression (110) is only expected to give a good representation of the real profile in some regions away from both the wall and the centerline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To reiterate, the most we can say theoretically is that this is suggestive of a logarithmic ap- proximation to some segment of the mean velocity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' More specifically, this is all under the (doubtful) assumption that A is exactly constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the case that it is almost constant, one gets a pair of upper and lower bounds as before, valid now for the mean velocity in channel flow for the range of y+ constructed as before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Note that in the case β = ǫ2, by (105) T β = T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The scaling patch in this particular case is traditionally called the “mesolayer”, and it occurs near the peak in Reynolds stress, because for this case T β = T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The characteristic length in that patch is O(ǫ−1), which is the geometric mean of those in the inner (O(1)) and outer (O(ǫ−2)) regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='3 Behavior near the wall The construction of the patches given in sections 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='2 by means of a balance exchange has, as a primary ingredient, the fact that as the peak in adjusted Reynolds stress is approached, a region must appear in which all three terms in the mean momentum balance equation, (61), will have the same order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is simply because the gradient dT + dy+ approaches 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There will, of course, be a smaller region encompassing the peak in which the last term on the left of (61) has smaller order of magnitude than the others, because it vanishes at the peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A similar phenomenon happens when y+→0, since that same gradient is zero at the wall (y+ = 0) and positive for small values of y+ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The same conclusion may therefore be deduced: in a small region near the wall, all three terms in (61) will have the same order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But the argument in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 can only partially be continued beyond this stage to produce a patch with different scaling;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in fact it is well known (see also the reason given below) that the characteristic length scale arbitrarily near the wall remains the inner scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The reason the argument is no longer completely valid will now be explained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In addition, the correctly scaled mean momentum balance very near the wall will be derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There have been many analytical, empirical, and computational studies of the properties of the near wall region;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' we mention only [22], as our results fit particularly well with theirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Our purpose here is to show that a scaling patch exists there, whose derivation and description fits within the framework of the methodology developed here and in our previous papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 37 At the wall, additional constraints are imposed on the functions U+ and T +, besides the ba- sic differential equation (61).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' First of all, the very definition of inner scaling requires an auto- matic boundary condition dU+ dy+ (0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The inner scaling was chosen just so that condition holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Secondly, the no-slip condition requires the boundary conditions U+(0) = T +(0) = dT + dy+ (0) = d2T + dy+2 (0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The first requirement is simply a result of our choice of normalized variables y+ and U+, and is not a statement of any physical constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The other boundary conditions result from a physical effect located at the wall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' They have no analog at the mesoscaling patch, and constitute the basic reason that the present construction is different from the mesoscale construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' If one proceeds in the same vein as before on the basis of (75) and (76), the effect of the first boundary condition dU+ dy+ (0) = 1 is that the length scale in that patch is given by α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This means that ˆy = y+: the length scale in that patch is the same as that with the original inner normalized scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This is of course almost a tautology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' But then the rest of the argument, following (61), in which α and γ are determined, can no longer be carried out as it stands, since α has already been determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However, one can proceed after some reformulation of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' At this point, the first substantial difference in method emerges between the derivation of the patches in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 and the present argument for what we shall call the wall patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' As mentioned, it is allied with the physical no-slip constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In both cases, we look for scaled solutions of (74) or its analog (104) in a neighborhood of a maximum or minimum of T + or Tβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In both the case in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content='1 and the present wall case, a scaling, namely a choice of α, γ, λ in (75), (76), is sought which will render the three terms of (74) or (104) of forms which have the same formal order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A unique choice is only possible if one of these three factors is specified by other means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the previous case, empirical data having to do with the velocity increment across the patch, and also the rate of growth of U+ in the hierarchy, was used to motivate selection of the value λ = 1, while leaving open the additional possibility of other choices leading to different growth rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This serves to determine the other two factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In the wall patch, where this argument is not applicable, the definition of the inner scaling requires α = 1, and the equality criterion now can be used to determine γ and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Namely, evaluating the three terms of (104) under the transformation (75), (76) with α = 1 tells us that γ = λ = ǫ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In neither case does this provide the value of m, because the derivatives in (74) or (104) annihilate the linear terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' However, the value of m was obtained by other means: through use of (91) and the connection T has with the slope, in the case of patches embedded in the hierarchy, and by means of the boundary condition giving the slope at the wall, in the present case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The scaled version of (104) in the wall patch is 1 + d2 ˆU dy+2 + d ˆT dy+ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' (111) The individual terms of this equation are known only at y+ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' but it provides a linear relation between the two derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' This equation is the analog of (79), and is in the form of a balance of three rescaled forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In short, there is a scaling patch near the wall, no doubt including the traditional viscous sublayer, in which the inner length scale is correct, but the deviations of the functions U+ and T + from their linear parts depend on R∗ like ǫ2 ≈ (R∗)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Finally, as y+ enters the patch from above, there is a balance exchange from Layer II (in the terminology used in [7]), where the viscous and turbulent forces balance, to Layer I, where the pressure gradient balances the viscous plus turbulence force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 38 The location of this exchange, and in fact the size of Layer I, is ≤ O(1) in wall units, because that is the length scale for the parameterless (111).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In terms of the traditional buffer and logarithmic layer, we surmise that they lie outside Layer I, which can be identified as the viscous sublayer (although at its outer edge the viscous and turbulent forces are equal in order of magnitude).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Outside that layer is approximately where the hierarchy begins (say y+ ≈ 7), which is also where the traditionally defined buffer layer begins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The loga- rithmic mean profile approximation associated with the hierarchy, however, does not become valid until distances from the beginning of the hierarchy are sufficient for A in (87) to be approximately constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 8 Other applications and conclusion The analysis covered in Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6 and 7 has been applied not only to Couette and Poiseuille flow, but also to combined Couette-Poiseuille turbulent flow [23];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' favorable pressure gradient boundary layers (Metzger and Fife, in preparation);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' transport of heat through turbulent channel flow [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' It should again be emphasized that our goal has been not so much to discover numerical values associated with the profiles, but rather to gain theoretical understanding of why important features occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' We look for answers to why?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' in preference to what?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The greatest emphasis has been placed on two approaches to this question: the classical Izakson-Millikan observation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' and the search for scaling patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Each of these results is based on an assumption that another approximation is valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The first relies on the standard inner and outer approximations being simultaneously valid somewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The second approach is an argument involving matters of similarity and invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' There is a family of rescalings depending on a parameter β, applied at β-dependent locations, which leave the governing rescaled momentum balance equation and associated numerical values of the derivatives appearing in that equation invariant as β is varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The statement then is that another derivative is, in order of magnitude, invariant as well, and in some regions is in fact approximately numerically invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In neither case is there a theoretical way to gauge the error of the assumed approximation, or the extent of the region where it is valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Some qualitative conclusions on the latter issue are provided in the second case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The various approaches to answering our basic question all contribute a portion of insight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' All of them leave unanswered questions, but they add to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' No one of them should be considered the final word on the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Acknowledgments The results in Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 6, 7, and 8 were obtained in collaboration with Joe Klewicki, Tie Wei, Meredith Metzger, and Pat McMurtry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' I thank them all for their invaluable exchange of ideas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 39 References [1] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Reynolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' On the dynamical theory of incompressible viscous fluids and the determination of the criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' London, 186:123–161, 1894.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Prandtl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Bericht uber die Entstehung der Turbulenz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 5:136–139, 1925.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [3] Von Karman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Mechanische Ahnlichkeit und Turbulenz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Ges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wiss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Gottingen, Math- Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klasse, pages 58–76, 1930.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Izakson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' On the formula for the velocity distribution near walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', IV, 2:155, 1937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Millikan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A critical discussion of turbulent flows in channel and circular tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Den Hartog and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Peters, editors, Proceedings of the Fifth International Congress of applied Mechanics, pages 386–392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wiley, New York, 1939.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Gill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' The Reynolds number similarity argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Journal of Mathematics and Physics, 47:437–441, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McMurtry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 522:303–327, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McMurtry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 532:165–189, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McMurtry, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Multiscaling in the presence of indeterminacy: wall-induced turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Multiscale Modeling and Simulation, 4:936–959, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McMurtry, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Meso scaling of Reynolds shear stress in turbulent channel and pipe flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' AIAA Jour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 43:2350–2353, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McMurtry, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A physical model of the turbulent boundary layer consonant with the structure of the mean momentum balance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Panton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Review of wall turbulence as described by composite expansions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Applied Mechanics Review, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' To appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [13] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Kawamura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Abe, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Shingai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In Turbulence, Heat and Mass Transfer 3 (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' of the 3rd International Symposium of Turbulence, Heat and Mass Transfer), pages 15–32, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Shingai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Kawamura, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Matsuo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' DNS of turbulent Couette flow and its comparison with turbulent Poiseuille flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Dopazo et al, editor, Advances in Turbulence 8 (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' of the 8th European Turbulence Conference), page 972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' CIMNE, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [15] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Iwamoto, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Suzuki, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Kasagi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Reynolds number effect on wall turbulence: Toward effective feedback control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Heat and Fluid Flow, 23:678–689, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 40 [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Willmarth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Reynolds number effects on the structure of turbulent channel flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 204:57–95, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [17] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McKeon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Morrison, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Jiang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Smits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Further observations on the mean velocity in fully-developed pipe flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 501:135–147, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Kawamura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Abe, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Shingai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' In Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Nagano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Hanjalic, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Tsuji, editors, Turbulence, Heat and Mass Transfer 3 (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' of the 3rd International Symposium on Turbulence, Heat and Mass Transfer), 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Bech, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Tillmark, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Alfredsson, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Andersson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' An investigation of turbulent plane Couette flow at low Reynolds numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 304:285–319, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Moser, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Kim, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Mansour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Direct numerical simulation of turbulent channel flow up to Reτ = 590.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Physics of Fluids, 11(4):943–945, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [21] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Spalart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Direct simulation of a turbulent boundary layer up to Reθ = 1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 187:61–98, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Cenedese, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Romano, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Antonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' A comment on the linear law of the wall for fully developed turbulent channel flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Experiments in Fluids, 25:165–170, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [23] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' On scaling the mean momentum balance and its solutions in turbulent Couette-Poiseuille flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fluid Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' to appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' [24] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Fife, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Klewicki, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' McMurtry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Scaling heat transfer in fully developed turbulent channel flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Jour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' Heat Mass Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=', 48:5284–5296, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
+page_content=' 41' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/dtFAT4oBgHgl3EQf6x4A/content/2301.08740v1.pdf'}
diff --git a/edE4T4oBgHgl3EQfQwxW/content/tmp_files/2301.04984v1.pdf.txt b/edE4T4oBgHgl3EQfQwxW/content/tmp_files/2301.04984v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..04919142da8cfcf22a93d4d4733950abb9a850af
--- /dev/null
+++ b/edE4T4oBgHgl3EQfQwxW/content/tmp_files/2301.04984v1.pdf.txt
@@ -0,0 +1,934 @@
+Pressure-induced coevolution of transport properties and lattice
+stability in CaK(Fe1-xNix)4As4 (x= 0.04 and 0) superconductors with
+and without spin-vortex crystal state
+Pengyu Wang1,2*, Chang Liu1,2*, Run Yang1*, Shu Cai1,3, Tao Xie 1.2, Jing Guo1,5, Jinyu
+Zhao1,2, Jinyu Han1,2, Sijin Long1,2, Yazhou Zhou1, Yanchun Li3, Xiaodong Li3, Huiqian
+Luo1,2,5, Shiliang Li1,2,5, Qi Wu1, Xianggang Qiu1,2,5, Tao Xiang1,2, and Liling Sun1,2,3,5†
+1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
+2University of Chinese Academy of Sciences, Beijing 100190, China
+3Center for High Pressure Science & Technology Advanced Research, 100094 Beijing, China
+4Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
+5Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
+Here we report the first investigation on correlation between the transport
+properties
+and
+the
+corresponding
+stability
+of
+the
+lattice
+structure
+for
+CaK(Fe1-xNix)4As4 (x=0.04, 0), a new type of putative topological superconductors,
+with and without a spin-vortex crystal (SVC) state in a wide pressure range involving
+superconducting to non-superconducting transition and the half- to full-collapse of
+tetragonal (h-cT and f-cT) phases, by the complementary
+measurements of
+high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction. We
+identify the three critical pressures: Pchon that is the turn-on critical pressure of the
+h-cT phase transition and it coincides with the critical pressure for the sign change of
+Hall coefficient from positive to negative, a manifestation of the Fermi surface
+reconstruction; Pchoff that is the turn-off pressures of the h-cT phase transition; and Pcf
+that is the critical pressure of the f-cT phase transition. By comparing the
+high-pressure results measured from the two kinds of samples, we find a distinct
+“left-shift” of the Pchon for the doped sample, at the pressure of which its SVC state is
+fully suppressed, however the Pchoff and the Pcf
+remain the same as that of the
+undoped one. Our results not only provide a consistent understanding on the results
+reported before, but also demonstrate the importance of the Fe-As bonding in
+stabilizing the superconductivity of the iron pnictide superconductors through the
+“pressure window”.
+
+The discovery of the high-Tc iron-pnictide and iron-selenide superconductors [1,
+2] provides a new platform to specify the essential ingredients existed in cuprate
+superconductors, and an opportunity to achieve a better understanding on the
+mechanism of high-Tc superconductivity, a ‘holy grail’ in the field of the
+contemporary condensed matter physics and material sciences [3-5]. Now, several
+types of iron-pnictide superconductors have been found [6-9], all of which have the
+tetrahedra structure with the Fe-As
+layers
+stacking alternatively with other
+intermediary layers/atoms. Growing evidence from experiments indicates that the
+Fe-As layers play a key role in developing and stabilizing superconductivity [9]. In
+2016, a new member of the iron pnictide superconductors, AeAFe4As4 (Ae=Ca, Sr
+and A= K, Rb, Cs), has been found [10-26]. Structurally, it can be regarded as the
+hybrid phases between AeFe2As2 and AFe2As2 with the stoichiometric composition,
+while is different from most of the other known high-Tc superconductors whose
+superconductivity are induced by chemical doping. As a result, these stoichiometric
+superconductors have no chemical substitution-induced inhomogeneity on the lattice,
+and significantly reduced the complexity of the local structure for understanding the
+physics behind. Since the Ae2+ and A1+ atoms are inserted alternately across the
+Fe2As2 layers, the AeAFe4As4 superconductors host two different sites of As ions in a
+unit cell (As(1) and As(2), respectively) in the tetragonal unit cell with group space
+P4/mmm [10]. Upon cooling, they show a superconducting transition at the
+temperature (Tc) varying from 31 to 36 K. Partial substituting Fe with Ni, Co or Mn
+
+reduces the Tc value by more than 10 K due to the existence of a spin-vortex crystal
+(SVC)
+state,
+with
+Fe
+spins
+lying
+in-plane
+and
+stacking
+along
+c
+axis
+antiferromagnetically, that competes with the superconducting (SC) state [22-24].
+Remarkably,
+recent
+angle-resolved
+photoemission
+spectroscopy
+and
+scanning
+tunneling microscopy/spectroscopy experiments find the evidence of the Dirac
+surface state and Majorana zero mode in the CaKFe4As4 superconductor [21],
+implying that this type of superconductors may host some nontrivial quantum states,
+such
+as
+topological
+superconductivity. Moreover, inelastic
+neutron
+scattering
+experiments find that the spin resonance of the CaK(Fe1-xNix)4As4 superconductor
+displays both odd and even modes along the L direction [17,18], similar to the
+resonance observed in bilayer cuprate superconductors [27]. These findings attract
+additional research interest on them.
+Pressure tuning is an effective and clean way to manipulate the crystal and
+electronic structures without changing the chemistry, often providing significant
+information for understanding the underlying physics of the exotic state emerging
+from ambient pressure materials, through investigating the coevolution of electronic
+states
+and
+crystal
+structure.
+Some
+high-pressure
+studies
+on
+the AeAFe4As4
+superconductors have been performed, and interesting results have been achieved
+from both experimental and theoretical sides [12-16, 26], including the transition of
+bulk-to-percolating superconducting state [12], half-to-full collapse of the tetragonal
+phase [14, 15, 26]. These results provide the fundamental knowledge that the
+superconductivity and the lattice structure of these superconductors are intimately
+
+correlated and sensitive to the external pressure. However, the reported investigations
+of transport properties on Ni-doped and undoped CaKFe4As4 superconductors are
+performed below the pressure of ~ 6 GPa. What happens under the pressure above 6
+GPa remains unclear. In addition, the experimental evidence for the change of
+electronic state around the critical pressure of the half collapse of the tetragonal (h-cT)
+phase is still lacking. In this work, we perform the high- pressure studies on the doped
+and undoped sample up to the pressure where the superconductivity is fully
+suppressed and the f-cT phase forms.
+High-quality single crystals of CaK(Fe1-xNix)4As4 (x=0.04 and 0) were grown
+using the self-flux method [17, 18, 25]. The ambient-pressure values of Tcs of the
+doped- and undoped-samples were determined to be 21 K and 35 K, respectively, and
+the SVC transition for the x=0.04 sample is about TN=44 K [24].
+High-pressure resistance measurements were performed in a diamond-anvil cell
+(DAC), in which diamond anvils with 300 μm culets (flat area of the diamond anvil)
+and a nonmagnetic rhenium gasket with 100-μm-diameter hole were adopted. The
+standard four-probe electrodes were applied on the cleavage plane of the CaK(Fe1-x
+Nix)4As4 (x=0.04 and 0) crystals. To obtain a quasi-hydrostatic pressure environment
+for the samples, NaCl powder was employed as the pressure medium. High-pressure
+Hall coefficient measurements were carried out by the van der Pauw method. To keep
+the sample in the same pressure environment as that in the resistance measurements,
+NaCl powder was also employed as the pressure medium. High-pressure X-ray
+diffraction (XRD) measurements on CaK(Fe0.096Ni0.04)4As4 were performed at room
+
+temperature on beamline 4W2 at the Beijing Synchrotron Radiation Facility.
+Diamonds
+with
+low
+birefringence
+were
+selected
+for
+the
+measurements.
+A
+monochromatic X-ray beam with a wavelength of 0.6199 Å was employed. The
+pressure for all measurements was determined by the ruby fluorescence method [28].
+We first performed temperature-dependent resistance measurements on the single
+crystal of CaK(Fe0.096Ni0.04)4As4 in a DAC. To investigate the doping effect on the
+transport properties, a parallel measurement was conducted on the undoped
+CaKFe4As4 sample. As shown in Fig.1a and 1c, the superconductivity of both samples
+with and without the SVC state is sensitive to the pressure applied. For the sample
+with the SVC state, the ambient-pressure Tc is much lower than that of the sample
+without the SVC state. It shows that application of pressure renders Tc decreased, no
+matter whether they host the SVC state or not. Intriguingly, the superconductivity of
+these two samples is fully suppressed at almost the same critical pressure (~ 11 GPa),
+as shown in Fig.1b and 1d, suggesting that the initial SVC state has little influence on
+the critical pressure for destroying the superconducting state. We repeat the
+measurements with several new samples and obtain the reproducible results (see SI -
+Ref.[29]). Moreover, we investigate the pressure effect on the onset transition
+temperature (TN) of the SVC state for our CaK(Fe0.96 Ni0.04)4As4 samples and find that
+TN exhibits a monotonous decrease with the increment of pressure (see Ref.[29]),
+similar to
+what
+is
+observed
+in
+CaK(Fe1-xNix)4As4 (x=0.033
+and
+0.05)
+and
+CaK(Fe1-xMnx)4As4 (x=0.024) samples [13, 16].
+
+To
+identify
+the
+similarity
+and
+peculiarity
+in
+the
+transport
+properties,
+superconductivity and the electronic state in CaK(Fe0.096Ni0.04)4As4 and CaKFe4As4
+samples, we performed high-pressure measurements on Hall resistance (Rxy) by
+sweeping the magnetic field (H) applied perpendicular to the ab plane of the samples,
+from 0 T to 6 T at 30 K for CaK(Fe0.096Ni0.04)4As4 (Fig.2a and 2b) and at 40 K for
+CaKFe4As4 (Fig.2c and 2d). We find that Rxy(H) is positive below 2.4 GPa (the
+average value of the two independent runs - 2.33 GPa+2.46 GPa)/2=2.4 GPa) for the
+CaK(Fe0.096Ni0.04)4As4 samples, and 3.88 GPa for the CaKFe4As4 samples (also the
+average value - (3.90 GPa+3.85 GPa)/2=3.88 GPa). The plots of Rxy(H) from our
+samples indicate that a hole-electron carrier balance (Rxy(H)=0) occurs at a critical
+pressure (Pc). Although the value of the Pc is different for the samples with and
+without the SVC state, the behavior of sign change in RH (P) is the same - below the
+Pc, the sample is dominated by hole carriers, while above the Pc, the sample is
+dominated by electron carriers. The observation of the pressure-induced sign change
+of the Hall coefficient at the Pc provides important experimental evidence for the
+dramatic change of electronic structure - the reconstruction of the Fermi surface from
+a hole dominated to an electron dominated ones [30, 31].
+Since the structural stability is one of the key issues for understanding the
+phenomena found in the pressure range of our experiments, we perform the high
+pressure X-ray diffraction (XRD) measurements on the CaK(Fe0.096Ni0.04)4As4 sample
+for the first time. The XRD patterns collected at different pressures are shown in
+Fig. 3a. It is seen that all peaks measured under pressure up to 39.3 GPa can be well
+
+indexed by the tetragonal phase in the P/4mmm space group, indicating that no
+structure phase transition occurs in the pressure range investigated. In Fig.3b, we
+illustrate the crystal structure of the CaK(Fe0.096Ni0.04)4As4 sample and define the As
+ions adjacent to the Ca layers as As(1) and the K layers as As(2).
+However, the lattice parameter a extracted from our XRD data shows an increase
+starting at ~ 2.5 GPa and reaching the maximum at ~ 5 GPa, meanwhile the lattice
+parameter c displays a rapid decrease in this pressure range (Fig.4a). These results
+lead us to propose that the transition of the half-collapse of the tetragonal (h-cT) phase
+turns on and off at ~ 2.5 GPa and ~5 GPa, respectively (Here we define these critical
+pressures as Pchon and Pchoff), and the initial tetragonal (T) phase and the h-cT phase
+coexist in this pressure range. These results are similar to what have been observed in
+the pressurized CaKFe4As4 samples, in which the lattice parameter a begins to
+increase at ~3.5 GPa and reaches a maximum at ~ 4.7 GPa [12]. Upon further
+compression to ~11 GPa, the second collapse occurs - the lattice parameter a and c
+also appear noticeable changes (Here we define this critical pressure as Pcf), implying
+that the T phase fully collapses (due to lack of more experimental information on the
+change of the f-cT phase, we are not able to identify the critical pressure that turns off
+the
+f-cT
+phase).
+The
+pressure-induced
+two
+collapses
+in
+the
+tetragonal
+CaK(Fe0.096Ni0.04)4As4 sample are in accordance with the theoretical calculations and
+experimental results obtained from the measurements on the CaRbFe4As4 and
+Cs/RbEuFe4As4 samples [14, 15, 26].
+We summarize our high-pressure results obtained from the measurements on
+
+CaK(Fe0.096Ni0.04)4As4 in the pressure-Tc phase diagram (Fig.4b). The four distinct
+regions defined by the lattice structure can be seen in the diagram: (1) Low-pressure T
+phase region below Pchon, in which the SVC state coexists with the SC state. When
+pressure is applied, both of TN and Tc decrease with increasing pressure until the
+pressure reaches to the Pchon. (2) The coexisted T and h-cT phase region that lies in the
+range of Pchon and Pchoff. At the Pchon, the SVC state is entirely suppressed and the
+sample starts the transition from a T phase to h-cT phase (Fig. 4a). Just at this pressure,
+the Hall coefficient (RH) changes its sign from the positive to the negative (Fig. 4c).
+These results demonstrate that the pressure drives a reconstruction of Fermi surface
+which is associated to the transition from the T phase to the h-cT phase in a pressure
+range below ~5 GPa (Fig.4a). (3) The h-cT phase region lied in the range of Pchoff and
+Pcf, in which the Tc decreases continuously and disappears at the pressure of ~ 11 GPa.
+(4) The f-cT phase region above the critical pressure of Pcf, in which the h-cT phase
+fully converts to the f-cT phase, and the corresponding electronic state of the h-cT
+phase is taken over by that of the non-superconducting f-cT phase.
+To clarify the doping effect on the high-pressure behavior found in the sample
+with the SVC state, we compare its high-pressure experimental results with that
+measured from the undoped CaKFe4As4 sample. As shown in Fig.4d-4f, CaKFe4As4
+bears the similar high-pressure behavior to that of CaK(Fe0.096Ni0.04)4As4: Tc
+monotonically declines with the increment of pressure (Fig.4e), in agreement with the
+results reported in [12]. At ~3.88 GPa (Pchon), the Hall confident (RH) also displays a
+sign change from the positive to the negative, indicating that the ambient-pressure T
+
+phase of the sample begins its half collapse at this pressure [12,14]. A sudden increase
+of the lattice parameter a and the volume drop are also observed at ~ 3.5 GPa by
+Kaluarachchi et al [12], very close to the Pchon determined by our Hall coefficient
+measurements (Fig.4f). Since the observed Pchon (~3.88) and Pchoff (~ 4.9 GPa) by our
+Hall coefficient measurements is close to these (~3.5 GPa and ~4.7 GPa) determined
+by the high pressure and low temperature XRD measurements on the same sample
+[12], we define the pressures of 3.88 GPa and 4.9 GPa as the Pchon and Pchoff of our
+undoped
+sample.
+On
+further
+increasing
+pressure,
+Tc
+measured
+from
+both
+CaK(Fe0.096Ni0.04)4As4 and CaKFe4As4 samples shows a monotonously decrease till
+the pressure around Pcf =11 GPa (Fig.4b a and 4e), at the pressure of which doped-
+and undoped-samples undergo a transition from the h-cT phase to the f-cT phase [12,
+26] and lose their superconductivity. This is the first report on the observation of the
+pressure-induced SC-to-NSC transition and the identification on that the critical
+pressure of the SC-NSC transition coincides with the pressure of the lattice transition
+from the h-cT phase to the f-cT phase in the CaK(Fe1-xNix)4As4 (x=0.04 and 0)
+superconductors.
+Theoretical calculations on the undoped system find that the formation of the
+As(1)-As(1) bond across the Ca layers and the formation of the As(2)-As(2) bond
+across the K layer are responsible for the presence of the h-cT and the f-cT phases [12,
+26,32], and propose that the formed As-As bond weakens the Fe-As bonding [32-34],
+which, in turn, greatly affects the stability of superconductivity [32]. Our findings in
+the CaK(Fe1-xNix)4As4 (x=0.04 and 0) superconductors experimentally provides a
+
+strong support for the prediction that Fe-As bonding is one of the essential ingredients
+for the presence of superconductivity in this kind of iron pnictides.
+By comparing the high-pressure behavior of the CaK(Fe0.096Ni0.04)4As4 and
+CaKFe4As4 samples, we find that the substitution of Ni on Fe site shifts the Pchon to
+lower pressure, while it has no obvious effects on the Pchoff and the Pcf.. Thus,
+understanding why the existence of the SVC state renders the Pchon to shift to lower
+pressure should be one of the key issues to reveal the underlying physics of the lattice
+half collapse. We suggest that the left shift of the Pchoff in the Ni-doped sample may be
+attributed to the interplay between the SVC state and the Fe-As hybridized state (the
+hybridization between the Fe 3d orbital and As 4p orbital electrons), which makes the
+hybridized band unstable and benefits the formation of the As(1)-As(1) bonding.
+These results imply that the Pchon is sensitive to the existence of the competing order
+introduced by the chemical doping. While the unchanged Pchoff and Pcf is possibly
+related to the stability of the lattice that is still governed by the matrix of the initial T
+phase.
+In conclusion, the coevolution of the SVC state, superconductivity, dominated
+carriers and stability of lattice structure in CaK(Fe1-xNix)4As4 (x=0.04 and 0)
+superconductors has been investigated by the complementary measurements of
+high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction in a wide
+pressure range involving superconducting to non-superconducting transition, and the
+corresponding half- to full-collapse of tetragonal phase transition, for the first time.
+We identified the three critical pressures though the comprehensive analysis of our
+
+results: Pchon and Pchoff that are the turn-on and -off pressure of the h-cT phase
+transition, respectively, and Pcf that is the critical pressure of the f-cT phase transition.
+Our results demonstrate that the formation of the As(1)-As(1) bond that is evidence by
+the transition from the T phase to the h-cT phase changes the sign of RH , a
+manifestation for the reconstruction of the Fermi surface. While, the formation of the
+As(2)-As(2) bond characterized by the f-cT phase transition terminates the
+superconductivity. These results achieved in this study not only provide a consistent
+understanding on the results reported before, but also demonstrate the importance of
+the Fe-As
+bonding in stabilizing the superconductivity of the iron-pnictide
+superconductors through the “pressure window”.
+Acknowledgements
+This work was supported by the National Key Research and Development
+Program
+of
+China
+(Grant
+Nos.
+2021YFA1401800,
+2022YFA1403900,
+2018YFA0704200), the National Natural Science Foundation of China (Grant Nos.
+U2032214, 12104487, 12122414, 12004419, 11822411 and 11961160699), and the
+Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant
+No. XDB25000000). J. G., S.C. and H. L. are grateful for supports from the Youth
+Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos.
+2019008, Y202001) and the China Postdoctoral Science Foundation (E0BK111).
+These authors with star (*) contributed equally to this work.
+
+Correspondence and requests for materials should be addressed to L.S.
+(llsun@iphy.ac.cn)
+References
+[1] Y. Kamihara, T. Watanabe, M. Hirano, et al. Iron-based layered superconductor
+La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130,
+3296-3297 (2008).
+[2] F.C. Hsu, J.Y. Luo, K.W. Yeh, et al. Superconductivity in the PbO-type structure
+α-FeSe. Proc. Natl. Acad. Sci. 105, 14262-14264 (2008).
+[3] C.W. Chu, L.Z. Deng, B. Lv. Hole-doped cuprate high temperature
+superconductors. Physica C 514, 290-313 (2015).
+[4] B. Keimer, S.A. Kivelson, M.R. Norman, et al. From quantum matter to
+high-temperature superconductivity in copper oxides. Nature 518, 179-186
+(2015).
+[5] J. Zaanen. Superconducting electrons go missing. Nature 536, 282-283 (2016).
+[6] M. Rotter, M. Tegel, D. Johrendt. Superconductivity at 38 K in the iron arsenide
+(Ba1-xKx)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008).
+[7] X.C. Wang, Q.Q. Liu, Y.X. Lv, et al. The superconductivity at 18 K in LiFeAs
+system. Solid State Commun. 148, 538-540 (2008).
+[8] X. Zhu, F. Han, G. Mu, et al. Transition of stoichiometric Sr2VO3FeAsto a
+superconducting state at 37.2 K. Phys. Rev. B 79, 220512 (2009).
+[9] N. Ni, J.M. Allred, B.C. Chan, et al. High Tc electron doped
+
+Ca10(Pt3As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 superconductors with
+skutterudite intermediary layers. Proc. Natl. Acad. Sci. 108, E1019-1026 (2011).
+[10]A. Iyo, K. Kawashima, T. Kinjo, et al. New-Structure-Type Fe-Based
+Superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). J.
+Am. Chem. Soc. 138, 3410-3415 (2016).
+[11]W.R. Meier, T. Kong, U.S. Kaluarachchi, et al. Anisotropic thermodynamic and
+transport properties of single-crystalline CaKFe4As4. Phys. Rev. B 94, 064501
+(2016).
+[12]U.S. Kaluarachchi, V. Taufour, A. Sapkota, et al. Pressure-induced
+half-collapsed-tetragonal phase in
+CaKFe4As4. Phys. Rev. B 96, 140501 (2017).
+[13]L. Xiang, W.R. Meier, M. Xu, et al. Pressure-temperature phase diagrams of
+CaK(Fe1−xNix)4As4 superconductors. Phys. Rev. B 97, 174517 (2018).
+[14]R.L. Stillwell, X. Wang, L. Wang, et al. Observation of two collapsed phases in
+CaRbFe4As4. Phys. Rev. B 100, 045152 (2019).
+[15]D.E. Jackson, D. VanGennep, W. Bi, et al. Superconducting and magnetic phase
+diagram of RbEuFe4As4 and CsEuFe4As4 at high pressure. Phys. Rev. B 98,
+014518 (2018).
+[16]L. Xiang, M. Xu, S.L. Bud'ko, et al. Pressure-temperature phase diagram of
+CaK(Fe1−xMnx)4As4(x=0.024). Phys. Rev. B 106, 134505 (2022).
+[17]C. Liu, P. Bourges, Y. Sidis, et al. Preferred Spin Excitations in the Bilayer
+Iron-Based Superconductor CaK(Fe0.96Ni0.04)4As4 with Spin-Vortex Crystal Order.
+Phys. Rev. Lett. 128, 137003 (2022).
+
+[18]T. Xie, Y. Wei, D. Gong, et al. Odd and Even Modes of Neutron Spin Resonance
+in the Bilayer Iron-Based Superconductor CaKFe4As4. Phys. Rev. Lett. 120,
+267003 (2018).
+[19]T. Xie, C. Liu, F. Bourdarot, et al. Spin-excitation anisotropy in the bilayer
+iron-based superconductor CaKFe4As4. Phys. Rev. R 2, 022018 (2020).
+[20]B.Q. Song, M. Xu, V. Borisov, et al. Construction of A−B heterolayer
+intermetallic crystals: Case studies of the 1144-phase TM-phosphides AB(TM)4P4
+(TM=Fe, Ru, Co, Ni). Phys. Rev. M 5, 094802 (2021).
+[21]W. Liu, L. Cao, S. Zhu, et al. A new Majorana platform in an Fe-As bilayer
+superconductor. Nat. Commun. 11, 5688 (2020).
+[22]A. Kreyssig, J.M. Wilde, A.E. Böhmer, et al. Antiferromagnetic order in
+CaK(Fe1−xNix)4As4 and its interplay with superconductivity. Phys. Rev. B 97,
+224521 (2018).
+[23]S.L. Bud'ko, V.G. Kogan, R. Prozorov, et al. Coexistence of superconductivity
+and magnetism in
+CaK(Fe1−xNix)4As4 as probed by 57Fe Mössbauer
+spectroscopy. Phys. Rev. B 98, 144520 (2018).
+[24]W.R. Meier, Q.-P. Ding, A. Kreyssig, et al. Hedgehog spin-vortex crystal
+stabilized in a hole-doped iron-based superconductor. npj Quantum Mater. 3, 1-6
+(2018).
+[25]R. Yang, Y. Dai, B. Xu, et al. Anomalous phonon behavior in superconducting
+CaKFe4As4: An optical study. Phys. Rev. B 95, 064506 (2017).
+[26]V. Borisov, P.C. Canfield, R. Valentí. Trends in pressure-induced layer-selective
+
+half-collapsed tetragonal phases in the iron-based superconductor family
+AeAFe4As4. Phys. Rev. B 98, 064104 (2018).
+[27]S. Pailhes, Y. Sidis, P. Bourges, et al. Two resonant magnetic modes in an
+overdoped high Tc superconductor. Phys. Rev. Lett. 91, 237002 (2003).
+[28]H.K. Mao, J. Xu, P.M. Bell. Calibration of the ruby pressure gauge to 800 kbar
+under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673 (1986).
+[29]See Supplementary Information for the extended resistance measurements, the
+determination on the onset transition temperature of the spin-vertex crystal (SVC)
+state and the pressure dependence of the volume for CaK(Fe1-x Nix)4As4 (x=0 and
+0.04); also see Refs.[12,13,17,24].
+[30]G. Lin, J. Guo, Y. Zhu, et al. Correlation between Fermi surface reconstruction
+and superconductivity in pressurized
+FeTe0.55Se0.45. Phys. Rev. B 101, 214525
+(2020).
+[31]D. Kang, Y. Zhou, W. Yi, et al. Superconductivity emerging from a suppressed
+large magnetoresistant state in tungsten ditelluride. Nat. Commun. 6, 7804
+(2015).
+[32]R. Yang, C. Le, L. Zhang, et al. Formation of As-As bond and its effect on
+absence of superconductivity in the collapsed tetragonal phase of
+Ca0.86Pr0.14Fe2As2: An optical spectroscopy study. Phys. Rev. B 91, 224507 (2015)
+[33]T. Yildirim. Strong coupling of the Fe-spin state and the As-As hybridization in
+iron-pnictide superconductors from first-principle calculations. Phys. Rev. Lett.
+102, 037003 (2009).
+
+[34]J. Diehl, S. Backes, D. Guterding, et al. Correlation effects in the tetragonal and
+collapsed-tetragonal phase of CaFe2As2. Phys. Rev. B 90, 085110 (2014).
+Figure 1 The results of resistance measurements on the CaK(Fe1-xNix)4As4
+(x=0.04 and 0) at high pressures. (a) Temperature dependence of the resistance in
+the
+pressure
+range
+of
+0.76
+GPa–37.32
+GPa
+for
+the
+sample
+#1
+of
+the
+CaK(Fe0.96Ni0.04)4As4 single crystal. (b) Enlarged views of the resistance-temperature
+curves at different pressures for the sample #1 of CaK(Fe0.96Ni0.04)4As4. (c) Resistance
+as a function of temperature for pressures ranging from 1.56 GPa to 15.5 GPa for the
+sample #A of CaKFe4As4 single crystal. (d) Resistance-temperature curves at different
+pressures for the sample #A of CaKFe4As4.
+
+(a)
+(b)
+0.7
+P/GPa
+S#1
+CaK(Fe.
+0.76
+10.92
+21.89
+1.5
+1.38
+11.80
+24.98
+0.6
+S#1
+2.07
+12.71
+27.40
+3.05
+13.68
+29.65
+0.5
+1.2
+3.66
+14.68
+32.28
+4.41
+16.13
+34.36
+0.4
+nce
+5.36
+18.46
+37.32
+0.9
+6.17
+19.99
+sistan
+0.3 R
+7.08
+20.50
+7.91
+Resi
+0.6
+8.57
+0.2
+9.51
+0.1
+0.3
+0.0
+CaK(Fe.
+As
+SC
+Ni
+90
+0.0
+0.96
+0.04/
+60
+50
+150
+250
+(K)
+0
+100
+200
+300
+0
+2
+4
+30
+6
+8
+10
+Temperature (K)
+12
+14
+Pressure (GPa)
+0
+(d)
+0.07
+(c)
+P/GPa
+S#A
+CaKFe,As
+1.56
+8.86
+0.06
+2.35
+9.77
+S#A
+3.26
+10.66
+0.20
+4.07
+11.72
+0.05
+5.19
+12.57
+5.89
+13.76
+0.04
+istance
+0.15
+6.76
+15.50
+7.59
+0.03 R
+0.10
+Resi
+0.02
+0.01
+0.05
+0.00
+CaKFe.
+0.00
+90
+SC
+60
+150
+(K)
+0
+50
+100
+200
+250
+300
+0
+2
+30
+4
+6
+8
+10
+Temperature (K)
+12
+14
+Pressure (GPa)
+0Figure 2 Hall resistance (Rxy) as a function of magnetic field (H) for the
+CaK(Fe1-xNix)4As4 (x=0.04 and 0) single crystals. Plots of Rxy versus H for the
+CaK(Fe0.96Ni0.04)4As4 single crystals measured at 30 K in the pressure range of (a)
+0.89-15.5 GPa, (b) 1.34-14.9 GPa. Rxy versus H for the CaKFe4As4 single crystals
+measured at 40 K in the pressure range of (c) 1.56 – 15.5 GPa, (d) 2.24-16.43 GPa.
+The dashed line indicates Rxy(B)=0 where the average pressures for the sample #2 and
+#3 of the CaK(Fe0.96Ni0.04)4As4 and the sample #A and #B of the CaKFe4As4 single
+crystals are estimated to be ~ 2.4 GPa and 3.88 GPa, respectively.
+
+(a)
+(b)
+LT=30K
+T=30K
+1
+S#2
+S#3
+0
+(uw)
+-1
+P/GPa
+-2
+1.34
+7.85
+Rxy
+P/GPa
+1.84
+8.50
+0.89
+7.74
+-4
+-3
+2.41
+9.13
+1.62
+8.81
+2.88
+9.85
+2.34
+9.15
+3.55
+10.64
+3.10
+10.33
+-4
+4.15
+11.64
+-6
+3.92
+11.41
+12.88
+4.66
+4.47
+12.94
+-5
+5.47
+13.87
+5.58
+14.11
+CaK(Fe。
+As
+CaK(Fe.
+,Ni.
+).As
+15.55
+0.96
+6.71
+14.90
+6.52
+0.96
+0.04/4
+-8
+1
+2
+3
+4
+5
+6
+0
+1
+2
+3
+4
+0
+5
+6
+H (T)
+H (T)
+(d)
+C
+LT=40K
+T=40K
+S#A
+S#B
+3
+2
+(sw)
+0
+0
+P/GPa
+P/GPa
+1.56
+2.35
+2.24
+8.86
+8.38
+3.26
+3.08
+9.55
+9.77
+-4
+10.66
+3.81
+10.86
+4.07
+-6
+4.81
+12.68
+5.19
+11.72
+13.74
+5.89
+12.57
+5.77
+-6
+6.53
+15.02
+6.76
+13.76
+CaKFe.As4
+CaKFe,As
+-9
+7.60
+16.43
+7.59
+15.50
+0
+1
+2
+3
+4
+5
+6
+0
+1
+2
+3
+4
+5
+6
+H (T)
+H (T)Figure 3. X-ray diffraction results of the CaK(Fe0.96Ni0.04)4As4 sample collected at
+high pressure and crystallographic illustration. (a) X-ray diffraction patterns
+measured at different pressures, showing no crystal structure phase transition in the
+experimental pressure range up to 39.32 GPa. (b) Schematic crystal structure of the
+CaK(Fe0.96Ni0.04)4As4 sample.
+
+b
+0.04/4
+39.32(GPa)^
+36.93
+33.38
+28.98
+24.53
+22.95
+21.56
+20.16
+18.6
+Intensity (a.u.)
+17.43
+16.41
+15.18
+14.01
+13.01
+11.91
+8.98
+7.58
+AS(2)C
+5.93
+5.17
+4.63
+ As(2)0
+4.08
+Fe/Ni
+3.61
+As(1)
+3.21
+2.76
+AsC
+2.29
+人1.68
+1.03
+(002)
+01
+113)
+14)
+13
+30
+(20
+1
+1
+1
+1
+5
+10
+15
+20
+25
+20 (deg.)Figure 4. Structure information, pressure-temperature phase diagram and Hall
+coefficient (RH) of the CaK(Fe1-xNix)4As4 (x=0.04 and 0) samples at different
+pressures. (a) and (d) Lattice parameters a and c versus pressure for the doped- and
+undoped- samples. (b) and (e) Pressure-Temperature phase diagrams, displaying the
+evolution
+of
+the
+spin-vortex
+crystal
+(SVC),
+superconducting
+(SC)
+and
+non-superconducting (NSC) states upon increasing pressure for the doped- and
+undoped-samples. (c) and (f) Pressure dependence of Hall coefficient (RH) for the
+CaK(Fe0.96Ni0.04)4As4 and CaKFe4As4 samples. T, h-cT and f-cT represent the
+tetragonal phase, half-collapsed tetragonal phase and full-collapsed tetragonal phase,
+respectively. TN stands for the onset transition temperature of the SVC state. SCh and
+SCe represent the superconducting state with the dominance of hole-carriers and the
+
+CaKFe,As,
+Ni.
+(a)
+(d)
+T
+h-cT
+f-cT
+f-cT
+T
+h-cT
+3.88
+12.5
+13.0
+3.88
+3.86
+3.87
+12.0
+12.0
+3.86
+3.84
+11.0
+a
+a
+11.5
+3.85
+h-cl
+h-cT
+3.82
+10.0
+3.84
+11.0
+Ref.[12]
+80
+80
+(b)
+(e)
+S#1-T. 0
+Tc
+口
+Ref.[13]
+S#1-T~
+S#B
+TN
+60
+60
+S#2-Tc
+S#A Ref.[12]
+V
+S#2-Tn
+S#B
+S#3-Tc
+svc
+S#3-Tn
+20
+20
+8
+NSC
+NSC
+SC.
+SC
+SC
+SC
+1.0
+1.0
+(0/g-0L)
+T=30K
+T=40K
+0.0
+0.0
+Poff
+Poff
+ch
+ch
+-1.0
+-1.0
+RH
+RH
+Pon
+ch
+Pon
+ch
+-2.0
+-2.0
+5
+10
+15
+20
+25
+5
+10
+15
+20
+25
+0
+0
+Pressure (GPa)
+Pressure (GPa)superconducting state with the dominance of electron-carriers. The Pchon, Pchoff
+represent the turn-on and turn-off pressures for the transition from the T phase to the
+h-cT phase. The Pcf stands for the critical pressure for the transition from the h-cT
+phase to f-cT phase. The data in the figure (d) are taken from the Ref. [12].
+
diff --git a/edE4T4oBgHgl3EQfQwxW/content/tmp_files/load_file.txt b/edE4T4oBgHgl3EQfQwxW/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..99cfe6784c6962735cb4335672bd21515a2e9ea3
--- /dev/null
+++ b/edE4T4oBgHgl3EQfQwxW/content/tmp_files/load_file.txt
@@ -0,0 +1,794 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf,len=793
+page_content='Pressure-induced coevolution of transport properties and lattice stability in CaK(Fe1-xNix)4As4 (x= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) superconductors with and without spin-vortex crystal state Pengyu Wang1,2*, Chang Liu1,2*, Run Yang1*, Shu Cai1,3, Tao Xie 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Jing Guo1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Jinyu Zhao1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Jinyu Han1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Sijin Long1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yazhou Zhou1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yanchun Li3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xiaodong Li3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Huiqian Luo1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Shiliang Li1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Qi Wu1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xianggang Qiu1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Tao Xiang1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' and Liling Sun1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5† 1Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Beijing 100190,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' China 2University of Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Beijing 100190,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' China 3Center for High Pressure Science & Technology Advanced Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 100094 Beijing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' China 4Institute of High Energy Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Chinese Academy of Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Beijing 100049,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' China 5Songshan Lake Materials Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Dongguan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Guangdong 523808,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' China Here we report the first investigation on correlation between the transport properties and the corresponding stability of the lattice structure for CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04, 0), a new type of putative topological superconductors, with and without a spin-vortex crystal (SVC) state in a wide pressure range involving superconducting to non-superconducting transition and the half- to full-collapse of tetragonal (h-cT and f-cT) phases, by the complementary measurements of high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We identify the three critical pressures: Pchon that is the turn-on critical pressure of the h-cT phase transition and it coincides with the critical pressure for the sign change of Hall coefficient from positive to negative, a manifestation of the Fermi surface reconstruction;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Pchoff that is the turn-off pressures of the h-cT phase transition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' and Pcf that is the critical pressure of the f-cT phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' By comparing the high-pressure results measured from the two kinds of samples, we find a distinct “left-shift” of the Pchon for the doped sample, at the pressure of which its SVC state is fully suppressed, however the Pchoff and the Pcf remain the same as that of the undoped one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Our results not only provide a consistent understanding on the results reported before, but also demonstrate the importance of the Fe-As bonding in stabilizing the superconductivity of the iron pnictide superconductors through the “pressure window”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The discovery of the high-Tc iron-pnictide and iron-selenide superconductors [1, 2] provides a new platform to specify the essential ingredients existed in cuprate superconductors, and an opportunity to achieve a better understanding on the mechanism of high-Tc superconductivity, a ‘holy grail’ in the field of the contemporary condensed matter physics and material sciences [3-5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Now, several types of iron-pnictide superconductors have been found [6-9], all of which have the tetrahedra structure with the Fe-As layers stacking alternatively with other intermediary layers/atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Growing evidence from experiments indicates that the Fe-As layers play a key role in developing and stabilizing superconductivity [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' In 2016, a new member of the iron pnictide superconductors, AeAFe4As4 (Ae=Ca, Sr and A= K, Rb, Cs), has been found [10-26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Structurally, it can be regarded as the hybrid phases between AeFe2As2 and AFe2As2 with the stoichiometric composition, while is different from most of the other known high-Tc superconductors whose superconductivity are induced by chemical doping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' As a result, these stoichiometric superconductors have no chemical substitution-induced inhomogeneity on the lattice, and significantly reduced the complexity of the local structure for understanding the physics behind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Since the Ae2+ and A1+ atoms are inserted alternately across the Fe2As2 layers, the AeAFe4As4 superconductors host two different sites of As ions in a unit cell (As(1) and As(2), respectively) in the tetragonal unit cell with group space P4/mmm [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Upon cooling, they show a superconducting transition at the temperature (Tc) varying from 31 to 36 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Partial substituting Fe with Ni, Co or Mn reduces the Tc value by more than 10 K due to the existence of a spin-vortex crystal (SVC) state, with Fe spins lying in-plane and stacking along c axis antiferromagnetically, that competes with the superconducting (SC) state [22-24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Remarkably, recent angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy experiments find the evidence of the Dirac surface state and Majorana zero mode in the CaKFe4As4 superconductor [21], implying that this type of superconductors may host some nontrivial quantum states, such as topological superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Moreover, inelastic neutron scattering experiments find that the spin resonance of the CaK(Fe1-xNix)4As4 superconductor displays both odd and even modes along the L direction [17,18], similar to the resonance observed in bilayer cuprate superconductors [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These findings attract additional research interest on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Pressure tuning is an effective and clean way to manipulate the crystal and electronic structures without changing the chemistry, often providing significant information for understanding the underlying physics of the exotic state emerging from ambient pressure materials, through investigating the coevolution of electronic states and crystal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Some high-pressure studies on the AeAFe4As4 superconductors have been performed, and interesting results have been achieved from both experimental and theoretical sides [12-16, 26], including the transition of bulk-to-percolating superconducting state [12], half-to-full collapse of the tetragonal phase [14, 15, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These results provide the fundamental knowledge that the superconductivity and the lattice structure of these superconductors are intimately correlated and sensitive to the external pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' However, the reported investigations of transport properties on Ni-doped and undoped CaKFe4As4 superconductors are performed below the pressure of ~ 6 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' What happens under the pressure above 6 GPa remains unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' In addition, the experimental evidence for the change of electronic state around the critical pressure of the half collapse of the tetragonal (h-cT) phase is still lacking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' In this work, we perform the high- pressure studies on the doped and undoped sample up to the pressure where the superconductivity is fully suppressed and the f-cT phase forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' High-quality single crystals of CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) were grown using the self-flux method [17, 18, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The ambient-pressure values of Tcs of the doped- and undoped-samples were determined to be 21 K and 35 K, respectively, and the SVC transition for the x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 sample is about TN=44 K [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' High-pressure resistance measurements were performed in a diamond-anvil cell (DAC), in which diamond anvils with 300 μm culets (flat area of the diamond anvil) and a nonmagnetic rhenium gasket with 100-μm-diameter hole were adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The standard four-probe electrodes were applied on the cleavage plane of the CaK(Fe1-x Nix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' To obtain a quasi-hydrostatic pressure environment for the samples, NaCl powder was employed as the pressure medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' High-pressure Hall coefficient measurements were carried out by the van der Pauw method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' To keep the sample in the same pressure environment as that in the resistance measurements, NaCl powder was also employed as the pressure medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' High-pressure X-ray diffraction (XRD) measurements on CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 were performed at room temperature on beamline 4W2 at the Beijing Synchrotron Radiation Facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Diamonds with low birefringence were selected for the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' A monochromatic X-ray beam with a wavelength of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='6199 Å was employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The pressure for all measurements was determined by the ruby fluorescence method [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We first performed temperature-dependent resistance measurements on the single crystal of CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 in a DAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' To investigate the doping effect on the transport properties, a parallel measurement was conducted on the undoped CaKFe4As4 sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='1a and 1c, the superconductivity of both samples with and without the SVC state is sensitive to the pressure applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' For the sample with the SVC state, the ambient-pressure Tc is much lower than that of the sample without the SVC state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' It shows that application of pressure renders Tc decreased, no matter whether they host the SVC state or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Intriguingly, the superconductivity of these two samples is fully suppressed at almost the same critical pressure (~ 11 GPa), as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='1b and 1d, suggesting that the initial SVC state has little influence on the critical pressure for destroying the superconducting state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We repeat the measurements with several new samples and obtain the reproducible results (see SI - Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='[29]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Moreover, we investigate the pressure effect on the onset transition temperature (TN) of the SVC state for our CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96 Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 samples and find that TN exhibits a monotonous decrease with the increment of pressure (see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [29]), similar to what is observed in CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='033 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='05) and CaK(Fe1-xMnx)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='024) samples [13, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' To identify the similarity and peculiarity in the transport properties, superconductivity and the electronic state in CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 and CaKFe4As4 samples, we performed high-pressure measurements on Hall resistance (Rxy) by sweeping the magnetic field (H) applied perpendicular to the ab plane of the samples, from 0 T to 6 T at 30 K for CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2a and 2b) and at 40 K for CaKFe4As4 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2c and 2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We find that Rxy(H) is positive below 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4 GPa (the average value of the two independent runs - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='33 GPa+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='46 GPa)/2=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4 GPa) for the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 samples, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 GPa for the CaKFe4As4 samples (also the average value - (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='90 GPa+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='85 GPa)/2=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 GPa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The plots of Rxy(H) from our samples indicate that a hole-electron carrier balance (Rxy(H)=0) occurs at a critical pressure (Pc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Although the value of the Pc is different for the samples with and without the SVC state, the behavior of sign change in RH (P) is the same - below the Pc, the sample is dominated by hole carriers, while above the Pc, the sample is dominated by electron carriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The observation of the pressure-induced sign change of the Hall coefficient at the Pc provides important experimental evidence for the dramatic change of electronic structure - the reconstruction of the Fermi surface from a hole dominated to an electron dominated ones [30, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Since the structural stability is one of the key issues for understanding the phenomena found in the pressure range of our experiments, we perform the high pressure X-ray diffraction (XRD) measurements on the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 sample for the first time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The XRD patterns collected at different pressures are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' It is seen that all peaks measured under pressure up to 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='3 GPa can be well indexed by the tetragonal phase in the P/4mmm space group, indicating that no structure phase transition occurs in the pressure range investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='3b, we illustrate the crystal structure of the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 sample and define the As ions adjacent to the Ca layers as As(1) and the K layers as As(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' However, the lattice parameter a extracted from our XRD data shows an increase starting at ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa and reaching the maximum at ~ 5 GPa, meanwhile the lattice parameter c displays a rapid decrease in this pressure range (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These results lead us to propose that the transition of the half-collapse of the tetragonal (h-cT) phase turns on and off at ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa and ~5 GPa, respectively (Here we define these critical pressures as Pchon and Pchoff), and the initial tetragonal (T) phase and the h-cT phase coexist in this pressure range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These results are similar to what have been observed in the pressurized CaKFe4As4 samples, in which the lattice parameter a begins to increase at ~3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa and reaches a maximum at ~ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='7 GPa [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Upon further compression to ~11 GPa, the second collapse occurs - the lattice parameter a and c also appear noticeable changes (Here we define this critical pressure as Pcf), implying that the T phase fully collapses (due to lack of more experimental information on the change of the f-cT phase, we are not able to identify the critical pressure that turns off the f-cT phase).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The pressure-induced two collapses in the tetragonal CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 sample are in accordance with the theoretical calculations and experimental results obtained from the measurements on the CaRbFe4As4 and Cs/RbEuFe4As4 samples [14, 15, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We summarize our high-pressure results obtained from the measurements on CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 in the pressure-Tc phase diagram (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The four distinct regions defined by the lattice structure can be seen in the diagram: (1) Low-pressure T phase region below Pchon, in which the SVC state coexists with the SC state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' When pressure is applied, both of TN and Tc decrease with increasing pressure until the pressure reaches to the Pchon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (2) The coexisted T and h-cT phase region that lies in the range of Pchon and Pchoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' At the Pchon, the SVC state is entirely suppressed and the sample starts the transition from a T phase to h-cT phase (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 4a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Just at this pressure, the Hall coefficient (RH) changes its sign from the positive to the negative (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 4c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These results demonstrate that the pressure drives a reconstruction of Fermi surface which is associated to the transition from the T phase to the h-cT phase in a pressure range below ~5 GPa (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (3) The h-cT phase region lied in the range of Pchoff and Pcf, in which the Tc decreases continuously and disappears at the pressure of ~ 11 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (4) The f-cT phase region above the critical pressure of Pcf, in which the h-cT phase fully converts to the f-cT phase, and the corresponding electronic state of the h-cT phase is taken over by that of the non-superconducting f-cT phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' To clarify the doping effect on the high-pressure behavior found in the sample with the SVC state, we compare its high-pressure experimental results with that measured from the undoped CaKFe4As4 sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4d-4f, CaKFe4As4 bears the similar high-pressure behavior to that of CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4: Tc monotonically declines with the increment of pressure (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4e), in agreement with the results reported in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' At ~3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 GPa (Pchon), the Hall confident (RH) also displays a sign change from the positive to the negative, indicating that the ambient-pressure T phase of the sample begins its half collapse at this pressure [12,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' A sudden increase of the lattice parameter a and the volume drop are also observed at ~ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa by Kaluarachchi et al [12], very close to the Pchon determined by our Hall coefficient measurements (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Since the observed Pchon (~3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88) and Pchoff (~ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='9 GPa) by our Hall coefficient measurements is close to these (~3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa and ~4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='7 GPa) determined by the high pressure and low temperature XRD measurements on the same sample [12], we define the pressures of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 GPa and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='9 GPa as the Pchon and Pchoff of our undoped sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' On further increasing pressure, Tc measured from both CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 and CaKFe4As4 samples shows a monotonously decrease till the pressure around Pcf =11 GPa (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4b a and 4e), at the pressure of which doped- and undoped-samples undergo a transition from the h-cT phase to the f-cT phase [12, 26] and lose their superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' This is the first report on the observation of the pressure-induced SC-to-NSC transition and the identification on that the critical pressure of the SC-NSC transition coincides with the pressure of the lattice transition from the h-cT phase to the f-cT phase in the CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) superconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Theoretical calculations on the undoped system find that the formation of the As(1)-As(1) bond across the Ca layers and the formation of the As(2)-As(2) bond across the K layer are responsible for the presence of the h-cT and the f-cT phases [12, 26,32], and propose that the formed As-As bond weakens the Fe-As bonding [32-34], which, in turn, greatly affects the stability of superconductivity [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Our findings in the CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) superconductors experimentally provides a strong support for the prediction that Fe-As bonding is one of the essential ingredients for the presence of superconductivity in this kind of iron pnictides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' By comparing the high-pressure behavior of the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='096Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 and CaKFe4As4 samples, we find that the substitution of Ni on Fe site shifts the Pchon to lower pressure, while it has no obvious effects on the Pchoff and the Pcf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='. Thus, understanding why the existence of the SVC state renders the Pchon to shift to lower pressure should be one of the key issues to reveal the underlying physics of the lattice half collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We suggest that the left shift of the Pchoff in the Ni-doped sample may be attributed to the interplay between the SVC state and the Fe-As hybridized state (the hybridization between the Fe 3d orbital and As 4p orbital electrons), which makes the hybridized band unstable and benefits the formation of the As(1)-As(1) bonding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These results imply that the Pchon is sensitive to the existence of the competing order introduced by the chemical doping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' While the unchanged Pchoff and Pcf is possibly related to the stability of the lattice that is still governed by the matrix of the initial T phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' In conclusion, the coevolution of the SVC state, superconductivity, dominated carriers and stability of lattice structure in CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) superconductors has been investigated by the complementary measurements of high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction in a wide pressure range involving superconducting to non-superconducting transition, and the corresponding half- to full-collapse of tetragonal phase transition, for the first time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' We identified the three critical pressures though the comprehensive analysis of our results: Pchon and Pchoff that are the turn-on and -off pressure of the h-cT phase transition, respectively, and Pcf that is the critical pressure of the f-cT phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Our results demonstrate that the formation of the As(1)-As(1) bond that is evidence by the transition from the T phase to the h-cT phase changes the sign of RH , a manifestation for the reconstruction of the Fermi surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' While, the formation of the As(2)-As(2) bond characterized by the f-cT phase transition terminates the superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These results achieved in this study not only provide a consistent understanding on the results reported before, but also demonstrate the importance of the Fe-As bonding in stabilizing the superconductivity of the iron-pnictide superconductors through the “pressure window”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Acknowledgements This work was supported by the National Key Research and Development Program of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 2021YFA1401800, 2022YFA1403900, 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' U2032214, 12104487, 12122414, 12004419, 11822411 and 11961160699), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' XDB25000000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' are grateful for supports from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 2019008, Y202001) and the China Postdoctoral Science Foundation (E0BK111).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' These authors with star (*) contributed equally to this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Correspondence and requests for materials should be addressed to L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (llsun@iphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='cn) References [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kamihara, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Watanabe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Hirano, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='05-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='12) with Tc = 26 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 130, 3296-3297 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Hsu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Luo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yeh, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Superconductivity in the PbO-type structure α-FeSe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 105, 14262-14264 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Chu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Deng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Hole-doped cuprate high temperature superconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Physica C 514, 290-313 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [4] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Keimer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Norman, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' From quantum matter to high-temperature superconductivity in copper oxides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Nature 518, 179-186 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Zaanen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Superconducting electrons go missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Nature 536, 282-283 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rotter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Tegel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Johrendt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 101, 107006 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [7] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lv, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The superconductivity at 18 K in LiFeAs system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Solid State Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 148, 538-540 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [8] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Zhu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Han, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Mu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Transition of stoichiometric Sr2VO3FeAsto a superconducting state at 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 79, 220512 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [9] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Ni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Allred, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Chan, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' High Tc electron doped Ca10(Pt3As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 superconductors with skutterudite intermediary layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 108, E1019-1026 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [10]A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Iyo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kawashima, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kinjo, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' New-Structure-Type Fe-Based Superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 138, 3410-3415 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [11]W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Meier, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kong, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kaluarachchi, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 94, 064501 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [12]U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kaluarachchi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Taufour, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Sapkota, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Pressure-induced half-collapsed-tetragonal phase in CaKFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 96, 140501 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [13]L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xiang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Meier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Pressure-temperature phase diagrams of CaK(Fe1−xNix)4As4 superconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 97, 174517 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [14]R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Stillwell, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Wang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Observation of two collapsed phases in CaRbFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 100, 045152 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [15]D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Jackson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' VanGennep, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Bi, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Superconducting and magnetic phase diagram of RbEuFe4As4 and CsEuFe4As4 at high pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 98, 014518 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [16]L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=" Bud'ko, et al." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Pressure-temperature phase diagram of CaK(Fe1−xMnx)4As4(x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='024).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 106, 134505 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [17]C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Liu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Bourges, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Sidis, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Preferred Spin Excitations in the Bilayer Iron-Based Superconductor CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 with Spin-Vortex Crystal Order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 128, 137003 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [18]T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Wei, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Gong, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Odd and Even Modes of Neutron Spin Resonance in the Bilayer Iron-Based Superconductor CaKFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 120, 267003 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [19]T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xie, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Bourdarot, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Spin-excitation anisotropy in the bilayer iron-based superconductor CaKFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' R 2, 022018 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [20]B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Song, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Borisov, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Construction of A−B heterolayer intermetallic crystals: Case studies of the 1144-phase TM-phosphides AB(TM)4P4 (TM=Fe, Ru, Co, Ni).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' M 5, 094802 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [21]W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Cao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Zhu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' A new Majorana platform in an Fe-As bilayer superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 11, 5688 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [22]A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kreyssig, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Wilde, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Böhmer, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Antiferromagnetic order in CaK(Fe1−xNix)4As4 and its interplay with superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 97, 224521 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [23]S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=" Bud'ko, V." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kogan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Prozorov, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Coexistence of superconductivity and magnetism in CaK(Fe1−xNix)4As4 as probed by 57Fe Mössbauer spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 98, 144520 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [24]W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Meier, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Ding, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kreyssig, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' npj Quantum Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 3, 1-6 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [25]R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Dai, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Anomalous phonon behavior in superconducting CaKFe4As4: An optical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 95, 064506 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [26]V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Borisov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Canfield, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Valentí.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Trends in pressure-induced layer-selective half-collapsed tetragonal phases in the iron-based superconductor family AeAFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 98, 064104 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [27]S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Pailhes, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Sidis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Bourges, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Two resonant magnetic modes in an overdoped high Tc superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 91, 237002 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [28]H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Mao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Xu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Bell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 91, 4673 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [29]See Supplementary Information for the extended resistance measurements, the determination on the onset transition temperature of the spin-vertex crystal (SVC) state and the pressure dependence of the volume for CaK(Fe1-x Nix)4As4 (x=0 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' also see Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [12,13,17,24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [30]G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Zhu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Correlation between Fermi surface reconstruction and superconductivity in pressurized FeTe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='55Se0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 101, 214525 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [31]D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Kang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yi, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 6, 7804 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [32]R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Le, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Zhang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Formation of As-As bond and its effect on absence of superconductivity in the collapsed tetragonal phase of Ca0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='86Pr0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='14Fe2As2: An optical spectroscopy study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 91, 224507 (2015) [33]T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Yildirim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Strong coupling of the Fe-spin state and the As-As hybridization in iron-pnictide superconductors from first-principle calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 102, 037003 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [34]J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Diehl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Backes, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Guterding, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Correlation effects in the tetragonal and collapsed-tetragonal phase of CaFe2As2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' B 90, 085110 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Figure 1 The results of resistance measurements on the CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) at high pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (a) Temperature dependence of the resistance in the pressure range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 GPa–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='32 GPa for the sample #1 of the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 single crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (b) Enlarged views of the resistance-temperature curves at different pressures for the sample #1 of CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (c) Resistance as a function of temperature for pressures ranging from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='56 GPa to 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa for the sample #A of CaKFe4As4 single crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (d) Resistance-temperature curves at different pressures for the sample #A of CaKFe4As4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (a) (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='7 P/GPa S#1 CaK(Fe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='92 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='89 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='38 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='80 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='6 S#1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='07 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='71 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='05 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='68 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='66 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='68 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='41 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='13 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4 nce 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='36 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='46 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='9 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='17 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='99 sistan 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='3 R 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='08 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='50 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='91 Resi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 CaK(Fe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' As SC Ni 90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04/ 60 50 150 250 (K) 0 100 200 300 0 2 4 30 6 8 10 Temperature (K) 12 14 Pressure (GPa) 0 (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='07 (c) P/GPa S#A CaKFe,As 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='56 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='06 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='35 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='77 S#A 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='26 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='07 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='05 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='19 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='57 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='89 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 istance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='15 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='50 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='03 R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='10 Resi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='00 CaKFe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='00 90 SC 60 150 (K) 0 50 100 200 250 300 0 2 30 4 6 8 10 Temperature (K) 12 14 Pressure (GPa) 0Figure 2 Hall resistance (Rxy) as a function of magnetic field (H) for the CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) single crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Plots of Rxy versus H for the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 single crystals measured at 30 K in the pressure range of (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='89-15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa, (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='34-14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='9 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Rxy versus H for the CaKFe4As4 single crystals measured at 40 K in the pressure range of (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='56 – 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 GPa, (d) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='24-16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='43 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The dashed line indicates Rxy(B)=0 where the average pressures for the sample #2 and #3 of the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 and the sample #A and #B of the CaKFe4As4 single crystals are estimated to be ~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='4 GPa and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 GPa, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (a) (b) LT=30K T=30K 1 S#2 S#3 0 (uw) 1 P/GPa 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='34 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='85 Rxy P/GPa 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='84 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='89 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='74 4 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='41 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='62 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='81 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='85 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='34 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='55 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='64 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='10 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='33 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='15 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='64 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='92 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='41 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='66 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='47 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='94 5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='47 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='87 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='58 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='11 CaK(Fe。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' As CaK(Fe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' ,Ni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='As 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='71 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='90 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04/4 8 1 2 3 4 5 6 0 1 2 3 4 0 5 6 H (T) H (T) (d) C LT=40K T=40K S#A S#B 3 2 (sw) 0 0 P/GPa P/GPa 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='56 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='24 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='86 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='38 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='26 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='08 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='77 4 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='81 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='86 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='07 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='81 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='68 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='19 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='72 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='74 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='89 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='57 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='77 6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='53 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='02 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 CaKFe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='As4 CaKFe,As 9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='60 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='43 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='59 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='50 0 1 2 3 4 5 6 0 1 2 3 4 5 6 H (T) H (T)Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' X-ray diffraction results of the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 sample collected at high pressure and crystallographic illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (a) X-ray diffraction patterns measured at different pressures, showing no crystal structure phase transition in the experimental pressure range up to 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='32 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (b) Schematic crystal structure of the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04/4 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='32(GPa)^ 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='93 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='38 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='98 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='53 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='95 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='56 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='16 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='6 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=') 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='43 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='41 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='18 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='01 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='01 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='91 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='98 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='58 AS(2)C 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='93 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='63 As(2)0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='08 Fe/Ni 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='61 As(1) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='21 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='76 AsC 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='29 人1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='68 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='03 (002) 01 113) 14) 13 30 (20 1 1 1 1 5 10 15 20 25 20 (deg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' )Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' Structure information, pressure-temperature phase diagram and Hall coefficient (RH) of the CaK(Fe1-xNix)4As4 (x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04 and 0) samples at different pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (a) and (d) Lattice parameters a and c versus pressure for the doped- and undoped- samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (b) and (e) Pressure-Temperature phase diagrams, displaying the evolution of the spin-vortex crystal (SVC), superconducting (SC) and non-superconducting (NSC) states upon increasing pressure for the doped- and undoped-samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (c) and (f) Pressure dependence of Hall coefficient (RH) for the CaK(Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='96Ni0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='04)4As4 and CaKFe4As4 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' T, h-cT and f-cT represent the tetragonal phase, half-collapsed tetragonal phase and full-collapsed tetragonal phase, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' TN stands for the onset transition temperature of the SVC state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' SCh and SCe represent the superconducting state with the dominance of hole-carriers and the CaKFe,As, Ni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' (a) (d) T h-cT f-cT f-cT T h-cT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='88 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='86 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='87 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='86 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='84 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 a a 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='85 h-cl h-cT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='82 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='84 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [12] 80 80 (b) (e) S#1-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' 0 Tc 口 Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [13] S#1-T~ S#B TN 60 60 S#2-Tc S#A Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [12] V S#2-Tn S#B S#3-Tc svc S#3-Tn 20 20 8 NSC NSC SC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' SC SC SC 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 (0/g-0L) T=30K T=40K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 Poff Poff ch ch 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 RH RH Pon ch Pon ch 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content='0 5 10 15 20 25 5 10 15 20 25 0 0 Pressure (GPa) Pressure (GPa)superconducting state with the dominance of electron-carriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The Pchon, Pchoff represent the turn-on and turn-off pressures for the transition from the T phase to the h-cT phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The Pcf stands for the critical pressure for the transition from the h-cT phase to f-cT phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' The data in the figure (d) are taken from the Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
+page_content=' [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/edE4T4oBgHgl3EQfQwxW/content/2301.04984v1.pdf'}
diff --git a/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf b/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..0da1e4ffa0ff7f2f837ea894415698a6e3656b32
--- /dev/null
+++ b/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:479ea76cf18f7f44c0997dad5d5269227153caa1859f4cf2dcee284eef3d4e44
+size 459977
diff --git a/fNE3T4oBgHgl3EQfHglt/vector_store/index.faiss b/fNE3T4oBgHgl3EQfHglt/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..92cd484f6ed114e75a210660a82b09a070c7ca8f
--- /dev/null
+++ b/fNE3T4oBgHgl3EQfHglt/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d567ce42314785c8fe32dfaef7364ae0808512dda7f23fac9ed9f27ba6e3af83
+size 4522029
diff --git a/fNE3T4oBgHgl3EQfHglt/vector_store/index.pkl b/fNE3T4oBgHgl3EQfHglt/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..c363ba2372ebf7f1c7a54832658d3bb92513237f
--- /dev/null
+++ b/fNE3T4oBgHgl3EQfHglt/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c3b1094b950569f47b46559ba8d4f25ce539f131326d87d97a40a955e9854124
+size 144548
diff --git a/gNE4T4oBgHgl3EQfqw2j/content/tmp_files/2301.05203v1.pdf.txt b/gNE4T4oBgHgl3EQfqw2j/content/tmp_files/2301.05203v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1a5040cb8c05f31964b5bd47deb8ee814bf446a5
--- /dev/null
+++ b/gNE4T4oBgHgl3EQfqw2j/content/tmp_files/2301.05203v1.pdf.txt
@@ -0,0 +1,7101 @@
+Entanglement negativity in de Sitter biverse
+from Stringy Axionic Bell pair: An analysis using
+Bunch-Davies vacuum
+Sayantan Choudhury1‡, §,.
+1Centre For Cosmology and Science Popularization (CCSP), SGT University, Gurugram,
+Delhi-NCR, Haryana- 122505, India.
+Abstract
+In this work, we study the signatures of quantum entanglement by computing entan-
+glement negativity between two causally unrelated regions in 3 + 1 dimensional global de
+Sitter space. We investigate a bipartite quantum field theoretic setup for this purpose,
+driven by an axionic Bell pair resulting from Type IIB string compactification on a Calabi-
+Yau three fold. We take into account a spherical surface that divides the spatial slice of
+the global de Sitter space into exterior and interior causally unrelated sub regions. For
+the computational purpose we use the simplest possible initial choice of quantum vacuum,
+which is Bunch-Davies state. The quantitative quantum information theoretic measure for
+entanglement negativity turns out be consistent with the results obtained for entanglement
+entropy, even we have to say it is better than that from quantum information theoretic
+point of view. We design the problem in a hyperbolic open chart where one of the causally
+unrelated observers remains constrained and the scale dependence enters to the correspond-
+ing quantum information theoretic entanglement measure for axionic Bell pair. We find
+from our analysis that in the large scales initially maximally entangled Bunch-Davies state
+turns out to be strongly entangled or weakly entangled depending on the axionic decay
+constant and the supersymmetry breaking scale. We also find that at the small scales the
+initial entanglement can be perfectly recovered. We also discuss the possibility of having
+a biverse picture, which is a mini version of the multiverse in the present theoretical set
+up. Last but not the least, we provide the necessary criteria for generating non vanishing
+quantum entanglement measures within the framework of quantum field theory of global
+de Sitter space as well as well as in primordial cosmology due to the axion derived from
+string theory.
+Keywords: De-Sitter vacua, Quantum Entanglement, Cosmology of Theories beyond
+the SM, Quantum Information Theory aspects of Gravity, String Cosmology.
+‡ Corresponding author, E-mail : sayantan ccsp@sgtuniversity.org, sayanphysicsisi@gmail.com
+§ NOTE: This project is the part of the non-profit virtual international research consortium “Quantum
+Aspects of Space-Time & Matter” (QASTM) .
+arXiv:2301.05203v1 [hep-th] 31 Dec 2022
+
+Contents
+1
+Introduction
+1
+2
+Basics of entanglement negativity and logarithmic negativity from Quan-
+tum Information Theory
+7
+3
+Computational strategy of negativity between two causally unrelated
+open charts of global de Sitter space with axion
+14
+3.1
+Quantum structure of open chart
+14
+3.2
+Geometric structure of open chart
+16
+3.3
+Mode function and wave function of axion in an open chart
+19
+3.4
+Construction of reduced density matrix in open chart
+41
+4
+Entanglement negativity and logarithmic negativity in open chart
+43
+5
+Comparison with entanglement entropy in open chart
+50
+6
+Logarithmic negativity between two causally unrelated patches of open
+chart
+53
+6.1
+Computational set up and construction of maximally entangled states
+55
+6.2
+Construction of excited quantum state for single oscillator
+57
+6.3
+Construction of reduced density matrix at the inside observer
+62
+6.4
+Partial transpose operation and the comment on the negative eigenvalues
+65
+6.5
+Computation of logarithmic negativity: Numerical study
+68
+6.6
+Small scale limit of logarithmic negativity: Analytical study
+76
+6.7
+Massless limit of logarithmic negativity: Analytical study
+78
+7
+Conclusion
+81
+References
+85
+i
+
+1
+Introduction
+In the present day research, different quantum information theoretic measures of quantum
+entanglement is a remarkable probe in theoretical physics which helps us to distinguish
+the various type of long range correlated quantum mechanical states. In this connection,
+study of the explicit role of the long range quantum correlations in the framework of
+quantum field theory is extremely significant, which is a fascinating topic of research itself.
+See refs [1–31] for more details. The key ingredient of this study is the initial quantum
+mechanical vacuum states, which are Chernikov-Tagirov, Bunch-Davies, Hartle-Hawking,
+α and Motta-Allen vacua [14–16, 19, 32–37]. Quantum entanglement is treated as one of
+the remarkable outcomes of the foundational theoretical aspects of quantum mechanics.
+The prime reason of this thought is, a local measurement in quantum mechanics may
+instantaneously put a significant impact of the outcome of the measurement beyond the
+physical light cone. This is theoretically interpreted as Einstein-Podolsky-Rosen (EPR)
+paradox where the concept of causality violation is explicitly demonstrated [31, 38–41].
+Amongst various types of information theoretic measures entanglement entropy is con-
+sidered to be a very useful quantitative as well as qualitative probe of quantum entangle-
+ment and this concept is commonly used in the framework of condensed matter physics,
+quantum information theory and high energy physics. But in this connection it is im-
+portant to note that the technical computation of entanglement entropy is very difficult
+to perform in the context of quantum field theory. Ryu and Takayanagi in refs. [42, 43]
+first did the theoretically consistent computation of entanglement entropy for a strongly
+coupled quantum field theory having a gravitational dual counterpart using the underlying
+physical principles of AdS/CFT (or holographic gravitational dual prescription) [44].
+In order to properly understand the direct implications of the previously proposed
+AdS/CFT (or holographic gravitational dual prescription) in the technical computation
+of entanglement entropy in presence of standard Bunch-Davies quantum vacuum state
+within the framework of quantum field theory of de Sitter space, Maldacena and Pimentel
+prescribed an extremely useful computational strategy in ref. [1] using free massive scalar
+quantum field. After this work the proposed methodology was generalised for the same
+problem in presence of non standard α vacua in refs [13, 19, 45–47]. Further in refs. [14–
+16], these underlying physical concepts of the computation of entanglement entropy was
+applied within the framework of axion quantum field theory, described in terms a specific
+type of effective interaction potential originated from Type II string theory compactifi-
+cation [48–50] in presence of both standard Bunch-Davies and non standard α quantum
+vacua. The underlying concept of quantum entanglement could applicable to the frame-
+work of cosmology, specifically beyond the Hubble horizon scale. Most importantly, in
+this prescription if a particle pair is created in a casually connected Hubble horizon scale
+then it is naturally expected to be dissociated as an outcome of the de Sitter cosmological
+expansion. In this particular case, the findings from this prescription pointing towards the
+1
+
+fact that two causally unrelated patches in the de Sitter cosmological space-time has to
+be entangled quantum mechanically. As a result, the corresponding observable quantum
+vacuum fluctuations associated with our own universe is entangled with the other part of
+the open patch of global de Sitter space, which is commonly identified to be the multiverse
+in the present context of discussion. To demonstrate this underlying physical picture the
+reduced density matrix formalism play a very significant role, using which it was explicitly
+obtained that the quantum mechanical entanglement directly put impact on the cosmo-
+logical power spectrum on the large scales and it is quantitatively similar to or larger than
+the curvature radius scale connected to the current issue [18].
+It is hugely expected that the present and the upcoming observational probes may detect
+the imprints and explicit effects of quantum mechanical entanglement in cosmological
+paradigm, which we strongly believe will going to be extremely useful to understand a lot
+of unknown mysterious fascinating facts of our own universe. In the past, there are lot of
+efforts have been made to study the impacts of quantum mechanical entanglement in the
+theoretical framework of cosmology. See refs. [16, 18, 21, 23, 51–58] for more details on
+these aspects.
+The motivation of the background physical thought of the present paper are appended
+below point-wise:
+1. It was first discovered in a number of refs.[59–61] to support the claim that the
+physical frame of the bubble nucleation process is observer dependent and is actually
+dictated by the rest frame of the observer. The bubble nucleation process being
+dependent on the observer is hence only expected. The detailed study of such type
+of observer dependence in the framework of quantum mechanical entanglement is one
+of the prime motivations of the present work. If one can able to address this issue in
+detail, then various unexplored features of quantum cosmology can be explored with
+proper physical understanding.
+2. Second, the explicit function of the Bunch Davies vacuum can be investigated in the
+context of quantum entanglement originating from an axion field embedded in an
+open patch of the global de Sitter space. This will be crucial because it allows one
+to directly examine whether it is possible to find the signs of quantum entanglement
+in the current multiverse [18, 62–67] motivated theoretical set up.using current or
+future observational instruments.
+3. Thirdly, it was noted in the refs. [14–16, 68–70] that the string theory-originated
+axion can be viewed as the ideal component to build the Bell pair, which is neces-
+sary to violate Bell’s inequality within the context of primordial cosmology. Within
+the widely accepted framework of primordial cosmology, it is virtually difficult to
+break Bell’s inequality, and it is for this reason that string theory and the axion
+play the most important roles. It is significant to note that, in this context, it is
+2
+
+nearly impossible to test the explicit role of quantum mechanical entanglement in
+observational probes without violating Bell’s inequality in the context of primordial
+cosmology, which is necessary to break the degeneracy in the shape cosmological two-
+point function, also known as the primordial power spectrum obtained from various
+effective potentials from fundamental physical principles. The current framework
+with the string theory-originated axion provides a perfect setup that is pointing to-
+wards a new physics coming from a non-standard cosmology because the generation
+of Bell’s inequality violating pairs, also known as the Bell pair, is practically im-
+possible within the framework of the standard primordial cosmological paradigm. It
+is explicitly pointed in refs.[68–70] that the prime signature of the Bell’s inequality
+violation in non standard primordial cosmology is coming from the existence of one
+point function from axion, which is absent in the well known standard cosmological
+paradigm. This result has a great impact of producing quantum entanglement in the
+present scenario. Also our derived results can be extremely useful to directly verify
+along with the observational probes the applicability as well as the justifiability of
+the string theory originated axion to address the issue of quantum entanglement in
+the present set up. See refs. [14–16, 68–77] for more details on the Bell’s inequality
+and its violation in various contexts including cosmology.
+4. Finally, the motivation comes from the multiverse prescription appearing in the string
+theory landscape scenario, which states that our universe may not be the single entity
+of the space-time but the part of a bigger size multiverse [18, 62–67]. This is obviously
+a fascinating fact which one needs to study in detail.
+However, in the past the
+underlying physical concept of the multiverse has been criticised in various contexts
+as a hypothetical philosophical concept which is the outcome of complete theoretical
+imagination and cannot be tested via cosmological observation. But the actual truth
+is fay beyond all of these criticism, which is the detectable signatures can be obtained
+from the multiverse set up in presence of quantum mechanical entanglement. It really
+helps us to produce at least two causally separated de sitter universe, commonly
+known as the de Sitter bubbles in the present context. But the numbers are not
+restricted in two and most importantly this is actually the starting point of multiverse
+which allows many more causally unrelated de Sitter bubbles.
+Next, we explicitly write down the underlying assumptions of the present work, which
+are appended below point-wise:
+1. To model the present multiverse motivated scenario [18, 62–67] , we consider two
+causally separated patches on the global de Sitter space by assuming that initially
+they are in a maximally entangled pure quantum mechanical state. this particular
+set up we identify as the biverse picture which is the mini version of the original
+multiverse picture.
+3
+
+2. In this theoretical set up further we introduce two observers whose actual purpose is
+to determine the quantum entanglement of a de Sitter universe. We also assume that
+one of the observers is placed inside the a de Sitter bubble and want to determine
+how the signatures of quantum mechanical entanglement with the other de Sitter
+bubble can be visualized by the inside observer. Now the issue is that, the inside
+observer can’t able to see outside region of their own de Sitter bubble. For this reason
+instead of using the total density matrix, one needs to take the partial trace over
+the causally unrelated outside region, which finally give rise to the reduced density
+matrix of the system in the present context. But as an outcome some information
+will be lost during this process and to describe the quantum mechanical state of the
+observer instead of using a pure state one needs to explicitly use a mixed state. This
+scenario is completely different for an observer who is sitting on the other causally
+separated de Sitter bubble because in his frame of reference the quantum aspects
+is described by the pure quantum states. For this reason we need study the effects
+and outcomes of the quantum entanglement between pure and mixed states in the
+present context of discussion.
+3. To perform the computation for a single global de Sitter space picture as well in the
+case of the entangled two de Sitter space, which is the biverse picture we need to
+properly understand the factorization of the Hilbert space in terms of the individual
+constituents which span the subspaces by forming complete orthonormal sets. The
+geometrical structure of the global de Sitter space demands that in the hyperbolic
+open chart one can symmetrically factorize in the left region and in a right region,
+which we have tagged as region L and R during performing the technical computation
+in this paper. Since we have symmetrically factorize the total Hilbert space in the
+region L and R, it is viable to formulate the reduced description either in terms of
+the degrees of freedom appearing in the region L or region R. In our computation we
+take the partial trace over the degrees of freedom appearing in the region R, which
+forms a reduced density matrix in the region L.
+4. If the Hilbert space factorization performed correctly then one can further blindly
+trust the mode decomposition in the region L and R using which we have con-
+structed the Bunch Davies quantum vacuum states in terms of harmonic oscillator
+modes which forms a complete orthonormal basis states. Estimation of the quan-
+tum entanglement in terms of various quantum information theoretic measures are
+also based on this mode decomposition and hence one can rely on the tracing out
+the unwanted information from the bipartite quantum field theoretic set up under
+consideration to construct the reduced density matrix.
+5. To study the outcome of quantum mechanical entanglement we have blindly trusted
+the above mentioned factorization for the second de Sitter space which is spanned
+4
+
+by the well known Bunch Davies vacuum state. For the other, which is the first
+de Sitter bubble we have assumed that the detailed factorization structure is not
+explicitly needed for the computation we are interested to perform in this paper.
+This is because of the fact that we need to take the partial trace operation over the
+first de Sitter vacuum which will remove all unwanted degrees of freedom from the
+quantum information theoretic measures of entanglement we want to compute to
+confirm the existence of quantum entanglement in the biverse picture. Here one can
+do the computation in other way as well where one needs to take the partial trace
+operation with respect to the all degrees of freedom appearing in second de Sitter
+vacuum and properly factorize the first de Sitter vacuum in terms of L and R modes.
+Due to having the symmetrical structure of the set up that we are considering it is
+expected that for both the cases we will have the same physical outcome at the end
+of the computation. We just have taken the first possibility as a choice.
+6. During the biverse construction we have first constructed the maximally entangled
+state which is one of the key ingredients to violate the Bell’s CHSH inequality within
+the present framework. This is a very challenging to construct within the framework
+of de Sitter space time as well as in primordial cosmology set up. We have constructed
+the maximally entangled state which suffice the purpose.
+But this could not be
+possible just having usual interaction in the scalar field theory embedded in the global
+patch of the de Sitter space. The Bell’s CHSH inequality violating pair is created
+in the region L and R with the help of specific type of interaction in the string
+theory originated axion driven scalar field theory. The structure of the interaction
+is controlled by the time dependent axion decay constant and the supersymmetry
+breaking scale. We have assumed that Bell pair is created and originated from the
+string theory originated axionic scalar field theory. It might be possible to create
+such pair from some other theoretical sector as well which we have not considered in
+this paper for the time being.
+7. In the present context the global coordinates can be treated as the closed slicing
+from the point of view of FLRW cosmology. One usually do primordial cosmology,
+particularly inflation [78–116] in the planar coordinate slicing of the de Sitter space.
+By performing coordinate coordinate transformation one can transform the global to
+static and then static to the flat slicing in the planer patch of de Sitter space. For this
+reason whatever results we have obtained in this paper for the global patch of the de
+Sitter space can be directly translated in the planer patch of the de Sitter space, which
+further implies that our derived results hold good for primordial cosmological set up
+constructed out of the effective interaction studied for the string theory originated
+axion scalar field theory. This is obviously an interesting aspect from our computation
+which shows the applicability of our derived results in the vast theoretical framework.
+5
+
+8. The von Neumann and Renyi entropies [14, 15, 117] are the good quantum informa-
+tion theoretic measures of quantum entanglement in the context of bipartite quantum
+field theory designed in terms of pure state. But with the help of mixed state if we
+want to understand the features of an arbitrary bipartite quantum field theoretic
+system then instead of using entropic measures, negativity or its logarithmic version
+would be perfect information theoretic measure of quantum entanglement. Using
+this specific measure we compute the imprints of the quantum entanglement from
+the point of view of two causally separated observers in the open chart of global de
+Sitter space.
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+0.5
+1.0
+1.5
+0.05
+0.10
+0.15
+0.20
+0.25
+0.30
+For single de Sitter Universe
+For two de Sitter Universe (biverse)
+CY3
+A
+AB+XicbZDLSsNAFIZP6q3W9Slm8EiuCqJVnRZ7MZlBXuRtpbJdNIOnUzCzKRQt7EjQtF3Pom7nwbp2kW2vrDwMd/zuGc+b2IM6Ud59sqrK
+1vbG4Vt0s7u3v7B/bhUuFsS0SUIeyo6HFeVM0KZmtNOJCkOPE7b3qQ+r7enVCoWigc9i2g/wCPBfEawNtbAtpOe56P6Y/qUwWU6sMtOxc
+mEVsHNoQy5GgP7qzcMSRxQoQnHSnVdJ9L9BEvNCKdpqRcrGmEywSPaNShwQFU/yS5P0ZlxhsgPpXlCo8z9PZHgQKlZ4JnOAOuxWq7Nzf9q3V
+j7N/2EiSjWVJDFIj/mSIdoHgMaMkmJ5jMDmEhmbkVkjCUm2oRVMiG4y19ehdZFxa1Wru6r5dptHkcRTuAUzsGFa6jBHTSgCQSm8Ayv8GYl1
+ov1bn0sWgtWPnMf2R9/gCPH5L4
+Penrose
+diagram
+Geometry of
+de Sitter
+space
++
++
+Measure
+of quantum
+entanglement
+Measure
+of quantum
+entanglement
+String Theory
+Axion
+Outcome 1
+Outcome 2
+Figure 1.1: Representative diagram of the overall quantum entanglement computation
+and all possible outcomes for single de Sitter universe and two de Sitter universe (biverse)
+obtained from our our analysis.
+In this work, we compute the negativitity measure of quantum entanglement from an
+axionic effective potential which is obtained from Type IIB string theory compactification
+on a Calabi-Yau three fold in presence of NS5 brane. Earlier this model have been studied
+6
+
+T
+=0
+二t, = const.
+A
+B
+L
+R
+C
+Open chartin the framework of inflationary cosmology [118–121]. Since this axions can be treated
+as Bell pair, we technically compute the expression for entanglement negativity from two
+causally unrelated patches of the open chart of the global de Sitter space.
+From the
+quantitative results obtained from our computation we perform further a consistency check
+as well as the comparison of the results obtained in previous refs.[14–16]. Furthermore, to
+understand various unknown fascinating facts regarding the multiverse scenario we extend
+our computation in presence of axionic Bell pair in presence of de Sitter space along
+with the maximally entangled quantum Bunch Davies vacuum state. We find from our
+analysis that in the large scales initially maximally entangled Bunch-Davies state turns
+out to be strongly entangled or weakly entangled depending on the axionic decay constant
+and the supersymmetry breaking scale. We also find the at the small scales the initial
+entanglement can be perfectly recovered. Last but not the least, we provide the necessary
+criteria for generating non vanishing quantum entanglement measure within the framework
+of primordial cosmology due to the string axion. In figure (1.1) representative diagram
+of the overall quantum entanglement computation and all possible outcomes for single de
+Sitter universe and two de Sitter universe (biverse) obtained from our our analysis.
+The organization of this paper is as follows:
+• In Section 2 we briefly review the tools and techniques required to compute nega-
+tivity and logarithmic negativity along with some easy demonstrations for the better
+understanding purpose.
+• In Section 3 we mention the computational strategy for negativity in the hyperbolic
+open chart of the global de Sitter space.
+• In Section 4 we compute negativity by following aforementioned strategy for a spe-
+cific effective potential, Type IIB string compactification originated axion model.
+• In Section 5 we compute entanglement in terms of negativity from two causally
+unrelated de Sitter bubbles, which is determined from the point of view of two ob-
+servers introduced during the calculation. In this section we discuss the possibility
+of having biverse, which is the mini version of the multiverse scenario.
+• Finally in Section 6 we summarize our all findings in this paper along with some
+future prospects of the computations performed in this paper.
+2
+Basics of entanglement negativity and logarithmic negativity
+from Quantum Information Theory
+Within the framework quantum mechanics, particularly in quantum information theory to
+study the imprints and the underlying physical aspects of entanglement various measure
+have been proposed till date. Entanglement negativity and its logarithmic version, which
+7
+
+is commonly known as logarithmic negativity are the very useful quantum information
+theoretic measures of quantum mechanical entanglement. These measures are derived by
+making use of the positive partial transpose criterion for the separability.
+The Peres-
+Horodecki criterion [31, 122–124] is a prerequisite for the separation of the joint density
+matrix of two quantum mechanical systems A and B. The phrase is sometimes referred
+to as the PPT criterion, which stands for positive partial transpose. From the studies
+it was found that in the 2 × 2 and 2 × 3 dimensional cases the condition is sufficient.
+Particularly this is used to decide the separability of mixed quantum states, where the
+well known Schmidt decomposition does not apply. It is important to note that, in higher
+dimensions, this specific concept gives inconclusive result, and one should perform more
+advanced tests, like entanglement witnesses, which describes a functional that distinguishes
+a specific entangled state from the separable ones. In refs. [31, 122–124], i t was explicitly
+shown that this measures are entanglement monotone and hence treated to be a proper
+measure of quantum entanglement. In the following we give a brief overview on the topic
+of entanglement negativity and logarithmic negativity.
+Now let’s take a look at a quantum system that can be described by A and B. The
+direct products of the Hilbert spaces of the subsystems A and B define the corresponding
+total Hilbert space of the system i.e. H = HA ⊗ HB. Here H represents the Hilbert space
+of the total system, HA and HB represent the Hilbert spaces of the subsystems A and B
+respectively.
+Further consider a pure quantum mechanical state, by applying the Schmidt decompo-
+sition one can write:
+|Ψ⟩ =
+�
+m
+�
+λm|m⟩A ⊗ |m⟩B,
+(2.1)
+where λm corresponds to the observed probability of the any general pure m-th state and
+satisfy the following constraint condition:
+�
+m
+λm = 1,
+(2.2)
+which physically implies that the total observed probability of the process, which is ob-
+tained by summing over all possible pure states has to be conserved in the present context
+of discussion.
+Now, it is important to note if we are interested in the mixed states then to technically
+describe the behaviour of the subsystem inclusion of the concept of reduced density matrix
+is extremely important and this is actually described by the reduced density operator of
+the subsystem. In the present description we consider two subsystems A and B, which are
+equally likely and both of them carry same weight in the present construction. For this
+reason to describe the subsystem either we will talk about the description in terms of A
+or B. Let us say for the time being that we are interested to know about the underlying
+physics of the subsystem A which can be obtained by taking the partial trace operation
+8
+
+on the information of the subsystem B. This process will finally give rise to the following
+reduced density matrix of the subsystem A, which is given by:
+ρA = TrB|Ψ⟩⟨Ψ| =
+�
+m
+λm|m⟩AA⟨m|.
+(2.3)
+Further, utilizing this reduced density matrix of the subsystem A one can explicitly com-
+pute the expression for the von Neumann entropy, which is given by:
+S = −Tr [ρA ln ρA] = −
+�
+m
+λm ln λm.
+(2.4)
+Technically the above mentioned equation was introduced to describe the first entangle-
+ment measure in quantum information theory. In the specific situation, when there is no
+quantum entanglement, then in terms of the probability we can write:
+λm =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+if m = 1
+0
+if m ̸= 1
+(2.5)
+In the above mentioned both the cases the measure of entanglement entropy vanish ex-
+plicitly. If such a situation appears in a particular physical systems, then we can comment
+that there would be no quantum mechanical entanglement for that type of systems. On the
+other hand, if we find some physical systems where the probability lie within the window
+0 < λm < 1∀m then the corresponding entanglement entropy measure is non-zero and it is
+treated to be good measure within the framework of quantum information theory. But one
+word of caution is that, the entanglement entropy measure sometimes gives inconclusive
+result. For an example, if we are interested to describe the strictly classical correlation in
+terms of mixed state then the entanglement entropy measure gives non-zero result, which
+is itself a surprising fact. In this specific type of situation entanglement entropy mea-
+sure within the framework of quantum information theory fails to distinguish between the
+impacts of quantum mechanical correlations and classical correlations.
+Then obviously a natural question comes to a physicists mind that what is the way
+out of this situation? Is it possible to define more powerful entanglement measure in the
+present framework? Answer to all of these questions are Yes, it is possible to define such
+measures which can conclusively distinguish the quantum and classical effects in the corre-
+lation functions computed from the underlying physical theory. Based on the separability
+criterion entanglement negativity and logarithmic negativity measures are defined which
+actually serve the purpose.
+Let us now give a brief outline on the connection between separability and quantum
+entanglement, and its usefulness in the present context of discussion. A quantum mechan-
+9
+
+ical state is considered to be separable iff the density matrix of the total system can be
+expressed in terms of a tensor or outer products of the individual density matrices belong
+to the each subsystems under consideration. Technically this statement can be written as:
+ρ =
+�
+m
+λm
+�
+ρA
+m ⊗ ρB
+m
+�
+where
+λm ≥ 0
+∀m.
+(2.6)
+Here ρ represents the density matrix of the total system under consideration. For the m-th
+state corresponding to the subsystems A and B the density matrices are defined as:
+ρA
+m := |m⟩AA⟨m|
+and
+ρB
+m := |m⟩BB⟨m|.
+(2.7)
+Hence in terms of the information coming from the subsystems A and B, the density
+matrix for the total system can be recast as:
+ρ =
+�
+m
+λm (|m⟩AA⟨m| ⊗ |m⟩BB⟨m|)
+where
+λm ≥ 0
+∀m.
+(2.8)
+One can further generalize the structure of the density matrix by considering both the
+contributions from entangled and non-entangled states, which is given by the following
+expression:
+ρ =
+�
+m
+�
+n
+�
+p
+�
+q
+Dmnpq (|m⟩AA⟨n| ⊗ |p⟩BB⟨q|)
+where
+Dmnpq ≥ 0
+∀m, n, p, q, (2.9)
+where Dmnpq represents a more general coefficient which capture both the effects from
+entangled and non-entangled quantum states.
+Let’s investigate a partial transposition
+operation with respect to the subsystem A in light of the new generation definition of the
+total density matrix, which results in the following expression:
+ρTA =
+�
+m
+�
+n
+�
+p
+�
+q
+Dmnpq
+�
+(|m⟩AA⟨n|)TA ⊗ |p⟩BB⟨q|
+�
+=
+�
+m
+�
+n
+�
+p
+�
+q
+Dmnpq (|n⟩AA⟨m| ⊗ |p⟩BB⟨q|) .
+(2.10)
+Following a partial transpose operation with regard to the subsystem A, we obtain the
+following results for the non-entangled quantum state:
+ρTA =
+�
+m
+λm
+�
+(|m⟩AA⟨m|)TA ⊗ |m⟩BB⟨m|
+�
+=
+�
+m
+λm (|m⟩AA⟨m| ⊗ |m⟩BB⟨m|)
+= ρ,
+(2.11)
+10
+
+which corresponds to the fact that the total density matrix remains unchanged. Here since
+for the non-entangled state λm∀m, this directly implies that ρTA ≥ 0. This also confirms
+that if after performing a partial transpose operation on the total system has at least one
+negative eigenvalue then the system cannot be described in terms of the above mentioned
+form stated in eqn (2.8) and consequently the underlying quantum state considered in this
+discussion has to be entangled. This is actually very interesting outcome coming from the
+present computation in support of quantum entanglement.
+Utilizing these facts one step forward the definition of an quantum information theoretic
+entanglement measure, entanglement negativity is proposed, which is given by:
+N =
+�
+λm<0
+|λm|,
+(2.12)
+where in this definition summation over all negative eigenvalues are explicitly taken into
+account. From this definition, we can clearly see that when we have N = 0, there is no
+quantum entanglement in the system. Apart from having a very good physical thought
+behind the construction of the entanglement negativity measure, unfortunately it turns
+out that this is not an additive measure and most importantly not at all suitable for the
+description of many body or multi-subsystem appearing within the framework of quantum
+field theory. Hence, to give a more physically applicable quantum information theoretic
+measure another powerful quantity has been introduced, which is known as logarithmic
+negativity and is treated to be most improved version of the entanglement negativity mea-
+sure in the present context of discussion.
+Let us now discuss in detail that how one can technically define the logarithmic negativity
+by making use of the background physical facts discussed in the present context. To define
+this quantity, first of all let us introduce the trace norm of the partial transposed version
+of the total density matrix over the subsystem A, which is described by the following
+expression:
+||ρTA|| = Tr
+�
+(ρTA)† ρTA
+=
+�
+m
+|λm|
+=
+� �
+λm>0
+|λm| +
+�
+λm<0
+|λm|
+�
+=
+�
+N +
+�
+λm>0
+|λm|
+�
+= (2N + 1) .
+(2.13)
+Here in the list line of the above expression to write down corresponding trace norm in
+11
+
+terms of the quantum entanglement negativity measure we have utilized the following sets
+of useful constraints:
+Tr (ρ) = 1,
+Tr
+�
+ρTA�
+= 1,
+�
+m
+λm = 1.
+(2.14)
+Then the logarithm of the trace norm of the of the total density matrix over the subsystem
+A is identified to be logarithmic negativity, which is given by the following expression:
+LN = ln
+�
+||ρTA||
+�
+= ln (2N + 1) .
+(2.15)
+This implies the fact that, when N ̸= 0, then LN ̸= 0 and the corresponding quantum
+state is considered to be entangled.
+Let us now consider a special case where we are dealing with the pure quantum mechan-
+ical state. In this specific case our next objective is to explicitly compute the expression
+for the logarithmic negativity. To serve this purpose we use the well known Schmidt de-
+composition technique for pure quantum state, using which we can write:
+|Ψ⟩ =
+�
+m
+�
+λm (|m⟩A ⊗ |m⟩B) .
+(2.16)
+Then using this representation of the pure quantum state one can further define the expres-
+sion for the density matrix for the total system, which is given by the following expression:
+ρ = |Ψ⟩⟨Ψ| =
+�
+m
+�
+n
+�
+λmλn ((|m⟩A ⊗ |m⟩B) (A⟨n| ⊗ B⟨n|)) .
+(2.17)
+Further, taking the partial transpose operation on the above mentioned density matrix of
+the total system over the subsystem A, we get the following expression:
+ρTA =
+�
+m
+�
+n
+�
+λmλn ((|m⟩A ⊗ |m⟩B) (A⟨n| ⊗ B⟨n|))TA
+=
+�
+m
+�
+n
+�
+λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|))
+=
+�
+m
+�
+n,m=n
+�
+λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|))
++
+�
+m
+�
+n,m̸=n
+�
+λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|))
+=
+�
+m
+λm ((|m⟩AA⟨m|) ⊗ (|m⟩AA⟨m|))
++
+�
+m
+�
+n,m̸=n
+�
+λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|)) .
+(2.18)
+12
+
+For the sake of simplicity, to diagonalize the structure of the total density matrix we
+further introduce a new basis for the pure quantum states, in which two new state vectors
+are defined by the following expressions:
+|Ψ+
+mn⟩ : =
+1
+√
+2 [(|m⟩A ⊗ |n⟩B) + (|n⟩A ⊗ |m⟩B)]
+for
+m < n,
+(2.19)
+|Ψ−
+mn⟩ : =
+1
+√
+2 [(|m⟩A ⊗ |n⟩B) − (|n⟩A ⊗ |m⟩B)]
+for
+m < n.
+(2.20)
+It is very easy to check the following two constraints are always satisfied by the new basis
+state vectors |Ψ+
+mn⟩ and |Ψ−
+mn⟩, which are given by:
+(A⟨m| ⊗ B⟨m|) |Ψ+
+mn⟩ =
+1
+√
+2
+�
+�(A⟨m| ⊗ B⟨m|) (|m⟩A ⊗ |n⟩B)
+�
+��
+�
+=0
++ (A⟨m| ⊗ B⟨m|) (|n⟩A ⊗ |m⟩B)
+�
+��
+�
+=0
+�
+�
+= 0,
+(2.21)
+(A⟨m| ⊗ B⟨m|) |Ψ−
+mn⟩ =
+1
+√
+2
+�
+�(A⟨m| ⊗ B⟨m|) (|m⟩A ⊗ |n⟩B)
+�
+��
+�
+=0
+− (A⟨m| ⊗ B⟨m|) (|n⟩A ⊗ |m⟩B)
+�
+��
+�
+=0
+�
+�
+= 0.
+(2.22)
+This implies the fact that both the new basis state vectors |Ψ+
+mn⟩ and |Ψ−
+mn⟩ are orthogonal
+to the state |m⟩A ⊗ |m⟩B, which is obviously a very helpful information for the further
+construction. Then the partial transpose with respect to subsystem A for the total density
+matrix as stated in eqn (2.18) can be written in the diagonalized basis in terms of the two
+state vectors |Ψ+
+mn⟩ and |Ψ−
+mn⟩ as:
+ρTA =
+�
+m
+λm|m⟩AA⟨m| +
+�
+m
+�
+n,m 0 for this
+construction.
+2. The part |Ψ+
+mn⟩⟩Ψ+
+mn| has the eigenvalues λmλn for all values of m and n.
+Here
+λm > 0 and λn > 0, then λmλn > 0 for this construction.
+3. The part |Ψ−
+mn⟩⟩Ψ−
+mn| has the eigenvalues −λmλn for all values of m and n. Here
+λm > 0 and λn > 0, then −λmλn < 0 for this construction. So the negative eigenval-
+ues appear in this computation, which is clearly the indication of having quantum
+mechanical entanglement in the present framework. It is important to note that, if
+13
+
+in these sets of eigenvalues at least two of the λm∀m > 2 ̸= 0, then the negative
+eigenvalues always appear in this computation.
+Then, in the new diagonalized basis the trace norm can be further computed as:
+||ρTA|| =
+��
+m
+λm + 2
+�
+m
+�
+n,m 0
+Figure 3.3: Graphical behaviour of the axion effective potential with respect to the field
+obtained from Type IIB String Theory compactification for stringy parameter b < 0 and
+b > 0.
+22
+
+= µ3fa
+�� φ
+fa
+�
++ b cos
+� φ
+fa
+��
+.
+(3.19)
+In figure (3.3(a)) and figure (3.3(b)) we have plotted the behaviour of the dimensionless
+axion effective potential V (φ)/µ3fa with respect to the dimensionless axion field variable
+φ/fa for the stringy parameter b > 0 and b > 0. The precise definition of the stringy
+parameter b is written in the later part of this paper explicitly. Both the behaviour are
+useful to understand the contribution of the linear and non-perterbative periodic part in
+the total axion effective potential.
+In this effective potential µ3 represents the coupling parameter of linear interaction
+which is associated with the underlying theoretical scale, can be expressed as:
+Scale of effective potential :
+µ3 =
+1
+faα
+′2gs
+exp(4A0) + R2m4
+SUSY
+faα
+′L4
+exp(2A0), (3.20)
+where exp(A0) represents the warp factor of the lower portion of the Klebanov-Strassler
+throat geometry, R is the radius which stabilized the 5 brane and antibrane in the cor-
+responding string theory construction, the only mass scale involved in this construction
+is mSUSY , which actually represents the underlying supersymmetry breaking scale in this
+specific set up, the Regge slope is α
+′ which is proportional to the inverse string tension,
+string coupling is gs and finally L6 represents the world volume. Here first part of the
+effective potential breaks the shift symmetry and the rest of the part preserves the sym-
+metry φ → φ + 2πfa. Here fa quantifies the axionic decay parameter, which is in general
+conformal time dependent (τ) and we have chosen the following useful profile:
+Axion decay constant profile :
+fa =
+�
+�
+�
+�100 −
+80
+1 +
+�
+ln τ
+τc
+�2 H,
+(3.21)
+which was used in refs. [68–70] to validate Bell’s CHSH inequality violation in early universe
+cosmology. Here H is the Hubble parameter, and τc is the characteristic time scale at which
+we have fa = 2
+√
+5H, which is almost a constant in the background geometrical set up we
+are considering. Now since the whole problem we are going to solve in terms of the physical
+time variable t in both the regions R and L it is necessarily to find out the relationship
+between the conformal time scale τ and the physical time scale t. Here we find the following
+connecting relationship:
+Dimensionless conformal time scale :
+τ
+τc
+= 1 +
+ln
+�
+tanh
+� t
+2
+�
+tanh
+� tc
+2
+�
+�
+ln
+�
+tanh
+�tc
+2
+��,
+(3.22)
+23
+
+0
+2
+4
+6
+8
+10
+5
+6
+7
+8
+9
+10
+(a) For conformal time
+1
+2
+3
+4
+5
+6
+7
+8
+9
+(b) For physical time
+Figure 3.4: Schematic behaviour of the dimensionless axion decay constant with the
+conformal and physical time scale.
+24
+
+where τc is given by the following expression:
+Characteristic time scale :
+τc = H ln
+�
+tanh
+�tc
+2
+��
+.
+(3.23)
+For this reason the given profile of the axion decay parameter can be further written in
+terms of the physical time t as:
+Axion decay constant profile :
+fa =
+�
+�
+�
+�
+�100 −
+80
+1 +
+�
+ln
+�
+ln[tanh( t
+2)]
+ln[tanh( tc
+2 )]
+��2 H,
+(3.24)
+where tc represents the characteristic time scale in the physical time scale which basically
+τc in the conformal time scale. In figure (3.4(a)) and figure (3.4(b)) we have plotted the
+behaviour of the dimensionless axion decay parameter fa/H with respect to conformal as
+well as the physical time scale. Both the plots almost depict similar feature in both the
+time scales. For this reason the chosen profile is extremely useful for our analysis as it is
+not changing by changing the definition of the associated time scales.
+Additionally, to write down the effective potential in an simplest form we further intro-
+duce a new dimensionless quantity, b, which is defined as:
+New dimensionless parameter :
+b = Λ4
+G
+µ3fa
+.
+(3.25)
+To define the new quantity b, a characteristic scale has been introduced, ΛG, which is given
+by:
+Characteristic scale :
+ΛG =
+�
+mSUSY L3
+√
+α
+′gs
+exp (−cSinst)
+�
+��
+�
+Instantonic decay
+.
+(3.26)
+Here Sinst represents the instantonic action which finally give rise present structure of the
+effective potential within the framework of string theory, the instanton coupling parameter
+c ∼ O(1) which is actually treated to be constant term in this computation. Finally one
+can able fix the form of the warp factor in terms of all the stringy parameters, which is
+given by:
+Warp factor :
+exp(A0) =
+�
+ΛG
+mSUSY
+�2 L
+R
+�
+α
+′gs =
+L4
+mSUSY R
+�
+α
+′
+gs
+exp (−cSinst)
+�
+��
+�
+Instantonic decay
+,(3.27)
+which further corresponds to the following expression for the coupling parameter µ3, which
+25
+
+is given by:
+Scale in terms of instantonic decay :
+µ3 = g2
+s
+fa
+�
+ΛG
+mSUSY
+�8 �L
+R
+�4
++ α
+′g2
+sR2m4
+SUSY
+faL4
+�
+ΛG
+mSUSY
+�4 �L
+R
+�2
+=
+1
+fag3
+s
+L16
+m4
+SUSY R4 exp (−4cSinst)
+�
+��
+�
+Faster decay
++m2
+SUSY L4
+fags
+exp (−2cSinst)
+�
+��
+�
+Slower decay
+,
+(3.28)
+which is obviously a necessary input to fix the corresponding overall scale of effective
+potential derived from string theory.
+Last but not the least, one can further able to
+compute the expression for the string scale associated with the problem, in terms of the
+other stringy parameters as:
+0
+2
+4
+6
+8
+10
+0
+2
+4
+6
+8
+10
+12
+14
+Figure 3.5: Schematic behaviour of the approximated axion effective potential obtained
+from Case A.
+String scale :
+Ms =
+1
+√
+α
+′ exp(A0) =
+�
+ΛG
+mSUSY
+�2 L
+R
+√gs =
+L4
+mSUSY R√gs
+exp (−cSinst)
+�
+��
+�
+Instantonic decay
+(3.29)
+The representative action along with the effective potential is a very important input for
+the rest of the computation performed in this paper.
+Here the following two physical approximation can be used to simplify the problem in
+a very simpler language:
+26
+
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(a) For b < 0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(b) For b > 0
+Figure 3.6: Schematic behaviour of the truncated axion effective potential obtained from
+Case B with stringy parameter b < 0 and b > 0.
+27
+
+1. Case A:
+This is the specific situation where we only consider the part of the effective potential
+which breaks the shift symmetry φ → φ + 2πfa, which is given by:
+Shift symmetry breaking effective potential : V (φ) ≈ µ3fa
+� φ
+fa
+�
+. (3.30)
+In the present computational purpose, particularly in the field equation the above
+mentioned potential contributes as a source term in terms of µ3 which basically fix
+the overall energy scale in terms of the stringy model parameters. In figure (3.5),
+the corresponding shift symmetry breaking part of the axion effective potential is
+plotted, which shows linear behaviour.
+2. Case B:
+In this specific case we consider the small field limiting approximation in which the
+dimensionless field variable φ
+fa
+≪ 1. For this reason one can approximate the shift
+symmetry φ → φ + 2πfa preserving non-perturbative contribution as:
+cos
+� φ
+fa
+�
+≈ 1 − 1
+2
+� φ
+fa
+�2
+,
+(3.31)
+where due to having the truncation at the quadratic order term at the end t.he
+previously mentioned shift symmetry is broken. In prince one can take the full non-
+perturbative term, but at the level of eqn of motion and later deling with such terms
+are extremely difficult in the field theory language. In the present computational
+purpose the higher order terms can be neglected due to having small field limit with-
+out loosing any generality, on the cost of breaking the shift symmetry. Consequently
+in the present case the effective potential can be approximated as:
+Truncated effective potential :
+V (φ) ≈ Λ4
+G + µ3fa
+� φ
+fa
+�
+− Λ4
+G
+2
+� φ
+fa
+�2
+= µ3fa
+�
+b +
+� φ
+fa
+��
+− m2
+eff
+2
+� φ
+fa
+�2
+= µ3fa
+�
+b +
+� φ
+fa
+�
+− b
+2
+� φ
+fa
+�2�
+, (3.32)
+where we define the effective mass in terms of stringy parameters by the following
+expression:
+Effective mass :
+m2
+eff = µ3bfa = Λ4
+G =
+�mSUSY L3
+√
+α
+′gs
+�2
+exp (−4cSinst)
+�
+��
+�
+Instantonic decay
+.
+(3.33)
+28
+
+In figure (3.6(a)) and figure (3.6(b)), the corresponding trucated axion effective po-
+tential is plotted, which shows deviation from the linear behaviour for both the
+signatures of stringy parameter b < 0 and b > 0 for small field limit where φ ≪ fa
+approximation works perfectly well.
+We are now interested in the field equations of axion which can be obtained by varying
+the effective action stated in equation (3.18) with respect to the axion field itself, give rise
+to the following expressions for the above mentioned two cases:
+For Case A :
+�
+1
+a3(t)∂t
+�
+a3(t)∂t
+�
+−
+1
+H2a2(t)
+ˆL2
+H3
+�
+φ = µ3,
+(3.34)
+For Case B :
+��
+1
+a3(t)∂t
+�
+a3(t)∂t
+�
+−
+1
+H2a2(t)
+ˆL2
+H3
+�
++ m2
+eff
+�
+φ = µ3 = m2
+efffa
+b
+,
+(3.35)
+where the scale factor a(t) for global de Sitter space is given by the following expression:
+Scale factor
+a(t) = 1
+H sinh t
+where
+t =
+�
+tR(in R), tL(in L)
+�
+. (3.36)
+In this context we introduce a Laplacian operator ˆL2
+H3 in hyperbolic slice H3 which is
+defined as:
+Laplacian operator :
+ˆL2
+H3 =
+1
+sinh2 r
+�
+∂r
+�
+sinh2 r ∂r
+�
++
+1
+sin θ∂θ (sin θ ∂θ) +
+1
+sin2 θ∂2
+Φ
+�
+.
+(3.37)
+which has the following properties:
+1. Laplacian operator ˆL2
+H3 satisfies the following eigenvalue equation:
+Eigenvalue equation :
+ˆL2
+H3Yplm(r, θ, Φ) = λpYplm(r, θ, Φ),
+(3.38)
+with quantum number p dependent eigenvalue:
+Eigenvalue :
+λp = −(1 + p2).
+(3.39)
+2. Eigenfunction of the Laplacian operator ˆL2
+H3 is Yplm(r, θ, Φ) which is defined as:
+Eigenfunction :
+Yplm(r, θ, Φ) = Γ (ip + l + 1)
+Γ (ip + 1)
+p
+√
+sinh r
+P
+−(l+ 1
+2)
+(ip− 1
+2) (cosh r) Ylm(θ, Φ),
+(3.40)
+29
+
+where p, l and m are three quantum numbers associated with the above mentioned
+eigenfunction. Here Ylm(θ, Φ) is the well known spherical harmonics which is de-
+pendent on two quantum numbers l and m and on two angular coordinates as it
+defined in S2 and last but not the least the radial solution is characterized by the
+function, P
+−(l+ 1
+2)
+(ip− 1
+2) (cosh r), which is the well known associated Legendre polynomial
+in this context.
+After quantization the classical solution obtained from the field equation is promoted in
+terms of the quantum operator and by following the well known canonical quantization
+technique the corresponding quantum operator can be written in terms of the creation
+and annihilation operators along with basis Bunch Davies mode function, which is nothing
+but the classical counterpart of the solution of the field equation. The total quantum
+solution for the axion field operator for both the Case A and Case B can be written in
+the following compact form:
+Quantum Mode function :
+�φ(t, r, θ, Φ) =
+� ∞
+0
+dp
+�
+σ=±1
+p−1
+�
+l=0
++l
+�
+m=−l
+[aσplmUσplm(t, r, θ, Φ)
++a†
+σplmU ∗
+σplm(t, r, θ, Φ)
+�
+∀ t = (tR, tL).
+(3.41)
+In this context the Bunch-Davies vacuum is defined by the following expression:
+Bunch − Davies vacuum : aσplm|BD⟩ = 0
+∀σ = (+1, −1); 0 < p < ∞;
+l = 0, · · · , p − 1, m = −l, · · · , +l.
+(3.42)
+Here Uσplm(t, r, θ, Φ) represents the classical solution of the field equation for the axion
+for both the Case A and Case B which forms the complete basis. After quantization
+this basis functions, which is sometimes referred as the mode functions are tagged by the
+three quantum numbers, p, l and m, which are appearing as an outcome of the canonical
+quantization of the modes in the present context of discussion. The solution of the mode
+functions can be obtained by solving the corresponding axion field equations, which are
+basically solving partial differential equations using the well known method of separation
+of variables for the Case A and Case B. This finally give rise to the following expression
+for both the mentioned possibilities:
+Bunch − Davies Mode function : Uσplm(t, r, θ, Φ) =
+1
+a(t)χp,σ(t)Yplm(r, θ, Φ)
+=
+H
+sinh tχp,σ(t)Yplm(r, θ, Φ). (3.43)
+Here it is important to note that the time dependent part of the mode function χp,σ(t)
+30
+
+only works for the positive frequencies and hence forms a complete set in the present
+theoretical set up. This part of the solution is dependent on the momentum p which is
+actually the wave number and in the quantum mechanical picture it is playing the role of
+a quantum number as clearly mentioned earlier. Particularly this time dependent part of
+the wave function is extremely significant for the present discussion as we are interested in
+the dynamical behaviour of the mode function in the R and L region of the open chart of
+global de Sitter space time. This particular part will going to control the behaviour of the
+quantum entanglement measure in the mentioned space time. If we can able to extract the
+hidden features from the time dependent part of the field equations from the Case A and
+Case B then half of the computational job is done. Now since in both the cases we are
+dealing with inhomogeneous second order differential equations the total solution can be
+written as the sum of complementary part (χ(c)
+p,σ(t)) and particular integral part (χ(p)
+p,σ(t))
+i.e.
+Total time dependent solution : χp,σ(t) =
+χ(C)
+p,σ (t)
+� �� �
+Complementary part
++
+χ(P)
+p,σ (t)
+� �� �
+Particular integral part
+.
+(3.44)
+Here the complementary part (χ(c)
+p,σ(t)) of the time dependent solution of the mode function
+satisfy the homogeneous part of the field equation for the Case A and Case B can be
+written as:
+Complementary part of the field equation :
+0 =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+∂2
+t + 3 coth t ∂t + (1 + p2)
+sinh2 t
+�
+χ(C)
+p,σ (t)
+for Case A
+�
+∂2
+t + 3 coth t ∂t + (1 + p2)
+sinh2 t + m2
+eff
+H2
+�
+χ(C)
+p,σ (t)
+for Case B.
+(3.45)
+The solution of the above equations for the Case A and Case B combiningly can be
+written as:
+Complementary solution :
+31
+
+χ(c)
+p,σ(t) =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+2 sinh πp
+�
+(eπp − iσ e−iπν)
+Γ
+�
+ν + 1
+2 + ip
+� Pip
+(ν− 1
+2)(cosh tR)
+−(e−πp − iσ e−iπν)
+Γ
+�
+ν + 1
+2 − ip
+� P−ip
+(ν− 1
+2)(cosh tR)
+��
+σ=±1
+for R
+�
+σ
+2 sinh πp
+�
+(eπp − iσ e−iπν)
+Γ
+�
+ν + 1
+2 + ip
+� Pip
+(ν− 1
+2)(cosh tL)
+−(e−πp − iσ e−iπν)
+Γ
+�
+ν + 1
+2 − ip
+� P−ip
+(ν− 1
+2)(cosh tL)
+��
+σ=±1
+for L,
+(3.46)
+where we introduce a new parameter ν, which is known as mass parameter are defined for
+Case A and Case B as:
+Mass parameter : ν =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+3
+2
+for Case A
+�
+9
+4 − m2
+eff
+H2
+=
+�
+9
+4 − µ3b
+faH2 =
+�
+9
+4 −
+Λ4
+G
+f 2
+aH2
+for Case B.
+(3.47)
+Here the solution has following properties:
+1. Here σ = ±1 for R and L regions.
+2. In the Case B if we consider meff ≪ H, the mass parameter is approximated as
+ν = 3/2 which is exactly the Case A.
+3. In the Case B if we consider meff =
+√
+2H, then the mass parameter is given by
+ν = 1/2 and this is the case of conformally coupling.
+4. In the Case B if we consider meff <
+√
+2H, the mass parameter is lying within the
+range, 1/2 < ν < 3/2, which is the low mass region.
+5. In the Case B if we consider meff = H, then the mass parameter is given by,
+ν = 5/2, which is the intermediate mass region.
+6. In the Case B if we consider meff ≫ H, then the mass parameter is given by,
+ν = i
+�
+m2
+eff
+H2 − 9
+4 ≈ imeff
+H , which is the high mass region.
+7. In the Case B if we consider
+√
+2H < meff < 3H/2, then the mass parameter ν is
+lying within the range, 0 < ν < 1/2.
+8. Complementary part of the solution satisfy, χ(C)
+p,σ (t) = χ(C)
+−p,σ(t).
+32
+
+9. Here one can define the following Klien-Gordon inner product in terms of the com-
+plementary part of the time dependent fields equation:
+Klien − Gordon product :
+��
+χ(C)
+p,σ (t), χ(C)
+p,σ′(t)
+��
+KG = Npσδσσ′,
+(3.48)
+where Npσ is the normalization constant, which is given by:
+Normalization :
+Npσ = 4
+π
+�
+cosh πp − σ cos
+�
+ν − 1
+2
+��
+|Γ
+�
+ν + 1
+2 + ip
+�
+|2
+∀σ = ±1.
+(3.49)
+This will going to be extremely useful to further fix the overall normalization factor
+of the complementary part of the time dependent contribution of the corresponding
+mode function in the present context of discussion.
+On the other hand the particular integral part satisfy the following time dependent part
+of the field equation:
+Particular part of the field equation :
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+∂2
+t + 3 coth t ∂t + (1 + p2)
+sinh2 t
+�
+χ(P)
+p,σ (t) = µ3
+for Case A
+�
+∂2
+t + 3 coth t ∂t + (1 + p2)
+sinh2 t + m2
+eff
+H2
+�
+χ(P)
+p,σ (t) = m2
+efffa
+b
+for Case B.
+(3.50)
+Here in both the cases we have inhomogeneous differential equations and the inhomoge-
+neous contributions in both the cases playing the role of source terms in the present context
+of discussion. Since we have chosen a specific time dependent profile of the axion decay
+parameter to prepare Bell CHSH inequality violating pair for the Case B the source term
+in this particular case will be time dependent in a very specific fashion.
+It is a well known fact that apart from having any type of structure of the source con-
+tribution one can able to solve the inhomogeneous differential equation using the Green’s
+function method. This leads to the following solution of the particular integral part for
+both the cases considered for our analysis in this paper:
+Particular solution : χ(P)
+p,σ (t) =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+dt
+′ Gσ(t, t
+′) µ3
+for Case A
+�
+dt
+′ Gσ(t, t
+′) m2
+efffa(t
+′)
+b
+for Case B.
+(3.51)
+where Gσ(t, t
+′) is the Green’s function for axion field, which is given by the following
+33
+
+general expression:
+Green′s function : Gσ(t, t
+′) = sinh2 t
+∞
+�
+n=0
+1
+(p2 − p2
+n)χ(C)
+pn,σ(t)χ(C)
+pn,σ(t
+′)
+where
+σ = ±1.
+(3.52)
+Further, we use the following new notations to express the total solution of the time
+dependent part of the field equation:
+New notation : Pq = Pip
+(ν− 1
+2)(cosh tq),
+Pq,n = Pipn
+(ν− 1
+2)(cosh tq)
+where
+q = (R, L) .
+(3.53)
+As a result, the solution’s entire time-dependent component can be reduced to the
+following:
+χp,σ(t) =
+�
+q=R,L
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+Np
+�
+ασ
+q Pq + βσ
+q Pq∗�
+�
+��
+�
+Complementary solution
++
+∞
+�
+n=0
+1
+Npn (p2 − p2
+n)
+�
+¯ασ
+q,n ¯Pq,n + ¯βσ
+q,n ¯P∗q,n�
+�
+��
+�
+Particular solution
+�
+�
+�
+�
+�
+�
+�
+�
+�
+∀σ = ±1 ,
+(3.54)
+where we use two new redefined symbol for the further simplification purpose in the present
+computation:
+P
+q,n = sinh2 t Pq,n ×
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+dt
+′ χ(C)
+pn,σ,q(t
+′) µ3
+for Case A
+�
+dt
+′ χ(C)
+pn,σ,q(t
+′) m2
+efffa(t
+′)
+b
+for Case B.
+(3.55)
+Np = 2 sinh πp
+�
+Npσ = 4 sinh πp
+��
+cosh πp − σ cos
+�
+ν − 1
+2
+��
+π|Γ
+�
+ν + 1
+2 + ip
+�
+|2
+∀σ = ±1, q = (R, L)
+(3.56)
+Npn = 2 sinh πpn
+�
+Npnσ = 4 sinh πpn
+��
+cosh πpn − σ cos
+�
+ν − 1
+2
+��
+π|Γ
+�
+ν + 1
+2 + ipn
+�
+|2
+∀σ = ±1, q = (R, L)
+(3.57)
+In the above mentioned solution as mentioned in equation (3.54), we define few expansion
+coefficients, which are given by:
+Expansion coefficients :
+ασ
+R = 1
+σασ
+L = (eπp − iσe−iπν)
+Γ
+�
+ν + 1
+2 + ip
+� , ασ
+R,n = 1
+σασ
+L,n = (eπpn − iσe−iπν)
+Γ
+�
+ν + 1
+2 + ipn
+�
+(3.58)
+34
+
+βσ
+R = 1
+σβσ
+L = −(e−πp − iσe−iπν)
+Γ
+�
+ν + 1
+2 − ip
+� ., βσ
+R,n = 1
+σβσ
+L,n = −(e−πpn − iσe−iπν)
+Γ
+�
+ν + 1
+2 − ipn
+� .
+(3.59)
+Further the solution written in equation (3.54) can be written in matrix notation for
+the further simplification:
+Matrix solution :
+χI =
+1
+Np
+MI
+JPJ
+�
+��
+�
+Complementary solution
++
+∞
+�
+n=0
+1
+Np,(n)
+�
+M(n)
+�I
+J PJ
+(n)
+�
+��
+�
+Particular solution
+(3.60)
+where we define two square matrices for the complementary and particular part as:
+MI
+J =
+�
+�
+�
+�
+�
+ασ
+q
+βσ
+q
+βσ∗
+q
+ασ∗
+q
+�
+�
+�
+�
+� ,
+�
+M(n)
+�I
+J =
+�
+�
+�
+�
+�
+¯ασ
+q,n
+¯βσ
+q,n
+¯βσ∗
+q,n
+¯ασ∗
+q,n
+�
+�
+�
+�
+� ,
+σ = ±1, q = (R, L), (I, J) = 1, 2, 3, 4. (3.61)
+and similarly the useful column matrices can be expressed as:
+PJ
+(n) =
+�
+�
+�
+�
+�
+Pq,n
+Pq∗,n
+�
+�
+�
+�
+� ,
+χI =
+�
+�
+�
+�
+�
+χσ(t)
+χ∗
+σ(t),
+�
+�
+�
+�
+� ,
+PJ =
+�
+�
+�
+�
+�
+Pq
+Pq∗,
+�
+�
+�
+�
+�
+σ = ±1, q = (R, L), (I, J) = 1, 2, 3, 4.
+(3.62)
+Also we introduce another new symbol for the normalization factor Np,(n) as obtained for
+the particular part of the solution, which is given by:
+Np,(n) = 2 sinh πpn
+�
+Npnσ
+�
+p2 − p2
+n
+�
+= 4 sinh πpn
+�
+p2 − p2
+n
+�
+��
+cosh πpn − σ cos
+�
+ν − 1
+2
+��
+π|Γ
+�
+ν + 1
+2 + ipn
+�
+|2
+∀σ = ±1, q = (R, L). (3.63)
+Hence the Bunch-Davies mode function can be rewritten as:
+H
+sinh taIχI =
+H
+sinh taI
+�
+1
+Np
+MI
+JPJ +
+∞
+�
+n=0
+1
+Np,(n)
+�
+M(n)
+�I
+J PJ
+(n)
+�
+,
+where aI = (aσ, a†
+σ). (3.64)
+Further we define:
+bJ = a(C)
+I
+MI
+J,
+bJ(n) = a(P)
+I(n)
+�
+M(n)
+�I
+J ,
+where a(C)
+I
+= (a(C)
+σ , a(C)†
+σ
+), a(P)
+I(n) = (a(P)
+σ,n, a(P)†
+σ,n ).
+(3.65)
+35
+
+This implies that the operator ansatz is following:
+aI =
+�
+a(c)
+I
++
+∞
+�
+n=0
+a(p)
+I(n)
+�
+, a(c)
+I
+= bJ
+�
+M−1�I
+J ,
+a(p)
+I(n) = bJ(n)
+�
+M−1
+(n)
+�I
+J ,
+(3.66)
+where inverse square matrices are defined as:
+�
+M−1�I
+J =
+�
+�
+�
+�
+�
+γσq
+δσq
+δ∗
+σq
+γ∗
+σq
+�
+�
+�
+�
+� ,
+�
+M−1
+(n)
+�I
+J =
+�
+�
+�
+�
+�
+γσq,n
+δσq,n
+δ
+∗
+σq,n
+γ∗
+σq,n
+�
+�
+�
+�
+� ,
+(3.67)
+The individual components of these matrices are given by:
+γjσ = Γ
+�
+ν + 1
+2 + ip
+�
+eπp+iπ(ν+ 1
+2)
+4 sinh πp
+�
+�
+�
+�
+�
+1
+eπp+iπ(ν+ 1
+2) + 1
+1
+eπp+iπ(ν+ 1
+2) − 1
+1
+eπp+iπ(ν+ 1
+2) + 1
+−
+1
+eπp+iπ(ν+ 1
+2) − 1
+�
+�
+�
+�
+�
+(3.68)
+δ∗
+jσ = Γ
+�
+ν + 1
+2 − ip
+�
+eiπ(ν+ 1
+2)
+4 sinh πp
+�
+�
+�
+�
+�
+1
+eπp + eiπ(ν+ 1
+2)
+−
+1
+eπp − eiπ(ν+ 1
+2)
+1
+eπp + eiπ(ν+ 1
+2)
+1
+eπp − eπp+iπ(ν+ 1
+2)
+�
+�
+�
+�
+�
+(3.69)
+γjσ,n = Γ
+�
+ν + 1
+2 + ipn
+�
+eπpn+iπ(ν+ 1
+2)
+4 sinh πpn
+�
+�
+�
+�
+�
+1
+eπpn+iπ(ν+ 1
+2) + 1
+1
+eπpn+iπ(ν+ 1
+2) − 1
+1
+eπpn+iπ(ν+ 1
+2) + 1
+−
+1
+eπpn+iπ(ν+ 1
+2) − 1
+�
+�
+�
+�
+�(3.70)
+δ
+∗
+jσ,n = Γ
+�
+ν + 1
+2 − ipn
+�
+eiπ(ν+ 1
+2)
+4 sinh πpn
+�
+�
+�
+�
+�
+1
+eπpn + eiπ(ν+ 1
+2)
+−
+1
+eπpn − eiπ(ν+ 1
+2)
+1
+eπpn + eiπ(ν+ 1
+2)
+1
+eπpn − eπpn+iπ(ν+ 1
+2)
+�
+�
+�
+�
+�
+(3.71)
+Additionally, we have following two constraints:
+a(C)
+I
+� ∞
+�
+n=0
+1
+Np,(n)
+�
+M(n)
+�I
+J PJ
+(n)
+�
+�
+��
+�
+Particular solution
+= 0,
+a(P)
+I(n)
+� 1
+Np
+MI
+JPJ
+�
+�
+��
+�
+Complementary solution
+= 0.
+(3.72)
+Then in terms of the previously mentioned matrix elements the annihilation and creation
+36
+
+operators are explicitly defined as:
+Annihilation operator : aσ =
+�
+q=R,L
+�
+�
+γqσbq + δ∗
+qσb†
+q
+�
++
+∞
+�
+n=0
+�
+γqσ,nbq,n + δ
+∗
+qσ,nb
+†
+q,n
+��
+∀σ = ±1, (3.73)
+Creation operator : a†
+σ =
+�
+q=R,L
+�
+�
+γ∗
+qσb†
+q + δqσbq
+�
++
+∞
+�
+n=0
+�
+γ∗
+qσ,nb
+†
+q,n + δqσ,nbq,n
+��
+∀σ = ±1. (3.74)
+Now the Bunch-Davies quantum vacuum state can be written in terms of the tensor product
+of R and L vacua by making use of the following Bogoliubov transformation:
+|BD⟩ = exp
+�
+�K
+� �
+|R⟩ ⊗ |L⟩
+�
+for
+HBD := HR ⊗ HL,
+(3.75)
+where the new quantum Bogoliubov operator ˆK can be expressed as:
+Bogoliubov operator I :
+�K =
+�
+1
+2
+�
+i,j=R,L
+mij b†
+i b†
+j
+�
+��
+�
+Complementary part
++ 1
+2
+�
+i,j=R,L
+∞
+�
+n=0
+mij,n b
+†
+i,n b
+†
+j,n
+�
+��
+�
+Particular integral part
+�
+,(3.76)
+where our objective is to determine the coefficients mij and ¯mij,n in this work. Also the R
+and L vacuum states are defined as:
+Factorization of states : |R⟩ =
+�
+|R⟩(C) +
+∞
+�
+n=0
+|R⟩(P),n
+�
+,
+|L⟩ =
+�
+|L⟩(C) +
+∞
+�
+n=0
+|L⟩(P),n
+�
+,
+(3.77)
+which satisfy the following constraints:
+bL|L⟩(C) = 0, bR|R⟩(C) = 0,
+(3.78)
+bL,n|L⟩(P) = 0, bR,n|R⟩(P) = 0.
+(3.79)
+which satisfy the following commutation algebra:
+�
+bi, b†
+j
+�
+= δij,
+[bi, bj] = 0 =
+�
+b†
+i, b†
+j
+�
+.
+(3.80)
+�
+bi,n, b
+†
+j,m
+�
+= δijδnm,
+�
+bi,n, bj,m
+�
+= 0 =
+�
+b
+†
+i,m, b
+†
+j,m
+�
+.
+(3.81)
+37
+
+This implies the following relation:
+�
+(mijγjσ + δ∗
+iσ) b†
+i
+�
+��
+�
+Complementary part
++
+∞
+�
+n=0
+�
+mij,nγjσ,n + δ
+∗
+iσ,n
+�
+b
+†
+i,n
+�
+��
+�
+Particular integral part
+�
+(|R⟩ ⊗ |L⟩) = 0.
+(3.82)
+which further correspond to the following conditions:
+(mijγjσ + δ∗
+iσ) = 0,
+(3.83)
+�
+¯mij,n¯γjσ,n + ¯δ∗
+iσ,n
+�
+= 0
+∀n,
+(3.84)
+using which we define the following mass matrices, which are given by:
+mij = −δ∗
+iσ
+�
+γ−1�
+σj ≡
+�
+�
+�
+�
+�
+mRR
+mRL
+mLR
+mLL
+�
+�
+�
+�
+� ≈
+eiθ√
+2 e−pπ
+√cosh 2πp + cosh 2πν
+�
+�
+�
+�
+�
+cos πν
+i sinh pπ
+i sinh pπ
+cos πν
+�
+�
+�
+�
+� .
+(3.85)
+¯mij,n = −δ
+∗
+iσ,n
+�
+γ−1�
+σj,n ≡
+�
+�
+�
+�
+�
+mRR,n
+mRL,n
+mLR,n
+mLL,n
+�
+�
+�
+�
+� ≈
+eiθ√
+2 e−pnπ
+√cosh 2πpn + cosh 2πν
+�
+�
+�
+�
+�
+cos πν
+i sinh pnπ
+i sinh pnπ
+cos πν
+�
+�
+�
+�
+� .
+(3.86)
+The eigenvalues of the solutions are given by:
+λ± =
+�
+mRR ± mRL
+�
+= eiθ
+√
+2 e−pπ (cos πν ± i sinh pπ)
+√cosh 2πp + cos 2πν
+,
+(3.87)
+λ±,n =
+�
+¯mRR,n ± ¯mRL,n
+�
+= eiθ
+√
+2 e−pnπ (cos πν ± i sinh pnπ)
+√cosh 2πpn + cos 2πν
+.
+(3.88)
+But this extremely complicated to take the partial trace operation from the contributions
+obtained from R and L. For this reason it is unsuitable basis for our calculation.
+To perform the above mentioned operation we need to perform another Bogoliubov
+transformation in terms of the following suitable basis, where the new quantum operators
+are defined as:
+cR =
+�
+u bR + v b†
+R
+�
+,
+CR,n =
+�
+Un bR,n + Vn b†
+R,n
+�
+.
+(3.89)
+cL =
+�
+u bL + v b†
+L
+�
+,
+CL,n =
+�
+U n bL,n + V n b†
+L,n
+�
+,
+(3.90)
+38
+
+which satisfy the following normalization constraints on the mode function:
+�
+|u|2 − |v|2
+�
+= 1,
+�
+|Un|2 − |Vn|2
+�
+= 1.
+(3.91)
+�
+|¯u|2 − |¯v|2
+�
+= 1,
+�
+| ¯Un|2 − | ¯Vn|2
+�
+= 1.
+(3.92)
+Using this information Bunch-Davies vacuum state can be expressed in the newly Bogoli-
+ubov transformed basis as:
+|BD⟩ = 1
+Np
+exp
+�
+�
+W
+� �
+|R
+′⟩ ⊗ |L
+′⟩
+�
+where
+Np ≈
+1
+�
+�
+�
+�
+�
+1 −
+�
+|γp|2 +
+∞
+�
+n=0
+|Γp,n|2
+��, (3.93)
+where |R
+′⟩ and |L
+′⟩ are new basis operators in HBD := HR ⊗ HL.
+Additionally, we
+introduce a new quantum operator �
+W, which is defined as:
+Bogoliubov operator II : �
+W =
+�
+γp c†
+R c†
+L
+�
+��
+�
+Complementary part
++
+∞
+�
+n=0
+Γp,n C†
+R,n C†
+L,n
+�
+��
+�
+Particular integral part
+�
+,(3.94)
+where our prime objective is to determine γp and Γp,n from the present calculation.
+The new oscillator algebra is given by:
+�
+ci, c†
+j
+�
+= δij,
+[ci, cj] = 0 =
+�
+c†
+i, c†
+j
+�
+.
+(3.95)
+�
+Ci,n, C†
+j,m
+�
+= δijδnm,
+[Ci,n, Cj,m] = 0 =
+�
+C†
+i,m, C†
+j,m
+�
+.
+(3.96)
+Here the new operators are defined as:
+cR|BD⟩ = γp c†
+L|BD⟩,
+cL|BD⟩ = γp c†
+R|BD⟩,
+(3.97)
+CR,n|BD⟩ = Γp,n C†
+L,n|BD⟩,
+CL,n|BD⟩ = Γp,n C†
+R,n|BD⟩.
+(3.98)
+In the new basis we have the following expressions:
+cJ = bIGI
+J, CJ(n) = ¯bJ(n)
+�
+G(n)
+�I
+J where GI
+J =
+�
+�
+�
+�
+�
+Uq
+V ∗
+q
+Vq
+U ∗
+q
+�
+�
+�
+�
+� ,
+�
+G(n)
+�I
+J =
+�
+�
+�
+�
+�
+U q,n
+V
+∗
+σq,n
+V q,n
+U
+∗
+q,n
+�
+�
+�
+�
+� ,
+(3.99)
+39
+
+where the components of the new matrices are given by:
+Uq ≡ diag (u, u) ,
+Vq ≡ diag (v, v) ,
+U q,n ≡ diag
+�
+Un, U n
+�
+,
+V q,n ≡ diag
+�
+Vn, V n
+�
+. (3.100)
+Finally we derive the following sets of homogeneous algebraic equations:
+mRRu + v − γpmRLv∗ = 0,
+(3.101)
+mRRu + v − γpmRLv∗ = 0,
+(3.102)
+mRLu − γpu∗ − γpmRRv∗ = 0,
+(3.103)
+mRLu − γpu∗ − γpmRRv∗ = 0,
+(3.104)
+¯mRR,nUn + Vn − Γp,nmRL,nV
+∗
+n = 0,
+(3.105)
+mRR,nU n + V n − Γp,nmRL,nV ∗
+n = 0,
+(3.106)
+mRL,nUn − Γp,nU
+∗
+n − Γp,nmRR,nV
+∗
+n = 0,
+(3.107)
+mRL,nU n − Γp,nU ∗
+n − Γp,nmRR,nV ∗
+n = 0,
+(3.108)
+Here we have the following properties of the above mentioned equations:
+1. Property I:
+mRR = mLL = m∗
+RR = ω =
+√
+2 e−pπ cos πν
+√cosh 2πp + cos 2πν ,
+(3.109)
+mRL = mLR = −m∗
+RL = ζ = ei π
+2
+√
+2 e−pπ sinh pπ
+√cosh 2πp + cos 2πν ,
+(3.110)
+2. Property II:
+¯mRR,n = ¯mLL,n = ¯m∗
+RR,n = ωn =
+√
+2 e−pnπ cos πν
+√cosh 2πpn + cos 2πν ,
+(3.111)
+¯mRL,n = ¯mLR,n = − ¯m∗
+RL,n = ζn = ei π
+2
+√
+2 e−pnπ sinh pnπ
+√cosh 2πpn + cos 2πν .
+(3.112)
+3. Property III:
+If we have the following two conditions:
+γ∗
+p = −γp,
+Γ∗
+p,n = −Γp,n,
+(3.113)
+then we can fix the following constraint:
+v∗ = v,
+u∗ = u,
+V ∗
+n = V n,
+U ∗
+n = U n.
+(3.114)
+As a result, we have two normalization conditions instead of two, which are given
+40
+
+by:
+�
+|u|2 − |v|2
+�
+= 1,
+�
+|Un|2 − |Vn|2
+�
+= 1.
+(3.115)
+Finally, we have the following expressions:
+γp =
+1
+2mRL
+��
+1 + m2
+RL − m2
+RR
+�
+−
+�
+(1 + m2
+RL − m2
+RR)2 − 4m2
+RL
+�
+= i
+√
+2
+√cosh 2πp + cos 2πν + √cosh 2πp + cos 2πν + 2.
+(3.116)
+Γp,n =
+1
+2 ¯mRL,n
+��
+1 + ¯m2
+RL,n − ¯m2
+RR,n
+�
+−
+��
+1 + ¯m2
+RL,n − ¯m2
+RR,n
+�2 − 4 ¯m2
+RL,n
+�
+= i
+√
+2
+√cosh 2πpn + cos 2πν + √cosh 2πpn + cos 2πν + 2.
+(3.117)
+Here it is important to note that we have taken the negative signature in front of the square
+root contribution to strictly satisfy the constraint, |γp| < 1 and |Γp,n| < 1. For the other
+signature, which is appearing from other branch of solution these mentioned constraints
+are not satisfied at all and for this reason the other solutions are not physical in the
+present context of discussion. Also the above equations satisfy the following normalization
+conditions:
+�
+|u|2 − |v|2
+�
+= 1,
+�
+|U n|2 − |V n|2
+�
+= 1.
+(3.118)
+general solutions of these equations can be expressed as:
+u =
+1 − γpζ
+�
+|1 − γpζ|2 − |ω|2 = u∗ = u,
+v =
+ω
+�
+|1 − γpζ|2 − |ω|2 = v∗ = v,
+(3.119)
+U n =
+1 − Γpnζn
+�
+|1 − Γpnζn|2 − |ω|2 = U ∗
+n = Un
+V n =
+ωn
+�
+|1 − Γpnζn|2 − |ω|2 = V ∗
+n = Vn.(3.120)
+Here we have two additional constraints which are satisfied during this computation:
+ω∗ = ω,
+ζ∗ = −ζ,
+γ∗
+p = −γp,
+Γ∗
+p,n = −Γp,n.
+(3.121)
+These derived expressions will be used further to derive the rest of the results in this paper.
+3.4
+Construction of reduced density matrix in open chart
+In this portion our job is construct the expression for reduced density operator correspond-
+ing to the previously defined Bunch Davies state. After quantization the corresponding
+quantum state is characterized in terms of the three important quantum numbers p, l and
+41
+
+m. As we have already mentioned before that the contributions coming from region R and
+region L are exactly same and symmetric in nature. Because of this reason we are going
+to derive the expression for the reduced density operator in the region L by taking partial
+trace over all the contributions coming from region R. This leads to the following result
+for the corresponding density operator:
+ρL;p,l,m = TrR
+�
+|BD⟩⟨BD|
+�
+=
+�
+(1 − |γp|2)
+(1 + fp)
+∞
+�
+k=0
+|γp|2k|k; p, l, m⟩L′ L′⟨k; p, l, m|
++
+f 2
+p
+(1 + fp)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γp,n|2r|n, r; p, l, m⟩L′ L′⟨n, r; p, l, m|
+�
+,(3.122)
+where γp and Γp,n we have computed in the previous subsection and the new normalization
+factor f p is defined as:
+fp =
+1
+� ∞
+�
+n=0
+1
+1 − |Γp,n|2
+�.
+(3.123)
+In the definition of the density matrix the quantum mechanical states |k; p, l, m⟩L′ and
+|n, r; p, l, m⟩L′ can be further written in terms of creation operators in the new basis |L
+′⟩
+as:
+|k; p, l, m⟩L′ =
+1
+√
+k!
+(c†
+L)k|L
+′⟩,
+(3.124)
+|n, r; p, l, m⟩L′ =
+1
+√
+r!
+(C†
+L,n)r|L
+′⟩.
+(3.125)
+In the new representative basis the reduced density operator takes the following diagonal
+form:
+ρL =
+�
+�
+1 − |γp|2�
+diag
+�
+1, |γp|2, |γp|4, |γp|6 · · ·
+�
+�
+��
+�
+Complementary part
++ f 2
+p
+∞
+�
+n=0
+diag
+�
+1, |Γp,n|2, |Γp,n|4, |Γp,n|6 · · ·
+�
+�
+��
+�
+Particular integral part
+�
+,
+(3.126)
+42
+
+Here it is important to note that:
+1
+(1 + fp)Tr
+��
+1 − |γp|2�
+diag
+�
+1, |γp|2, |γp|4, |γp|6 · · ·
+��
+= (1 − |γp|2)
+(1 + fp)
+∞
+�
+k=0
+|γp|2k =
+1
+(1 + fp),
+(3.127)
+f 2
+p
+(1 + fp)Tr
+� ∞
+�
+n=0
+diag
+�
+1, |Γp,n|2, |Γp,n|4, |Γp,n|6 · · ·
+�
+�
+=
+f 2
+p
+(1 + fp)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γp,n|2r =
+fp
+(1 + fp), (3.128)
+where we have used two following facts by assuming γp ≪ 1 and Γp,n ≪ 1:
+∞
+�
+k=0
+|γp|2k =
+1
+(1 − |γp|2),
+(3.129)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γp,n|2r =
+� ∞
+�
+n=0
+1
+1 − |Γp,n|2
+�
+= 1
+fp
+.
+(3.130)
+As a result finally we have:
+Tr (ρL) =
+�
+1
+(1 + fp) +
+fp
+(1 + fp)
+�
+= (1 + fp)
+(1 + fp) = 1,
+(3.131)
+It suggests that the reduced density operator utilised in this paper has the proper normal-
+isation in its structure. The remainder of the computation carried out in this study will
+benefit greatly from the current derived structure of the reduced density operator for the
+region L.
+4
+Entanglement negativity and logarithmic negativity in open
+chart
+Our main goal in this part is to formulate equations for the entanglement negativity and
+the logarithmic negativity between the region of R and L in the open chart of global de
+Sitter space time. Both of the aforementioned sections will be treated as causally unrelated
+during this computation.
+The Bunch Davies quantum vacuum state can be factored according to the contributions
+made by the complementary and particular integral parts of the solution in terms of the
+quantum numbers p, l, and m as follows:
+|BD⟩ =
+��
+(1 − |γp|2)
+(1 + fp)
+∞
+�
+k=0
+|γp|k
+�
+|k; p, l, m⟩R′ ⊗ |k; p, l, m⟩L′
+�
++
+fp
+�
+(1 + fp)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γp,n|r
+�
+|n, r; p, l, m⟩R′ ⊗ |n, r; p, l, m⟩L′
+��
+,
+(4.1)
+43
+
+One can directly compute the expression for the eigenvalues, which is given by the following
+expression, by further employing the fundamental physical idea of Schmidt decomposition
+for a pure quantum state as mentioned in the earlier section of this paper:
+�
+λk =
+��
+(1 − |γp|2)
+(1 + fp) |γp|k +
+fp
+�
+(1 + fp)
+∞
+�
+n=0
+|Γp,n|k
+�
+∀k = [0, ∞].
+(4.2)
+Then the logarithmic negativity from the present theoretical set up can be computed as:
+LN(p, ν) = 2 ln
+�
+∞
+�
+k=0
+λk
+�
+= 2 ln
+�
+∞
+�
+k=0
+��
+(1 − |γp|2)
+(1 + fp) |γp|k +
+fp
+�
+(1 + fp)
+∞
+�
+n=0
+|Γp,n|k
+��
+= 2 ln
+��
+(1 − |γp|2)
+(1 + fp)
+∞
+�
+k=0
+|γp|k +
+fp
+�
+(1 + fp)
+∞
+�
+n=0
+∞
+�
+k=0
+|Γp,n|k
+�
+= ln
+�
+1
+(1 + fp)
+��
+(1 + |γp|)
+(1 − |γp|) + fp
+f p
+�2�
+.
+(4.3)
+where we introduce a new notation f p, which is defined as:
+f p =
+1
+� ∞
+�
+n=0
+1
+1 − |Γp,n|
+�
+(4.4)
+In the last step we have used the following results to compute the summations:
+∞
+�
+k=0
+|γp|k =
+1
+(1 − |γp|),
+(4.5)
+∞
+�
+k=0
+|Γp,n|k =
+1
+(1 − |Γp,n|).
+(4.6)
+Hence, the entanglement negativity can be further computed in terms of the expression
+derived for the logarithmic negativity as:
+N(p, ν) = 1
+2
+�
+exp (LN(p, ν)) − 1
+�
+= 1
+2
+�
+1
+(1 + fp)
+��
+(1 + |γp|)
+(1 − |γp|) + fp
+f p
+�2
+− 1
+�
+(4.7)
+44
+
+Now one would anticipate that the two causally unrelated areas, R and L, are quantum
+mechanically entangled with one another under the current framework for any finite values
+of p, which is basically the direct outcome of having non vanishing contribution from both
+|γp| and |Γp,n|.
+Now after integrating over p in presence of appropriate contribution from the density
+of quantum mechanical states under consideration in open chart we finally obtain the
+following expression for the logarithmic negativity in the volume of a hyperboloid:
+LN(ν) = V reg
+H3
+� ∞
+0
+dp D(p) LN(p, ν),
+(4.8)
+where the quantity D(p) represents the density of quantum states corresponding to the
+radial contribution on the hyperboloid H3, which is given by:
+D(p) =
+1
+2π2p2.
+(4.9)
+Additionally, in the above mentioned expression the regularized finite part of the volume
+of the hyperboloid H3 is given by:
+V reg
+H3 = 1
+2VS2 = 1
+2 × 4π = 2π.
+(4.10)
+Consequently, equation (4.8) can be further expressed in terms of the following simplified
+form:
+LN(ν) = 1
+π
+� ∞
+0
+dp p2 LN(p, ν).
+(4.11)
+However, in most of the physical problem in the upper limit of the above mentioned
+integration the integrand becomes divergent. For this reason, one need to introduce a
+regulator Λ is the upper limit of the integration instead of strictly putting this to be infinity.
+However, for the computational purpose we fix the value of Λ to be very large number. In
+this specific problem this cut-off is physically treated to be the Ultra Violet (UV) cut-off.
+In quantum field theoretic prescription sometimes this UV cut-off is physically interpreted
+as the manifestation of lattice regulator for the type of computation we are performing
+in this paper.
+On the other hand, it is important to note that, in the lower limit of
+integration the integrand becomes convergent in most of the interesting physical situation.
+In the technical language this lower limit corresponds to the Infra Red (IR) which is safe
+for the particular problem we are doing in this paper. Considering all of these facts stated
+above one can further recast equation (4.11) to quantify the regularized version of the
+45
+
+-1
+0
+1
+2
+3
+0.70
+0.75
+0.80
+0.85
+0.90
+0.95
+1.00
+1.05
+(a) For fp = 0.
+-1
+0
+1
+2
+3
+0.85
+0.90
+0.95
+1.00
+(b) For small fp ̸= 0.
+Figure
+4.1:
+Graphical
+behaviour
+of
+the
+normalized
+logarithmic
+negativity
+(LN(ν)/LN(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small
+fp ̸= 0. Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and ν = 3/2
+(massless case).
+In both the plots reference scale corresponds to the scale at which
+LN(ν)/LN(ν = 1/2) = 1.
+46
+
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(a) For fp = 0.
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(b) For small fp ̸= 0.
+Figure
+4.2:
+Graphical
+behaviour
+of
+the
+normalized
+entanglement
+negativity
+(N(ν)/N(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small
+fp ̸= 0. Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and ν = 3/2
+(massless case).
+In both the plots reference scale corresponds to the scale at which
+N(ν)/N(ν = 1/2) = 1.
+47
+
+logarithmic negativity in the following modified format:
+LN(ν) = 1
+π
+� Λ
+0
+dp p2 LN(p, ν)
+= 1
+π
+� Λ
+0
+dp p2 ln
+�
+1
+(1 + fp)
+��
+(1 + |γp|)
+(1 − |γp|) + fp
+f p
+�2�
+.
+(4.12)
+Also, the regularized version of the entanglement negativity can be further computed using
+equation (4.12) as:
+N(ν) = 1
+2
+�
+exp (LN(ν)) − 1
+�
+= 1
+2
+�
+exp
+�
+1
+π
+� Λ
+0
+dp p2 ln
+�
+1
+(1 + fp)
+��
+(1 + |γp|)
+(1 − |γp|) + fp
+f p
+�2��
+− 1
+�
+.
+(4.13)
+Further, if we substitute each of the components of the above equation from what we have
+derived in the previous section, then one can clearly see from the complicated structure of
+this equation that the final result is not analytically computable. For this specific reason
+we have analysed the above expression for the fp = 0 and small fp ̸= 0 numerically in this
+paper. It basically covers both Case A and Case B solutions in the present context.
+In figure (4.1(a)) and figure (4.1(b)), we have explicitly depicted the behaviour of nor-
+malized logarithmic negativity (LN(ν)/LN(ν = 1/2)) with mass parameter squared (ν2)
+for both fp = 0 and small fp ̸= 0. Similarly, in figure (4.2(a)) and figure (4.2(b)), we have
+explicitly plotted the behaviour of normalized entanglement negativity (N(ν)/N(ν = 1/2))
+with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0. Vertical dashed lines
+are drawn for ν = 1/2 and ν = 3/2 (Case A) cases. The outcomes and the physical
+interpretation of these plots are very interesting which we are writing point-wise in the
+following:
+1. From both of these plots is is clearly observed that the normalized logarithmic nega-
+tivity obtained from the small fp ̸= 0 is larger than the fp = 0. The normalization has
+been been done with respect to value of the logarithmic negativity at ν = 1/2, which
+is the conformal coupled result for the theory under consideration for the present
+computational framework.
+2. From both of these plots we found that when the mass parameter squared ν2 < 0
+i.e. ν = −i|ν| then we are dealing with heavy effective mass where we get falling
+behaviour of normalized logarithmic negativity LN(ν)/LN(ν = 1/2) and normalized
+entanglement negativity N(ν)/N(ν = 1/2). This implies that in the heavy region we
+have less quantum correlation and the effect of quantum mechanical entanglement
+is falling as as increase the mass in the definition of mass parameter. Here it is
+48
+
+important to note that we have not considered the possibility from ν = i|ν|, because
+this will give rise to exponentially divergent contribution as a Boltzmann contribution
+which cannot be possible to handle in the present computation. So to get a correct
+measure of quantum mechanical entanglement here in this analysis we have restricted
+our discussion to ν = −i|ν| branch of solutions only. This possibility corresponds to
+Case B in the present context.
+3. We also found that at the conformal coupling limit ν = 1/2 the normalized log-
+arithmic negativity LN(ν)/LN(ν = 1/2) = 1 and normalized entanglement neg-
+ativity N(ν)/N(ν = 1/2) = 1.
+The same thing happened in the massless limit
+ν = 3/2 where from the numerical plots we found that the normalized logarith-
+mic negativity and entanglement negativity again LN(ν)/LN(ν = 1/2) = 1 and
+N(ν)/N(ν = 1/2) = 1.
+At both this points, ν = 1/2 and ν = 3/2 (Case A)
+we get the maximum effect from quantum mechanical entanglement in the present
+computation. This further physically implies that at these points we get the max-
+imum contribution from quantum correlations. In both the plots we have drawn a
+horizon line at LN(ν)/LN(ν = 1/2) = 1 and N(ν)/N(ν = 1/2) = 1 to indicate the
+reference level of our computation.
+4. Additionally we have found that in the small mass region ν2 > 0 we get oscillatory
+type of feature where the period of oscillation is increasing as we increase the value
+of ν2 in the positive axis. This possibility correspond to Case A and Case B in the
+present context.
+5. Also from both of these plots we infer that effect of quantum mechanical entangle-
+ment is larger in the small mass region ν2 > 0 compared to the contribution from
+heavy mass region, where we have ν2 < 0. So small mass or the massless cases are
+more favourable than the heavy mass profile if we want to achieve more quantum
+mechanical effects from the entanglement measure.
+6. Last but not the least, we now comment on the comparison among the outcomes
+obtained from the plots for normalized logarithmic negativity LN(ν)/LN(ν = 1/2)
+and normalized entanglement negativity N(ν)/N(ν = 1/2) for both fp = 0 and
+small fp ̸= 0. Normalized entanglement negativity gives better understanding re-
+garding the information content compared to the normalized logarithmic negativity
+for both the cases fp = 0 and small fp ̸= 0. It seems like overall features obtained
+from normalized logarithmic negativity and normalized entanglement negativity are
+almost same. But due to having differences in the definitions of the corresponding
+quantum information theoretic measures the outcomes are more prominent in nor-
+malized entanglement negativity. Though it is important to note that both of them
+are connected to each other mathematically. The effect of heavy mass for ν2 < 0 is
+49
+
+more prominently observed in the case of normalized entanglement negativity com-
+pared to the normalized logarithmic negativity. In the asymptotic limit of ν2 < 0 we
+see that for normalized entanglement negativity the quantum entanglement and the
+corresponding correlation saturates to a constant value. On the other hand, we found
+that there is sharp fall in the case of normalized logarithmic negativity which further
+implies there is no asymptotic value at which it becomes constant. However, apart
+from having this significant difference in the large mass limit, in the small mass and
+massless limiting cases we have found out exactly same behaviour from the presented
+plots.
+5
+Comparison with entanglement entropy in open chart
+In this section we give a clear comparison between entanglement entropy and logarithmic
+negativity, where we know both of them is used to describe the long range quantum
+correlation and entanglement effects in the present information theory motivated quantum
+field theoretic picture.
+Let us start our discussion with the entanglement entropy which is described by Von
+Neumann measure by the following expression [14]:
+S(p, ν) = −Tr [ρL ln ρL]
+=
+�
+−
+�
+1 +
+fp
+1 + fp
+� �
+ln
+�
+1 − |γp|2�
++
+|γp|2
+(1 − |γp|2) ln
+�
+|γp|2��
+− (1 − fp) ln (1 + fp)
+�
+, (5.1)
+where we have computed each explicit parameter in the earlier section of this study, to-
+gether with the explicit expression for the reduced density matrix.
+Now by following the same prescription stated before the regularized part of the entan-
+glement entropy can be further expressed by the following simplified expression:
+S(ν) = V reg
+H3
+� ∞
+0
+dp D(p) S(p, ν) = 1
+π
+� ∞
+0
+dp p2 S(p, ν),
+(5.2)
+where D(p) and V reg
+H3 are defined earlier. Further applying the same logical argument with
+the UV cut off for the computational purpose we further use the following UV cut off
+regulated version of Von Neumann entropy:
+S(ν) = 1
+π
+� Λ
+0
+dp p2 S(p, ν).
+(5.3)
+Our next job is to numerically compute the expressions for entanglement entropy from the
+50
+
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(a) For fp = 0.
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(b) For small fp ̸= 0.
+Figure 5.1: Graphical behaviour of the normalized entanglement entropy from Von Neu-
+mann measure (S(ν)/S(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0
+and small fp ̸= 0. Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and
+ν = 3/2 (massless case). In both the plots reference scale corresponds to the scale at which
+S(ν)/S(ν = 1/2) = 1.
+51
+
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(a) For fp = 0.
+-4
+-3
+-2
+-1
+0
+1
+2
+3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+(b) For small fp ̸= 0.
+Figure 5.2: Graphical comparison between the behaviour of the normalized entanglement
+entropy from Von Neumann measure (S(ν)/S(ν = 1/2)) and normalized entanglement
+negativity (N(ν)/N(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and
+small fp ̸= 0. Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and
+ν = 3/2 (massless case). In both the plots reference scale corresponds to the scale at
+which N(ν)/N(ν = 1/2) = 1 and S(ν)/S(ν = 1/2) = 1.
+52
+
+above mentioned UV regulated Von Neumann measure which will going to be extremely
+useful for the further comparison purpose with the results obtained from logarithmic neg-
+ativity and entanglement negativity measures.
+In figure (5.1(a)) and figure (5.1(b)), we have explicitly depicted the behaviour of nor-
+malized entanglement entropy from Von Neumann measure (S(ν)/S(ν = 1/2)) with mass
+parameter squared (ν2) for both fp = 0 and small fp ̸= 0. Similarly, in figure (5.2(a))
+and figure (5.2(b)), we have explicitly plotted comparative behaviour between normalized
+entanglement negativity (N(ν)/N(ν = 1/2)) and normalized entanglement entropy from
+Von Neumann measure (S(ν)/S(ν = 1/2)) with mass parameter squared (ν2) for both
+fp = 0 and small fp ̸= 0. Vertical dashed lines are drawn for ν = 1/2 and ν = 3/2 (Case
+A) cases. In both the plots we have drawn a horizon line at N(ν)/N(ν = 1/2) = 1 and
+S(ν)/S(ν = 1/2) = 1 to indicate the reference level of our computation. The outcomes
+and the physical interpretation of these plots are very interesting which we are writing
+point-wise in the following:
+1. From all of these plots we found that compared entanglement entropy computed
+from Von Neumann measure entanglement negativity give more information from
+the same system under consideration. The reason behind this statement is both in
+the heavy mass ν2 < 0 and small mass ν2 > 0 regions we get more amplitude from
+the normalized version of the information content.
+2. In the heavy mass ν2 < 0 region we found that in the asymptotic limit entanglement
+entropy gives vanishing contribution, but in the same limit entanglement negativity
+gives small but significantly non vanishing contribution. On the other hand, in the
+small mass ν2 > 0 region the amplitude of fluctuation of normalized entanglement
+entropy is larger amplitude than the normalized entanglement negativity.
+3. Only at ν = 1/2 (conformally coupled) and ν = 3/2 (massless) we get exactly same
+contribution from both N(ν)/N(ν = 1/2) and S(ν)/S(ν = 1/2), which is exactly
+N(ν)/N(ν = 1/2) = S(ν)/S(ν = 1/2) = 1.
+This is obviously a very interesting finding from our analysis that in case of the present
+quantum field theoretic set up entanglement negativity captures better information regard-
+ing quantum mechanical correlations and quantum entanglement than the Von Neumann
+measure of entanglement entropy.
+6
+Logarithmic negativity between two causally unrelated patches
+of open chart
+Our main goal in this part is to calculate and estimate the logarithmic negativity between
+two patches of the open chart of the global de Sitter space that are not causally related.
+53
+
+We provide information on two physical observers whose role it is to explicitly determine
+and estimate the quantum mechanical entanglement in the current theoretical setup in
+order to serve the goal. For the purpose of computational simplification, we additionally
+assume that the quantum states corresponding to these two observers constitute an initial
+pure state within the multiverse and are maximally entangled to one another.Since we are
+dealing with two observers, the corresponding framework in a more simpler language can be
+interpreted as biverse which can be easily further generalise to a general multiverse scenario.
+From the starting point of the present construction we have explicitly mentioned that the
+sub regions R and L in the penrose diagram as well as in the Hilbert space construction
+is taken to be completely symmetric. For this reason to extend this theoretical tool to
+compute the entanglement negativity from the corresponding biverse set up we consider
+that the region L is in the inside of the de Sitter bubble. One can do the similar thing by
+making use of the region R as well. Another important assumption we have considered
+during this computation is that there is no bubble wall exists in this framework for the
+open chart of the global de Sitter space. Further in this biverse set up we place another
+observer in the other open chart of the global de Sitter bubble. From the present theoretical
+computation our objective is to explicitly find the role of the inside observer to detect the
+quantum mechanical signatures of entanglement between two de Sitter bubbles using the
+well known Bunch Davies initial quantum states for the biverse.
+Now in the present
+quantum field theoretic set up causality demands that the region R has to be causally
+unrelated from the other region L. This is because of the fact that there is no access to the
+region R during this computation. For this specific reason one needs to consider the partial
+trace operation over the inaccessible region R, which further give rise to the information
+loss regarding this specific region. As a consequence the corresponding quantum mechanical
+state which describe the observer would be a mixed quantum state for this computation.
+In this set up the quantum mechanical state associated with the other observer becomes
+a pure quantum state which belongs to the other causally unrelated patch of the open
+chart of the global de Sitter bubble. This implies in the present computation we need to
+consider the entanglement between a mixed and pure quantum mechanical states which
+belong to two causally unrelated de Sitter bubbles. If in the computation of quantum
+entanglement from two subsystems only pure quantum states are involved then in such
+a system Von Neumann measure is the best measure to quantify entanglement entropy.
+But if any of the subsystem is described by mixed quantum state then for such a situation
+Von Neumann measure is not the appropriate quantum information theoretic measure. In
+that case entanglement negativity or the logarithmic negativity can give better measure of
+quantum entanglement, which is somewhat clear to us from the comparison that we have
+already drawn from our previous analysis. He strongly believe that this new measure will
+going to explain various unexplored underlying physics involved in the present theoretical
+set up.
+54
+
+6.1
+Computational set up and construction of maximally entangled states
+Starting with the total quantum vacuum state, which is actually represented by the product
+of the quantum vacuum states for each oscillator that we found computed explicitly in the
+previous section of this paper, we begin to study the effects from entanglement negativity
+between two causally unrelated patches of open chart. It’s crucial to remember that each
+oscillator’s quantum mechanical state is identified by one of the three quantum numbers
+p, l, or m for future calculation purposes. For this reason, one must take product over p
+in the final expression of total quantum. The final Bunch Davies quantum vacuum state
+in this configuration is stated as:
+|0⟩BD =
+�
+p
+|0p⟩BD,
+(6.1)
+where we define the Bunch Davies states for each mode as:
+|0p⟩BD =
+��
+(1 − |γp|2)
+(1 + fp)
+∞
+�
+k=0
+|γp|k
+�
+|kp⟩R′ ⊗ |kp⟩L′
+�
++
+fp
+�
+(1 + fp)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γp,n|r
+�
+|n, rp⟩R′ ⊗ |n, rp⟩L′
+��
+.
+(6.2)
+Here it is important to note that, in the above expression for the simplification in the
+writing purpose we have removed the tags of l and m on the individual direct product states
+defined in the region R and L in the Bogoliubov transformed basis. This simplification
+will going to further help us to deal with cumbersome expressions.
+In this specific computation we are actually considering smaller version of the multiverse
+where many causally unrelated patches in the open chart of the de Sitter bubbles forms
+a maximally entangled state which is necessary ingredient for the present calculation. In
+this calculation it is assumed that each of the causally unrelated patches corresponds to
+a Bunch Davies quantum vacuum states which will finally form a maximally entangled
+state out of all possible Bunch Davies states. However this is not a strict assumption
+to extract the required outcome from the present computational set up. One can think
+about a scenario in which some quantum vacuum states are distinct from Bunch Davies
+vacuum and are entangled with one another in a more general version of the computation.
+This is quite an interesting possibility in this context. Now we don’t want to complicate
+our understanding at this level of computation. For this reason we are going to restrict
+our analysis by considering the two Bunch Davies quantum vacuum states which belong
+to two causally unrelated patches of the open chart of the de Sitter bubbles.
+Now to
+theoretically model the present computational set up let us first consider two momentum
+modes having momenta p = pin and p = pout of the axionic field theory described by
+Case A (massless) and Case B (massive) respectively. With this knowledge, it is possible
+55
+
+to further express the maximally entangled state in terms of the unique contributions of
+Bunch Davies vacuum to the two causally independent regions of the de Sitter bubbles as
+follows:
+|Ψ⟩ME : =
+1
+√
+2
+�
+i=0,1
+�
+|ipout⟩BD1 ⊗ |ipin⟩BD2
+�
+=
+1
+√
+2
+�
+|0pout⟩BD1 ⊗ |0pin⟩BD2 + |1pout⟩BD1 ⊗ |1pin⟩BD2
+�
+.
+(6.3)
+In the above equation, |0pout⟩BD1 and |1pout⟩BD1 represent the ground and first single
+HBD1
+AB/HicdVBNS8NAEN3Ur1q/oj16WSyCp5KUW
+tbqR56rGBtoSlhs920SzebsLsRQoh/xYsHRbz6Q7z5b9y0FVT0wcDjvRlm5
+nkRo1JZ1odRWFvf2Nwqbpd2dvf2D8zDo1sZxgKTPg5ZKIYekoRTvqKkaG
+kSAo8BgZePL3B/cESFpyG9UEpFxgKac+hQjpSXLKcORgx2Mzd1PB92rlw
+7c82KVbU0Gg2YE7tp2Zq0Ws1arQXthWVZFbBCzXfnUmI4BwhRmScmRbkR
+qnSCiKGclKTixJhPAcTclIU4CIsfp4vgMnmplAv1Q6OIKLtTvEykKpEwCT3
+cGSM3kby8X/JGsfKb45TyKFaE4+UiP2ZQhTBPAk6oIFixRBOEBdW3QjxDA
+mGl8yrpEL4+hf+T21rVrlfPr+uVdmcVRxEcgxNwBmxwAdqgC3qgDzBIwAN4
+As/GvfFovBivy9aCsZopgx8w3j4B4J6USw=
+⌦
+AB7nicdVDLSsNAF
+L3xWeur6tLNYBFchSR9uiu6cVnBPqANZTKdtkMnkzAzEUr
+oR7hxoYhbv8edf+OkraCiBy4czrmXe+8JYs6UdpwPa219Y
+3NrO7eT393bPzgsHB23VZRIQlsk4pHsBlhRzgRtaY57ca
+S4jDgtBNMrzO/c0+lYpG407OY+iEeCzZiBGsjdfqRZiFV
+g0LRsS/rVa/iIcd2nJpXqmbEq5W9EnKNkqEIKzQHhf+MC
+JSIUmHCvVc51Y+ymWmhFO5/l+omiMyRSPac9Qgc0SP12c
+O0fnRhmiUSRNCY0W6veJFIdKzcLAdIZYT9RvLxP/8nqJHt
+X9lIk40VSQ5aJRwpGOUPY7GjJieYzQzCRzNyKyARLTLR
+JKG9C+PoU/U/anu2W7cptudi4WsWRg1M4gwtwoQYNuIEmt
+IDAFB7gCZ6t2Hq0XqzXZeuatZo5gR+w3j4B62yP+Q=
+1st de Sitter universe
+2nd de Sitter universe
+Axionic Biverse
+HBD2 =
+✓
+HL ⌦ HR
+◆
+ACMXicdVBNSwJBGJ6
+1L7Mvq2OXIQnsIrtipodArIOHDhaZgrs+OsDs5+MDMbyLJ/qUv/JLp4KJrf6JZNcioBwYenud5ed9nJBRIXV9qmVWVtfWN7Kbua3tnd29/P7BvQgijkHByzgPQcJwqhPOpJKRnoh
+J8hzGOk648vU7z4QLmjg38lJSCwPDX3qUoykux8KzYxYrCV2LHpuLB5ZeTC9Ohw2Fx2blOzEBSjwi4rN8ms/SpnS/oJV2hWoUpMWq6oUi9XiuX69CYWbpeAu07fyzOQhw5BFfYoaE6
+Bt6K0YcUkxI0nOjAQJER6jIekr6iO124pnFyfwRCkD6AZcPV/CmfpzIkaeEBPUkPyZH47aXiX14/km7NiqkfRpL4eL7IjRiUAUzrgwPKCZsogjCnKq/QjxCHGpSs6pEr4vhf+T+3
+LJqJTObiqFRnNRxYcgWNQBAY4Bw3QAm3QARg8ghfwCt60J2qvWsf82hGW8wcgiVon18IXamP
+H :=
+✓
+HBD1 ⌦ HBD2
+◆
+=
+✓
+HBD1 ⌦
+✓
+HL ⌦ HR
+◆◆
+ACh3ichVFbS8MwFE7r1DlvUx9CQ5h+jDbOmcnCDp98MEHFTeFdZQ0S7uw9EKSCqP0r/ijfP
+PfmN3AKx5I+PJ950tOzvESRoU0jHdNXygsLi0XV0qra+sbm+Wt7Y6IU45JG8cs5s8eEoTRiLQlYw8J5yg0G
+PkyRtejfWnF8IFjaNHOUpIL0RBRH2KkVSUW37NHIwYvMnPzh2PBkF1fnYzx/Nh69o1cyeWNCTih2LlE8vBv
+87f9Nu5CL/yD7NLp7tbrhg1Q0WjAcfAtA1TgWbTtqwmNCeSYVTALO7c8pvTj3EakhihoTomkYiexnikmJG8
+pKTCpIgPEQB6SoYIVBL5v0MYf7iulDP+ZqRJO2M+ODIVCjEJPZYZIDsR3bUz+pnVT6du9jEZJKkmEpw/5K
+YMyhuOhwD7lBEs2UgBhTlWtEA8QR1iq0ZVUE+Y/hX+DjlUz67WT+3rlojVrRxHsgj1QBSY4BRfgBtyBNsBa
+QTvUjrW6vqIf6Q3dnqbq2syzA76EfvkBJtPC4Q=
+Hilbert space factorization
+CY3
+AB+XicbZDLSsNAFIZP6q3W9Slm8EiuCqJVnRZ7MZlBXuRtpbJdNIOnUzCzKRQt7EjQtF3Pom7nw
+bp2kW2vrDwMd/zuGc+b2IM6Ud59sqrK1vbG4Vt0s7u3v7B/bhUuFsS0SUIeyo6HFeVM0KZmtNOJCkOPE7b3qQ
++r7enVCoWigc9i2g/wCPBfEawNtbAtpOe56P6Y/qUwWU6sMtOxcmEVsHNoQy5GgP7qzcMSRxQoQnHSnVdJ9L9BE
+vNCKdpqRcrGmEywSPaNShwQFU/yS5P0ZlxhsgPpXlCo8z9PZHgQKlZ4JnOAOuxWq7Nzf9q3Vj7N/2EiSjWVJDFI
+j/mSIdoHgMaMkmJ5jMDmEhmbkVkjCUm2oRVMiG4y19ehdZFxa1Wru6r5dptHkcRTuAUzsGFa6jBHTSgCQSm8Ayv
+8GYl1ov1bn0sWgtWPnMf2R9/gCPH5L4
+Axion
+CY3
+AB+XicbZDLSsNAFIZP6q3W9Slm8EiuCqJ
+VnRZ7MZlBXuRtpbJdNIOnUzCzKRQt7EjQtF3Pom7nwbp2kW2vrDwMd/zuGc+b2IM6Ud59sqrK1vbG4Vt0s7u3v7B/bhUuFsS0SUIeyo6HFeVM0KZmtNOJCkOPE7b3qQ+r7enVCoWigc9i2g/wCPBfEawNtbAtpOe56P6Y/qUwW
+U6sMtOxcmEVsHNoQy5GgP7qzcMSRxQoQnHSnVdJ9L9BEvNCKdpqRcrGmEywSPaNShwQFU/yS5P0ZlxhsgPpXlCo8z9PZHgQKlZ4JnOAOuxWq7Nzf9q3Vj7N/2EiSjWVJDFIj/mSIdoHgMaMkmJ5jMDmEhmbkVkjCUm2oRVMiG4y19eh
+dZFxa1Wru6r5dptHkcRTuAUzsGFa6jBHTSgCQSm8Ayv8GYl1ov1bn0sWgtWPnMf2R9/gCPH5L4
+Axion
+Figure 6.1: Representative diagram of the Hilbert space factorization of the axionic
+biverse which is constructed out of two de Sitter vacua. Each of the vacua is spanned in
+terms of the complete set of Bunch Davies states.
+particle excited quantum state characterized by the momentum mode pout in the first
+Bunch Davies vacuum obtained from the first patch of the open chart of global the de
+Sitter space. Similarly, |0pin⟩BD2 and |1pin⟩BD2 represent the ground and first single particle
+56
+
+T
+=0
+二excited quantum state characterized by the momentum mode pin in the second Bunch
+Davies vacuum obtained from the second patch of the open chart of global the de Sitter
+space. For the further computational simplification purpose we assume that outside and
+inside observers are associated with two detectors having mode momenta pout and pin
+respectively.
+It is also crucial to note that, given the current quantum field theoretic
+framework, the complete Hilbert space can be factored as follows:
+H :=
+�
+HBD1 ⊗ HBD2
+�
+=
+� �
+HL ⊗ HR
+�
+BD1
+�
+��
+�
+For first subspace
+⊗
+�
+HL ⊗ HR
+�
+BD2
+�
+��
+�
+For second subspace
+�
+,
+(6.4)
+where the first and the second Bunch Davies vacuum states are associated with two sub-
+space, whose corresponding product Hilbert space can be further factorized in terms Hilbert
+spaces associated with region R and L as:
+HBD1 =
+�
+HL ⊗ HR
+�
+BD1
+,
+(6.5)
+HBD2 =
+�
+HL ⊗ HR
+�
+BD2
+.
+(6.6)
+In the multiverse picture one can further generalize this result y considering many Bunch
+Davies states and different quantum vacua than Bunch Davies, such as α vacua, Motta
+Allen vacua etc. In figure (6.1) representative diagram of the Hilbert space factorization
+of the axionic biverse which is constructed out of two de Sitter vacua. Each of the vacua is
+spanned in terms of the complete set of Bunch Davies states which we have pointed clearly
+in this diagram.
+6.2
+Construction of excited quantum state for single oscillator
+Our main task in this paragraph is to create the excited quantum state for a single oscil-
+lator, which will also be helpful to create the overall maximally entangled state required
+for the specific computation. Let’s start with the characteristic matrix equation for the
+oscillators in the recently announced Bogoliubov transformed basis to demonstrate this
+issue in more detail:
+cJ = bIGI
+J,
+CJ(n) = ¯bJ(n)
+�
+G(n)
+�I
+J
+where
+cJ = (cq, c†
+q), CJ(n) = (Cq(n), C†
+q(n)),
+(6.7)
+57
+
+where we define the two square matrices as appearing in the above expressions by the
+following equations:
+GI
+J =
+�
+�
+�
+�
+�
+Uq
+V ∗
+q
+Vq
+U ∗
+q
+�
+�
+�
+�
+� ,
+�
+G(n)
+�I
+J =
+�
+�
+�
+�
+�
+U q,n
+V
+∗
+σq,n
+V q,n
+U
+∗
+q,n
+�
+�
+�
+�
+� ,
+(6.8)
+where the components of the new matrices are given by:
+Uq ≡ diag (u, u) ,
+(6.9)
+Vq ≡ diag (v, v) ,
+(6.10)
+U q,n ≡ diag
+�
+Un, U n
+�
+,
+(6.11)
+V q,n ≡ diag
+�
+Vn, V n
+�
+.
+(6.12)
+Hence one can able to find the relationship between the a-type of oscillators with c-type
+of oscillators, which are given by:
+a(c)
+J
+= bJ
+�
+M−1�I
+J = cK
+�
+G−1�K
+I
+�
+M−1�I
+J ,
+(6.13)
+a(p)
+J(n) = bJ(n)
+�
+M−1
+(n)
+�I
+J = CK(n)
+�
+G−1
+(n)
+�K
+I
+�
+M−1
+(n)
+�I
+J ,
+(6.14)
+which further form the following quantity:
+aI =
+�
+a(c)
+I
++
+∞
+�
+n=0
+a(p)
+I(n)
+�
+=
+�
+cK
+�
+G−1�K
+I
+�
+M−1�I
+J
+�
+��
+�
+Complementary part
++
+∞
+�
+n=0
+CK(n)
+�
+G−1
+(n)
+�K
+I
+�
+M−1
+(n)
+�I
+J
+�
+��
+�
+Particular integral part
+�
+.
+(6.15)
+Here the the product of two inverse matrices are parametrized by another (4 × 4) square
+matrix, which is given by:
+�
+G−1�K
+I
+�
+M−1�I
+J =
+�
+�
+�
+�
+�
+Qσq
+R∗
+σq
+Rσq
+Q∗
+σq
+�
+�
+�
+�
+� ,
+(6.16)
+�
+G−1
+(n)
+�K
+I
+�
+M−1
+(n)
+�I
+J =
+�
+�
+�
+�
+�
+Qσq,n
+R
+∗
+σq,n
+Rσq,n
+Q
+∗
+σq,n
+�
+�
+�
+�
+� ,
+(6.17)
+58
+
+where the elements of both the matrices are itself (2 × 2) matrices, which are provided by
+the subsequent expressions:
+Qσq =
+�
+�
+�
+�
+�
+�Au
+− �Bu + �D∗v
+− �Bu + �D∗v
+�Au
+�
+�
+�
+�
+� ,
+(6.18)
+Rσq =
+�
+�
+�
+�
+�
+− �Av
+�Bv − �D∗u
+�Bv − �D∗u
+− �Av
+�
+�
+�
+�
+� ,
+(6.19)
+Qσq,n =
+�
+�
+�
+�
+�
+�AnUn
+− �BnUn + �D∗
+nVn
+− �BnUn + �D∗
+nVn
+�AnUn
+�
+�
+�
+�
+� ,
+(6.20)
+Rσq,n =
+�
+�
+�
+�
+�
+− �AnVn
+�BnVn − �D∗
+nUn
+�BnVn − �D∗
+nUn
+− �AnVn
+�
+�
+�
+�
+� .
+(6.21)
+Here the coefficients ( �A, �B, �D) and ( �An, �Bn, �Dn) aare provided by the subsequent expres-
+sions:
+�A =
+√πp
+��Γ
+�
+ν + 1
+2 + ip
+���
+exp
+� πp
+2
+�
+√cosh 2πp + cos 2πν ,
+(6.22)
+�B = �A
+cos πν
+i sinh πp
+=
+√πp
+��Γ
+�
+ν + 1
+2 + ip
+���
+exp
+� πp
+2
+�
+√cosh 2πp + cos 2πν
+cos πν
+i sinh πp,
+(6.23)
+�D = − �A cos(ip + ν)π
+i sinh πp
+exp (−πp) Γ
+�
+ν + 1
+2 + ip
+�
+Γ
+�
+ν + 1
+2 − ip
+�
+= −
+√πp
+��Γ
+�
+ν + 1
+2 + ip
+���
+exp
+�
+− πp
+2
+�
+√cosh 2πp + cos 2πν
+cos(ip + ν)π
+i sinh πp
+Γ
+�
+ν + 1
+2 + ip
+�
+Γ
+�
+ν + 1
+2 − ip
+�,
+(6.24)
+and
+�An =
+√πpn
+��Γ
+�
+ν + 1
+2 + ipn
+���
+exp
+� πpn
+2
+�
+√cosh 2πpn + cos 2πν ,
+(6.25)
+�Bn = �An
+cos πν
+i sinh πpn
+59
+
+=
+√πpn
+��Γ
+�
+ν + 1
+2 + ipn
+���
+exp
+� πpn
+2
+�
+√cosh 2πpn + cos 2πν
+cos πν
+i sinh πpn
+,
+(6.26)
+�Dn = − �An
+cos(ipn + ν)π
+i sinh πpn
+exp (−πpn) Γ
+�
+ν + 1
+2 + ipn
+�
+Γ
+�
+ν + 1
+2 − ipn
+�
+= −
+√πpn
+��Γ
+�
+ν + 1
+2 + ipn
+���
+exp
+�
+− πpn
+2
+�
+√cosh 2πpn + cos 2πν
+cos(ipn + ν)π
+i sinh πpn
+Γ
+�
+ν + 1
+2 + ipn
+�
+Γ
+�
+ν + 1
+2 − ipn
+�.(6.27)
+From the structure of the above mentioned matrices we have found the following charac-
+teristics:
+1. First of all we have found that for each of the above mentioned matrices the diag-
+onal and off-diagonal elements are same, which implies each of them are symmetric
+matrices under the matrix transpose operation i.e.
+Qqσ = QT
+σq = Qσq,
+(6.28)
+Rqσ = RT
+σq,n = Rσq,n,
+(6.29)
+Qqσ,n = QT
+σq,n = Qσq,n,
+(6.30)
+Rqσ,n = RT
+σq,n = Rσq,n.
+(6.31)
+2. In the above mentioned expressions we have also used the following relationships to
+write down the final result in a more simplified and compact format:
+�A∗ = �A,
+�B∗ = − �B,
+u∗ = u = u,
+v∗ = v = v,
+(6.32)
+�A∗
+n = �An,
+�B∗
+n = − �Bn,
+U ∗
+n = Un = U n,
+V ∗
+n = Vn = V n.
+(6.33)
+3. If we set B = 0 and �B = 0 along with v = 0 and Vn = 0 correspond to case of
+conformal coupling (ν = 1/2) and the massless theory (ν = 3/2).
+The following formulas in the region L provide the creation and annihilation operators
+for oscillators of the a type, and fixing this will fix their explicit mathematical structures:
+a†
+L : =
+�
+�Auc†
+L − �AvcL +
+�
+�Bu + �Dv
+�
+c†
+R −
+�
+�Bv + �Du
+�
+cR
+�
+�
+��
+�
+Complementary part
++
+∞
+�
+n=0
+�
+�AnUnC†
+L(n) − �AnVnCL(n) +
+�
+�BnUn + �DnVn
+�
+C†
+R(n) −
+�
+�BnVn + �DnUn
+�
+CR(n)
+�
+�
+��
+�
+Particular integral part
+,
+(6.34)
+60
+
+aL : =
+�
+�AucL − �Avc†
+L +
+�
+− �Bu + �D∗v
+�
+cR −
+�
+− �Bv + �D∗u
+�
+c†
+R
+�
+�
+��
+�
+Complementary part
++
+∞
+�
+n=0
+�
+�AnUnCL(n) − �AnVnC†
+L(n) +
+�
+− �BnUn + �D†
+nVn
+�
+CR(n) −
+�
+− �BnVn + �D†
+nUn
+�
+C†
+R(n)
+�
+�
+��
+�
+Particular integral part
+,
+(6.35)
+The following expression represents the excited quantum state for a single oscillator and
+corresponds to the quantum state of the inside observer:
+|1pin⟩BD2 = a†
+L|0pin⟩BD2
+=
+� �
+�Auc†
+L − �AvcL +
+�
+�Bu + �Dv
+�
+c†
+R −
+�
+�Bv + �Du
+�
+cR
+�
+�
+��
+�
+Complementary part
++
+∞
+�
+n=0
+�
+�AnUnC†
+L(n) − �AnVnCL(n) +
+�
+�BnUn + �DnVn
+�
+C†
+R(n) −
+�
+�BnVn + �DnUn
+�
+CR(n)
+�
+�
+��
+�
+Particular integral part
+���
+(1 − |γpin|2)
+(1 + fpin)
+∞
+�
+k=0
+|γpin|k
+�
+|kpin⟩R′ ⊗ |kpin⟩L′
+�
++
+fpin
+�
+(1 + fpin)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γpin,n|r
+�
+|n, rpin⟩R′ ⊗ |n, rpin⟩L′
+��
+=
+��
+(1 − |γpin|2)
+(1 + fpin)
+�
+∆1
+∞
+�
+k=0
+|γpin|k√
+k + 1
+�
+|kpin⟩R′ ⊗ |(k + 1)pin⟩L′
+�
++∆2
+∞
+�
+k=0
+|γpin|k√
+k + 1
+�
+|(k + 1)pin⟩R′ ⊗ |kpin⟩L′
+��
++
+fpin
+�
+(1 + fpin)
+�
+∞
+�
+n=0
+∆3,n
+∞
+�
+r=0
+|Γpin,n|r√
+r + 1
+�
+|n, rpin⟩R′ ⊗ |n, (r + 1)pin⟩L′
+�
++
+∞
+�
+n=0
+∆4,n
+∞
+�
+r=0
+|Γpin,n|r√
+r + 1
+�
+|n, (r + 1)pin⟩R′ ⊗ |n, rpin⟩L′
+���
+.
+(6.36)
+In the above expression we introduce four symbols ∆1, ∆2, ∆3,n and ∆4,n which are defined
+61
+
+by the following expressions:
+∆1 =
+�
+�Au − ( �Bv + �Du)γpin
+�
+,
+(6.37)
+∆2 =
+�
+− �Avγpin + ( �Bu + �Dv)
+�
+,
+(6.38)
+∆3,n =
+�
+�AnUn −
+�
+�BnVn + �DnUn
+� �
+,
+(6.39)
+∆4,n =
+�
+− �AnVnΓpin,n +
+�
+�BnUn + �DnVn
+� �
+.
+(6.40)
+To compute the expression for the excited quantum state for the single oscillator we have
+used the usual harmonic oscillator algebra in terms of the quantum states.
+We must perform a partial trace operation over all of the degrees of freedom in the
+region R since the building of the current theoretical framework requires that the inside
+observer be located at the region L of one of the open charts of the global de Sitter space.
+This will ultimately result in a density matrix, which we have precisely computed in the
+following subsection. Due to this, we suggest the following ansatz for factorising the entire
+Hilbert space used in the computation here:
+H :=
+�
+HBD1 ⊗ HBD2
+�
+=
+�
+HBD1 ⊗
+�
+HL ⊗ HR
+�
+BD2
+�
+.
+(6.41)
+Though the similar factorization exists in the first Bunch Davies quantum vacuum state,
+for the time being to perform the present computation we don’t need the factorization
+details of this subspace.
+The prime for this particular choice is because to construct
+the density matrix the details of the subspace which belongs to the first Bunch Davies
+quantum vacuum state is not explicitly required. This will help us to compute the rest of
+the computations of this paper in a very simplified fashion. In the next subsection we will
+discuss the technical details of this construction to formulate the maximal entangled state
+and hence the reduced density matrix.
+6.3
+Construction of reduced density matrix at the inside observer
+Our primary objective in this section is to derive the equation for the reduced density
+matrix in the region L by performing a partial trace operation over the contributions from
+the region R. The matching maximally entangled state, denoted by the following phrase,
+62
+
+must first be created:
+|Ψ⟩ME : =
+1
+√
+2
+�
+|0pout⟩BD1 ⊗
+��
+(1 − |γpin|2)
+(1 + fpin)
+∞
+�
+k=0
+|γpin|k
+�
+|kpin⟩R′ ⊗ |kpin⟩L′
+�
++
+fpin
+�
+(1 + fpin)
+∞
+�
+n=0
+∞
+�
+r=0
+|Γpin,n|r
+�
+|n, rpin⟩R′ ⊗ |n, rpin⟩L′
+��
++|1pout⟩BD1 ⊗
+��
+(1 − |γpin|2)
+(1 + fpin)
+�
+∆1
+∞
+�
+k=0
+|γpin|k√
+k + 1
+�
+|kpin⟩R′ ⊗ |(k + 1)pin⟩L′
+�
++∆2
+∞
+�
+k=0
+|γpin|k√
+k + 1
+�
+|(k + 1)pin⟩R′ ⊗ |kpin⟩L′
+��
++
+fpin
+�
+(1 + fpin)
+�
+∞
+�
+n=0
+∆3,n
+∞
+�
+r=0
+|Γpin,n|r√
+r + 1
+�
+|n, rpin⟩R′ ⊗ |n, (r + 1)pin⟩L′
+�
++
+∞
+�
+n=0
+∆4,n
+∞
+�
+r=0
+|Γpin,n|r√
+r + 1
+�
+|n, (r + 1)pin⟩R′ ⊗ |n, rpin⟩L′
+����
+. (6.42)
+From the above mentioned detailed structure of the maximal entangled state constructed
+in the present set up it is observed that the scale dependence in this state comes through
+the quantities, γpin, Γpin,n, ∆1, ∆2, ∆3,n and ∆4,n appearing in the computation. This
+particular fact is the direct outcome of the factorization of the inside observer’s subspace
+in to two symmetric subspaces R and L. Our further job is to to study the imprints of this
+scale dependence on the physical outcomes of the systems to explore the unknown facts
+from the theoretical set up under consideration.
+We now need to take a partial trace over the degrees of freedom of region R, because
+we already know that the inside observer’s subspace does not get any information content
+from this region.
+This will allow us to create the reduced density matrix out of this
+configuration. Due to the fact that the above-mentioned newly built maximally entangled
+quantum state, which is actually a mixed state in the current prescription, will be taken
+into account throughout this computation, we must be mindful of this fact. As a result,
+the reduced density matrix can be expressed simply as follows:
+ρreduced : = TrR′ [|Ψ⟩ME
+ME⟨Ψ|]
+=
+∞
+�
+mpin=0
+R′⟨mpin|Ψ⟩MEME⟨Ψ|m⟩R′ +
+∞
+�
+s=0
+∞
+�
+mpin=0
+R′⟨s, mpin|Ψ⟩MEME⟨Ψ|s, mpin⟩R′
+=
+�
+∞
+�
+mpin=0
+ρmpin +
+∞
+�
+mpin=0
+∞
+�
+s=0
+ρmpin,s
+�
+,
+(6.43)
+63
+
+where we define ρmpin and ρmpin,s by the following expressions:
+ρm = (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+|0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin|
++∆∗
+2γpin
+�
+mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin|
++∆2γ∗
+pin
+�
+mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1|
++|∆2|2(mpin + 1)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin|
++∆∗
+1
+�
+mpin + 1|0pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 1|
++∆1
+�
+mpin + 1|1pout⟩BD1|mpin + 1⟩L′ BD1⟨0|L′⟨mpin|
++∆∗
+1∆2γ∗
+pin
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 2|
++∆1∆∗
+2γpin
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin + 2⟩L′ BD1⟨1|L′⟨mpin|
++|∆1|2(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1|
+�
+,
+(6.44)
+and
+ρm,s =
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+|0pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, mpin|
++∆∗
+4,sΓpin,s
+�
+mpin + 1|0pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, mpin|
++∆4,sΓ∗
+pin,s
+�
+mpin + 1|1pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, (mpin + 1)|
++|∆4,s|2(mpin + 1)|1pout⟩BD1|s, mpin⟩L′ BD1⟨1|L′⟨s, mpin|
++∆∗
+3,s
+�
+mpin + 1|0pout⟩BD1|s, mpin⟩L′ BD1⟨1|L′⟨s, (mpin + 1)|
++∆3,s
+�
+mpin + 1|1pout⟩BD1|s, mpin + 1⟩L′ BD1⟨0|L′⟨s, mpin|
++∆∗
+1∆2Γ∗
+pin,s
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|s, mpin⟩L′ BD1⟨1|L′⟨s, (mpin + 2)|
++∆3,s∆∗
+4,sΓpin,s
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|s, (mpin + 2)⟩L′ BD1⟨1|L′⟨s, mpin|
++|∆3,s|2(mpin + 1)|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, (mpin + 1)|
+�
+.
+(6.45)
+The internal observer is essentially described by the quantum mechanical state that emerges
+in this situation for both the complementary and specific integral parts, where the corre-
+sponding observer is positioned in one of the regions of the open chart of the global de
+Sitter space. Furthermore, it is significant to remember that all mode eigen values for
+the complementary and specific integral parts are identical and marked with the symbol
+mpin. This is because of the fact that in the particular integral part the index s which is
+appearing due to putting source term is not going to effect the eigen values of the mode
+64
+
+function at the end of the day. Though one can tag the corresponding quantum states
+of the particular integral part with s and mpin, to make a distinction from the quantum
+modes of the complementary part which is tagged by only the quantum number mpin. This
+is a very crucial point which is very important to mention at this stage of computation to
+avoid all further unnecessary confusion.
+6.4
+Partial transpose operation and the comment on the negative eigenvalues
+Identifying the negative eigenvalues of the obtained formula for the reduced density matrix
+discussed before is the main objective of this section. In order to perform this computa-
+tion, we separate the contributions from the complementary section and the particular
+integral component. Here, we focus on the partial transpose operation with respect to the
+component that corresponds to the first quantum vacuum state of Bunch Davies, which is
+given by the following expressions:
+ρT,BD1
+m
+= (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+|0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin|
++∆∗
+2γpin
+�
+mpin + 1|1pout⟩BD1|mpin + 1⟩L′ BD1⟨0|L′⟨mpin|
++∆2γ∗
+pin
+�
+mpin + 1|0pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 1|
++|∆2|2(mpin + 1)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin|
++∆∗
+1
+�
+mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1|
++∆1
+�
+mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin|
++∆∗
+1∆2γ∗
+pin
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 2|
++∆1∆∗
+2γpin
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin + 2⟩L′ BD1⟨1|L′⟨mpin|
++|∆1|2(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1|
+�
+,
+(6.46)
+and
+ρT,BD1
+m,s
+=
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+|0pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, mpin|
++∆∗
+4,sΓpin,s
+�
+mpin + 1|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨0|L′⟨s, mpin|
++∆4,sΓ∗
+pin,s
+�
+mpin + 1|0pout⟩BD1|s, mpin⟩L′ BD1⟨1|L′⟨s, (mpin + 1)|
++|∆4,s|2(mpin + 1)|1pout⟩BD1|s, mpin⟩L′ BD1⟨1|L′⟨s, mpin|
++∆∗
+3,s
+�
+mpin + 1|1pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, (mpin + 1)|
++∆3,s
+�
+mpin + 1|0pout⟩BD1|s, mpin + 1⟩L′ BD1⟨1|L′⟨s, mpin|
++∆∗
+3,s∆4,sΓ∗
+pin,s
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|s, mpin⟩L′ BD1⟨1|L′⟨s, (mpin + 2)|
+65
+
++∆3,s∆∗
+4,sΓpin,s
+�
+(mpin + 1)(mpin + 2)|1pout⟩BD1|s, (mpin + 2)⟩L′ BD1⟨1|L′⟨s, mpin|
++|∆3,s|2(mpin + 1)|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, (mpin + 1)|
+�
+.
+(6.47)
+Now if from the above mentioned partial transposed version of the reduced density matrices
+computed from the complementary and particular integral part after taking addition and
+summing over s if we found that at least one eigenvalue is negative, then we can conclude
+from our theoretical set up that quantum mechanical states corresponding to the inside
+and outside observers are entangled.
+Let’s first express the transposed version of the reduced density matrices derived from
+the complementary and particular integral component in square matrix form before con-
+tinuing with the computation, which is given by the following expressions:
+ρT,BD1
+m
+= (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+�
+�
+�
+�
+�
+�
+�
+�
+Ampin
+Bmpin
+Cmpin
+B∗
+mpin
+Dmpin
+0
+C∗
+mpin
+0
+0
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(6.48)
+ρT,BD1
+mpin,s =
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+�
+�
+�
+�
+�
+�
+�
+�
+Ampin,s
+Bmpin,s
+Cmpin,s
+B∗
+mpin,s
+Dmpin,s
+0
+C∗
+mpin,s
+0
+0
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(6.49)
+where we define each of entries of the above mentioned square matrices by the following
+expressions:
+Ampin = 1 + |∆2|2(mpin + 1),
+(6.50)
+Bmpin =
+�
+mpin + 1
+�
+∆2γ∗
+pin + ∆∗
+1
+�
+,
+(6.51)
+Cmpin =
+�
+(mpin + 1)(mpin + 2) ∆∗
+1∆2γ∗
+pin,
+(6.52)
+Dmpin = |∆1|2(mpin + 1),
+(6.53)
+and
+Ampin,s = 1 + |∆4,s|2(mpin + 1),
+(6.54)
+Bmpin,s =
+�
+mpin + 1
+�
+∆4,sΓ∗
+pin,s + ∆∗
+3,s
+�
+,
+(6.55)
+66
+
+Cmpin,s =
+�
+(mpin + 1)(mpin + 2) ∆∗
+3,s∆4,sΓ∗
+pin,s,
+(6.56)
+Dmpin,s = |∆3,s|2(mpin + 1).
+(6.57)
+Our next job is to compute the eigenvalue equations from the total partial transposed
+matrix, which is given by the following expression:
+�λ3
+mpin − Ampin�λ2
+mpin + Bmpin�λmpin + Cmpin = 0.
+(6.58)
+where in the above mentioned two expressions we have introduced some shorthand rede-
+fined symbols which are given by the following expressions:
+Ampin =
+1
+2 (1 + fpin)
+�
+|γpin|2mpin �
+1 − |γpin|2� �
+Ampin + Dmpin
+�
++f 2
+pin
+∞
+�
+s=0
+|Γpin,s|2m �
+Ampin,s + Dmpin,s
+�
+�
+,
+(6.59)
+Bmpin =
+1
+4 (1 + fpin)2
+�
+|γpin|4mpin �
+1 − |γpin|2�2 �
+AmpinDmpin −
+�
+|Bmpin|2 + |Cmpin|2��
++f 4
+pin
+∞
+�
+s=0
+|Γpin,s|4mpin �
+Ampin,sDmpin,s −
+�
+|Bmpin,s|2 + |Cmpin,s|2��
+�
+, (6.60)
+Cmpin =
+1
+8 (1 + fpin)3
+�
+|γpin|6mpin �
+1 − |γpin|2�3 |Cmpin|2Dmpin
++f 6
+pin
+∞
+�
+s=0
+|Γpin,s|6mpin|Cmpin,s|2Dmpin,s
+�
+.
+(6.61)
+The real root of the eigenvalue computed from the (mpin, mpin + 1) block is given by:
+�λmpin = 1
+3
+�
+Ampin + f(Ampin, Bmpin, Cmpin)
+3√
+2
+−
+3√
+2
+�
+3Bmpin − A
+2
+mpin
+�
+f(Ampin, Bmpin, Cmpin)
+�
+.
+(6.62)
+where we define the newly defined function f(Ampin, Bmpin, Cmpin) which is defined as:
+f(Ampin, Bmpin, Cmpin) : =
+�
+2A
+3
+mpin − 9AmpinBmpin − 27Cmpin
++3
+√
+3
+�
+18AmpinBmpinCmpin + 4B
+3
+mpin + 27C
+2
+mpin
+67
+
+−4A
+3
+mpinCmpin − A
+2
+mpinB
+2
+mpin
+�1
+2
+�1
+3
+.
+(6.63)
+Then the logarithmic negativity from the present set up can be further computed as:
+LN = ln
+�
+�
+�2
+�
+�λmpin <0
+�λmpin + 1
+�
+�
+�
+= ln
+�
+2
+3
+�
+Ampin + f(Ampin, Bmpin, Cmpin)
+3√
+2
+−
+3√
+2
+�
+3Bmpin − A
+2
+mpin
+�
+f(Ampin, Bmpin, Cmpin)
+�
++ 1
+�
+.
+(6.64)
+In the next subsection we have studied this possibility numerically to extract the unknown
+facts from the present set up.
+6.5
+Computation of logarithmic negativity: Numerical study
+In figure (6.2(a)) and (6.2(b)), we have depicted the representative 3D plot of the eignen-
+value of the partial transposed matrix with the mass parameter and the corresponding
+momentum mode associated with the computation. In these plots we have considered two
+possibilities, vanishing fpin = 0 and a very small value but fpin ̸= 0. Here the partial
+transpose operation is taken with respect to the quantum vacuum state of the first Bunch
+Davies state which is characterizing the corresponding open chart of the global de Sitter
+space. The outcomes and the physical interpretation of these plots are very interesting
+which we are writing point-wise in the following:
+1. In these plots we can clearly observe that the corresponding eignevalue that we
+have plotted for the mode having mpin = 0 gives negative contributions for both
+figure (6.2(a)) and (6.2(b)). This is a clear signature of having quantum mechanical
+entanglement in the biverse as well as well as the multiverse picture that we have
+theoretically constructed in this paper.
+2. The other higher modes mpin > 0 gives positive contribution to the eigenvalue for
+which we have not incorporated those plots in this paper. Most importantly such con-
+tributions will not be in support of quantum entanglement in the present theoretical
+picture, so those solutions are not interesting in the present context.
+3. Comparing both of these plots we can also observe that for fpin = 0 we get less
+quantum entanglement compared to the case that we have studied for small fpin ̸= 0.
+4. Also we have found that for heavy mass field which is governed by ν = −i|ν| or
+ν2 < 0 the corresponding eigenvalue of the partial transposed version of the reduced
+68
+
+(a) For fpin = 0.
+(b) For small fpin ̸= 0.
+Figure 6.2: Representative 3D plot of the eignenvalue of the partial transposed matrix
+with the mass parameter and the corresponding momentum mode associated with the
+computation. Here the partial transpose operation is taken with respect to the quantum
+vacuum state of the first Bunch Davies state which is characterizing the corresponding
+open chart of the global de Sitter space.
+69
+
+0.5
+1.0
+1.5
+-0.15
+-0.10
+-0.05
+(a) For fpin = 0.
+0.5
+1.0
+1.5
+-0.18
+-0.16
+-0.14
+-0.12
+-0.10
+-0.08
+-0.06
+-0.04
+(b) For small fpin ̸= 0.
+Figure 6.3: Graphical behaviour of the of the eignenvalue of the partial transposed matrix
+with the mass parameter for given value of the momentum mode associated with the
+computation.
+70
+
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+-0.5
+-0.4
+-0.3
+-0.2
+-0.1
+0.0
+(a) For fpin = 0.
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+-0.5
+-0.4
+-0.3
+-0.2
+-0.1
+(b) For small fpin ̸= 0.
+Figure 6.4: Graphical behaviour of the of the eignenvalue of the partial transposed matrix
+with the momentum mode associated with the computation for the given value of mass
+parameter.
+71
+
+0.5
+1.0
+1.5
+0.05
+0.10
+0.15
+0.20
+0.25
+0.30
+(a) For fpin = 0.
+0.5
+1.0
+1.5
+0.10
+0.15
+0.20
+0.25
+0.30
+(b) For small fpin ̸= 0.
+Figure 6.5: Graphical behaviour of the of the logarithmic negativity computed from
+the negative eigenvalues of the partial transposed reduced density matrix with the mass
+parameter associated with the computation for the given value of momentum mode.
+72
+
+0.05
+0.10
+0.20
+0.50
+0.001
+0.010
+0.100
+1
+(a) For fpin = 0.
+0.05
+0.10
+0.20
+0.50
+10-4
+0.001
+0.010
+0.100
+1
+(b) For small fpin ̸= 0.
+Figure 6.6: Graphical behaviour of the of the logarithmic negativity computed from the
+negative eigenvalues of the partial transposed reduced density matrix with the momentum
+mode associated with the computation for the given value of mass parameter.
+73
+
+density matrix is highly positive. Since this fact is not the desirable one, we have not
+included such plots in this paper. But it is strictly confirmed that to get high amount
+of entanglement heavy field is not desirable in the present prescribed framework. For
+this reason we have only shown the plots for massless or partially massless fields
+which can be studied using the solution for the branch ν > 0.
+5. From both of these plots we can clearly observe that for the values of the mass
+parameter ν = 1/2 (conformal coupling) and ν = 3/2 (massless case) there are two
+dips in the eigenvalue spectrum, which correspond to maximum entanglement from
+the theoretical set up under consideration. On the other hand, in both of these plots
+we see that at ν = 1 there is minimum contribution from the quantum entanglement
+compared to the previously mentioned two values of the mass parameter ν.
+6. For any other values of the mass parameter lying within the window 0 < ν < 2 we
+get the intermediate amount of quantum mechanical entanglement. Particularly, it
+is important to note that for ν = 0 the amount of entanglement is larger than the
+amount of entanglement obtained for the value ν = 2.
+7. It seems like that the eigenvalue spectrum is distributed symmetrically around the
+value of the mass parameter ν = 1.
+But actually this is not the case.
+Crucial
+observation suggests that the hight of the spectrum is lesser at ν = 0 compared to
+ν = 2.
+8. In both of these plots we have restricted our parameter space within the region
+0 < pin < 0.8 and 0 < ν < 2, which we found the most suitable parameter space to
+get the negative contribution from the eigenvalue spectrum for the mode mpin = 0.
+In figure (6.3(a)) and (6.3(b)), we have depicted the representative graphical behaviour
+of the of the eignenvalue of the partial transposed matrix with the mass parameter for
+given value of the momentum mode associated with the computation. In these plots we
+have considered two possibilities, vanishing fpin = 0 and a very small value but fpin ̸= 0.
+In both of these plots we have fixed the value of the momentum mode within the region
+0.2 < pin < 0.5 and have studied the behaviour of the eigenvalue spectrum with respect
+to mass parameter within the range 0 < ν < 2. In our computation we found that this is
+the most desirable window of parameters within which one can get maximum contribution
+from the quantum entanglement in terms of getting maximum negative contribution from
+the eigenvalue.
+Further, in figure (6.4(a)) and (6.4(b)), we have depicted the representative graphical
+graphical behaviour of the of the eignenvalue of the partial transposed matrix with the
+momentum mode associated with the computation for the given value of mass parameter.
+In these plots we have considered two possibilities, vanishing fpin = 0 and a very small
+value but fpin ̸= 0. In both of these plots we have fixed the value of the mass parameter
+74
+
+within the region 1 < ν < 7/4 and have studied the behaviour of the eigenvalue spectrum
+with respect to momentum mode within the range 0.1 < pin < 0.8. We have found that
+for very small value of momentum mode with the mass parameter in the region ν < 1 is
+not desirable in the present context as it gives very large positive eigenvalue. Also from
+this analysis we have found that for very large value of the momentum mode for any
+values of the mass parameter ν the corresponding eigenvalue spectrum will saturate to a
+negative value. After comparing figure (6.4(a)) and (6.4(b)), we also have found that this
+asymptotic saturation value for small fpin ̸= 0 is larger compared to result obtained from
+fpin = 0 case.
+Next, in figure (6.5(a)) and (6.5(b)), we have depicted the representative graphical
+graphical behaviour of the the logarithmic negativity computed from the negative eigen-
+values of the partial transposed reduced density matrix with the mass parameter associated
+with the computation for the given value of momentum mode. Finally, in figure (6.6(a))
+and (6.6(b)), we have depicted the representative graphical graphical behaviour of the the
+logarithmic negativity with the momentum mode for the given value of mass parameter.
+In these plots we have considered two possibilities, vanishing fpin = 0 and a very small
+value but fpin ̸= 0. The outcomes and the physical interpretation of these plots are very
+interesting which we are writing point-wise in the following:
+1. From the figure (6.5(a)) and (6.5(b)), we have found that for fpin = 0 logarithmic
+negativity vanishes at ν = 1, but for small fpin ̸= 0 it is non zero but very small.
+It further implies that at the value of the mass parameter ν = 1 we have almost
+negligible contribution from the quantum mechanical entanglement on large scales.
+Additionally it is important to note that, this particular outcome is obtained for a
+specific value of the momentum mode, pin = 0.2.
+2. On the other hand, we have found that at ν = 1/2 and ν = 3/2 the obtained value
+of the logarithmic negativity from the present theoretical set up reach the maximum
+value, which further correspond to the maximum quantum mechanical entanglement
+or maximum correlation. This outcome is true for the momentum mode, pin = 0.2.
+One important thing here to mention that the large scale limit corresponds to the
+small value of the momentum mode pin in our present computation.
+3. For the other values of momentum mode lying within the window 0.2 < pin < 0.5 we
+have found that the variation with respect to the mass parameter ν is less compared
+to the case that we have studied for the momentum mode pin = 0.2. Comparing
+all the outcomes obtained for the different momentum modes within the mentioned
+range we have found that if we increase the value of pin then the corresponding
+variation is reduced and we get intermediate values of negativity, which corresponds
+to the intermediate amount of quantum mechanical entanglement for the system
+under consideration. This further implies the fact that lower values of the momentum
+75
+
+mode for the prescribed analysis is more desirable as it is giving higher amplitude of
+logarithmic negativity, hence higher amount of quantum mechanical entanglement.
+4. We have also found that the underlying quantum mechanical entanglement directly
+put impact on the shape of the spectrum of logarithmic negativity at the large scales
+which nearly equals or exceeds the mass parameter’s value ν ∼ 3/2.
+5. Further, in figure (6.6(a)) and (6.6(b)), we have found out that for large values of
+the momentum mode pin > 0.5 the corresponding logarithmic negativity computed
+from the prescribed theoretical set up saturates to a constant non zero positive non
+negligible value. This further implies constant amount of quantum entanglement
+for any arbitrary positive real value of the mass parameter ν.
+However, in this
+asymptotic limit one cannot distinguish the individual effect of the mass parameter
+in the present computation. This also implies that the low momentum modes are
+more desirable for the present analysis to distinguish the individual effects of the
+mass parameter ν.
+6. Last but not least, we have also found that except ν = 3/2 for all other values of
+the mass parameter ν we get a sharp changing behaviour in the specific value of the
+momentum mode.
+6.6
+Small scale limit of logarithmic negativity: Analytical study
+In the small scale limit one needs to take the limit pin → ∞ to compute the logarithmic
+negativity from the present computational set up. In this limit we have:
+∆1 = ∆∗
+1 → 1,
+∆2 = ∆∗
+2 → 0,
+∆3,s = ∆∗
+3,s → 1,
+∆4,s = ∆∗
+4,s → 0.
+(6.65)
+The following simplified formulas in the small scale limit are obtained after taking par-
+tial transposition with regard to the subsystem corresponding to the first Bunch Davies
+quantum vacuum state:
+ρT,BD1
+mpin
+= (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+|0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin|
++
+�
+mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1|
++
+�
+mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin|
++(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1|
+�
+,
+(6.66)
+76
+
+and
+ρT,BD1
+mpin,s =
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+|0pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, mpin|
++
+�
+mpin + 1|1pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, (mpin + 1)|
++
+�
+mpin + 1|0pout⟩BD1|s, mpin + 1⟩L′ BD1⟨1|L′⟨s, mpin|
++(mpin + 1)|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, (mpin + 1)|
+�
+.
+(6.67)
+Let us express the above mentioned transposed version of the reduced density matrices
+computed from the complementary and particular integral part in square matrix form,
+which are given by the following expressions:
+ρT,BD1
+mpin
+= (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+�mpin + 1
+0
+�mpin + 1
+(mpin + 1)
+0
+0
+0
+0
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(6.68)
+ρT,BD1
+mpin,s =
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+�mpin + 1
+0
+�mpin + 1
+(mpin + 1)
+0
+0
+0
+0
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(6.69)
+Next we compute the eigenvalue equation from the total partial transposed matrix after
+summing over source mode s, which is given by the following expression:
+�λ2
+mpin
+�
+�λmpin − (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin(mpin + 2) −
+f 2
+pin
+2 (1 + fpin)(mpin + 2)gpin
+�
+= 0. (6.70)
+The non trivial root of the eigenvalue computed from the (mpin, mpin + 1) block in the
+small scale limit is given by:
+�λmpin = (mpin + 2)
+2 (1 + fpin)
+�
+�
+1 − |γpin|2�
+|γpin|2mpin + f 2
+pingpin
+�
+,
+(6.71)
+77
+
+where we define:
+gpin :=
+∞
+�
+s=0
+|Γpin,s|2mpin.
+(6.72)
+Then the logarithmic negativity from the present set up can be further computed as:
+LN = ln
+�
+�
+�2
+�
+�λmpin <0
+�λmpin + 1
+�
+�
+�
+= ln
+�
+(mpin + 2)
+(1 + fpin)
+�
+�
+1 − |γpin|2�
+|γpin|2mpin + f 2
+pingpin
+�
++ 1
+�
+.
+(6.73)
+We get a negative contribution from the eigenvalue if the following condition is satisfied
+for the small scale limiting situation:
+�
+|γpin|2mpin �
+1 − |γpin|2�
++ f 2
+pingpin
+�
+< 0.
+(6.74)
+Now from the previous analysis we have already found that mpin = 0 mode is most desirable
+one to obtain the negative contribution from the eigenvalue spectrum. In such a case using
+the well known Riemann zeta function regularization we can write the following result for
+mpin = 0:
+gpin :=
+∞
+�
+s=0
+1 = 1 +
+∞
+�
+s=1
+1 = 1 + (1 + 1 + 1 + · · · ) = 1 + ζ(0) = 1 − 1
+2 = 1
+2.
+(6.75)
+which also suggests the following restriction on the small scale limiting circumstance:
+|γpin| >
+�
+�
+�
+�
+�
+1 + f 2
+pin
+2
+�
+.
+(6.76)
+6.7
+Massless limit of logarithmic negativity: Analytical study
+In the massless limit one needs to take the limit ν = 3/2 (exact masslessness) or ν = 1/2
+(conformal invariance) to compute the logarithmic negativity from the present computa-
+tional set up. In this limit we have:
+∆1 →
+�
+�A − �Dγpin
+�
+u,
+∆2 → 0,
+∆3,s →
+�
+�An − �DnΓpin,n
+�
+Un,
+∆4,s → 0.
+(6.77)
+78
+
+The partial transposition operation for the subsystem corresponding to the first Bunch
+Davies quantum vacuum state is given by the following formulas for the massless limiting
+situation:
+ρT,BD1
+mpin
+= (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+|0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin|
++∆∗
+1
+�
+mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1|
++∆1
+�
+mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin|
++|∆1|2(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1|
+�
+,
+(6.78)
+and
+ρT,BD1
+mpin,s =
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+|0pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, mpin|
++∆∗
+3,s
+�
+mpin + 1|1pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, (mpin + 1)|
++∆3,s
+�
+mpin + 1|0pout⟩BD1|s, mpin + 1⟩L′ BD1⟨1|L′⟨s, mpin|
++|∆3,s|2(mpin + 1)|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, (mpin + 1)|
+�
+.(6.79)
+In this special case the factors ∆1 and ∆3,s can be further simplified as:
+∆1 =
+�
+�A − �Dγpin
+�
+u
+=
+1
+sinh πpin
+�
+exp(πpin) − i exp(−πpin)(1 + pin)
+(1 − pin)
+Γ(ipin)
+Γ(−ipin)
+�
+,
+(6.80)
+∆3,s =
+�
+�As − �DsΓpin,s
+�
+Us
+=
+1
+sinh πpin,s
+�
+exp(πpin,s) − i exp(−πpin,s)(1 + pin,s)
+(1 − pin,s)
+Γ(ipin,s)
+Γ(−ipin,s)
+�
+.
+(6.81)
+Let us express the above mentioned transposed version of the reduced density matrices
+computed from the complementary and particular integral part in square matrix form,
+79
+
+which are given by the following expressions for the massless case:
+ρT,BD1
+mpin
+= (1 − |γpin|2)
+2 (1 + fpin) |γpin|2mpin
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+�mpin + 1∆∗
+1
+0
+�mpin + 1∆1
+0
+0
+0
+0
+0
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(6.82)
+ρT,BD1
+mpin,s =
+f 2
+pin
+2 (1 + fpin)|Γpin,s|2mpin
+�
+�
+�
+�
+�
+�
+�
+�
+�
+1
+�mpin + 1∆∗
+3,s
+0
+�mpin + 1∆3,s
+0
+0
+0
+0
+0
+�
+�
+�
+�
+�
+�
+�
+�
+�
+. (6.83)
+Next we compute the eigenvalue equation from the total partial transposed matrix after
+summing over source mode s, which is given by the following expression:
+�λmpin
+�
+�λ2
+mpin − Ampin�λmpin + Bmpin
+�
+= 0.
+(6.84)
+where in the above mentioned expression we have introduced some shorthand redefined
+symbols which are given by the following expressions:
+Am =
+1
+2 (1 + fpin)
+�
+�
+1 − |γpin|2�
+|γpin|2m + f 2
+pingpin
+�
+,
+(6.85)
+Bm = − (mpin + 1)
+4 (1 + fpin)2
+�
+�
+1 − |γpin|2�2 |γpin|4m|∆1|2 + f 4
+pin
+∞
+�
+s=0
+|Γpin,s|4m|∆3,s|2
+�
+.
+(6.86)
+The non trivial roots of the eigenvalue computed from the (mpin, mpin + 1) block are given
+by:
+�λ±
+mpin = 1
+2
+�
+Ampin ±
+�
+A
+2
+mpin − 4Bmpin
+�
+.
+(6.87)
+Then the logarithmic negativity computed from the negative eigenvalue from the present
+set up can be written for the massless limit as:
+LN = ln
+�
+�
+�2
+�
+�λmpin <0
+�λmpin + 1
+�
+�
+� = ln
+�
+Ampin + 1 −
+�
+A
+2
+mpin − 4Bmpin
+�
+.
+(6.88)
+80
+
+Here it is important to note that the eigenvalue and the associated logarithmic negativity
+computed in this particular massless limiting situation with fpin = 0 is similar to the case
+that is obtained for explaining the entanglement between an inertial and a non-inertial
+frame of reference for a free massless scalar degree of freedom in Minkowski flat space
+time as discussed in the reference [125]. Small difference appearing due to having separate
+thermal behaviour of the Minkowski space time and global de Sitter space time. Now this
+difference in the result is more prominent and significant once we consider the effect of
+source term in the effective axion potential with small fpin ̸= 0.
+7
+Conclusion
+We conclude our discussion with the following points which we have found from our analysis
+performed in this paper:
+• Firstly, we have started with the basic discussion regarding the entanglement neg-
+ativity and logarithmic negativity for a general quantum mechanical set up which
+is appearing in the context of quantum information theory. We have provided the
+technical details for the related computations from a general quantum mechanical
+set up. Further we have provided a proper physical justification that why the above
+mentioned two measures are physically relevant and significant for the computation
+we want to perform for the open chart of the global de Sitter space.
+• Then we have given a detailed justification of the factorization of the total Hilbert
+space in open chart to associate our computation in the region L and R, which is
+necessarily required to construct the reduced density matrix and to compute the
+above mentioned entanglement measures from the system under consideration.
+• Additionally, we have fully covered the specifics of the geometrical arrangement of
+the open chart of the de Sitter space, which is the platform on which we intend to
+carry out the remaining calculation. We have independently determined the metric’s
+structure in the area between L and R, which is a crucial piece of knowledge for
+determining how scalar modes would behave based on our calculations.
+• Next, we computed the explicit equation for the mode function using the string
+theory-derived axionic effective interaction, with which we created the Bunch Davies
+vacuum state and subsequently the expression for the reduced density matrix.
+• Further, we have computed the expressions for the entanglement negativity and
+logarithmic negativity for the mentioned axionic effective interaction in open chart.
+We have found that, the newly studied quantum information theoretic measures are
+more significant compared to the Von Neumann measure of entanglement entropy,
+which is commonly used to describe the impact of quantum entanglement.
+81
+
+• The result that offers the most promise is that it enables us to compute and estimate
+the quantum entanglement between the inside and outside of a de Sitter bubble
+without the need for a boundary.
+• We also found that for the large mass the amount of the quantum entanglement
+decays exponential in the entanglement negativity vs mass parameter squared plots.
+On the other hand this decaying behaviour is slightly different when we consider the
+logarithmic negativity measure in this context.
+• We also have found that for the case of conformal coupling ν = 1/2 and massless
+case ν = 3/2 in the logarithmic negativity and entanglement negativity spectrum
+there are two consecutive peaks appear of equal hights. This is really an interesting
+feature we have found from the prescribed theoretical set up studied in this paper.
+Additionally we have found that apart from having two prominent peaks for the
+mentioned values of the mass parameter we have oscillation in the spectrum due to
+having small mass parameter of the axion field during the de Sitter expansion in
+the global coordinates. This oscillation becomes more rapid if the mass parameter
+is very small. On the other hand, the period of oscillation is larger and less rapid if
+the mass parameter is large.
+• Then, using the Bunch Davies quantum vacuum state, we expanded our computation
+to compute the formula for the logarithmic negativity between two causally indepen-
+dent patches of the open chart of the global de Sitter space. This is a scaled-down
+version of the well-known multiverse scenario and is known as the biverse picture.
+In order to perform this calculation, we presupposed a correct factorization of the
+Hilbert spaces in the two subspaces that are currently spanned by the modes of the
+Bunch Davies quantum vacuum states. We don’t need to be aware of the explicit
+content of the first subspace in order to apply our methodology to compute the quan-
+tum entanglement between two de Sitter spaces in the global coordinates. This is
+necessary because we need to take a partial trace over the first de Sitter space’s entire
+subspace content. However, the explicit sub factorization of the second subspace is
+crucial in this situation since it significantly affects the explicit content of the modes
+from the regions R and L.
+• The most important aspect of this particular computation is the maximally entangled
+state, which we used to build the reduced density matrix by extracting all the data
+from the initial Bunch Davies vacuum state. We have further used this result to
+compute the expression for the partial transposed version of the reduced density
+matrix. We have next found that the mode corresponding to mpin = 0 (ground state)
+correspond to the negative eigen value spectrum, using which we have numerically
+studied the behaviour of logarithmic negativity from the prescribed theoretical set
+up. We have found from our analysis that the mode corresponding to mpin = 0 can
+82
+
+produce large measure of quantum entanglement due to having negative eigen value
+spectrum. For the other values of mpin we have found that the corresponding eigen
+values are largely positive which is not desirable to construct a biverse which can
+produce large effect of quantum mechanical entanglement at the end.
+• In the biverse construction we also have found conformally coupled case with ν =
+1/2 and the massless case with ν = 3/2 are the two very special points in the
+entanglement spectrum where the amount of the quantum correlation is equal and
+high in amplitude. On the other hand, we have found that for the mass parameter
+ν = 1 the amount of quantum correlation estimated from the corresponding picture
+reaches its minimum value. This is obviously a promising information which we have
+obtained after performing our analysis on the biverse picture and it is expected that
+it can be generalized to any multiverse scenario constructed out of the specific model
+that we have studied in this paper.
+• In the present context the global coordinates can be treated as the closed slicing
+from the point of view of FLRW cosmology. By performing coordinate coordinate
+transformation one can transform the global to static and then static to the flat
+slicing in the planer patch of de Sitter space. For this reason whatever results we
+have obtained in this paper for the global patch of the de Sitter space can be directly
+translated in the planer patch of the de Sitter space, which further implies that our
+derived results hold good for primordial cosmology.
+Here we have some interesting immediate future direction on which one can extend our
+analysis:
+• We have restricted our analysis for the estimation of entanglement negativity and
+logarithmic negativity by considering the Bunch Davies quantum vacuum state. Im-
+mediately one can extend our analysis for a general non Bunch Davies vacua, such
+as α vacua. It is expected to have many interesting outcome if we extend our anal-
+ysis for non Bunch Davies vacua because the quantum correlations and its various
+unknown applications will be known from this type of future analysis.
+• Since the global coordinates and planar coordinates of de Sitter space are connected
+via coordinate transformation, it is good to explicitly know how the present results
+can be explained within the framework of primordial cosmology. This possibility one
+can seriously think for future work to connect with observation.
+• One can further compute various other quantum information theoretic measures,
+like quantum discord, fidelity and many more interesting quantities from the present
+theoretical set up.
+83
+
+• The direct connection between the higher point quantum correlations with the all of
+these possible quantum information theoretic measures, imprints of quantum entan-
+glement in quantum correlations computed in the quantum field theory of de Sitter
+space and the primordial cosmological set ups are another interesting possibilities
+which one can study in future from the present set up that we have constructed in
+this paper.
+• Extending the present computation to study role quantum mechanical decoherence
+[25, 26, 29, 126, 127] and quantum diffusion [128] might be very useful for the future
+study which can explain various unknown facts from the present set up in global as
+well as in the planer patch of de Sitter space.
+• The construction of squeezed quantum mechanical states and its consequences is a
+common area of research in cosmological set up [33, 129–141]. It would be really good
+if we can able to construct a squeezed quantum state out of the present theoretical set
+up that we are considering in this paper. This will going to help to figure out various
+quantum information theoretic measures and its applications in various contexts. If
+the squeezed state construction is not possible then also one can study various other
+possibilities out of the present set up [142–145].
+• Till now the computation is restricted to a quantum system which is completely
+adiabatic in nature, because we are considering closed quantum system. It would be
+really good if we can study the open quantum system version of the present set up
+within the framework of quantum field theory of de Sitter space [24, 34, 117, 146–156].
+Acknowledgements
+SC would like to thank the work friendly environment of The Thanu Padmanabhan Cen-
+tre For Cosmology and Science Popularization (CCSP), Shree Guru Gobind Singh Tri-
+centenary (SGT) University, Gurugram, Delhi-NCR for providing tremendous support in
+research and offer the Assistant Professor (Senior Grade) position. SC also thanks all
+the members of our newly formed virtual international non-profit consortium Quantum
+Aspects of the SpaceTime & Matter (QASTM) for elaborative discussions. Last but not
+least, we would like to acknowledge our debt to the people belonging to the various parts
+of the world for their generous and steady support for research in natural sciences.
+84
+
+References
+[1] J. Maldacena and G. L. Pimentel, “Entanglement entropy in de Sitter space,” JHEP 02
+(2013) 038, arXiv:1210.7244 [hep-th].
+[2] H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory,” J. Phys.
+A 42 (2009) 504007, arXiv:0905.2562 [hep-th].
+[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, “Entanglement in many-body systems,”
+Rev. Mod. Phys. 80 (2008) 517–576, arXiv:quant-ph/0703044.
+[4] N. Laflorencie, “Quantum entanglement in condensed matter systems,” Phys. Rept. 646
+(2016) 1–59, arXiv:1512.03388 [cond-mat.str-el].
+[5] M. B. Plenio and S. Virmani, “An Introduction to entanglement measures,” Quant. Inf.
+Comput. 7 (2007) 1–51, arXiv:quant-ph/0504163.
+[6] N. J. Cerf and C. Adami, “Quantum information theory of entanglement,” Physica D
+120 (1998) 62–81, arXiv:quant-ph/9605039.
+[7] P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat.
+Mech. 0406 (2004) P06002, arXiv:hep-th/0405152.
+[8] E. Martin-Martinez and N. C. Menicucci, “Cosmological quantum entanglement,” Class.
+Quant. Grav. 29 (2012) 224003, arXiv:1204.4918 [gr-qc].
+[9] Y. Nambu, “Entanglement of Quantum Fluctuations in the Inflationary Universe,” Phys.
+Rev. D 78 (2008) 044023, arXiv:0805.1471 [gr-qc].
+[10] Y. Nambu and Y. Ohsumi, “Classical and Quantum Correlations of Scalar Field in the
+Inflationary Universe,” Phys. Rev. D 84 (2011) 044028, arXiv:1105.5212 [gr-qc].
+[11] G. L. Ver Steeg and N. C. Menicucci, “Entangling power of an expanding universe,”
+Phys. Rev. D 79 (2009) 044027, arXiv:0711.3066 [quant-ph].
+[12] W. Fischler, S. Kundu, and J. F. Pedraza, “Entanglement and out-of-equilibrium
+dynamics in holographic models of de Sitter QFTs,” JHEP 07 (2014) 021,
+arXiv:1311.5519 [hep-th].
+[13] N. Iizuka, T. Noumi, and N. Ogawa, “Entanglement entropy of de Sitter space α-vacua,”
+Nucl. Phys. B 910 (2016) 23–29, arXiv:1404.7487 [hep-th].
+[14] S. Choudhury and S. Panda, “Entangled de Sitter from stringy axionic Bell pair I: an
+analysis using Bunch–Davies vacuum,” Eur. Phys. J. C 78 no. 1, (2018) 52,
+arXiv:1708.02265 [hep-th].
+[15] S. Choudhury and S. Panda, “Quantum entanglement in de Sitter space from stringy
+axion: An analysis using α vacua,” Nucl. Phys. B 943 (2019) 114606, arXiv:1712.08299
+[hep-th].
+[16] S. Choudhury and S. Panda, “Cosmological Spectrum of Two-Point Correlation Function
+from Vacuum Fluctuation of Stringy Axion Field in De Sitter Space: A Study of the Role
+of Quantum Entanglement,” Universe 6 no. 6, (2020) 79, arXiv:1809.02905 [hep-th].
+85
+
+[17] S. Kanno, J. P. Shock, and J. Soda, “Entanglement negativity in the multiverse,” JCAP
+03 (2015) 015, arXiv:1412.2838 [hep-th].
+[18] S. Kanno, “Impact of quantum entanglement on spectrum of cosmological fluctuations,”
+JCAP 07 (2014) 029, arXiv:1405.7793 [hep-th].
+[19] S. Kanno, J. Murugan, J. P. Shock, and J. Soda, “Entanglement entropy of α-vacua in de
+Sitter space,” JHEP 07 (2014) 072, arXiv:1404.6815 [hep-th].
+[20] A. Albrecht, S. Kanno, and M. Sasaki, “Quantum entanglement in de Sitter space with a
+wall, and the decoherence of bubble universes,” Phys. Rev. D 97 no. 8, (2018) 083520,
+arXiv:1802.08794 [hep-th].
+[21] S. Kanno, “Quantum Entanglement in the Multiverse,” Universe 3 no. 2, (2017) 28.
+[22] S. Kanno, M. Sasaki, and T. Tanaka, “Vacuum State of the Dirac Field in de Sitter Space
+and Entanglement Entropy,” JHEP 03 (2017) 068, arXiv:1612.08954 [hep-th].
+[23] S. Kanno, “A note on initial state entanglement in inflationary cosmology,” EPL 111
+no. 6, (2015) 60007, arXiv:1507.04877 [hep-th].
+[24] T. Colas, J. Grain, and V. Vennin, “Quantum recoherence in the early universe,”
+arXiv:2212.09486 [gr-qc].
+[25] C. P. Burgess, R. Holman, G. Kaplanek, J. Martin, and V. Vennin, “Minimal
+decoherence from inflation,” arXiv:2211.11046 [hep-th].
+[26] J. Martin, A. Micheli, and V. Vennin, “Discord and decoherence,” JCAP 04 no. 04,
+(2022) 051, arXiv:2112.05037 [quant-ph].
+[27] J. Martin and V. Vennin, “Real-space entanglement of quantum fields,” Phys. Rev. D
+104 no. 8, (2021) 085012, arXiv:2106.14575 [hep-th].
+[28] J. Grain and V. Vennin, “Unavoidable shear from quantum fluctuations in contracting
+cosmologies,” Eur. Phys. J. C 81 no. 2, (2021) 132, arXiv:2005.04222 [astro-ph.CO].
+[29] J. Martin and V. Vennin, “Observational constraints on quantum decoherence during
+inflation,” JCAP 05 (2018) 063, arXiv:1801.09949 [astro-ph.CO].
+[30] J. Martin and V. Vennin, “Quantum Discord of Cosmic Inflation: Can we Show that
+CMB Anisotropies are of Quantum-Mechanical Origin?,” Phys. Rev. D 93 no. 2, (2016)
+023505, arXiv:1510.04038 [astro-ph.CO].
+[31] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,”
+Rev. Mod. Phys. 81 (2009) 865–942, arXiv:quant-ph/0702225.
+[32] B. Allen, “Vacuum States in de Sitter Space,” Phys. Rev. D 32 (1985) 3136.
+[33] K. Adhikari, S. Choudhury, H. N. Pandya, and R. Srivastava, “PGW Circuit
+Complexity,” arXiv:2108.10334 [gr-qc].
+[34] S. Banerjee, S. Choudhury, S. Chowdhury, J. Knaute, S. Panda, and K. Shirish,
+“Thermalization in Quenched De Sitter Space,” arXiv:2104.10692 [hep-th].
+86
+
+[35] S. Choudhury, “The Cosmological OTOC: A New Proposal for Quantifying
+Auto-correlated Random Non-chaotic Primordial Fluctuations,” Symmetry 13 no. 4,
+(2021) 599, arXiv:2106.01305 [physics.gen-ph].
+[36] S. Choudhury, “The Cosmological OTOC: Formulating new cosmological micro-canonical
+correlation functions for random chaotic fluctuations in Out-of-Equilibrium Quantum
+Statistical Field Theory,” Symmetry 12 no. 9, (2020) 1527, arXiv:2005.11750
+[hep-th].
+[37] S. Choudhury, “CMB from EFT,” Universe 5 no. 6, (2019) 155, arXiv:1712.04766
+[hep-th].
+[38] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum mechanical description of
+physical reality be considered complete?,” Phys. Rev. 47 (1935) 777–780.
+[39] J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics Physique Fizika 1 (1964)
+195–200.
+[40] A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories
+via Bell’s Theorem,” Phys. Rev. Lett. 47 (1981) 460–6443.
+[41] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time
+varying analyzers,” Phys. Rev. Lett. 49 (1982) 1804–1807.
+[42] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
+AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
+[43] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 08
+(2006) 045, arXiv:hep-th/0605073.
+[44] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,”
+Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
+[45] N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar fields in de Sitter
+space-time,” Ann. Inst. H. Poincare Phys. Theor. A 9 (1968) 109.
+[46] T. S. Bunch and P. C. W. Davies, “Quantum Field Theory in de Sitter Space:
+Renormalization by Point Splitting,” Proc. Roy. Soc. Lond. A 360 (1978) 117–134.
+[47] J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D 28
+(1983) 2960–2975.
+[48] S. Panda, Y. Sumitomo, and S. P. Trivedi, “Axions as Quintessence in String Theory,”
+Phys. Rev. D 83 (2011) 083506, arXiv:1011.5877 [hep-th].
+[49] P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051,
+arXiv:hep-th/0605206.
+[50] C. Beasley and E. Witten, “New instanton effects in string theory,” JHEP 02 (2006) 060,
+arXiv:hep-th/0512039.
+[51] S. Kanno, J. Soda, and K. Ueda, “Impact of quantum entanglement induced by magnetic
+fields on primordial gravitational waves,” arXiv:2211.05576 [hep-th].
+87
+
+[52] J. Soda, S. Kanno, and J. P. Shock, “Quantum Correlations in de Sitter Space,” Universe
+3 no. 1, (2017) 2.
+[53] A. Adil, A. Albrecht, R. Baunach, R. Holman, R. H. Ribeiro, and B. J. Richard,
+“Entanglement masquerading in the CMB,” arXiv:2211.11079 [hep-th].
+[54] N. Bolis, A. Albrecht, and R. Holman, “Non-Gaussianity from Entanglement During
+Inflation,” JCAP 07 (2019) 021, arXiv:1902.07567 [hep-th].
+[55] R. Holman and B. J. Richard, “Generating Entangled Inflationary Quantum States,”
+arXiv:1902.00521 [hep-th].
+[56] A. Albrecht, N. Bolis, and R. Holman, “Cosmological Consequences of Initial State
+Entanglement,” JHEP 11 (2014) 093, arXiv:1408.6859 [hep-th].
+[57] L. Lello, D. Boyanovsky, and R. Holman, “Superhorizon entanglement entropy from
+particle decay in inflation,” JHEP 04 (2014) 055, arXiv:1305.2441 [astro-ph.CO].
+[58] L. Lello, D. Boyanovsky, and R. Holman, “Entanglement entropy in particle decay,”
+JHEP 11 (2013) 116, arXiv:1304.6110 [hep-th].
+[59] J. Garriga, S. Kanno, M. Sasaki, J. Soda, and A. Vilenkin, “Observer dependence of
+bubble nucleation and Schwinger pair production,” JCAP 12 (2012) 006,
+arXiv:1208.1335 [hep-th].
+[60] J. Garriga, S. Kanno, and T. Tanaka, “Rest frame of bubble nucleation,” JCAP 06
+(2013) 034, arXiv:1304.6681 [hep-th].
+[61] M. B. Fr¨ob, J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka, and A. Vilenkin,
+“Schwinger effect in de Sitter space,” JCAP 04 (2014) 009, arXiv:1401.4137 [hep-th].
+[62] K. Sato, H. Kodama, M. Sasaki, and K.-i. Maeda, “Multiproduction of Universes by First
+Order Phase Transition of a Vacuum,” Phys. Lett. B 108 (1982) 103–107.
+[63] A. Vilenkin, “The Birth of Inflationary Universes,” Phys. Rev. D 27 (1983) 2848.
+[64] A. D. Linde, “ETERNAL CHAOTIC INFLATION,” Mod. Phys. Lett. A 1 (1986) 81.
+[65] A. D. Linde, “Eternally Existing Selfreproducing Chaotic Inflationary Universe,” Phys.
+Lett. B 175 (1986) 395–400.
+[66] R. Bousso and J. Polchinski, “Quantization of four form fluxes and dynamical
+neutralization of the cosmological constant,” JHEP 06 (2000) 006,
+arXiv:hep-th/0004134.
+[67] L. Susskind, “The Anthropic landscape of string theory,” arXiv:hep-th/0302219.
+[68] J. Maldacena, “A model with cosmological Bell inequalities,” Fortsch. Phys. 64 (2016)
+10–23, arXiv:1508.01082 [hep-th].
+[69] S. Choudhury, S. Panda, and R. Singh, “Bell violation in the Sky,” Eur. Phys. J. C 77
+no. 2, (2017) 60, arXiv:1607.00237 [hep-th].
+[70] S. Choudhury, S. Panda, and R. Singh, “Bell violation in primordial cosmology,”
+88
+
+Universe 3 no. 1, (2017) 13, arXiv:1612.09445 [hep-th].
+[71] L. Espinosa-Portal´es and V. Vennin, “Real-space Bell inequalities in de Sitter,” JCAP 07
+no. 07, (2022) 037, arXiv:2203.03505 [quant-ph].
+[72] K. Ando and V. Vennin, “Bipartite temporal Bell inequalities for two-mode squeezed
+states,” Phys. Rev. A 102 no. 5, (2020) 052213, arXiv:2007.00458 [quant-ph].
+[73] J. Martin and V. Vennin, “Obstructions to Bell CMB Experiments,” Phys. Rev. D 96
+no. 6, (2017) 063501, arXiv:1706.05001 [astro-ph.CO].
+[74] J. Martin and V. Vennin, “Leggett-Garg Inequalities for Squeezed States,” Phys. Rev. A
+94 no. 5, (2016) 052135, arXiv:1611.01785 [quant-ph].
+[75] S. Choudhury, “Cosmological Geometric Phase From Pure Quantum States: A study
+without/with having Bell’s inequality violation,” Fortsch. Phys. 70 (2022) 9–10,
+arXiv:2105.06254 [gr-qc].
+[76] S. Kanno and J. Soda, “Bell Inequality and Its Application to Cosmology,” Galaxies 5
+no. 4, (2017) 99.
+[77] S. Kanno and J. Soda, “Infinite violation of Bell inequalities in inflation,” Phys. Rev. D
+96 no. 8, (2017) 083501, arXiv:1705.06199 [hep-th].
+[78] D. Baumann, “Inflation,” in Theoretical Advanced Study Institute in Elementary Particle
+Physics: Physics of the Large and the Small, pp. 523–686. 2011. arXiv:0907.5424
+[hep-th].
+[79] D. Baumann and L. McAllister, “Advances in Inflation in String Theory,” Ann. Rev.
+Nucl. Part. Sci. 59 (2009) 67–94, arXiv:0901.0265 [hep-th].
+[80] D. Baumann and L. McAllister, Inflation and String Theory. Cambridge Monographs on
+Mathematical Physics. Cambridge University Press, 5, 2015. arXiv:1404.2601
+[hep-th].
+[81] S. Choudhury, “COSMOS-e′- soft Higgsotic attractors,” Eur. Phys. J. C 77 no. 7, (2017)
+469, arXiv:1703.01750 [hep-th].
+[82] S. Choudhury and S. Panda, “COSMOS-e’-GTachyon from string theory,” Eur. Phys. J.
+C 76 no. 5, (2016) 278, arXiv:1511.05734 [hep-th].
+[83] S. Choudhury, “Reconstructing inflationary paradigm within Effective Field Theory
+framework,” Phys. Dark Univ. 11 (2016) 16–48, arXiv:1508.00269 [astro-ph.CO].
+[84] S. Choudhury, B. K. Pal, B. Basu, and P. Bandyopadhyay, “Quantum Gravity Effect in
+Torsion Driven Inflation and CP violation,” JHEP 10 (2015) 194, arXiv:1409.6036
+[hep-th].
+[85] S. Choudhury, “Can Effective Field Theory of inflation generate large tensor-to-scalar
+ratio within Randall–Sundrum single braneworld?,” Nucl. Phys. B 894 (2015) 29–55,
+arXiv:1406.7618 [hep-th].
+[86] S. Choudhury and A. Mazumdar, “Reconstructing inflationary potential from BICEP2
+89
+
+and running of tensor modes,” arXiv:1403.5549 [hep-th].
+[87] S. Choudhury, “Constraining N = 1 supergravity inflation with non-minimal Kaehler
+operators using δN formalism,” JHEP 04 (2014) 105, arXiv:1402.1251 [hep-th].
+[88] S. Choudhury, A. Mazumdar, and E. Pukartas, “Constraining N = 1 supergravity
+inflationary framework with non-minimal K¨ahler operators,” JHEP 04 (2014) 077,
+arXiv:1402.1227 [hep-th].
+[89] S. Choudhury and A. Mazumdar, “Primordial blackholes and gravitational waves for an
+inflection-point model of inflation,” Phys. Lett. B 733 (2014) 270–275, arXiv:1307.5119
+[astro-ph.CO].
+[90] S. Choudhury, A. Mazumdar, and S. Pal, “Low & High scale MSSM inflation,
+gravitational waves and constraints from Planck,” JCAP 07 (2013) 041,
+arXiv:1305.6398 [hep-ph].
+[91] S. Choudhury, T. Chakraborty, and S. Pal, “Higgs inflation from new K¨ahler potential,”
+Nucl. Phys. B 880 (2014) 155–174, arXiv:1305.0981 [hep-th].
+[92] S. Choudhury and S. Pal, “Primordial non-Gaussian features from DBI Galileon
+inflation,” Eur. Phys. J. C 75 no. 6, (2015) 241, arXiv:1210.4478 [hep-th].
+[93] S. Choudhury and S. Pal, “Brane inflation: A field theory approach in background
+supergravity,” J. Phys. Conf. Ser. 405 (2012) 012009, arXiv:1209.5883 [hep-th].
+[94] S. Choudhury and S. Pal, “DBI Galileon inflation in background SUGRA,” Nucl. Phys. B
+874 (2013) 85–114, arXiv:1208.4433 [hep-th].
+[95] S. Choudhury and S. Pal, “Fourth level MSSM inflation from new flat directions,” JCAP
+04 (2012) 018, arXiv:1111.3441 [hep-ph].
+[96] S. Choudhury and S. Pal, “Brane inflation in background supergravity,” Phys. Rev. D 85
+(2012) 043529, arXiv:1102.4206 [hep-th].
+[97] A. Ali, A. Deshamukhya, S. Panda, and M. Sami, “Inflation with improved D3-brane
+potential and the fine tunings associated with the model,” Eur. Phys. J. C 71 (2011)
+1672, arXiv:1010.1407 [hep-th].
+[98] S. Panda, M. Sami, and J. Ward, “Bounds on Tensor wave and Twisted Inflation,” Phys.
+Rev. D 82 (2010) 103511, arXiv:1008.1957 [hep-th].
+[99] A. Deshamukhya and S. Panda, “Warm tachyonic inflation in warped background,” Int.
+J. Mod. Phys. D 18 (2009) 2093–2106, arXiv:0901.0471 [hep-th].
+[100] A. Ali, R. Chingangbam, S. Panda, and M. Sami, “Prospects of inflation with perturbed
+throat geometry,” Phys. Lett. B 674 (2009) 131–136, arXiv:0809.4941 [hep-th].
+[101] S. Panda, M. Sami, and S. Tsujikawa, “Prospects of inflation in delicate D-brane
+cosmology,” Phys. Rev. D 76 (2007) 103512, arXiv:0707.2848 [hep-th].
+[102] S. Panda, M. Sami, S. Tsujikawa, and J. Ward, “Inflation from D3-brane motion in the
+background of D5-branes,” Phys. Rev. D 73 (2006) 083512, arXiv:hep-th/0601037.
+90
+
+[103] S. Panda, M. Sami, and S. Tsujikawa, “Inflation and dark energy arising from
+geometrical tachyons,” Phys. Rev. D 73 (2006) 023515, arXiv:hep-th/0510112.
+[104] P. Chingangbam, S. Panda, and A. Deshamukhya, “Non-minimally coupled tachyonic
+inflation in warped string background,” JHEP 02 (2005) 052, arXiv:hep-th/0411210.
+[105] D. Choudhury, D. Ghoshal, D. P. Jatkar, and S. Panda, “Hybrid inflation and brane -
+anti-brane system,” JCAP 07 (2003) 009, arXiv:hep-th/0305104.
+[106] A. Mazumdar, S. Panda, and A. Perez-Lorenzana, “Assisted inflation via tachyon
+condensation,” Nucl. Phys. B 614 (2001) 101–116, arXiv:hep-ph/0107058.
+[107] M. Sami and R. Myrzakulov, “Cosmological relevance of scaling solutions: A recipe for
+quintessential inflation,” Gen. Rel. Grav. 54 no. 8, (2022) 86.
+[108] A. Agarwal, R. Myrzakulov, M. Sami, and N. K. Singh, “Quintessential inflation in a
+thawing realization,” Phys. Lett. B 770 (2017) 200–208, arXiv:1708.00156 [gr-qc].
+[109] C.-Q. Geng, C.-C. Lee, M. Sami, E. N. Saridakis, and A. A. Starobinsky, “Observational
+constraints on successful model of quintessential Inflation,” JCAP 06 (2017) 011,
+arXiv:1705.01329 [gr-qc].
+[110] K. Ando and V. Vennin, “Power spectrum in stochastic inflation,” JCAP 04 (2021) 057,
+arXiv:2012.02031 [astro-ph.CO].
+[111] C. Pattison, V. Vennin, H. Assadullahi, and D. Wands, “Stochastic inflation beyond slow
+roll,” JCAP 07 (2019) 031, arXiv:1905.06300 [astro-ph.CO].
+[112] R. J. Hardwick, V. Vennin, and D. Wands, “The decisive future of inflation,” JCAP 05
+(2018) 070, arXiv:1803.09491 [astro-ph.CO].
+[113] V. Vennin, J. Martin, and C. Ringeval, “Cosmic Inflation and Model Comparison,”
+Comptes Rendus Physique 16 no. 10, (2015) 960–968.
+[114] V. Vennin, K. Koyama, and D. Wands, “Inflation with an extra light scalar field after
+Planck,” JCAP 03 (2016) 024, arXiv:1512.03403 [astro-ph.CO].
+[115] V. Vennin, Cosmological Inflation: Theoretical Aspects and Observational Constraints.
+PhD thesis, Paris, Inst. Astrophys., 2014.
+[116] J. Martin, C. Ringeval, and V. Vennin, “Encyclopædia Inflationaris,” Phys. Dark Univ.
+5-6 (2014) 75–235, arXiv:1303.3787 [astro-ph.CO].
+[117] S. Akhtar, S. Choudhury, S. Chowdhury, D. Goswami, S. Panda, and A. Swain, “Open
+Quantum Entanglement: A study of two atomic system in static patch of de Sitter
+space,” Eur. Phys. J. C 80 no. 8, (2020) 748, arXiv:1908.09929 [hep-th].
+[118] L. McAllister, E. Silverstein, A. Westphal, and T. Wrase, “The Powers of Monodromy,”
+JHEP 09 (2014) 123, arXiv:1405.3652 [hep-th].
+[119] L. McAllister, E. Silverstein, and A. Westphal, “Gravity Waves and Linear Inflation from
+Axion Monodromy,” Phys. Rev. D 82 (2010) 046003, arXiv:0808.0706 [hep-th].
+[120] E. Silverstein and A. Westphal, “Monodromy in the CMB: Gravity Waves and String
+91
+
+Inflation,” Phys. Rev. D 78 (2008) 106003, arXiv:0803.3085 [hep-th].
+[121] R. Flauger, L. McAllister, E. Silverstein, and A. Westphal, “Drifting Oscillations in
+Axion Monodromy,” JCAP 10 (2017) 055, arXiv:1412.1814 [hep-th].
+[122] A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77 (1996)
+1413–1415, arXiv:quant-ph/9604005.
+[123] M. Horodecki, P. Horodecki, and R. Horodecki, “On the necessary and sufficient
+conditions for separability of mixed quantum states,” Phys. Lett. A 223 (1996) 1,
+arXiv:quant-ph/9605038.
+[124] R. Simon, “Peres-Horodecki Separability Criterion for Continuous Variable Systems,”
+Phys. Rev. Lett. 84 (2000) 2726–2729, arXiv:quant-ph/9909044.
+[125] I. Fuentes-Schuller and R. B. Mann, “Alice falls into a black hole: Entanglement in
+non-inertial frames,” Phys. Rev. Lett. 95 (2005) 120404, arXiv:quant-ph/0410172.
+[126] J. Martin and V. Vennin, “Non Gaussianities from Quantum Decoherence during
+Inflation,” JCAP 06 (2018) 037, arXiv:1805.05609 [astro-ph.CO].
+[127] J. Liu, C.-M. Sou, and Y. Wang, “Cosmic Decoherence: Massive Fields,” JHEP 10
+(2016) 072, arXiv:1608.07909 [hep-th].
+[128] J. M. Ezquiaga, J. Garc´ıa-Bellido, and V. Vennin, “Could ”El Gordo” be hinting at
+primordial quantum diffusion?,” arXiv:2207.06317 [astro-ph.CO].
+[129] S. Choudhury, S. Panda, N. Pandey, and A. Roy, “Four-mode Squeezed States in de
+Sitter Space: A Study With Two Field Interacting Quantum System,” Fortsch. Phys. 70
+no. 12, (2022) 2200124, arXiv:2203.15815 [gr-qc].
+[130] S. Choudhury, A. Mukherjee, N. Pandey, and A. Roy, “Causality Constraint on Circuit
+Complexity from COSMOEFT ,” arXiv:2111.11468 [hep-th].
+[131] K. Adhikari, S. Choudhury, S. Chowdhury, K. Shirish, and A. Swain, “Circuit complexity
+as a novel probe of quantum entanglement: A study with black hole gas in arbitrary
+dimensions,” Phys. Rev. D 104 no. 6, (2021) 065002, arXiv:2104.13940 [hep-th].
+[132] S. Choudhury, S. Chowdhury, N. Gupta, A. Mishara, S. P. Selvam, S. Panda, G. D.
+Pasquino, C. Singha, and A. Swain, “Circuit Complexity from Cosmological Islands,”
+Symmetry 13 no. 7, (2021) 1301, arXiv:2012.10234 [hep-th].
+[133] P. Bhargava, S. Choudhury, S. Chowdhury, A. Mishara, S. P. Selvam, S. Panda, and
+G. D. Pasquino, “Quantum aspects of chaos and complexity from bouncing cosmology: A
+study with two-mode single field squeezed state formalism,” SciPost Phys. Core 4 (2021)
+026, arXiv:2009.03893 [hep-th].
+[134] K. Adhikari and S. Choudhury, “CCosmological KKrylov CComplexity,” Fortsch. Phys.
+70 no. 12, (2022) 2200126, arXiv:2203.14330 [hep-th].
+[135] M. Park and P. Saha, “Primordial Cosmic Complexity and effects of Reheating,”
+arXiv:2212.13723 [astro-ph.CO].
+92
+
+[136] S.-M. Ruan, Circuit Complexity of Mixed States. PhD thesis, Waterloo U., 2021.
+[137] G. Di Giulio, Circuit complexity and entanglement in many-body quantum systems. PhD
+thesis, SISSA, Trieste, 2021.
+[138] A. Bhattacharyya, S. Das, S. Shajidul Haque, and B. Underwood, “Cosmological
+Complexity,” Phys. Rev. D 101 no. 10, (2020) 106020, arXiv:2001.08664 [hep-th].
+[139] A.-c. Li, X.-F. Li, D.-f. Zeng, and L.-H. Liu, “Cosmological Complexity in K-essence,”
+arXiv:2102.12939 [gr-qc].
+[140] L. P. Grishchuk, “Quantum effects in cosmology,” Class. Quant. Grav. 10 (1993)
+2449–2478, arXiv:gr-qc/9302036.
+[141] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, “Inflation and squeezed quantum
+states,” Phys. Rev. D 50 (1994) 4807–4820, arXiv:astro-ph/9303001.
+[142] K. Adhikari, S. Choudhury, and A. Roy, “Krylov Complexity in Quantum Field T heory,”
+arXiv:2204.02250 [hep-th].
+[143] K. Adhikari, S. Choudhury, S. Kumar, S. Mandal, N. Pandey, A. Roy, S. Sarkar,
+P. Sarker, and S. S. Shariff, “Circuit Complexity in Z2EEFT ,” Symmetry 15 (2023) 31,
+arXiv:2109.09759 [hep-th].
+[144] S. Choudhury, R. M. Gharat, S. Mandal, and N. Pandey, “Circuit Complexity in an
+interacting quenched Quantum Field Theory,” arXiv:2209.03372 [hep-th].
+[145] S. Choudhury, R. M. Gharat, S. Mandal, N. Pandey, A. Roy, and P. Sarker,
+“Entanglement in interacting quenched two-body coupled oscillator system,” Phys. Rev.
+D 106 no. 2, (2022) 025002, arXiv:2204.05326 [hep-th].
+[146] T. Colas, J. Grain, and V. Vennin, “Benchmarking the cosmological master equations,”
+Eur. Phys. J. C 82 no. 12, (2022) 1085, arXiv:2209.01929 [hep-th].
+[147] S. Choudhury, S. Dey, R. M. Gharat, S. Mandal, and N. Pandey, “Schwinger-Keldysh
+path integral formalism for a Quenched Quantum Inverted Oscillator,”
+arXiv:2210.01134 [hep-th].
+[148] S. Choudhury, S. Chowdhury, N. Gupta, and A. Swain, “QMetrology from QCosmology:
+Study with Entangled Two Qubit Open Quantum System in De Sitter Space,” SciPost
+Phys. Core 4 (2021) 006, arXiv:2005.13555 [hep-th].
+[149] S. Banerjee, S. Choudhury, S. Chowdhury, R. N. Das, N. Gupta, S. Panda, and A. Swain,
+“Indirect detection of Cosmological Constant from interacting open quantum system,”
+Annals Phys. 443 (2022) 168941, arXiv:2004.13058 [hep-th].
+[150] S. Choudhury, A. Mukherjee, P. Chauhan, and S. Bhattacherjee, “Quantum
+Out-of-Equilibrium Cosmology,” Eur. Phys. J. C 79 no. 4, (2019) 320,
+arXiv:1809.02732 [hep-th].
+[151] S. Choudhury and A. Mukherjee, “Quantum randomness in the Sky,” Eur. Phys. J. C 79
+no. 7, (2019) 554, arXiv:1812.04107 [physics.gen-ph].
+93
+
+[152] S. Chaykov, N. Agarwal, S. Bahrami, and R. Holman, “Loop corrections in Minkowski
+spacetime away from equilibrium 1: Late-time resummations,” arXiv:2206.11288
+[hep-th].
+[153] S. Chaykov, N. Agarwal, S. Bahrami, and R. Holman, “Loop corrections in Minkowski
+spacetime away from equilibrium 2: Finite-time results,” arXiv:2206.11289 [hep-th].
+[154] C. P. Burgess, R. Holman, and G. Kaplanek, “Quantum Hotspots: Mean Fields, Open
+EFTs, Nonlocality and Decoherence Near Black Holes,” Fortsch. Phys. 70 no. 4, (2022)
+2200019, arXiv:2106.10804 [hep-th].
+[155] G. Kaplanek, C. P. Burgess, and R. Holman, “Qubit heating near a hotspot,” JHEP 08
+(2021) 132, arXiv:2106.10803 [hep-th].
+[156] C. P. Burgess, R. Holman, and G. Tasinato, “Open EFTs, IR effects \& late-time
+resummations: systematic corrections in stochastic inflation,” JHEP 01 (2016) 153,
+arXiv:1512.00169 [gr-qc].
+94
+
diff --git a/gNE4T4oBgHgl3EQfqw2j/content/tmp_files/load_file.txt b/gNE4T4oBgHgl3EQfqw2j/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..702dd55e54022250cf219b0cc7f42d8ea23d252c
--- /dev/null
+++ b/gNE4T4oBgHgl3EQfqw2j/content/tmp_files/load_file.txt
@@ -0,0 +1,2675 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf,len=2674
+page_content='Entanglement negativity in de Sitter biverse from Stringy Axionic Bell pair: An analysis using Bunch-Davies vacuum Sayantan Choudhury1‡, §,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 1Centre For Cosmology and Science Popularization (CCSP), SGT University, Gurugram, Delhi-NCR, Haryana- 122505, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Abstract In this work, we study the signatures of quantum entanglement by computing entan- glement negativity between two causally unrelated regions in 3 + 1 dimensional global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We investigate a bipartite quantum field theoretic setup for this purpose, driven by an axionic Bell pair resulting from Type IIB string compactification on a Calabi- Yau three fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We take into account a spherical surface that divides the spatial slice of the global de Sitter space into exterior and interior causally unrelated sub regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the computational purpose we use the simplest possible initial choice of quantum vacuum, which is Bunch-Davies state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The quantitative quantum information theoretic measure for entanglement negativity turns out be consistent with the results obtained for entanglement entropy, even we have to say it is better than that from quantum information theoretic point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We design the problem in a hyperbolic open chart where one of the causally unrelated observers remains constrained and the scale dependence enters to the correspond- ing quantum information theoretic entanglement measure for axionic Bell pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We find from our analysis that in the large scales initially maximally entangled Bunch-Davies state turns out to be strongly entangled or weakly entangled depending on the axionic decay constant and the supersymmetry breaking scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also find that at the small scales the initial entanglement can be perfectly recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also discuss the possibility of having a biverse picture, which is a mini version of the multiverse in the present theoretical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Last but not the least, we provide the necessary criteria for generating non vanishing quantum entanglement measures within the framework of quantum field theory of global de Sitter space as well as well as in primordial cosmology due to the axion derived from string theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Keywords: De-Sitter vacua, Quantum Entanglement, Cosmology of Theories beyond the SM, Quantum Information Theory aspects of Gravity, String Cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' ‡ Corresponding author, E-mail : sayantan ccsp@sgtuniversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='org, sayanphysicsisi@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='com § NOTE: This project is the part of the non-profit virtual international research consortium “Quantum Aspects of Space-Time & Matter” (QASTM) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05203v1 [hep-th] 31 Dec 2022 Contents 1 Introduction 1 2 Basics of entanglement negativity and logarithmic negativity from Quan- tum Information Theory 7 3 Computational strategy of negativity between two causally unrelated open charts of global de Sitter space with axion 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 Quantum structure of open chart 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 Geometric structure of open chart 16 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 Mode function and wave function of axion in an open chart 19 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 Construction of reduced density matrix in open chart 41 4 Entanglement negativity and logarithmic negativity in open chart 43 5 Comparison with entanglement entropy in open chart 50 6 Logarithmic negativity between two causally unrelated patches of open chart 53 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 Computational set up and construction of maximally entangled states 55 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 Construction of excited quantum state for single oscillator 57 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 Construction of reduced density matrix at the inside observer 62 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 Partial transpose operation and the comment on the negative eigenvalues 65 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 Computation of logarithmic negativity: Numerical study 68 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 Small scale limit of logarithmic negativity: Analytical study 76 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7 Massless limit of logarithmic negativity: Analytical study 78 7 Conclusion 81 References 85 i 1 Introduction In the present day research, different quantum information theoretic measures of quantum entanglement is a remarkable probe in theoretical physics which helps us to distinguish the various type of long range correlated quantum mechanical states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this connection, study of the explicit role of the long range quantum correlations in the framework of quantum field theory is extremely significant, which is a fascinating topic of research itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' See refs [1–31] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The key ingredient of this study is the initial quantum mechanical vacuum states, which are Chernikov-Tagirov, Bunch-Davies, Hartle-Hawking, α and Motta-Allen vacua [14–16, 19, 32–37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Quantum entanglement is treated as one of the remarkable outcomes of the foundational theoretical aspects of quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The prime reason of this thought is, a local measurement in quantum mechanics may instantaneously put a significant impact of the outcome of the measurement beyond the physical light cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is theoretically interpreted as Einstein-Podolsky-Rosen (EPR) paradox where the concept of causality violation is explicitly demonstrated [31, 38–41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Amongst various types of information theoretic measures entanglement entropy is con- sidered to be a very useful quantitative as well as qualitative probe of quantum entangle- ment and this concept is commonly used in the framework of condensed matter physics, quantum information theory and high energy physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But in this connection it is im- portant to note that the technical computation of entanglement entropy is very difficult to perform in the context of quantum field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ryu and Takayanagi in refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [42, 43] first did the theoretically consistent computation of entanglement entropy for a strongly coupled quantum field theory having a gravitational dual counterpart using the underlying physical principles of AdS/CFT (or holographic gravitational dual prescription) [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In order to properly understand the direct implications of the previously proposed AdS/CFT (or holographic gravitational dual prescription) in the technical computation of entanglement entropy in presence of standard Bunch-Davies quantum vacuum state within the framework of quantum field theory of de Sitter space, Maldacena and Pimentel prescribed an extremely useful computational strategy in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [1] using free massive scalar quantum field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' After this work the proposed methodology was generalised for the same problem in presence of non standard α vacua in refs [13, 19, 45–47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further in refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [14– 16], these underlying physical concepts of the computation of entanglement entropy was applied within the framework of axion quantum field theory, described in terms a specific type of effective interaction potential originated from Type II string theory compactifi- cation [48–50] in presence of both standard Bunch-Davies and non standard α quantum vacua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The underlying concept of quantum entanglement could applicable to the frame- work of cosmology, specifically beyond the Hubble horizon scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Most importantly, in this prescription if a particle pair is created in a casually connected Hubble horizon scale then it is naturally expected to be dissociated as an outcome of the de Sitter cosmological expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this particular case, the findings from this prescription pointing towards the 1 fact that two causally unrelated patches in the de Sitter cosmological space-time has to be entangled quantum mechanically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' As a result, the corresponding observable quantum vacuum fluctuations associated with our own universe is entangled with the other part of the open patch of global de Sitter space, which is commonly identified to be the multiverse in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To demonstrate this underlying physical picture the reduced density matrix formalism play a very significant role, using which it was explicitly obtained that the quantum mechanical entanglement directly put impact on the cosmo- logical power spectrum on the large scales and it is quantitatively similar to or larger than the curvature radius scale connected to the current issue [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is hugely expected that the present and the upcoming observational probes may detect the imprints and explicit effects of quantum mechanical entanglement in cosmological paradigm, which we strongly believe will going to be extremely useful to understand a lot of unknown mysterious fascinating facts of our own universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the past, there are lot of efforts have been made to study the impacts of quantum mechanical entanglement in the theoretical framework of cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' See refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [16, 18, 21, 23, 51–58] for more details on these aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The motivation of the background physical thought of the present paper are appended below point-wise: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It was first discovered in a number of refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [59–61] to support the claim that the physical frame of the bubble nucleation process is observer dependent and is actually dictated by the rest frame of the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The bubble nucleation process being dependent on the observer is hence only expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The detailed study of such type of observer dependence in the framework of quantum mechanical entanglement is one of the prime motivations of the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If one can able to address this issue in detail, then various unexplored features of quantum cosmology can be explored with proper physical understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Second, the explicit function of the Bunch Davies vacuum can be investigated in the context of quantum entanglement originating from an axion field embedded in an open patch of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This will be crucial because it allows one to directly examine whether it is possible to find the signs of quantum entanglement in the current multiverse [18, 62–67] motivated theoretical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='using current or future observational instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Thirdly, it was noted in the refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [14–16, 68–70] that the string theory-originated axion can be viewed as the ideal component to build the Bell pair, which is neces- sary to violate Bell’s inequality within the context of primordial cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Within the widely accepted framework of primordial cosmology, it is virtually difficult to break Bell’s inequality, and it is for this reason that string theory and the axion play the most important roles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is significant to note that, in this context, it is 2 nearly impossible to test the explicit role of quantum mechanical entanglement in observational probes without violating Bell’s inequality in the context of primordial cosmology, which is necessary to break the degeneracy in the shape cosmological two- point function, also known as the primordial power spectrum obtained from various effective potentials from fundamental physical principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The current framework with the string theory-originated axion provides a perfect setup that is pointing to- wards a new physics coming from a non-standard cosmology because the generation of Bell’s inequality violating pairs, also known as the Bell pair, is practically im- possible within the framework of the standard primordial cosmological paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is explicitly pointed in refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [68–70] that the prime signature of the Bell’s inequality violation in non standard primordial cosmology is coming from the existence of one point function from axion, which is absent in the well known standard cosmological paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This result has a great impact of producing quantum entanglement in the present scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Also our derived results can be extremely useful to directly verify along with the observational probes the applicability as well as the justifiability of the string theory originated axion to address the issue of quantum entanglement in the present set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' See refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [14–16, 68–77] for more details on the Bell’s inequality and its violation in various contexts including cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Finally, the motivation comes from the multiverse prescription appearing in the string theory landscape scenario, which states that our universe may not be the single entity of the space-time but the part of a bigger size multiverse [18, 62–67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is obviously a fascinating fact which one needs to study in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' However, in the past the underlying physical concept of the multiverse has been criticised in various contexts as a hypothetical philosophical concept which is the outcome of complete theoretical imagination and cannot be tested via cosmological observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But the actual truth is fay beyond all of these criticism, which is the detectable signatures can be obtained from the multiverse set up in presence of quantum mechanical entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It really helps us to produce at least two causally separated de sitter universe, commonly known as the de Sitter bubbles in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But the numbers are not restricted in two and most importantly this is actually the starting point of multiverse which allows many more causally unrelated de Sitter bubbles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Next, we explicitly write down the underlying assumptions of the present work, which are appended below point-wise: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To model the present multiverse motivated scenario [18, 62–67] , we consider two causally separated patches on the global de Sitter space by assuming that initially they are in a maximally entangled pure quantum mechanical state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' this particular set up we identify as the biverse picture which is the mini version of the original multiverse picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this theoretical set up further we introduce two observers whose actual purpose is to determine the quantum entanglement of a de Sitter universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also assume that one of the observers is placed inside the a de Sitter bubble and want to determine how the signatures of quantum mechanical entanglement with the other de Sitter bubble can be visualized by the inside observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now the issue is that, the inside observer can’t able to see outside region of their own de Sitter bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason instead of using the total density matrix, one needs to take the partial trace over the causally unrelated outside region, which finally give rise to the reduced density matrix of the system in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But as an outcome some information will be lost during this process and to describe the quantum mechanical state of the observer instead of using a pure state one needs to explicitly use a mixed state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This scenario is completely different for an observer who is sitting on the other causally separated de Sitter bubble because in his frame of reference the quantum aspects is described by the pure quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason we need study the effects and outcomes of the quantum entanglement between pure and mixed states in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To perform the computation for a single global de Sitter space picture as well in the case of the entangled two de Sitter space, which is the biverse picture we need to properly understand the factorization of the Hilbert space in terms of the individual constituents which span the subspaces by forming complete orthonormal sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The geometrical structure of the global de Sitter space demands that in the hyperbolic open chart one can symmetrically factorize in the left region and in a right region, which we have tagged as region L and R during performing the technical computation in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Since we have symmetrically factorize the total Hilbert space in the region L and R, it is viable to formulate the reduced description either in terms of the degrees of freedom appearing in the region L or region R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In our computation we take the partial trace over the degrees of freedom appearing in the region R, which forms a reduced density matrix in the region L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If the Hilbert space factorization performed correctly then one can further blindly trust the mode decomposition in the region L and R using which we have con- structed the Bunch Davies quantum vacuum states in terms of harmonic oscillator modes which forms a complete orthonormal basis states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Estimation of the quan- tum entanglement in terms of various quantum information theoretic measures are also based on this mode decomposition and hence one can rely on the tracing out the unwanted information from the bipartite quantum field theoretic set up under consideration to construct the reduced density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To study the outcome of quantum mechanical entanglement we have blindly trusted the above mentioned factorization for the second de Sitter space which is spanned 4 by the well known Bunch Davies vacuum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the other, which is the first de Sitter bubble we have assumed that the detailed factorization structure is not explicitly needed for the computation we are interested to perform in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is because of the fact that we need to take the partial trace operation over the first de Sitter vacuum which will remove all unwanted degrees of freedom from the quantum information theoretic measures of entanglement we want to compute to confirm the existence of quantum entanglement in the biverse picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here one can do the computation in other way as well where one needs to take the partial trace operation with respect to the all degrees of freedom appearing in second de Sitter vacuum and properly factorize the first de Sitter vacuum in terms of L and R modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Due to having the symmetrical structure of the set up that we are considering it is expected that for both the cases we will have the same physical outcome at the end of the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We just have taken the first possibility as a choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' During the biverse construction we have first constructed the maximally entangled state which is one of the key ingredients to violate the Bell’s CHSH inequality within the present framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is a very challenging to construct within the framework of de Sitter space time as well as in primordial cosmology set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have constructed the maximally entangled state which suffice the purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But this could not be possible just having usual interaction in the scalar field theory embedded in the global patch of the de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The Bell’s CHSH inequality violating pair is created in the region L and R with the help of specific type of interaction in the string theory originated axion driven scalar field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The structure of the interaction is controlled by the time dependent axion decay constant and the supersymmetry breaking scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have assumed that Bell pair is created and originated from the string theory originated axionic scalar field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It might be possible to create such pair from some other theoretical sector as well which we have not considered in this paper for the time being.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the present context the global coordinates can be treated as the closed slicing from the point of view of FLRW cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' One usually do primordial cosmology, particularly inflation [78–116] in the planar coordinate slicing of the de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' By performing coordinate coordinate transformation one can transform the global to static and then static to the flat slicing in the planer patch of de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason whatever results we have obtained in this paper for the global patch of the de Sitter space can be directly translated in the planer patch of the de Sitter space, which further implies that our derived results hold good for primordial cosmological set up constructed out of the effective interaction studied for the string theory originated axion scalar field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is obviously an interesting aspect from our computation which shows the applicability of our derived results in the vast theoretical framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The von Neumann and Renyi entropies [14, 15, 117] are the good quantum informa- tion theoretic measures of quantum entanglement in the context of bipartite quantum field theory designed in terms of pure state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But with the help of mixed state if we want to understand the features of an arbitrary bipartite quantum field theoretic system then instead of using entropic measures, negativity or its logarithmic version would be perfect information theoretic measure of quantum entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Using this specific measure we compute the imprints of the quantum entanglement from the point of view of two causally separated observers in the open chart of global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='For single de Sitter Universe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='For two de Sitter Universe (biverse) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CY3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='AB+XicbZDLSsNAFIZP6q3W9Slm8EiuCqJVnRZ7MZlBXuRtpbJdNIOnUzCzKRQt7EjQtF3Pom7nwbp2kW2vrDwMd/zuGc+b2IM6Ud59sqrK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1vbG4Vt0s7u3v7B/bhUuFsS0SUIeyo6HFeVM0KZmtNOJCkOPE7b3qQ+r7enVCoWigc9i2g/wCPBfEawNtbAtpOe56P6Y/qUwWU6sMtOxc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mEVsHNoQy5GgP7qzcMSRxQoQnHSnVdJ9L9BEvNCKdpqRcrGmEywSPaNShwQFU/yS5P0ZlxhsgPpXlCo8z9PZHgQKlZ4JnOAOuxWq7Nzf9q3V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='j7N/2EiSjWVJDFIj/mSIdoHgMaMkmJ5jMDmEhmbkVkjCUm2oRVMiG4y19ehdZFxa1Wru6r5dptHkcRTuAUzsGFa6jBHTSgCQSm8Ayv8GYl1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='ov1bn0sWgtWPnMf2R9/gCPH5L4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Penrose ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='diagram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Geometry of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='de Sitter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='space ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Measure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='of quantum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='entanglement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Measure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='of quantum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='entanglement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='String Theory ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Axion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Outcome 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Outcome 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1: Representative diagram of the overall quantum entanglement computation and all possible outcomes for single de Sitter universe and two de Sitter universe (biverse) obtained from our our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this work, we compute the negativitity measure of quantum entanglement from an axionic effective potential which is obtained from Type IIB string theory compactification on a Calabi-Yau three fold in presence of NS5 brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Earlier this model have been studied 6 T =0 二t, = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A B L R C Open chartin the framework of inflationary cosmology [118–121].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Since this axions can be treated as Bell pair, we technically compute the expression for entanglement negativity from two causally unrelated patches of the open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From the quantitative results obtained from our computation we perform further a consistency check as well as the comparison of the results obtained in previous refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='[14–16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Furthermore, to understand various unknown fascinating facts regarding the multiverse scenario we extend our computation in presence of axionic Bell pair in presence of de Sitter space along with the maximally entangled quantum Bunch Davies vacuum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We find from our analysis that in the large scales initially maximally entangled Bunch-Davies state turns out to be strongly entangled or weakly entangled depending on the axionic decay constant and the supersymmetry breaking scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also find the at the small scales the initial entanglement can be perfectly recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Last but not the least, we provide the necessary criteria for generating non vanishing quantum entanglement measure within the framework of primordial cosmology due to the string axion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1) representative diagram of the overall quantum entanglement computation and all possible outcomes for single de Sitter universe and two de Sitter universe (biverse) obtained from our our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The organization of this paper is as follows: In Section 2 we briefly review the tools and techniques required to compute nega- tivity and logarithmic negativity along with some easy demonstrations for the better understanding purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In Section 3 we mention the computational strategy for negativity in the hyperbolic open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In Section 4 we compute negativity by following aforementioned strategy for a spe- cific effective potential, Type IIB string compactification originated axion model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In Section 5 we compute entanglement in terms of negativity from two causally unrelated de Sitter bubbles, which is determined from the point of view of two ob- servers introduced during the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this section we discuss the possibility of having biverse, which is the mini version of the multiverse scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Finally in Section 6 we summarize our all findings in this paper along with some future prospects of the computations performed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2 Basics of entanglement negativity and logarithmic negativity from Quantum Information Theory Within the framework quantum mechanics, particularly in quantum information theory to study the imprints and the underlying physical aspects of entanglement various measure have been proposed till date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Entanglement negativity and its logarithmic version, which 7 is commonly known as logarithmic negativity are the very useful quantum information theoretic measures of quantum mechanical entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' These measures are derived by making use of the positive partial transpose criterion for the separability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The Peres- Horodecki criterion [31, 122–124] is a prerequisite for the separation of the joint density matrix of two quantum mechanical systems A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The phrase is sometimes referred to as the PPT criterion, which stands for positive partial transpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From the studies it was found that in the 2 × 2 and 2 × 3 dimensional cases the condition is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Particularly this is used to decide the separability of mixed quantum states, where the well known Schmidt decomposition does not apply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is important to note that, in higher dimensions, this specific concept gives inconclusive result, and one should perform more advanced tests, like entanglement witnesses, which describes a functional that distinguishes a specific entangled state from the separable ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [31, 122–124], i t was explicitly shown that this measures are entanglement monotone and hence treated to be a proper measure of quantum entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the following we give a brief overview on the topic of entanglement negativity and logarithmic negativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now let’s take a look at a quantum system that can be described by A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The direct products of the Hilbert spaces of the subsystems A and B define the corresponding total Hilbert space of the system i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' H = HA ⊗ HB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here H represents the Hilbert space of the total system, HA and HB represent the Hilbert spaces of the subsystems A and B respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further consider a pure quantum mechanical state, by applying the Schmidt decompo- sition one can write: |Ψ⟩ = � m � λm|m⟩A ⊗ |m⟩B, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1) where λm corresponds to the observed probability of the any general pure m-th state and satisfy the following constraint condition: � m λm = 1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2) which physically implies that the total observed probability of the process, which is ob- tained by summing over all possible pure states has to be conserved in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now, it is important to note if we are interested in the mixed states then to technically describe the behaviour of the subsystem inclusion of the concept of reduced density matrix is extremely important and this is actually described by the reduced density operator of the subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the present description we consider two subsystems A and B, which are equally likely and both of them carry same weight in the present construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason to describe the subsystem either we will talk about the description in terms of A or B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let us say for the time being that we are interested to know about the underlying physics of the subsystem A which can be obtained by taking the partial trace operation 8 on the information of the subsystem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This process will finally give rise to the following reduced density matrix of the subsystem A, which is given by: ρA = TrB|Ψ⟩⟨Ψ| = � m λm|m⟩AA⟨m|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3) Further, utilizing this reduced density matrix of the subsystem A one can explicitly com- pute the expression for the von Neumann entropy, which is given by: S = −Tr [ρA ln ρA] = − � m λm ln λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4) Technically the above mentioned equation was introduced to describe the first entangle- ment measure in quantum information theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the specific situation, when there is no quantum entanglement, then in terms of the probability we can write: λm = � � � � � � � � � 1 if m = 1 0 if m ̸= 1 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5) In the above mentioned both the cases the measure of entanglement entropy vanish ex- plicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If such a situation appears in a particular physical systems, then we can comment that there would be no quantum mechanical entanglement for that type of systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, if we find some physical systems where the probability lie within the window 0 < λm < 1∀m then the corresponding entanglement entropy measure is non-zero and it is treated to be good measure within the framework of quantum information theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But one word of caution is that, the entanglement entropy measure sometimes gives inconclusive result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For an example, if we are interested to describe the strictly classical correlation in terms of mixed state then the entanglement entropy measure gives non-zero result, which is itself a surprising fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this specific type of situation entanglement entropy mea- sure within the framework of quantum information theory fails to distinguish between the impacts of quantum mechanical correlations and classical correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Then obviously a natural question comes to a physicists mind that what is the way out of this situation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Is it possible to define more powerful entanglement measure in the present framework?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Answer to all of these questions are Yes, it is possible to define such measures which can conclusively distinguish the quantum and classical effects in the corre- lation functions computed from the underlying physical theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Based on the separability criterion entanglement negativity and logarithmic negativity measures are defined which actually serve the purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let us now give a brief outline on the connection between separability and quantum entanglement, and its usefulness in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A quantum mechan- 9 ical state is considered to be separable iff the density matrix of the total system can be expressed in terms of a tensor or outer products of the individual density matrices belong to the each subsystems under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Technically this statement can be written as: ρ = � m λm � ρA m ⊗ ρB m � where λm ≥ 0 ∀m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6) Here ρ represents the density matrix of the total system under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the m-th state corresponding to the subsystems A and B the density matrices are defined as: ρA m := |m⟩AA⟨m| and ρB m := |m⟩BB⟨m|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7) Hence in terms of the information coming from the subsystems A and B, the density matrix for the total system can be recast as: ρ = � m λm (|m⟩AA⟨m| ⊗ |m⟩BB⟨m|) where λm ≥ 0 ∀m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8) One can further generalize the structure of the density matrix by considering both the contributions from entangled and non-entangled states, which is given by the following expression: ρ = � m � n � p � q Dmnpq (|m⟩AA⟨n| ⊗ |p⟩BB⟨q|) where Dmnpq ≥ 0 ∀m, n, p, q, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='9) where Dmnpq represents a more general coefficient which capture both the effects from entangled and non-entangled quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let’s investigate a partial transposition operation with respect to the subsystem A in light of the new generation definition of the total density matrix, which results in the following expression: ρTA = � m � n � p � q Dmnpq � (|m⟩AA⟨n|)TA ⊗ |p⟩BB⟨q| � = � m � n � p � q Dmnpq (|n⟩AA⟨m| ⊗ |p⟩BB⟨q|) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10) Following a partial transpose operation with regard to the subsystem A, we obtain the following results for the non-entangled quantum state: ρTA = � m λm � (|m⟩AA⟨m|)TA ⊗ |m⟩BB⟨m| � = � m λm (|m⟩AA⟨m| ⊗ |m⟩BB⟨m|) = ρ, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11) 10 which corresponds to the fact that the total density matrix remains unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here since for the non-entangled state λm∀m, this directly implies that ρTA ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This also confirms that if after performing a partial transpose operation on the total system has at least one negative eigenvalue then the system cannot be described in terms of the above mentioned form stated in eqn (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8) and consequently the underlying quantum state considered in this discussion has to be entangled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is actually very interesting outcome coming from the present computation in support of quantum entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Utilizing these facts one step forward the definition of an quantum information theoretic entanglement measure, entanglement negativity is proposed, which is given by: N = � λm<0 |λm|, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='12) where in this definition summation over all negative eigenvalues are explicitly taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From this definition, we can clearly see that when we have N = 0, there is no quantum entanglement in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Apart from having a very good physical thought behind the construction of the entanglement negativity measure, unfortunately it turns out that this is not an additive measure and most importantly not at all suitable for the description of many body or multi-subsystem appearing within the framework of quantum field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Hence, to give a more physically applicable quantum information theoretic measure another powerful quantity has been introduced, which is known as logarithmic negativity and is treated to be most improved version of the entanglement negativity mea- sure in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let us now discuss in detail that how one can technically define the logarithmic negativity by making use of the background physical facts discussed in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To define this quantity, first of all let us introduce the trace norm of the partial transposed version of the total density matrix over the subsystem A, which is described by the following expression: ||ρTA|| = Tr � (ρTA)† ρTA = � m |λm| = � � λm>0 |λm| + � λm<0 |λm| � = � N + � λm>0 |λm| � = (2N + 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13) Here in the list line of the above expression to write down corresponding trace norm in 11 terms of the quantum entanglement negativity measure we have utilized the following sets of useful constraints: Tr (ρ) = 1, Tr � ρTA� = 1, � m λm = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='14) Then the logarithm of the trace norm of the of the total density matrix over the subsystem A is identified to be logarithmic negativity, which is given by the following expression: LN = ln � ||ρTA|| � = ln (2N + 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15) This implies the fact that, when N ̸= 0, then LN ̸= 0 and the corresponding quantum state is considered to be entangled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let us now consider a special case where we are dealing with the pure quantum mechan- ical state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this specific case our next objective is to explicitly compute the expression for the logarithmic negativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To serve this purpose we use the well known Schmidt de- composition technique for pure quantum state, using which we can write: |Ψ⟩ = � m � λm (|m⟩A ⊗ |m⟩B) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='16) Then using this representation of the pure quantum state one can further define the expres- sion for the density matrix for the total system, which is given by the following expression: ρ = |Ψ⟩⟨Ψ| = � m � n � λmλn ((|m⟩A ⊗ |m⟩B) (A⟨n| ⊗ B⟨n|)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='17) Further, taking the partial transpose operation on the above mentioned density matrix of the total system over the subsystem A, we get the following expression: ρTA = � m � n � λmλn ((|m⟩A ⊗ |m⟩B) (A⟨n| ⊗ B⟨n|))TA = � m � n � λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|)) = � m � n,m=n � λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|)) + � m � n,m̸=n � λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|)) = � m λm ((|m⟩AA⟨m|) ⊗ (|m⟩AA⟨m|)) + � m � n,m̸=n � λmλn ((|n⟩AA⟨m|) ⊗ (|n⟩AA⟨m|)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='18) 12 For the sake of simplicity, to diagonalize the structure of the total density matrix we further introduce a new basis for the pure quantum states, in which two new state vectors are defined by the following expressions: |Ψ+ mn⟩ : = 1 √ 2 [(|m⟩A ⊗ |n⟩B) + (|n⟩A ⊗ |m⟩B)] for m < n, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='19) |Ψ− mn⟩ : = 1 √ 2 [(|m⟩A ⊗ |n⟩B) − (|n⟩A ⊗ |m⟩B)] for m < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20) It is very easy to check the following two constraints are always satisfied by the new basis state vectors |Ψ+ mn⟩ and |Ψ− mn⟩, which are given by: (A⟨m| ⊗ B⟨m|) |Ψ+ mn⟩ = 1 √ 2 � �(A⟨m| ⊗ B⟨m|) (|m⟩A ⊗ |n⟩B) � �� � =0 + (A⟨m| ⊗ B⟨m|) (|n⟩A ⊗ |m⟩B) � �� � =0 � � = 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='21) (A⟨m| ⊗ B⟨m|) |Ψ− mn⟩ = 1 √ 2 � �(A⟨m| ⊗ B⟨m|) (|m⟩A ⊗ |n⟩B) � �� � =0 − (A⟨m| ⊗ B⟨m|) (|n⟩A ⊗ |m⟩B) � �� � =0 � � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='22) This implies the fact that both the new basis state vectors |Ψ+ mn⟩ and |Ψ− mn⟩ are orthogonal to the state |m⟩A ⊗ |m⟩B, which is obviously a very helpful information for the further construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Then the partial transpose with respect to subsystem A for the total density matrix as stated in eqn (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='18) can be written in the diagonalized basis in terms of the two state vectors |Ψ+ mn⟩ and |Ψ− mn⟩ as: ρTA = � m λm|m⟩AA⟨m| + � m � n,m 0 for this construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The part |Ψ+ mn⟩⟩Ψ+ mn| has the eigenvalues λmλn for all values of m and n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here λm > 0 and λn > 0, then λmλn > 0 for this construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The part |Ψ− mn⟩⟩Ψ− mn| has the eigenvalues −λmλn for all values of m and n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here λm > 0 and λn > 0, then −λmλn < 0 for this construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' So the negative eigenval- ues appear in this computation, which is clearly the indication of having quantum mechanical entanglement in the present framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is important to note that, if 13 in these sets of eigenvalues at least two of the λm∀m > 2 ̸= 0, then the negative eigenvalues always appear in this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Then, in the new diagonalized basis the trace norm can be further computed as: ||ρTA|| = �� m λm + 2 � m � n,m 0 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3: Graphical behaviour of the axion effective potential with respect to the field obtained from Type IIB String Theory compactification for stringy parameter b < 0 and b > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 22 = µ3fa �� φ fa � + b cos � φ fa �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='19) In figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3(a)) and figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3(b)) we have plotted the behaviour of the dimensionless axion effective potential V (φ)/µ3fa with respect to the dimensionless axion field variable φ/fa for the stringy parameter b > 0 and b > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The precise definition of the stringy parameter b is written in the later part of this paper explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Both the behaviour are useful to understand the contribution of the linear and non-perterbative periodic part in the total axion effective potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this effective potential µ3 represents the coupling parameter of linear interaction which is associated with the underlying theoretical scale, can be expressed as: Scale of effective potential : µ3 = 1 faα ′2gs exp(4A0) + R2m4 SUSY faα ′L4 exp(2A0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20) where exp(A0) represents the warp factor of the lower portion of the Klebanov-Strassler throat geometry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' R is the radius which stabilized the 5 brane and antibrane in the cor- responding string theory construction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' the only mass scale involved in this construction is mSUSY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' which actually represents the underlying supersymmetry breaking scale in this specific set up,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' the Regge slope is α ′ which is proportional to the inverse string tension,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' string coupling is gs and finally L6 represents the world volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here first part of the effective potential breaks the shift symmetry and the rest of the part preserves the sym- metry φ → φ + 2πfa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here fa quantifies the axionic decay parameter, which is in general conformal time dependent (τ) and we have chosen the following useful profile: Axion decay constant profile : fa = � � � �100 − 80 1 + � ln τ τc �2 H, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='21) which was used in refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [68–70] to validate Bell’s CHSH inequality violation in early universe cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here H is the Hubble parameter, and τc is the characteristic time scale at which we have fa = 2 √ 5H, which is almost a constant in the background geometrical set up we are considering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now since the whole problem we are going to solve in terms of the physical time variable t in both the regions R and L it is necessarily to find out the relationship between the conformal time scale τ and the physical time scale t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here we find the following connecting relationship: Dimensionless conformal time scale : τ τc = 1 + ln � tanh � t 2 � tanh � tc 2 � � ln � tanh �tc 2 ��, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='22) 23 0 2 4 6 8 10 5 6 7 8 9 10 (a) For conformal time 1 2 3 4 5 6 7 8 9 (b) For physical time Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4: Schematic behaviour of the dimensionless axion decay constant with the conformal and physical time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 24 where τc is given by the following expression: Characteristic time scale : τc = H ln � tanh �tc 2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='23) For this reason the given profile of the axion decay parameter can be further written in terms of the physical time t as: Axion decay constant profile : fa = � � � � �100 − 80 1 + � ln � ln[tanh( t 2)] ln[tanh( tc 2 )] ��2 H, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='24) where tc represents the characteristic time scale in the physical time scale which basically τc in the conformal time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4(a)) and figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4(b)) we have plotted the behaviour of the dimensionless axion decay parameter fa/H with respect to conformal as well as the physical time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Both the plots almost depict similar feature in both the time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason the chosen profile is extremely useful for our analysis as it is not changing by changing the definition of the associated time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Additionally, to write down the effective potential in an simplest form we further intro- duce a new dimensionless quantity, b, which is defined as: New dimensionless parameter : b = Λ4 G µ3fa .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='25) To define the new quantity b, a characteristic scale has been introduced, ΛG, which is given by: Characteristic scale : ΛG = � mSUSY L3 √ α ′gs exp (−cSinst) � �� � Instantonic decay .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='26) Here Sinst represents the instantonic action which finally give rise present structure of the effective potential within the framework of string theory, the instanton coupling parameter c ∼ O(1) which is actually treated to be constant term in this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Finally one can able fix the form of the warp factor in terms of all the stringy parameters, which is given by: Warp factor : exp(A0) = � ΛG mSUSY �2 L R � α ′gs = L4 mSUSY R � α ′ gs exp (−cSinst) � �� � Instantonic decay ,(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='27) which further corresponds to the following expression for the coupling parameter µ3, which 25 is given by: Scale in terms of instantonic decay : µ3 = g2 s fa � ΛG mSUSY �8 �L R �4 + α ′g2 sR2m4 SUSY faL4 � ΛG mSUSY �4 �L R �2 = 1 fag3 s L16 m4 SUSY R4 exp (−4cSinst) � �� � Faster decay +m2 SUSY L4 fags exp (−2cSinst) � �� � Slower decay , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='28) which is obviously a necessary input to fix the corresponding overall scale of effective potential derived from string theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Last but not the least, one can further able to compute the expression for the string scale associated with the problem, in terms of the other stringy parameters as: 0 2 4 6 8 10 0 2 4 6 8 10 12 14 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5: Schematic behaviour of the approximated axion effective potential obtained from Case A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' String scale : Ms = 1 √ α ′ exp(A0) = � ΛG mSUSY �2 L R √gs = L4 mSUSY R√gs exp (−cSinst) � �� � Instantonic decay (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='29) The representative action along with the effective potential is a very important input for the rest of the computation performed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here the following two physical approximation can be used to simplify the problem in a very simpler language: 26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (a) For b < 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (b) For b > 0 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6: Schematic behaviour of the truncated axion effective potential obtained from Case B with stringy parameter b < 0 and b > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 27 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Case A: This is the specific situation where we only consider the part of the effective potential which breaks the shift symmetry φ → φ + 2πfa, which is given by: Shift symmetry breaking effective potential : V (φ) ≈ µ3fa � φ fa � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='30) In the present computational purpose, particularly in the field equation the above mentioned potential contributes as a source term in terms of µ3 which basically fix the overall energy scale in terms of the stringy model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5), the corresponding shift symmetry breaking part of the axion effective potential is plotted, which shows linear behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Case B: In this specific case we consider the small field limiting approximation in which the dimensionless field variable φ fa ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason one can approximate the shift symmetry φ → φ + 2πfa preserving non-perturbative contribution as: cos � φ fa � ≈ 1 − 1 2 � φ fa �2 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='31) where due to having the truncation at the quadratic order term at the end t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='he previously mentioned shift symmetry is broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In prince one can take the full non- perturbative term, but at the level of eqn of motion and later deling with such terms are extremely difficult in the field theory language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the present computational purpose the higher order terms can be neglected due to having small field limit with- out loosing any generality, on the cost of breaking the shift symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Consequently in the present case the effective potential can be approximated as: Truncated effective potential : V (φ) ≈ Λ4 G + µ3fa � φ fa � − Λ4 G 2 � φ fa �2 = µ3fa � b + � φ fa �� − m2 eff 2 � φ fa �2 = µ3fa � b + � φ fa � − b 2 � φ fa �2� , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='32) where we define the effective mass in terms of stringy parameters by the following expression: Effective mass : m2 eff = µ3bfa = Λ4 G = �mSUSY L3 √ α ′gs �2 exp (−4cSinst) � �� � Instantonic decay .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='33) 28 In figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6(a)) and figure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6(b)), the corresponding trucated axion effective po- tential is plotted, which shows deviation from the linear behaviour for both the signatures of stringy parameter b < 0 and b > 0 for small field limit where φ ≪ fa approximation works perfectly well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We are now interested in the field equations of axion which can be obtained by varying the effective action stated in equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='18) with respect to the axion field itself, give rise to the following expressions for the above mentioned two cases: For Case A : � 1 a3(t)∂t � a3(t)∂t � − 1 H2a2(t) ˆL2 H3 � φ = µ3, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='34) For Case B : �� 1 a3(t)∂t � a3(t)∂t � − 1 H2a2(t) ˆL2 H3 � + m2 eff � φ = µ3 = m2 efffa b , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='35) where the scale factor a(t) for global de Sitter space is given by the following expression: Scale factor a(t) = 1 H sinh t where t = � tR(in R), tL(in L) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='36) In this context we introduce a Laplacian operator ˆL2 H3 in hyperbolic slice H3 which is defined as: Laplacian operator : ˆL2 H3 = 1 sinh2 r � ∂r � sinh2 r ∂r � + 1 sin θ∂θ (sin θ ∂θ) + 1 sin2 θ∂2 Φ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='37) which has the following properties: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Laplacian operator ˆL2 H3 satisfies the following eigenvalue equation: Eigenvalue equation : ˆL2 H3Yplm(r, θ, Φ) = λpYplm(r, θ, Φ), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='38) with quantum number p dependent eigenvalue: Eigenvalue : λp = −(1 + p2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='39) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Eigenfunction of the Laplacian operator ˆL2 H3 is Yplm(r, θ, Φ) which is defined as: Eigenfunction : Yplm(r, θ, Φ) = Γ (ip + l + 1) Γ (ip + 1) p √ sinh r P −(l+ 1 2) (ip− 1 2) (cosh r) Ylm(θ, Φ), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='40) 29 where p, l and m are three quantum numbers associated with the above mentioned eigenfunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here Ylm(θ, Φ) is the well known spherical harmonics which is de- pendent on two quantum numbers l and m and on two angular coordinates as it defined in S2 and last but not the least the radial solution is characterized by the function, P −(l+ 1 2) (ip− 1 2) (cosh r), which is the well known associated Legendre polynomial in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' After quantization the classical solution obtained from the field equation is promoted in terms of the quantum operator and by following the well known canonical quantization technique the corresponding quantum operator can be written in terms of the creation and annihilation operators along with basis Bunch Davies mode function, which is nothing but the classical counterpart of the solution of the field equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The total quantum solution for the axion field operator for both the Case A and Case B can be written in the following compact form: Quantum Mode function : �φ(t, r, θ, Φ) = � ∞ 0 dp � σ=±1 p−1 � l=0 +l � m=−l [aσplmUσplm(t, r, θ, Φ) +a† σplmU ∗ σplm(t, r, θ, Φ) � ∀ t = (tR, tL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='41) In this context the Bunch-Davies vacuum is defined by the following expression: Bunch − Davies vacuum : aσplm|BD⟩ = 0 ∀σ = (+1, −1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 0 < p < ∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' l = 0, · · · , p − 1, m = −l, · · · , +l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='42) Here Uσplm(t, r, θ, Φ) represents the classical solution of the field equation for the axion for both the Case A and Case B which forms the complete basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' After quantization this basis functions, which is sometimes referred as the mode functions are tagged by the three quantum numbers, p, l and m, which are appearing as an outcome of the canonical quantization of the modes in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The solution of the mode functions can be obtained by solving the corresponding axion field equations, which are basically solving partial differential equations using the well known method of separation of variables for the Case A and Case B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This finally give rise to the following expression for both the mentioned possibilities: Bunch − Davies Mode function : Uσplm(t, r, θ, Φ) = 1 a(t)χp,σ(t)Yplm(r, θ, Φ) = H sinh tχp,σ(t)Yplm(r, θ, Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='43) Here it is important to note that the time dependent part of the mode function χp,σ(t) 30 only works for the positive frequencies and hence forms a complete set in the present theoretical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This part of the solution is dependent on the momentum p which is actually the wave number and in the quantum mechanical picture it is playing the role of a quantum number as clearly mentioned earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Particularly this time dependent part of the wave function is extremely significant for the present discussion as we are interested in the dynamical behaviour of the mode function in the R and L region of the open chart of global de Sitter space time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This particular part will going to control the behaviour of the quantum entanglement measure in the mentioned space time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If we can able to extract the hidden features from the time dependent part of the field equations from the Case A and Case B then half of the computational job is done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now since in both the cases we are dealing with inhomogeneous second order differential equations the total solution can be written as the sum of complementary part (χ(c) p,σ(t)) and particular integral part (χ(p) p,σ(t)) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Total time dependent solution : χp,σ(t) = χ(C) p,σ (t) � �� � Complementary part + χ(P) p,σ (t) � �� � Particular integral part .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='44) Here the complementary part (χ(c) p,σ(t)) of the time dependent solution of the mode function satisfy the homogeneous part of the field equation for the Case A and Case B can be written as: Complementary part of the field equation : 0 = � � � � � � � � � � � � � � � � � � � � ∂2 t + 3 coth t ∂t + (1 + p2) sinh2 t � χ(C) p,σ (t) for Case A � ∂2 t + 3 coth t ∂t + (1 + p2) sinh2 t + m2 eff H2 � χ(C) p,σ (t) for Case B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='45) The solution of the above equations for the Case A and Case B combiningly can be written as: Complementary solution : 31 χ(c) p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='σ(t) = � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 2 sinh πp � (eπp − iσ e−iπν) Γ � ν + 1 2 + ip � Pip (ν− 1 2)(cosh tR) −(e−πp − iσ e−iπν) Γ � ν + 1 2 − ip � P−ip (ν− 1 2)(cosh tR) �� σ=±1 for R � σ 2 sinh πp � (eπp − iσ e−iπν) Γ � ν + 1 2 + ip � Pip (ν− 1 2)(cosh tL) −(e−πp − iσ e−iπν) Γ � ν + 1 2 − ip � P−ip (ν− 1 2)(cosh tL) �� σ=±1 for L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='46) where we introduce a new parameter ν, which is known as mass parameter are defined for Case A and Case B as: Mass parameter : ν = � � � � � � � � � � � 3 2 for Case A � 9 4 − m2 eff H2 = � 9 4 − µ3b faH2 = � 9 4 − Λ4 G f 2 aH2 for Case B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='47) Here the solution has following properties: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here σ = ±1 for R and L regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the Case B if we consider meff ≪ H, the mass parameter is approximated as ν = 3/2 which is exactly the Case A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the Case B if we consider meff = √ 2H, then the mass parameter is given by ν = 1/2 and this is the case of conformally coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the Case B if we consider meff < √ 2H, the mass parameter is lying within the range, 1/2 < ν < 3/2, which is the low mass region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the Case B if we consider meff = H, then the mass parameter is given by, ν = 5/2, which is the intermediate mass region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the Case B if we consider meff ≫ H, then the mass parameter is given by, ν = i � m2 eff H2 − 9 4 ≈ imeff H , which is the high mass region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the Case B if we consider √ 2H < meff < 3H/2, then the mass parameter ν is lying within the range, 0 < ν < 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Complementary part of the solution satisfy, χ(C) p,σ (t) = χ(C) −p,σ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 32 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here one can define the following Klien-Gordon inner product in terms of the com- plementary part of the time dependent fields equation: Klien − Gordon product : �� χ(C) p,σ (t), χ(C) p,σ′(t) �� KG = Npσδσσ′, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='48) where Npσ is the normalization constant, which is given by: Normalization : Npσ = 4 π � cosh πp − σ cos � ν − 1 2 �� |Γ � ν + 1 2 + ip � |2 ∀σ = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='49) This will going to be extremely useful to further fix the overall normalization factor of the complementary part of the time dependent contribution of the corresponding mode function in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand the particular integral part satisfy the following time dependent part of the field equation: Particular part of the field equation : � � � � � � � � � � ∂2 t + 3 coth t ∂t + (1 + p2) sinh2 t � χ(P) p,σ (t) = µ3 for Case A � ∂2 t + 3 coth t ∂t + (1 + p2) sinh2 t + m2 eff H2 � χ(P) p,σ (t) = m2 efffa b for Case B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='50) Here in both the cases we have inhomogeneous differential equations and the inhomoge- neous contributions in both the cases playing the role of source terms in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Since we have chosen a specific time dependent profile of the axion decay parameter to prepare Bell CHSH inequality violating pair for the Case B the source term in this particular case will be time dependent in a very specific fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is a well known fact that apart from having any type of structure of the source con- tribution one can able to solve the inhomogeneous differential equation using the Green’s function method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This leads to the following solution of the particular integral part for both the cases considered for our analysis in this paper: Particular solution : χ(P) p,σ (t) = � � � � � � � � � � dt ′ Gσ(t, t ′) µ3 for Case A � dt ′ Gσ(t, t ′) m2 efffa(t ′) b for Case B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='51) where Gσ(t, t ′) is the Green’s function for axion field, which is given by the following 33 general expression: Green′s function : Gσ(t, t ′) = sinh2 t ∞ � n=0 1 (p2 − p2 n)χ(C) pn,σ(t)χ(C) pn,σ(t ′) where σ = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='52) Further, we use the following new notations to express the total solution of the time dependent part of the field equation: New notation : Pq = Pip (ν− 1 2)(cosh tq), Pq,n = Pipn (ν− 1 2)(cosh tq) where q = (R, L) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='53) As a result, the solution’s entire time-dependent component can be reduced to the following: χp,σ(t) = � q=R,L � � � � � � � � � 1 Np � ασ q Pq + βσ q Pq∗� � �� � Complementary solution + ∞ � n=0 1 Npn (p2 − p2 n) � ¯ασ q,n ¯Pq,n + ¯βσ q,n ¯P∗q,n� � �� � Particular solution � � � � � � � � � ∀σ = ±1 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='54) where we use two new redefined symbol for the further simplification purpose in the present computation: P q,n = sinh2 t Pq,n × � � � � � � � � � � dt ′ χ(C) pn,σ,q(t ′) µ3 for Case A � dt ′ χ(C) pn,σ,q(t ′) m2 efffa(t ′) b for Case B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='55) Np = 2 sinh πp � Npσ = 4 sinh πp �� cosh πp − σ cos � ν − 1 2 �� π|Γ � ν + 1 2 + ip � |2 ∀σ = ±1, q = (R, L) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='56) Npn = 2 sinh πpn � Npnσ = 4 sinh πpn �� cosh πpn − σ cos � ν − 1 2 �� π|Γ � ν + 1 2 + ipn � |2 ∀σ = ±1, q = (R, L) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='57) In the above mentioned solution as mentioned in equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='54), we define few expansion coefficients, which are given by: Expansion coefficients : ασ R = 1 σασ L = (eπp − iσe−iπν) Γ � ν + 1 2 + ip � , ασ R,n = 1 σασ L,n = (eπpn − iσe−iπν) Γ � ν + 1 2 + ipn � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='58) 34 βσ R = 1 σβσ L = −(e−πp − iσe−iπν) Γ � ν + 1 2 − ip � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=', βσ R,n = 1 σβσ L,n = −(e−πpn − iσe−iπν) Γ � ν + 1 2 − ipn � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='59) Further the solution written in equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='54) can be written in matrix notation for the further simplification: Matrix solution : χI = 1 Np MI JPJ � �� � Complementary solution + ∞ � n=0 1 Np,(n) � M(n) �I J PJ (n) � �� � Particular solution (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='60) where we define two square matrices for the complementary and particular part as: MI J = � � � � � ασ q βσ q βσ∗ q ασ∗ q � � � � � , � M(n) �I J = � � � � � ¯ασ q,n ¯βσ q,n ¯βσ∗ q,n ¯ασ∗ q,n � � � � � , σ = ±1, q = (R, L), (I, J) = 1, 2, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='61) and similarly the useful column matrices can be expressed as: PJ (n) = � � � � � Pq,n Pq∗,n � � � � � , χI = � � � � � χσ(t) χ∗ σ(t), � � � � � , PJ = � � � � � Pq Pq∗, � � � � � σ = ±1, q = (R, L), (I, J) = 1, 2, 3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='62) Also we introduce another new symbol for the normalization factor Np,(n) as obtained for the particular part of the solution, which is given by: Np,(n) = 2 sinh πpn � Npnσ � p2 − p2 n � = 4 sinh πpn � p2 − p2 n � �� cosh πpn − σ cos � ν − 1 2 �� π|Γ � ν + 1 2 + ipn � |2 ∀σ = ±1, q = (R, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='63) Hence the Bunch-Davies mode function can be rewritten as: H sinh taIχI = H sinh taI � 1 Np MI JPJ + ∞ � n=0 1 Np,(n) � M(n) �I J PJ (n) � , where aI = (aσ, a† σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='64) Further we define: bJ = a(C) I MI J, bJ(n) = a(P) I(n) � M(n) �I J , where a(C) I = (a(C) σ , a(C)† σ ), a(P) I(n) = (a(P) σ,n, a(P)† σ,n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='65) 35 This implies that the operator ansatz is following: aI = � a(c) I + ∞ � n=0 a(p) I(n) � , a(c) I = bJ � M−1�I J , a(p) I(n) = bJ(n) � M−1 (n) �I J , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='66) where inverse square matrices are defined as: � M−1�I J = � � � � � γσq δσq δ∗ σq γ∗ σq � � � � � , � M−1 (n) �I J = � � � � � γσq,n δσq,n δ ∗ σq,n γ∗ σq,n � � � � � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='67) The individual components of these matrices are given by: γjσ = Γ � ν + 1 2 + ip � eπp+iπ(ν+ 1 2) 4 sinh πp � � � � � 1 eπp+iπ(ν+ 1 2) + 1 1 eπp+iπ(ν+ 1 2) − 1 1 eπp+iπ(ν+ 1 2) + 1 − 1 eπp+iπ(ν+ 1 2) − 1 � � � � � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='68) δ∗ jσ = Γ � ν + 1 2 − ip � eiπ(ν+ 1 2) 4 sinh πp � � � � � 1 eπp + eiπ(ν+ 1 2) − 1 eπp − eiπ(ν+ 1 2) 1 eπp + eiπ(ν+ 1 2) 1 eπp − eπp+iπ(ν+ 1 2) � � � � � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='69) γjσ,n = Γ � ν + 1 2 + ipn � eπpn+iπ(ν+ 1 2) 4 sinh πpn � � � � � 1 eπpn+iπ(ν+ 1 2) + 1 1 eπpn+iπ(ν+ 1 2) − 1 1 eπpn+iπ(ν+ 1 2) + 1 − 1 eπpn+iπ(ν+ 1 2) − 1 � � � � �(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='70) δ ∗ jσ,n = Γ � ν + 1 2 − ipn � eiπ(ν+ 1 2) 4 sinh πpn � � � � � 1 eπpn + eiπ(ν+ 1 2) − 1 eπpn − eiπ(ν+ 1 2) 1 eπpn + eiπ(ν+ 1 2) 1 eπpn − eπpn+iπ(ν+ 1 2) � � � � � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='71) Additionally, we have following two constraints: a(C) I � ∞ � n=0 1 Np,(n) � M(n) �I J PJ (n) � � �� � Particular solution = 0, a(P) I(n) � 1 Np MI JPJ � � �� � Complementary solution = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='72) Then in terms of the previously mentioned matrix elements the annihilation and creation 36 operators are explicitly defined as: Annihilation operator : aσ = � q=R,L � � γqσbq + δ∗ qσb† q � + ∞ � n=0 � γqσ,nbq,n + δ ∗ qσ,nb † q,n �� ∀σ = ±1, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='73) Creation operator : a† σ = � q=R,L � � γ∗ qσb† q + δqσbq � + ∞ � n=0 � γ∗ qσ,nb † q,n + δqσ,nbq,n �� ∀σ = ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='74) Now the Bunch-Davies quantum vacuum state can be written in terms of the tensor product of R and L vacua by making use of the following Bogoliubov transformation: |BD⟩ = exp � �K � � |R⟩ ⊗ |L⟩ � for HBD := HR ⊗ HL, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='75) where the new quantum Bogoliubov operator ˆK can be expressed as: Bogoliubov operator I : �K = � 1 2 � i,j=R,L mij b† i b† j � �� � Complementary part + 1 2 � i,j=R,L ∞ � n=0 mij,n b † i,n b † j,n � �� � Particular integral part � ,(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='76) where our objective is to determine the coefficients mij and ¯mij,n in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Also the R and L vacuum states are defined as: Factorization of states : |R⟩ = � |R⟩(C) + ∞ � n=0 |R⟩(P),n � , |L⟩ = � |L⟩(C) + ∞ � n=0 |L⟩(P),n � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='77) which satisfy the following constraints: bL|L⟩(C) = 0, bR|R⟩(C) = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='78) bL,n|L⟩(P) = 0, bR,n|R⟩(P) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='79) which satisfy the following commutation algebra: � bi, b† j � = δij, [bi, bj] = 0 = � b† i, b† j � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='80) � bi,n, b † j,m � = δijδnm, � bi,n, bj,m � = 0 = � b † i,m, b † j,m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='81) 37 This implies the following relation: � (mijγjσ + δ∗ iσ) b† i � �� � Complementary part + ∞ � n=0 � mij,nγjσ,n + δ ∗ iσ,n � b † i,n � �� � Particular integral part � (|R⟩ ⊗ |L⟩) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='82) which further correspond to the following conditions: (mijγjσ + δ∗ iσ) = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='83) � ¯mij,n¯γjσ,n + ¯δ∗ iσ,n � = 0 ∀n, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='84) using which we define the following mass matrices, which are given by: mij = −δ∗ iσ � γ−1� σj ≡ � � � � � mRR mRL mLR mLL � � � � � ≈ eiθ√ 2 e−pπ √cosh 2πp + cosh 2πν � � � � � cos πν i sinh pπ i sinh pπ cos πν � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='85) ¯mij,n = −δ ∗ iσ,n � γ−1� σj,n ≡ � � � � � mRR,n mRL,n mLR,n mLL,n � � � � � ≈ eiθ√ 2 e−pnπ √cosh 2πpn + cosh 2πν � � � � � cos πν i sinh pnπ i sinh pnπ cos πν � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='86) The eigenvalues of the solutions are given by: λ± = � mRR ± mRL � = eiθ √ 2 e−pπ (cos πν ± i sinh pπ) √cosh 2πp + cos 2πν , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='87) λ±,n = � ¯mRR,n ± ¯mRL,n � = eiθ √ 2 e−pnπ (cos πν ± i sinh pnπ) √cosh 2πpn + cos 2πν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='88) But this extremely complicated to take the partial trace operation from the contributions obtained from R and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason it is unsuitable basis for our calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' To perform the above mentioned operation we need to perform another Bogoliubov transformation in terms of the following suitable basis, where the new quantum operators are defined as: cR = � u bR + v b† R � , CR,n = � Un bR,n + Vn b† R,n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='89) cL = � u bL + v b† L � , CL,n = � U n bL,n + V n b† L,n � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='90) 38 which satisfy the following normalization constraints on the mode function: � |u|2 − |v|2 � = 1, � |Un|2 − |Vn|2 � = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='91) � |¯u|2 − |¯v|2 � = 1, � | ¯Un|2 − | ¯Vn|2 � = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='92) Using this information Bunch-Davies vacuum state can be expressed in the newly Bogoli- ubov transformed basis as: |BD⟩ = 1 Np exp � � W � � |R ′⟩ ⊗ |L ′⟩ � where Np ≈ 1 � � � � � 1 − � |γp|2 + ∞ � n=0 |Γp,n|2 ��, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='93) where |R ′⟩ and |L ′⟩ are new basis operators in HBD := HR ⊗ HL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Additionally, we introduce a new quantum operator � W, which is defined as: Bogoliubov operator II : � W = � γp c† R c† L � �� � Complementary part + ∞ � n=0 Γp,n C† R,n C† L,n � �� � Particular integral part � ,(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='94) where our prime objective is to determine γp and Γp,n from the present calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The new oscillator algebra is given by: � ci, c† j � = δij, [ci, cj] = 0 = � c† i, c† j � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='95) � Ci,n, C† j,m � = δijδnm, [Ci,n, Cj,m] = 0 = � C† i,m, C† j,m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='96) Here the new operators are defined as: cR|BD⟩ = γp c† L|BD⟩, cL|BD⟩ = γp c† R|BD⟩, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='97) CR,n|BD⟩ = Γp,n C† L,n|BD⟩, CL,n|BD⟩ = Γp,n C† R,n|BD⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='98) In the new basis we have the following expressions: cJ = bIGI J, CJ(n) = ¯bJ(n) � G(n) �I J where GI J = � � � � � Uq V ∗ q Vq U ∗ q � � � � � , � G(n) �I J = � � � � � U q,n V ∗ σq,n V q,n U ∗ q,n � � � � � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='99) 39 where the components of the new matrices are given by: Uq ≡ diag (u, u) , Vq ≡ diag (v, v) , U q,n ≡ diag � Un, U n � , V q,n ≡ diag � Vn, V n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='100) Finally we derive the following sets of homogeneous algebraic equations: mRRu + v − γpmRLv∗ = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='101) mRRu + v − γpmRLv∗ = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='102) mRLu − γpu∗ − γpmRRv∗ = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='103) mRLu − γpu∗ − γpmRRv∗ = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='104) ¯mRR,nUn + Vn − Γp,nmRL,nV ∗ n = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='105) mRR,nU n + V n − Γp,nmRL,nV ∗ n = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='106) mRL,nUn − Γp,nU ∗ n − Γp,nmRR,nV ∗ n = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='107) mRL,nU n − Γp,nU ∗ n − Γp,nmRR,nV ∗ n = 0, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='108) Here we have the following properties of the above mentioned equations: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Property I: mRR = mLL = m∗ RR = ω = √ 2 e−pπ cos πν √cosh 2πp + cos 2πν , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='109) mRL = mLR = −m∗ RL = ζ = ei π 2 √ 2 e−pπ sinh pπ √cosh 2πp + cos 2πν , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='110) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Property II: ¯mRR,n = ¯mLL,n = ¯m∗ RR,n = ωn = √ 2 e−pnπ cos πν √cosh 2πpn + cos 2πν , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='111) ¯mRL,n = ¯mLR,n = − ¯m∗ RL,n = ζn = ei π 2 √ 2 e−pnπ sinh pnπ √cosh 2πpn + cos 2πν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='112) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Property III: If we have the following two conditions: γ∗ p = −γp, Γ∗ p,n = −Γp,n, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='113) then we can fix the following constraint: v∗ = v, u∗ = u, V ∗ n = V n, U ∗ n = U n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='114) As a result, we have two normalization conditions instead of two, which are given 40 by: � |u|2 − |v|2 � = 1, � |Un|2 − |Vn|2 � = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='115) Finally, we have the following expressions: γp = 1 2mRL �� 1 + m2 RL − m2 RR � − � (1 + m2 RL − m2 RR)2 − 4m2 RL � = i √ 2 √cosh 2πp + cos 2πν + √cosh 2πp + cos 2πν + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='116) Γp,n = 1 2 ¯mRL,n �� 1 + ¯m2 RL,n − ¯m2 RR,n � − �� 1 + ¯m2 RL,n − ¯m2 RR,n �2 − 4 ¯m2 RL,n � = i √ 2 √cosh 2πpn + cos 2πν + √cosh 2πpn + cos 2πν + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='117) Here it is important to note that we have taken the negative signature in front of the square root contribution to strictly satisfy the constraint, |γp| < 1 and |Γp,n| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the other signature, which is appearing from other branch of solution these mentioned constraints are not satisfied at all and for this reason the other solutions are not physical in the present context of discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Also the above equations satisfy the following normalization conditions: � |u|2 − |v|2 � = 1, � |U n|2 − |V n|2 � = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='118) general solutions of these equations can be expressed as: u = 1 − γpζ � |1 − γpζ|2 − |ω|2 = u∗ = u, v = ω � |1 − γpζ|2 − |ω|2 = v∗ = v, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='119) U n = 1 − Γpnζn � |1 − Γpnζn|2 − |ω|2 = U ∗ n = Un V n = ωn � |1 − Γpnζn|2 − |ω|2 = V ∗ n = Vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='120) Here we have two additional constraints which are satisfied during this computation: ω∗ = ω, ζ∗ = −ζ, γ∗ p = −γp, Γ∗ p,n = −Γp,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='121) These derived expressions will be used further to derive the rest of the results in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 Construction of reduced density matrix in open chart In this portion our job is construct the expression for reduced density operator correspond- ing to the previously defined Bunch Davies state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' After quantization the corresponding quantum state is characterized in terms of the three important quantum numbers p, l and 41 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' As we have already mentioned before that the contributions coming from region R and region L are exactly same and symmetric in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Because of this reason we are going to derive the expression for the reduced density operator in the region L by taking partial trace over all the contributions coming from region R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This leads to the following result for the corresponding density operator: ρL;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='p,l,m = TrR � |BD⟩⟨BD| � = � (1 − |γp|2) (1 + fp) ∞ � k=0 |γp|2k|k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ L′⟨k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m| + f 2 p (1 + fp) ∞ � n=0 ∞ � r=0 |Γp,n|2r|n, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ L′⟨n, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m| � ,(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='122) where γp and Γp,n we have computed in the previous subsection and the new normalization factor f p is defined as: fp = 1 � ∞ � n=0 1 1 − |Γp,n|2 �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='123) In the definition of the density matrix the quantum mechanical states |k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ and |n, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ can be further written in terms of creation operators in the new basis |L ′⟩ as: |k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ = 1 √ k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (c† L)k|L ′⟩, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='124) |n, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ = 1 √ r!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (C† L,n)r|L ′⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='125) In the new representative basis the reduced density operator takes the following diagonal form: ρL = � � 1 − |γp|2� diag � 1, |γp|2, |γp|4, |γp|6 · · · � � �� � Complementary part + f 2 p ∞ � n=0 diag � 1, |Γp,n|2, |Γp,n|4, |Γp,n|6 · · · � � �� � Particular integral part � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='126) 42 Here it is important to note that: 1 (1 + fp)Tr �� 1 − |γp|2� diag � 1, |γp|2, |γp|4, |γp|6 · · · �� = (1 − |γp|2) (1 + fp) ∞ � k=0 |γp|2k = 1 (1 + fp), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='127) f 2 p (1 + fp)Tr � ∞ � n=0 diag � 1, |Γp,n|2, |Γp,n|4, |Γp,n|6 · · · � � = f 2 p (1 + fp) ∞ � n=0 ∞ � r=0 |Γp,n|2r = fp (1 + fp), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='128) where we have used two following facts by assuming γp ≪ 1 and Γp,n ≪ 1: ∞ � k=0 |γp|2k = 1 (1 − |γp|2), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='129) ∞ � n=0 ∞ � r=0 |Γp,n|2r = � ∞ � n=0 1 1 − |Γp,n|2 � = 1 fp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='130) As a result finally we have: Tr (ρL) = � 1 (1 + fp) + fp (1 + fp) � = (1 + fp) (1 + fp) = 1, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='131) It suggests that the reduced density operator utilised in this paper has the proper normal- isation in its structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The remainder of the computation carried out in this study will benefit greatly from the current derived structure of the reduced density operator for the region L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4 Entanglement negativity and logarithmic negativity in open chart Our main goal in this part is to formulate equations for the entanglement negativity and the logarithmic negativity between the region of R and L in the open chart of global de Sitter space time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Both of the aforementioned sections will be treated as causally unrelated during this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The Bunch Davies quantum vacuum state can be factored according to the contributions made by the complementary and particular integral parts of the solution in terms of the quantum numbers p, l, and m as follows: |BD⟩ = �� (1 − |γp|2) (1 + fp) ∞ � k=0 |γp|k � |k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩R′ ⊗ |k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ � + fp � (1 + fp) ∞ � n=0 ∞ � r=0 |Γp,n|r � |n, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩R′ ⊗ |n, r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' p, l, m⟩L′ �� , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1) 43 One can directly compute the expression for the eigenvalues, which is given by the following expression, by further employing the fundamental physical idea of Schmidt decomposition for a pure quantum state as mentioned in the earlier section of this paper: � λk = �� (1 − |γp|2) (1 + fp) |γp|k + fp � (1 + fp) ∞ � n=0 |Γp,n|k � ∀k = [0, ∞].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2) Then the logarithmic negativity from the present theoretical set up can be computed as: LN(p, ν) = 2 ln � ∞ � k=0 λk � = 2 ln � ∞ � k=0 �� (1 − |γp|2) (1 + fp) |γp|k + fp � (1 + fp) ∞ � n=0 |Γp,n|k �� = 2 ln �� (1 − |γp|2) (1 + fp) ∞ � k=0 |γp|k + fp � (1 + fp) ∞ � n=0 ∞ � k=0 |Γp,n|k � = ln � 1 (1 + fp) �� (1 + |γp|) (1 − |γp|) + fp f p �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3) where we introduce a new notation f p, which is defined as: f p = 1 � ∞ � n=0 1 1 − |Γp,n| � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4) In the last step we have used the following results to compute the summations: ∞ � k=0 |γp|k = 1 (1 − |γp|), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5) ∞ � k=0 |Γp,n|k = 1 (1 − |Γp,n|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6) Hence, the entanglement negativity can be further computed in terms of the expression derived for the logarithmic negativity as: N(p, ν) = 1 2 � exp (LN(p, ν)) − 1 � = 1 2 � 1 (1 + fp) �� (1 + |γp|) (1 − |γp|) + fp f p �2 − 1 � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7) 44 Now one would anticipate that the two causally unrelated areas, R and L, are quantum mechanically entangled with one another under the current framework for any finite values of p, which is basically the direct outcome of having non vanishing contribution from both |γp| and |Γp,n|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now after integrating over p in presence of appropriate contribution from the density of quantum mechanical states under consideration in open chart we finally obtain the following expression for the logarithmic negativity in the volume of a hyperboloid: LN(ν) = V reg H3 � ∞ 0 dp D(p) LN(p, ν), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8) where the quantity D(p) represents the density of quantum states corresponding to the radial contribution on the hyperboloid H3, which is given by: D(p) = 1 2π2p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='9) Additionally, in the above mentioned expression the regularized finite part of the volume of the hyperboloid H3 is given by: V reg H3 = 1 2VS2 = 1 2 × 4π = 2π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10) Consequently, equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8) can be further expressed in terms of the following simplified form: LN(ν) = 1 π � ∞ 0 dp p2 LN(p, ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11) However, in most of the physical problem in the upper limit of the above mentioned integration the integrand becomes divergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason, one need to introduce a regulator Λ is the upper limit of the integration instead of strictly putting this to be infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' However, for the computational purpose we fix the value of Λ to be very large number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this specific problem this cut-off is physically treated to be the Ultra Violet (UV) cut-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In quantum field theoretic prescription sometimes this UV cut-off is physically interpreted as the manifestation of lattice regulator for the type of computation we are performing in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, it is important to note that, in the lower limit of integration the integrand becomes convergent in most of the interesting physical situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the technical language this lower limit corresponds to the Infra Red (IR) which is safe for the particular problem we are doing in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Considering all of these facts stated above one can further recast equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11) to quantify the regularized version of the 45 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05 (a) For fp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00 (b) For small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1: Graphical behaviour of the normalized logarithmic negativity (LN(ν)/LN(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and ν = 3/2 (massless case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both the plots reference scale corresponds to the scale at which LN(ν)/LN(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 46 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (a) For fp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (b) For small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2: Graphical behaviour of the normalized entanglement negativity (N(ν)/N(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and ν = 3/2 (massless case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both the plots reference scale corresponds to the scale at which N(ν)/N(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 47 logarithmic negativity in the following modified format: LN(ν) = 1 π � Λ 0 dp p2 LN(p, ν) = 1 π � Λ 0 dp p2 ln � 1 (1 + fp) �� (1 + |γp|) (1 − |γp|) + fp f p �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='12) Also, the regularized version of the entanglement negativity can be further computed using equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='12) as: N(ν) = 1 2 � exp (LN(ν)) − 1 � = 1 2 � exp � 1 π � Λ 0 dp p2 ln � 1 (1 + fp) �� (1 + |γp|) (1 − |γp|) + fp f p �2�� − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13) Further, if we substitute each of the components of the above equation from what we have derived in the previous section, then one can clearly see from the complicated structure of this equation that the final result is not analytically computable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this specific reason we have analysed the above expression for the fp = 0 and small fp ̸= 0 numerically in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It basically covers both Case A and Case B solutions in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1(a)) and figure (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1(b)), we have explicitly depicted the behaviour of nor- malized logarithmic negativity (LN(ν)/LN(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Similarly, in figure (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(a)) and figure (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(b)), we have explicitly plotted the behaviour of normalized entanglement negativity (N(ν)/N(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vertical dashed lines are drawn for ν = 1/2 and ν = 3/2 (Case A) cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The outcomes and the physical interpretation of these plots are very interesting which we are writing point-wise in the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From both of these plots is is clearly observed that the normalized logarithmic nega- tivity obtained from the small fp ̸= 0 is larger than the fp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The normalization has been been done with respect to value of the logarithmic negativity at ν = 1/2, which is the conformal coupled result for the theory under consideration for the present computational framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From both of these plots we found that when the mass parameter squared ν2 < 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' ν = −i|ν| then we are dealing with heavy effective mass where we get falling behaviour of normalized logarithmic negativity LN(ν)/LN(ν = 1/2) and normalized entanglement negativity N(ν)/N(ν = 1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This implies that in the heavy region we have less quantum correlation and the effect of quantum mechanical entanglement is falling as as increase the mass in the definition of mass parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here it is 48 important to note that we have not considered the possibility from ν = i|ν|, because this will give rise to exponentially divergent contribution as a Boltzmann contribution which cannot be possible to handle in the present computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' So to get a correct measure of quantum mechanical entanglement here in this analysis we have restricted our discussion to ν = −i|ν| branch of solutions only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This possibility corresponds to Case B in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also found that at the conformal coupling limit ν = 1/2 the normalized log- arithmic negativity LN(ν)/LN(ν = 1/2) = 1 and normalized entanglement neg- ativity N(ν)/N(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The same thing happened in the massless limit ν = 3/2 where from the numerical plots we found that the normalized logarith- mic negativity and entanglement negativity again LN(ν)/LN(ν = 1/2) = 1 and N(ν)/N(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' At both this points, ν = 1/2 and ν = 3/2 (Case A) we get the maximum effect from quantum mechanical entanglement in the present computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This further physically implies that at these points we get the max- imum contribution from quantum correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both the plots we have drawn a horizon line at LN(ν)/LN(ν = 1/2) = 1 and N(ν)/N(ν = 1/2) = 1 to indicate the reference level of our computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Additionally we have found that in the small mass region ν2 > 0 we get oscillatory type of feature where the period of oscillation is increasing as we increase the value of ν2 in the positive axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This possibility correspond to Case A and Case B in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Also from both of these plots we infer that effect of quantum mechanical entangle- ment is larger in the small mass region ν2 > 0 compared to the contribution from heavy mass region, where we have ν2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' So small mass or the massless cases are more favourable than the heavy mass profile if we want to achieve more quantum mechanical effects from the entanglement measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Last but not the least, we now comment on the comparison among the outcomes obtained from the plots for normalized logarithmic negativity LN(ν)/LN(ν = 1/2) and normalized entanglement negativity N(ν)/N(ν = 1/2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Normalized entanglement negativity gives better understanding re- garding the information content compared to the normalized logarithmic negativity for both the cases fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It seems like overall features obtained from normalized logarithmic negativity and normalized entanglement negativity are almost same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But due to having differences in the definitions of the corresponding quantum information theoretic measures the outcomes are more prominent in nor- malized entanglement negativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Though it is important to note that both of them are connected to each other mathematically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The effect of heavy mass for ν2 < 0 is 49 more prominently observed in the case of normalized entanglement negativity com- pared to the normalized logarithmic negativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the asymptotic limit of ν2 < 0 we see that for normalized entanglement negativity the quantum entanglement and the corresponding correlation saturates to a constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, we found that there is sharp fall in the case of normalized logarithmic negativity which further implies there is no asymptotic value at which it becomes constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' However, apart from having this significant difference in the large mass limit, in the small mass and massless limiting cases we have found out exactly same behaviour from the presented plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5 Comparison with entanglement entropy in open chart In this section we give a clear comparison between entanglement entropy and logarithmic negativity, where we know both of them is used to describe the long range quantum correlation and entanglement effects in the present information theory motivated quantum field theoretic picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let us start our discussion with the entanglement entropy which is described by Von Neumann measure by the following expression [14]: S(p, ν) = −Tr [ρL ln ρL] = � − � 1 + fp 1 + fp � � ln � 1 − |γp|2� + |γp|2 (1 − |γp|2) ln � |γp|2�� − (1 − fp) ln (1 + fp) � , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1) where we have computed each explicit parameter in the earlier section of this study, to- gether with the explicit expression for the reduced density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now by following the same prescription stated before the regularized part of the entan- glement entropy can be further expressed by the following simplified expression: S(ν) = V reg H3 � ∞ 0 dp D(p) S(p, ν) = 1 π � ∞ 0 dp p2 S(p, ν), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2) where D(p) and V reg H3 are defined earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further applying the same logical argument with the UV cut off for the computational purpose we further use the following UV cut off regulated version of Von Neumann entropy: S(ν) = 1 π � Λ 0 dp p2 S(p, ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3) Our next job is to numerically compute the expressions for entanglement entropy from the 50 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (a) For fp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (b) For small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1: Graphical behaviour of the normalized entanglement entropy from Von Neu- mann measure (S(ν)/S(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and ν = 3/2 (massless case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both the plots reference scale corresponds to the scale at which S(ν)/S(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 51 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (a) For fp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4 3 2 1 0 1 2 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (b) For small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2: Graphical comparison between the behaviour of the normalized entanglement entropy from Von Neumann measure (S(ν)/S(ν = 1/2)) and normalized entanglement negativity (N(ν)/N(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vertical dashed lines are drawn for ν = 1/2 (conformally coupled) and ν = 3/2 (massless case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both the plots reference scale corresponds to the scale at which N(ν)/N(ν = 1/2) = 1 and S(ν)/S(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 52 above mentioned UV regulated Von Neumann measure which will going to be extremely useful for the further comparison purpose with the results obtained from logarithmic neg- ativity and entanglement negativity measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1(a)) and figure (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1(b)), we have explicitly depicted the behaviour of nor- malized entanglement entropy from Von Neumann measure (S(ν)/S(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Similarly, in figure (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(a)) and figure (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(b)), we have explicitly plotted comparative behaviour between normalized entanglement negativity (N(ν)/N(ν = 1/2)) and normalized entanglement entropy from Von Neumann measure (S(ν)/S(ν = 1/2)) with mass parameter squared (ν2) for both fp = 0 and small fp ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vertical dashed lines are drawn for ν = 1/2 and ν = 3/2 (Case A) cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both the plots we have drawn a horizon line at N(ν)/N(ν = 1/2) = 1 and S(ν)/S(ν = 1/2) = 1 to indicate the reference level of our computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The outcomes and the physical interpretation of these plots are very interesting which we are writing point-wise in the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From all of these plots we found that compared entanglement entropy computed from Von Neumann measure entanglement negativity give more information from the same system under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The reason behind this statement is both in the heavy mass ν2 < 0 and small mass ν2 > 0 regions we get more amplitude from the normalized version of the information content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the heavy mass ν2 < 0 region we found that in the asymptotic limit entanglement entropy gives vanishing contribution, but in the same limit entanglement negativity gives small but significantly non vanishing contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, in the small mass ν2 > 0 region the amplitude of fluctuation of normalized entanglement entropy is larger amplitude than the normalized entanglement negativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Only at ν = 1/2 (conformally coupled) and ν = 3/2 (massless) we get exactly same contribution from both N(ν)/N(ν = 1/2) and S(ν)/S(ν = 1/2), which is exactly N(ν)/N(ν = 1/2) = S(ν)/S(ν = 1/2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is obviously a very interesting finding from our analysis that in case of the present quantum field theoretic set up entanglement negativity captures better information regard- ing quantum mechanical correlations and quantum entanglement than the Von Neumann measure of entanglement entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6 Logarithmic negativity between two causally unrelated patches of open chart Our main goal in this part is to calculate and estimate the logarithmic negativity between two patches of the open chart of the global de Sitter space that are not causally related.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 53 We provide information on two physical observers whose role it is to explicitly determine and estimate the quantum mechanical entanglement in the current theoretical setup in order to serve the goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the purpose of computational simplification, we additionally assume that the quantum states corresponding to these two observers constitute an initial pure state within the multiverse and are maximally entangled to one another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Since we are dealing with two observers, the corresponding framework in a more simpler language can be interpreted as biverse which can be easily further generalise to a general multiverse scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From the starting point of the present construction we have explicitly mentioned that the sub regions R and L in the penrose diagram as well as in the Hilbert space construction is taken to be completely symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason to extend this theoretical tool to compute the entanglement negativity from the corresponding biverse set up we consider that the region L is in the inside of the de Sitter bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' One can do the similar thing by making use of the region R as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Another important assumption we have considered during this computation is that there is no bubble wall exists in this framework for the open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further in this biverse set up we place another observer in the other open chart of the global de Sitter bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From the present theoretical computation our objective is to explicitly find the role of the inside observer to detect the quantum mechanical signatures of entanglement between two de Sitter bubbles using the well known Bunch Davies initial quantum states for the biverse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now in the present quantum field theoretic set up causality demands that the region R has to be causally unrelated from the other region L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is because of the fact that there is no access to the region R during this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this specific reason one needs to consider the partial trace operation over the inaccessible region R, which further give rise to the information loss regarding this specific region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' As a consequence the corresponding quantum mechanical state which describe the observer would be a mixed quantum state for this computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this set up the quantum mechanical state associated with the other observer becomes a pure quantum state which belongs to the other causally unrelated patch of the open chart of the global de Sitter bubble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This implies in the present computation we need to consider the entanglement between a mixed and pure quantum mechanical states which belong to two causally unrelated de Sitter bubbles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If in the computation of quantum entanglement from two subsystems only pure quantum states are involved then in such a system Von Neumann measure is the best measure to quantify entanglement entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But if any of the subsystem is described by mixed quantum state then for such a situation Von Neumann measure is not the appropriate quantum information theoretic measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In that case entanglement negativity or the logarithmic negativity can give better measure of quantum entanglement, which is somewhat clear to us from the comparison that we have already drawn from our previous analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' He strongly believe that this new measure will going to explain various unexplored underlying physics involved in the present theoretical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 54 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 Computational set up and construction of maximally entangled states Starting with the total quantum vacuum state, which is actually represented by the product of the quantum vacuum states for each oscillator that we found computed explicitly in the previous section of this paper, we begin to study the effects from entanglement negativity between two causally unrelated patches of open chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It’s crucial to remember that each oscillator’s quantum mechanical state is identified by one of the three quantum numbers p, l, or m for future calculation purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason, one must take product over p in the final expression of total quantum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The final Bunch Davies quantum vacuum state in this configuration is stated as: |0⟩BD = � p |0p⟩BD, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1) where we define the Bunch Davies states for each mode as: |0p⟩BD = �� (1 − |γp|2) (1 + fp) ∞ � k=0 |γp|k � |kp⟩R′ ⊗ |kp⟩L′ � + fp � (1 + fp) ∞ � n=0 ∞ � r=0 |Γp,n|r � |n, rp⟩R′ ⊗ |n, rp⟩L′ �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2) Here it is important to note that, in the above expression for the simplification in the writing purpose we have removed the tags of l and m on the individual direct product states defined in the region R and L in the Bogoliubov transformed basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This simplification will going to further help us to deal with cumbersome expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this specific computation we are actually considering smaller version of the multiverse where many causally unrelated patches in the open chart of the de Sitter bubbles forms a maximally entangled state which is necessary ingredient for the present calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this calculation it is assumed that each of the causally unrelated patches corresponds to a Bunch Davies quantum vacuum states which will finally form a maximally entangled state out of all possible Bunch Davies states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' However this is not a strict assumption to extract the required outcome from the present computational set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' One can think about a scenario in which some quantum vacuum states are distinct from Bunch Davies vacuum and are entangled with one another in a more general version of the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is quite an interesting possibility in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now we don’t want to complicate our understanding at this level of computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason we are going to restrict our analysis by considering the two Bunch Davies quantum vacuum states which belong to two causally unrelated patches of the open chart of the de Sitter bubbles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now to theoretically model the present computational set up let us first consider two momentum modes having momenta p = pin and p = pout of the axionic field theory described by Case A (massless) and Case B (massive) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' With this knowledge, it is possible 55 to further express the maximally entangled state in terms of the unique contributions of Bunch Davies vacuum to the two causally independent regions of the de Sitter bubbles as follows: |Ψ⟩ME : = 1 √ 2 � i=0,1 � |ipout⟩BD1 ⊗ |ipin⟩BD2 � = 1 √ 2 � |0pout⟩BD1 ⊗ |0pin⟩BD2 + |1pout⟩BD1 ⊗ |1pin⟩BD2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3) In the above equation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' |0pout⟩BD1 and |1pout⟩BD1 represent the ground and first single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='HBD1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='AB/HicdVBNS8NAEN3Ur1q/oj16WSyCp5KUW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='tbqR56rGBtoSlhs920SzebsLsRQoh/xYsHRbz6Q7z5b9y0FVT0wcDjvRlm5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='nkRo1JZ1odRWFvf2Nwqbpd2dvf2D8zDo1sZxgKTPg5ZKIYekoRTvqKkaG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='kSAo8BgZePL3B/cESFpyG9UEpFxgKac+hQjpSXLKcORgx2Mzd1PB92rlw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7c82KVbU0Gg2YE7tp2Zq0Ws1arQXthWVZFbBCzXfnUmI4BwhRmScmRbkR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='qnSCiKGclKTixJhPAcTclIU4CIsfp4vgMnmplAv1Q6OIKLtTvEykKpEwCT3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='cGSM3kby8X/JGsfKb45TyKFaE4+UiP2ZQhTBPAk6oIFixRBOEBdW3QjxDA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mGl8yrpEL4+hf+T21rVrlfPr+uVdmcVRxEcgxNwBmxwAdqgC3qgDzBIwAN4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='As/GvfFovBivy9aCsZopgx8w3j4B4J6USw= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='⌦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='AB7nicdVDLSsNAF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='L3xWeur6tLNYBFchSR9uiu6cVnBPqANZTKdtkMnkzAzEUr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='oR7hxoYhbv8edf+OkraCiBy4czrmXe+8JYs6UdpwPa219Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3NrO7eT393bPzgsHB23VZRIQlsk4pHsBlhRzgRtaY57ca ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='S4jDgtBNMrzO/c0+lYpG407OY+iEeCzZiBGsjdfqRZiFV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='g0LRsS/rVa/iIcd2nJpXqmbEq5W9EnKNkqEIKzQHhf+MC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='JSIUmHCvVc51Y+ymWmhFO5/l+omiMyRSPac9Qgc0SP12c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='O0fnRhmiUSRNCY0W6veJFIdKzcLAdIZYT9RvLxP/8nqJHt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='X9lIk40VSQ5aJRwpGOUPY7GjJieYzQzCRzNyKyARLTLR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='JKG9C+PoU/U/anu2W7cptudi4WsWRg1M4gwtwoQYNuIEmt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='IDAFB7gCZ6t2Hq0XqzXZeuatZo5gR+w3j4B62yP+Q= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1st de Sitter universe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2nd de Sitter universe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Axionic Biverse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='HBD2 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='HL ⌦ HR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='◆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='ACMXicdVBNSwJBGJ6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1L7Mvq2OXIQnsIrtipodArIOHDhaZgrs+OsDs5+MDMbyLJ/qUv/JLp4KJrf6JZNcioBwYenud5ed9nJBRIXV9qmVWVtfWN7Kbua3tnd29/P7BvQgijkHByzgPQcJwqhPOpJKRnoh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='J8hzGOk648vU7z4QLmjg38lJSCwPDX3qUoykux8KzYxYrCV2LHpuLB5ZeTC9Ohw2Fx2blOzEBSjwi4rN8ms/SpnS/oJV2hWoUpMWq6oUi9XiuX69CYWbpeAu07fyzOQhw5BFfYoaE6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Bt6K0YcUkxI0nOjAQJER6jIekr6iO124pnFyfwRCkD6AZcPV/CmfpzIkaeEBPUkPyZH47aXiX14/km7NiqkfRpL4eL7IjRiUAUzrgwPKCZsogjCnKq/QjxCHGpSs6pEr4vhf+T+3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='LJqJTObiqFRnNRxYcgWNQBAY4Bw3QAm3QARg8ghfwCt60J2qvWsf82hGW8wcgiVon18IXamP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='H := ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='HBD1 ⌦ HBD2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='◆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='HBD1 ⌦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='✓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='HL ⌦ HR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='◆◆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='ACh3ichVFbS8MwFE7r1DlvUx9CQ5h+jDbOmcnCDp98MEHFTeFdZQ0S7uw9EKSCqP0r/ijfP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='PfmN3AKx5I+PJ950tOzvESRoU0jHdNXygsLi0XV0qra+sbm+Wt7Y6IU45JG8cs5s8eEoTRiLQlYw8J5yg0G ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='PkyRtejfWnF8IFjaNHOUpIL0RBRH2KkVSUW37NHIwYvMnPzh2PBkF1fnYzx/Nh69o1cyeWNCTih2LlE8vBv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='87f9Nu5CL/yD7NLp7tbrhg1Q0WjAcfAtA1TgWbTtqwmNCeSYVTALO7c8pvTj3EakhihoTomkYiexnikmJG8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='pKTCpIgPEQB6SoYIVBL5v0MYf7iulDP+ZqRJO2M+ODIVCjEJPZYZIDsR3bUz+pnVT6du9jEZJKkmEpw/5K ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='YMyhuOhwD7lBEs2UgBhTlWtEA8QR1iq0ZVUE+Y/hX+DjlUz67WT+3rlojVrRxHsgj1QBSY4BRfgBtyBNsBa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='QTvUjrW6vqIf6Q3dnqbq2syzA76EfvkBJtPC4Q= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Hilbert space factorization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CY3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='AB+XicbZDLSsNAFIZP6q3W9Slm8EiuCqJVnRZ7MZlBXuRtpbJdNIOnUzCzKRQt7EjQtF3Pom7nw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='bp2kW2vrDwMd/zuGc+b2IM6Ud59sqrK1vbG4Vt0s7u3v7B/bhUuFsS0SUIeyo6HFeVM0KZmtNOJCkOPE7b3qQ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+r7enVCoWigc9i2g/wCPBfEawNtbAtpOe56P6Y/qUwWU6sMtOxcmEVsHNoQy5GgP7qzcMSRxQoQnHSnVdJ9L9BE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='vNCKdpqRcrGmEywSPaNShwQFU/yS5P0ZlxhsgPpXlCo8z9PZHgQKlZ4JnOAOuxWq7Nzf9q3Vj7N/2EiSjWVJDFI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='j/mSIdoHgMaMkmJ5jMDmEhmbkVkjCUm2oRVMiG4y19ehdZFxa1Wru6r5dptHkcRTuAUzsGFa6jBHTSgCQSm8Ayv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8GYl1ov1bn0sWgtWPnMf2R9/gCPH5L4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Axion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CY3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='AB+XicbZDLSsNAFIZP6q3W9Slm8EiuCqJ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='VnRZ7MZlBXuRtpbJdNIOnUzCzKRQt7EjQtF3Pom7nwbp2kW2vrDwMd/zuGc+b2IM6Ud59sqrK1vbG4Vt0s7u3v7B/bhUuFsS0SUIeyo6HFeVM0KZmtNOJCkOPE7b3qQ+r7enVCoWigc9i2g/wCPBfEawNtbAtpOe56P6Y/qUwW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='U6sMtOxcmEVsHNoQy5GgP7qzcMSRxQoQnHSnVdJ9L9BEvNCKdpqRcrGmEywSPaNShwQFU/yS5P0ZlxhsgPpXlCo8z9PZHgQKlZ4JnOAOuxWq7Nzf9q3Vj7N/2EiSjWVJDFIj/mSIdoHgMaMkmJ5jMDmEhmbkVkjCUm2oRVMiG4y19eh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='dZFxa1Wru6r5dptHkcRTuAUzsGFa6jBHTSgCQSm8Ayv8GYl1ov1bn0sWgtWPnMf2R9/gCPH5L4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Axion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1: Representative diagram of the Hilbert space factorization of the axionic biverse which is constructed out of two de Sitter vacua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Each of the vacua is spanned in terms of the complete set of Bunch Davies states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' particle excited quantum state characterized by the momentum mode pout in the first Bunch Davies vacuum obtained from the first patch of the open chart of global the de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Similarly, |0pin⟩BD2 and |1pin⟩BD2 represent the ground and first single particle 56 T =0 二excited quantum state characterized by the momentum mode pin in the second Bunch Davies vacuum obtained from the second patch of the open chart of global the de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the further computational simplification purpose we assume that outside and inside observers are associated with two detectors having mode momenta pout and pin respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is also crucial to note that, given the current quantum field theoretic framework, the complete Hilbert space can be factored as follows: H := � HBD1 ⊗ HBD2 � = � � HL ⊗ HR � BD1 � �� � For first subspace ⊗ � HL ⊗ HR � BD2 � �� � For second subspace � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4) where the first and the second Bunch Davies vacuum states are associated with two sub- space, whose corresponding product Hilbert space can be further factorized in terms Hilbert spaces associated with region R and L as: HBD1 = � HL ⊗ HR � BD1 , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5) HBD2 = � HL ⊗ HR � BD2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6) In the multiverse picture one can further generalize this result y considering many Bunch Davies states and different quantum vacua than Bunch Davies, such as α vacua, Motta Allen vacua etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1) representative diagram of the Hilbert space factorization of the axionic biverse which is constructed out of two de Sitter vacua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Each of the vacua is spanned in terms of the complete set of Bunch Davies states which we have pointed clearly in this diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 Construction of excited quantum state for single oscillator Our main task in this paragraph is to create the excited quantum state for a single oscil- lator, which will also be helpful to create the overall maximally entangled state required for the specific computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let’s start with the characteristic matrix equation for the oscillators in the recently announced Bogoliubov transformed basis to demonstrate this issue in more detail: cJ = bIGI J, CJ(n) = ¯bJ(n) � G(n) �I J where cJ = (cq, c† q), CJ(n) = (Cq(n), C† q(n)), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7) 57 where we define the two square matrices as appearing in the above expressions by the following equations: GI J = � � � � � Uq V ∗ q Vq U ∗ q � � � � � , � G(n) �I J = � � � � � U q,n V ∗ σq,n V q,n U ∗ q,n � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8) where the components of the new matrices are given by: Uq ≡ diag (u, u) , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='9) Vq ≡ diag (v, v) , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10) U q,n ≡ diag � Un, U n � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11) V q,n ≡ diag � Vn, V n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='12) Hence one can able to find the relationship between the a-type of oscillators with c-type of oscillators, which are given by: a(c) J = bJ � M−1�I J = cK � G−1�K I � M−1�I J , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13) a(p) J(n) = bJ(n) � M−1 (n) �I J = CK(n) � G−1 (n) �K I � M−1 (n) �I J , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='14) which further form the following quantity: aI = � a(c) I + ∞ � n=0 a(p) I(n) � = � cK � G−1�K I � M−1�I J � �� � Complementary part + ∞ � n=0 CK(n) � G−1 (n) �K I � M−1 (n) �I J � �� � Particular integral part � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15) Here the the product of two inverse matrices are parametrized by another (4 × 4) square matrix, which is given by: � G−1�K I � M−1�I J = � � � � � Qσq R∗ σq Rσq Q∗ σq � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='16) � G−1 (n) �K I � M−1 (n) �I J = � � � � � Qσq,n R ∗ σq,n Rσq,n Q ∗ σq,n � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='17) 58 where the elements of both the matrices are itself (2 × 2) matrices, which are provided by the subsequent expressions: Qσq = � � � � � �Au − �Bu + �D∗v − �Bu + �D∗v �Au � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='18) Rσq = � � � � � − �Av �Bv − �D∗u �Bv − �D∗u − �Av � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='19) Qσq,n = � � � � � �AnUn − �BnUn + �D∗ nVn − �BnUn + �D∗ nVn �AnUn � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20) Rσq,n = � � � � � − �AnVn �BnVn − �D∗ nUn �BnVn − �D∗ nUn − �AnVn � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='21) Here the coefficients ( �A, �B, �D) and ( �An, �Bn, �Dn) aare provided by the subsequent expres- sions: �A = √πp ��Γ � ν + 1 2 + ip ��� exp � πp 2 � √cosh 2πp + cos 2πν , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='22) �B = �A cos πν i sinh πp = √πp ��Γ � ν + 1 2 + ip ��� exp � πp 2 � √cosh 2πp + cos 2πν cos πν i sinh πp, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='23) �D = − �A cos(ip + ν)π i sinh πp exp (−πp) Γ � ν + 1 2 + ip � Γ � ν + 1 2 − ip � = − √πp ��Γ � ν + 1 2 + ip ��� exp � − πp 2 � √cosh 2πp + cos 2πν cos(ip + ν)π i sinh πp Γ � ν + 1 2 + ip � Γ � ν + 1 2 − ip �, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='24) and �An = √πpn ��Γ � ν + 1 2 + ipn ��� exp � πpn 2 � √cosh 2πpn + cos 2πν , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='25) �Bn = �An cos πν i sinh πpn 59 = √πpn ��Γ � ν + 1 2 + ipn ��� exp � πpn 2 � √cosh 2πpn + cos 2πν cos πν i sinh πpn , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='26) �Dn = − �An cos(ipn + ν)π i sinh πpn exp (−πpn) Γ � ν + 1 2 + ipn � Γ � ν + 1 2 − ipn � = − √πpn ��Γ � ν + 1 2 + ipn ��� exp � − πpn 2 � √cosh 2πpn + cos 2πν cos(ipn + ν)π i sinh πpn Γ � ν + 1 2 + ipn � Γ � ν + 1 2 − ipn �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='27) From the structure of the above mentioned matrices we have found the following charac- teristics: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' First of all we have found that for each of the above mentioned matrices the diag- onal and off-diagonal elements are same, which implies each of them are symmetric matrices under the matrix transpose operation i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Qqσ = QT σq = Qσq, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='28) Rqσ = RT σq,n = Rσq,n, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='29) Qqσ,n = QT σq,n = Qσq,n, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='30) Rqσ,n = RT σq,n = Rσq,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='31) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the above mentioned expressions we have also used the following relationships to write down the final result in a more simplified and compact format: �A∗ = �A, �B∗ = − �B, u∗ = u = u, v∗ = v = v, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='32) �A∗ n = �An, �B∗ n = − �Bn, U ∗ n = Un = U n, V ∗ n = Vn = V n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='33) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If we set B = 0 and �B = 0 along with v = 0 and Vn = 0 correspond to case of conformal coupling (ν = 1/2) and the massless theory (ν = 3/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The following formulas in the region L provide the creation and annihilation operators for oscillators of the a type, and fixing this will fix their explicit mathematical structures: a† L : = � �Auc† L − �AvcL + � �Bu + �Dv � c† R − � �Bv + �Du � cR � � �� � Complementary part + ∞ � n=0 � �AnUnC† L(n) − �AnVnCL(n) + � �BnUn + �DnVn � C† R(n) − � �BnVn + �DnUn � CR(n) � � �� � Particular integral part , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='34) 60 aL : = � �AucL − �Avc† L + � − �Bu + �D∗v � cR − � − �Bv + �D∗u � c† R � � �� � Complementary part + ∞ � n=0 � �AnUnCL(n) − �AnVnC† L(n) + � − �BnUn + �D† nVn � CR(n) − � − �BnVn + �D† nUn � C† R(n) � � �� � Particular integral part , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='35) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='The following expression represents the excited quantum state for a single oscillator and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='corresponds to the quantum state of the inside observer: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='|1pin⟩BD2 = a† ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='L|0pin⟩BD2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�Auc† ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='L − �AvcL + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�Bu + �Dv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='c† ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='R − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�Bv + �Du ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='cR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Complementary part ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�AnUnC† ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='L(n) − �AnVnCL(n) + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�BnUn + �DnVn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='C† ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='R(n) − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�BnVn + �DnUn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CR(n) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='Particular integral part ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(1 − |γpin|2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(1 + fpin) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='k=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='|γpin|k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='|kpin⟩R′ ⊗ |kpin⟩L′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='fpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(1 + fpin) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='r=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='|Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n|r � |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩R′ ⊗ |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩L′ �� = �� (1 − |γpin|2) (1 + fpin) � ∆1 ∞ � k=0 |γpin|k√ k + 1 � |kpin⟩R′ ⊗ |(k + 1)pin⟩L′ � +∆2 ∞ � k=0 |γpin|k√ k + 1 � |(k + 1)pin⟩R′ ⊗ |kpin⟩L′ �� + fpin � (1 + fpin) � ∞ � n=0 ∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n ∞ � r=0 |Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n|r√ r + 1 � |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩R′ ⊗ |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (r + 1)pin⟩L′ � + ∞ � n=0 ∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n ∞ � r=0 |Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n|r√ r + 1 � |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (r + 1)pin⟩R′ ⊗ |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩L′ ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='36) In the above expression we introduce four symbols ∆1, ∆2, ∆3,n and ∆4,n which are defined 61 by the following expressions: ∆1 = � �Au − ( �Bv + �Du)γpin � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='37) ∆2 = � − �Avγpin + ( �Bu + �Dv) � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='38) ∆3,n = � �AnUn − � �BnVn + �DnUn � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='39) ∆4,n = � − �AnVnΓpin,n + � �BnUn + �DnVn � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='40) To compute the expression for the excited quantum state for the single oscillator we have used the usual harmonic oscillator algebra in terms of the quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We must perform a partial trace operation over all of the degrees of freedom in the region R since the building of the current theoretical framework requires that the inside observer be located at the region L of one of the open charts of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This will ultimately result in a density matrix, which we have precisely computed in the following subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Due to this, we suggest the following ansatz for factorising the entire Hilbert space used in the computation here: H := � HBD1 ⊗ HBD2 � = � HBD1 ⊗ � HL ⊗ HR � BD2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='41) Though the similar factorization exists in the first Bunch Davies quantum vacuum state, for the time being to perform the present computation we don’t need the factorization details of this subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The prime for this particular choice is because to construct the density matrix the details of the subspace which belongs to the first Bunch Davies quantum vacuum state is not explicitly required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This will help us to compute the rest of the computations of this paper in a very simplified fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the next subsection we will discuss the technical details of this construction to formulate the maximal entangled state and hence the reduced density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 Construction of reduced density matrix at the inside observer Our primary objective in this section is to derive the equation for the reduced density matrix in the region L by performing a partial trace operation over the contributions from the region R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The matching maximally entangled state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' denoted by the following phrase,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 62 must first be created: |Ψ⟩ME : = 1 √ 2 � |0pout⟩BD1 ⊗ �� (1 − |γpin|2) (1 + fpin) ∞ � k=0 |γpin|k � |kpin⟩R′ ⊗ |kpin⟩L′ � + fpin � (1 + fpin) ∞ � n=0 ∞ � r=0 |Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n|r � |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩R′ ⊗ |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩L′ �� +|1pout⟩BD1 ⊗ �� (1 − |γpin|2) (1 + fpin) � ∆1 ∞ � k=0 |γpin|k√ k + 1 � |kpin⟩R′ ⊗ |(k + 1)pin⟩L′ � +∆2 ∞ � k=0 |γpin|k√ k + 1 � |(k + 1)pin⟩R′ ⊗ |kpin⟩L′ �� + fpin � (1 + fpin) � ∞ � n=0 ∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n ∞ � r=0 |Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n|r√ r + 1 � |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩R′ ⊗ |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (r + 1)pin⟩L′ � + ∞ � n=0 ∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n ∞ � r=0 |Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='n|r√ r + 1 � |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (r + 1)pin⟩R′ ⊗ |n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' rpin⟩L′ ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='42) From the above mentioned detailed structure of the maximal entangled state constructed in the present set up it is observed that the scale dependence in this state comes through the quantities, γpin, Γpin,n, ∆1, ∆2, ∆3,n and ∆4,n appearing in the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This particular fact is the direct outcome of the factorization of the inside observer’s subspace in to two symmetric subspaces R and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Our further job is to to study the imprints of this scale dependence on the physical outcomes of the systems to explore the unknown facts from the theoretical set up under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We now need to take a partial trace over the degrees of freedom of region R, because we already know that the inside observer’s subspace does not get any information content from this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This will allow us to create the reduced density matrix out of this configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Due to the fact that the above-mentioned newly built maximally entangled quantum state, which is actually a mixed state in the current prescription, will be taken into account throughout this computation, we must be mindful of this fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' As a result, the reduced density matrix can be expressed simply as follows: ρreduced : = TrR′ [|Ψ⟩ME ME⟨Ψ|] = ∞ � mpin=0 R′⟨mpin|Ψ⟩MEME⟨Ψ|m⟩R′ + ∞ � s=0 ∞ � mpin=0 R′⟨s, mpin|Ψ⟩MEME⟨Ψ|s, mpin⟩R′ = � ∞ � mpin=0 ρmpin + ∞ � mpin=0 ∞ � s=0 ρmpin,s � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='43) 63 where we define ρmpin and ρmpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s by the following expressions: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='ρm = (1 − |γpin|2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 (1 + fpin) |γpin|2mpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='|0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2γpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆2γ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='pin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+|∆2|2(mpin + 1)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|0pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 1| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|1pout⟩BD1|mpin + 1⟩L′ BD1⟨0|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1∆2γ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='pin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 2| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆1∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2γpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin + 2⟩L′ BD1⟨1|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+|∆1|2(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='44) and ρm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s = f 2 pin 2 (1 + fpin)|Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s|2mpin � |0pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨0|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆∗ 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|0pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓ∗ pin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨0|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)| +|∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s|2(mpin + 1)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆∗ 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|0pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)| +∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin + 1⟩L′ BD1⟨0|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆∗ 1∆2Γ∗ pin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � (mpin + 1)(mpin + 2)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 2)| +∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s∆∗ 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � (mpin + 1)(mpin + 2)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 2)⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +|∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s|2(mpin + 1)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='45) The internal observer is essentially described by the quantum mechanical state that emerges in this situation for both the complementary and specific integral parts, where the corre- sponding observer is positioned in one of the regions of the open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Furthermore, it is significant to remember that all mode eigen values for the complementary and specific integral parts are identical and marked with the symbol mpin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is because of the fact that in the particular integral part the index s which is appearing due to putting source term is not going to effect the eigen values of the mode 64 function at the end of the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Though one can tag the corresponding quantum states of the particular integral part with s and mpin, to make a distinction from the quantum modes of the complementary part which is tagged by only the quantum number mpin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is a very crucial point which is very important to mention at this stage of computation to avoid all further unnecessary confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 Partial transpose operation and the comment on the negative eigenvalues Identifying the negative eigenvalues of the obtained formula for the reduced density matrix discussed before is the main objective of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In order to perform this computa- tion, we separate the contributions from the complementary section and the particular integral component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' we focus on the partial transpose operation with respect to the component that corresponds to the first quantum vacuum state of Bunch Davies,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' which is given by the following expressions: ρT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='BD1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='m ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='= (1 − |γpin|2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 (1 + fpin) |γpin|2mpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='|0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2γpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|1pout⟩BD1|mpin + 1⟩L′ BD1⟨0|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆2γ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='pin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|0pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 1| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+|∆2|2(mpin + 1)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1∆2γ∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='pin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin⟩L′ BD1⟨1|L′⟨mpin + 2| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+∆1∆∗ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2γpin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='(mpin + 1)(mpin + 2)|1pout⟩BD1|mpin + 2⟩L′ BD1⟨1|L′⟨mpin| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='+|∆1|2(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='46) and ρT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='BD1 m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s = f 2 pin 2 (1 + fpin)|Γpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s|2mpin � |0pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨0|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆∗ 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)⟩L′ BD1⟨0|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓ∗ pin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|0pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)| +|∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s|2(mpin + 1)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆∗ 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨0|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)| +∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � mpin + 1|0pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin + 1⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +∆∗ 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s∆4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓ∗ pin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � (mpin + 1)(mpin + 2)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 2)| 65 +∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s∆∗ 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='sΓpin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s � (mpin + 1)(mpin + 2)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 2)⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' mpin| +|∆3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='s|2(mpin + 1)|1pout⟩BD1|s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)⟩L′ BD1⟨1|L′⟨s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (mpin + 1)| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='47) Now if from the above mentioned partial transposed version of the reduced density matrices computed from the complementary and particular integral part after taking addition and summing over s if we found that at least one eigenvalue is negative, then we can conclude from our theoretical set up that quantum mechanical states corresponding to the inside and outside observers are entangled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Let’s first express the transposed version of the reduced density matrices derived from the complementary and particular integral component in square matrix form before con- tinuing with the computation, which is given by the following expressions: ρT,BD1 m = (1 − |γpin|2) 2 (1 + fpin) |γpin|2mpin � � � � � � � � � Ampin Bmpin Cmpin B∗ mpin Dmpin 0 C∗ mpin 0 0 � � � � � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='48) ρT,BD1 mpin,s = f 2 pin 2 (1 + fpin)|Γpin,s|2mpin � � � � � � � � � Ampin,s Bmpin,s Cmpin,s B∗ mpin,s Dmpin,s 0 C∗ mpin,s 0 0 � � � � � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='49) where we define each of entries of the above mentioned square matrices by the following expressions: Ampin = 1 + |∆2|2(mpin + 1), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='50) Bmpin = � mpin + 1 � ∆2γ∗ pin + ∆∗ 1 � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='51) Cmpin = � (mpin + 1)(mpin + 2) ∆∗ 1∆2γ∗ pin, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='52) Dmpin = |∆1|2(mpin + 1), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='53) and Ampin,s = 1 + |∆4,s|2(mpin + 1), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='54) Bmpin,s = � mpin + 1 � ∆4,sΓ∗ pin,s + ∆∗ 3,s � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='55) 66 Cmpin,s = � (mpin + 1)(mpin + 2) ∆∗ 3,s∆4,sΓ∗ pin,s, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='56) Dmpin,s = |∆3,s|2(mpin + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='57) Our next job is to compute the eigenvalue equations from the total partial transposed matrix, which is given by the following expression: �λ3 mpin − Ampin�λ2 mpin + Bmpin�λmpin + Cmpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='58) where in the above mentioned two expressions we have introduced some shorthand rede- fined symbols which are given by the following expressions: Ampin = 1 2 (1 + fpin) � |γpin|2mpin � 1 − |γpin|2� � Ampin + Dmpin � +f 2 pin ∞ � s=0 |Γpin,s|2m � Ampin,s + Dmpin,s � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='59) Bmpin = 1 4 (1 + fpin)2 � |γpin|4mpin � 1 − |γpin|2�2 � AmpinDmpin − � |Bmpin|2 + |Cmpin|2�� +f 4 pin ∞ � s=0 |Γpin,s|4mpin � Ampin,sDmpin,s − � |Bmpin,s|2 + |Cmpin,s|2�� � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='60) Cmpin = 1 8 (1 + fpin)3 � |γpin|6mpin � 1 − |γpin|2�3 |Cmpin|2Dmpin +f 6 pin ∞ � s=0 |Γpin,s|6mpin|Cmpin,s|2Dmpin,s � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='61) The real root of the eigenvalue computed from the (mpin, mpin + 1) block is given by: �λmpin = 1 3 � Ampin + f(Ampin, Bmpin, Cmpin) 3√ 2 − 3√ 2 � 3Bmpin − A 2 mpin � f(Ampin, Bmpin, Cmpin) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='62) where we define the newly defined function f(Ampin, Bmpin, Cmpin) which is defined as: f(Ampin, Bmpin, Cmpin) : = � 2A 3 mpin − 9AmpinBmpin − 27Cmpin +3 √ 3 � 18AmpinBmpinCmpin + 4B 3 mpin + 27C 2 mpin 67 −4A 3 mpinCmpin − A 2 mpinB 2 mpin �1 2 �1 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='63) Then the logarithmic negativity from the present set up can be further computed as: LN = ln � � �2 � �λmpin <0 �λmpin + 1 � � � = ln � 2 3 � Ampin + f(Ampin, Bmpin, Cmpin) 3√ 2 − 3√ 2 � 3Bmpin − A 2 mpin � f(Ampin, Bmpin, Cmpin) � + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='64) In the next subsection we have studied this possibility numerically to extract the unknown facts from the present set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 Computation of logarithmic negativity: Numerical study In figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(b)), we have depicted the representative 3D plot of the eignen- value of the partial transposed matrix with the mass parameter and the corresponding momentum mode associated with the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In these plots we have considered two possibilities, vanishing fpin = 0 and a very small value but fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here the partial transpose operation is taken with respect to the quantum vacuum state of the first Bunch Davies state which is characterizing the corresponding open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The outcomes and the physical interpretation of these plots are very interesting which we are writing point-wise in the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In these plots we can clearly observe that the corresponding eignevalue that we have plotted for the mode having mpin = 0 gives negative contributions for both figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is a clear signature of having quantum mechanical entanglement in the biverse as well as well as the multiverse picture that we have theoretically constructed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The other higher modes mpin > 0 gives positive contribution to the eigenvalue for which we have not incorporated those plots in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Most importantly such con- tributions will not be in support of quantum entanglement in the present theoretical picture, so those solutions are not interesting in the present context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Comparing both of these plots we can also observe that for fpin = 0 we get less quantum entanglement compared to the case that we have studied for small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Also we have found that for heavy mass field which is governed by ν = −i|ν| or ν2 < 0 the corresponding eigenvalue of the partial transposed version of the reduced 68 (a) For fpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (b) For small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2: Representative 3D plot of the eignenvalue of the partial transposed matrix with the mass parameter and the corresponding momentum mode associated with the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here the partial transpose operation is taken with respect to the quantum vacuum state of the first Bunch Davies state which is characterizing the corresponding open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05 (a) For fpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='04 (b) For small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3: Graphical behaviour of the of the eignenvalue of the partial transposed matrix with the mass parameter for given value of the momentum mode associated with the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 (a) For fpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 (b) For small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4: Graphical behaviour of the of the eignenvalue of the partial transposed matrix with the momentum mode associated with the computation for the given value of mass parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='30 (a) For fpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='30 (b) For small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5: Graphical behaviour of the of the logarithmic negativity computed from the negative eigenvalues of the partial transposed reduced density matrix with the mass parameter associated with the computation for the given value of momentum mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='100 1 (a) For fpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='50 10-4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='100 1 (b) For small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6: Graphical behaviour of the of the logarithmic negativity computed from the negative eigenvalues of the partial transposed reduced density matrix with the momentum mode associated with the computation for the given value of mass parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 73 density matrix is highly positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Since this fact is not the desirable one, we have not included such plots in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But it is strictly confirmed that to get high amount of entanglement heavy field is not desirable in the present prescribed framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason we have only shown the plots for massless or partially massless fields which can be studied using the solution for the branch ν > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From both of these plots we can clearly observe that for the values of the mass parameter ν = 1/2 (conformal coupling) and ν = 3/2 (massless case) there are two dips in the eigenvalue spectrum, which correspond to maximum entanglement from the theoretical set up under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, in both of these plots we see that at ν = 1 there is minimum contribution from the quantum entanglement compared to the previously mentioned two values of the mass parameter ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For any other values of the mass parameter lying within the window 0 < ν < 2 we get the intermediate amount of quantum mechanical entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Particularly, it is important to note that for ν = 0 the amount of entanglement is larger than the amount of entanglement obtained for the value ν = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It seems like that the eigenvalue spectrum is distributed symmetrically around the value of the mass parameter ν = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' But actually this is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Crucial observation suggests that the hight of the spectrum is lesser at ν = 0 compared to ν = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both of these plots we have restricted our parameter space within the region 0 < pin < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8 and 0 < ν < 2, which we found the most suitable parameter space to get the negative contribution from the eigenvalue spectrum for the mode mpin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3(b)), we have depicted the representative graphical behaviour of the of the eignenvalue of the partial transposed matrix with the mass parameter for given value of the momentum mode associated with the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In these plots we have considered two possibilities, vanishing fpin = 0 and a very small value but fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both of these plots we have fixed the value of the momentum mode within the region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 < pin < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 and have studied the behaviour of the eigenvalue spectrum with respect to mass parameter within the range 0 < ν < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In our computation we found that this is the most desirable window of parameters within which one can get maximum contribution from the quantum entanglement in terms of getting maximum negative contribution from the eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further, in figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4(b)), we have depicted the representative graphical graphical behaviour of the of the eignenvalue of the partial transposed matrix with the momentum mode associated with the computation for the given value of mass parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In these plots we have considered two possibilities, vanishing fpin = 0 and a very small value but fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In both of these plots we have fixed the value of the mass parameter 74 within the region 1 < ν < 7/4 and have studied the behaviour of the eigenvalue spectrum with respect to momentum mode within the range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1 < pin < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have found that for very small value of momentum mode with the mass parameter in the region ν < 1 is not desirable in the present context as it gives very large positive eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Also from this analysis we have found that for very large value of the momentum mode for any values of the mass parameter ν the corresponding eigenvalue spectrum will saturate to a negative value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' After comparing figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4(b)), we also have found that this asymptotic saturation value for small fpin ̸= 0 is larger compared to result obtained from fpin = 0 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Next, in figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5(b)), we have depicted the representative graphical graphical behaviour of the the logarithmic negativity computed from the negative eigen- values of the partial transposed reduced density matrix with the mass parameter associated with the computation for the given value of momentum mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Finally, in figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6(b)), we have depicted the representative graphical graphical behaviour of the the logarithmic negativity with the momentum mode for the given value of mass parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In these plots we have considered two possibilities, vanishing fpin = 0 and a very small value but fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The outcomes and the physical interpretation of these plots are very interesting which we are writing point-wise in the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' From the figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5(b)), we have found that for fpin = 0 logarithmic negativity vanishes at ν = 1, but for small fpin ̸= 0 it is non zero but very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It further implies that at the value of the mass parameter ν = 1 we have almost negligible contribution from the quantum mechanical entanglement on large scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Additionally it is important to note that, this particular outcome is obtained for a specific value of the momentum mode, pin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, we have found that at ν = 1/2 and ν = 3/2 the obtained value of the logarithmic negativity from the present theoretical set up reach the maximum value, which further correspond to the maximum quantum mechanical entanglement or maximum correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This outcome is true for the momentum mode, pin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' One important thing here to mention that the large scale limit corresponds to the small value of the momentum mode pin in our present computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the other values of momentum mode lying within the window 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2 < pin < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 we have found that the variation with respect to the mass parameter ν is less compared to the case that we have studied for the momentum mode pin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Comparing all the outcomes obtained for the different momentum modes within the mentioned range we have found that if we increase the value of pin then the corresponding variation is reduced and we get intermediate values of negativity, which corresponds to the intermediate amount of quantum mechanical entanglement for the system under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This further implies the fact that lower values of the momentum 75 mode for the prescribed analysis is more desirable as it is giving higher amplitude of logarithmic negativity, hence higher amount of quantum mechanical entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have also found that the underlying quantum mechanical entanglement directly put impact on the shape of the spectrum of logarithmic negativity at the large scales which nearly equals or exceeds the mass parameter’s value ν ∼ 3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further, in figure (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6(a)) and (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6(b)), we have found out that for large values of the momentum mode pin > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5 the corresponding logarithmic negativity computed from the prescribed theoretical set up saturates to a constant non zero positive non negligible value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This further implies constant amount of quantum entanglement for any arbitrary positive real value of the mass parameter ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' However, in this asymptotic limit one cannot distinguish the individual effect of the mass parameter in the present computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This also implies that the low momentum modes are more desirable for the present analysis to distinguish the individual effects of the mass parameter ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Last but not least, we have also found that except ν = 3/2 for all other values of the mass parameter ν we get a sharp changing behaviour in the specific value of the momentum mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6 Small scale limit of logarithmic negativity: Analytical study In the small scale limit one needs to take the limit pin → ∞ to compute the logarithmic negativity from the present computational set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this limit we have: ∆1 = ∆∗ 1 → 1, ∆2 = ∆∗ 2 → 0, ∆3,s = ∆∗ 3,s → 1, ∆4,s = ∆∗ 4,s → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='65) The following simplified formulas in the small scale limit are obtained after taking par- tial transposition with regard to the subsystem corresponding to the first Bunch Davies quantum vacuum state: ρT,BD1 mpin = (1 − |γpin|2) 2 (1 + fpin) |γpin|2mpin � |0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin| + � mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1| + � mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin| +(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1| � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='66) 76 and ρT,BD1 mpin,s = f 2 pin 2 (1 + fpin)|Γpin,s|2mpin � |0pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, mpin| + � mpin + 1|1pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, (mpin + 1)| + � mpin + 1|0pout⟩BD1|s, mpin + 1⟩L′ BD1⟨1|L′⟨s, mpin| +(mpin + 1)|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, (mpin + 1)| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='67) Let us express the above mentioned transposed version of the reduced density matrices computed from the complementary and particular integral part in square matrix form, which are given by the following expressions: ρT,BD1 mpin = (1 − |γpin|2) 2 (1 + fpin) |γpin|2mpin � � � � � � � � � 1 �mpin + 1 0 �mpin + 1 (mpin + 1) 0 0 0 0 � � � � � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='68) ρT,BD1 mpin,s = f 2 pin 2 (1 + fpin)|Γpin,s|2mpin � � � � � � � � � 1 �mpin + 1 0 �mpin + 1 (mpin + 1) 0 0 0 0 � � � � � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='69) Next we compute the eigenvalue equation from the total partial transposed matrix after summing over source mode s, which is given by the following expression: �λ2 mpin � �λmpin − (1 − |γpin|2) 2 (1 + fpin) |γpin|2mpin(mpin + 2) − f 2 pin 2 (1 + fpin)(mpin + 2)gpin � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='70) The non trivial root of the eigenvalue computed from the (mpin, mpin + 1) block in the small scale limit is given by: �λmpin = (mpin + 2) 2 (1 + fpin) � � 1 − |γpin|2� |γpin|2mpin + f 2 pingpin � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='71) 77 where we define: gpin := ∞ � s=0 |Γpin,s|2mpin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='72) Then the logarithmic negativity from the present set up can be further computed as: LN = ln � � �2 � �λmpin <0 �λmpin + 1 � � � = ln � (mpin + 2) (1 + fpin) � � 1 − |γpin|2� |γpin|2mpin + f 2 pingpin � + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='73) We get a negative contribution from the eigenvalue if the following condition is satisfied for the small scale limiting situation: � |γpin|2mpin � 1 − |γpin|2� + f 2 pingpin � < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='74) Now from the previous analysis we have already found that mpin = 0 mode is most desirable one to obtain the negative contribution from the eigenvalue spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In such a case using the well known Riemann zeta function regularization we can write the following result for mpin = 0: gpin := ∞ � s=0 1 = 1 + ∞ � s=1 1 = 1 + (1 + 1 + 1 + · · · ) = 1 + ζ(0) = 1 − 1 2 = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='75) which also suggests the following restriction on the small scale limiting circumstance: |γpin| > � � � � � 1 + f 2 pin 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='76) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7 Massless limit of logarithmic negativity: Analytical study In the massless limit one needs to take the limit ν = 3/2 (exact masslessness) or ν = 1/2 (conformal invariance) to compute the logarithmic negativity from the present computa- tional set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In this limit we have: ∆1 → � �A − �Dγpin � u, ∆2 → 0, ∆3,s → � �An − �DnΓpin,n � Un, ∆4,s → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='77) 78 The partial transposition operation for the subsystem corresponding to the first Bunch Davies quantum vacuum state is given by the following formulas for the massless limiting situation: ρT,BD1 mpin = (1 − |γpin|2) 2 (1 + fpin) |γpin|2mpin � |0pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin| +∆∗ 1 � mpin + 1|1pout⟩BD1|mpin⟩L′ BD1⟨0|L′⟨mpin + 1| +∆1 � mpin + 1|0pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin| +|∆1|2(mpin + 1)|1pout⟩BD1|mpin + 1⟩L′ BD1⟨1|L′⟨mpin + 1| � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='78) and ρT,BD1 mpin,s = f 2 pin 2 (1 + fpin)|Γpin,s|2mpin � |0pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, mpin| +∆∗ 3,s � mpin + 1|1pout⟩BD1|s, mpin⟩L′ BD1⟨0|L′⟨s, (mpin + 1)| +∆3,s � mpin + 1|0pout⟩BD1|s, mpin + 1⟩L′ BD1⟨1|L′⟨s, mpin| +|∆3,s|2(mpin + 1)|1pout⟩BD1|s, (mpin + 1)⟩L′ BD1⟨1|L′⟨s, (mpin + 1)| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='79) In this special case the factors ∆1 and ∆3,s can be further simplified as: ∆1 = � �A − �Dγpin � u = 1 sinh πpin � exp(πpin) − i exp(−πpin)(1 + pin) (1 − pin) Γ(ipin) Γ(−ipin) � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='80) ∆3,s = � �As − �DsΓpin,s � Us = 1 sinh πpin,s � exp(πpin,s) − i exp(−πpin,s)(1 + pin,s) (1 − pin,s) Γ(ipin,s) Γ(−ipin,s) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='81) Let us express the above mentioned transposed version of the reduced density matrices computed from the complementary and particular integral part in square matrix form, 79 which are given by the following expressions for the massless case: ρT,BD1 mpin = (1 − |γpin|2) 2 (1 + fpin) |γpin|2mpin � � � � � � � � � 1 �mpin + 1∆∗ 1 0 �mpin + 1∆1 0 0 0 0 0 � � � � � � � � � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='82) ρT,BD1 mpin,s = f 2 pin 2 (1 + fpin)|Γpin,s|2mpin � � � � � � � � � 1 �mpin + 1∆∗ 3,s 0 �mpin + 1∆3,s 0 0 0 0 0 � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='83) Next we compute the eigenvalue equation from the total partial transposed matrix after summing over source mode s, which is given by the following expression: �λmpin � �λ2 mpin − Ampin�λmpin + Bmpin � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='84) where in the above mentioned expression we have introduced some shorthand redefined symbols which are given by the following expressions: Am = 1 2 (1 + fpin) � � 1 − |γpin|2� |γpin|2m + f 2 pingpin � , (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='85) Bm = − (mpin + 1) 4 (1 + fpin)2 � � 1 − |γpin|2�2 |γpin|4m|∆1|2 + f 4 pin ∞ � s=0 |Γpin,s|4m|∆3,s|2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='86) The non trivial roots of the eigenvalue computed from the (mpin, mpin + 1) block are given by: �λ± mpin = 1 2 � Ampin ± � A 2 mpin − 4Bmpin � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='87) Then the logarithmic negativity computed from the negative eigenvalue from the present set up can be written for the massless limit as: LN = ln � � �2 � �λmpin <0 �λmpin + 1 � � � = ln � Ampin + 1 − � A 2 mpin − 4Bmpin � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='88) 80 Here it is important to note that the eigenvalue and the associated logarithmic negativity computed in this particular massless limiting situation with fpin = 0 is similar to the case that is obtained for explaining the entanglement between an inertial and a non-inertial frame of reference for a free massless scalar degree of freedom in Minkowski flat space time as discussed in the reference [125].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Small difference appearing due to having separate thermal behaviour of the Minkowski space time and global de Sitter space time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Now this difference in the result is more prominent and significant once we consider the effect of source term in the effective axion potential with small fpin ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7 Conclusion We conclude our discussion with the following points which we have found from our analysis performed in this paper: Firstly, we have started with the basic discussion regarding the entanglement neg- ativity and logarithmic negativity for a general quantum mechanical set up which is appearing in the context of quantum information theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have provided the technical details for the related computations from a general quantum mechanical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further we have provided a proper physical justification that why the above mentioned two measures are physically relevant and significant for the computation we want to perform for the open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Then we have given a detailed justification of the factorization of the total Hilbert space in open chart to associate our computation in the region L and R, which is necessarily required to construct the reduced density matrix and to compute the above mentioned entanglement measures from the system under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Additionally, we have fully covered the specifics of the geometrical arrangement of the open chart of the de Sitter space, which is the platform on which we intend to carry out the remaining calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have independently determined the metric’s structure in the area between L and R, which is a crucial piece of knowledge for determining how scalar modes would behave based on our calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Next, we computed the explicit equation for the mode function using the string theory-derived axionic effective interaction, with which we created the Bunch Davies vacuum state and subsequently the expression for the reduced density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Further, we have computed the expressions for the entanglement negativity and logarithmic negativity for the mentioned axionic effective interaction in open chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have found that, the newly studied quantum information theoretic measures are more significant compared to the Von Neumann measure of entanglement entropy, which is commonly used to describe the impact of quantum entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 81 The result that offers the most promise is that it enables us to compute and estimate the quantum entanglement between the inside and outside of a de Sitter bubble without the need for a boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also found that for the large mass the amount of the quantum entanglement decays exponential in the entanglement negativity vs mass parameter squared plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand this decaying behaviour is slightly different when we consider the logarithmic negativity measure in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We also have found that for the case of conformal coupling ν = 1/2 and massless case ν = 3/2 in the logarithmic negativity and entanglement negativity spectrum there are two consecutive peaks appear of equal hights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is really an interesting feature we have found from the prescribed theoretical set up studied in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Additionally we have found that apart from having two prominent peaks for the mentioned values of the mass parameter we have oscillation in the spectrum due to having small mass parameter of the axion field during the de Sitter expansion in the global coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This oscillation becomes more rapid if the mass parameter is very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, the period of oscillation is larger and less rapid if the mass parameter is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Then, using the Bunch Davies quantum vacuum state, we expanded our computation to compute the formula for the logarithmic negativity between two causally indepen- dent patches of the open chart of the global de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is a scaled-down version of the well-known multiverse scenario and is known as the biverse picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In order to perform this calculation, we presupposed a correct factorization of the Hilbert spaces in the two subspaces that are currently spanned by the modes of the Bunch Davies quantum vacuum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We don’t need to be aware of the explicit content of the first subspace in order to apply our methodology to compute the quan- tum entanglement between two de Sitter spaces in the global coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is necessary because we need to take a partial trace over the first de Sitter space’s entire subspace content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' However, the explicit sub factorization of the second subspace is crucial in this situation since it significantly affects the explicit content of the modes from the regions R and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The most important aspect of this particular computation is the maximally entangled state, which we used to build the reduced density matrix by extracting all the data from the initial Bunch Davies vacuum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have further used this result to compute the expression for the partial transposed version of the reduced density matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have next found that the mode corresponding to mpin = 0 (ground state) correspond to the negative eigen value spectrum, using which we have numerically studied the behaviour of logarithmic negativity from the prescribed theoretical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' We have found from our analysis that the mode corresponding to mpin = 0 can 82 produce large measure of quantum entanglement due to having negative eigen value spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For the other values of mpin we have found that the corresponding eigen values are largely positive which is not desirable to construct a biverse which can produce large effect of quantum mechanical entanglement at the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the biverse construction we also have found conformally coupled case with ν = 1/2 and the massless case with ν = 3/2 are the two very special points in the entanglement spectrum where the amount of the quantum correlation is equal and high in amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' On the other hand, we have found that for the mass parameter ν = 1 the amount of quantum correlation estimated from the corresponding picture reaches its minimum value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This is obviously a promising information which we have obtained after performing our analysis on the biverse picture and it is expected that it can be generalized to any multiverse scenario constructed out of the specific model that we have studied in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' In the present context the global coordinates can be treated as the closed slicing from the point of view of FLRW cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' By performing coordinate coordinate transformation one can transform the global to static and then static to the flat slicing in the planer patch of de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' For this reason whatever results we have obtained in this paper for the global patch of the de Sitter space can be directly translated in the planer patch of the de Sitter space, which further implies that our derived results hold good for primordial cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Here we have some interesting immediate future direction on which one can extend our analysis: We have restricted our analysis for the estimation of entanglement negativity and logarithmic negativity by considering the Bunch Davies quantum vacuum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Im- mediately one can extend our analysis for a general non Bunch Davies vacua, such as α vacua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It is expected to have many interesting outcome if we extend our anal- ysis for non Bunch Davies vacua because the quantum correlations and its various unknown applications will be known from this type of future analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Since the global coordinates and planar coordinates of de Sitter space are connected via coordinate transformation, it is good to explicitly know how the present results can be explained within the framework of primordial cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This possibility one can seriously think for future work to connect with observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' One can further compute various other quantum information theoretic measures, like quantum discord, fidelity and many more interesting quantities from the present theoretical set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 83 The direct connection between the higher point quantum correlations with the all of these possible quantum information theoretic measures, imprints of quantum entan- glement in quantum correlations computed in the quantum field theory of de Sitter space and the primordial cosmological set ups are another interesting possibilities which one can study in future from the present set up that we have constructed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Extending the present computation to study role quantum mechanical decoherence [25, 26, 29, 126, 127] and quantum diffusion [128] might be very useful for the future study which can explain various unknown facts from the present set up in global as well as in the planer patch of de Sitter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' The construction of squeezed quantum mechanical states and its consequences is a common area of research in cosmological set up [33, 129–141].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It would be really good if we can able to construct a squeezed quantum state out of the present theoretical set up that we are considering in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' This will going to help to figure out various quantum information theoretic measures and its applications in various contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' If the squeezed state construction is not possible then also one can study various other possibilities out of the present set up [142–145].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Till now the computation is restricted to a quantum system which is completely adiabatic in nature, because we are considering closed quantum system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' It would be really good if we can study the open quantum system version of the present set up within the framework of quantum field theory of de Sitter space [24, 34, 117, 146–156].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Acknowledgements SC would like to thank the work friendly environment of The Thanu Padmanabhan Cen- tre For Cosmology and Science Popularization (CCSP), Shree Guru Gobind Singh Tri- centenary (SGT) University, Gurugram, Delhi-NCR for providing tremendous support in research and offer the Assistant Professor (Senior Grade) position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' SC also thanks all the members of our newly formed virtual international non-profit consortium Quantum Aspects of the SpaceTime & Matter (QASTM) for elaborative discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Last but not least, we would like to acknowledge our debt to the people belonging to the various parts of the world for their generous and steady support for research in natural sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 84 References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Maldacena and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pimentel, “Entanglement entropy in de Sitter space,” JHEP 02 (2013) 038, arXiv:1210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7244 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Casini and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Huerta, “Entanglement entropy in free quantum field theory,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 42 (2009) 504007, arXiv:0905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2562 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Amico, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Fazio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Osterloh, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vedral, “Entanglement in many-body systems,” Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 80 (2008) 517–576, arXiv:quant-ph/0703044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Laflorencie, “Quantum entanglement in condensed matter systems,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 646 (2016) 1–59, arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='03388 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='str-el].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Plenio and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Virmani, “An Introduction to entanglement measures,” Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7 (2007) 1–51, arXiv:quant-ph/0504163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Cerf and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adami, “Quantum information theory of entanglement,” Physica D 120 (1998) 62–81, arXiv:quant-ph/9605039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Calabrese and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Cardy, “Entanglement entropy and quantum field theory,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 0406 (2004) P06002, arXiv:hep-th/0405152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin-Martinez and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Menicucci, “Cosmological quantum entanglement,” Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 29 (2012) 224003, arXiv:1204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4918 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Nambu, “Entanglement of Quantum Fluctuations in the Inflationary Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 78 (2008) 044023, arXiv:0805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1471 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [10] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Nambu and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ohsumi, “Classical and Quantum Correlations of Scalar Field in the Inflationary Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 84 (2011) 044028, arXiv:1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5212 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ver Steeg and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Menicucci, “Entangling power of an expanding universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 79 (2009) 044027, arXiv:0711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3066 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [12] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Fischler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kundu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pedraza, “Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs,” JHEP 07 (2014) 021, arXiv:1311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5519 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [13] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Iizuka, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Noumi, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ogawa, “Entanglement entropy of de Sitter space α-vacua,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 910 (2016) 23–29, arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7487 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, “Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch–Davies vacuum,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 78 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 1, (2018) 52, arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='02265 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, “Quantum entanglement in de Sitter space from stringy axion: An analysis using α vacua,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 943 (2019) 114606, arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='08299 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, “Cosmological Spectrum of Two-Point Correlation Function from Vacuum Fluctuation of Stringy Axion Field in De Sitter Space: A Study of the Role of Quantum Entanglement,” Universe 6 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6, (2020) 79, arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='02905 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 85 [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shock, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, “Entanglement negativity in the multiverse,” JCAP 03 (2015) 015, arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2838 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, “Impact of quantum entanglement on spectrum of cosmological fluctuations,” JCAP 07 (2014) 029, arXiv:1405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7793 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Murugan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shock, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, “Entanglement entropy of α-vacua in de Sitter space,” JHEP 07 (2014) 072, arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6815 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Albrecht, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sasaki, “Quantum entanglement in de Sitter space with a wall, and the decoherence of bubble universes,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 97 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8, (2018) 083520, arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='08794 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, “Quantum Entanglement in the Multiverse,” Universe 3 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2, (2017) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sasaki, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tanaka, “Vacuum State of the Dirac Field in de Sitter Space and Entanglement Entropy,” JHEP 03 (2017) 068, arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='08954 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, “A note on initial state entanglement in inflationary cosmology,” EPL 111 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6, (2015) 60007, arXiv:1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='04877 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [24] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Colas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grain, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Quantum recoherence in the early universe,” arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='09486 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [25] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Burgess, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kaplanek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Minimal decoherence from inflation,” arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11046 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Micheli, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Discord and decoherence,” JCAP 04 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 04, (2022) 051, arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05037 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Real-space entanglement of quantum fields,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 104 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8, (2021) 085012, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='14575 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grain and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Unavoidable shear from quantum fluctuations in contracting cosmologies,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 81 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2, (2021) 132, arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='04222 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Observational constraints on quantum decoherence during inflation,” JCAP 05 (2018) 063, arXiv:1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='09949 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Quantum Discord of Cosmic Inflation: Can we Show that CMB Anisotropies are of Quantum-Mechanical Origin?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=',” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 93 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2, (2016) 023505, arXiv:1510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='04038 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [31] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, “Quantum entanglement,” Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 81 (2009) 865–942, arXiv:quant-ph/0702225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [32] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Allen, “Vacuum States in de Sitter Space,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 32 (1985) 3136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [33] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandya, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Srivastava, “PGW Circuit Complexity,” arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10334 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Banerjee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Knaute, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shirish, “Thermalization in Quenched De Sitter Space,” arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10692 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 86 [35] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “The Cosmological OTOC: A New Proposal for Quantifying Auto-correlated Random Non-chaotic Primordial Fluctuations,” Symmetry 13 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4, (2021) 599, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01305 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='gen-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [36] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “The Cosmological OTOC: Formulating new cosmological micro-canonical correlation functions for random chaotic fluctuations in Out-of-Equilibrium Quantum Statistical Field Theory,” Symmetry 12 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 9, (2020) 1527, arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11750 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [37] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “CMB from EFT,” Universe 5 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6, (2019) 155, arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='04766 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [38] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Einstein, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Podolsky, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rosen, “Can quantum mechanical description of physical reality be considered complete?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=',” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 47 (1935) 777–780.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics Physique Fizika 1 (1964) 195–200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Aspect, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grangier, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 47 (1981) 460–6443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Aspect, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Dalibard, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roger, “Experimental test of Bell’s inequalities using time varying analyzers,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 49 (1982) 1804–1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ryu and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 96 (2006) 181602, arXiv:hep-th/0603001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ryu and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 08 (2006) 045, arXiv:hep-th/0605073.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [44] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2 (1998) 231–252, arXiv:hep-th/9711200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chernikov and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tagirov, “Quantum theory of scalar fields in de Sitter space-time,” Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Poincare Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 9 (1968) 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [46] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bunch and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Davies, “Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 360 (1978) 117–134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [47] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Hartle and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Hawking, “Wave Function of the Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 28 (1983) 2960–2975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [48] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sumitomo, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Trivedi, “Axions as Quintessence in String Theory,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 83 (2011) 083506, arXiv:1011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5877 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [49] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Svrcek and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [50] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Beasley and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Witten, “New instanton effects in string theory,” JHEP 02 (2006) 060, arXiv:hep-th/0512039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [51] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ueda, “Impact of quantum entanglement induced by magnetic fields on primordial gravitational waves,” arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05576 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 87 [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shock, “Quantum Correlations in de Sitter Space,” Universe 3 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 1, (2017) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [53] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Albrecht, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Baunach, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ribeiro, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Richard, “Entanglement masquerading in the CMB,” arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11079 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [54] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bolis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Albrecht, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Non-Gaussianity from Entanglement During Inflation,” JCAP 07 (2019) 021, arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='07567 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [55] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Richard, “Generating Entangled Inflationary Quantum States,” arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00521 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [56] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Albrecht, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bolis, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Cosmological Consequences of Initial State Entanglement,” JHEP 11 (2014) 093, arXiv:1408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6859 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [57] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lello, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Boyanovsky, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Superhorizon entanglement entropy from particle decay in inflation,” JHEP 04 (2014) 055, arXiv:1305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2441 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [58] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lello, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Boyanovsky, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Entanglement entropy in particle decay,” JHEP 11 (2013) 116, arXiv:1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6110 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [59] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Garriga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sasaki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vilenkin, “Observer dependence of bubble nucleation and Schwinger pair production,” JCAP 12 (2012) 006, arXiv:1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1335 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [60] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Garriga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tanaka, “Rest frame of bubble nucleation,” JCAP 06 (2013) 034, arXiv:1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6681 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [61] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Fr¨ob, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Garriga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sasaki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tanaka, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vilenkin, “Schwinger effect in de Sitter space,” JCAP 04 (2014) 009, arXiv:1401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4137 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [62] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sato, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kodama, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sasaki, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Maeda, “Multiproduction of Universes by First Order Phase Transition of a Vacuum,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 108 (1982) 103–107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [63] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vilenkin, “The Birth of Inflationary Universes,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 27 (1983) 2848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [64] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Linde, “ETERNAL CHAOTIC INFLATION,” Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 1 (1986) 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [65] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Linde, “Eternally Existing Selfreproducing Chaotic Inflationary Universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 175 (1986) 395–400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [66] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bousso and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Polchinski, “Quantization of four form fluxes and dynamical neutralization of the cosmological constant,” JHEP 06 (2000) 006, arXiv:hep-th/0004134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [67] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Susskind, “The Anthropic landscape of string theory,” arXiv:hep-th/0302219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [68] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Maldacena, “A model with cosmological Bell inequalities,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 64 (2016) 10–23, arXiv:1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01082 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [69] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Singh, “Bell violation in the Sky,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 77 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2, (2017) 60, arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00237 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [70] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Singh, “Bell violation in primordial cosmology,” 88 Universe 3 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 1, (2017) 13, arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='09445 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [71] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Espinosa-Portal´es and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Real-space Bell inequalities in de Sitter,” JCAP 07 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 07, (2022) 037, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='03505 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [72] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ando and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Bipartite temporal Bell inequalities for two-mode squeezed states,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 102 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5, (2020) 052213, arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00458 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [73] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Obstructions to Bell CMB Experiments,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 96 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6, (2017) 063501, arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05001 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [74] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Leggett-Garg Inequalities for Squeezed States,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 94 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5, (2016) 052135, arXiv:1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01785 [quant-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [75] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “Cosmological Geometric Phase From Pure Quantum States: A study without/with having Bell’s inequality violation,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 70 (2022) 9–10, arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='06254 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [76] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, “Bell Inequality and Its Application to Cosmology,” Galaxies 5 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4, (2017) 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [77] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kanno and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Soda, “Infinite violation of Bell inequalities in inflation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 96 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8, (2017) 083501, arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='06199 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [78] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Baumann, “Inflation,” in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 523–686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' arXiv:0907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5424 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [79] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Baumann and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' McAllister, “Advances in Inflation in String Theory,” Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 59 (2009) 67–94, arXiv:0901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0265 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [80] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Baumann and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' McAllister, Inflation and String Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Cambridge Monographs on Mathematical Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Cambridge University Press, 5, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2601 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [81] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “COSMOS-e′- soft Higgsotic attractors,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 77 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7, (2017) 469, arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01750 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [82] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, “COSMOS-e’-GTachyon from string theory,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 76 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5, (2016) 278, arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05734 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [83] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “Reconstructing inflationary paradigm within Effective Field Theory framework,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Dark Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 11 (2016) 16–48, arXiv:1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00269 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [84] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Basu, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bandyopadhyay, “Quantum Gravity Effect in Torsion Driven Inflation and CP violation,” JHEP 10 (2015) 194, arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6036 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [85] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “Can Effective Field Theory of inflation generate large tensor-to-scalar ratio within Randall–Sundrum single braneworld?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=',” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 894 (2015) 29–55, arXiv:1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='7618 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [86] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mazumdar, “Reconstructing inflationary potential from BICEP2 89 and running of tensor modes,” arXiv:1403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5549 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [87] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “Constraining N = 1 supergravity inflation with non-minimal Kaehler operators using δN formalism,” JHEP 04 (2014) 105, arXiv:1402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1251 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [88] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mazumdar, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pukartas, “Constraining N = 1 supergravity inflationary framework with non-minimal K¨ahler operators,” JHEP 04 (2014) 077, arXiv:1402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1227 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [89] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mazumdar, “Primordial blackholes and gravitational waves for an inflection-point model of inflation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 733 (2014) 270–275, arXiv:1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5119 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [90] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mazumdar, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “Low & High scale MSSM inflation, gravitational waves and constraints from Planck,” JCAP 07 (2013) 041, arXiv:1305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='6398 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [91] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chakraborty, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “Higgs inflation from new K¨ahler potential,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 880 (2014) 155–174, arXiv:1305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0981 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [92] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “Primordial non-Gaussian features from DBI Galileon inflation,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 75 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6, (2015) 241, arXiv:1210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4478 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [93] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “Brane inflation: A field theory approach in background supergravity,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 405 (2012) 012009, arXiv:1209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='5883 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [94] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “DBI Galileon inflation in background SUGRA,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 874 (2013) 85–114, arXiv:1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4433 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [95] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “Fourth level MSSM inflation from new flat directions,” JCAP 04 (2012) 018, arXiv:1111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3441 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [96] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pal, “Brane inflation in background supergravity,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 85 (2012) 043529, arXiv:1102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4206 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [97] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ali, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Deshamukhya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, “Inflation with improved D3-brane potential and the fine tunings associated with the model,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 71 (2011) 1672, arXiv:1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1407 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [98] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ward, “Bounds on Tensor wave and Twisted Inflation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 82 (2010) 103511, arXiv:1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1957 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [99] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Deshamukhya and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, “Warm tachyonic inflation in warped background,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 18 (2009) 2093–2106, arXiv:0901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0471 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [100] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ali, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chingangbam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, “Prospects of inflation with perturbed throat geometry,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 674 (2009) 131–136, arXiv:0809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='4941 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [101] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tsujikawa, “Prospects of inflation in delicate D-brane cosmology,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 76 (2007) 103512, arXiv:0707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='2848 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [102] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tsujikawa, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ward, “Inflation from D3-brane motion in the background of D5-branes,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 73 (2006) 083512, arXiv:hep-th/0601037.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 90 [103] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tsujikawa, “Inflation and dark energy arising from geometrical tachyons,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 73 (2006) 023515, arXiv:hep-th/0510112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [104] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chingangbam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Deshamukhya, “Non-minimally coupled tachyonic inflation in warped string background,” JHEP 02 (2005) 052, arXiv:hep-th/0411210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [105] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ghoshal, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Jatkar, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, “Hybrid inflation and brane - anti-brane system,” JCAP 07 (2003) 009, arXiv:hep-th/0305104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [106] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mazumdar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Perez-Lorenzana, “Assisted inflation via tachyon condensation,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 614 (2001) 101–116, arXiv:hep-ph/0107058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [107] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Myrzakulov, “Cosmological relevance of scaling solutions: A recipe for quintessential inflation,” Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 54 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8, (2022) 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [108] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Agarwal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Myrzakulov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Singh, “Quintessential inflation in a thawing realization,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B 770 (2017) 200–208, arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00156 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [109] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Geng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sami, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Saridakis, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Starobinsky, “Observational constraints on successful model of quintessential Inflation,” JCAP 06 (2017) 011, arXiv:1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01329 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [110] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ando and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Power spectrum in stochastic inflation,” JCAP 04 (2021) 057, arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='02031 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [111] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pattison, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Assadullahi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Wands, “Stochastic inflation beyond slow roll,” JCAP 07 (2019) 031, arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='06300 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [112] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Hardwick, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Wands, “The decisive future of inflation,” JCAP 05 (2018) 070, arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='09491 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [113] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ringeval, “Cosmic Inflation and Model Comparison,” Comptes Rendus Physique 16 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 10, (2015) 960–968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [114] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Koyama, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Wands, “Inflation with an extra light scalar field after Planck,” JCAP 03 (2016) 024, arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='03403 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [115] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, Cosmological Inflation: Theoretical Aspects and Observational Constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' PhD thesis, Paris, Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [116] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ringeval, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Encyclopædia Inflationaris,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Dark Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 5-6 (2014) 75–235, arXiv:1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3787 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [117] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Akhtar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Goswami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Swain, “Open Quantum Entanglement: A study of two atomic system in static patch of de Sitter space,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 80 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 8, (2020) 748, arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='09929 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [118] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' McAllister, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Silverstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Westphal, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Wrase, “The Powers of Monodromy,” JHEP 09 (2014) 123, arXiv:1405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3652 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [119] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' McAllister, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Silverstein, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Westphal, “Gravity Waves and Linear Inflation from Axion Monodromy,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 82 (2010) 046003, arXiv:0808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='0706 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [120] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Silverstein and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Westphal, “Monodromy in the CMB: Gravity Waves and String 91 Inflation,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 78 (2008) 106003, arXiv:0803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='3085 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [121] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Flauger, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' McAllister, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Silverstein, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Westphal, “Drifting Oscillations in Axion Monodromy,” JCAP 10 (2017) 055, arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='1814 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [122] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Peres, “Separability criterion for density matrices,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 77 (1996) 1413–1415, arXiv:quant-ph/9604005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [123] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Horodecki, “On the necessary and sufficient conditions for separability of mixed quantum states,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' A 223 (1996) 1, arXiv:quant-ph/9605038.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [124] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Simon, “Peres-Horodecki Separability Criterion for Continuous Variable Systems,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 84 (2000) 2726–2729, arXiv:quant-ph/9909044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [125] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Fuentes-Schuller and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mann, “Alice falls into a black hole: Entanglement in non-inertial frames,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 95 (2005) 120404, arXiv:quant-ph/0410172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [126] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Martin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Non Gaussianities from Quantum Decoherence during Inflation,” JCAP 06 (2018) 037, arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05609 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [127] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sou, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Wang, “Cosmic Decoherence: Massive Fields,” JHEP 10 (2016) 072, arXiv:1608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='07909 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [128] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ezquiaga, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Garc´ıa-Bellido, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Could ”El Gordo” be hinting at primordial quantum diffusion?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=',” arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='06317 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [129] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandey, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roy, “Four-mode Squeezed States in de Sitter Space: A Study With Two Field Interacting Quantum System,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 70 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 12, (2022) 2200124, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='15815 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [130] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mukherjee, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandey, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roy, “Causality Constraint on Circuit Complexity from COSMOEFT ,” arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11468 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [131] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shirish, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Swain, “Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 104 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 6, (2021) 065002, arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13940 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [132] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Gupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mishara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Selvam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pasquino, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Singha, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Swain, “Circuit Complexity from Cosmological Islands,” Symmetry 13 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7, (2021) 1301, arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10234 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [133] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bhargava, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mishara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Selvam, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pasquino, “Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism,” SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Core 4 (2021) 026, arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='03893 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [134] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adhikari and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, “CCosmological KKrylov CComplexity,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 70 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 12, (2022) 2200126, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='14330 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [135] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Park and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Saha, “Primordial Cosmic Complexity and effects of Reheating,” arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13723 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 92 [136] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ruan, Circuit Complexity of Mixed States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' PhD thesis, Waterloo U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [137] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Di Giulio, Circuit complexity and entanglement in many-body quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' PhD thesis, SISSA, Trieste, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [138] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bhattacharyya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Das, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shajidul Haque, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Underwood, “Cosmological Complexity,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 101 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 10, (2020) 106020, arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='08664 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [139] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Zeng, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Liu, “Cosmological Complexity in K-essence,” arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='12939 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [140] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grishchuk, “Quantum effects in cosmology,” Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 10 (1993) 2449–2478, arXiv:gr-qc/9302036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [141] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Albrecht, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Ferreira, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Joyce, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Prokopec, “Inflation and squeezed quantum states,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 50 (1994) 4807–4820, arXiv:astro-ph/9303001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [142] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roy, “Krylov Complexity in Quantum Field T heory,” arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='02250 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [143] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kumar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mandal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sarkar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sarker, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Shariff, “Circuit Complexity in Z2EEFT ,” Symmetry 15 (2023) 31, arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='09759 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [144] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Gharat, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mandal, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandey, “Circuit Complexity in an interacting quenched Quantum Field Theory,” arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='03372 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [145] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Gharat, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mandal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandey, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Roy, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Sarker, “Entanglement in interacting quenched two-body coupled oscillator system,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' D 106 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 2, (2022) 025002, arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='05326 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [146] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Colas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Grain, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Vennin, “Benchmarking the cosmological master equations,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 82 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 12, (2022) 1085, arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01929 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [147] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Dey, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Gharat, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mandal, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Pandey, “Schwinger-Keldysh path integral formalism for a Quenched Quantum Inverted Oscillator,” arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='01134 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [148] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Gupta, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Swain, “QMetrology from QCosmology: Study with Entangled Two Qubit Open Quantum System in De Sitter Space,” SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Core 4 (2021) 006, arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13555 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [149] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Banerjee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chowdhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Das, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Gupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Panda, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Swain, “Indirect detection of Cosmological Constant from interacting open quantum system,” Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 443 (2022) 168941, arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='13058 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [150] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mukherjee, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chauhan, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bhattacherjee, “Quantum Out-of-Equilibrium Cosmology,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 79 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4, (2019) 320, arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='02732 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [151] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Choudhury and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Mukherjee, “Quantum randomness in the Sky,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' C 79 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 7, (2019) 554, arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='04107 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='gen-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 93 [152] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chaykov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Agarwal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bahrami, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Loop corrections in Minkowski spacetime away from equilibrium 1: Late-time resummations,” arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11288 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [153] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Chaykov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Agarwal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Bahrami, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Loop corrections in Minkowski spacetime away from equilibrium 2: Finite-time results,” arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='11289 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [154] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Burgess, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kaplanek, “Quantum Hotspots: Mean Fields, Open EFTs, Nonlocality and Decoherence Near Black Holes,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 70 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 4, (2022) 2200019, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10804 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [155] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Kaplanek, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Burgess, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, “Qubit heating near a hotspot,” JHEP 08 (2021) 132, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='10803 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' [156] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Burgess, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Holman, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' Tasinato, “Open EFTs, IR effects \\& late-time resummations: systematic corrections in stochastic inflation,” JHEP 01 (2016) 153, arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content='00169 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
+page_content=' 94' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNE4T4oBgHgl3EQfqw2j/content/2301.05203v1.pdf'}
diff --git a/gNFMT4oBgHgl3EQf2jEq/content/tmp_files/2301.12444v1.pdf.txt b/gNFMT4oBgHgl3EQf2jEq/content/tmp_files/2301.12444v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..78bcc36edd120792e18ebb40dc15fd6992abe989
--- /dev/null
+++ b/gNFMT4oBgHgl3EQf2jEq/content/tmp_files/2301.12444v1.pdf.txt
@@ -0,0 +1,688 @@
+Exploring Attention Map Reuse for Efficient
+Transformer Neural Networks
+Kyuhong Shim1[0000−0002−0123−3100], Jungwook Choi2[0000−0002−5691−4771], and
+Wonyong Sung1,2[0000−0001−8801−210X]
+1 Dept. of Electrical and Computer Engineering, Seoul National University, Korea
+skhu20@snu.ac.kr, wysung@snu.ac.kr
+2 Dept. of Electrical Engineering, Hanyang University, Korea
+choij@hanyang.ac.kr
+Abstract. Transformer-based deep neural networks have achieved great
+success in various sequence applications due to their powerful ability to
+model long-range dependency. The key module of Transformer is self-
+attention (SA) which extracts features from the entire sequence regard-
+less of the distance between positions. Although SA helps Transformer
+performs particularly well on long-range tasks, SA requires quadratic
+computation and memory complexity with the input sequence length.
+Recently, attention map reuse, which groups multiple SA layers to share
+one attention map, has been proposed and achieved significant speedup
+for speech recognition models. In this paper, we provide a comprehensive
+study on attention map reuse focusing on its ability to accelerate infer-
+ence. We compare the method with other SA compression techniques
+and conduct a breakdown analysis of its advantages for a long sequence.
+We demonstrate the effectiveness of attention map reuse by measuring
+the latency on both CPU and GPU platforms.
+Keywords: efficient transformer · attention map reuse · self attention ·
+speech recognition
+1
+Introduction
+The ability to learn long-range dependency is essential for various sequence pro-
+cessing tasks such as language modeling, machine translation, text summarizing,
+question answering, and speech recognition. Deep neural networks (DNNs) have
+been achieved great success in these complex sequence tasks over traditional
+handcrafted and rule-based techniques. DNN architectures can be characterized
+by how the feature extraction mechanism incorporates past or future informa-
+tion. For example, recurrent neural networks (RNNs) such as LSTM [10] encode
+the entire previous sequence into a single feature vector, which is beneficial for
+the compact implementation. However, it causes a loss of long-range information
+since feature representation is restricted to a single vector. In contrast, Trans-
+former [24] models directly access the entire sequence, therefore they are much
+more advantageous for long-range dependency modeling. Transformer models
+arXiv:2301.12444v1 [cs.AI] 29 Jan 2023
+
+2
+K. Shim, J. Choi, and W. Sung
+have demonstrated excellent performance over RNNs and become the universal
+choice for most sequence processing applications.
+However, Transformer models suffer from quadratic computation and mem-
+ory complexity to calculate the relationship between every pair of locations. More
+precisely, the self-attention (SA) module, one of two submodules in Transformer,
+utilizes an attention mechanism to process a sequence of length T at once. The
+attention mechanism computes the correlation between length T features by
+the matrix multiplication of the feature matrix (T × d) and its transposed form
+(d×T), where d is the feature vector dimension. This O(T 2) quadratic hardware
+cost is especially problematic when deploying Transformer in practice, especially
+when the input sequence length is very long. For example, in speech recognition
+and language modeling, the length of the input sequence is very long and long-
+range dependency is crucial for accurate prediction. Language modeling models
+usually take about 256 to 512 previous words as input to predict the next word,
+and speech recognition models often process much more frames (750 frames for
+30 seconds) to transcribe the given utterance. Although these two tasks are core
+building blocks of many applications, RNN models are still practically favor-
+able because of the heavy computational cost of the Transformer models for
+resource-limited devices such as mobile and embedded systems.
+Considering that a Transformer model is composed of multiple Transformer
+layers, and each layer consists of multiple (attention) heads that exploit different
+all-to-all relationships, the complexity increases proportionally to the number of
+SA heads (H) and SA layers (L). Various architectural modifications have been
+proposed to reduce the heavy computation of SA, where the studies can be
+mainly categorized into two groups [23]. The first group (Section 2.2) focuses
+on the output of the attention mechanism, called attention map A ∈ RT ×T ,
+whereas the second group (Section 2.3) focuses on reducing the number of L and
+H. The first group includes 1) computing only a few elements (sparsely) based
+on patterns or importance [2,5], and 2) approximating A by low-rank factoriza-
+tion, clustering, or kernelization [27,19,6]. However, the aforementioned methods
+cannot utilize the full capability of the modern parallel processing hardware such
+as graphics processing unit (GPU), digital signal processor (DSP), and neural
+processing unit (NPU) [18,13], due to their unstructured computation savings.
+For example, selectively computing a few important elements may produce a
+random-like access pattern that depends on the input. Clustering-based meth-
+ods also require additional K-means or locality-sensitive hashing to group similar
+ones for a more accurate approximation. On the other hand, the second group
+reduces the effective number of attention map computations by pruning out SA
+heads or SA layers. These approaches are much more hardware-friendly because
+the removal of a large computation block (e.g., attention head, attention layer)
+is very structured and predictable.
+Recently, attention map reuse has been proposed for various applications,
+such as language modeling [30], machine translation [28], and speech recogni-
+tion [22]. The key idea of the method is to reuse the attention map of ℓ-th layer
+Aℓ for multiple consecutive layers, (ℓ+1)-th to (ℓ+M)-th layer, therefore reduc-
+
+Exploring Attention Map Reuse for Efficient Transformers
+3
+Fig. 1. Illustration of the Transformer-based model which is a stack of L Transformer
+layers. For speech recognition, input is human speech and output is a transcribed
+sentence. Note that every frame is processed together without recurrence.
+ing the effective number of SA computation from L to L/M. This architectural
+change is highly structured and easy to implement on modern hardware plat-
+forms. Especially, for speech recognition, we showed that attention map reuse
+can be adopted without much degradation of recognition performance [22]. The
+paper discovered that the reason behind the success of this method is that SA
+blocks in successive layers perform a similar role for speech recognition and can
+be merged. However, the analysis on attention map reuse was mainly focused
+on their behaviors; not much discussion was provided on how the speedup is
+achieved in terms of the actual implementation.
+In this paper, we provide a deeper understanding of attention map reuse in
+the case of speech recognition. In Section 2, we briefly introduce Transformer
+and SA architecture and compare the previous SA compression methods with
+attention map reuse. In Section 3, we analyze the effect of each component
+of a Transformer model for speech recognition. In Section 4, we evaluate the
+latency savings of attention map reuse on various configurations and platforms.
+The results confirm that attention map reuse is a promising inference speedup
+technique for Transformer-based long-range sequence processing.
+2
+Background and Related Work
+2.1
+Transformer and Self Attention
+We briefly introduce the components of a Transformer layer. A Transformer
+layer is composed of two submodules: 1) multi-head self-attention (MHSA) and
+2) feed-forward (FF). Figure 1 illustrates the overall architecture, and Figure 2
+visualizes the internal structure of MHSA submodule. Let the input of a layer
+
+LayerNorm
+Output projection
+Feed-forward
+(FF)
+Transformer
+LayerNorm
+Feature extraction
+Multi-head Self-attention
+(MHSA)4
+K. Shim, J. Choi, and W. Sung
+Fig. 2. Illustration of the MHSA submodule. The computation flow is identical for
+each attention head.
+be a sequence of T tokens3. For the input X = {x1, x2, ...xT } where X ∈ RT ×d,
+SA for the h-th head (total H heads) starts with three linear projections as:
+Qh, Kh, Vh = XWQh,Kh,Vh + bQh,Kh,Vh
+(Qh, Kh, Vh ∈ RT ×dh)
+(1)
+where Q, K, V indicates the query, key, value, and W ∈ Rd×dh, b ∈ R1×dh are
+weight and bias parameters. dh = d/H is the feature dimension for each attention
+head. The attention map Ah for the h-th head is then computed as a scaled dot-
+product of query and key
+Ah = Softmax(QhKT
+h
+√dh
+).
+(A ∈ RT ×T )
+(2)
+After the softmax operation, each row of Ah becomes a probability distribution of
+a length T. Intuitively, the (i, j)-th element of the attention map represents how
+much j-th token contributes to i-th token. Then, the outputs of each attention
+head are concatenated and followed by another linear projection:
+SAh(X) = AhVh
+(3)
+MHSA(X) = Concat(SA1, ...SAh)WO + bO.
+(4)
+By exploiting multiple attention heads, Transformer can extract diverse rela-
+tionships between tokens in a single layer. For example, one head may focus on
+the syntactic connections while the other head focuses on specific words.
+3 We exploit the term ‘token’ as a common concept for both natural language pro-
+cessing and speech recognition. Each token represents a (sub-)word feature and a
+speech frame feature, respectively.
+
+Ah E RTxT
+Linear
+Concat
+Softmax
+Scale
+RTxdh
+TXd
+Self-Attention Head
+Kh
+Vh
+Qn
+Linear
+Linear
+LinearExploring Attention Map Reuse for Efficient Transformers
+5
+The FF submodule is a stack of two linear projections with an intermediate
+non-linear activation function:
+FF(X) =
+�
+φ(XW1 + b1)
+�
+W2 + b2
+(5)
+where W1 ∈ Rd×4d, W2 ∈ R4d×d, b1 ∈ R4d and b2 ∈ Rd are parameters, and func-
+tion φ can be ReLU, Swish, GELU, etc. Finally, the output of ℓ-th Transformer
+layer is formulated as below
+Zℓ = LN(MHSA(Xℓ) + Xℓ)
+(6)
+Xℓ+1 = LN(FF(Zℓ) + Zℓ).
+(7)
+where Z is the intermediate term and LN indicates the layer normalization [1].
+There exist a residual connection that adds each submodule’s input and output.
+As T increases, the cost of MHSA increases quadratically following O(T 2) while
+the cost of FF increases linearly. Therefore, reducing the MHSA computation is
+very important for efficient realization of Transformer models.
+2.2
+Attention Map Sparsification
+Numerous studies have proposed techniques to selectively compute elements of
+the attention map [23]. Patterned attention computation approaches, which se-
+lect elements in a fixed manner, have been introduced [5,3,2]. For example,
+Sparse Transformer [5] exploits strided pattern that only attends ℓ local po-
+sitions and positions of stride ℓ, resulting in a O(T
+√
+T) complexity. Depending
+on the pattern, these methods can be supported on modern accelerators with
+custom kernel implementation. Adaptive element selection approaches, which
+dynamically decide elements to compute, have also been studied [26,12,19]. For
+example, Reformer [12] exploits locality-sensitive hashing for clustering so that
+the attention map can be computed only within the grouped elements. However,
+these clustering-based methods require additional computation steps and the ac-
+cess positions dynamically change depending on the input. The aforementioned
+studies focus on how to reduce the cost of the attention dot product, while not
+changing the overall structure of the Transformer model.
+2.3
+Removing Attention-related Blocks
+To build an efficient SA mechanism, many studies have focused on the struc-
+tured removal of a large chunk of computation blocks. The candidate for the
+removal (pruning) can be attention heads or attention layers. For attention head
+pruning, previous studies have reported that pruning out certain attention heads
+does not affect the final performance [15,25,34]. Specifically, redundant or less
+important attention heads in SA can be pruned without degrading the per-
+formance for speech recognition [32] and auto-regressive language modeling [21].
+Similarly, layer-level pruning has also been studied [8,20,11] for natural language
+processing tasks. LayerDrop [8] randomly omits the residual connection during
+
+6
+K. Shim, J. Choi, and W. Sung
+training to make the model more robust to layer pruning. Our goal is to provide
+a comprehensive understanding on the impact of the specific structured removal
+approach, attention map reuse.
+3
+Transformer for Speech Recognition
+3.1
+Conformer Architecture
+Transformer-based models have been actively employed for state-of-the-art speech
+recognition, replacing the previous RNN-based or CNN-based models [16,33]
+thanks to their ability to extract informative features from the input utterance.
+In particular, previous works discovered that SA automatically learns to extract
+useful phonological features [29,22] during training. The input of a Transformer
+model is a sequence of audio features (frames) extracted by short-time Fourier-
+transform (STFT), and the output is a sequence of transcribed words. Because
+the input and output domains are different, the model internally performs a
+transformation that turns audio features into text features while passing through
+a stack of Transformer layers.
+Following the previous work [22], we employ Conformer [9], a variant of Trans-
+former widely used for speech recognition. Conformer consists of 4 submodules
+as illustrated in Figure 3. The main architectural difference between Conformer
+and Transformer is that Conformer includes two more submodules: an additional
+FF submodule at the front and the intermediate convolutional (Conv) submod-
+ule. Considering that speech is a continuous signal and nearby frames are highly
+dependent on each other, the convolutional module is beneficial for enhancing
+the local relationship between frames that might not be emphasized in SA. By
+utilizing both SA and Conv, Conformer achieved a state-of-the-art recognition
+performance with much fewer parameters than the Transformer-based model
+without the Conv submodule [9].
+Fig. 3. Illustration of a Conformer layer consists of 4 submodules.
+3.2
+Breakdown Analysis
+To understand the bottleneck of Transformer-based models, we analyze how
+much resource each submodule takes. We first show the parameter size of each
+component in Figure 4. We consider the Conformer-M model, which consists
+of L=16 layers of hidden dimension of d=256 and H=4 attention heads. We
+
+SA
+FF1
+Conv
+FF2
+LNExploring Attention Map Reuse for Efficient Transformers
+7
+Fig. 4. The ratio of the
+parameter size occupied by
+each
+Conformer
+submod-
+ule. The values are based on
+the Conformer-M model.
+can observe that about 66% of parameters come from the FF submodule and
+SA takes only 21% of parameters. The reason for this imbalance is that each
+FF includes 8d2 parameters (therefore, 16d2 parameters for two FFs) while SA
+has 5d2 parameters. In other words, we need to reduce the FF parameters if
+the target system does not equip enough memory space. However, the slowest
+submodule is not FF but SA.
+Fig. 5. Inference time (us) of each Conformer submodule. The order of vertical bars is
+FF, Conv, SA, and ReuseSA. Attention map reuse replaces the SA module with the
+ReuseSA module and significantly reduces the inference time. x-axis is the number of
+frames in the input sequence.
+Figure 5 presents the inference speed breakdown for different input sequence
+lengths (we will discuss ReuseSA in the next section). Note that the x-axis of
+the figure indicates the number of feature frames extracted with a 40ms stride.
+The lengths 256, 512, and 1024 can be reinterpreted to about 10, 20, and 40-
+second input audio lengths, respectively. The results are evaluated on a single
+RTX-Titan GPU, but the tendency should be similar for CPU platforms. As
+input length increases, SA requires a quadratic computation cost while FF and
+
+SA
+FF1
+21%
+33%
+Conv
+13%
+FF2
+33%8
+K. Shim, J. Choi, and W. Sung
+Fig. 6. Illustration of each attention head for attention map reuse, in case of the 4 × 4
+reuse configuration. The computed attention map Aℓ from ℓ-th layer is reused for the
+next three layers. For simplicity, other submodules are omitted.
+Conv only need linearly increasing costs. Therefore, SA takes 45% of total in-
+ference time for a 10-second input but 67% for a 30-second input. This is highly
+problematic because many speech-related tasks, such as conference transcrip-
+tion, listening comprehension, and speech-to-speech translation, often process
+much longer utterances than 30-second.
+4
+Evaluation of Attention Map Reuse
+4.1
+Attention Map Reuse
+From the observation that the behavior of SA is very similar between neighboring
+layers, attention map reuse only computes a single attention map through M
+consecutive SA layers. Figure 6 illustrates the attention reuse procedure. For
+example, if the attention map from 1st layer A1 is shared through layers 2 ∼ M,
+the SA output of those layers can be easily computed as below:
+SAi
+h(Xi) = A1
+hV i
+h,
+i ∈ {2, 3, ..., M}
+(8)
+where i is the layer index and V i
+h is the value computed from each layer. In other
+words, attention map reuse groups a set of layers that includes one original SA
+layer at the front and following M − 1 reuse SA layers. The remaining parts
+of the model, such as FF and Conv submodules, are unchanged. By omitting
+the attention map computation, the effective number of SA calculations can be
+decreased by M times. Instead of optimizing each SA mechanism, attention map
+reuse exploits the characteristic of SA and proposes a new axis for Transformer
+compression.
+
+Reuse SA
+E RTxT
+Reuse SA
+Reuse SA
+Linear
+MHSAExploring Attention Map Reuse for Efficient Transformers
+9
+Table 1. GPU Inference time (ms) of a speech recognition model with different atten-
+tion map reuse configurations. The numbers from 128 to 1024 indicate the frames in
+the input utterance. Configuration 1 × 16 represents the baseline model. Each frame
+corresponds to a 40ms stride.
+Config.
+128
+256
+384
+512
+640
+768
+896
+1024
+1 × 16
+3.32
+4.16
+7.66
+11.77
+17.11
+23.10
+30.27
+37.82
+2 × 8
+2.40
+3.38
+5.89
+8.61
+12.11
+15.87
+20.27
+24.51
+4 × 4
+1.99
+2.91
+4.92
+6.93
+9.53
+12.18
+15.28
+17.98
+8 × 2
+1.25
+2.56
+4.11
+5.75
+7.72
+10.03
+12.66
+14.63
+Table 2. CPU Inference time (ms) of a speech recognition model with different atten-
+tion map reuse configurations.
+Config.
+128
+256
+384
+512
+640
+768
+896
+1024
+1 × 16
+62.97
+82.93
+114.44
+164.48
+226.88
+364.05
+398.36
+1033.59
+2 × 8
+54.08
+70.84
+87.05
+124.01
+152.35
+255.58
+315.91
+630.30
+4 × 4
+50.24
+63.72
+77.21
+100.87
+135.63
+182.08
+231.14
+398.57
+8 × 2
+42.66
+55.20
+67.39
+96.28
+116.06
+136.54
+191.17
+281.11
+After applying attention map reuse, the query and key are not needed for
+the following SA layers and their associated parameters can be removed. To
+compensate for the reduced parameter size, previous work suggested increasing
+the hidden dimension of value [22]. We follow the same strategy, which makes
+the size of WVh from RT ×dh to RT ×2dh, and the size of WO from Rd×d to R2d×d
+(see Figure 6). The number of attention heads is preserved. Note that attention
+map reuse is not a fine-tuning approach that starts from the fully converged
+model; we train the modified model from scratch.
+4.2
+Reuse Analysis
+We analyze the effect of attention map reuse using different configurations. Ta-
+bles 1 and 2 show the inference time of different reuse configurations. The config-
+uration A×B indicates that A layers are grouped to share one attention map and
+total B groups of layers exist. The baseline is a 16-layer Conformer-M model [9],
+which can be represented as the configuration of 1×16. The results are measured
+on an RTX Titan GPU and an Intel Xeon Gold 6130 CPU. We evaluate three
+different attention map reuse configurations, 2 × 8, 4 × 4, and 8 × 2 where the
+number of attention map computations is 8, 4, and 2, respectively. Although we
+can combine different numbers of layers to form heterogeneous groups, we find
+that the number of unique attention map computations determines the total la-
+tency of the model. Note that there is a trade-off between the performance and
+the inference speed if the number of unique attention map computations is too
+small (see Section 4.3).
+
+10
+K. Shim, J. Choi, and W. Sung
+Table 3. Word error rate (%) for different attention map reuse configurations.
+Config.
+#Param (M)
+dev-clean
+dev-other
+test-clean
+test-other
+1 × 16
+25.45
+3.1
+8.3
+3.2
+8.4
+2 × 8
+24.92
+3.0
+8.2
+3.3
+8.2
+4 × 4
+24.66
+3.0
+8.2
+3.3
+8.2
+8 × 2
+24.52
+3.3
+8.8
+3.6
+8.7
+We observe a clear improvement in the inference speed for both GPU and
+CPU as more layers are grouped. For 4×4 configuration, 10-second (length 256),
+20-second (length 512) and 40-second (length 1024) utterance saves about 38%,
+41%, and 52% of the GPU inference time, respectively. The same configuration
+saves about 33%, 39%, and 61% for the CPU inference time. CPU inference time
+gain is not as good as that of GPU when the length is short but provides a higher
+benefit when the length is long. Figure 5 also demonstrates the effect of reuse
+in the case of 4 × 4. Comparing the original SA and the reuse SA, the reuse SA
+takes about 35% to 45% of the latency of the original SA.
+4.3
+Discussion
+Attention Map Reuse in Natural Language Processing Attention map
+reuse was applied for neural machine translation [28] and BERT-based language
+modeling [30]. For machine translation, the average speedup was about 1.3 times
+without considerable performance degradation [28]. The inference speedup is less
+than in speech recognition because machine translation usually considers a rela-
+tively shorter sequence length T (shorter than 50) and larger hidden dimension
+d. If d is much larger than T, the O(T 2) SA computation does not dominate the
+total inference cost, so the advantage from attention map reuse is limited. For
+the language model inference, the speedup was about 1.3 times with a marginal
+performance gain [30]. However, the work mainly focused on the 2×6 configura-
+tion because the more aggressive reuse configuration did not achieve satisfactory
+performance for GLUE downstream tasks. We conclude that the efficiency of
+attention map reuse can be maximized when 1) the expected input sequence
+length is longer than the hidden dimension, and 2) the target task is not very
+sensitive to a small attention map variation. Speech recognition well fits these
+conditions because it handles very long sequences and the frame features change
+slowly along the time axis.
+Effect on Performance In Table 3, we show the word error rate (WER)
+of attention map reuse on LibriSpeech [17] speech recognition dataset, which
+includes four evaluation data subsets4. We borrow the result from our original
+paper [22] on speech recognition to briefly show that attention map reuse can be
+4 Four LibriSpeech subsets are dev-clean, dev-other, test-clean, and test-other. The
+postfix ‘other’ means that the subset is more challenging.
+
+Exploring Attention Map Reuse for Efficient Transformers
+11
+employed without affecting the performance. In short, recognition performance
+is almost preserved for 2 × 8 and 4 × 4 configurations but not for the 8 × 2 case.
+The authors suggested that the capacity may become insufficient to internalize
+the necessary information for every layer in a group when too many layers share
+the same attention map. Note that the number of parameters is almost the same
+for configurations because we doubled the dimension of value (see Section 4.1).
+Attention Computation Reduction in Speech Recognition Many works
+have been proposed techniques to reduce the computational cost of SA, espe-
+cially for speech recognition. Local windowing is the common approach that only
+exploits a limited range of frames for attention map computation. For example,
+each frame may only consider neighboring frames (e.g., only accessing past 64
+and future 64 frames) as candidates of the attention mechanism; this approach
+decreases the complexity of SA from O(T 2) to O(TR), where R is the number
+of accessible frames. However, restricting the range often lowers the recognition
+performance over full sequence-based models [31,7]. On the other hand, several
+studies designed more efficient Transformer models for speech recognition [4,14].
+These approaches, including faster query-key dot product [14] and time-strided
+SA [4], are orthogonal to attention map reuse and can be used together.
+5
+Conclusion
+In this paper, we analyzed a recently proposed efficient SA compression method,
+named attention map reuse, for Transformer-based speech recognition. We first
+perform a detailed analysis of the inference bottleneck of the Conformer model
+used for speech processing, evaluated on a wide range of input sequence lengths.
+Our analysis provides a thorough understanding on the burden of SA when
+using Transformer in practice. Then, we demonstrate the computational savings
+from attention map reuse on GPU and CPU platforms. We claim that attention
+map reuse is a very promising method for utilizing Transformer-based models
+on modern hardware systems.
+References
+1. Ba,
+J.L.,
+Kiros,
+J.R.,
+Hinton,
+G.E.:
+Layer
+normalization.
+arXiv
+preprint
+arXiv:1607.06450 (2016)
+2. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer.
+arXiv preprint arXiv:2004.05150 (2020)
+3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
+lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
+learners. Advances in neural information processing systems 33, 1877–1901 (2020)
+4. Burchi,
+M.,
+Vielzeuf,
+V.:
+Efficient
+conformer:
+Progressive
+downsampling
+and
+grouped
+attention
+for
+automatic
+speech
+recognition.
+arXiv
+preprint
+arXiv:2109.01163 (2021)
+
+12
+K. Shim, J. Choi, and W. Sung
+5. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with
+sparse transformers. arXiv preprint arXiv:1904.10509 (2019)
+6. Choromanski, K.M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T.,
+Hawkins, P., Davis, J.Q., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention
+with performers. In: International Conference on Learning Representations (2021)
+7. Doutre, T., Han, W., Chiu, C.C., Pang, R., Siohan, O., Cao, L.: Bridging the
+Gap Between Streaming and Non-Streaming ASR Systems by Distilling Ensembles
+of CTC and RNN-T Models. In: Proc. Interspeech 2021. pp. 1807–1811 (2021).
+https://doi.org/10.21437/Interspeech.2021-637
+8. Fan, A., Grave, E., Joulin, A.: Reducing transformer depth on demand with struc-
+tured dropout. In: International Conference on Learning Representations (2019)
+9. Gulati, A., Qin, J., Chiu, C.C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S.,
+Zhang, Z., Wu, Y., Pang, R.: Conformer: Convolution-augmented transformer for
+speech recognition. In: Proc. Interspeech 2020. pp. 5036–5040 (2020)
+10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
+9(8), 1735–1780 (1997)
+11. Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., Liu, Q.: Dynabert: Dynamic
+bert with adaptive width and depth. Advances in Neural Information Processing
+Systems 33, 9782–9793 (2020)
+12. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer. In: In-
+ternational Conference on Learning Representations (2019)
+13. Li, B., Kong, Z., Zhang, T., Li, J., Li, Z., Liu, H., Ding, C.: Efficient transformer-
+based large scale language representations using hardware-friendly block structured
+pruning. In: Findings of the Association for Computational Linguistics: EMNLP
+2020. pp. 3187–3199 (2020)
+14. Luo, H., Zhang, S., Lei, M., Xie, L.: Simplified self-attention for transformer-based
+end-to-end speech recognition. In: 2021 IEEE Spoken Language Technology Work-
+shop (SLT). pp. 75–81. IEEE (2021)
+15. Michel, P., Levy, O., Neubig, G.: Are sixteen heads really better than one? Ad-
+vances in Neural Information Processing Systems 32, 14014–14024 (2019)
+16. Ng, E.G., Chiu, C.C., Zhang, Y., Chan, W.: Pushing the limits of non-
+autoregressive speech recognition. arXiv preprint arXiv:2104.03416 (2021)
+17. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an asr corpus
+based on public domain audio books. In: 2015 IEEE international conference on
+acoustics, speech and signal processing (ICASSP). pp. 5206–5210. IEEE (2015)
+18. Qi, P., Sha, E.H.M., Zhuge, Q., Peng, H., Huang, S., Kong, Z., Song, Y., Li, B.:
+Accelerating framework of transformer by hardware design and model compres-
+sion co-optimization. In: 2021 IEEE/ACM International Conference On Computer
+Aided Design (ICCAD). pp. 1–9. IEEE (2021)
+19. Roy, A., Saffar, M., Vaswani, A., Grangier, D.: Efficient content-based sparse atten-
+tion with routing transformers. Transactions of the Association for Computational
+Linguistics 9, 53–68 (2021)
+20. Sajjad, H., Dalvi, F., Durrani, N., Nakov, P.: Poor man’s bert: Smaller and faster
+transformer models. arXiv preprint arXiv:2004.03844 (2020)
+21. Shim, K., Choi, I., Sung, W., Choi, J.: Layer-wise pruning of transformer atten-
+tion heads for efficient language modeling. In: 2021 18th International SoC Design
+Conference (ISOCC). pp. 357–358. IEEE (2021)
+22. Shim, K., Choi, J., Sung, W.: Understanding the role of self attention for effi-
+cient speech recognition. In: International Conference on Learning Representations
+(2022)
+
+Exploring Attention Map Reuse for Efficient Transformers
+13
+23. Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: A survey.
+arXiv preprint arXiv:2009.06732 (2020)
+24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
+Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
+cessing systems 30 (2017)
+25. Voita, E., Talbot, D., Moiseev, F., Sennrich, R., Titov, I.: Analyzing multi-head
+self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In:
+Proceedings of the 57th Annual Meeting of the Association for Computational
+Linguistics. pp. 5797–5808 (2019)
+26. Vyas, A., Katharopoulos, A., Fleuret, F.: Fast transformers with clustered atten-
+tion. Advances in Neural Information Processing Systems 33, 21665–21674 (2020)
+27. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with
+linear complexity. arXiv preprint arXiv:2006.04768 (2020)
+28. Xiao, T., Li, Y., Zhu, J., Yu, Z., Liu, T.: Sharing attention weights for fast trans-
+former. In: Proceedings of the Twenty-Eighth International Joint Conference on
+Artificial Intelligence (IJCAI-19) (2019)
+29. Yang, S., Liu, A.T., yi Lee, H.: Understanding self-attention of self-supervised
+audio transformers. In: Proc. Interspeech 2020. pp. 3785–3789 (2020). https://
+doi.org/10.21437/Interspeech.2020-2231
+30. Ying, C., Ke, G., He, D., Liu, T.Y.: Lazyformer: Self attention with lazy update.
+arXiv preprint arXiv:2102.12702 (2021)
+31. Yu, J., Han, W., Gulati, A., Chiu, C.C., Li, B., Sainath, T.N., Wu, Y., Pang, R.:
+Dual-mode asr: Unify and improve streaming asr with full-context modeling. In:
+International Conference on Learning Representations (2021)
+32. Zhang, S., Loweimi, E., Bell, P., Renals, S.: Stochastic attention head removal: A
+simple and effective method for improving transformer based asr models. arXiv
+preprint arXiv:2011.04004 (2020)
+33. Zhang, Y., Qin, J., Park, D.S., Han, W., Chiu, C.C., Pang, R., Le, Q.V., Wu, Y.:
+Pushing the limits of semi-supervised learning for automatic speech recognition.
+arXiv preprint arXiv:2010.10504 (2020)
+34. Zhang, Z., Qi, F., Liu, Z., Liu, Q., Sun, M.: Know what you don’t need: Single-shot
+meta-pruning for attention heads. AI Open 2, 36–42 (2021)
+
diff --git a/gNFMT4oBgHgl3EQf2jEq/content/tmp_files/load_file.txt b/gNFMT4oBgHgl3EQf2jEq/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..255f1df28af8cede86ad426b5e63062aee2a4eab
--- /dev/null
+++ b/gNFMT4oBgHgl3EQf2jEq/content/tmp_files/load_file.txt
@@ -0,0 +1,638 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf,len=637
+page_content='Exploring Attention Map Reuse for Efficient Transformer Neural Networks Kyuhong Shim1[0000−0002−0123−3100], Jungwook Choi2[0000−0002−5691−4771], and Wonyong Sung1,2[0000−0001−8801−210X] 1 Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' of Electrical and Computer Engineering, Seoul National University, Korea skhu20@snu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='kr, wysung@snu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='kr 2 Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' of Electrical Engineering, Hanyang University, Korea choij@hanyang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='kr Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Transformer-based deep neural networks have achieved great success in various sequence applications due to their powerful ability to model long-range dependency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The key module of Transformer is self- attention (SA) which extracts features from the entire sequence regard- less of the distance between positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Although SA helps Transformer performs particularly well on long-range tasks, SA requires quadratic computation and memory complexity with the input sequence length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Recently, attention map reuse, which groups multiple SA layers to share one attention map, has been proposed and achieved significant speedup for speech recognition models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In this paper, we provide a comprehensive study on attention map reuse focusing on its ability to accelerate infer- ence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We compare the method with other SA compression techniques and conduct a breakdown analysis of its advantages for a long sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We demonstrate the effectiveness of attention map reuse by measuring the latency on both CPU and GPU platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Keywords: efficient transformer · attention map reuse · self attention · speech recognition 1 Introduction The ability to learn long-range dependency is essential for various sequence pro- cessing tasks such as language modeling, machine translation, text summarizing, question answering, and speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Deep neural networks (DNNs) have been achieved great success in these complex sequence tasks over traditional handcrafted and rule-based techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' DNN architectures can be characterized by how the feature extraction mechanism incorporates past or future informa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, recurrent neural networks (RNNs) such as LSTM [10] encode the entire previous sequence into a single feature vector, which is beneficial for the compact implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, it causes a loss of long-range information since feature representation is restricted to a single vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In contrast, Trans- former [24] models directly access the entire sequence, therefore they are much more advantageous for long-range dependency modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Transformer models arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='12444v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='AI] 29 Jan 2023 2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sung have demonstrated excellent performance over RNNs and become the universal choice for most sequence processing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, Transformer models suffer from quadratic computation and mem- ory complexity to calculate the relationship between every pair of locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' More precisely, the self-attention (SA) module, one of two submodules in Transformer, utilizes an attention mechanism to process a sequence of length T at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The attention mechanism computes the correlation between length T features by the matrix multiplication of the feature matrix (T × d) and its transposed form (d×T), where d is the feature vector dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' This O(T 2) quadratic hardware cost is especially problematic when deploying Transformer in practice, especially when the input sequence length is very long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, in speech recognition and language modeling, the length of the input sequence is very long and long- range dependency is crucial for accurate prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Language modeling models usually take about 256 to 512 previous words as input to predict the next word, and speech recognition models often process much more frames (750 frames for 30 seconds) to transcribe the given utterance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Although these two tasks are core building blocks of many applications, RNN models are still practically favor- able because of the heavy computational cost of the Transformer models for resource-limited devices such as mobile and embedded systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Considering that a Transformer model is composed of multiple Transformer layers, and each layer consists of multiple (attention) heads that exploit different all-to-all relationships, the complexity increases proportionally to the number of SA heads (H) and SA layers (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Various architectural modifications have been proposed to reduce the heavy computation of SA, where the studies can be mainly categorized into two groups [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The first group (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2) focuses on the output of the attention mechanism, called attention map A ∈ RT ×T , whereas the second group (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3) focuses on reducing the number of L and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The first group includes 1) computing only a few elements (sparsely) based on patterns or importance [2,5], and 2) approximating A by low-rank factoriza- tion, clustering, or kernelization [27,19,6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, the aforementioned methods cannot utilize the full capability of the modern parallel processing hardware such as graphics processing unit (GPU), digital signal processor (DSP), and neural processing unit (NPU) [18,13], due to their unstructured computation savings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, selectively computing a few important elements may produce a random-like access pattern that depends on the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Clustering-based meth- ods also require additional K-means or locality-sensitive hashing to group similar ones for a more accurate approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' On the other hand, the second group reduces the effective number of attention map computations by pruning out SA heads or SA layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' These approaches are much more hardware-friendly because the removal of a large computation block (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', attention head, attention layer) is very structured and predictable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Recently, attention map reuse has been proposed for various applications, such as language modeling [30], machine translation [28], and speech recogni- tion [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The key idea of the method is to reuse the attention map of ℓ-th layer Aℓ for multiple consecutive layers, (ℓ+1)-th to (ℓ+M)-th layer, therefore reduc- Exploring Attention Map Reuse for Efficient Transformers 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Illustration of the Transformer-based model which is a stack of L Transformer layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For speech recognition, input is human speech and output is a transcribed sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Note that every frame is processed together without recurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' ing the effective number of SA computation from L to L/M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' This architectural change is highly structured and easy to implement on modern hardware plat- forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Especially, for speech recognition, we showed that attention map reuse can be adopted without much degradation of recognition performance [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The paper discovered that the reason behind the success of this method is that SA blocks in successive layers perform a similar role for speech recognition and can be merged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, the analysis on attention map reuse was mainly focused on their behaviors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' not much discussion was provided on how the speedup is achieved in terms of the actual implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In this paper, we provide a deeper understanding of attention map reuse in the case of speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In Section 2, we briefly introduce Transformer and SA architecture and compare the previous SA compression methods with attention map reuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In Section 3, we analyze the effect of each component of a Transformer model for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In Section 4, we evaluate the latency savings of attention map reuse on various configurations and platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The results confirm that attention map reuse is a promising inference speedup technique for Transformer-based long-range sequence processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 2 Background and Related Work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='1 Transformer and Self Attention We briefly introduce the components of a Transformer layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' A Transformer layer is composed of two submodules: 1) multi-head self-attention (MHSA) and 2) feed-forward (FF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Figure 1 illustrates the overall architecture, and Figure 2 visualizes the internal structure of MHSA submodule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Let the input of a layer LayerNorm Output projection Feed-forward (FF) Transformer LayerNorm Feature extraction Multi-head Self-attention (MHSA)4 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sung Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Illustration of the MHSA submodule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The computation flow is identical for each attention head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' be a sequence of T tokens3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For the input X = {x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='xT } where X ∈ RT ×d, SA for the h-th head (total H heads) starts with three linear projections as: Qh, Kh, Vh = XWQh,Kh,Vh + bQh,Kh,Vh (Qh, Kh, Vh ∈ RT ×dh) (1) where Q, K, V indicates the query, key, value, and W ∈ Rd×dh, b ∈ R1×dh are weight and bias parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' dh = d/H is the feature dimension for each attention head.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The attention map Ah for the h-th head is then computed as a scaled dot- product of query and key Ah = Softmax(QhKT h √dh ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' (A ∈ RT ×T ) (2) After the softmax operation, each row of Ah becomes a probability distribution of a length T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Intuitively, the (i, j)-th element of the attention map represents how much j-th token contributes to i-th token.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Then, the outputs of each attention head are concatenated and followed by another linear projection: SAh(X) = AhVh (3) MHSA(X) = Concat(SA1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='SAh)WO + bO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' (4) By exploiting multiple attention heads, Transformer can extract diverse rela- tionships between tokens in a single layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, one head may focus on the syntactic connections while the other head focuses on specific words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 3 We exploit the term ‘token’ as a common concept for both natural language pro- cessing and speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Each token represents a (sub-)word feature and a speech frame feature, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Ah E RTxT Linear Concat Softmax Scale RTxdh TXd Self-Attention Head Kh Vh Qn Linear Linear LinearExploring Attention Map Reuse for Efficient Transformers 5 The FF submodule is a stack of two linear projections with an intermediate non-linear activation function: FF(X) = � φ(XW1 + b1) � W2 + b2 (5) where W1 ∈ Rd×4d, W2 ∈ R4d×d, b1 ∈ R4d and b2 ∈ Rd are parameters, and func- tion φ can be ReLU, Swish, GELU, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Finally, the output of ℓ-th Transformer layer is formulated as below Zℓ = LN(MHSA(Xℓ) + Xℓ) (6) Xℓ+1 = LN(FF(Zℓ) + Zℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' (7) where Z is the intermediate term and LN indicates the layer normalization [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' There exist a residual connection that adds each submodule’s input and output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' As T increases, the cost of MHSA increases quadratically following O(T 2) while the cost of FF increases linearly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Therefore, reducing the MHSA computation is very important for efficient realization of Transformer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 Attention Map Sparsification Numerous studies have proposed techniques to selectively compute elements of the attention map [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Patterned attention computation approaches, which se- lect elements in a fixed manner, have been introduced [5,3,2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, Sparse Transformer [5] exploits strided pattern that only attends ℓ local po- sitions and positions of stride ℓ, resulting in a O(T √ T) complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Depending on the pattern, these methods can be supported on modern accelerators with custom kernel implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Adaptive element selection approaches, which dynamically decide elements to compute, have also been studied [26,12,19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, Reformer [12] exploits locality-sensitive hashing for clustering so that the attention map can be computed only within the grouped elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, these clustering-based methods require additional computation steps and the ac- cess positions dynamically change depending on the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The aforementioned studies focus on how to reduce the cost of the attention dot product, while not changing the overall structure of the Transformer model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 Removing Attention-related Blocks To build an efficient SA mechanism, many studies have focused on the struc- tured removal of a large chunk of computation blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The candidate for the removal (pruning) can be attention heads or attention layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For attention head pruning, previous studies have reported that pruning out certain attention heads does not affect the final performance [15,25,34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Specifically, redundant or less important attention heads in SA can be pruned without degrading the per- formance for speech recognition [32] and auto-regressive language modeling [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Similarly, layer-level pruning has also been studied [8,20,11] for natural language processing tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' LayerDrop [8] randomly omits the residual connection during 6 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sung training to make the model more robust to layer pruning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Our goal is to provide a comprehensive understanding on the impact of the specific structured removal approach, attention map reuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 3 Transformer for Speech Recognition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='1 Conformer Architecture Transformer-based models have been actively employed for state-of-the-art speech recognition, replacing the previous RNN-based or CNN-based models [16,33] thanks to their ability to extract informative features from the input utterance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In particular, previous works discovered that SA automatically learns to extract useful phonological features [29,22] during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The input of a Transformer model is a sequence of audio features (frames) extracted by short-time Fourier- transform (STFT), and the output is a sequence of transcribed words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Because the input and output domains are different, the model internally performs a transformation that turns audio features into text features while passing through a stack of Transformer layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Following the previous work [22], we employ Conformer [9], a variant of Trans- former widely used for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Conformer consists of 4 submodules as illustrated in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The main architectural difference between Conformer and Transformer is that Conformer includes two more submodules: an additional FF submodule at the front and the intermediate convolutional (Conv) submod- ule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Considering that speech is a continuous signal and nearby frames are highly dependent on each other, the convolutional module is beneficial for enhancing the local relationship between frames that might not be emphasized in SA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' By utilizing both SA and Conv, Conformer achieved a state-of-the-art recognition performance with much fewer parameters than the Transformer-based model without the Conv submodule [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Illustration of a Conformer layer consists of 4 submodules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 Breakdown Analysis To understand the bottleneck of Transformer-based models, we analyze how much resource each submodule takes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We first show the parameter size of each component in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We consider the Conformer-M model, which consists of L=16 layers of hidden dimension of d=256 and H=4 attention heads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We SA FF1 Conv FF2 LNExploring Attention Map Reuse for Efficient Transformers 7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The ratio of the parameter size occupied by each Conformer submod- ule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The values are based on the Conformer-M model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' can observe that about 66% of parameters come from the FF submodule and SA takes only 21% of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The reason for this imbalance is that each FF includes 8d2 parameters (therefore, 16d2 parameters for two FFs) while SA has 5d2 parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In other words, we need to reduce the FF parameters if the target system does not equip enough memory space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, the slowest submodule is not FF but SA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Inference time (us) of each Conformer submodule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The order of vertical bars is FF, Conv, SA, and ReuseSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Attention map reuse replaces the SA module with the ReuseSA module and significantly reduces the inference time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' x-axis is the number of frames in the input sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Figure 5 presents the inference speed breakdown for different input sequence lengths (we will discuss ReuseSA in the next section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Note that the x-axis of the figure indicates the number of feature frames extracted with a 40ms stride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The lengths 256, 512, and 1024 can be reinterpreted to about 10, 20, and 40- second input audio lengths, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The results are evaluated on a single RTX-Titan GPU, but the tendency should be similar for CPU platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' As input length increases, SA requires a quadratic computation cost while FF and SA FF1 21% 33% Conv 13% FF2 33%8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sung Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Illustration of each attention head for attention map reuse, in case of the 4 × 4 reuse configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The computed attention map Aℓ from ℓ-th layer is reused for the next three layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For simplicity, other submodules are omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Conv only need linearly increasing costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Therefore, SA takes 45% of total in- ference time for a 10-second input but 67% for a 30-second input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' This is highly problematic because many speech-related tasks, such as conference transcrip- tion, listening comprehension, and speech-to-speech translation, often process much longer utterances than 30-second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 4 Evaluation of Attention Map Reuse 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='1 Attention Map Reuse From the observation that the behavior of SA is very similar between neighboring layers, attention map reuse only computes a single attention map through M consecutive SA layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Figure 6 illustrates the attention reuse procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, if the attention map from 1st layer A1 is shared through layers 2 ∼ M, the SA output of those layers can be easily computed as below: SAi h(Xi) = A1 hV i h, i ∈ {2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', M} (8) where i is the layer index and V i h is the value computed from each layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In other words, attention map reuse groups a set of layers that includes one original SA layer at the front and following M − 1 reuse SA layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The remaining parts of the model, such as FF and Conv submodules, are unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' By omitting the attention map computation, the effective number of SA calculations can be decreased by M times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Instead of optimizing each SA mechanism, attention map reuse exploits the characteristic of SA and proposes a new axis for Transformer compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Reuse SA E RTxT Reuse SA Reuse SA Linear MHSAExploring Attention Map Reuse for Efficient Transformers 9 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' GPU Inference time (ms) of a speech recognition model with different atten- tion map reuse configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The numbers from 128 to 1024 indicate the frames in the input utterance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Configuration 1 × 16 represents the baseline model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Each frame corresponds to a 40ms stride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 128 256 384 512 640 768 896 1024 1 × 16 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='16 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='66 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='77 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='11 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='10 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='27 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='82 2 × 8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='89 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='61 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='11 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='87 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='27 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='51 4 × 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='99 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='91 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='92 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='93 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='53 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='18 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='28 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='98 8 × 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='56 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='11 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='72 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='03 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='66 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='63 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' CPU Inference time (ms) of a speech recognition model with different atten- tion map reuse configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 128 256 384 512 640 768 896 1024 1 × 16 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='97 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='93 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='44 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='48 226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='88 364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='05 398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='36 1033.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='59 2 × 8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='08 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='84 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='05 124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='01 152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='35 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='58 315.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='91 630.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='30 4 × 4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='24 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='72 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='21 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='87 135.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='63 182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='08 231.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='14 398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='57 8 × 2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='66 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='20 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='39 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='28 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='06 136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='54 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='17 281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='11 After applying attention map reuse, the query and key are not needed for the following SA layers and their associated parameters can be removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' To compensate for the reduced parameter size, previous work suggested increasing the hidden dimension of value [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We follow the same strategy, which makes the size of WVh from RT ×dh to RT ×2dh, and the size of WO from Rd×d to R2d×d (see Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The number of attention heads is preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Note that attention map reuse is not a fine-tuning approach that starts from the fully converged model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' we train the modified model from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 Reuse Analysis We analyze the effect of attention map reuse using different configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Ta- bles 1 and 2 show the inference time of different reuse configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The config- uration A×B indicates that A layers are grouped to share one attention map and total B groups of layers exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The baseline is a 16-layer Conformer-M model [9], which can be represented as the configuration of 1×16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The results are measured on an RTX Titan GPU and an Intel Xeon Gold 6130 CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We evaluate three different attention map reuse configurations, 2 × 8, 4 × 4, and 8 × 2 where the number of attention map computations is 8, 4, and 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Although we can combine different numbers of layers to form heterogeneous groups, we find that the number of unique attention map computations determines the total la- tency of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Note that there is a trade-off between the performance and the inference speed if the number of unique attention map computations is too small (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 10 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sung Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Word error rate (%) for different attention map reuse configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' #Param (M) dev-clean dev-other test-clean test-other 1 × 16 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='45 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='4 2 × 8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='92 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 4 × 4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2 8 × 2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='52 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='7 We observe a clear improvement in the inference speed for both GPU and CPU as more layers are grouped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For 4×4 configuration, 10-second (length 256), 20-second (length 512) and 40-second (length 1024) utterance saves about 38%, 41%, and 52% of the GPU inference time, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The same configuration saves about 33%, 39%, and 61% for the CPU inference time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' CPU inference time gain is not as good as that of GPU when the length is short but provides a higher benefit when the length is long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Figure 5 also demonstrates the effect of reuse in the case of 4 × 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Comparing the original SA and the reuse SA, the reuse SA takes about 35% to 45% of the latency of the original SA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 Discussion Attention Map Reuse in Natural Language Processing Attention map reuse was applied for neural machine translation [28] and BERT-based language modeling [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For machine translation, the average speedup was about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 times without considerable performance degradation [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The inference speedup is less than in speech recognition because machine translation usually considers a rela- tively shorter sequence length T (shorter than 50) and larger hidden dimension d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' If d is much larger than T, the O(T 2) SA computation does not dominate the total inference cost, so the advantage from attention map reuse is limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For the language model inference, the speedup was about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='3 times with a marginal performance gain [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, the work mainly focused on the 2×6 configura- tion because the more aggressive reuse configuration did not achieve satisfactory performance for GLUE downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We conclude that the efficiency of attention map reuse can be maximized when 1) the expected input sequence length is longer than the hidden dimension, and 2) the target task is not very sensitive to a small attention map variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Speech recognition well fits these conditions because it handles very long sequences and the frame features change slowly along the time axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Effect on Performance In Table 3, we show the word error rate (WER) of attention map reuse on LibriSpeech [17] speech recognition dataset, which includes four evaluation data subsets4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We borrow the result from our original paper [22] on speech recognition to briefly show that attention map reuse can be 4 Four LibriSpeech subsets are dev-clean, dev-other, test-clean, and test-other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The postfix ‘other’ means that the subset is more challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Exploring Attention Map Reuse for Efficient Transformers 11 employed without affecting the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In short, recognition performance is almost preserved for 2 × 8 and 4 × 4 configurations but not for the 8 × 2 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' The authors suggested that the capacity may become insufficient to internalize the necessary information for every layer in a group when too many layers share the same attention map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Note that the number of parameters is almost the same for configurations because we doubled the dimension of value (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Attention Computation Reduction in Speech Recognition Many works have been proposed techniques to reduce the computational cost of SA, espe- cially for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Local windowing is the common approach that only exploits a limited range of frames for attention map computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' For example, each frame may only consider neighboring frames (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', only accessing past 64 and future 64 frames) as candidates of the attention mechanism;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' this approach decreases the complexity of SA from O(T 2) to O(TR), where R is the number of accessible frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' However, restricting the range often lowers the recognition performance over full sequence-based models [31,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' On the other hand, several studies designed more efficient Transformer models for speech recognition [4,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' These approaches, including faster query-key dot product [14] and time-strided SA [4], are orthogonal to attention map reuse and can be used together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 5 Conclusion In this paper, we analyzed a recently proposed efficient SA compression method, named attention map reuse, for Transformer-based speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We first perform a detailed analysis of the inference bottleneck of the Conformer model used for speech processing, evaluated on a wide range of input sequence lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Our analysis provides a thorough understanding on the burden of SA when using Transformer in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Then, we demonstrate the computational savings from attention map reuse on GPU and CPU platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' We claim that attention map reuse is a very promising method for utilizing Transformer-based models on modern hardware systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Ba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kiros, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' : Layer normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='06450 (2016) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Beltagy, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Peters, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Cohan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Longformer: The long-document transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='05150 (2020) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Mann, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Ryder, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Subbiah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kaplan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Dhariwal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Nee- lakantan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Shyam, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sastry, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Askell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' : Language models are few-shot learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Advances in neural information processing systems 33, 1877–1901 (2020) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Burchi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Vielzeuf, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Efficient conformer: Progressive downsampling and grouped attention for automatic speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='01163 (2021) 12 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sung 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Child, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Gray, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Radford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Generating long sequences with sparse transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='10509 (2019) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Choromanski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Likhosherstov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Dohan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Song, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Gane, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sarlos, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Hawkins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Mohiuddin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kaiser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' : Rethinking attention with performers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: International Conference on Learning Representations (2021) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Doutre, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chiu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Pang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Siohan, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Cao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Bridging the Gap Between Streaming and Non-Streaming ASR Systems by Distilling Ensembles of CTC and RNN-T Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Interspeech 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 1807–1811 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='21437/Interspeech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2021-637 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Fan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Grave, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Joulin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Reducing transformer depth on demand with struc- tured dropout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: International Conference on Learning Representations (2019) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Gulati, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Qin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chiu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Pang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Conformer: Convolution-augmented transformer for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Interspeech 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 5036–5040 (2020) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Hochreiter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Schmidhuber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Long short-term memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Neural computation 9(8), 1735–1780 (1997) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Hou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Shang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Jiang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Dynabert: Dynamic bert with adaptive width and depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems 33, 9782–9793 (2020) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Kitaev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kaiser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Levskaya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Reformer: The efficient transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: In- ternational Conference on Learning Representations (2019) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Ding, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Efficient transformer- based large scale language representations using hardware-friendly block structured pruning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: Findings of the Association for Computational Linguistics: EMNLP 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 3187–3199 (2020) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Luo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Lei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Xie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Simplified self-attention for transformer-based end-to-end speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: 2021 IEEE Spoken Language Technology Work- shop (SLT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 75–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' IEEE (2021) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Michel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Neubig, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Are sixteen heads really better than one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Ad- vances in Neural Information Processing Systems 32, 14014–14024 (2019) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Ng, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chiu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Pushing the limits of non- autoregressive speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='03416 (2021) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Panayotov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Povey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Khudanpur, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Librispeech: an asr corpus based on public domain audio books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 5206–5210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' IEEE (2015) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Qi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sha, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhuge, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Peng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Accelerating framework of transformer by hardware design and model compres- sion co-optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' IEEE (2021) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Roy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Saffar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Grangier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Efficient content-based sparse atten- tion with routing transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Transactions of the Association for Computational Linguistics 9, 53–68 (2021) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Sajjad, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Dalvi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Durrani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Poor man’s bert: Smaller and faster transformer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='03844 (2020) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Choi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sung, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Layer-wise pruning of transformer atten- tion heads for efficient language modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: 2021 18th International SoC Design Conference (ISOCC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 357–358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' IEEE (2021) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Shim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sung, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Understanding the role of self attention for effi- cient speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: International Conference on Learning Representations (2022) Exploring Attention Map Reuse for Efficient Transformers 13 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Tay, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Dehghani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Bahri, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Metzler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Efficient transformers: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='06732 (2020) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Vaswani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Parmar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Uszkoreit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Jones, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Gomez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Kaiser, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Polosukhin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Advances in neural information pro- cessing systems 30 (2017) 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Voita, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Talbot, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Moiseev, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sennrich, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Titov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 5797–5808 (2019) 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Vyas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Katharopoulos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Fleuret, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Fast transformers with clustered atten- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Advances in Neural Information Processing Systems 33, 21665–21674 (2020) 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Khabsa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Fang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Ma, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Linformer: Self-attention with linear complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='04768 (2020) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Xiao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Yu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Sharing attention weights for fast trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) (2019) 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', yi Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Understanding self-attention of self-supervised audio transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Interspeech 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' 3785–3789 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' https:// doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='21437/Interspeech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='2020-2231 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Ying, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Ke, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', He, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' : Lazyformer: Self attention with lazy update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='12702 (2021) 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Gulati, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chiu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sainath, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Pang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Dual-mode asr: Unify and improve streaming asr with full-context modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' In: International Conference on Learning Representations (2021) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Loweimi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Bell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Renals, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Stochastic attention head removal: A simple and effective method for improving transformer based asr models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='04004 (2020) 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Qin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Park, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Chiu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Pang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Le, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Pushing the limits of semi-supervised learning for automatic speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content='10504 (2020) 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Qi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=', Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=': Know what you don’t need: Single-shot meta-pruning for attention heads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
+page_content=' AI Open 2, 36–42 (2021)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gNFMT4oBgHgl3EQf2jEq/content/2301.12444v1.pdf'}
diff --git a/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf b/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..97dfe75804ffe5a62c461eccb4ca2df55ee033bc
--- /dev/null
+++ b/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5e75b4ff312cdbb6c95932ffb41ee184c7b488aee9c22619c6b58126f51693b5
+size 4818696
diff --git a/gdE1T4oBgHgl3EQffAR-/vector_store/index.pkl b/gdE1T4oBgHgl3EQffAR-/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..67625da6c8515822d44c004023edcffaa3068d0a
--- /dev/null
+++ b/gdE1T4oBgHgl3EQffAR-/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4270e55471b37be119d356d33cf85ca4d6c1d95632cd9eac6eaf12cab65246f3
+size 134822
diff --git a/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf b/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..e49b06ad0a35385a796bb5adf03a6e4aaa78031a
--- /dev/null
+++ b/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6cf96453fb1b2c4f1797dfa269cff4a3a21cdc24cf2a2b2cb82c4661361df3c7
+size 311847
diff --git a/hNE_T4oBgHgl3EQf3Rzj/vector_store/index.pkl b/hNE_T4oBgHgl3EQf3Rzj/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..e39087d78c5b63a956a01527fbe2118b0ea7328f
--- /dev/null
+++ b/hNE_T4oBgHgl3EQf3Rzj/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e0140e0c95512a31d4598d96396d41b5d7172dabb17da4a036367b4d3e61bd55
+size 148927
diff --git a/idFAT4oBgHgl3EQfZx1V/content/tmp_files/2301.08547v1.pdf.txt b/idFAT4oBgHgl3EQfZx1V/content/tmp_files/2301.08547v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d5b496d1face345eb1ed5dc3e1dd60b34006bc18
--- /dev/null
+++ b/idFAT4oBgHgl3EQfZx1V/content/tmp_files/2301.08547v1.pdf.txt
@@ -0,0 +1,550 @@
+arXiv:2301.08547v1 [math.PR] 20 Jan 2023
+Infinite collision property for the three-dimensional
+uniform spanning tree
+Satomi Watanabe
+Department of Advanced Mathematical Sciences
+Graduate School of Informatics
+Kyoto University
+Abstract
+Let U be the uniform spanning tree on Z3, whose probability law is denoted by P. It is
+proved in [5] that for P-a.s. realization of U, the simple random walk on U is recurrent. In this
+article, we will prove that for P-a.s. realization of U, two independent simple random walks on U
+collide infinitely often, which is another example of random graphs with this property discovered
+in [4].
+1
+Introduction
+The aim of this article is to investigate the collision property of two independent simple random
+walks on the three-dimensional uniform spanning tree. Let us first begin with the introduction of
+uniform spanning forests on Zd. If Gn is a sequence of finite subgraphs which exhausts Zd, then it
+is proved by Pemantle [12] that the sequence of the uniform spanning measures on Gn converges
+weakly to a probability measure which is supported on spanning forests of Zd. Pemantle [12] also
+showed that the uniform spanning forest is a single tree almost-surely, which is called the uniform
+spanning tree on Zd, for d ≤ 4, while it is not a tree but a spanning forest with infinitely many
+connected components when d ≥ 5. Since their introduction, study of uniform spanning forests has
+played an important role in the progress of probability theory, because of its connection to various
+probabilistic models, see [5] for details.
+The behavior of random walks on the uniform spanning forests on Zd is heavily affected by
+geometric and spectral properties of the forests, depending on the dimension d. In particular, it
+is proved that the random walk exhibits mean-field behavior for d ≥ 4, with precise logarithmic
+corrections in d = 4 [6,7]. On the other hand, different exponents appear in the asymptotic behavior
+of several quantities such as transition density and mean-square displacement of the random walk
+for d ≤ 3 [1,3]. This is already confirmed at least for d = 2 and it is strongly believed that this is the
+case in three dimensions. Further detailed estimates on the random walk in the uniform spanning
+tree have been established for d = 2 [2] and d = 3 [15].
+In this article, we will prove that two independent random walks on the three-dimensional
+uniform spanning tree collide infinitely often. To be more precise, let us introduce some terminology
+here. For infinite connected recurrent graph G, let X and Y be independent (discrete time) simple
+random walks on G. We say that G has the infinite collision property when |{n : Xn = Yn}| = ∞
+holds almost-surely, where |A| denotes the cardinality of A. For classical examples such as Z and
+Z2, it is easy to see that two independent simple random walks collide infinitely often. On the
+other hand, Krishnapur and Peres [8] gave an example of a recurrent graph for which the number
+1
+
+of collision is almost-surely finite. For collisions on random graphs, Barlow, Peres and Sousi [4]
+proved that a critical Galton-Watson tree, the incipient infinite cluster in high dimensions and the
+two-dimensional uniform spanning tree all have the infinite collision property almost-surely. The
+purpose of this article is to deal with the three-dimensional uniform spanning tree, which was not
+demonstarted in [4]. The infinite collision property for various graphs can be useful to study complex
+networks, and we hope it yields new discernment for industry and mathematics.
+Now we state the main result of this article. Let U be the uniform spanning tree on Z3 and P
+be its law.
+Theorem 1.1. The uniform spanning tree on Z3 has the infinite collision property P-a.s.
+Remark 1.2. Note that the above statement includes two different probability measures, the law
+of the three-dimensional uniform spanning tree and that of random walks on it. Theorem 1.1 claims
+that if we choose a tree according to the law of the three-dimensional uniform spanning tree and
+check whether two independent simple random walks on the tree collide infinitely often almost-
+surely, then it has the infinite collision property almost-surely with respect to uniform spanning
+tree measure.
+Remark 1.3. Relying on various estimates derived in [6] and [7], we believe that both the uniform
+spanning tree on Z4 and each connected component of the uniform spanning forest on Zd (d ≥ 5)
+also satisfy the infinite collision property. We will not pursue this further in the present article.
+Let us briefly explain the strategy of the proof of the Theorem 1.1. Barlow, Peres and Sousi [4]
+established a sufficient condition for the infinite collision property on random graphs (see Theorem
+2.6 below). We will demonstrate that the three-dimensional uniform spanning tree satisfies this
+sufficient condition by examining geometrical structure of the tree.
+Before we end this section, let us explain the organization of this article.
+General notation
+together with background of the three-dimensional uniform spanning tree and infinite collision
+property will be introduced in Section 2. Then Theorem 1.1 will be proved in Section 3.
+Acknowledgements: The author would like to thank Professor Daisuke Shiraishi for helpful
+discussions on the proof of the main theorem and a careful reading of the article. The author would
+also like to thank Professor David A. Croydon for valuable comments on the analysis of uniform
+spanning trees.
+The author is supported by JST, the Establishment of University Fellowships
+Towards the Creation of Science Technology Innovation, Grant Number JPMJFS2123.
+2
+Definitions and backgrounds
+In this section, we introduce the uniform spanning tree on connected graphs and an algorithm to
+construct the uniform spanning tree on Z3 with loop-erased random walk paths.
+We begin by introducing some notation for subsets of Z3. Given two points x, y ∈ Z3, we let
+dE(x, y) be the Euclidean distance between x and y. For x ∈ Z3 and a connected subset A ⊂ Z3,
+we let dist(x, A) = inf{dE(x, y) : y ∈ A}.
+For a set A ⊂ Z3, we define the inner boundary ∂iA and the outer boundary ∂A of A as follows:
+∂iA = {x ∈ A : there exists y ∈ Z3 \ A such that dE(x, y) = 1},
+∂A = {x ∈ Z3 \ A : there exists y ∈ A such that dE(x, y) = 1}.
+For x, y ∈ Z3, we write x ∼ y if dE(x, y) = 1. A finite or infinite sequence of vertices θ =
+(θ0, θ1, · · · ) is called a path if θi−1 ∼ θi for all i = 1, 2, · · · . Given a finite path θ = (θ0, · · · , θk), we
+define the length of θ by len(θ) = k.
+2
+
+2.1
+Uniform spanning tree
+In this subsection, we introduce the three-dimensional uniform spanning tree, the model of interest
+of this article.
+A subgraph of a connected graph G is called a spanning tree on G if it is connected, contains
+all vertices of G and has no cycle. Let T (G) be the set of all spanning trees on G. For a finite
+(connected) graph G, we can choose a random tree according to the uniform measure on T (G).
+This random tree is called the uniform spanning tree (UST) on a finite graph G. We can define
+the uniform spanning tree on Z3, or the three-dimensional uniform spanning tree, as the weak limit
+of the USTs on the finite boxes Z3 ∩ [−n, n]3, see [12].
+We will assume that the three-dimensional UST U is built on a probability space (Ω, F, P) and
+we denote the corresponding expectation by E. Note that U is a one-ended tree P-a.s.([12]). For
+any x, y ∈ Z3, we write γ(x, y) for the unique self-avoiding path from x to y in U and for any
+connected subset A ⊂ Z3, we denote by γ(x, A) the shortest path among {γ(x, y) : y ∈ A} if x ̸∈ A,
+and γ(x, A) = {x} if x ∈ A. We let γ(x, ∞) for the unique infinite self-avoiding path in U started
+at x. We denote by dU the intrinsic metric on the graph U, i.e. dU(x, y) = len(γ(x, y)).
+We define balls in the intrinsic metric by
+BU(x, r) = {y ∈ Z3 : dU(x, y) ≤ r}.
+(2.1)
+Recall that dE stands for the Euclidean metric on Z3. We denote Euclidean balls by
+B(x, r) = {y ∈ Z3 : dE(x, y) ≤ r}.
+(2.2)
+Now let us define the simple random walk on U. We denote by µU the measure on Z3 such that
+µU({x}) is given by the number of edges of U which contain x. For a given realization of U, the
+simple random walk on U is defined as the discrete time Markov process XU = ((XU
+n )n≥0, (P U
+x )x∈Z3)
+which at each step jumps from its current location to a uniformly chosen neighbor in U. For x ∈ Z3,
+the law P U
+x is called the quenched law of the simple random walk on U.
+2.2
+Loop-erased random
+Now we define the loop-erased random walk, which plays an important role in the analysis on
+uniform spanning trees through an algorithm called Wilson’s algorithm.
+For a finite path θ, let LE(θ) be the chronological loop erasure of θ, which is defined as follows.
+Set
+T(0) = sup{j : θj = θ0}
+and �θ0 = θT(0). Inductively, we set
+T(i) = sup{j : θj = θT(i−1)+1},
+�θi = θT(i).
+(2.3)
+and let
+l = inf{j : T(j) = k}.
+Then, LE(θ) is defined by
+LE(θ) = (�θ0, · · · , �θl).
+The loop-erased random walk (LERW) is the random simple path obtained as the loop-erasure
+of a path of the simple random walk.
+3
+
+The exact same definition also applies to the infinite simple random walk (SRW) S on Z3. Since
+S is transient, the times T(i) in (2.3) are finite for every i ∈ Z, almost surely. The infinite simple
+path LE(S) is called the infinite loop-erased random walk (ILERW).
+Next we introduce the growth exponent of the three-dimensional LERW. We run the SRW on
+Z3 started at the origin until it exits the ball of radius n centered at its starting point and let Mn
+be the length of its loop-erasure. We denote the law of S by P and the corresponding expectation
+by E. Then the growth exponent is defined by the limit
+β := lim
+n→∞
+log E(Mn)
+log n
+,
+(2.4)
+if exists. The existence of the limit is proved in [14] and that β ∈ (1, 5/3] is obtained in [9]. Numerical
+estimates suggest that β = 1.624 · · · , see [18]. Moreover, following exponential tail bound of Mn is
+obtained in [14].
+Theorem 2.1. ([14, Theorem 1.1.4]) There exists c > 0 such that for all n ≥ 1 and κ ≥ 1,
+P(Mn ≥ κE(Mn)) ≤ 2 exp{−cκ},
+and for any ε ∈ (0, 1), there exist 0 < cε, Cε < ∞ such that for all n ≥ 1 and κ ≥ 1,
+P(Mn ≤ κ−1E(Mn)) ≤ Cε exp{−cεκ
+1
+β −ε}.
+(2.5)
+2.3
+Wilson’s algorithm
+Now let us recall Wilson’s algorithm. Throughout the article, we let Sz = {Sz(n)}∞
+n=0 denote a
+simple random walk on Z3 started at z ∈ Z3 and P z denote its law.
+We take {Sz}z∈Z3 to be
+independent.
+Wilson’s algorithm is a method to construct UST with LERW paths. It was first introduced to
+finite graphs ([17]) and then extended to transient Zd including Z3 (see [5]). Let {v1, v2, · · · } be an
+ordering of the vertices of Z3 and let γ∞ be the infinite LERW started at the origin and independent
+of {Sz}. Given a path θ and a set A ⊂ Z3, we let
+τ(A) = τθ(A) = min{i ≥ 0 : θi ∈ A},
+(2.6)
+be the first hitting time of the set A for the path γ. We define a sequence of random subgraphs of
+Z3 inductively as follows:
+U0 = γ∞,
+Ui = Ui−1 ∪ LE(Szi[0, τ(Ui−1)]), i ≥ 1,
+U∞ = ∪iUi.
+Then by [5], the resulting random tree U∞ has the same law as the three-dimensional UST. It
+follows from this fact that the law of U∞ does not depend on the ordering of Z3.
+2.4
+Infinite collision property
+Finally we define the infinite collision property and effective resistance of graphs. Let G = (V, E)
+be a connected graph and let X = {Xn}∞
+n=0 and Y = {Yn}∞
+n=0 be independent simple random walks
+on G. We denote by Pa,b the law of {(Xn, Yn)}∞
+n=0 with starting point (X0, Y0) = (a, b).
+4
+
+Definition 2.2. We define the total number of collisions between X and Y by
+Z =
+∞
+�
+n=0
+1(Xn = Yn).
+If
+Pa,a(Z < ∞) = 1,
+(2.7)
+holds for all a ∈ G, then G has the finite collision property. If
+Pa,a(Z = ∞) = 1,
+(2.8)
+holds for all a ∈ G, then G has the infinite collision property.
+Remark 2.3. There is no simple monotonicity property for collisions. Let Comb(Z) be the graph
+with vertex set Z × Z and edge set
+{[(x, n), (x, m)] : |m − n| = 1} ∪ {[(x, 0), (y, 0)] : |x − y| = 1}.
+Then Comb(Z) has the finite collision property (see [4]) and is a subgraph of Z2, which does not.
+It is proved that for any connected graph, either (2.7) or (2.8) holds.
+Proposition 2.4. ([4, Proposition 2.1]) Let G be a (connected) recurrent graph. Then for any
+starting point (a, b) ∈ G × G of the process {(Xn, Yn)},
+Pa,b(Z = ∞) ∈ {0, 1},
+holds. In particular, for all a ∈ G, either Pa,a(Z = ∞) = 0 or Pa,a(Z = ∞) = 1 holds.
+Now we introduce effective resistance of graphs, which is used to describe the criterion for
+random graphs to have the infinite collision property almost-surely, which is given in [4].
+Definition 2.5. Let G = (V, E) be a connected graph. For two functions f and g on V , we define
+a quadratic form E by
+E(f, g) = 1
+2
+�
+x,y∈V
+x∼y
+(f(x) − f(y))(g(x) − x(y)).
+If we consider G as an electrical network by regarding each edge of G to be a unit resistance, then
+for disjoint subsets A and B of V , the effective resistance between A and B is defined by
+Reff(A, B)−1 = inf{E(f, f) : E(f, f) < ∞, f|A = 1, f|B = 0}.
+(2.9)
+Let Reff(x, y) = Reff({x}, {y}). It is known that Reff(·, ·) is a metric on G, see [16].
+Let {G(ω} be a family of random graphs defined on a space (Ω, P) with a distinguished vertex
+o. We denote by BG(o, r) the intrinsic ball of G centered at o of radius r ≥ 0. For each λ ≥ 1, let
+J(λ) be the random subset of Z≥0 defined by
+J(λ) = {r ∈ Z≥0 : Reff(o, BG(o, r)c) ≥ r/λ}
+Note that for fixed λ, {r ∈ J(λ)} is an event with respect to G.
+Theorem 2.6. ([4, Corollary 3.3]) If there exist some function ψ with limλ→∞ ψ(λ) = 0 and some
+r0 ≥ 1 such that
+P(r ∈ J(λ)) ≥ 1 − ψ(λ)
+for all r ≥ r0,
+(2.10)
+then G has the infinite collision property P-a.s.
+5
+
+3
+Proof of the main theorem
+In this section, we will prove Theorem 1.1 by giving a function ψ which satisfies (2.10). In order to
+bound Reff(0, BU(0, r)) from below, we will first estimate the effective resistance of U between the
+origin and ∂B(0, r).
+Let Ur be the connected component of U ∩ B(0, r) which contains the origin. Recall that β is
+the growth exponent of the three-dimensional LERW defined in (2.4).
+Theorem 3.1. There exist some universal constant C > 0 such that for all r ≥ 1 and λ > 0,
+P(Reff(0, U \ Ur) ≥ rβ/λ1+4β) ≥ 1 − Cλ−1.
+(3.1)
+Proof. Note that it sufficies to prove the inequality (3.1) for λ ≥ λ0 where λ0 is a sufficiently large
+universal constant which does not depend on r.
+We first fix r > 0 and consider a sequance of subsets of Z3 including ∂iB(0, r). For k = 1, 2, · · · ,
+let δk = λ−12−k and ηk = (2k)−1.
+We define k0 to be the smallest positive integer such that
+rδk0 < 1. Let
+Ak = B(0, r) \ B(0, (1 − ηk)r),
+and let Dk be a finite subset of Ak with |Dk| ≤ Cδ−3
+k
+such that
+Ak ⊂
+�
+z∈Dk
+B(z, δkr).
+Next we perform Wilson’s algorithm rooted at infinity (see section 2.3) to obtain the three-
+dimensional UST. Let U0 = γ∞ i.e. the infinite LERW started at the origin. Given Uk (k ≥ 0), we
+regard Uk as the root of Wilson’s algorithm and add branches started at vertices in Dk+1 \ Uk and
+denote by Uk+1 the resulting random subtree at this step. Once we obtain Uk0, we add branches
+started at vertices in Z3 \Uk0 and complete Wilson’s algorithm. Note that Uk (k = 0, 1, 2, · · · , k0) is
+a subtree of U containig all vertices in �k
+i=1 Di ∪ {0} and the sequence {Uk}k0
+k=0 is increasing. Since
+rδk0 < 1, it holds that ∂iB(0, r) ⊂ Dk0 ⊂ Uk0.
+Now we are ready to define the events where the effective resistance in (3.1) is bounded below.
+First, we examine the behavior of the branches started at vertices contained in D1. For z ∈ Dk (k ≥
+1), we denote by yz be the first point of Uk−1 visited by γ(z, 0) i.e. d(z, yz) = miny∈Uk−1 d(z, y). We
+define the event Fz by
+Fz = {γ(z, yz) ∩ B(0, λ−4r) = ∅},
+(3.2)
+for z ∈ D1. Since dE(0, z) ≥ r/2, by [9, Theorem 1.5.10], there exists some constant C > 0 such
+that for all λ ≥ 2,
+P(F c
+z ) ≤ P(Sz[0, ∞) ∩ B(0, λ−4r) ̸= ∅) ≤ Cλ−4,
+holds. By taking the union bound, we obtain that
+P
+
+ �
+z∈D1
+F c
+z
+
+ ≤ |D1|Cλ−4 ≤ Cλ−1,
+(3.3)
+where the last inequality follows from that |D1| ≤ Cλ3.
+Second, we bound from below the first time that γ∞ exits B(0, λ−4r), which is denoted by
+τ(B(0, λ−4r)c). We define the event �F by
+�F =
+�
+len
+�
+γ∞[0, τ(B(0, λ−4r)c)]
+�
+≥ rβ/λ1+4β�
+.
+(3.4)
+6
+
+By [14, Theorem 1.1.4] and [10, Corollary 1.3], there exist some constant C > 0 and c > 0
+P( �F c) ≤ C exp{−cλ1/2},
+(3.5)
+such that for all r ≥ 1 and λ > 0.
+Third, we consider the branches started at vertices in Dk (k ≥ 2) step by step. Let us begin
+by defining an event which guarantees “hittability” of γ(x, ∞) for x ∈ Dk.
+To be precise, for
+x ∈ Dk (k ≥ 1) and ξ > 0, we define the event Hx(ξ) by
+Hx(ξ) =
+�
+There exists some z ∈ B(x, δkr) such that
+P z(Sz[0, τSz(B(z, δ1/2
+k
+r)c)] ∩ γ(x, ∞) = ∅) ≥ δξ
+k
+�
+,
+where Sz is an independent simple random walk started at z ∈ Z3 and P z denotes its law. Let
+�Hk :=
+�
+x∈Dk
+Hx(ξ1)c.
+(3.6)
+Note that P z(Sz[0, τSz(B(z, δ1/2
+k
+r)c)] ∩ γ(x, ∞) = ∅) is a function of γ∞ and thus Hx and �Hk are
+measurable with respect to γ∞. By [13, Theorem 3.1], there exist some C > 0 and ξ1 such that
+P(Hx(ξ1)) ≤ Cδ4
+k
+for all r ≥ 1, k ≥ 1 and x ∈ Dk,
+(3.7)
+from which it follows that
+P( �Hk) ≥ 1 − |Dk|Cδ4
+k ≥ 1 − C′δk,
+(3.8)
+where C′ > 0 is uniform in r ≥ 1 and k ≥ 1.
+Now we will demonstrate that conditioned on the event �Hk, branches γ(z, yz) (z ∈ Dk+1) is
+included in Ak with high conditional probability. Let M = ⌈4/ξ1⌉. For z ∈ Dk+1, let
+Iz =
+�
+Sz[0, τSz(B(z, Mδ1/2
+k
+r))] ∩ Uk = ∅
+�
+.
+Since z ∈ Dk+1 ⊂ Ak, we can take some x ∈ Dk with z ∈ B(x, δkr) and on the event Iz, we have
+that
+Sz[0, T 1] ∩ γ(x, ∞) = ∅,
+holds, where T 1 = τSz(B(z, δ1/2
+k
+r)).
+In the rest of this proof, we take λ ≥ 6M without loss of generality. Since dE(z, Sz(T 1 − 1)) ≤
+δkr, we have that z1 := Sz(T 1 − 1) ∈ Ak and we can take x1 ∈ Dk with z1 ∈ B(x1, δkr). By
+the same argument as the above, on the event Iz we have that Sz[T 1, T 2] ∩ γ(x, ∞) = ∅, where
+T 2 = τSz(B(z1, δ1/2
+k
+r)). Iteratively, we obtain the sequences {T i}, {zi} ⊂ Ak and {xi} ⊂ Dk (i =
+1, 2, · · · , M) and we have that
+Iz ⊂
+M
+�
+i=1
+{R[T i−1, T i] ∩ γ(xi−1, ∞) = ∅},
+where we set T 0 = 0 and x0 = x. By the strong Markov property, it holds that
+P z(Iz) ≤ P z
+� M
+�
+i=1
+{R[T i−1, T i] ∩ γ(xi−1, ∞) = ∅}
+�
+=
+M
+�
+i=1
+P zi−1(Szi−1[0, τSzi−1(B(zi−1, δ1/2
+k
+r))] ∩ γ(xi−1, ∞) = ∅),
+7
+
+Figure 1: In this figure, two circles represent Euclidean balls centered at the origin: the larger one is of
+radius r and the small one is of radius λ−4r. On the event K, the branches from D1 do not enter
+the smaller ball of radius λ−4r and branches from Dk (k ≥ 2) hits already constructed subtree
+Uk−1 before entering B(0, r/2). Moreover, the length of γ∞ up to the exiting time τ(B(0, λ−4r))
+is bounded below by rβ/λ1+4β.
+from which it follows that
+�Hk ⊂ {P z(Iz) ≤ δ4
+k}.
+Thus, by Wilson’s algorithm, we have that for all z ∈ Dk+1,
+P
+�
+γ(z, yz) ̸⊂ B(z, Mδ1/2
+k
+r) | �Hk
+�
+≤ δ4
+k.
+(3.9)
+We define the event �Ik+1, which is measurable with respect to Uk+1, by
+�Ik+1 =
+�
+z∈Dk+1
+�
+γ(z, yz) ⊂ B(z, Mδ1/2
+k
+r)
+�
+.
+(3.10)
+Then by (3.9) and that |Dk+1| ≤ Cδ−3
+k , it holds that
+P(�Ik+1 | �Hk) ≥ 1 − |Dk+1|δ4
+k ≥ 1 − Cδk.
+Combining this with (3.8), we obtain that
+P( �Hk ∩ �Ik+1) ≥ 1 − Cδk,
+(3.11)
+for some universal constant C > 0.
+Finally we construct an event where the desired effective resistance bound holds. Let
+K =
+
+ �
+z∈D1
+Fz
+
+ ∩ �F ∩
+� k0
+�
+k=1
+( �Hk ∩ �Ik+1)
+�
+.
+8
+
+/(c, 8)
+B(O,r)Recall that Fz, �F, �Hk and �Ik+1 are defined by (3.2), (3.4), (3.6) and (3.10), respectively.
+Then combining (3.3), (3.5) and (3.11), we obtain that
+P(Kc) ≤ Cλ−1 + C exp{−cλ1/2} +
+∞
+�
+k=1
+Cδk ≤ Cλ−1.
+(3.12)
+We claim that on the event K, the following two statements holds:
+(1) d(0, yz) ≥ rβ/λ1+4β for all z ∈ D1.
+(2) For k ≥ 2, γ(z, 0) hits U1 before entering B(0, r/2) for all z ∈ Dk.
+Note that (1) is immideate from K ⊂ (�
+z∈D1 Fz)c∩ �F c and (2) follows from K ⊂ (�k0
+k=1(�Ik+1∩ �Hk)).
+Suppose that K occurs.
+Let w be an element of {yz : z ∈ D1} which satisfies d(0, w) =
+minz∈D1 d(0, yz). It follows from the above statements (1) and (2) that every path of U connecting
+the origin and B(0, r)c includes γ(0, w) (recall that ∂iB(0, r) ⊂ Dk0). Thus, by the series law of
+effective resistance (see [11] Section 2.3, for example), we have that
+Reff(0, U \ Ur) = Reff(0, w) + Reff(w, U \ Ur)
+≥ d(0, w) ≥ rβ/λ1+4β.
+Combining this with (3.12) yields the desired result (3.1).
+✷
+Now we are ready to prove Theorem 1.1.
+Proof of Theorem 1.1. By [1, Proposition 4.1], there exist some C′ > 0 and c′ ∈ (0, 1) such that
+P
+�
+Ur ̸⊂ BU(0, λrβ)
+�
+≤ C′λ−c′,
+for all r > 1 and λ ≥ 1. On the event {Ur ⊂ BU(0, λrβ)}, by monotonicity
+Reff(0, U \ Ur) ≤ Reff(0, BU(0, λrβ)c),
+holds (see [11] Section 2.2, for example). Thus, we have
+P
+�
+Reff(0, BU(0, λrβ)c) < rβ/λ1+4β�
+≤ P
+�
+Reff(0, BU(0, λrβ)c) < rβ/λ1+4β, Ur ⊂ BU(0, λrβ)
+�
++ P
+�
+Ur ̸⊂ BU(0, λrβ)
+�
+≤ P
+�
+Reff(0, U \ Ur) < rβ/λ1+4β�
++ C′λ−c′.
+By Thorem 3.1, we obtain that
+P
+�
+Reff(0, BU(0, λrβ)c) ≥ rβ/λ1+4β�
+≥ P
+�
+Reff(0, U \ Ur) ≥ rβ/λ1+4β�
+− C′λ−c′
+≥ 1 − Cλ−1 − C′λ−c′.
+By reparameterizing R = λrβ and taking C′ > 0 properly, we have that
+P
+�
+Reff(0, BU(0, R)c) ≥ R/λ2+4β�
+≥ 1 − C′λ−c′.
+Note that we can take C′ > 0 uniformly in R and λ. Thus, ψ(λ) = λ−
+c′
+2+4β satisfies the criterion
+(2.10). By Theorem 2.6, we obtain the conclusion that the three-dimensional UST has the infinite
+collision property a.s.
+✷
+9
+
+References
+[1] O. Angel, D. A. Croydon, S. Hernandez-Torres, and D. Shiraishi, Scaling limits of the three-dimensional uniform
+spanning tree and associated random walk, Ann. Probab. 49 (2021), no. 6, 3032–3105. MR4348685
+[2] M. T. Barlow, D. A. Croydon, and T. Kumagai, Quenched and averaged tails of the heat kernel of the two-
+dimensional uniform spanning tree, Probab. Theory Related Fields 181 (2021), no. 1-3, 57–111. MR4341070
+[3] Martin T. Barlow and Robert Masson, Spectral dimension and random walks on the two dimensional uniform
+spanning tree, Comm. Math. Phys. 305 (2011), no. 1, 23–57. MR2802298
+[4] Martin T. Barlow, Yuval Peres, and Perla Sousi, Collisions of random walks, Ann. Inst. Henri Poincar´e Probab.
+Stat. 48 (2012), no. 4, 922–946. MR3052399
+[5] Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Uniform spanning forests, Ann. Probab. 29
+(2001), no. 1, 1–65. MR1825141
+[6] Noah Halberstam and Tom Hutchcroft, Logarithmic corrections to the alexander-orbach conjecture for the four-
+dimensional uniform spanning tree (2022), arXiv: 2211.01307
+[7] Tom Hutchcroft, Universality of high-dimensional spanning forests and sandpiles, Probab. Theory Related Fields
+176 (2020), no. 1-2, 533–597. MR4055195
+[8] Manjunath Krishnapur and Yuval Peres, Recurrent graphs where two independent random walks collide finitely
+often, Electron. Comm. Probab. 9 (2004), 72–81. MR2081461
+[9] Gregory F. Lawler, Loop-erased random walk, Perplexing problems in probability, 1999, pp. 197–217. MR1703133
+[10] Xinyi Li and Daisuke Shiraishi, One-point function estimates for loop-erased random walk in three dimensions,
+Electron. J. Probab. 24 (2019), Paper No. 111, 46. MR4017129
+[11] Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge Series in Statistical and Probabilistic
+Mathematics, vol. 42, Cambridge University Press, New York, 2016. MR3616205
+[12] Robin Pemantle, Choosing a spanning tree for the integer lattice uniformly, Ann. Probab. 19 (1991), no. 4, 1559–
+1574. MR1127715
+[13] Artem Sapozhnikov and Daisuke Shiraishi, On Brownian motion, simple paths, and loops, Probab. Theory Related
+Fields 172 (2018), no. 3-4, 615–662. MR3877544
+[14] Daisuke Shiraishi, Growth exponent for loop-erased random walk in three dimensions, Ann. Probab. 46 (2018),
+no. 2, 687–774. MR3773373
+[15] Daisuke Shiraishi and Satomi Watanabe, Volume and heat kernel fluctuations for the three-dimensional uniform
+spanning tree (2022), arXiv: 2211.15031
+[16] Tobias Weihrauch, A characterization of effective resistance metrics, Potential Anal. 51 (2019), no. 3, 437–467.
+MR4023471
+[17] David Bruce Wilson, Generating random spanning trees more quickly than the cover time, Proceedings of the
+Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), 1996, pp. 296–
+303. MR1427525
+[18]
+, Dimension of the loop-erased random walk in three dimensions, Phys. Rev. E 82 (2010Dec), 062102.
+10
+
diff --git a/idFAT4oBgHgl3EQfZx1V/content/tmp_files/load_file.txt b/idFAT4oBgHgl3EQfZx1V/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..acf9bccd80974c5d4d6bfdb8551680cb95f27a5c
--- /dev/null
+++ b/idFAT4oBgHgl3EQfZx1V/content/tmp_files/load_file.txt
@@ -0,0 +1,366 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf,len=365
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='08547v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='PR] 20 Jan 2023 Infinite collision property for the three-dimensional uniform spanning tree Satomi Watanabe Department of Advanced Mathematical Sciences Graduate School of Informatics Kyoto University Abstract Let U be the uniform spanning tree on Z3, whose probability law is denoted by P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' It is proved in [5] that for P-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' realization of U, the simple random walk on U is recurrent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' In this article, we will prove that for P-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' realization of U, two independent simple random walks on U collide infinitely often, which is another example of random graphs with this property discovered in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 1 Introduction The aim of this article is to investigate the collision property of two independent simple random walks on the three-dimensional uniform spanning tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let us first begin with the introduction of uniform spanning forests on Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' If Gn is a sequence of finite subgraphs which exhausts Zd, then it is proved by Pemantle [12] that the sequence of the uniform spanning measures on Gn converges weakly to a probability measure which is supported on spanning forests of Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Pemantle [12] also showed that the uniform spanning forest is a single tree almost-surely, which is called the uniform spanning tree on Zd, for d ≤ 4, while it is not a tree but a spanning forest with infinitely many connected components when d ≥ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Since their introduction, study of uniform spanning forests has played an important role in the progress of probability theory, because of its connection to various probabilistic models, see [5] for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The behavior of random walks on the uniform spanning forests on Zd is heavily affected by geometric and spectral properties of the forests, depending on the dimension d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' In particular, it is proved that the random walk exhibits mean-field behavior for d ≥ 4, with precise logarithmic corrections in d = 4 [6,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' On the other hand, different exponents appear in the asymptotic behavior of several quantities such as transition density and mean-square displacement of the random walk for d ≤ 3 [1,3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' This is already confirmed at least for d = 2 and it is strongly believed that this is the case in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Further detailed estimates on the random walk in the uniform spanning tree have been established for d = 2 [2] and d = 3 [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' In this article, we will prove that two independent random walks on the three-dimensional uniform spanning tree collide infinitely often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' To be more precise, let us introduce some terminology here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For infinite connected recurrent graph G, let X and Y be independent (discrete time) simple random walks on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We say that G has the infinite collision property when |{n : Xn = Yn}| = ∞ holds almost-surely, where |A| denotes the cardinality of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For classical examples such as Z and Z2, it is easy to see that two independent simple random walks collide infinitely often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' On the other hand, Krishnapur and Peres [8] gave an example of a recurrent graph for which the number 1 of collision is almost-surely finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For collisions on random graphs, Barlow, Peres and Sousi [4] proved that a critical Galton-Watson tree, the incipient infinite cluster in high dimensions and the two-dimensional uniform spanning tree all have the infinite collision property almost-surely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The purpose of this article is to deal with the three-dimensional uniform spanning tree, which was not demonstarted in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The infinite collision property for various graphs can be useful to study complex networks, and we hope it yields new discernment for industry and mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Now we state the main result of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let U be the uniform spanning tree on Z3 and P be its law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The uniform spanning tree on Z3 has the infinite collision property P-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Note that the above statement includes two different probability measures, the law of the three-dimensional uniform spanning tree and that of random walks on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1 claims that if we choose a tree according to the law of the three-dimensional uniform spanning tree and check whether two independent simple random walks on the tree collide infinitely often almost- surely, then it has the infinite collision property almost-surely with respect to uniform spanning tree measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Relying on various estimates derived in [6] and [7], we believe that both the uniform spanning tree on Z4 and each connected component of the uniform spanning forest on Zd (d ≥ 5) also satisfy the infinite collision property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We will not pursue this further in the present article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let us briefly explain the strategy of the proof of the Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Barlow, Peres and Sousi [4] established a sufficient condition for the infinite collision property on random graphs (see Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='6 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We will demonstrate that the three-dimensional uniform spanning tree satisfies this sufficient condition by examining geometrical structure of the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Before we end this section, let us explain the organization of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' General notation together with background of the three-dimensional uniform spanning tree and infinite collision property will be introduced in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1 will be proved in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Acknowledgements: The author would like to thank Professor Daisuke Shiraishi for helpful discussions on the proof of the main theorem and a careful reading of the article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The author would also like to thank Professor David A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Croydon for valuable comments on the analysis of uniform spanning trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The author is supported by JST, the Establishment of University Fellowships Towards the Creation of Science Technology Innovation, Grant Number JPMJFS2123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 2 Definitions and backgrounds In this section, we introduce the uniform spanning tree on connected graphs and an algorithm to construct the uniform spanning tree on Z3 with loop-erased random walk paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We begin by introducing some notation for subsets of Z3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Given two points x, y ∈ Z3, we let dE(x, y) be the Euclidean distance between x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For x ∈ Z3 and a connected subset A ⊂ Z3, we let dist(x, A) = inf{dE(x, y) : y ∈ A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For a set A ⊂ Z3, we define the inner boundary ∂iA and the outer boundary ∂A of A as follows: ∂iA = {x ∈ A : there exists y ∈ Z3 \\ A such that dE(x, y) = 1}, ∂A = {x ∈ Z3 \\ A : there exists y ∈ A such that dE(x, y) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For x, y ∈ Z3, we write x ∼ y if dE(x, y) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' A finite or infinite sequence of vertices θ = (θ0, θ1, · · · ) is called a path if θi−1 ∼ θi for all i = 1, 2, · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Given a finite path θ = (θ0, · · · , θk), we define the length of θ by len(θ) = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1 Uniform spanning tree In this subsection, we introduce the three-dimensional uniform spanning tree, the model of interest of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' A subgraph of a connected graph G is called a spanning tree on G if it is connected, contains all vertices of G and has no cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let T (G) be the set of all spanning trees on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For a finite (connected) graph G, we can choose a random tree according to the uniform measure on T (G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' This random tree is called the uniform spanning tree (UST) on a finite graph G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We can define the uniform spanning tree on Z3, or the three-dimensional uniform spanning tree, as the weak limit of the USTs on the finite boxes Z3 ∩ [−n, n]3, see [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We will assume that the three-dimensional UST U is built on a probability space (Ω, F, P) and we denote the corresponding expectation by E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Note that U is a one-ended tree P-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='([12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For any x, y ∈ Z3, we write γ(x, y) for the unique self-avoiding path from x to y in U and for any connected subset A ⊂ Z3, we denote by γ(x, A) the shortest path among {γ(x, y) : y ∈ A} if x ̸∈ A, and γ(x, A) = {x} if x ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We let γ(x, ∞) for the unique infinite self-avoiding path in U started at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We denote by dU the intrinsic metric on the graph U, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' dU(x, y) = len(γ(x, y)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We define balls in the intrinsic metric by BU(x, r) = {y ∈ Z3 : dU(x, y) ≤ r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1) Recall that dE stands for the Euclidean metric on Z3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We denote Euclidean balls by B(x, r) = {y ∈ Z3 : dE(x, y) ≤ r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2) Now let us define the simple random walk on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We denote by µU the measure on Z3 such that µU({x}) is given by the number of edges of U which contain x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For a given realization of U, the simple random walk on U is defined as the discrete time Markov process XU = ((XU n )n≥0, (P U x )x∈Z3) which at each step jumps from its current location to a uniformly chosen neighbor in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For x ∈ Z3, the law P U x is called the quenched law of the simple random walk on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2 Loop-erased random Now we define the loop-erased random walk, which plays an important role in the analysis on uniform spanning trees through an algorithm called Wilson’s algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For a finite path θ, let LE(θ) be the chronological loop erasure of θ, which is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Set T(0) = sup{j : θj = θ0} and �θ0 = θT(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Inductively, we set T(i) = sup{j : θj = θT(i−1)+1}, �θi = θT(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3) and let l = inf{j : T(j) = k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then, LE(θ) is defined by LE(θ) = (�θ0, · · · , �θl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The loop-erased random walk (LERW) is the random simple path obtained as the loop-erasure of a path of the simple random walk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 3 The exact same definition also applies to the infinite simple random walk (SRW) S on Z3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Since S is transient, the times T(i) in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3) are finite for every i ∈ Z, almost surely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The infinite simple path LE(S) is called the infinite loop-erased random walk (ILERW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Next we introduce the growth exponent of the three-dimensional LERW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We run the SRW on Z3 started at the origin until it exits the ball of radius n centered at its starting point and let Mn be the length of its loop-erasure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We denote the law of S by P and the corresponding expectation by E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then the growth exponent is defined by the limit β := lim n→∞ log E(Mn) log n , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4) if exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' The existence of the limit is proved in [14] and that β ∈ (1, 5/3] is obtained in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Numerical estimates suggest that β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='624 · · · , see [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Moreover, following exponential tail bound of Mn is obtained in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' ([14, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4]) There exists c > 0 such that for all n ≥ 1 and κ ≥ 1, P(Mn ≥ κE(Mn)) ≤ 2 exp{−cκ}, and for any ε ∈ (0, 1), there exist 0 < cε, Cε < ∞ such that for all n ≥ 1 and κ ≥ 1, P(Mn ≤ κ−1E(Mn)) ≤ Cε exp{−cεκ 1 β −ε}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='5) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3 Wilson’s algorithm Now let us recall Wilson’s algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Throughout the article, we let Sz = {Sz(n)}∞ n=0 denote a simple random walk on Z3 started at z ∈ Z3 and P z denote its law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We take {Sz}z∈Z3 to be independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Wilson’s algorithm is a method to construct UST with LERW paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' It was first introduced to finite graphs ([17]) and then extended to transient Zd including Z3 (see [5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let {v1, v2, · · · } be an ordering of the vertices of Z3 and let γ∞ be the infinite LERW started at the origin and independent of {Sz}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Given a path θ and a set A ⊂ Z3, we let τ(A) = τθ(A) = min{i ≥ 0 : θi ∈ A}, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='6) be the first hitting time of the set A for the path γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We define a sequence of random subgraphs of Z3 inductively as follows: U0 = γ∞, Ui = Ui−1 ∪ LE(Szi[0, τ(Ui−1)]), i ≥ 1, U∞ = ∪iUi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then by [5], the resulting random tree U∞ has the same law as the three-dimensional UST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' It follows from this fact that the law of U∞ does not depend on the ordering of Z3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4 Infinite collision property Finally we define the infinite collision property and effective resistance of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let G = (V, E) be a connected graph and let X = {Xn}∞ n=0 and Y = {Yn}∞ n=0 be independent simple random walks on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We denote by Pa,b the law of {(Xn, Yn)}∞ n=0 with starting point (X0, Y0) = (a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 4 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We define the total number of collisions between X and Y by Z = ∞ � n=0 1(Xn = Yn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' If Pa,a(Z < ∞) = 1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='7) holds for all a ∈ G, then G has the finite collision property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' If Pa,a(Z = ∞) = 1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='8) holds for all a ∈ G, then G has the infinite collision property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' There is no simple monotonicity property for collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let Comb(Z) be the graph with vertex set Z × Z and edge set {[(x, n), (x, m)] : |m − n| = 1} ∪ {[(x, 0), (y, 0)] : |x − y| = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then Comb(Z) has the finite collision property (see [4]) and is a subgraph of Z2, which does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' It is proved that for any connected graph, either (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='7) or (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='8) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' ([4, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1]) Let G be a (connected) recurrent graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then for any starting point (a, b) ∈ G × G of the process {(Xn, Yn)}, Pa,b(Z = ∞) ∈ {0, 1}, holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' In particular, for all a ∈ G, either Pa,a(Z = ∞) = 0 or Pa,a(Z = ∞) = 1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Now we introduce effective resistance of graphs, which is used to describe the criterion for random graphs to have the infinite collision property almost-surely, which is given in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let G = (V, E) be a connected graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For two functions f and g on V , we define a quadratic form E by E(f, g) = 1 2 � x,y∈V x∼y (f(x) − f(y))(g(x) − x(y)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' If we consider G as an electrical network by regarding each edge of G to be a unit resistance, then for disjoint subsets A and B of V , the effective resistance between A and B is defined by Reff(A, B)−1 = inf{E(f, f) : E(f, f) < ∞, f|A = 1, f|B = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='9) Let Reff(x, y) = Reff({x}, {y}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' It is known that Reff(·, ·) is a metric on G, see [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let {G(ω} be a family of random graphs defined on a space (Ω, P) with a distinguished vertex o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We denote by BG(o, r) the intrinsic ball of G centered at o of radius r ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For each λ ≥ 1, let J(λ) be the random subset of Z≥0 defined by J(λ) = {r ∈ Z≥0 : Reff(o, BG(o, r)c) ≥ r/λ} Note that for fixed λ, {r ∈ J(λ)} is an event with respect to G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' ([4, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3]) If there exist some function ψ with limλ→∞ ψ(λ) = 0 and some r0 ≥ 1 such that P(r ∈ J(λ)) ≥ 1 − ψ(λ) for all r ≥ r0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='10) then G has the infinite collision property P-a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 5 3 Proof of the main theorem In this section, we will prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1 by giving a function ψ which satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' In order to bound Reff(0, BU(0, r)) from below, we will first estimate the effective resistance of U between the origin and ∂B(0, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let Ur be the connected component of U ∩ B(0, r) which contains the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Recall that β is the growth exponent of the three-dimensional LERW defined in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' There exist some universal constant C > 0 such that for all r ≥ 1 and λ > 0, P(Reff(0, U \\ Ur) ≥ rβ/λ1+4β) ≥ 1 − Cλ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Note that it sufficies to prove the inequality (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1) for λ ≥ λ0 where λ0 is a sufficiently large universal constant which does not depend on r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We first fix r > 0 and consider a sequance of subsets of Z3 including ∂iB(0, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For k = 1, 2, · · · , let δk = λ−12−k and ηk = (2k)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We define k0 to be the smallest positive integer such that rδk0 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let Ak = B(0, r) \\ B(0, (1 − ηk)r), and let Dk be a finite subset of Ak with |Dk| ≤ Cδ−3 k such that Ak ⊂ � z∈Dk B(z, δkr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Next we perform Wilson’s algorithm rooted at infinity (see section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3) to obtain the three- dimensional UST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let U0 = γ∞ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' the infinite LERW started at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Given Uk (k ≥ 0), we regard Uk as the root of Wilson’s algorithm and add branches started at vertices in Dk+1 \\ Uk and denote by Uk+1 the resulting random subtree at this step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Once we obtain Uk0, we add branches started at vertices in Z3 \\Uk0 and complete Wilson’s algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Note that Uk (k = 0, 1, 2, · · · , k0) is a subtree of U containig all vertices in �k i=1 Di ∪ {0} and the sequence {Uk}k0 k=0 is increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Since rδk0 < 1, it holds that ∂iB(0, r) ⊂ Dk0 ⊂ Uk0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Now we are ready to define the events where the effective resistance in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1) is bounded below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' First, we examine the behavior of the branches started at vertices contained in D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For z ∈ Dk (k ≥ 1), we denote by yz be the first point of Uk−1 visited by γ(z, 0) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' d(z, yz) = miny∈Uk−1 d(z, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We define the event Fz by Fz = {γ(z, yz) ∩ B(0, λ−4r) = ∅}, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2) for z ∈ D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Since dE(0, z) ≥ r/2, by [9, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='10], there exists some constant C > 0 such that for all λ ≥ 2, P(F c z ) ≤ P(Sz[0, ∞) ∩ B(0, λ−4r) ̸= ∅) ≤ Cλ−4, holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By taking the union bound, we obtain that P \uf8eb \uf8ed � z∈D1 F c z \uf8f6 \uf8f8 ≤ |D1|Cλ−4 ≤ Cλ−1, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3) where the last inequality follows from that |D1| ≤ Cλ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Second, we bound from below the first time that γ∞ exits B(0, λ−4r), which is denoted by τ(B(0, λ−4r)c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' We define the event �F by �F = � len � γ∞[0, τ(B(0, λ−4r)c)] � ≥ rβ/λ1+4β� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4) 6 By [14, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4] and [10, Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3], there exist some constant C > 0 and c > 0 P( �F c) ≤ C exp{−cλ1/2}, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='5) such that for all r ≥ 1 and λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Third, we consider the branches started at vertices in Dk (k ≥ 2) step by step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let us begin by defining an event which guarantees “hittability” of γ(x, ∞) for x ∈ Dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' To be precise, for x ∈ Dk (k ≥ 1) and ξ > 0, we define the event Hx(ξ) by Hx(ξ) = � There exists some z ∈ B(x, δkr) such that P z(Sz[0, τSz(B(z, δ1/2 k r)c)] ∩ γ(x, ∞) = ∅) ≥ δξ k � , where Sz is an independent simple random walk started at z ∈ Z3 and P z denotes its law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let �Hk := � x∈Dk Hx(ξ1)c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='6) Note that P z(Sz[0, τSz(B(z, δ1/2 k r)c)] ∩ γ(x, ∞) = ∅) is a function of γ∞ and thus Hx and �Hk are measurable with respect to γ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By [13, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1], there exist some C > 0 and ξ1 such that P(Hx(ξ1)) ≤ Cδ4 k for all r ≥ 1, k ≥ 1 and x ∈ Dk, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='7) from which it follows that P( �Hk) ≥ 1 − |Dk|Cδ4 k ≥ 1 − C′δk, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='8) where C′ > 0 is uniform in r ≥ 1 and k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Now we will demonstrate that conditioned on the event �Hk, branches γ(z, yz) (z ∈ Dk+1) is included in Ak with high conditional probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let M = ⌈4/ξ1⌉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' For z ∈ Dk+1, let Iz = � Sz[0, τSz(B(z, Mδ1/2 k r))] ∩ Uk = ∅ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Since z ∈ Dk+1 ⊂ Ak, we can take some x ∈ Dk with z ∈ B(x, δkr) and on the event Iz, we have that Sz[0, T 1] ∩ γ(x, ∞) = ∅, holds, where T 1 = τSz(B(z, δ1/2 k r)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' In the rest of this proof, we take λ ≥ 6M without loss of generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Since dE(z, Sz(T 1 − 1)) ≤ δkr, we have that z1 := Sz(T 1 − 1) ∈ Ak and we can take x1 ∈ Dk with z1 ∈ B(x1, δkr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By the same argument as the above, on the event Iz we have that Sz[T 1, T 2] ∩ γ(x, ∞) = ∅, where T 2 = τSz(B(z1, δ1/2 k r)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Iteratively, we obtain the sequences {T i}, {zi} ⊂ Ak and {xi} ⊂ Dk (i = 1, 2, · · · , M) and we have that Iz ⊂ M � i=1 {R[T i−1, T i] ∩ γ(xi−1, ∞) = ∅}, where we set T 0 = 0 and x0 = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By the strong Markov property, it holds that P z(Iz) ≤ P z � M � i=1 {R[T i−1, T i] ∩ γ(xi−1, ∞) = ∅} � = M � i=1 P zi−1(Szi−1[0, τSzi−1(B(zi−1, δ1/2 k r))] ∩ γ(xi−1, ∞) = ∅), 7 Figure 1: In this figure, two circles represent Euclidean balls centered at the origin: the larger one is of radius r and the small one is of radius λ−4r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' On the event K, the branches from D1 do not enter the smaller ball of radius λ−4r and branches from Dk (k ≥ 2) hits already constructed subtree Uk−1 before entering B(0, r/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Moreover, the length of γ∞ up to the exiting time τ(B(0, λ−4r)) is bounded below by rβ/λ1+4β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' from which it follows that �Hk ⊂ {P z(Iz) ≤ δ4 k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Thus, by Wilson’s algorithm, we have that for all z ∈ Dk+1, P � γ(z, yz) ̸⊂ B(z, Mδ1/2 k r) | �Hk � ≤ δ4 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='9) We define the event �Ik+1, which is measurable with respect to Uk+1, by �Ik+1 = � z∈Dk+1 � γ(z, yz) ⊂ B(z, Mδ1/2 k r) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='10) Then by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='9) and that |Dk+1| ≤ Cδ−3 k , it holds that P(�Ik+1 | �Hk) ≥ 1 − |Dk+1|δ4 k ≥ 1 − Cδk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Combining this with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='8), we obtain that P( �Hk ∩ �Ik+1) ≥ 1 − Cδk, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='11) for some universal constant C > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Finally we construct an event where the desired effective resistance bound holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let K = \uf8eb \uf8ed � z∈D1 Fz \uf8f6 \uf8f8 ∩ �F ∩ � k0 � k=1 ( �Hk ∩ �Ik+1) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 8 /(c, 8) B(O,r)Recall that Fz, �F, �Hk and �Ik+1 are defined by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='4), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='6) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='10), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Then combining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='5) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='11), we obtain that P(Kc) ≤ Cλ−1 + C exp{−cλ1/2} + ∞ � k=1 Cδk ≤ Cλ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='12) We claim that on the event K, the following two statements holds: (1) d(0, yz) ≥ rβ/λ1+4β for all z ∈ D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' (2) For k ≥ 2, γ(z, 0) hits U1 before entering B(0, r/2) for all z ∈ Dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Note that (1) is immideate from K ⊂ (� z∈D1 Fz)c∩ �F c and (2) follows from K ⊂ (�k0 k=1(�Ik+1∩ �Hk)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Suppose that K occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Let w be an element of {yz : z ∈ D1} which satisfies d(0, w) = minz∈D1 d(0, yz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' It follows from the above statements (1) and (2) that every path of U connecting the origin and B(0, r)c includes γ(0, w) (recall that ∂iB(0, r) ⊂ Dk0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Thus, by the series law of effective resistance (see [11] Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='3, for example), we have that Reff(0, U \\ Ur) = Reff(0, w) + Reff(w, U \\ Ur) ≥ d(0, w) ≥ rβ/λ1+4β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Combining this with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='12) yields the desired result (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' ✷ Now we are ready to prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By [1, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1], there exist some C′ > 0 and c′ ∈ (0, 1) such that P � Ur ̸⊂ BU(0, λrβ) � ≤ C′λ−c′, for all r > 1 and λ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' On the event {Ur ⊂ BU(0, λrβ)}, by monotonicity Reff(0, U \\ Ur) ≤ Reff(0, BU(0, λrβ)c), holds (see [11] Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='2, for example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Thus, we have P � Reff(0, BU(0, λrβ)c) < rβ/λ1+4β� ≤ P � Reff(0, BU(0, λrβ)c) < rβ/λ1+4β, Ur ⊂ BU(0, λrβ) � + P � Ur ̸⊂ BU(0, λrβ) � ≤ P � Reff(0, U \\ Ur) < rβ/λ1+4β� + C′λ−c′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By Thorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='1, we obtain that P � Reff(0, BU(0, λrβ)c) ≥ rβ/λ1+4β� ≥ P � Reff(0, U \\ Ur) ≥ rβ/λ1+4β� − C′λ−c′ ≥ 1 − Cλ−1 − C′λ−c′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By reparameterizing R = λrβ and taking C′ > 0 properly, we have that P � Reff(0, BU(0, R)c) ≥ R/λ2+4β� ≥ 1 − C′λ−c′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Note that we can take C′ > 0 uniformly in R and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Thus, ψ(λ) = λ− c′ 2+4β satisfies the criterion (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='6, we obtain the conclusion that the three-dimensional UST has the infinite collision property a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' ✷ 9 References [1] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Angel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Croydon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Hernandez-Torres, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Shiraishi, Scaling limits of the three-dimensional uniform spanning tree and associated random walk, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 49 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 6, 3032–3105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR4348685 [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Barlow, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Croydon, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Kumagai, Quenched and averaged tails of the heat kernel of the two- dimensional uniform spanning tree, Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theory Related Fields 181 (2021), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 1-3, 57–111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR4341070 [3] Martin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Barlow and Robert Masson, Spectral dimension and random walks on the two dimensional uniform spanning tree, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 305 (2011), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 1, 23–57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR2802298 [4] Martin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Barlow, Yuval Peres, and Perla Sousi, Collisions of random walks, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Henri Poincar´e Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 48 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 4, 922–946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR3052399 [5] Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Uniform spanning forests, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 29 (2001), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 1, 1–65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR1825141 [6] Noah Halberstam and Tom Hutchcroft, Logarithmic corrections to the alexander-orbach conjecture for the four- dimensional uniform spanning tree (2022), arXiv: 2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='01307 [7] Tom Hutchcroft, Universality of high-dimensional spanning forests and sandpiles, Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theory Related Fields 176 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 1-2, 533–597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR4055195 [8] Manjunath Krishnapur and Yuval Peres, Recurrent graphs where two independent random walks collide finitely often, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 9 (2004), 72–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR2081461 [9] Gregory F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Lawler, Loop-erased random walk, Perplexing problems in probability, 1999, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 197–217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR1703133 [10] Xinyi Li and Daisuke Shiraishi, One-point function estimates for loop-erased random walk in three dimensions, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 24 (2019), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 111, 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR4017129 [11] Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 42, Cambridge University Press, New York, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR3616205 [12] Robin Pemantle, Choosing a spanning tree for the integer lattice uniformly, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 19 (1991), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 4, 1559– 1574.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR1127715 [13] Artem Sapozhnikov and Daisuke Shiraishi, On Brownian motion, simple paths, and loops, Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Theory Related Fields 172 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 3-4, 615–662.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR3877544 [14] Daisuke Shiraishi, Growth exponent for loop-erased random walk in three dimensions, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 46 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 2, 687–774.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR3773373 [15] Daisuke Shiraishi and Satomi Watanabe, Volume and heat kernel fluctuations for the three-dimensional uniform spanning tree (2022), arXiv: 2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content='15031 [16] Tobias Weihrauch, A characterization of effective resistance metrics, Potential Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 51 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 3, 437–467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR4023471 [17] David Bruce Wilson, Generating random spanning trees more quickly than the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), 1996, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 296– 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' MR1427525 [18] , Dimension of the loop-erased random walk in three dimensions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' E 82 (2010Dec), 062102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
+page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/idFAT4oBgHgl3EQfZx1V/content/2301.08547v1.pdf'}
diff --git a/lNE4T4oBgHgl3EQfTwzv/content/tmp_files/2301.05011v1.pdf.txt b/lNE4T4oBgHgl3EQfTwzv/content/tmp_files/2301.05011v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a5bb07f6f82c8e281f64104d850c6754e85e6e26
--- /dev/null
+++ b/lNE4T4oBgHgl3EQfTwzv/content/tmp_files/2301.05011v1.pdf.txt
@@ -0,0 +1,2451 @@
+arXiv:2301.05011v1 [math.OC] 12 Jan 2023
+Approximate control of parabolic equations with on-off shape
+controls by Fenchel duality
+Camille Pouchola, Emmanuel Trélatb,d, and Christophe Zhangc
+aLaboratoire MAP5 UMR 8145, Université Paris Cité, 75006 Paris, France. Email
+address: camille.pouchol@u-paris.fr
+bSorbonne Université, Université de Paris, CNRS, Laboratoire Jacques-Louis Lions,
+75005 Paris, France. Email address: emmanuel.trelat@sorbonne-universite.fr
+cSPHINX, INRIA, Faculté des Sciences et Technologies Campus, Boulevard des
+Aiguillettes 54506 Vandœuvre-lès-Nancy, France. Email address:
+christophe.zhang@polytechnique.org
+dCAGE, INRIA, Paris, France.
+Abstract
+We consider the internal control of linear parabolic equations through on-off shape controls, i.e.,
+controls of the form M(t)χω(t) with M(t) ≥ 0 and ω(t) with a prescribed maximal measure.
+We establish small-time approximate controllability towards all possible final states allowed by
+the comparison principle with nonnegative controls.
+We manage to build controls with constant
+amplitude M(t) ≡ M. In contrast, if the moving control set ω(t) is confined to evolve in some region
+of the whole domain, we prove that approximate controllability fails to hold for small times.
+The method of proof is constructive. Using Fenchel-Rockafellar duality and the bathtub principle,
+the on-off shape control is obtained as the bang-bang solution of an optimal control problem, which
+we design by relaxing the constraints.
+Our optimal control approach is outlined in a rather general form for linear constrained control
+problems, paving the way for generalisations and applications to other PDEs and constraints.
+Contents
+1
+Introduction
+2
+1.1
+Constrained internal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+2
+1.2
+Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+3
+1.3
+General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+5
+1.4
+Proof strategy and related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+7
+1.5
+Extensions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+8
+2
+Building the optimal control problem
+10
+2.1
+Convex analytic framework
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+10
+2.2
+Approximate controllability by Fenchel duality ([24]) . . . . . . . . . . . . . . . . . . . . .
+10
+2.3
+Convex analytic interpretation of the bathtub principle . . . . . . . . . . . . . . . . . . . .
+12
+2.4
+From the static bathtub principle to the dual problem and its corresponding cost . . . . .
+13
+1
+
+3
+Approximate controllability results
+14
+3.1
+Strong duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+15
+3.2
+Coercivity of JT,ε, nonnegative approximate controllability
+. . . . . . . . . . . . . . . . .
+16
+3.3
+Characterisation of the minimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+16
+3.4
+Uniqueness
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+18
+4
+Obstructions to controllability
+19
+5
+Further comments
+20
+5.1
+Properties of the value function in the general case . . . . . . . . . . . . . . . . . . . . . .
+20
+5.2
+Obstructions
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+22
+5.2.1
+Obstruction to reachability and small-time controllability . . . . . . . . . . . . . .
+22
+5.2.2
+Characterisation of minimal time controls . . . . . . . . . . . . . . . . . . . . . . .
+23
+A Convex analysis
+25
+A.1 Core properties of Fenchel conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+25
+A.2 Some properties of indicator and support functions . . . . . . . . . . . . . . . . . . . . . .
+26
+A.3 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+27
+A.4 Fenchel-Rockafellar duality
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+27
+A.5 Parametric convex optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+29
+B The classical bathtub principle
+30
+1
+Introduction
+1.1
+Constrained internal control
+This article is devoted to the internal approximate controllability problem at time T > 0 for linear
+parabolic equations on a domain Ω by means of on-off shape controls, i.e., internal controls taking the
+form
+∀t ∈ (0, T ), ∀x ∈ Ω,
+u(t, x) = M(t)χω(t)(x),
+where, at a given time t ∈ (0, T ),
+• M(t) > 0 is the nonnegative amplitude of the control
+• χω(t) is the characteristic function of the set ω(t) ⊂ Ω, i.e., χω(t)(x) :=
+�
+1
+if x ∈ ω(t),
+0
+otherwise
+.
+Both the amplitude and location may be subject to constraints. This problem is a paradigmatic simplifi-
+cation of many practical situations where one can act on a complex system with on-off devices that can
+be moved in time, while their shape can also be modified.
+Along the introduction, we expose our results for general operators A, while first illustrating them in
+the case of the controlled linear heat equation with Dirichlet boundary conditions
+
+
+
+
+
+yt − ∆y = u in Ω,
+y = 0 on ∂Ω,
+y(0) = y0 in Ω.
+(1)
+In this setting, Ω is an open connected bounded subset of Rd, with C2 boundary, and y0 ∈ L2(Ω).
+2
+
+Control without constraints.
+When constraints are removed, generic parabolic equations are well-
+known to be approximately controllable [2, 42], and even null-controllable [13, 22] in arbitrarily small
+time by means of internal controls, acting only on an arbitrary fixed measurable subset ω ⊂ Ω of positive
+measure.
+This more precisely means that for any time T > 0, any measurable set ω ⊂ Ω of positive measure,
+any ε > 0, any y0 ∈ L2(Ω) and target yf ∈ L2(Ω), there holds
+∃u ∈ L2((0, T ) × Ω), such that ∀t ∈ (0, T ), supp(u(t, ·)) ⊂ ω and ∥y(T ) − yf∥L2(Ω) ≤ ε,
+where supp(u) refers to the essential support of a function u ∈ L2(Ω).
+Constrained control.
+In view of applications where unilateral or bilateral or L∞ constraints naturally
+appear, constrained controllability has been an active area of research [1, 8, 34], whether in finite or
+infinite dimension.
+In various contexts, control constraints have been shown to lead to controllability obstructions, even
+for unilateral constraints. Some states are out of reach, regardless of how large T > 0 may be [37, 41].
+On the other hand, some states are reachable but only for T large enough: constraints may lead to the
+appearance of a minimal time of controllability [25, 26, 27, 36].
+In the case of unilateral constraints for linear control problems in finite dimension, these obstructions
+can be categorised thanks to Brunovsky’s normal form as done in [26], leading to the existence of a positive
+minimal time. In infinite dimension, however, we are only aware of obstructions based on the comparison
+principle (see [25] and [37]). The present work uncovers another type of obstruction, already hinted at
+in [36].
+1.2
+Main results
+As our results require different sets of hypotheses and in order to give a quick glance at the main ideas,
+we first present them in the simplified context of the heat equation (1).
+Given a constraint set U+ ⊂ L2(Ω), we will be considering control constraints of the form
+∀t ∈ (0, T ),
+u(t) ∈ U+.
+Here, the notation U+ emphasises that we will always deal with constraints that include the nonnegativity
+constraint, i.e., sets U+ such that U+ ⊂ {u ∈ L2(Ω), u ≥ 0}.
+Now, when the control u satisfies u ≥ 0, if follows from the parabolic comparison principle satisfied by
+the Dirichlet Laplacian [16] that
+∀t ≥ 0,
+y(t) ≥ et∆y0,
+(2)
+where (et∆)t≥0 denotes the heat semigroup with Dirichlet boundary conditions. Hence, targets yf which
+do not satisfy yf ≥ eT ∆y0 cannot be reached with nonnegative controls, let alone on-off shape controls.
+Taking into account the obstruction to controllability given by the inequality (2), we adapt the usual
+definition of approximate controllability to the context of nonnegative controls.
+More precisely, we say that system (1) is nonnegatively approximately controllable with controls in U+
+in time T > 0, if for all ε > 0, and all y0, yf ∈ L2(Ω) such that yf ≥ eT ∆y0, there exists a control u ∈
+L2((0, T )×Ω) with values in U+ such that the corresponding solution to (1) satisfies ∥y(T )−yf∥L2(Ω) ≤ ε.
+On-off shape control.
+For our first main result, we focus on nonnegative approximate controllability
+with on-off shape controls: for a fixed L ∈ (0, 1), we consider the constraint set
+Ushape
+L
+:= {Mχω,
+ω ⊂ Ω,
+|ω| ≤ L|Ω|, M > 0} ⊂ L2(Ω).
+Within the above class of on-off shape controls, we establish nonnegative approximate controllability
+in arbitrary time (see Theorem 3.1 for the precise and general statement), whatever the value of L ∈ (0, 1).
+3
+
+Theorem A. For any L ∈ (0, 1), T > 0, system (1) is nonnegatively approximately controllable with
+controls in UL
+shape in time T .
+To establish this result, we draw from Lions’s strategy in [24], which develops a constructive approach in
+studying the approximate controllability of a linear wave equation. The idea is to consider the requirement
+∥y(T ) − yf∥L2(Ω) ≤ ε as a constraint. With LTu :=
+� T
+0 e(T −t)∆u(t) dt and since y(T ) = LTu + ST y0,
+Lions considers the constrained optimal control problem
+π := inf
+�1
+2∥u∥2
+L2((0,T )×Ω), ∥eT ∆y0 + LTu − yf∥L2(Ω) ≤ ε
+�
+.
+The infimum satisfies π < +∞ if and only if there exists u ∈ L2((0, T ) × Ω) steering y0 to a closed ε-ball
+around yf. To find minimisers, i.e., to build controls, note that
+π =
+inf
+u∈L2((0,T )×Ω)
+1
+2∥u∥2
+L2((0,T )×Ω) + GT,ε(LT u) =
+inf
+u∈L2((0,T )×Ω) FT (u) + GT,ε(LT u),
+with FT (u) = 1
+2∥u∥2
+L2((0,T )×Ω) and
+GT,ε(y) =
+�
+0
+if
+∥eT ∆y0 + y − yf∥L2(Ω) ≤ ε,
++∞
+otherwise.
+From this optimisation problem, one computes its Fenchel dual optimisation problem, which reads
+d := −
+inf
+pf ∈L2(Ω) F ∗
+T (L∗
+T pf) + G∗
+T,ε(−pf) = −
+inf
+pf∈L2(Ω)
+1
+2∥L∗
+T pf∥2
+L2((0,T )×Ω) + G∗
+T,ε(−pf),
+where F ∗
+T (= FT ) and G∗
+T,ε are the Fenchel conjugates of FT and GT,ε, respectively, and L∗
+T is the adjoint
+of the linear bounded operator LT : L2((0, T )×Ω) → L2(Ω). Recall that for a given pf ∈ L2(Ω), p = L∗
+T pf
+is the solution to the adjoint equation ending at pf, i.e., it solves
+
+
+
+
+
+pt + ∆p = 0,
+p = 0 on ∂Ω,
+p(T ) = pf on Ω.
+(3)
+Under suitable hypotheses, the Fenchel-Rockafellar theorem [40] ensures that π = d. As a result, one
+can then study the dual functional to establish that π = d < +∞, and that its minimum is attained.
+Furthermore, the cost function FT is differentiable in this case and the first order optimality condition
+for the (unique) variable p⋆
+f minimising the dual functional then reads LT L∗
+Tp⋆
+f = yf − ε
+p⋆
+f
+∥p⋆
+f∥L2(Ω) . The
+optimal control u⋆ := L∗
+Tp⋆
+f is thus constructed from the minimiser of the dual problem p⋆
+f.
+Accordingly, in this paper we reframe constrained approximate controllability as an optimal control
+problem, replacing 1
+2∥u∥2
+L2((0,T )×Ω) of [24] with a suitable cost functional FT . This constitutes a novel
+generalisation of Lions’s method.
+As the detailed statements in Theorem 3.1 and Proposition 3.7 show:
+• Instead of using the L2 norm as in the optimal control problem studied in [24], we will consider the
+cost functional:
+FT (u) := 1
+2 sup
+t∈[0,T ]
+max
+�
+∥u(t, ·)∥L∞(Ω), ∥u(t, ·)∥L1(Ω)
+L|Ω|
+�2
++ δ{u≥0}(u),
+(4)
+where δ{u≥0}(u) = 0 if u ≥ 0 and +∞ otherwise. The rather unusual form of the minimisation cri-
+terion (4) is finely designed so as to handle nonnegativity and the other (bound, volume) constraints
+we are dealing with.
+4
+
+• The optimal controls have constant amplitude in time, i.e., M(t) ≡ M.
+• The proof is constructive: the optimal control u⋆ can be computed from a unique dual optimal
+variable p⋆
+f solving the corresponding Fenchel dual problem. This computation generalises what is
+done in [24] to the broader case of costs that are not differentiable but still convex. More precisely,
+u⋆ is given by
+u⋆(t, ·) = M χ{p⋆(t,·)>h(p⋆(t,·))},
+M =
+� T
+0
+�
+{p⋆(t,·)>h(p⋆(t,·))}
+p⋆(t, x) dx dt,
+where h : L2(Ω) → R is a function that will be defined in Section 2.3, and p⋆ solves the adjoint
+equation (3) with p⋆(T ) = p⋆
+f.
+Obstructions to nonnegative controllability.
+In the spirit of the unconstrained case, one may
+wonder whether nonnegative approximate controllability can be achieved with controls acting only in
+some prescribed time-independent subdomain ω. We emphasise that our first result does not a priori
+prevent the control from visiting the whole domain Ω.
+Our second result proves that visiting the whole Ω is necessary in the following sense: if the sets
+ω(t), t ∈ (0, T ) do not intersect some fixed open subset of Ω, nonnegative approximate controllability is
+lost for small times.
+Theorem B. Assume that the constraint set U+ satisfies the following property: there exists a ball
+B(x, r) ⊂ Ω with x ∈ Ω and r > 0 such that
+∀u ∈ U+,
+supp(u) ∩ B(x, r) = ∅.
+Then, there exists T ⋆ > 0 such that the control system (1) is not nonnegatively approximately controllable
+with controls in U+ in time T ≤ T ⋆.
+We refer to Theorem 4.1 for the complete statement. Let us mention that obstructions of this type
+have been reported for similar problems in [36].
+Amplitude and time optimal control.
+In Section 5, we gather several further results regarding the
+dependence of the amplitude M = M(T, y0, yf, ε) with respect to its arguments. Using duality once more,
+we study its dependence on the final time T .
+Focusing on the case y0 = 0, we then establish an equivalence between the optimal control problem
+and the related minimal time problem
+inf{T > 0,
+∃u ∈ L2((0, T ) × Ω),
+∥LTu − yf∥L2(Ω) ≤ ε,
+FT (u) ≤ λ},
+λ > 0.
+1.3
+General results
+Theorems A and B above have been stated for the heat equation with Dirichlet boundary conditions, in
+order to provide the reader with a quick overview of our main results. In fact, they all hold for more
+general semigroups under suitable hypotheses presented hereafter.
+The underlying general setting is that of linear control problems of the form
+�
+yt − Ay = u,
+y(0) = y0 in Ω
+(5)
+where Ω is an open subset of Rd, and A : D(A) → L2(Ω) is an operator generating a C0 semigroup (St)t≥0
+on L2(Ω) [14, 35].
+In this more general context, we define nonnegative approximate controllability as follows.
+5
+
+Definition 1.1. Given a constraint set of nonnegative controls U+ ⊂ L2(Ω), we say that system (5) is
+nonnegatively approximately controllable with controls in U+ in time T if for all ε > 0, and all y0, yf ∈
+L2(Ω) such that yf ≥ ST y0, there exists a control u ∈ L2((0, T ) × Ω) with values in U+ such that the
+corresponding solution to (5) satisfies ∥y(T ) − yf∥L2(Ω) ≤ ε.
+General hypotheses for Theorem A.
+We have previously presented Theorem A for the heat equation
+as a paradigmatic example. Nevertheless, the underlying hypotheses on which some of our proofs rely are
+much more general in nature; we review them below.
+• First, we consider the (unusual) unique-continuation like property
+∀y ∈ L2(Ω),
+∃t ∈ (0, T ), Sty is constant over Ω
+=⇒
+y = 0.
+(GUC)
+This property is satisfied as soon as the three assumptions below hold:
+– for y ∈ L2(Ω), Sty ∈ D(A) for all t > 0 (for instance, this is true if (St)t≥0 is analytic [35]),
+– the only constant function in D(A) is the zero function,1
+– St is injective for all t > 0.2
+• Second, we will be interested in analytic-hypoellipticity: ∂t − A is said to be analytic-hypoelliptic if
+any distributional solution y to ∂ty − Ay = f on Ω × (0, T ) with f analytic on Ω is analytic on Ω,
+where analyticity refers to real-analyticity.
+• Third, we will say that (St)t≥0 satisfies the comparison principle if
+∀y ∈ L2(Ω),
+y ≥ 0 =⇒ ∀t > 0, Sty ≥ 0.
+(6)
+The first two properties are sufficient for the generalisation of Theorem A, see Theorem 3.1. The
+third will play an important role when it comes to minimal controllability times, and is in line with our
+definition of nonnegative approximate controllability.
+Elliptic operators.
+As a generalisation of the Dirichlet Laplacian, let us discuss a large class of uni-
+formly elliptic operators that do satisfy these properties and to which our obstruction result Theorem B
+generalises (see Theorem 4.1).
+Let us assume that Ω is a bounded, open, connected subset of Rd, with C2 boundary.
+Defining
+D(A) := H1
+0(Ω) ∩ H2(Ω), we introduce operators of the form
+∀y ∈ D(A),
+Ay :=
+�
+1≤i,j≤d
+∂xj(aij(x)∂xiy) −
+d
+�
+i=1
+bi(x)∂xiy + c(x)y.
+(7)
+When referring to operators of the form (7), we will always assume that the functions aij = aji, bi are in
+W 1,∞(Ω), c is in L∞(Ω), and that the operator is uniformly elliptic, i.e., there exists θ > 0 such that
+∀x ∈ Ω, ∀ξ ∈ Rd,
+�
+1≤i,j≤d
+aij(x)ξiξj ≥ θ|ξ|2.
+The adjoint of A is given by
+∀p ∈ D(A∗),
+A∗p =
+�
+1≤i,j≤d
+∂xi(aij(x)∂xjp) +
+d
+�
+i=1
+bi(x)∂xip +
+�
+c(x) −
+d
+�
+i=1
+∂xi(bi(x))
+�
+p,
+1This is the case for the Dirichlet Laplacian with domain D(A) = H2(Ω) ∩ H1
+0(Ω) if Ω has a C2 boundary.
+2This is the case for groups, such as the wave equation, and for parabolic equations thanks to the parabolic maximum
+principle. This is also true for analytic semigroups: if Sty = 0 for some t > 0, then Ssy = 0 for all s ≥ t and by analyticity
+Ssy = 0 for all s ≥ 0, which for s = 0 yields y = 0.
+6
+
+and we have D(A∗) = D(A).
+Both A and A∗ satisfy the parabolic comparison principle [16], hence they satisfy the comparison prin-
+ciple (6). They also satisfy the three conditions sufficient for the (GUC) property to hold. 3 Furthermore,
+both ∂t − A and ∂t − A∗ are analytic-hypoelliptic as soon as all functions aij, bi and c are analytic [33].
+1.4
+Proof strategy and related works
+In the unconstrained case, approximate controllability of the heat equation is a consequence of the unique
+continuation property, thanks to a general property of linear control problems (see for example [12, Section
+2.3]). In the case of heat equations, the latter property can be obtained by the Holmgren Uniqueness
+Theorem [2]. In contrast to these existence results, the variational approach developed in [24] (see Section
+1.2), handles approximate controllability in a constructive manner.
+Our strategy consists in extending this approach to the constrained case: the main idea is to find a
+suitable cost function FT such that optimal controls must satisfy the constraint u ∈ Ushape
+L
+. A remarkable
+feature of our strategy lies in how we design the cost function: we do so by building an adequate Fenchel
+dual function, instead of trying to find the cost function directly.
+Constrained controllability.
+Constrained control problems in infinite dimension have been studied
+in papers such as [3, 4, 5, 15, 19].
+In [15], sufficient conditions (in the form of unique continuation
+properties) for controllability results are derived when the control and states are constrained to some
+prescribed subspaces, but at the expense of controlling only a finite-dimensional subpart of the final state.
+In [19], the authors deal with a form of approximate controllability of the heat equation akin to ours,
+focusing on minimal time problems.
+They derive bang-bang type necessary optimality conditions for
+minimal time controls, and then build such controls using an auxiliary optimisation problem.
+The papers [3, 4, 5] address constrained exact controllability through modified observability inequal-
+ities, thus giving abstract necessary and/or sufficient conditions. One key difference with our work is
+that constraint sets are assumed to be convex. In fact, all examples handled by [3, 4, 5] feature isotropic
+constraints.
+It is noteworthy that all the above references introduce so-called dual functionals, drawing from the
+variational formulation of the Hilbert Uniqueness Method. However, the formalism of Fenchel-Rockafellar
+duality in itself, as developed in [24], has increasingly been abandoned in the literature. Some notable
+exceptions are [44] in the context of stabilisation, and, to some extent, [4], which uses Fenchel duality to
+study null-controllability under some hypotheses.
+We fully exploit the ideas hinted at in the latter paper by choosing a different type of functional, which
+allows us to handle anisotropic, non-convex constraints. In contrast with the aforementioned trend in the
+literature, we work with Fenchel duality, but in a rather unusual way, in that we will focus mainly on the
+dual problem. The nature of the actual primal problem (optimal control problem) being solved follows
+effortlessly. To perform the necessary computations, we will make extensive use of convex analysis. Doing
+so bypasses many technical difficulties thanks to properties of subdifferentials and Fenchel conjugates,
+among others, and allows for the use of costs which are not differentiable but still smooth in the convex
+analytic sense.
+Bathtub principle for appropriate costs.
+The second main idea is what underlies our choice of cost
+function FT , forcing optimal controls to satisfy the required the on-off shape constraint. As the set of
+on-off shape controls is a non-convex cone, we are led to relaxation, i.e., to consider the closure of its
+convex hull. In order to build relevant costs, we then rely on the so-called bathtub principle (actually, a
+relaxed version of it) [23].
+3The analyticity of the semigroup is well known for this class of elliptic operators on open domains with C2 boundary.
+There are clearly no nonzero constant functions in H2 ∩ H1
+0. Finally, injectivity follows from the comparison principle (see
+above footnote).
+7
+
+For a given function v ∈ L2(Ω), the latter principle solves
+sup
+u∈UL
+�
+Ω
+u(x)v(x) dx,
+UL :=
+�
+u ∈ L2(Ω), 0 ≤ u ≤ 1 and
+�
+Ω
+u ≤ L|Ω|
+�
+.
+This optimisation problem comes up naturally in some control problems similar to ours [21, 28], or in
+shape optimisation problems [38].
+Interpreting the bathtub principle as a Fenchel conjugate leads us to design the unusual cost func-
+tional (4). This allows us to design dual problems such that optimal controls exist, and are characterised
+as maximisers of some bathtub principle. Then, using analyticity properties for solutions of the dual
+problem, we prove their uniqueness and hence their extremality, thereby uncovering that they are on-off
+shape controls.
+Bang-bang property of optimal controls.
+Bang-bang controls (i.e., controls that saturate their
+constraints) are a common feature in time optimal control problems. A growing literature on the heat
+equation alone [29, 31, 43, 45, 47] shows that this property extends well to some infinite-dimensional
+systems. In our case, we will see that the on-off shape controls we have constructed can be understood as
+time-optimal controls. As these controls are bang-bang, this yields another occurrence of the bang-bang
+property in the time-optimal control of the heat equation.
+Note, however, that in the references cited above, the controls are constrained to lie in balls of specific
+function spaces, whereas we consider non-negative constraints on the controls, which is an anisotropic
+constraint. Moreover, the bang-bang property is usually established separately using optimality condi-
+tions, having established controllability at the onset. In our case, the Fenchel-Rockafellar duality approach
+allows to do all those things simultaneously.
+1.5
+Extensions and perspectives
+Operator, boundary conditions.
+The (GUC) property and analytic-hypoellipticity are two key suffi-
+cient properties for approximate controllability by on-off shape controls. We have highlighted second-order
+elliptic operators with analytic coefficients Dirichlet boundary conditions as an example. Our results ap-
+ply to such operators with Robin boundary conditions of the form a(x)y + b(x)∂νy = 0 over ∂Ω (with a, b
+analytic) as soon as the function a does not vanish on the whole of ∂Ω (more generally, as soon as a is
+nontrivial on any connected component of ∂Ω). This excludes the important case of Neumann boundary
+conditions, which remains open.
+Our approach also accommodates subelliptic operators.
+This includes a large class of Hörmander
+operators, i.e., operators of the form A = �m
+i=1 X2
+i + X0 + V Id with vector fields X1, . . . , Xm generating
+a Lie algebra that equals Rd on the whole of Ω. Under general regularity assumptions and boundary
+conditions, such an operator and its adjoint generate a strongly continuous semigroup on L2(Ω), satisfy
+the comparison principle [6], all three conditions sufficient for the (GUC) property, and are analytic-
+hypoelliptic for instance if the characteristic manifold is an analytic symplectic manifold (see [32]).
+Control operator.
+Our results have been stated with the identity control operator. They extend to
+the nonnegative control of
+�
+yt − Ay = ϕu,
+y(0) =y0 in Ω
+where ϕ ∈ L∞(Ω) is positive, analytic.
+An interesting perspective is to follow our proof strategy with boundary control operators, where on-off
+shape controls now refer to characteristic functions over the boundary ∂Ω.
+8
+
+Exact nonnegative controllability.
+In the case of unconstrained controllability with a control acting
+in some fixed subset ω, any function that can be reached exactly is (at least) analytic in Ω \ ω, preventing
+exact controllability to hold true.
+On the one hand, this argument for (non)-exact controllability by on-off shape controls fails since the
+control may act everywhere. On the other hand, our approach heavily relies on targeting a ball B(yf, ε)
+with ε > 0. As a result, exact nonnegative controllability by on-off shape controls is an open and seemingly
+difficult question.
+A related matter is that of the cost of approximate controllability as a function of ε → 0.
+Abstract constrained control.
+The strategy of proof developed in this article hints at generalisations,
+where the method is applied to abstract linear control problems with abstract constraint sets U.
+In particular, we expect it to lead to necessary and sufficient conditions for controllability when U is
+convex. When U is not convex as is the case for on-off shape controls, this requires to study the convex
+hull of U, following the relaxation approach. This abstract setting should allow us to discern how one can
+design a cost function FT , analogous to (4), tailored to a given U.
+Further sufficient conditions should be derived to ensure that optimal controls in the convex hull of U
+actually are in the original constraint set U. In the present work, analytic-hypoellipticity and the (GUC)
+property play that role in the case of on-off shape controls.
+This will be the subject of an ulterior article.
+Regularity of the sets ω(t).
+Another problem is to analyse the complexity of the sets ω(t) occupied by
+optimal controls over time. For instance, how smooth (BV regularity, number of connected components,
+etc) are the sets ω(t) achieving approximate controllability?
+In view of applications, these are important issues for the controls to be implementable in practice.
+For example, if the sets ω(t) are constrained to depend on a few parameters, or if they are restricted to
+rigid movements, controllability is a totally open question.
+Numerical approximation of optimal controls.
+Optimal controls are given explicitly in terms of
+optimisers of the dual problem: the constructive nature of our approach means that optimal controls may
+be numerically computed, at least on paper.
+Providing reliable and efficient methods to compute optimal controls is a difficult issue which has been
+studied in the case of Lions’s cost functional with ε = 0 (i.e., exact controllability) [7, 20]. Similar results
+in a generalised setting with our Fenchel-Rockafellar-based approach would be valuable.
+Contrary to Lions’s cost functional, we note that ad hoc algorithms are required in order to cope with
+functions that are not necessarily differentiable, as is the case in the present paper. Recent primal-dual
+algorithms designed for optimisation problems with objective functions of the form F(u) + G(LT u) are
+likely to be good candidates [10].
+Outline of the paper.
+First, Section 2 lays out the convex analytic framework, that of Fenchel-
+Rockafellar duality, and how it may be applied to constrained approximate controllability.
+We then
+introduce the bathtub principle and interpret it in terms of Fenchel conjugation in order to design a
+relevant optimal control problem for our purposes. Section 3 is dedicated to the proof of our nonnegative
+approximate controllability result given by Theorem 3.1, and Section 4 to that of the obstruction result,
+Theorem 4.1. Finally, Section 5 gathers our results about further obstructions when the control amplitude
+is bounded, along with our analysis of the corresponding minimal time control problem.
+9
+
+2
+Building the optimal control problem
+2.1
+Convex analytic framework
+Let H be a Hilbert space. We let Γ0(H) be the set of functions from H to ]−∞, +∞] that are convex,
+lower semicontinuous (abbreviated lsc) and proper (i.e., not identically +∞). For f ∈ Γ0(H), we let
+dom(f) = {x ∈ H, f(x) < +∞}
+be its domain.
+Fenchel conjugate.
+For a proper function f : H → ]−∞, +∞], we denote f ∗ : H → ]−∞, +∞] its
+convex conjugate, given by the convex lsc function
+f ∗(y) := sup
+x∈H
+�
+⟨y, x⟩ − f(x)
+�
+,
+∀y ∈ H.
+Support and indicator functions.
+Given a subset C ⊂ H, the indicator function of C is the function
+defined by
+δC(x) :=
+�
+0
+if x ∈ C
++∞
+if x /∈ C ,
+∀x ∈ H,
+and the support function of C is defined by
+σC(p) := sup
+x∈C
+⟨p, x⟩ = δ∗
+C(p),
+∀p ∈ H,
+i.e., the Fenchel conjugate function of the indicator function of C.
+Subdifferentials.
+For f ∈ Γ0(H), we let
+∂f(x) := {p ∈ H, ∀y ∈ H, f(y) ≥ f(x) + ⟨p, y − x⟩},
+be its subdifferential at a point x ∈ H.
+Various common properties of Fenchel conjugates, support functions and subdifferentials are used
+throughout the article. These are all recalled in Appendix A, where a few additional lemmas are proved.
+2.2
+Approximate controllability by Fenchel duality ([24])
+Let us explain how the approximate controllability problem is reformulated in the context of Fenchel-
+Rockafellar duality [40] (see A.4 for a general presentation), following the strategy introduced by Lions
+in [24]. We work with the control problem (5), with the control space E := L2((0, T ) × Ω) and the state
+space L2(Ω).
+By Duhamel’s formula y(T ) = ST y0 + LT u, the inclusion y(T ) ∈ B(yf, ε) (where the closed ball
+of center yf and radius ε is with respect to the L2(Ω)-norm) can equivalently be written as LT u ∈
+B(yf − ST y0, ε).
+Given some cost functional FT : E → [0, +∞] ∈ Γ0(E), consider the optimal control problem (which
+we will refer to as the primal problem)
+π := inf
+u∈E FT (u) + GT,ε(LT u).
+where
+GT,ε := δB(yf−ST y0,ε) ∈ Γ0(L2(Ω)).
+10
+
+Now consider the Fenchel dual to the above problem, which writes
+d = −
+inf
+pf∈L2(Ω) JT,ε(pf),
+JT,ε(pf) := F ∗
+T (L∗
+T pf) + G∗
+T,ε(−pf).
+(8)
+Thanks to the formulae for conjugates, we find
+G∗
+T,ε(z) = ⟨yf − ST y0, z⟩L2 + ε∥z∥L2,
+leading to
+JT,ε(pf) = F ∗
+T (L∗
+T pf) − ⟨yf − ST y0, pf⟩L2 + ε∥pf∥L2.
+We recall that p = L∗
+T pf solves the adjoint equation
+�
+pt + A∗p = 0,
+p(T ) = pf in Ω.
+(9)
+Strong duality.
+Weak duality π ≥ d always holds. According to the Fenchel-Rockafellar duality theo-
+rem recalled in Appendix A.4, the existence of pf ∈ dom(G∗
+T,ε) such that F ∗
+T is continuous at L∗
+Tpf is a
+sufficient condition for strong duality π = d to hold. Since dom(G∗
+T,ε) = L2(Ω), this condition reduces to
+the existence of a point of continuity of the form L∗
+T pf for F ∗
+T . In the cases covered here, we shall check
+that the chosen F ∗
+T is continuous at 0. When strong duality obtains, it is therefore equivalent to work
+with the dual problem, which is easier to handle especially when it has full domain, i.e., its objective
+function is finite everywhere.
+Non-trivial strong duality.
+Furthermore, the primal value π is attained if finite, i.e., if this equality
+is not the trivial +∞ = +∞ (the uncontrollable case). Thus, if d is finite, π is finite as well and attained:
+we may speak of optimal controls.
+This requirement that d be finite is by far the subtlest one.
+It may be tackled by proving that
+the functional JT,ε underlying the dual problem (written in infimum form infpf∈L2(Ω) JT,ε(pf)) has a
+minimum. In practice, we will always find this to be the case, as the dual problem is usually unconstrained
+(depending on the choice of FT ), unlike the primal problem. Hence, both π and d will be attained and,
+from Proposition A.8, any optimal dual variable p⋆
+f is such that any optimal control u⋆ satisfies
+u⋆ ∈ ∂F ∗
+T (L∗
+T p⋆
+f).
+(10)
+Proposition 2.1. Assume that, for any y0, yf ∈ L2(Ω) such that yf ≥ ST y0 and any ε > 0,
+• there exists pf ∈ L2(Ω) such that F ∗
+T is continuous at L∗
+T pf,
+• d ̸= +∞.
+If for any dual optimal variable p⋆
+f, the controls characterised by (10) are in U+, then the control system (5)
+is nonnegatively approximately controllable with controls in U+ in time T .
+This shows how the choice of the cost FT impacts the existence and properties of optimal controls. More
+precisely, it must be pointed out that all the hypotheses of Proposition 2.1 are formulated with respect
+to the dual problem. Accordingly, from the next section onwards, our strategy will be to determine an
+adequate optimal control problem by designing its dual problem.
+Finally, we emphasise that (10) is only a necessary condition for the optimality of u⋆. It becomes
+sufficient only when ∂F ∗
+T (L∗
+T p⋆
+f) is reduced to a singleton, which will occur in our case.
+11
+
+2.3
+Convex analytic interpretation of the bathtub principle
+Starting from the set of on-off shape controls of amplitude 1,
+UL := {χω,
+ω ⊂ Ω,
+|ω| ≤ L|Ω|},
+(11)
+where | · | denotes the Lebesgue measure, we define the closure of its convex hull (which is also its weak-∗
+closure for the L∞(Ω)-topology)
+U L :=
+�
+u ∈ L2(Ω), 0 ≤ u ≤ 1 and
+�
+Ω
+u ≤ L|Ω|
+�
+.
+(12)
+Given a fixed v ∈ L2(Ω), we consider the (static) maximisation problem
+sup
+u∈UL
+�
+Ω
+u(x)v(x) dx.
+(13)
+This a relaxed version of the so-called bathtub principle, which gives the maximum value as well as a
+characterisation of maximisers. For the sake of readability, we introduce the necessary results for what
+follows, but refer to Appendix B for a more detailed statement. For a given v ∈ L2(Ω), we let
+Φv(r) := |{v > r}| .
+(14)
+and its pseudo-inverse function
+Φ−1
+v (s) := inf
+r∈R {Φv(r) ≤ s} = inf
+r∈R {|{v > r}| ≤ s} .
+(15)
+Finally, we set
+h(v) := max(0, Φ−1
+v (L|Ω|)).
+(16)
+Remark 2.2. The function Φ−1
+v
+is the Schwarz radial rearrangement of v, see [18].
+Lemma 2.3 (relaxed bathtub principle). Let v ∈ L2(Ω). The maximum in (13) equals
+� min(Φv(0),L|Ω|)
+0
+Φ−1
+v .
+Furthermore, if all the level sets of the function v have measure zero, the maximum equals �
+{v>h(v)} v and
+is uniquely attained by
+u⋆ := χ{v>h(v)},
+We refer to Lemma B.2 for the comprehensive statement of the relaxed bathtub principle. We may
+interpret the above results as a formula for the support function of U L in L2(Ω):
+σU L(v) = sup
+u∈UL
+�
+⟨u, v⟩L2 − δUL(u)
+�
+) = sup
+u∈U L
+�
+Ω
+u(x)v(x) dx =
+� min(Φv(0),L|Ω|)
+0
+Φ−1
+v .
+(17)
+First, using the characterisation of the subdifferential given in Appendix A, we arrive at the following
+characterisation for the solutions to the maximisation problem given in Lemma 2.3:
+Proposition 2.4. Let v ∈ L2(Ω). The maximisers of the relaxed bathtub problem are given by the elements
+of ∂σU L(v).
+Proof. We have, for v ∈ L2(Ω),
+arg max
+u∈UL
+⟨u, v⟩L2 = arg max
+u∈L2 ⟨u, v⟩L2 − δUL(u) =
+�
+u ∈ L2,
+⟨u, v⟩L2 − δUL(u) = σU L(v)
+�
+= ∂σU L(v),
+where we have used (δU L)∗ = σU L along with (46) given in Appendix A.1.
+12
+
+Remark 2.5. Proposition 2.4 implies that for any maximiser u of the relaxed bathtub problem,
+v ∈ ∂δUL(u).
+Proposition A.4 in Appendix A.2 shows that this implies u ∈ ∂UL. Propositions 2.3 and 2.4 characterise
+exactly which elements of the boundary ∂UL are involved.
+2.4
+From the static bathtub principle to the dual problem and its correspond-
+ing cost
+Following Section 2.2 and recalling Proposition 2.1 and (10),we are looking for a cost function FT such
+that the corresponding optimal controls are on-off shape controls, and we have established that it suffices
+to find a conjugate functional F ∗
+T satisfying two key properties. First, if there exists pf ∈ L2(Ω) such that
+F ∗
+T is continuous at L∗
+Tpf, and if we can provide the existence of a minimiser p⋆
+f of JT,ε, then π is attained
+and there exists at least one optimal control. Second, any optimal control u⋆ should satisfy (10) so F ∗
+T
+should be chosen so that the subdifferential ∂F ∗
+T (L∗
+T p⋆
+f) contains only characteristic functions. Given
+Proposition A.4 and Section 2.3, elements of
+∂σU L(v),
+v ∈ L2(Ω)
+are bang-bang, in the sense that they are characteristic functions, under some mild conditions that v must
+satisfy.
+To go from the static optimisation problem to the adequate dual problem, we add a time dependency.
+Moreover, to ensure coercivity of the dual problem, we add a quadratic exponent. All in all, we choose
+the following conjugate:
+F ∗
+T (p) := 1
+2
+�� T
+0
+σU L(p(t)) dt
+�2
+= 1
+2
+�� T
+0
+� min(Φp(t)(0),L|Ω|)
+0
+Φ−1
+p(t)(s) ds dt
+�2
+,
+∀p ∈ E.
+(18)
+Since the controllability problem corresponds to G∗
+T,ε := σB(yf−ST y0,ε), this defines a dual problem
+of the form (8). As pointed out in Section 2.2, we are now dealing with an unconstrained optimisation
+problem (i.e., the domain of the functions involved is the whole space L2(Ω)).
+We can now derive the corresponding constrained optimisation problem, by compute the actual cost FT
+associated to the choice (18) for F ∗
+T . We find, as announced by (4) in the introduction:
+Lemma 2.6. The function F ∗
+T defined by (18) satisfies F ⋆
+T ∈ Γ0(E). Defining
+M(u) := max
+�
+∥u∥L∞, ∥u∥L1
+L|Ω|
+�
+,
+∀u ∈ L2(Ω),
+its Fenchel conjugate (F ∗
+T )∗ = FT is given for u ∈ E by
+FT (u) = 1
+2
+�
+sup
+t∈[0,T ]
+M2(u(t, ·))
+�
++ δ{u≥0}(u) = 1
+2
+�
+sup
+t∈[0,T ]
+max
+�
+∥u(t, ·)∥L∞, ∥u(t, ·)∥L1
+L|Ω|
+�2�
++ δ{u≥0}(u).
+Proof. Lemma A.5 in Appendix A.3 shows that F ∗
+T ∈ Γ0(E). We proceed by computing (F ∗
+T )∗. We have
+F ∗
+T = 1
+2H2, with H(p) :=
+� T
+0 σU L(p(t, ·)) dt. Since σU L ∈ Γ0(L2(Ω)), the definition of the support function
+together with Lemma A.5 in Appendix show that H ∈ Γ0(E) with
+H∗(u) =
+� T
+0
+σ∗
+U L(u(t, ·)) dt =
+� T
+0
+δUL(u(t, ·)) dt.
+Furthermore, we find the conjugate of 1
+2H2 by using (45) in Appendix A.1, which leads to
+�1
+2H2
+�∗
+(u) = min
+α>0
+�1
+2α2 + αH∗ �u
+α
+��
+,
+13
+
+where we used that dom(H) = E. Clearly,
+H∗ � u
+α
+�
+= 0
+if
+u ≥ 0 and
+sup
+t∈[0,T ]
+M(u(t, ·)) ≤ α,
+and is +∞ otherwise.
+We end up with
+�1
+2H2
+�∗
+(u) = min
+α>0
+�1
+2α2 + δ{supt∈[0,T ] M(u(t,·))≤α}(u)
+�
++ δ{u≥0}(u) = FT (u).
+The lemma is proved.
+Note that F ∗
+T is (positively)-homogeneous of degree 2. Indeed, v �→ σU L is positively-homogeneous of
+degree 1, i.e., σU L(λv) = λσU L(v) for all λ > 0, v ∈ L2(Ω).
+We end this subsection by establishing a crucial property satisfied by F ∗
+T . It will play a role similar to
+that of the unique continuation property in proving that the dual functional is coercive.
+Lemma 2.7. For all pf ∈ L2(Ω), if F ∗
+T (L∗
+T pf) = 0, then pf ≤ 0.
+Proof. By definition of F ∗
+T and using (17), the equality F ∗
+T (L∗
+T pf) = 0 entails
+sup
+u∈UL
+⟨u, p(t, ·)⟩L2 =
+� min(Φp(t,·)(0),L|Ω|)
+0
+Φ−1
+p(t,·) = 0,
+for a.e. t ∈ (0, T ),
+where p is the solution to the adjoint equation (9) such that p(T ) = pf.
+For a fixed t ∈ (0, T ), it is easily seen that the supremum on the left-hand side is positive as soon as
+p(t, ·) > 0 on a set of positive measure, by appropriately choosing u supported in this set. We have proved
+that p(t, ·) ≤ 0 for a.e. t ∈ (0, T ) and in particular that pf ≤ 0 since p ∈ C([0, T ]; L2(Ω)).
+3
+Approximate controllability results
+In this section, we state and prove our main result on approximate controllability. The full statement for
+our Theorem A is given with more details below, for general linear operators, satisfying the properties
+given in Section 1.3.
+We are considering the following optimal control problem:
+π = inf
+u∈E FT (u) + GT,ε(LT u) = inf
+u∈E
+�
+1
+2 sup
+t∈[0,T ]
+max
+�
+∥u(t)∥L∞, ∥u(t)∥L1
+L|Ω|
+�2
++ δB(yf−ST y0,ε)(LT u)
+�
+, (19)
+whose dual problem is
+d = −
+inf
+pf∈L2(Ω) JT,ε(pf) = −
+inf
+pf∈L2(Ω)
+
+
+
+1
+2
+�� T
+0
+σU L(L∗
+T pf(t)) dt
+�2
+− ⟨yf − ST y0, pf⟩L2 + ε∥pf∥L2
+
+
+ .
+(20)
+Theorem 3.1. Assume that A∗ satisfies the (GUC) property and that ∂t − A∗ is analytic-hypoelliptic.
+Then for the cost function FT defined by (4),
+• strong duality π = d holds,
+• the dual problem (20) is attained at a unique minimiser p⋆
+f ∈ L2(Ω),
+• there exists a unique optimal control u⋆ ∈ E for the primal problem (19).
+14
+
+Furthermore, if the target is not reached by the trivial control u ≡ 0, i.e., if
+yf /∈ B(ST y0, ε),
+(21)
+then the optimal control is given by
+u⋆(t, ·) = M χ{p⋆(t,·)>h(p⋆(t,·))},
+M =
+� T
+0
+�
+{p⋆(t,·)>h(p⋆(t,·))}
+p⋆(t, x) dt dx,
+(22)
+where h is defined by (16), and where p⋆ = L⋆
+T p⋆
+f is the solution of the adjoint equation (9) satisfying
+p⋆(T ) = p⋆
+f.
+Remark 3.2. As mentioned in the introduction, Theorem 3.1 holds for uniformly elliptic operators of the
+form (7) with analytic coefficients, and in particular the classical heat equation with Dirichlet boundary
+conditions, on a bounded, open, connected domain with C2 boundary.
+Throughout this section, we assume the hypotheses sufficient for Theorem 3.1, i.e., that A∗ satisfies
+the (GUC) property and that ∂t−A∗ is analytic-hypoelliptic. The proof is then scattered into the section
+as follows:
+• First, we establish that strong duality holds.
+• Second, we prove that the corresponding dual functional is coercive: hence, the dual functional
+attains its minimum (the dual problem attains its maximum).
+• Third we prove (22).
+• Finally, we investigate the uniqueness of optimal variables.
+Remark 3.3. As the proofs show, the first two steps and the uniqueness of dual optimal variables are
+valid for any operator A. In particular, they do not require that A∗ satisfy the (GUC) property and
+that ∂t − A∗ be analytic-hypoelliptic. Hence, strong duality and existence of optimal controls does not
+require any specific assumption the semigroup must satisfy. This remark will be of importance in the next
+subsection where we manipulate optimal controls without making these two hypotheses.
+3.1
+Strong duality
+Lemma 3.4. F ∗
+T is continuous at 0 = L∗
+T 0.
+Proof. By the Cauchy-Schwarz inequality,
+∀u ∈ U L,
+⟨u, v⟩L2 ≤ ∥u∥L2∥v∥L2 ≤ |Ω|1/2∥v∥L2,
+which leads to
+σU L(v) =
+� min(Φv(0),L|Ω|)
+0
+Φ−1
+v
+≤ |Ω|1/2∥v∥L2.
+As a result, we may bound with the Cauchy-Schwarz inequality again
+0 ≤ F ∗
+T (p) ≤ 1
+2|Ω|
+�� T
+0
+∥p(t, ·)∥L2 dt
+�2
+≤ 1
+2T |Ω| ∥p∥2
+E,
+hence the continuity of F ∗
+T at 0 = L∗
+T0.
+The above lemma shows that the first condition of Proposition 2.1 is satisfied, i.e., strong duality
+holds.
+15
+
+3.2
+Coercivity of JT,ε, nonnegative approximate controllability
+Proposition 3.5. The functional JT,ε defined by
+JT,ε(pf) =
+�
+1
+2
+� T
+0
+σUL(L∗
+T pf)dt
+�2
+− ⟨yf − ST y0, pf⟩L2 + ε∥pf∥L2.
+(23)
+is coercive on L2(Ω), i.e.,
+JT,ε(pf) −−−−−−−→
+∥pf∥L2 →∞ ∞,
+and thus attains its minimum.
+Proof. Since we know that JT,ε is convex, proper, strongly lsc, if JT,ε is coercive then infpf ∈L2(Ω) JT,ε(pf) ̸=
+−∞, and that it is actually attained.
+We will actually prove a stronger condition than coercivity, namely
+lim inf
+∥pf∥L2 →∞
+JT,ε(pf)
+∥pf∥L2 > 0.
+Our method of proof follows that of [19, 30]. Take a sequence ∥pn
+f ∥L2 → ∞. We denote qn
+f :=
+pn
+f
+∥pn
+f ∥L2 ,
+and qn ∈ E the corresponding solution of the adjoint equation (9), i.e., such that qn(T ) = qn
+f , which by
+linearity is
+pn
+∥pn
+f ∥L2 , where pn = L∗
+T pn
+f is the solution of (9) such that pn(T ) = pn
+f . By positive homogeneity
+of F ∗
+T (of degree 2), we have
+JT,ε(pn
+f )
+∥pn
+f ∥L2 = ∥pn
+f∥L2F ∗
+T (L∗
+T qn
+f ) −
+�
+yf − ST y0, qn
+f
+�
+L2 + ε
+and hence if lim inf
+n→∞ F ∗
+T (L∗
+T qn
+f ) > 0, then
+lim inf
+n→∞
+JT,ε(pn
+f )
+∥pn
+f∥L2 = +∞.
+Let us now treat the remaining case where lim inf
+n→∞ F ∗
+T (L∗
+T qn
+f ) = 0. Since ∥qn
+f ∥L2 = 1, upon extraction of a
+subsequence, we have qn
+f ⇀ qf weakly in L2(Ω) for some qf ∈ L2(Ω). Since L∗
+T ∈ L(L2(Ω), E), we have
+L∗
+Tqn
+f ⇀ L∗
+T qf weakly in E.
+Now, since F ∗
+T is convex and strongly lsc on E, it is (sequentially) weakly lsc and taking the limit we
+obtain F ∗
+T (L∗
+T qf) = 0. By Lemma 2.7, we infer that qf ≤ 0.
+Then, recalling that the target satisfies yf − ST y0 ≥ 0 ⇔ yf ≥ ST y0, we end up with
+lim inf
+n→∞
+JT,ε(pn
+f )
+∥pn
+f∥L2 ≥ −⟨yf − ST y0, qf⟩L2 + ε ≥ ε > 0,
+which concludes the proof.
+3.3
+Characterisation of the minimisers
+In this section, we assume that the target is not reached with the trivial control u = 0, i.e.,
+yf /∈ B(ST y0, ε)
+Note that, if (21) is not satisfied, the control u = 0 steers y0 to the target, and is indeed a control in UL
+shape.
+We first remark the following fact:
+16
+
+Lemma 3.6. Under Assumption (21), any minimiser p⋆
+f of (20) satisfies p⋆
+f ̸= 0.
+Proof. Suppose p⋆
+f = 0. Then, d = 0 and by strong duality, π = 0. By Proposition 3.5, this value is
+attained: there exists some optimal control u⋆ such that
+FT (u⋆) + GT,ε(LT u⋆) = 0.
+This implies that FT (u⋆) = GT,ε(LT u⋆) = 0. On the one hand, this leads to u⋆(t, ·) = 0 for a.e t ∈ (0, T ),
+i.e., u = 0, and on the other hand GT,ε(LT u⋆) = GT,ε(0) = 0, which is equivalent to 0 ∈ B(yf − ST y0, ε).
+This contradicts Assumption (21).
+Proposition 3.7. Under Assumption (21), any optimal control for (19) is of the form (22), with p⋆ the
+solution of the adjoint equation (9) such that p⋆(T ) = p⋆
+f, where p⋆
+f is any dual optimal variable.
+Proof. Thanks to Proposition 3.5, we know that JT,ε defined by (20) attains its minimum. Let p⋆
+f be a
+minimiser for JT,ε, i.e., an optimal dual variable. From Lemma 3.6, we have p⋆
+f ̸= 0. We denote p⋆ the
+solution of the adjoint equation (9) such that p⋆(T ) = p⋆
+f.
+Let u⋆ be an optimal control.
+Thanks to Lemma 3.4, we can apply the first identity of (50) in
+Proposition A.8 (see Appendix A.4) to obtain u⋆ ∈ ∂F ∗
+T (L∗
+T p⋆
+f) = ∂F ∗
+T (p⋆). Using again the notation
+H(p) :=
+� T
+0 σU L(p(t)) dt, so that F ∗
+T = 1
+2H2, we have H(p⋆) ≥ 0 and dom(H) = L2(Ω).
+Then, applying the generalised chain rule (see [11, Theorem 2.3.9, point (ii)]) with the functions
+x �→
+1
+2x2 and H, we compute the subdifferential of the convex functional F ∗
+T : u⋆ ∈ H(p⋆) ∂H(p⋆).
+Applying Lemma A.5 to H, we find u⋆(t, ·) ∈ M∂σU L(p⋆(t, ·)) for a.e. t ∈ (0, T ), with M := H(p⋆).
+Now, let t ∈ (0, T ) be fixed and let us justify that all level sets of p⋆(t, ·) are of measure zero, i.e.,
+|{p⋆(t, ·) = λ}| = 0,
+∀λ ∈ R,
+Indeed, since the operator ∂t − A∗ is analytic-hypoelliptic, we know that p⋆(t, ·) is analytic on Ω. Hence,
+its level sets are of measure zero unless p⋆(t, ·) = S∗
+T −tp⋆
+f is constant. Using the (GUC) property, this
+leads to p⋆
+f = 0, contradicting (21).
+Applying Propositions 2.3 and 2.4, and recalling that ∂σUL(p⋆(t, ·)) = {χ{p⋆(t,·)>h(p⋆(t,·))}}, we obtain
+the result.
+Remark 3.8. As evidenced by the proof, a weaker (but less workable) property than analytic-hypoellipticity
+is sufficient to infer that optimal controls are on-off shape controls. Indeed, it suffices to require either
+one of the following conditions (in decreasing order of strength):
+(i) All solutions t �→ p(t) of the adjoint equation such that p(T ) ̸= 0 have zero-measure level sets.
+(ii) For all solutions t �→ p(t) of the adjoint equation such that p(T ) ̸= 0, the level sets {p(t, ·) =
+h(p(t, ·))} (see (16) for the definition of h(p)) have measure 0.
+(iii) For all solutions t �→ p(t) of the adjoint equation such that p(T ) ̸= 0,
+�
+|{p(t, ·) = h(p(t, ·))}| = L|Ω| − |{p(t, ·) > h(p(t, ·))}|,
+if h(p(t, ·)) ̸= 0
+|{p(t, ·) = h(p(t, ·))}| = 0,
+if h(p(t, ·)) = 0
+for a.e. t ∈ [0, T ].
+Note that requirement (iii) is minimal (see Lemma B.2 and Remark B.3).
+Finally, an even weaker requirement would be to restrict any of the above (i), (ii) or (iii) to a single
+solution t �→ p⋆(t) of the adjoint equation, namely that with p⋆(T ) = p⋆
+f where p⋆
+f is the unique dual
+optimal variable (see below for the uniqueness of optimal variables).
+17
+
+3.4
+Uniqueness
+Our first uniqueness statement below (i.e., that of the dual optimal variable) is a consequence of Fenchel-
+Rockafellar duality, and the fact that we work with a Hilbert space, rather than specific properties of the
+evolution equation under consideration.
+Remark 3.9. Still applying Proposition A.8, we get
+LT u⋆ ∈ ∂G∗
+T,ε(−p⋆
+f) = ∂σB(yf−ST y0,ε)(−p⋆
+f).
+Flipping the subdifferentials, we get −p⋆
+f ∈ ∂δB(yf−ST y0,ε)(LT u⋆). Thanks to Proposition A.4, this means
+that LT u⋆ lies at the boundary of the closed ball B(yf − ST y0, ε).
+Proposition 3.10. Under the assumptions of Theorem 3.1, the primal-dual optimal pairs (u⋆, p⋆
+f) are
+unique.
+Proof. Uniqueness of the dual optimal variable. First note that if Assumption (21) does not hold,
+then 0 is the unique optimal control, i.e.,
+{LTu⋆, u⋆ is optimal} = {0}.
+(24)
+On the other hand, if Assumption (21) holds, according to Remark 3.9,and since the set of minimisers of
+a convex function is convex, the set {LT u⋆, u⋆ is optimal} is a convex subset of the sphere S(yf −ST y0, ε).
+The closed ball being strictly convex since we are working in the Hilbert space L2(Ω), there exists some
+y⋆ ∈ B(yf − ST y0, ε) with ∥y⋆ − (yf − ST y0)∥L2 = ε such that
+{LTu⋆, u⋆ is optimal} = {y⋆}.
+(25)
+Thus, in any case, the set of targets reached by optimal controls is always reduced to a single point.
+Now, let p⋆
+f be a dual optimal variable, and u⋆ an optimal control. Then, as strong duality holds,
+Proposition A.7 implies that the pair (u⋆, p⋆
+f) satisfies the two optimality conditions from (25). We then
+have
+p⋆
+f ∈ −∂GT,ε(LT u⋆) = −∂δB(yf−ST y0,ε)(LT u⋆).
+(26)
+If Assumption (21) does not hold, then (26) and (24) imply p⋆
+f ∈ −∂δB(yf−ST y0,ε)(0).
+If ∥yf −
+ST y0∥L2 < ε, then 0 ∈ B(yf − ST y0, ε) and
+p⋆
+f ∈ −∂δB(yf−ST y0,ε)(0) = {0}.
+(27)
+Otherwise, 0 ∈ ∂B(yf − ST y0, ε) and (47) yield
+p⋆
+f ∈
+�
+λyf − ST y0
+ε
+, λ ≥ 0
+�
+= {λ(yf − ST y0), λ ≥ 0}.
+Restricting the function JT,ε defining the primal problem (19) to the above half-line, using the homo-
+geneities of each of its terms, and the fact that ∥yf − ST y0∥L2 = ε, we get
+γ0(λ) := JT,ε(λ(yf − ST y0)) = a0λ2,
+λ ≥ 0.
+(28)
+It is clear that 0 is the unique minimiser of γ0. From (27) and (28), 0 is the unique dual optimal variable
+if (21) does not hold.
+If Assumption (21) holds, then (26) and (25) imply
+p⋆
+f ∈ −∂δB(yf−ST y0,ε)(y⋆) = −∂δB(0,1)
+�y⋆ − (yf − ST y0)
+ε
+�
+.
+18
+
+Since y⋆ lies at the boundary of B(yf − ST y0, ε), formula (47) yields
+p⋆
+f ∈
+�
+λ
+�yf − ST y0 − y⋆
+ε
+�
+, λ ≥ 0
+�
+= {λ (yf − ST y0 − y⋆) , λ ≥ 0}.
+Restricting JT,ε to the above half-line as previously, we find
+γ(λ) := JT,ε(λ(yf − ST y0 − y⋆)) = aλ2 + bλ,
+λ ≥ 0,
+where, using ∥yf − ST y0 − y⋆∥L2 = ε and the homogeneities involved a = F ∗
+T (L∗
+T (yf − ST y0 − y⋆)) and
+b = −⟨yf − ST y0, yf − ST y0 − y⋆⟩L2 + ε2. By coercivity, a > 0, and given Lemma 3.6, we have b < 0.
+Thus, γ has a unique minimiser λ⋆ := −b/2a > 0. Hence, p⋆
+f = λ⋆(yf − ST y0 − y⋆), and the dual
+optimal variable is unique.
+Uniqueness of the optimal control.
+If Assumption (21) does not hold, then 0 is the unique optimal
+control.
+Now, suppose that Assumption (21) holds. We know from the proof of Proposition 3.7 that a given
+dual optimal variable uniquely determines one optimal control. Moreover, as we have proved that strong
+duality holds, we can apply Proposition A.7: for any pair of primal and dual optimal variables, the
+relations (48) are satisfied. That is, any optimal control u⋆ is uniquely determined by the unique dual
+optimal variable p⋆
+f through the identity u⋆ ∈ ∂F ∗
+T (L∗
+T p⋆
+f).
+4
+Obstructions to controllability
+We here prove Theorem B, through the more general result below in the case of second-order uniformly
+elliptic operators of the form (7). We use the notation A ⊂⊂ B to mean that there exists a compact set
+K such that A ⊂ K ⊂ B.
+Theorem 4.1. Let U+ ⊂ L2(Ω) be a constraint set of nonnegative controls. Assume that there exists a
+ball B(x, r) ⊂ Ω such that
+∀u ∈ U+,
+supp(u) ∩ B(x, r) = ∅.
+Let A be a second-order uniformly elliptic operator of the form (7). Let y0 = 0 and yf ∈ L2(Ω) be any
+target such that yf ≥ ST y0 = 0, yf ̸= 0 and supp(yf) ⊂ B(x, r). Then there exist T ⋆ > 0 and ε > 0 such
+that for any time T ≤ T ⋆, no control with values in U+ can steer 0 to B(yf, ε).
+The proof relies on the following lemma, inspired by [36].
+Lemma 4.2. Let B(x, r) ⊂⊂ Ω. Under the assumptions of Theorem 4.1, for any K ⊂ B(x, r) compact,
+there exists pf ∈ L2(Ω) such that
+(i) pf < 0 on K,
+(ii) ∃ T ⋆ > 0 such that for all t ∈ (0, T ⋆), p(t, ·) ≥ 0 on Ω\B(x, r), where p solves the adjoint equation (9)
+with p(T ) = pf.
+Proof. Let us build pf such that for all 1 < r < +∞, pf ∈ W 2,r(Ω) ∩ W 1,r
+0
+(Ω), with pf < 0 on K, pf > 0
+on Ω \ B(x, r), pf = 0 on ∂Ω, and ∂νpf < 0 on ∂Ω.
+To that end, we denote ϕ1 the first eigenfunction of the Dirichlet Laplacian on Ω, which satisfies
+ϕ1 > 0 on Ω and ∂νϕ1 < 0 on ∂Ω and since Ω is of class C2, ϕ1 ∈ W 2,r(Ω) ∩ W 1,r
+0
+(Ω) for all 1 < r <
++∞ [9][Theorem 9.32]. We then set pf = ξϕ1 where ξ ∈ C∞(Ω) is chosen to satisfy ξ = 1 on Ω \ B(x, r)
+and ξ = −1 on K. The function pf satisfies all the required properties (note that pf = ϕ1 locally around
+∂Ω since B(x, r) ⊂⊂ Ω, hence ∂νpf = ∂νϕ1 < 0 on ∂Ω).
+We now set q(t) = p(T − t), so that q solves the (forward) adjoint equation (9) with q(0) = pf. Then,
+by parabolic regularity, we both have q ∈ C([0, T ] × Ω) and ∂νq ∈ C([0, T ] × ∂Ω) [36][Theorem 8.1]. As
+19
+
+a result, by continuity there exists T ⋆ such that ∂νq < 0 over [0, T ⋆] × ∂Ω, there exists some compact
+set K1 containing B(x, r) such that q ≥ 0 on [0, T ⋆] × (Ω \ K1).
+Then, upon reducing T ⋆ if necessary and by continuity again, we have q ≥ 0 over [0, T ⋆]×(K1\B(x, r)),
+which concludes the proof.
+Proof of Theorem 4.1. Upon reducing r, we may without loss of generality assume that B(x, r) ⊂⊂ Ω.
+Letting K := supp(yf), we consider pf as given by Lemma 4.2, and the corresponding T ⋆.
+Let T ≤ T ⋆ be fixed.
+For any control u ∈ E, any y0, yf ∈ L2(Ω), any solution to the adjoint
+equation (9) such that p(T ) = pf, we have
+d
+dt⟨y(t), p(t)⟩L2 = ⟨p(t), u(t)⟩L2. As a result and owing to
+y0 = 0,
+⟨y(T ), pf⟩L2 =
+� T
+0
+⟨p(t), u(t)⟩L2 dt.
+(29)
+We now assume by contradiction that, for any ε > 0 there exists a nonnegative control uε ∈ E
+satisfying ∀t ∈ (0, T ), supp(uε(t)) ∩ B(x, r) = ∅ and steering y0 = 0 to the ball B(yf, ε) in time T . We
+inspect the sign of the equality (29) along the controls uε, ε > 0.
+On the one hand, because of the condition (ii) in Lemma 4.2 satisfied by p, and owing to uε ≥ 0, the
+right-hand side of (29) is nonnegative, i.e.,
+⟨y(T ), pf⟩L2 ≥ 0.
+(30)
+On the other hand, the left-hand side of (29) satisfies
+⟨y(T ), pf⟩L2 = ⟨yf, pf⟩L2 + ⟨y(T ) − yf, pf⟩L2 ≤ ⟨yf, pf⟩L2 + ε∥pf∥L2
+Now, ⟨yf, pf⟩L2 < 0, because of (i) in Lemma 4.2. As a result, there exists α > 0 such that pf ≤ −α on
+K, so that
+⟨yf, pf⟩L2 ≤ −α
+�
+K
+yf < 0,
+because yf is nonnegative and nontrivial on K by assumption.
+Hence, for ε > 0 small enough, ⟨y(T ), pf⟩L2 < 0, which contradicts (30).
+Remark 4.3. As the proof shows, the obstruction to nonnegative approximate controllability in U+ does
+not rely on the comparison principle, but is of dual nature as evidenced by the core idea behind it, i.e., to
+construct pf and yf violating equality (29). The proof of Theorem 4.1 follows directly from the existence
+of pf satisfying the assumptions of Lemma 4.2.
+Hence, this obstruction to nonnegative approximate
+controllability is rather general and will be satisfied by any operator (including uniformly second-order
+elliptic operator of the form (7)) for which such an element pf can be built.
+5
+Further comments
+5.1
+Properties of the value function in the general case
+For general linear operators generating a C0 semigroup, fixing Ω, L, ε, y0 and yf, we analyse the de-
+pendence with respect to the final time T , for the optimal control problem (19) studied in Section 3 for
+system (5).
+By Lemma 3.4 and Proposition 3.5, the optimal control problem (19) is well-posed, i.e., optimal
+controls exist (see also Remark 3.3), hence we may consider
+Π(T ) := 1
+2(M(T ))2 := inf{FT (u),
+u ∈ E,
+∥LTu − (yf − ST y0)∥L2 ≤ ε},
+T > 0.
+(31)
+When A∗ satisfies the (GUC) property and ∂t − A∗ is analytic-hypoelliptic, M(T ) is the amplitude of
+the unique optimal control in Proposition 3.7.
+20
+
+Recall that by strong duality, we have
+Π(T ) = 1
+2(M(T ))2 = −JT,ε(p⋆
+T ),
+∀T ≥ 0,
+(32)
+where p⋆
+T is the unique minimiser of JT,ε. This is exactly the identity obtained for the HUM method
+where the cost functional FT is just 1
+2∥ · ∥2
+E.
+We first establish the continuity of T �→ M(T ).
+Proposition 5.1. M (and thus Π) are continuous on (0, +∞).
+Proof. Using (32), we prove the continuity by showing that (pf, T ) �→ JT,ε(pf) (given by (23)) satisfies
+the assumptions of Lemma A.9 with H = L2(Ω) and Z = (0, +∞). Clearly, the first, second and fourth
+assumptions are satisfied, hence we are left with proving that (pf, T ) �→ JT,ε(pf) is weak-strong lower
+semicontinuous over L2(Ω) × (0, +∞). The last two terms of (23) are easily seen to be weak-strong lower
+semicontinuous over L2(Ω)×(0, +∞), hence we investigate the property for the remaining term F ∗
+T (L∗
+T pf).
+Given pf ∈ L2(Ω) and T > 0, let (pn
+f ) and (Tn) be two sequences such that pn
+f ⇀ pf, Tn → T . We
+decompose
+F ∗
+Tn(L∗
+Tnpn
+f ) = F ∗
+T (L∗
+T pn
+f ) +
+�
+F ∗
+Tn(L∗
+Tnpn
+f ) − F ∗
+T (L∗
+T pn
+f )
+�
+.
+By weak (sequential) lower semicontinuity of F ∗
+T over L2(0, T ; L2(Ω)), we find that the first term satisfies
+F ∗
+T (L∗
+T pf) ≤ lim inf
+n→+∞ F ∗
+T (L∗
+T pn
+f ).
+To conclude, we only need to prove that the second term tends to 0 as n → +∞.
+Using the notation qn for the solution to the forward adjoint problem such that qn(0) = pn
+f , i.e.,
+qn(t) = S∗
+t pn
+f , we have
+F ∗
+Tn(L∗
+Tnpn
+f ) − F ∗
+T (L∗
+T pn
+f ) = 1
+2
+�� Tn
+0
+σU L(qn(Tn − t)) dt
+�2
+− 1
+2
+�� T
+0
+σU L(qn(T − t))
+�2
+= 1
+2
+�� Tn
+T
+σU L(qn(t)) dt
+� �� Tn
+0
+σU L(qn(t)) dt +
+� T
+0
+σU L(qn(t)) dt
+�
+Using the bound 0 ≤ σU L(p) ≤ |Ω|1/2∥p∥L2 (see the proof of Lemma 3.4) and the estimate ∥St∥L(L2(Ω)) ≤
+C valid for all t ∈ [0, T + 1] with C > 0 some constant independent of n, we have
+�����
+� Tn
+0
+σU L(qn(t)) dt +
+� T
+0
+σU L(qn(t)) dt
+����� ≤ C|Ω|1/2(T + Tn) ∥pn
+f ∥L2,
+a bounded quantity, and
+�����
+� Tn
+T
+σU L(qn(t)) dt
+����� ≤ C|Ω|1/2|T − Tn| ∥pn
+f ∥L2,
+which tends to 0 as n → +∞.
+We now study the behaviour of M(T ) near T = 0 and T = +∞. We recall that M(T ) also depends
+on all other parameters y0, yf, ε and L.
+We now recall (see [35]) that there exist Cs > 0, α ∈ R such that forall t ≥ 0, ∥St∥L(L2(Ω)) ≤ Cseαt,
+and the semi-group generated by (A, D(A)) is said to be exponentially stable if α < 0.
+21
+
+Proposition 5.2. We have
+∀T > 0,
+M(T ) ≥ |α|∥yf − ST y0∥L2 − ε
+�
+L|Ω|(1 − eαT )
+.
+(33)
+Proof. Let u⋆
+T be an optimal control in time T for the optimal control problem (31), then
+∥LTu⋆
+T ∥L2
+=
+�����
+� T
+0
+ST −tu⋆
+T (t, ·)dt
+�����
+L2
+≤
+� T
+0
+∥ST −tu⋆
+T (t, ·)∥L2dt
+≤
+� T
+0
+eα(T −t)∥u⋆
+T(t, ·)∥L2dt ≤ 1
+|α|(1 − eαT )M(T )
+�
+L|Ω|.
+Now, by definition of our control problem, for all T > 0, ∥yf − ST y0∥L2 − ε ≤ ∥LTu⋆
+T ∥L2, and the result
+follows.
+Corollary 5.3. Assume that yf /∈ B(y0, ε). Then:
+1
+T = O
+T →0(M(T )).
+(34)
+In particular, M(T ) −−−→
+T →0 +∞.
+Assume that yf /∈ B(0, ε). If, additionally, (St)t≥0 is exponentially stable, then
+lim inf
+T →+∞ M(T ) > 0.
+(35)
+Proof. The estimate (34) is obtained by passing to the limit in (33), using that ST y0 −−−→
+T →0 y0: the lower
+bound behaves as ∥yf−y0∥L2−ε
+√
+L|Ω|
+1
+T . The inequality (35) is obtained by passing to the limit T → +∞ in (33),
+using that ST y0 −−−−→
+T →∞ 0:
+lim inf
+T →+∞ M(T ) ≥ |α|∥yf∥L2 − ε
+�
+L|Ω|
+> 0.
+5.2
+Obstructions
+We further investigate the behaviour of M, and establish results on the corresponding minimal time
+problem (37). The comparison principle formulated in (6) will be a key ingredient in our study.
+5.2.1
+Obstruction to reachability and small-time controllability
+Given the controllability result of Theorem 3.1, in order to study possible obstructions, we introduce a
+new bound on the amplitude of the control, of the form:
+M(u) := 2
+�
+FT (u) ≤ Mmax,
+u ∈ E,
+(36)
+for some Mmax > 0. Note that such a constraint imposes nonnegativity of the control. With this new
+constraint on the controls, we illustrate a general property that is well known for finite-dimensional
+systems: exponential stability prevents reachability.
+In particular, the result below holds for uniformly elliptic operators of the form (7) with 0th order
+coefficient satisfying c ≤ 0.
+Proposition 5.4. Assume that (St)t≥0 is exponentially stable. Let (y0, yf) be such that for all T ≥ 0,
+yf ≥ ST y0 and ∥ST y0−yf∥L2 ≥ δ for some δ > 0. Then, for all 0 < ε < δ there exists MmaxM(y0, yf, ε) >
+0 satisfying
+22
+
+• if Mmax > Mmax(y0, yf, ε), there exists a time T > 0 and a control u ∈ E satisfying (36), steering
+y0 to B(yf, ε) in time T . If A∗ satisfies the (GUC) property and ∂t − A∗ is analytic-hypoelliptic,
+the control may be chosen to be in UL
+shape.
+• if Mmax < Mmax(y0, yf, ε), no such control exists.
+Moreover, for all Mmax > 0, the control system (5) is not nonnegatively approximately controllable
+with controls in {M(u) ≤ Mmax} in any time T > 0.
+Proof. Given Corollary 5.3, the function M(T ) goes to +∞ as T → 0, is bounded away from 0 at infinity,
+and does not vanish over the interval (0, +∞). Since it is continuous, we define
+Mmax(y0, yf, ε) := inf
+T >0 M(T ) > 0,
+and the first two claims follow. When A∗ satisfies the (GUC) property and ∂t−A∗ is analytic-hypoelliptic,
+the control may be chosen to be in UL
+shape by Theorem 3.1.
+Then, let Mmax > 0.
+Taking yf ∈ L2(Ω) such that ∥yf∥L2 >
+√
+L|Ω|
+|α|
+Mmax + ε and y0 ∈ L2(Ω)
+such that yf ≥ ST y0 and ∥ST y0 − yf∥L2 ≥ δ > 0.
+Thanks to the proof of Corollary 5.3, we infer
+Mmax(y0, yf, ε) ≥ |α| ∥yf ∥L2−ε
+√
+L|Ω|
+> Mmax. It follows from the second claim that y0 cannot be steered to
+yf in any time T > 0 with a control u such that M(u) ≤ Mmax. Thus, system (5) is not nonnegatively
+approximately controllable with such controls in any time T > 0.
+5.2.2
+Characterisation of minimal time controls
+Throughout this section, we let ε > 0, yf ∈ L2(Ω), we assume that (21) holds, and let y0 = 0. Hence
+we must have ∥yf∥L2 > ε and the condition (21) is independent of T . Finally, yf ≥ ST y0 here simply
+amounts to yf ≥ 0.
+Given the obstruction result of Proposition 5.4, we consider the minimal time control problem:
+T ⋆(λ) = inf{T > 0,
+∃u ∈ E,
+∥LTu − yf∥L2 ≤ ε,
+FT (u) ≤ λ},
+λ > 0.
+(37)
+From our study of the optimal control problem (19), we know that this minimal time is well defined
+for λ ∈ M((0, +∞)). Under appropriate assumptions, we will show that it is reached, and characterise
+the minimal time controls, by establishing a form of equivalence between the optimal control problem
+and the corresponding minimal time problem. This is now a well-known feature for parabolic equations
+(see [19, 39, 46]).
+Further study of the value function M.
+Using strong duality again, we will establish that M is a
+non-increasing function under the assumption that A∗ satisfies the comparison principle (6). We start
+with the following general lemma:
+Lemma 5.5. Given any 0 < T1 < T2, and y0 = 0, for a general unbounded linear operator A, the dual
+functional defined by (23) satisfies:
+JT1,ε(pf) ≤ JT2,ε(pf),
+∀pf ∈ L2(Ω),
+(38)
+with equality if and only if
+L∗
+T2pf(t) ≤ 0,
+∀t ∈ [0, T2 − T1].
+(39)
+Proof. Since y0 = 0, inequality (38) follows immediately from the comparison of the integral terms in the
+expression of the JTi,ε, i ∈ {1, 2}. Moreover, for pf ∈ L2(Ω), one has JT1,ε(pf) = JT2,ε(pf) if and only if
+� T1
+0
+σU L
+�
+L∗
+T1pf(t)
+�
+dt =
+� T2
+0
+σU L
+�
+L∗
+T2pf(t)
+�
+dt,
+23
+
+that is, by definition of the operators L∗
+Ti (see (9) which are obviously related by L∗
+T1,εpf(t) = L∗
+T2,εpf(T2−
+T1 + t) for all t ∈ (0, T1),
+� T2−T1
+0
+σU L
+�
+L∗
+T2pf(t)
+�
+dt = 0.
+Using the definition of the support function σU L (see the proof of Lemma 2.7), this is equivalent to (39).
+Corollary 5.6. The function M (and hence Π) are non-increasing on (0, +∞).
+We now denote µ− = µ−(yf) :=
+lim
+T →+∞ Π(T ) =
+lim
+T →+∞
+1
+2M(T )2. Note that µ− ∈ [0, +∞), and if the
+semi-group generated by A is exponentially stable, µ− > 0 as established by (35) in Corollary 5.3.
+Proposition 5.7. Assume A∗ satisfies the comparison principle (6). Then, there exists Tℓ = Tℓ(yf) ∈
+(0, +∞] such that M is decreasing on [0, Tℓ), and constant on [Tℓ, +∞).
+Remark 5.8. The proposition above implies in particular that M either decreases on the whole of (0, +∞)
+to its limit µ− (if Tℓ = +∞), or reaches it at Tℓ < +∞ and then remains constant.
+Proof. By strong duality, Lemma 5.5 implies that M is non-increasing. Let T2 > T1 > 0, and denote
+p⋆
+T1, p⋆
+T2 the associated dual minimisers. Assume that
+M(T1) = M(T2).
+(40)
+From Lemma 5.5, and by definition of p⋆
+T1, we know that
+JT1,ε(p⋆
+T1) ≤ JT1,ε(p⋆
+T2) ≤ JT2,ε(p⋆
+T2).
+(41)
+From (32), (40) implies that JT1,ε(p⋆
+T1) = JT2,ε(p⋆
+T2), so that all the inequalities in (41) actually are
+equalities.
+By uniqueness of the dual optimal variable (Proposition 3.10), the first equality implies that
+p⋆
+T1 = p⋆
+T2 =: p⋆
+f.
+(42)
+From Lemma 5.5, the second equality implies that
+L∗
+T2p⋆
+f(t) ≤ 0,
+∀t ∈ [0, T2 − T1].
+(43)
+From (42) and (43), we get p⋆
+T = p⋆
+f for all T ∈ [T1, T2]. Now, for T > T2, the comparison principle (6)
+and inequality (43) imply that L∗
+T p⋆
+f(t) ≤ 0 for all t ∈ [0, T − T1]. From Lemma 5.5, we then get
+JT,ε(p⋆
+f) = JT1,ε(p⋆
+f), which implies JT,ε(p⋆
+f) = JT1,ε(p⋆
+f) ≤ JT,ε(p⋆
+T ). By definition of the dual minimiser p⋆
+T
+of JT,ε, we also have JT,ε(p⋆
+T ) ≤ JT,ε(p⋆
+f), and then finally, JT,ε(p⋆
+T ) = JT,ε(p⋆
+f), i.e., p⋆
+T = p⋆
+f. This implies,
+thanks to (32), that M(T ) = M(T1) = M(T2), which proves the proposition.
+Remark 5.9. It follows from all the above and (43) that, when A∗ satisfies the comparison principle (6),
+if Tℓ < +∞, then
+L∗
+T p⋆
+Tℓ(t) ≤ 0,
+∀T ≥ Tℓ,
+∀t ∈ [0, T − Tℓ],
+and
+u⋆
+T (t) =
+�
+0
+if
+t ∈ (0, T − Tℓ),
+u⋆
+Tℓ(t − T + Tℓ)
+if
+t ∈ (T − Tℓ, T ), ,
+∀T ≥ Tℓ
+is an optimal control on [0, T ] whenever uTℓ is an optimal control on [0, Tℓ].
+We now establish the relationship between the optimal control problem (31) and the minimal time
+control problem.
+24
+
+Proposition 5.10. Assume that A∗ satisfies the comparison principle (6). Then, for all T ∈ (0, Tℓ), any
+optimal control for (31) on [0, T ] is a minimal time control, that is,
+T ⋆(Π(T )) = T.
+Moreover, for any λ > µ−,
+Π(T ⋆(λ)) = λ.
+Proof. We proceed by contradiction. Assume that T ⋆(Π(T )) < T. Then, there exists δ > 0 and a control
+uδ ∈ L2(0, T − δ; L2(Ω)) such that FT (uδ) ≤ Π(T ). Now, any optimal control u⋆
+δ (in the sense of optimal
+control problem (31) in time T − δ) satisfies FT (u⋆
+δ) ≤ FT (uδ) (the inequality is not necessarily strict, as
+uδ could be an optimal control), i.e., Π(T − δ) = FT (u⋆
+δ) ≤ FT (uδ) ≤ Π(T ), which contradicts the fact
+that T �→ Π(T ) is a decreasing function on (0, Tℓ). Thus, (5.10) holds.
+Now, let λ > µ−. From Corollaries 5.3, 5.6 and Proposition 5.1, there exists T ∈ (0, Tℓ) such that
+Π(T ) = λ. Applying T ⋆ to the above and using (5.10), we get T ⋆(λ) = T ⋆(Π(T )) = T. Then, applying Π
+to the above yields Π(T ⋆(λ)) = Π(T ) = λ.
+We can also formulate the above result in the following way: for all λ > µ−,
+T ⋆(λ) = inf{T > 0,
+Π(T ) ≤ λ},
+that is, T ⋆ is the pseudo-inverse of Π on (µ−, +∞).
+In terms of the time optimal control problem, we now have a complete characterisation of time optimal
+controls for (37):
+Theorem 5.11. Assume that A∗ satisfies the comparison principle (6). For any λ > µ−, T ⋆(λ) < +∞,
+and T ⋆(λ) −−−−→
+λ→∞ 0, T ⋆(λ) −−−−→
+λ→µ− +∞. As a consequence, the domain of definition of T ⋆ is (µ−, +∞),
+and on its domain of definition, T ⋆ is continuous and decreasing.
+Moreover, if A∗ satisfies the (GUC) property and ∂t−A∗ is analytic-hypoelliptic, there exists a unique
+minimal time control for (37), given by the optimal control problem (19), and it lies in UL
+shape .
+Acknowledgments.
+The authors are grateful to Rémy Abergel for enlightening discussions about
+Fenchel duality. All three authors acknowledge the support of the ANR project TRECOS, grant number
+ANR-20-CE40-0009.
+A
+Convex analysis
+A.1
+Core properties of Fenchel conjugation
+A fundamental property of conjugation is involution (over Γ0(H)):
+Theorem A.1 (Fenchel-Moreau). Given any f ∈ Γ0(H), there holds f ∗ ∈ Γ0(H) and f ∗∗ = f.
+Analogously to the classical gradient, the subdifferential can be used to study optimality:
+Proposition A.2 (Fermat’s rule). Let f ∈ Γ0(H). f attains a finite global minimum over H in x⋆ if
+and only if
+0 ∈ ∂f(x⋆).
+We now list further useful properties of the Fenchel conjugate:
+• multiplication by a real number: for α ∈ R,
+(αf)∗(y) =
+
+
+
+αf ∗ � y
+α
+�
+if
+α ̸= 0,
+σdom(f)(y)
+if
+α = 0.
+(44)
+25
+
+• the (suitably normalised) squared norm is its own conjugate:
+�1
+2∥ · ∥2
+H
+�∗
+= 1
+2∥ · ∥2
+H.
+(45)
+Let us also mention a result about composition [17]. First, let f ∈ Γ0(H) and g ∈ Γ0(R) be non-
+decreasing. Then,
+(g ◦ f)∗(y) = min
+α≥0
+�
+g∗(α) + αf ∗� y
+α
+��
+.
+Following (44), the convention for α = 0 is 0 f ∗�y
+0
+�
+= σdom(f)(y).
+Link with the subdifferential.
+We now give another characterisation of the subdifferential set, which
+illustrates the link with convex conjugation: for f ∈ Γ0(H),
+∂f(x) = {p ∈ H, ⟨p, x⟩H − f(x) = f ∗(p)} = {p ∈ H, ⟨x, p⟩H − f ∗(p) = f(x)}
+(46)
+Essentially, the subdifferential is the set of linear forms on which the convex conjugate is attained.
+Using this characterisation, we then get the Legendre-Fenchel identity, which allows us to “flip” subd-
+ifferentials:
+p ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(p),
+f ∈ Γ0(H), ∀x, p ∈ H.
+A.2
+Some properties of indicator and support functions
+Indicator functions are a crucial tool to encode constraints in convex optimisation problems.
+Their
+properties are closely linked to topological properties of their indicated sets:
+Proposition A.3. We have δC, σC ∈ Γ0(H) as soon as C is non-empty, convex and closed.
+The characterisation (46) of the subdifferential yields a useful result on indicator functions:
+Proposition A.4. Let C ⊂ H be a closed convex set with nonempty interior. Then, for x ∈ H we have
+the following:
+x ∈ ∂C
+⇐⇒
+∂δC(x) is a nontrivial cone.
+Equivalently, by convex conjugation,
+∃p ̸= 0, x ∈ arg max
+v∈C
+⟨v, p⟩
+⇐⇒ ∃p ̸= 0, x ∈ ∂σC(p)
+⇐⇒
+x ∈ ∂C.
+Indicator function of a ball in a Hilbert space.
+Consider the closed unit ball B(0, 1) of H. We
+have seen before that
+σB(0,1)(y) =
+�
+δB(0,1)
+�∗(y) = ∥y∥H.
+Using (46), we get the following: for x ∈ B(0, 1),
+∂δB(0,1)(x) = {p ∈ H,
+⟨p, x⟩H = σB(0,1)(p)} = {p ∈ H,
+⟨p, x⟩H = ∥p∥H}.
+From the Cauchy-Schwarz inequality we know that ⟨p, x⟩H ≤ ∥p∥H∥x∥H, it follows that ⟨p, x⟩H = ∥p∥H
+if and only if x =
+p
+∥p∥H . This implies that
+∂δB(0,1)(x) =
+�
+{0}
+if
+∥x∥H < 1,
+{λx,
+λ ≥ 0}
+if
+∥x∥H = 1.
+(47)
+26
+
+A.3
+Technical lemmas
+Lemma A.5. Let f ∈ Γ0(H) be such that
+F : u ∈ L2(0, T ; H) �−→
+� T
+0
+f(u(t)) dt,
+is well-defined and proper. Then F ∈ Γ0(L2(0, T ; H)), and its Fenchel conjugate and subdifferential are
+given by
+∀p ∈ L2(0, T ; H),
+F ∗(p) =
+� T
+0
+f ∗(p(t)) dt,
+∂F(u) =
+�
+p ∈ L2(0, T ; H),
+p(t) ∈ ∂f(u(t)), for a.e. t ∈ (0, T )
+�
+,
+∀u ∈ L2(0, T ; H).
+Proof. Since F is obviously convex, we only need to justify that F is lsc to infer F ∈ Γ0(L2(0, T ; H)). We
+let un → u be in L2(0, T ; H) and must show that F(u) ≤ lim inf F(un). Upon extraction of a subsequence,
+we may assume that F(un) → lim inf F(un), and that un(t) → u(t) in H for a.e. t ∈ (0, T ). Then, using
+successively the lsc of f and Fatou’s lemma, we find
+F(u) =
+� T
+0
+f(u(t)) dt ≤
+� T
+0
+lim inf f(un(t)) dt ≤ lim inf
+� T
+0
+f(un(t)) dt = lim inf F(un).
+For p ∈ L2(0, T ; H), we compute
+F ∗(p) =
+sup
+u∈L2(0,T ;H)
+⟨p, u⟩L2(0,T ;H) −
+� T
+0
+f(u(t)) dt =
+� T
+0
+�
+sup
+u∈H
+⟨p(t), u⟩H − f(u(t))
+�
+dt =
+� T
+0
+f ∗(p(t)) dt.
+Using the characterisation given in (46), and Lemma A.5, we have the following:
+∂F(u) =
+arg max
+p∈L2(0,T ;H)
+{⟨p, u⟩ − F ∗(p)}
+=
+arg max
+p∈L2(0,T ;H)
+�� T
+0
+⟨p(t), u(t)⟩dt −
+� T
+0
+f ∗(p(t))dt
+�
+=
+arg max
+p∈L2(0,T ;H)
+�� T
+0
+(⟨p(t), u(t)⟩ − f ∗(p(t))) dt
+�
+=
+�
+p ∈ L2(0, T ; H),
+p(t) ∈ arg max
+p∈H
+{⟨p, u(t)⟩ − f ∗(p)}
+�
+,
+and the result follows by the same characterisation of the subdifferential set ∂f(u(t)).
+A.4
+Fenchel-Rockafellar duality
+Let E and F be two Hilbert spaces. Let f and g be functions in Γ0(E) and Γ0(F), respectively, and
+A : E → F be a bounded operator. Consider the (primal) optimisation problem
+π = inf
+x∈E (f(x) + g(Ax)) .
+(C)
+and its dual problem
+d = sup
+z∈F
+(−f ∗(A∗z) − g∗(−z)) = − inf
+z∈F (f ∗(A∗z) + g∗(−z))
+(D)
+With the above notations, weak duality always holds, i.e., we always have π ≥ d. The Fenchel-Rockafellar
+theorem states when and how strong duality holds, i.e., when d = π [40].
+27
+
+Theorem A.6. If there exists ¯x ∈ E such that g is continuous at A¯x and f(¯x) < +∞, then
+π = d
+and
+d is attained if finite.
+Symmetrically, if there exists ¯z ∈ F such that f ∗ is continuous at A∗¯z and g∗(−¯z) < +∞, then
+d = π
+and
+π is attained if finite.
+The second part of the theorem is obtained by applying the first part to (D), inf
+z∈F (f ∗(A∗z) + g∗(−z)) ,
+seen as a primal problem, and (C), rewritten as sup
+x∈E
+(−f(x) − g(Ax)) , seen as its dual problem. This
+yields −d ≥ −π, with equality under the corresponding assumptions.
+Lagrangian and saddle-point interpretation.
+Let us now define the Lagrangian for (x, y) ∈ E × F
+by
+L(x, y) := ⟨y, Ax⟩ + f(x) − g∗(y).
+If (x⋆, y⋆) is a saddle point of the Lagrangian, i.e.,
+x⋆ ∈ arg min
+x∈E
+L(x, y⋆) and y⋆ ∈ arg max
+y∈F
+L(x⋆, y),
+then (x⋆, z⋆) (with z⋆ = −y⋆) is a pair of primal and dual optimal variables, and strong duality holds.
+What matters is the converse: if (x⋆, z⋆) is a pair of primal and dual optimal variables and if strong
+duality holds, then (x⋆, y⋆) (with y⋆ = −z⋆) is a saddle point of L.
+Whenever (x⋆, y⋆) is a primal-dual optimal pair, Fermat’s rule and the Legendre-Fenchel identity yield
+x⋆ ∈ arg min
+x∈E
+L(x, y⋆)
+⇐⇒
+−A∗y⋆ ∈ ∂f(x⋆)
+⇐⇒
+x⋆ ∈ ∂f ∗(−A∗y⋆),
+as well as
+y⋆ ∈ arg max
+y∈F
+L(x⋆, y)
+⇐⇒
+Ax⋆ ∈ ∂g∗(y⋆)
+⇐⇒
+y⋆ ∈ ∂g(Ax⋆),
+Summing up, we have the following proposition:
+Proposition A.7. Let (x⋆, z⋆) be a pair of primal and dual optimal variables. If strong duality holds,
+then
+x⋆ ∈ ∂f ∗(A∗z⋆),
+Ax⋆ ∈ ∂g∗(−z⋆),
+(48)
+z⋆ ∈ −∂g(Ax⋆),
+A∗z⋆ ∈ ∂f(x⋆).
+Reinterpreting the Fenchel-Rockafellar theorem with the above and in a way that is useful for control-
+lability issues, we end up with
+Proposition A.8. Under the assumption that there exists ¯x ∈ E such that g is continuous at A¯x and
+f(¯x) < +∞, if π is finite, and attained at x⋆ ∈ E, then d is attained at z⋆ ∈ F satisfying
+z⋆ ∈ −∂g(Ax⋆),
+A∗z⋆ ∈ ∂f(x⋆).
+(49)
+Conversely, if (x⋆, z⋆) satisfies (49), (x⋆, z⋆) is a pair of primal and dual optimal variables.
+Similarly, under the assumption that there exists ¯z ∈ E such that f ∗ is continuous at A∗¯z and g∗(−¯z) <
++∞, if d is finite, and attained at z⋆ ∈ F, then π is attained at x⋆ ∈ E satisfying
+x⋆ ∈ ∂f ∗(A∗z⋆),
+Ax⋆ ∈ ∂g∗(−z⋆).
+(50)
+Conversely, if (x⋆, z⋆) satisfies (50), (x⋆, z⋆) is a pair of primal and dual optimal variables.
+28
+
+A.5
+Parametric convex optimisation
+Lemma A.9. Let H be a Hilbert space, Z be a metric space, f : H × Z → R ∪ {+∞}. Assume that
+• ∀α ∈ Z, f(·, α) is convex on H,
+• ∀x ∈ H, f(x, ·) is continuous on Z,
+• f is sequentially weak-strong lower semicontinuous on H × Z, i.e.,
+∀xn ⇀ x, ∀αn → α,
+f(x, α) ≤ lim inf
+n→+∞ f(xn, αn),
+• there exists a unique xα ∈ H such that inf
+x∈H f(x, α) = f(xα, α).
+Then the mapping
+α ∈ Z �−→ inf
+x∈H f(x, α)
+is continuous on Z.
+Proof. Let αn → α. Denoting m(α) = inf
+x∈H f(x, α) = f(xα, α), let us show that m(αn) converges to m(α).
+Upper semicontinuity. For x ∈ H fixed, thanks to the continuity of f(x, ·), we pass to the limit in
+f(x, αn) ≥ m(αn) and find
+m(α) = inf
+x∈H f(x, α) ≥ lim sup
+n→+∞ m(αn).
+Lower semicontinuity. We denote xn = xαn. Let us for the moment admit that (xn) is bounded. Upon
+extraction, we may assume that xn ⇀ ¯x for some x ∈ H. By sequential weak-strong lower semicontinuity,
+f(¯x, α) ≤ lim inf
+n→+∞ f(xn, αn) = lim inf
+n→+∞ m(αn).
+Since the left-hand side is bounded from below by m(α), we have proved lower semicontinuity (and in
+fact ¯x = xα).
+We are left to proving the boundedness of (xn) to conclude the proof. Assume that (xn) is not bounded.
+Upon extraction, we may assume that
+yn :=
+xn
+∥xn∥H
+⇀ y,
+for some y ∈ H. For any fixed λ > 0, we shall prove that xα + λy minimises f(·, α), which contradicts the
+fourth assumption that there exists a single minimum point.
+Indeed, we notice that
+�
+1 −
+λ
+∥xn∥H
+�
+xα +
+λ
+∥xn∥H
+xn ⇀ xα + λy.
+Hence, by weak-strong lower semicontinuity, convexity, the fact xn minimises f(·, αn) and continuity,
+f(xα + λy, α) ≤ lim inf
+n→+∞ f
+��
+1 −
+λ
+∥xn∥H
+�
+xα + +
+λ
+∥xn∥H
+xn, αn
+�
+≤ lim inf
+n→+∞
+�
+1 −
+λ
+∥xn∥H
+�
+f(xα, αn) +
+λ
+∥xn∥H
+f(xn, αn)
+≤ lim inf
+n→+∞
+�
+1 −
+λ
+∥xn∥H
+�
+f(xα, αn) +
+λ
+∥xn∥H
+f(xα, αn)
+= lim inf
+n→+∞ f(xα, αn) = f(xα, α).
+29
+
+B
+The classical bathtub principle
+The classical bathtub principle characterises the maximisers, and gives the maximum value, of the con-
+strained scalar product maximisation:
+sup
+u∈ �
+U ∗
+L
+�
+Ω
+u(x)v(x) dx,
+(51)
+where v ∈ L2(Ω) is arbitrary, and
+�U∗
+L :=
+�
+u ∈ L2(Ω), 0 ≤ u ≤ 1 and
+�
+Ω
+u = L|Ω|
+�
+,
+is the convex hull (and L∞ weak-∗ closure) of the set of characteristic functions whose support has the
+corresponding fixed measure:
+�UL := {χω,
+ω ⊂ Ω,
+|ω| = L|Ω|}.
+Recalling the notations (14) and (15) introduced in Section 2.3, the classical bathtub principle reads:
+Lemma B.1 (classical bathtub principle). Let v ∈ L2(Ω). Denote ρ(v) := Φ−1
+v (L|Ω|). The maximum
+in (51) equals
+��
+v>ρ(v)
+v
+�
++ ρ(v)(L|Ω| − |{v > ρ(v)}|) =
+� L|Ω|
+0
+Φ−1
+v ,
+and the maximisers are given by
+u⋆ := χ{v>ρ(v)} + c(x)χ{v=ρ(v)},
+where c is any measurable function such that 0 ≤ c ≤ 1 and
+�
+{v=ρ(v)}
+c = L|Ω| − |{v > ρ(v)}|.
+In particular, if all the level sets of the function v have zero measure, then the maximum is uniquely
+attained by
+u⋆ := χ{v>ρ(v)},
+and the maximum hence equals
+�
+{v>ρ(v)}
+v.
+Now, recall that we defined UL by (11) and its convex hull U L by (12) in Section 2.3.
+They are
+respective relaxations of ˜UL, and its convex hull ˜U∗
+L.
+For v ∈ L2(Ω), we consider the relaxed version of (51):
+sup
+u∈UL
+�
+Ω
+u(x)v(x) dx.
+(52)
+Then, the complete solution of Lemma 2.3 is given by the following:
+Lemma B.2 (relaxed bathtub principle). Let v ∈ L2(Ω). Denote h(v) = max(0, Φ−1
+v (L|Ω|)) = max(0, ρ(v)).
+Then, the maximum in (52) equals
+� min(Φv(0),L|Ω|)
+0
+Φ−1
+v ,
+and the maximisers are given by
+u⋆ := χ{v>h(v)} + c(x)χ{v=h(v)},
+30
+
+where c is any measurable function such that 0 ≤ c ≤ 1 and
+
+
+
+
+
+
+
+�
+{v=h(v)}
+c = L|Ω| − |{v > h(v)}| if h(v) > 0
+�
+{v=h(v)}
+c ≤ L|Ω| − |{v > h(v)}| if h(v) = 0
+Remark B.3. In particular, if h(v) > 0, there is a unique maximiser in (52) if and only if
+|{v > h(v)}| + |{v = h(v)}| = L|Ω|.
+Indeed, when the above does not hold, c can be chosen to have values in (0, 1) on a set of nonzero measure,
+and the maximisers is no longer unique.
+On the other hand, if h(v) = 0, as soon as |{v = h(v)}| > 0 the maximisers are no longer unique.
+References
+[1] N. U. Ahmed. Finite-time null controllability for a class of linear evolution equations on a Banach
+space with control constraints. Journal of optimization Theory and Applications, 47(2):129–158, 1985.
+Publisher: Springer.
+[2] Nachman Aronszajn.
+A unique continuation theorem for solutions of elliptic partial differential
+equations or inequalities of second order. Technical report, KANSAS UNIV LAWRENCE, 1956.
+[3] Larbi Berrahmoune. A variational approach to constrained controllability for distributed systems.
+Journal of Mathematical Analysis and Applications, 416(2):805–823, 2014.
+[4] Larbi Berrahmoune.
+Constrained null controllability for distributed systems and applications to
+hyperbolic-like equations. ESAIM: Control, Optimisation and Calculus of Variations, 25:32, 2019.
+[5] Larbi Berrahmoune. A variational approach to constrained null controllability for the heat equation.
+European Journal of Control, 52:42 – 48, 2020.
+[6] Jean-Michel Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy
+pour les opérateurs elliptiques dégénérés. Annales de l’Institut Fourier, 19(1):277–304, 1969.
+[7] Franck Boyer. On the penalised HUM approach and its applications to the numerical approximation
+of null-controls for parabolic problems. ESAIM: Proc., 41:15–58, 2013.
+[8] Robert F Brammer. Controllability in linear autonomous systems with positive controllers. SIAM
+Journal on Control, 10(2):339–353, 1972.
+[9] Haïm Brézis.
+Functional analysis, Sobolev spaces and partial differential equations, volume 2.
+Springer, 2011.
+[10] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with
+applications to imaging. Journal of Mathematical Imaging and Vision, 40, 05 2011.
+[11] Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.
+[12] J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. Amer-
+ican Mathematical Society, Providence, RI, 2007.
+[13] O Yu Emanuilov. Controllability of parabolic equations. Sbornik: Mathematics, 186(6):879–900, jun
+1995.
+31
+
+[14] Klaus-Jochen Engel and Rainer Nagel. One-parameter semigroups for linear evolution equations.
+Semigroup Forum, 63:278–280, 06 2001.
+[15] Sylvain Ervedoza. Control issues and linear projection constraints on the control and on the controlled
+trajectory. North-W. Eur. J. of Math., 6:165–197, 2020.
+[16] Lawrence C Evans. Partial differential equations. Graduate studies in mathematics, 19(4):7, 1998.
+[17] Jean-Baptiste Hiriart-Urruty. A note on the Legendre-Fenchel transform of convex composite func-
+tions. In Nonsmooth Mechanics and Analysis, pages 35–46. Springer, 2006.
+[18] Bernhard Kawohl. Rearrangements and convexity of level sets in PDE, volume 1150. Springer, 2006.
+[19] Karl Kunisch and Lijuan Wang. Time optimal control of the heat equation with pointwise control
+constraints. ESAIM: Control, Optimisation and Calculus of Variations, 19(2):460–485, 2013.
+[20] Stéphane Labbé and Emmanuel Trélat. Uniform controllability of semidiscrete approximations of
+parabolic control systems. Systems & Control Letters, 55(7):597–609, 2006.
+[21] Gontran Lance, Emmanuel Trélat, and Enrique Zuazua. Shape turnpike for linear parabolic PDE
+models. Systems & Control Letters, 142:104733, 2020.
+[22] Gilles Lebeau and Luc Robbiano. Contrôle exact de l’équation de la chaleur. Communications in
+Partial Differential Equations, 20(1-2):335–356, 1995.
+[23] Elliott H. Lieb and Michael Loss. Analysis. Crm Proceedings & Lecture Notes. American Mathe-
+matical Society, 2001.
+[24] Jacques-Louis Lions.
+Remarks on approximate controllability.
+Journal d’Analyse Mathématique,
+59(1):103, 1992.
+[25] Jérôme Lohéac, Emmanuel Trélat, and Enrique Zuazua. Minimal controllability time for the heat
+equation under unilateral state or control constraints. Mathematical Models and Methods in Applied
+Sciences, 27(09):1587–1644, 2017.
+[26] Jérôme Lohéac, Emmanuel Trélat, and Enrique Zuazua.
+Minimal controllability time for finite-
+dimensional control systems under state constraints. Automatica, 96:380–392, 2018.
+[27] Jérôme Lohéac, Emmanuel Trélat, and Enrique Zuazua. Nonnegative control of finite-dimensional
+linear systems. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 38(2):301–346, 2021.
+[28] Idriss Mazari. Quantitative estimates for parabolic optimal control problems under L∞ and L1 con-
+straints in the ball: Quantifying parabolic isoperimetric inequalities. Nonlinear Analysis, 215:112649,
+2022.
+[29] Sorin Micu, Ionel Roventa, and Marius Tucsnak.
+Time optimal boundary controls for the heat
+equation. Journal of Functional Analysis, 263(1):25–49, 2012. Publisher: Elsevier.
+[30] Sorin Micu and Enrique Zuazua. An introduction to the controllability of partial differential equa-
+tions. Quelques questions de théorie du contrôle. Sari, T., ed., Collection Travaux en Cours Hermann,
+to appear, 2004.
+[31] Victor J Mizel and Thomas I Seidman. An abstract bang-bang principle and time-optimal boundary
+control of the heat equation. SIAM Journal on Control and Optimization, 35(4):1204–1216, 1997.
+[32] G. Métivier.
+Hypoellipticité d’opérateurs à caractéristiques multiples.
+Séminaire Équations aux
+dérivées partielles (Polytechnique), pages 1–13, 1980-1981.
+[33] Edward Nelson. Analytic vectors. Annals of Mathematics, pages 572–615, 1959.
+32
+
+[34] Khoa Nguyen Son. A unified approach to constrained approximate controllability for the heat equa-
+tions and the retarded equations. Journal of Mathematical Analysis and Applications, 150(1):1–19,
+1990. Publisher: Elsevier.
+[35] Amnon Pazy. Semigroups of linear operators and applications to partial differential equations, vol-
+ume 44. Springer Science & Business Media, 2012.
+[36] Dario Pighin and Enrique Zuazua. Controllability under positivity constraints of semilinear heat
+equations. Mathematical Control & Related Fields, 8(3&4):935–964, 2018.
+[37] Camille Pouchol, Emmanuel Trélat, and Enrique Zuazua. Phase portrait control for 1D monostable
+and bistable reaction–diffusion equations. Nonlinearity, 32(3):884, 2019.
+[38] Yannick Privat, Emmanuel Trélat, and Enrique Zuazua.
+Optimal shape and location of sensors
+for parabolic equations with random initial data.
+Archive for Rational Mechanics and Analysis,
+216(3):921–981, 2015. Publisher: Springer.
+[39] Shulin Qin and Gengsheng Wang. Equivalence between minimal time and minimal norm control
+problems for the heat equation. SIAM Journal on Control and Optimization, 56(2):981–1010, 2018.
+[40] Ralph Rockafellar. Duality and stability in extremum problems involving convex functions. Pacific
+Journal of Mathematics, 21(1):167–187, 1967.
+[41] Domènec Ruiz-Balet and Enrique Zuazua. Control under constraints for multi-dimensional reaction-
+diffusion monostable and bistable equations. Journal de Mathématiques Pures et Appliquées, 143:345–
+375, 2020.
+[42] David L. Russell. Controllability and stabilizability theory for linear partial differential equations:
+Recent progress and open questions. SIAM Review, 20(4):639–739, 1978.
+[43] E.J.P. Georg Schmidt. The “bang-bang” principle for the time-optimal problem in boundary control
+of the heat equation. SIAM Journal on Control and Optimization, 18(2):101–107, 1980.
+[44] Emmanuel Trélat, Gengsheng Wang, and Yashan Xu. Characterization by observability inequalities
+of controllability and stabilization properties. Pure and Applied Analysis, 2(1):93–122, 2020.
+[45] Gengsheng Wang, Yashan Xu, and Yubiao Zhang. Attainable Subspaces and the Bang-Bang Prop-
+erty of Time Optimal Controls for Heat Equations. SIAM Journal on Control and Optimization,
+53(2):592–621, 2015.
+[46] Gengsheng Wang and Enrique Zuazua. On the Equivalence of Minimal Time and Minimal Norm
+Controls for Internally Controlled Heat Equations.
+SIAM Journal on Control and Optimization,
+50(5):2938–2958, 2012.
+[47] Dong-Hui Yang, Bao-Zhu Guo, Weihua Gui, and Chunhua Yang. The Bang–Bang Property of Time-
+Varying Optimal Time Control for Null Controllable Heat Equation. Journal of Optimization Theory
+and Applications, 182(2):588–605, 2019. Publisher: Springer.
+33
+
diff --git a/lNE4T4oBgHgl3EQfTwzv/content/tmp_files/load_file.txt b/lNE4T4oBgHgl3EQfTwzv/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..937830d34ebe0ef625dcfab68f5d2c29edd4a45c
--- /dev/null
+++ b/lNE4T4oBgHgl3EQfTwzv/content/tmp_files/load_file.txt
@@ -0,0 +1,1776 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf,len=1775
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='05011v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='OC] 12 Jan 2023 Approximate control of parabolic equations with on-off shape controls by Fenchel duality Camille Pouchola, Emmanuel Trélatb,d, and Christophe Zhangc aLaboratoire MAP5 UMR 8145, Université Paris Cité, 75006 Paris, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Email address: camille.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='pouchol@u-paris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='fr bSorbonne Université, Université de Paris, CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Email address: emmanuel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='trelat@sorbonne-universite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='fr cSPHINX, INRIA, Faculté des Sciences et Technologies Campus, Boulevard des Aiguillettes 54506 Vandœuvre-lès-Nancy, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Email address: christophe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='zhang@polytechnique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='org dCAGE, INRIA, Paris, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Abstract We consider the internal control of linear parabolic equations through on-off shape controls, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', controls of the form M(t)χω(t) with M(t) ≥ 0 and ω(t) with a prescribed maximal measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We establish small-time approximate controllability towards all possible final states allowed by the comparison principle with nonnegative controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We manage to build controls with constant amplitude M(t) ≡ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In contrast, if the moving control set ω(t) is confined to evolve in some region of the whole domain, we prove that approximate controllability fails to hold for small times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The method of proof is constructive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using Fenchel-Rockafellar duality and the bathtub principle, the on-off shape control is obtained as the bang-bang solution of an optimal control problem, which we design by relaxing the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our optimal control approach is outlined in a rather general form for linear constrained control problems, paving the way for generalisations and applications to other PDEs and constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Contents 1 Introduction 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Constrained internal control .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Main results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 General results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 Proof strategy and related works .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 Extensions and perspectives .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 8 2 Building the optimal control problem 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Convex analytic framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Approximate controllability by Fenchel duality ([24]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 Convex analytic interpretation of the bathtub principle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 12 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 From the static bathtub principle to the dual problem and its corresponding cost .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 13 1 3 Approximate controllability results 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Strong duality .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Coercivity of JT,ε, nonnegative approximate controllability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 16 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 Characterisation of the minimisers .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 16 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 Uniqueness .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 18 4 Obstructions to controllability 19 5 Further comments 20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Properties of the value function in the general case .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Obstructions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 22 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Obstruction to reachability and small-time controllability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 22 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Characterisation of minimal time controls .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 23 A Convex analysis 25 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Core properties of Fenchel conjugation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 25 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Some properties of indicator and support functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 26 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 Technical lemmas .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 27 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 Fenchel-Rockafellar duality .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 27 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 Parametric convex optimisation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 29 B The classical bathtub principle 30 1 Introduction 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Constrained internal control This article is devoted to the internal approximate controllability problem at time T > 0 for linear parabolic equations on a domain Ω by means of on-off shape controls, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', internal controls taking the form ∀t ∈ (0, T ), ∀x ∈ Ω, u(t, x) = M(t)χω(t)(x), where, at a given time t ∈ (0, T ), M(t) > 0 is the nonnegative amplitude of the control χω(t) is the characteristic function of the set ω(t) ⊂ Ω, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', χω(t)(x) := � 1 if x ∈ ω(t), 0 otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Both the amplitude and location may be subject to constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This problem is a paradigmatic simplifi- cation of many practical situations where one can act on a complex system with on-off devices that can be moved in time, while their shape can also be modified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Along the introduction, we expose our results for general operators A, while first illustrating them in the case of the controlled linear heat equation with Dirichlet boundary conditions \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 yt − ∆y = u in Ω, y = 0 on ∂Ω, y(0) = y0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (1) In this setting, Ω is an open connected bounded subset of Rd, with C2 boundary, and y0 ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 2 Control without constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' When constraints are removed, generic parabolic equations are well- known to be approximately controllable [2, 42], and even null-controllable [13, 22] in arbitrarily small time by means of internal controls, acting only on an arbitrary fixed measurable subset ω ⊂ Ω of positive measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This more precisely means that for any time T > 0, any measurable set ω ⊂ Ω of positive measure, any ε > 0, any y0 ∈ L2(Ω) and target yf ∈ L2(Ω), there holds ∃u ∈ L2((0, T ) × Ω), such that ∀t ∈ (0, T ), supp(u(t, ·)) ⊂ ω and ∥y(T ) − yf∥L2(Ω) ≤ ε, where supp(u) refers to the essential support of a function u ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Constrained control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In view of applications where unilateral or bilateral or L∞ constraints naturally appear, constrained controllability has been an active area of research [1, 8, 34], whether in finite or infinite dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In various contexts, control constraints have been shown to lead to controllability obstructions, even for unilateral constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Some states are out of reach, regardless of how large T > 0 may be [37, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the other hand, some states are reachable but only for T large enough: constraints may lead to the appearance of a minimal time of controllability [25, 26, 27, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In the case of unilateral constraints for linear control problems in finite dimension, these obstructions can be categorised thanks to Brunovsky’s normal form as done in [26], leading to the existence of a positive minimal time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In infinite dimension, however, we are only aware of obstructions based on the comparison principle (see [25] and [37]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The present work uncovers another type of obstruction, already hinted at in [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Main results As our results require different sets of hypotheses and in order to give a quick glance at the main ideas, we first present them in the simplified context of the heat equation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given a constraint set U+ ⊂ L2(Ω), we will be considering control constraints of the form ∀t ∈ (0, T ), u(t) ∈ U+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Here, the notation U+ emphasises that we will always deal with constraints that include the nonnegativity constraint, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', sets U+ such that U+ ⊂ {u ∈ L2(Ω), u ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, when the control u satisfies u ≥ 0, if follows from the parabolic comparison principle satisfied by the Dirichlet Laplacian [16] that ∀t ≥ 0, y(t) ≥ et∆y0, (2) where (et∆)t≥0 denotes the heat semigroup with Dirichlet boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, targets yf which do not satisfy yf ≥ eT ∆y0 cannot be reached with nonnegative controls, let alone on-off shape controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Taking into account the obstruction to controllability given by the inequality (2), we adapt the usual definition of approximate controllability to the context of nonnegative controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' More precisely, we say that system (1) is nonnegatively approximately controllable with controls in U+ in time T > 0, if for all ε > 0, and all y0, yf ∈ L2(Ω) such that yf ≥ eT ∆y0, there exists a control u ∈ L2((0, T )×Ω) with values in U+ such that the corresponding solution to (1) satisfies ∥y(T )−yf∥L2(Ω) ≤ ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On-off shape control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For our first main result, we focus on nonnegative approximate controllability with on-off shape controls: for a fixed L ∈ (0, 1), we consider the constraint set Ushape L := {Mχω, ω ⊂ Ω, |ω| ≤ L|Ω|, M > 0} ⊂ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Within the above class of on-off shape controls, we establish nonnegative approximate controllability in arbitrary time (see Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 for the precise and general statement), whatever the value of L ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3 Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For any L ∈ (0, 1), T > 0, system (1) is nonnegatively approximately controllable with controls in UL shape in time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' To establish this result, we draw from Lions’s strategy in [24], which develops a constructive approach in studying the approximate controllability of a linear wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The idea is to consider the requirement ∥y(T ) − yf∥L2(Ω) ≤ ε as a constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' With LTu := � T 0 e(T −t)∆u(t) dt and since y(T ) = LTu + ST y0, Lions considers the constrained optimal control problem π := inf �1 2∥u∥2 L2((0,T )×Ω), ∥eT ∆y0 + LTu − yf∥L2(Ω) ≤ ε � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The infimum satisfies π < +∞ if and only if there exists u ∈ L2((0, T ) × Ω) steering y0 to a closed ε-ball around yf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' To find minimisers, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', to build controls, note that π = inf u∈L2((0,T )×Ω) 1 2∥u∥2 L2((0,T )×Ω) + GT,ε(LT u) = inf u∈L2((0,T )×Ω) FT (u) + GT,ε(LT u), with FT (u) = 1 2∥u∥2 L2((0,T )×Ω) and GT,ε(y) = � 0 if ∥eT ∆y0 + y − yf∥L2(Ω) ≤ ε, +∞ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' From this optimisation problem, one computes its Fenchel dual optimisation problem, which reads d := − inf pf ∈L2(Ω) F ∗ T (L∗ T pf) + G∗ T,ε(−pf) = − inf pf∈L2(Ω) 1 2∥L∗ T pf∥2 L2((0,T )×Ω) + G∗ T,ε(−pf), where F ∗ T (= FT ) and G∗ T,ε are the Fenchel conjugates of FT and GT,ε, respectively, and L∗ T is the adjoint of the linear bounded operator LT : L2((0, T )×Ω) → L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Recall that for a given pf ∈ L2(Ω), p = L∗ T pf is the solution to the adjoint equation ending at pf, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', it solves \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 pt + ∆p = 0, p = 0 on ∂Ω, p(T ) = pf on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (3) Under suitable hypotheses, the Fenchel-Rockafellar theorem [40] ensures that π = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a result, one can then study the dual functional to establish that π = d < +∞, and that its minimum is attained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Furthermore, the cost function FT is differentiable in this case and the first order optimality condition for the (unique) variable p⋆ f minimising the dual functional then reads LT L∗ Tp⋆ f = yf − ε p⋆ f ∥p⋆ f∥L2(Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The optimal control u⋆ := L∗ Tp⋆ f is thus constructed from the minimiser of the dual problem p⋆ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Accordingly, in this paper we reframe constrained approximate controllability as an optimal control problem, replacing 1 2∥u∥2 L2((0,T )×Ω) of [24] with a suitable cost functional FT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This constitutes a novel generalisation of Lions’s method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As the detailed statements in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7 show: Instead of using the L2 norm as in the optimal control problem studied in [24], we will consider the cost functional: FT (u) := 1 2 sup t∈[0,T ] max � ∥u(t, ·)∥L∞(Ω), ∥u(t, ·)∥L1(Ω) L|Ω| �2 + δ{u≥0}(u), (4) where δ{u≥0}(u) = 0 if u ≥ 0 and +∞ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The rather unusual form of the minimisation cri- terion (4) is finely designed so as to handle nonnegativity and the other (bound, volume) constraints we are dealing with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 4 The optimal controls have constant amplitude in time, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', M(t) ≡ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The proof is constructive: the optimal control u⋆ can be computed from a unique dual optimal variable p⋆ f solving the corresponding Fenchel dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This computation generalises what is done in [24] to the broader case of costs that are not differentiable but still convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' More precisely, u⋆ is given by u⋆(t, ·) = M χ{p⋆(t,·)>h(p⋆(t,·))}, M = � T 0 � {p⋆(t,·)>h(p⋆(t,·))} p⋆(t, x) dx dt, where h : L2(Ω) → R is a function that will be defined in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3, and p⋆ solves the adjoint equation (3) with p⋆(T ) = p⋆ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Obstructions to nonnegative controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In the spirit of the unconstrained case, one may wonder whether nonnegative approximate controllability can be achieved with controls acting only in some prescribed time-independent subdomain ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We emphasise that our first result does not a priori prevent the control from visiting the whole domain Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our second result proves that visiting the whole Ω is necessary in the following sense: if the sets ω(t), t ∈ (0, T ) do not intersect some fixed open subset of Ω, nonnegative approximate controllability is lost for small times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that the constraint set U+ satisfies the following property: there exists a ball B(x, r) ⊂ Ω with x ∈ Ω and r > 0 such that ∀u ∈ U+, supp(u) ∩ B(x, r) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, there exists T ⋆ > 0 such that the control system (1) is not nonnegatively approximately controllable with controls in U+ in time T ≤ T ⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We refer to Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 for the complete statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let us mention that obstructions of this type have been reported for similar problems in [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Amplitude and time optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In Section 5, we gather several further results regarding the dependence of the amplitude M = M(T, y0, yf, ε) with respect to its arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using duality once more, we study its dependence on the final time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Focusing on the case y0 = 0, we then establish an equivalence between the optimal control problem and the related minimal time problem inf{T > 0, ∃u ∈ L2((0, T ) × Ω), ∥LTu − yf∥L2(Ω) ≤ ε, FT (u) ≤ λ}, λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 General results Theorems A and B above have been stated for the heat equation with Dirichlet boundary conditions, in order to provide the reader with a quick overview of our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In fact, they all hold for more general semigroups under suitable hypotheses presented hereafter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The underlying general setting is that of linear control problems of the form � yt − Ay = u, y(0) = y0 in Ω (5) where Ω is an open subset of Rd, and A : D(A) → L2(Ω) is an operator generating a C0 semigroup (St)t≥0 on L2(Ω) [14, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In this more general context, we define nonnegative approximate controllability as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 5 Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given a constraint set of nonnegative controls U+ ⊂ L2(Ω), we say that system (5) is nonnegatively approximately controllable with controls in U+ in time T if for all ε > 0, and all y0, yf ∈ L2(Ω) such that yf ≥ ST y0, there exists a control u ∈ L2((0, T ) × Ω) with values in U+ such that the corresponding solution to (5) satisfies ∥y(T ) − yf∥L2(Ω) ≤ ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' General hypotheses for Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have previously presented Theorem A for the heat equation as a paradigmatic example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Nevertheless, the underlying hypotheses on which some of our proofs rely are much more general in nature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' we review them below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' First, we consider the (unusual) unique-continuation like property ∀y ∈ L2(Ω), ∃t ∈ (0, T ), Sty is constant over Ω =⇒ y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (GUC) This property is satisfied as soon as the three assumptions below hold: – for y ∈ L2(Ω), Sty ∈ D(A) for all t > 0 (for instance, this is true if (St)t≥0 is analytic [35]), – the only constant function in D(A) is the zero function,1 – St is injective for all t > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Second, we will be interested in analytic-hypoellipticity: ∂t − A is said to be analytic-hypoelliptic if any distributional solution y to ∂ty − Ay = f on Ω × (0, T ) with f analytic on Ω is analytic on Ω, where analyticity refers to real-analyticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Third, we will say that (St)t≥0 satisfies the comparison principle if ∀y ∈ L2(Ω), y ≥ 0 =⇒ ∀t > 0, Sty ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (6) The first two properties are sufficient for the generalisation of Theorem A, see Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The third will play an important role when it comes to minimal controllability times, and is in line with our definition of nonnegative approximate controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Elliptic operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a generalisation of the Dirichlet Laplacian, let us discuss a large class of uni- formly elliptic operators that do satisfy these properties and to which our obstruction result Theorem B generalises (see Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let us assume that Ω is a bounded, open, connected subset of Rd, with C2 boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Defining D(A) := H1 0(Ω) ∩ H2(Ω), we introduce operators of the form ∀y ∈ D(A), Ay := � 1≤i,j≤d ∂xj(aij(x)∂xiy) − d � i=1 bi(x)∂xiy + c(x)y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (7) When referring to operators of the form (7), we will always assume that the functions aij = aji, bi are in W 1,∞(Ω), c is in L∞(Ω), and that the operator is uniformly elliptic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', there exists θ > 0 such that ∀x ∈ Ω, ∀ξ ∈ Rd, � 1≤i,j≤d aij(x)ξiξj ≥ θ|ξ|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The adjoint of A is given by ∀p ∈ D(A∗), A∗p = � 1≤i,j≤d ∂xi(aij(x)∂xjp) + d � i=1 bi(x)∂xip + � c(x) − d � i=1 ∂xi(bi(x)) � p, 1This is the case for the Dirichlet Laplacian with domain D(A) = H2(Ω) ∩ H1 0(Ω) if Ω has a C2 boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 2This is the case for groups, such as the wave equation, and for parabolic equations thanks to the parabolic maximum principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This is also true for analytic semigroups: if Sty = 0 for some t > 0, then Ssy = 0 for all s ≥ t and by analyticity Ssy = 0 for all s ≥ 0, which for s = 0 yields y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 6 and we have D(A∗) = D(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Both A and A∗ satisfy the parabolic comparison principle [16], hence they satisfy the comparison prin- ciple (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' They also satisfy the three conditions sufficient for the (GUC) property to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3 Furthermore, both ∂t − A and ∂t − A∗ are analytic-hypoelliptic as soon as all functions aij, bi and c are analytic [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 Proof strategy and related works In the unconstrained case, approximate controllability of the heat equation is a consequence of the unique continuation property, thanks to a general property of linear control problems (see for example [12, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In the case of heat equations, the latter property can be obtained by the Holmgren Uniqueness Theorem [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In contrast to these existence results, the variational approach developed in [24] (see Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2), handles approximate controllability in a constructive manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our strategy consists in extending this approach to the constrained case: the main idea is to find a suitable cost function FT such that optimal controls must satisfy the constraint u ∈ Ushape L .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A remarkable feature of our strategy lies in how we design the cost function: we do so by building an adequate Fenchel dual function, instead of trying to find the cost function directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Constrained controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Constrained control problems in infinite dimension have been studied in papers such as [3, 4, 5, 15, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In [15], sufficient conditions (in the form of unique continuation properties) for controllability results are derived when the control and states are constrained to some prescribed subspaces, but at the expense of controlling only a finite-dimensional subpart of the final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In [19], the authors deal with a form of approximate controllability of the heat equation akin to ours, focusing on minimal time problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' They derive bang-bang type necessary optimality conditions for minimal time controls, and then build such controls using an auxiliary optimisation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The papers [3, 4, 5] address constrained exact controllability through modified observability inequal- ities, thus giving abstract necessary and/or sufficient conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' One key difference with our work is that constraint sets are assumed to be convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In fact, all examples handled by [3, 4, 5] feature isotropic constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' It is noteworthy that all the above references introduce so-called dual functionals, drawing from the variational formulation of the Hilbert Uniqueness Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' However, the formalism of Fenchel-Rockafellar duality in itself, as developed in [24], has increasingly been abandoned in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Some notable exceptions are [44] in the context of stabilisation, and, to some extent, [4], which uses Fenchel duality to study null-controllability under some hypotheses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We fully exploit the ideas hinted at in the latter paper by choosing a different type of functional, which allows us to handle anisotropic, non-convex constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In contrast with the aforementioned trend in the literature, we work with Fenchel duality, but in a rather unusual way, in that we will focus mainly on the dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The nature of the actual primal problem (optimal control problem) being solved follows effortlessly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' To perform the necessary computations, we will make extensive use of convex analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Doing so bypasses many technical difficulties thanks to properties of subdifferentials and Fenchel conjugates, among others, and allows for the use of costs which are not differentiable but still smooth in the convex analytic sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Bathtub principle for appropriate costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The second main idea is what underlies our choice of cost function FT , forcing optimal controls to satisfy the required the on-off shape constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As the set of on-off shape controls is a non-convex cone, we are led to relaxation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', to consider the closure of its convex hull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In order to build relevant costs, we then rely on the so-called bathtub principle (actually, a relaxed version of it) [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3The analyticity of the semigroup is well known for this class of elliptic operators on open domains with C2 boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' There are clearly no nonzero constant functions in H2 ∩ H1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finally, injectivity follows from the comparison principle (see above footnote).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 7 For a given function v ∈ L2(Ω), the latter principle solves sup u∈UL � Ω u(x)v(x) dx, UL := � u ∈ L2(Ω), 0 ≤ u ≤ 1 and � Ω u ≤ L|Ω| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This optimisation problem comes up naturally in some control problems similar to ours [21, 28], or in shape optimisation problems [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Interpreting the bathtub principle as a Fenchel conjugate leads us to design the unusual cost func- tional (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This allows us to design dual problems such that optimal controls exist, and are characterised as maximisers of some bathtub principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, using analyticity properties for solutions of the dual problem, we prove their uniqueness and hence their extremality, thereby uncovering that they are on-off shape controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Bang-bang property of optimal controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Bang-bang controls (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', controls that saturate their constraints) are a common feature in time optimal control problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A growing literature on the heat equation alone [29, 31, 43, 45, 47] shows that this property extends well to some infinite-dimensional systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In our case, we will see that the on-off shape controls we have constructed can be understood as time-optimal controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As these controls are bang-bang, this yields another occurrence of the bang-bang property in the time-optimal control of the heat equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Note, however, that in the references cited above, the controls are constrained to lie in balls of specific function spaces, whereas we consider non-negative constraints on the controls, which is an anisotropic constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, the bang-bang property is usually established separately using optimality condi- tions, having established controllability at the onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In our case, the Fenchel-Rockafellar duality approach allows to do all those things simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 Extensions and perspectives Operator, boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The (GUC) property and analytic-hypoellipticity are two key suffi- cient properties for approximate controllability by on-off shape controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have highlighted second-order elliptic operators with analytic coefficients Dirichlet boundary conditions as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our results ap- ply to such operators with Robin boundary conditions of the form a(x)y + b(x)∂νy = 0 over ∂Ω (with a, b analytic) as soon as the function a does not vanish on the whole of ∂Ω (more generally, as soon as a is nontrivial on any connected component of ∂Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This excludes the important case of Neumann boundary conditions, which remains open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our approach also accommodates subelliptic operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This includes a large class of Hörmander operators, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', operators of the form A = �m i=1 X2 i + X0 + V Id with vector fields X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' , Xm generating a Lie algebra that equals Rd on the whole of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under general regularity assumptions and boundary conditions, such an operator and its adjoint generate a strongly continuous semigroup on L2(Ω), satisfy the comparison principle [6], all three conditions sufficient for the (GUC) property, and are analytic- hypoelliptic for instance if the characteristic manifold is an analytic symplectic manifold (see [32]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Control operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our results have been stated with the identity control operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' They extend to the nonnegative control of � yt − Ay = ϕu, y(0) =y0 in Ω where ϕ ∈ L∞(Ω) is positive, analytic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' An interesting perspective is to follow our proof strategy with boundary control operators, where on-off shape controls now refer to characteristic functions over the boundary ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 8 Exact nonnegative controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In the case of unconstrained controllability with a control acting in some fixed subset ω, any function that can be reached exactly is (at least) analytic in Ω \\ ω, preventing exact controllability to hold true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the one hand, this argument for (non)-exact controllability by on-off shape controls fails since the control may act everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the other hand, our approach heavily relies on targeting a ball B(yf, ε) with ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a result, exact nonnegative controllability by on-off shape controls is an open and seemingly difficult question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A related matter is that of the cost of approximate controllability as a function of ε → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Abstract constrained control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The strategy of proof developed in this article hints at generalisations, where the method is applied to abstract linear control problems with abstract constraint sets U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In particular, we expect it to lead to necessary and sufficient conditions for controllability when U is convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' When U is not convex as is the case for on-off shape controls, this requires to study the convex hull of U, following the relaxation approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This abstract setting should allow us to discern how one can design a cost function FT , analogous to (4), tailored to a given U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Further sufficient conditions should be derived to ensure that optimal controls in the convex hull of U actually are in the original constraint set U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In the present work, analytic-hypoellipticity and the (GUC) property play that role in the case of on-off shape controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This will be the subject of an ulterior article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Regularity of the sets ω(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Another problem is to analyse the complexity of the sets ω(t) occupied by optimal controls over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For instance, how smooth (BV regularity, number of connected components, etc) are the sets ω(t) achieving approximate controllability?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In view of applications, these are important issues for the controls to be implementable in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For example, if the sets ω(t) are constrained to depend on a few parameters, or if they are restricted to rigid movements, controllability is a totally open question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Numerical approximation of optimal controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Optimal controls are given explicitly in terms of optimisers of the dual problem: the constructive nature of our approach means that optimal controls may be numerically computed, at least on paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Providing reliable and efficient methods to compute optimal controls is a difficult issue which has been studied in the case of Lions’s cost functional with ε = 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', exact controllability) [7, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Similar results in a generalised setting with our Fenchel-Rockafellar-based approach would be valuable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Contrary to Lions’s cost functional, we note that ad hoc algorithms are required in order to cope with functions that are not necessarily differentiable, as is the case in the present paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Recent primal-dual algorithms designed for optimisation problems with objective functions of the form F(u) + G(LT u) are likely to be good candidates [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Outline of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' First, Section 2 lays out the convex analytic framework, that of Fenchel- Rockafellar duality, and how it may be applied to constrained approximate controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We then introduce the bathtub principle and interpret it in terms of Fenchel conjugation in order to design a relevant optimal control problem for our purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Section 3 is dedicated to the proof of our nonnegative approximate controllability result given by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, and Section 4 to that of the obstruction result, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finally, Section 5 gathers our results about further obstructions when the control amplitude is bounded, along with our analysis of the corresponding minimal time control problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 9 2 Building the optimal control problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Convex analytic framework Let H be a Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We let Γ0(H) be the set of functions from H to ]−∞, +∞] that are convex, lower semicontinuous (abbreviated lsc) and proper (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', not identically +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For f ∈ Γ0(H), we let dom(f) = {x ∈ H, f(x) < +∞} be its domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Fenchel conjugate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For a proper function f : H → ]−∞, +∞], we denote f ∗ : H → ]−∞, +∞] its convex conjugate, given by the convex lsc function f ∗(y) := sup x∈H � ⟨y, x⟩ − f(x) � , ∀y ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Support and indicator functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given a subset C ⊂ H, the indicator function of C is the function defined by δC(x) := � 0 if x ∈ C +∞ if x /∈ C , ∀x ∈ H, and the support function of C is defined by σC(p) := sup x∈C ⟨p, x⟩ = δ∗ C(p), ∀p ∈ H, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', the Fenchel conjugate function of the indicator function of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Subdifferentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For f ∈ Γ0(H), we let ∂f(x) := {p ∈ H, ∀y ∈ H, f(y) ≥ f(x) + ⟨p, y − x⟩}, be its subdifferential at a point x ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Various common properties of Fenchel conjugates, support functions and subdifferentials are used throughout the article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' These are all recalled in Appendix A, where a few additional lemmas are proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Approximate controllability by Fenchel duality ([24]) Let us explain how the approximate controllability problem is reformulated in the context of Fenchel- Rockafellar duality [40] (see A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 for a general presentation), following the strategy introduced by Lions in [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We work with the control problem (5), with the control space E := L2((0, T ) × Ω) and the state space L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By Duhamel’s formula y(T ) = ST y0 + LT u, the inclusion y(T ) ∈ B(yf, ε) (where the closed ball of center yf and radius ε is with respect to the L2(Ω)-norm) can equivalently be written as LT u ∈ B(yf − ST y0, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given some cost functional FT : E → [0, +∞] ∈ Γ0(E), consider the optimal control problem (which we will refer to as the primal problem) π := inf u∈E FT (u) + GT,ε(LT u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' where GT,ε := δB(yf−ST y0,ε) ∈ Γ0(L2(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 10 Now consider the Fenchel dual to the above problem, which writes d = − inf pf∈L2(Ω) JT,ε(pf), JT,ε(pf) := F ∗ T (L∗ T pf) + G∗ T,ε(−pf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (8) Thanks to the formulae for conjugates, we find G∗ T,ε(z) = ⟨yf − ST y0, z⟩L2 + ε∥z∥L2, leading to JT,ε(pf) = F ∗ T (L∗ T pf) − ⟨yf − ST y0, pf⟩L2 + ε∥pf∥L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We recall that p = L∗ T pf solves the adjoint equation � pt + A∗p = 0, p(T ) = pf in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (9) Strong duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Weak duality π ≥ d always holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' According to the Fenchel-Rockafellar duality theo- rem recalled in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4, the existence of pf ∈ dom(G∗ T,ε) such that F ∗ T is continuous at L∗ Tpf is a sufficient condition for strong duality π = d to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since dom(G∗ T,ε) = L2(Ω), this condition reduces to the existence of a point of continuity of the form L∗ T pf for F ∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In the cases covered here, we shall check that the chosen F ∗ T is continuous at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' When strong duality obtains, it is therefore equivalent to work with the dual problem, which is easier to handle especially when it has full domain, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', its objective function is finite everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Non-trivial strong duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Furthermore, the primal value π is attained if finite, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', if this equality is not the trivial +∞ = +∞ (the uncontrollable case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thus, if d is finite, π is finite as well and attained: we may speak of optimal controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This requirement that d be finite is by far the subtlest one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' It may be tackled by proving that the functional JT,ε underlying the dual problem (written in infimum form infpf∈L2(Ω) JT,ε(pf)) has a minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In practice, we will always find this to be the case, as the dual problem is usually unconstrained (depending on the choice of FT ), unlike the primal problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, both π and d will be attained and, from Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='8, any optimal dual variable p⋆ f is such that any optimal control u⋆ satisfies u⋆ ∈ ∂F ∗ T (L∗ T p⋆ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (10) Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that, for any y0, yf ∈ L2(Ω) such that yf ≥ ST y0 and any ε > 0, there exists pf ∈ L2(Ω) such that F ∗ T is continuous at L∗ T pf, d ̸= +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If for any dual optimal variable p⋆ f, the controls characterised by (10) are in U+, then the control system (5) is nonnegatively approximately controllable with controls in U+ in time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This shows how the choice of the cost FT impacts the existence and properties of optimal controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' More precisely, it must be pointed out that all the hypotheses of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 are formulated with respect to the dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Accordingly, from the next section onwards, our strategy will be to determine an adequate optimal control problem by designing its dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finally, we emphasise that (10) is only a necessary condition for the optimality of u⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' It becomes sufficient only when ∂F ∗ T (L∗ T p⋆ f) is reduced to a singleton, which will occur in our case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 11 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 Convex analytic interpretation of the bathtub principle Starting from the set of on-off shape controls of amplitude 1, UL := {χω, ω ⊂ Ω, |ω| ≤ L|Ω|}, (11) where | · | denotes the Lebesgue measure, we define the closure of its convex hull (which is also its weak-∗ closure for the L∞(Ω)-topology) U L := � u ∈ L2(Ω), 0 ≤ u ≤ 1 and � Ω u ≤ L|Ω| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (12) Given a fixed v ∈ L2(Ω), we consider the (static) maximisation problem sup u∈UL � Ω u(x)v(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (13) This a relaxed version of the so-called bathtub principle, which gives the maximum value as well as a characterisation of maximisers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For the sake of readability, we introduce the necessary results for what follows, but refer to Appendix B for a more detailed statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For a given v ∈ L2(Ω), we let Φv(r) := |{v > r}| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (14) and its pseudo-inverse function Φ−1 v (s) := inf r∈R {Φv(r) ≤ s} = inf r∈R {|{v > r}| ≤ s} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (15) Finally, we set h(v) := max(0, Φ−1 v (L|Ω|)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (16) Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The function Φ−1 v is the Schwarz radial rearrangement of v, see [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 (relaxed bathtub principle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let v ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The maximum in (13) equals � min(Φv(0),L|Ω|) 0 Φ−1 v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Furthermore, if all the level sets of the function v have measure zero, the maximum equals � {v>h(v)} v and is uniquely attained by u⋆ := χ{v>h(v)}, We refer to Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 for the comprehensive statement of the relaxed bathtub principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We may interpret the above results as a formula for the support function of U L in L2(Ω): σU L(v) = sup u∈UL � ⟨u, v⟩L2 − δUL(u) � ) = sup u∈U L � Ω u(x)v(x) dx = � min(Φv(0),L|Ω|) 0 Φ−1 v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (17) First, using the characterisation of the subdifferential given in Appendix A, we arrive at the following characterisation for the solutions to the maximisation problem given in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let v ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The maximisers of the relaxed bathtub problem are given by the elements of ∂σU L(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have, for v ∈ L2(Ω), arg max u∈UL ⟨u, v⟩L2 = arg max u∈L2 ⟨u, v⟩L2 − δUL(u) = � u ∈ L2, ⟨u, v⟩L2 − δUL(u) = σU L(v) � = ∂σU L(v), where we have used (δU L)∗ = σU L along with (46) given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 12 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 implies that for any maximiser u of the relaxed bathtub problem, v ∈ ∂δUL(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 shows that this implies u ∈ ∂UL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 characterise exactly which elements of the boundary ∂UL are involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 From the static bathtub principle to the dual problem and its correspond- ing cost Following Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 and recalling Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 and (10),we are looking for a cost function FT such that the corresponding optimal controls are on-off shape controls, and we have established that it suffices to find a conjugate functional F ∗ T satisfying two key properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' First, if there exists pf ∈ L2(Ω) such that F ∗ T is continuous at L∗ Tpf, and if we can provide the existence of a minimiser p⋆ f of JT,ε, then π is attained and there exists at least one optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Second, any optimal control u⋆ should satisfy (10) so F ∗ T should be chosen so that the subdifferential ∂F ∗ T (L∗ T p⋆ f) contains only characteristic functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 and Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3, elements of ∂σU L(v), v ∈ L2(Ω) are bang-bang, in the sense that they are characteristic functions, under some mild conditions that v must satisfy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' To go from the static optimisation problem to the adequate dual problem, we add a time dependency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, to ensure coercivity of the dual problem, we add a quadratic exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' All in all, we choose the following conjugate: F ∗ T (p) := 1 2 �� T 0 σU L(p(t)) dt �2 = 1 2 �� T 0 � min(Φp(t)(0),L|Ω|) 0 Φ−1 p(t)(s) ds dt �2 , ∀p ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (18) Since the controllability problem corresponds to G∗ T,ε := σB(yf−ST y0,ε), this defines a dual problem of the form (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As pointed out in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2, we are now dealing with an unconstrained optimisation problem (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', the domain of the functions involved is the whole space L2(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We can now derive the corresponding constrained optimisation problem, by compute the actual cost FT associated to the choice (18) for F ∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We find, as announced by (4) in the introduction: Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The function F ∗ T defined by (18) satisfies F ⋆ T ∈ Γ0(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Defining M(u) := max � ∥u∥L∞, ∥u∥L1 L|Ω| � , ∀u ∈ L2(Ω), its Fenchel conjugate (F ∗ T )∗ = FT is given for u ∈ E by FT (u) = 1 2 � sup t∈[0,T ] M2(u(t, ·)) � + δ{u≥0}(u) = 1 2 � sup t∈[0,T ] max � ∥u(t, ·)∥L∞, ∥u(t, ·)∥L1 L|Ω| �2� + δ{u≥0}(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 shows that F ∗ T ∈ Γ0(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We proceed by computing (F ∗ T )∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have F ∗ T = 1 2H2, with H(p) := � T 0 σU L(p(t, ·)) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since σU L ∈ Γ0(L2(Ω)), the definition of the support function together with Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 in Appendix show that H ∈ Γ0(E) with H∗(u) = � T 0 σ∗ U L(u(t, ·)) dt = � T 0 δUL(u(t, ·)) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Furthermore, we find the conjugate of 1 2H2 by using (45) in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, which leads to �1 2H2 �∗ (u) = min α>0 �1 2α2 + αH∗ �u α �� , 13 where we used that dom(H) = E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Clearly, H∗ � u α � = 0 if u ≥ 0 and sup t∈[0,T ] M(u(t, ·)) ≤ α, and is +∞ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We end up with �1 2H2 �∗ (u) = min α>0 �1 2α2 + δ{supt∈[0,T ] M(u(t,·))≤α}(u) � + δ{u≥0}(u) = FT (u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The lemma is proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Note that F ∗ T is (positively)-homogeneous of degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Indeed, v �→ σU L is positively-homogeneous of degree 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', σU L(λv) = λσU L(v) for all λ > 0, v ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We end this subsection by establishing a crucial property satisfied by F ∗ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' It will play a role similar to that of the unique continuation property in proving that the dual functional is coercive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For all pf ∈ L2(Ω), if F ∗ T (L∗ T pf) = 0, then pf ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By definition of F ∗ T and using (17), the equality F ∗ T (L∗ T pf) = 0 entails sup u∈UL ⟨u, p(t, ·)⟩L2 = � min(Φp(t,·)(0),L|Ω|) 0 Φ−1 p(t,·) = 0, for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' t ∈ (0, T ), where p is the solution to the adjoint equation (9) such that p(T ) = pf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For a fixed t ∈ (0, T ), it is easily seen that the supremum on the left-hand side is positive as soon as p(t, ·) > 0 on a set of positive measure, by appropriately choosing u supported in this set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have proved that p(t, ·) ≤ 0 for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' t ∈ (0, T ) and in particular that pf ≤ 0 since p ∈ C([0, T ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' L2(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3 Approximate controllability results In this section, we state and prove our main result on approximate controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The full statement for our Theorem A is given with more details below, for general linear operators, satisfying the properties given in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We are considering the following optimal control problem: π = inf u∈E FT (u) + GT,ε(LT u) = inf u∈E � 1 2 sup t∈[0,T ] max � ∥u(t)∥L∞, ∥u(t)∥L1 L|Ω| �2 + δB(yf−ST y0,ε)(LT u) � , (19) whose dual problem is d = − inf pf∈L2(Ω) JT,ε(pf) = − inf pf∈L2(Ω) \uf8f1 \uf8f2 \uf8f3 1 2 �� T 0 σU L(L∗ T pf(t)) dt �2 − ⟨yf − ST y0, pf⟩L2 + ε∥pf∥L2 \uf8fc \uf8fd \uf8fe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (20) Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that A∗ satisfies the (GUC) property and that ∂t − A∗ is analytic-hypoelliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then for the cost function FT defined by (4), strong duality π = d holds, the dual problem (20) is attained at a unique minimiser p⋆ f ∈ L2(Ω), there exists a unique optimal control u⋆ ∈ E for the primal problem (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 14 Furthermore, if the target is not reached by the trivial control u ≡ 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', if yf /∈ B(ST y0, ε), (21) then the optimal control is given by u⋆(t, ·) = M χ{p⋆(t,·)>h(p⋆(t,·))}, M = � T 0 � {p⋆(t,·)>h(p⋆(t,·))} p⋆(t, x) dt dx, (22) where h is defined by (16), and where p⋆ = L⋆ T p⋆ f is the solution of the adjoint equation (9) satisfying p⋆(T ) = p⋆ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As mentioned in the introduction, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 holds for uniformly elliptic operators of the form (7) with analytic coefficients, and in particular the classical heat equation with Dirichlet boundary conditions, on a bounded, open, connected domain with C2 boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Throughout this section, we assume the hypotheses sufficient for Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', that A∗ satisfies the (GUC) property and that ∂t−A∗ is analytic-hypoelliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The proof is then scattered into the section as follows: First, we establish that strong duality holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Second, we prove that the corresponding dual functional is coercive: hence, the dual functional attains its minimum (the dual problem attains its maximum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Third we prove (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finally, we investigate the uniqueness of optimal variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As the proofs show, the first two steps and the uniqueness of dual optimal variables are valid for any operator A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In particular, they do not require that A∗ satisfy the (GUC) property and that ∂t − A∗ be analytic-hypoelliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, strong duality and existence of optimal controls does not require any specific assumption the semigroup must satisfy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This remark will be of importance in the next subsection where we manipulate optimal controls without making these two hypotheses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Strong duality Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' F ∗ T is continuous at 0 = L∗ T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By the Cauchy-Schwarz inequality, ∀u ∈ U L, ⟨u, v⟩L2 ≤ ∥u∥L2∥v∥L2 ≤ |Ω|1/2∥v∥L2, which leads to σU L(v) = � min(Φv(0),L|Ω|) 0 Φ−1 v ≤ |Ω|1/2∥v∥L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a result, we may bound with the Cauchy-Schwarz inequality again 0 ≤ F ∗ T (p) ≤ 1 2|Ω| �� T 0 ∥p(t, ·)∥L2 dt �2 ≤ 1 2T |Ω| ∥p∥2 E, hence the continuity of F ∗ T at 0 = L∗ T0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The above lemma shows that the first condition of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 is satisfied, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', strong duality holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Coercivity of JT,ε, nonnegative approximate controllability Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The functional JT,ε defined by JT,ε(pf) = � 1 2 � T 0 σUL(L∗ T pf)dt �2 − ⟨yf − ST y0, pf⟩L2 + ε∥pf∥L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (23) is coercive on L2(Ω), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', JT,ε(pf) −−−−−−−→ ∥pf∥L2 →∞ ∞, and thus attains its minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since we know that JT,ε is convex, proper, strongly lsc, if JT,ε is coercive then infpf ∈L2(Ω) JT,ε(pf) ̸= −∞, and that it is actually attained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We will actually prove a stronger condition than coercivity, namely lim inf ∥pf∥L2 →∞ JT,ε(pf) ∥pf∥L2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Our method of proof follows that of [19, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Take a sequence ∥pn f ∥L2 → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We denote qn f := pn f ∥pn f ∥L2 , and qn ∈ E the corresponding solution of the adjoint equation (9), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', such that qn(T ) = qn f , which by linearity is pn ∥pn f ∥L2 , where pn = L∗ T pn f is the solution of (9) such that pn(T ) = pn f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By positive homogeneity of F ∗ T (of degree 2), we have JT,ε(pn f ) ∥pn f ∥L2 = ∥pn f∥L2F ∗ T (L∗ T qn f ) − � yf − ST y0, qn f � L2 + ε and hence if lim inf n→∞ F ∗ T (L∗ T qn f ) > 0, then lim inf n→∞ JT,ε(pn f ) ∥pn f∥L2 = +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let us now treat the remaining case where lim inf n→∞ F ∗ T (L∗ T qn f ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since ∥qn f ∥L2 = 1, upon extraction of a subsequence, we have qn f ⇀ qf weakly in L2(Ω) for some qf ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since L∗ T ∈ L(L2(Ω), E), we have L∗ Tqn f ⇀ L∗ T qf weakly in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, since F ∗ T is convex and strongly lsc on E, it is (sequentially) weakly lsc and taking the limit we obtain F ∗ T (L∗ T qf) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7, we infer that qf ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, recalling that the target satisfies yf − ST y0 ≥ 0 ⇔ yf ≥ ST y0, we end up with lim inf n→∞ JT,ε(pn f ) ∥pn f∥L2 ≥ −⟨yf − ST y0, qf⟩L2 + ε ≥ ε > 0, which concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 Characterisation of the minimisers In this section, we assume that the target is not reached with the trivial control u = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', yf /∈ B(ST y0, ε) Note that, if (21) is not satisfied, the control u = 0 steers y0 to the target, and is indeed a control in UL shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We first remark the following fact: 16 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under Assumption (21), any minimiser p⋆ f of (20) satisfies p⋆ f ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Suppose p⋆ f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, d = 0 and by strong duality, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, this value is attained: there exists some optimal control u⋆ such that FT (u⋆) + GT,ε(LT u⋆) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This implies that FT (u⋆) = GT,ε(LT u⋆) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the one hand, this leads to u⋆(t, ·) = 0 for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e t ∈ (0, T ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', u = 0, and on the other hand GT,ε(LT u⋆) = GT,ε(0) = 0, which is equivalent to 0 ∈ B(yf − ST y0, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This contradicts Assumption (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under Assumption (21), any optimal control for (19) is of the form (22), with p⋆ the solution of the adjoint equation (9) such that p⋆(T ) = p⋆ f, where p⋆ f is any dual optimal variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thanks to Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, we know that JT,ε defined by (20) attains its minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let p⋆ f be a minimiser for JT,ε, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', an optimal dual variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6, we have p⋆ f ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We denote p⋆ the solution of the adjoint equation (9) such that p⋆(T ) = p⋆ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let u⋆ be an optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4, we can apply the first identity of (50) in Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='8 (see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4) to obtain u⋆ ∈ ∂F ∗ T (L∗ T p⋆ f) = ∂F ∗ T (p⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using again the notation H(p) := � T 0 σU L(p(t)) dt, so that F ∗ T = 1 2H2, we have H(p⋆) ≥ 0 and dom(H) = L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, applying the generalised chain rule (see [11, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='9, point (ii)]) with the functions x �→ 1 2x2 and H, we compute the subdifferential of the convex functional F ∗ T : u⋆ ∈ H(p⋆) ∂H(p⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Applying Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 to H, we find u⋆(t, ·) ∈ M∂σU L(p⋆(t, ·)) for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' t ∈ (0, T ), with M := H(p⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, let t ∈ (0, T ) be fixed and let us justify that all level sets of p⋆(t, ·) are of measure zero, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', |{p⋆(t, ·) = λ}| = 0, ∀λ ∈ R, Indeed, since the operator ∂t − A∗ is analytic-hypoelliptic, we know that p⋆(t, ·) is analytic on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, its level sets are of measure zero unless p⋆(t, ·) = S∗ T −tp⋆ f is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using the (GUC) property, this leads to p⋆ f = 0, contradicting (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Applying Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4, and recalling that ∂σUL(p⋆(t, ·)) = {χ{p⋆(t,·)>h(p⋆(t,·))}}, we obtain the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As evidenced by the proof, a weaker (but less workable) property than analytic-hypoellipticity is sufficient to infer that optimal controls are on-off shape controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Indeed, it suffices to require either one of the following conditions (in decreasing order of strength): (i) All solutions t �→ p(t) of the adjoint equation such that p(T ) ̸= 0 have zero-measure level sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (ii) For all solutions t �→ p(t) of the adjoint equation such that p(T ) ̸= 0, the level sets {p(t, ·) = h(p(t, ·))} (see (16) for the definition of h(p)) have measure 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (iii) For all solutions t �→ p(t) of the adjoint equation such that p(T ) ̸= 0, � |{p(t, ·) = h(p(t, ·))}| = L|Ω| − |{p(t, ·) > h(p(t, ·))}|, if h(p(t, ·)) ̸= 0 |{p(t, ·) = h(p(t, ·))}| = 0, if h(p(t, ·)) = 0 for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' t ∈ [0, T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Note that requirement (iii) is minimal (see Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 and Remark B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finally, an even weaker requirement would be to restrict any of the above (i), (ii) or (iii) to a single solution t �→ p⋆(t) of the adjoint equation, namely that with p⋆(T ) = p⋆ f where p⋆ f is the unique dual optimal variable (see below for the uniqueness of optimal variables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 17 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 Uniqueness Our first uniqueness statement below (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', that of the dual optimal variable) is a consequence of Fenchel- Rockafellar duality, and the fact that we work with a Hilbert space, rather than specific properties of the evolution equation under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Still applying Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='8, we get LT u⋆ ∈ ∂G∗ T,ε(−p⋆ f) = ∂σB(yf−ST y0,ε)(−p⋆ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Flipping the subdifferentials, we get −p⋆ f ∈ ∂δB(yf−ST y0,ε)(LT u⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thanks to Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4, this means that LT u⋆ lies at the boundary of the closed ball B(yf − ST y0, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under the assumptions of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, the primal-dual optimal pairs (u⋆, p⋆ f) are unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Uniqueness of the dual optimal variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' First note that if Assumption (21) does not hold, then 0 is the unique optimal control, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', {LTu⋆, u⋆ is optimal} = {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (24) On the other hand, if Assumption (21) holds, according to Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='9,and since the set of minimisers of a convex function is convex, the set {LT u⋆, u⋆ is optimal} is a convex subset of the sphere S(yf −ST y0, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The closed ball being strictly convex since we are working in the Hilbert space L2(Ω), there exists some y⋆ ∈ B(yf − ST y0, ε) with ∥y⋆ − (yf − ST y0)∥L2 = ε such that {LTu⋆, u⋆ is optimal} = {y⋆}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (25) Thus, in any case, the set of targets reached by optimal controls is always reduced to a single point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, let p⋆ f be a dual optimal variable, and u⋆ an optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, as strong duality holds, Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7 implies that the pair (u⋆, p⋆ f) satisfies the two optimality conditions from (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We then have p⋆ f ∈ −∂GT,ε(LT u⋆) = −∂δB(yf−ST y0,ε)(LT u⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (26) If Assumption (21) does not hold, then (26) and (24) imply p⋆ f ∈ −∂δB(yf−ST y0,ε)(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If ∥yf − ST y0∥L2 < ε, then 0 ∈ B(yf − ST y0, ε) and p⋆ f ∈ −∂δB(yf−ST y0,ε)(0) = {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (27) Otherwise, 0 ∈ ∂B(yf − ST y0, ε) and (47) yield p⋆ f ∈ � λyf − ST y0 ε , λ ≥ 0 � = {λ(yf − ST y0), λ ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Restricting the function JT,ε defining the primal problem (19) to the above half-line, using the homo- geneities of each of its terms, and the fact that ∥yf − ST y0∥L2 = ε, we get γ0(λ) := JT,ε(λ(yf − ST y0)) = a0λ2, λ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (28) It is clear that 0 is the unique minimiser of γ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' From (27) and (28), 0 is the unique dual optimal variable if (21) does not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If Assumption (21) holds, then (26) and (25) imply p⋆ f ∈ −∂δB(yf−ST y0,ε)(y⋆) = −∂δB(0,1) �y⋆ − (yf − ST y0) ε � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 18 Since y⋆ lies at the boundary of B(yf − ST y0, ε), formula (47) yields p⋆ f ∈ � λ �yf − ST y0 − y⋆ ε � , λ ≥ 0 � = {λ (yf − ST y0 − y⋆) , λ ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Restricting JT,ε to the above half-line as previously, we find γ(λ) := JT,ε(λ(yf − ST y0 − y⋆)) = aλ2 + bλ, λ ≥ 0, where, using ∥yf − ST y0 − y⋆∥L2 = ε and the homogeneities involved a = F ∗ T (L∗ T (yf − ST y0 − y⋆)) and b = −⟨yf − ST y0, yf − ST y0 − y⋆⟩L2 + ε2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By coercivity, a > 0, and given Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6, we have b < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thus, γ has a unique minimiser λ⋆ := −b/2a > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, p⋆ f = λ⋆(yf − ST y0 − y⋆), and the dual optimal variable is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Uniqueness of the optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If Assumption (21) does not hold, then 0 is the unique optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, suppose that Assumption (21) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We know from the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7 that a given dual optimal variable uniquely determines one optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, as we have proved that strong duality holds, we can apply Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7: for any pair of primal and dual optimal variables, the relations (48) are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' That is, any optimal control u⋆ is uniquely determined by the unique dual optimal variable p⋆ f through the identity u⋆ ∈ ∂F ∗ T (L∗ T p⋆ f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 4 Obstructions to controllability We here prove Theorem B, through the more general result below in the case of second-order uniformly elliptic operators of the form (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We use the notation A ⊂⊂ B to mean that there exists a compact set K such that A ⊂ K ⊂ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let U+ ⊂ L2(Ω) be a constraint set of nonnegative controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that there exists a ball B(x, r) ⊂ Ω such that ∀u ∈ U+, supp(u) ∩ B(x, r) = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let A be a second-order uniformly elliptic operator of the form (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let y0 = 0 and yf ∈ L2(Ω) be any target such that yf ≥ ST y0 = 0, yf ̸= 0 and supp(yf) ⊂ B(x, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then there exist T ⋆ > 0 and ε > 0 such that for any time T ≤ T ⋆, no control with values in U+ can steer 0 to B(yf, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The proof relies on the following lemma, inspired by [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let B(x, r) ⊂⊂ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under the assumptions of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, for any K ⊂ B(x, r) compact, there exists pf ∈ L2(Ω) such that (i) pf < 0 on K, (ii) ∃ T ⋆ > 0 such that for all t ∈ (0, T ⋆), p(t, ·) ≥ 0 on Ω\\B(x, r), where p solves the adjoint equation (9) with p(T ) = pf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let us build pf such that for all 1 < r < +∞, pf ∈ W 2,r(Ω) ∩ W 1,r 0 (Ω), with pf < 0 on K, pf > 0 on Ω \\ B(x, r), pf = 0 on ∂Ω, and ∂νpf < 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' To that end, we denote ϕ1 the first eigenfunction of the Dirichlet Laplacian on Ω, which satisfies ϕ1 > 0 on Ω and ∂νϕ1 < 0 on ∂Ω and since Ω is of class C2, ϕ1 ∈ W 2,r(Ω) ∩ W 1,r 0 (Ω) for all 1 < r < +∞ [9][Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We then set pf = ξϕ1 where ξ ∈ C∞(Ω) is chosen to satisfy ξ = 1 on Ω \\ B(x, r) and ξ = −1 on K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The function pf satisfies all the required properties (note that pf = ϕ1 locally around ∂Ω since B(x, r) ⊂⊂ Ω, hence ∂νpf = ∂νϕ1 < 0 on ∂Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now set q(t) = p(T − t), so that q solves the (forward) adjoint equation (9) with q(0) = pf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, by parabolic regularity, we both have q ∈ C([0, T ] × Ω) and ∂νq ∈ C([0, T ] × ∂Ω) [36][Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As 19 a result, by continuity there exists T ⋆ such that ∂νq < 0 over [0, T ⋆] × ∂Ω, there exists some compact set K1 containing B(x, r) such that q ≥ 0 on [0, T ⋆] × (Ω \\ K1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, upon reducing T ⋆ if necessary and by continuity again, we have q ≥ 0 over [0, T ⋆]×(K1\\B(x, r)), which concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Upon reducing r, we may without loss of generality assume that B(x, r) ⊂⊂ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Letting K := supp(yf), we consider pf as given by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2, and the corresponding T ⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let T ≤ T ⋆ be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For any control u ∈ E, any y0, yf ∈ L2(Ω), any solution to the adjoint equation (9) such that p(T ) = pf, we have d dt⟨y(t), p(t)⟩L2 = ⟨p(t), u(t)⟩L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a result and owing to y0 = 0, ⟨y(T ), pf⟩L2 = � T 0 ⟨p(t), u(t)⟩L2 dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (29) We now assume by contradiction that, for any ε > 0 there exists a nonnegative control uε ∈ E satisfying ∀t ∈ (0, T ), supp(uε(t)) ∩ B(x, r) = ∅ and steering y0 = 0 to the ball B(yf, ε) in time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We inspect the sign of the equality (29) along the controls uε, ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the one hand, because of the condition (ii) in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 satisfied by p, and owing to uε ≥ 0, the right-hand side of (29) is nonnegative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', ⟨y(T ), pf⟩L2 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (30) On the other hand, the left-hand side of (29) satisfies ⟨y(T ), pf⟩L2 = ⟨yf, pf⟩L2 + ⟨y(T ) − yf, pf⟩L2 ≤ ⟨yf, pf⟩L2 + ε∥pf∥L2 Now, ⟨yf, pf⟩L2 < 0, because of (i) in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a result, there exists α > 0 such that pf ≤ −α on K, so that ⟨yf, pf⟩L2 ≤ −α � K yf < 0, because yf is nonnegative and nontrivial on K by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, for ε > 0 small enough, ⟨y(T ), pf⟩L2 < 0, which contradicts (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As the proof shows, the obstruction to nonnegative approximate controllability in U+ does not rely on the comparison principle, but is of dual nature as evidenced by the core idea behind it, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', to construct pf and yf violating equality (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 follows directly from the existence of pf satisfying the assumptions of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, this obstruction to nonnegative approximate controllability is rather general and will be satisfied by any operator (including uniformly second-order elliptic operator of the form (7)) for which such an element pf can be built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 5 Further comments 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Properties of the value function in the general case For general linear operators generating a C0 semigroup, fixing Ω, L, ε, y0 and yf, we analyse the de- pendence with respect to the final time T , for the optimal control problem (19) studied in Section 3 for system (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, the optimal control problem (19) is well-posed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', optimal controls exist (see also Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3), hence we may consider Π(T ) := 1 2(M(T ))2 := inf{FT (u), u ∈ E, ∥LTu − (yf − ST y0)∥L2 ≤ ε}, T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (31) When A∗ satisfies the (GUC) property and ∂t − A∗ is analytic-hypoelliptic, M(T ) is the amplitude of the unique optimal control in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 20 Recall that by strong duality, we have Π(T ) = 1 2(M(T ))2 = −JT,ε(p⋆ T ), ∀T ≥ 0, (32) where p⋆ T is the unique minimiser of JT,ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This is exactly the identity obtained for the HUM method where the cost functional FT is just 1 2∥ · ∥2 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We first establish the continuity of T �→ M(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' M (and thus Π) are continuous on (0, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using (32), we prove the continuity by showing that (pf, T ) �→ JT,ε(pf) (given by (23)) satisfies the assumptions of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='9 with H = L2(Ω) and Z = (0, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Clearly, the first, second and fourth assumptions are satisfied, hence we are left with proving that (pf, T ) �→ JT,ε(pf) is weak-strong lower semicontinuous over L2(Ω) × (0, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The last two terms of (23) are easily seen to be weak-strong lower semicontinuous over L2(Ω)×(0, +∞), hence we investigate the property for the remaining term F ∗ T (L∗ T pf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given pf ∈ L2(Ω) and T > 0, let (pn f ) and (Tn) be two sequences such that pn f ⇀ pf, Tn → T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We decompose F ∗ Tn(L∗ Tnpn f ) = F ∗ T (L∗ T pn f ) + � F ∗ Tn(L∗ Tnpn f ) − F ∗ T (L∗ T pn f ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By weak (sequential) lower semicontinuity of F ∗ T over L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' L2(Ω)), we find that the first term satisfies F ∗ T (L∗ T pf) ≤ lim inf n→+∞ F ∗ T (L∗ T pn f ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' To conclude, we only need to prove that the second term tends to 0 as n → +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using the notation qn for the solution to the forward adjoint problem such that qn(0) = pn f , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', qn(t) = S∗ t pn f , we have F ∗ Tn(L∗ Tnpn f ) − F ∗ T (L∗ T pn f ) = 1 2 �� Tn 0 σU L(qn(Tn − t)) dt �2 − 1 2 �� T 0 σU L(qn(T − t)) �2 = 1 2 �� Tn T σU L(qn(t)) dt � �� Tn 0 σU L(qn(t)) dt + � T 0 σU L(qn(t)) dt � Using the bound 0 ≤ σU L(p) ≤ |Ω|1/2∥p∥L2 (see the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4) and the estimate ∥St∥L(L2(Ω)) ≤ C valid for all t ∈ [0, T + 1] with C > 0 some constant independent of n, we have ����� � Tn 0 σU L(qn(t)) dt + � T 0 σU L(qn(t)) dt ����� ≤ C|Ω|1/2(T + Tn) ∥pn f ∥L2, a bounded quantity, and ����� � Tn T σU L(qn(t)) dt ����� ≤ C|Ω|1/2|T − Tn| ∥pn f ∥L2, which tends to 0 as n → +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now study the behaviour of M(T ) near T = 0 and T = +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We recall that M(T ) also depends on all other parameters y0, yf, ε and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now recall (see [35]) that there exist Cs > 0, α ∈ R such that forall t ≥ 0, ∥St∥L(L2(Ω)) ≤ Cseαt, and the semi-group generated by (A, D(A)) is said to be exponentially stable if α < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 21 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have ∀T > 0, M(T ) ≥ |α|∥yf − ST y0∥L2 − ε � L|Ω|(1 − eαT ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (33) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let u⋆ T be an optimal control in time T for the optimal control problem (31), then ∥LTu⋆ T ∥L2 = ����� � T 0 ST −tu⋆ T (t, ·)dt ����� L2 ≤ � T 0 ∥ST −tu⋆ T (t, ·)∥L2dt ≤ � T 0 eα(T −t)∥u⋆ T(t, ·)∥L2dt ≤ 1 |α|(1 − eαT )M(T ) � L|Ω|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, by definition of our control problem, for all T > 0, ∥yf − ST y0∥L2 − ε ≤ ∥LTu⋆ T ∥L2, and the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that yf /∈ B(y0, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then: 1 T = O T →0(M(T )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (34) In particular, M(T ) −−−→ T →0 +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that yf /∈ B(0, ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If, additionally, (St)t≥0 is exponentially stable, then lim inf T →+∞ M(T ) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (35) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The estimate (34) is obtained by passing to the limit in (33), using that ST y0 −−−→ T →0 y0: the lower bound behaves as ∥yf−y0∥L2−ε √ L|Ω| 1 T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The inequality (35) is obtained by passing to the limit T → +∞ in (33), using that ST y0 −−−−→ T →∞ 0: lim inf T →+∞ M(T ) ≥ |α|∥yf∥L2 − ε � L|Ω| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Obstructions We further investigate the behaviour of M, and establish results on the corresponding minimal time problem (37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The comparison principle formulated in (6) will be a key ingredient in our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Obstruction to reachability and small-time controllability Given the controllability result of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, in order to study possible obstructions, we introduce a new bound on the amplitude of the control, of the form: M(u) := 2 � FT (u) ≤ Mmax, u ∈ E, (36) for some Mmax > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Note that such a constraint imposes nonnegativity of the control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' With this new constraint on the controls, we illustrate a general property that is well known for finite-dimensional systems: exponential stability prevents reachability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In particular, the result below holds for uniformly elliptic operators of the form (7) with 0th order coefficient satisfying c ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that (St)t≥0 is exponentially stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let (y0, yf) be such that for all T ≥ 0, yf ≥ ST y0 and ∥ST y0−yf∥L2 ≥ δ for some δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, for all 0 < ε < δ there exists MmaxM(y0, yf, ε) > 0 satisfying 22 if Mmax > Mmax(y0, yf, ε), there exists a time T > 0 and a control u ∈ E satisfying (36), steering y0 to B(yf, ε) in time T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If A∗ satisfies the (GUC) property and ∂t − A∗ is analytic-hypoelliptic, the control may be chosen to be in UL shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' if Mmax < Mmax(y0, yf, ε), no such control exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, for all Mmax > 0, the control system (5) is not nonnegatively approximately controllable with controls in {M(u) ≤ Mmax} in any time T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3, the function M(T ) goes to +∞ as T → 0, is bounded away from 0 at infinity, and does not vanish over the interval (0, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since it is continuous, we define Mmax(y0, yf, ε) := inf T >0 M(T ) > 0, and the first two claims follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' When A∗ satisfies the (GUC) property and ∂t−A∗ is analytic-hypoelliptic, the control may be chosen to be in UL shape by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, let Mmax > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Taking yf ∈ L2(Ω) such that ∥yf∥L2 > √ L|Ω| |α| Mmax + ε and y0 ∈ L2(Ω) such that yf ≥ ST y0 and ∥ST y0 − yf∥L2 ≥ δ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thanks to the proof of Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3, we infer Mmax(y0, yf, ε) ≥ |α| ∥yf ∥L2−ε √ L|Ω| > Mmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' It follows from the second claim that y0 cannot be steered to yf in any time T > 0 with a control u such that M(u) ≤ Mmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thus, system (5) is not nonnegatively approximately controllable with such controls in any time T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Characterisation of minimal time controls Throughout this section, we let ε > 0, yf ∈ L2(Ω), we assume that (21) holds, and let y0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence we must have ∥yf∥L2 > ε and the condition (21) is independent of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finally, yf ≥ ST y0 here simply amounts to yf ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given the obstruction result of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4, we consider the minimal time control problem: T ⋆(λ) = inf{T > 0, ∃u ∈ E, ∥LTu − yf∥L2 ≤ ε, FT (u) ≤ λ}, λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (37) From our study of the optimal control problem (19), we know that this minimal time is well defined for λ ∈ M((0, +∞)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under appropriate assumptions, we will show that it is reached, and characterise the minimal time controls, by establishing a form of equivalence between the optimal control problem and the corresponding minimal time problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This is now a well-known feature for parabolic equations (see [19, 39, 46]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Further study of the value function M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using strong duality again, we will establish that M is a non-increasing function under the assumption that A∗ satisfies the comparison principle (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We start with the following general lemma: Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given any 0 < T1 < T2, and y0 = 0, for a general unbounded linear operator A, the dual functional defined by (23) satisfies: JT1,ε(pf) ≤ JT2,ε(pf), ∀pf ∈ L2(Ω), (38) with equality if and only if L∗ T2pf(t) ≤ 0, ∀t ∈ [0, T2 − T1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (39) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since y0 = 0, inequality (38) follows immediately from the comparison of the integral terms in the expression of the JTi,ε, i ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, for pf ∈ L2(Ω), one has JT1,ε(pf) = JT2,ε(pf) if and only if � T1 0 σU L � L∗ T1pf(t) � dt = � T2 0 σU L � L∗ T2pf(t) � dt, 23 that is, by definition of the operators L∗ Ti (see (9) which are obviously related by L∗ T1,εpf(t) = L∗ T2,εpf(T2− T1 + t) for all t ∈ (0, T1), � T2−T1 0 σU L � L∗ T2pf(t) � dt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using the definition of the support function σU L (see the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7), this is equivalent to (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The function M (and hence Π) are non-increasing on (0, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now denote µ− = µ−(yf) := lim T →+∞ Π(T ) = lim T →+∞ 1 2M(T )2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Note that µ− ∈ [0, +∞), and if the semi-group generated by A is exponentially stable, µ− > 0 as established by (35) in Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume A∗ satisfies the comparison principle (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, there exists Tℓ = Tℓ(yf) ∈ (0, +∞] such that M is decreasing on [0, Tℓ), and constant on [Tℓ, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The proposition above implies in particular that M either decreases on the whole of (0, +∞) to its limit µ− (if Tℓ = +∞), or reaches it at Tℓ < +∞ and then remains constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By strong duality, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 implies that M is non-increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let T2 > T1 > 0, and denote p⋆ T1, p⋆ T2 the associated dual minimisers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that M(T1) = M(T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (40) From Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, and by definition of p⋆ T1, we know that JT1,ε(p⋆ T1) ≤ JT1,ε(p⋆ T2) ≤ JT2,ε(p⋆ T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (41) From (32), (40) implies that JT1,ε(p⋆ T1) = JT2,ε(p⋆ T2), so that all the inequalities in (41) actually are equalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By uniqueness of the dual optimal variable (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='10), the first equality implies that p⋆ T1 = p⋆ T2 =: p⋆ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (42) From Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, the second equality implies that L∗ T2p⋆ f(t) ≤ 0, ∀t ∈ [0, T2 − T1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (43) From (42) and (43), we get p⋆ T = p⋆ f for all T ∈ [T1, T2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, for T > T2, the comparison principle (6) and inequality (43) imply that L∗ T p⋆ f(t) ≤ 0 for all t ∈ [0, T − T1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' From Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, we then get JT,ε(p⋆ f) = JT1,ε(p⋆ f), which implies JT,ε(p⋆ f) = JT1,ε(p⋆ f) ≤ JT,ε(p⋆ T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By definition of the dual minimiser p⋆ T of JT,ε, we also have JT,ε(p⋆ T ) ≤ JT,ε(p⋆ f), and then finally, JT,ε(p⋆ T ) = JT,ε(p⋆ f), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', p⋆ T = p⋆ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This implies, thanks to (32), that M(T ) = M(T1) = M(T2), which proves the proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' It follows from all the above and (43) that, when A∗ satisfies the comparison principle (6), if Tℓ < +∞, then L∗ T p⋆ Tℓ(t) ≤ 0, ∀T ≥ Tℓ, ∀t ∈ [0, T − Tℓ], and u⋆ T (t) = � 0 if t ∈ (0, T − Tℓ), u⋆ Tℓ(t − T + Tℓ) if t ∈ (T − Tℓ, T ), , ∀T ≥ Tℓ is an optimal control on [0, T ] whenever uTℓ is an optimal control on [0, Tℓ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now establish the relationship between the optimal control problem (31) and the minimal time control problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 24 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that A∗ satisfies the comparison principle (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, for all T ∈ (0, Tℓ), any optimal control for (31) on [0, T ] is a minimal time control, that is, T ⋆(Π(T )) = T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, for any λ > µ−, Π(T ⋆(λ)) = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We proceed by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that T ⋆(Π(T )) < T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, there exists δ > 0 and a control uδ ∈ L2(0, T − δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' L2(Ω)) such that FT (uδ) ≤ Π(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, any optimal control u⋆ δ (in the sense of optimal control problem (31) in time T − δ) satisfies FT (u⋆ δ) ≤ FT (uδ) (the inequality is not necessarily strict, as uδ could be an optimal control), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', Π(T − δ) = FT (u⋆ δ) ≤ FT (uδ) ≤ Π(T ), which contradicts the fact that T �→ Π(T ) is a decreasing function on (0, Tℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Thus, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='10) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, let λ > µ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' From Corollaries 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6 and Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1, there exists T ∈ (0, Tℓ) such that Π(T ) = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Applying T ⋆ to the above and using (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='10), we get T ⋆(λ) = T ⋆(Π(T )) = T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, applying Π to the above yields Π(T ⋆(λ)) = Π(T ) = λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We can also formulate the above result in the following way: for all λ > µ−, T ⋆(λ) = inf{T > 0, Π(T ) ≤ λ}, that is, T ⋆ is the pseudo-inverse of Π on (µ−, +∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In terms of the time optimal control problem, we now have a complete characterisation of time optimal controls for (37): Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that A∗ satisfies the comparison principle (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For any λ > µ−, T ⋆(λ) < +∞, and T ⋆(λ) −−−−→ λ→∞ 0, T ⋆(λ) −−−−→ λ→µ− +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' As a consequence, the domain of definition of T ⋆ is (µ−, +∞), and on its domain of definition, T ⋆ is continuous and decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Moreover, if A∗ satisfies the (GUC) property and ∂t−A∗ is analytic-hypoelliptic, there exists a unique minimal time control for (37), given by the optimal control problem (19), and it lies in UL shape .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The authors are grateful to Rémy Abergel for enlightening discussions about Fenchel duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' All three authors acknowledge the support of the ANR project TRECOS, grant number ANR-20-CE40-0009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A Convex analysis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 Core properties of Fenchel conjugation A fundamental property of conjugation is involution (over Γ0(H)): Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 (Fenchel-Moreau).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Given any f ∈ Γ0(H), there holds f ∗ ∈ Γ0(H) and f ∗∗ = f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Analogously to the classical gradient, the subdifferential can be used to study optimality: Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 (Fermat’s rule).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let f ∈ Γ0(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' f attains a finite global minimum over H in x⋆ if and only if 0 ∈ ∂f(x⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now list further useful properties of the Fenchel conjugate: multiplication by a real number: for α ∈ R, (αf)∗(y) = \uf8f1 \uf8f2 \uf8f3 αf ∗ � y α � if α ̸= 0, σdom(f)(y) if α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (44) 25 the (suitably normalised) squared norm is its own conjugate: �1 2∥ · ∥2 H �∗ = 1 2∥ · ∥2 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (45) Let us also mention a result about composition [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' First, let f ∈ Γ0(H) and g ∈ Γ0(R) be non- decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, (g ◦ f)∗(y) = min α≥0 � g∗(α) + αf ∗� y α �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Following (44), the convention for α = 0 is 0 f ∗�y 0 � = σdom(f)(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Link with the subdifferential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We now give another characterisation of the subdifferential set, which illustrates the link with convex conjugation: for f ∈ Γ0(H), ∂f(x) = {p ∈ H, ⟨p, x⟩H − f(x) = f ∗(p)} = {p ∈ H, ⟨x, p⟩H − f ∗(p) = f(x)} (46) Essentially, the subdifferential is the set of linear forms on which the convex conjugate is attained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using this characterisation, we then get the Legendre-Fenchel identity, which allows us to “flip” subd- ifferentials: p ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(p), f ∈ Γ0(H), ∀x, p ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 Some properties of indicator and support functions Indicator functions are a crucial tool to encode constraints in convex optimisation problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Their properties are closely linked to topological properties of their indicated sets: Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have δC, σC ∈ Γ0(H) as soon as C is non-empty, convex and closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The characterisation (46) of the subdifferential yields a useful result on indicator functions: Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let C ⊂ H be a closed convex set with nonempty interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, for x ∈ H we have the following: x ∈ ∂C ⇐⇒ ∂δC(x) is a nontrivial cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Equivalently, by convex conjugation, ∃p ̸= 0, x ∈ arg max v∈C ⟨v, p⟩ ⇐⇒ ∃p ̸= 0, x ∈ ∂σC(p) ⇐⇒ x ∈ ∂C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Indicator function of a ball in a Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Consider the closed unit ball B(0, 1) of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We have seen before that σB(0,1)(y) = � δB(0,1) �∗(y) = ∥y∥H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using (46), we get the following: for x ∈ B(0, 1), ∂δB(0,1)(x) = {p ∈ H, ⟨p, x⟩H = σB(0,1)(p)} = {p ∈ H, ⟨p, x⟩H = ∥p∥H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' From the Cauchy-Schwarz inequality we know that ⟨p, x⟩H ≤ ∥p∥H∥x∥H, it follows that ⟨p, x⟩H = ∥p∥H if and only if x = p ∥p∥H .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This implies that ∂δB(0,1)(x) = � {0} if ∥x∥H < 1, {λx, λ ≥ 0} if ∥x∥H = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (47) 26 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 Technical lemmas Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let f ∈ Γ0(H) be such that F : u ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H) �−→ � T 0 f(u(t)) dt, is well-defined and proper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then F ∈ Γ0(L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H)), and its Fenchel conjugate and subdifferential are given by ∀p ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H), F ∗(p) = � T 0 f ∗(p(t)) dt, ∂F(u) = � p ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H), p(t) ∈ ∂f(u(t)), for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' t ∈ (0, T ) � , ∀u ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since F is obviously convex, we only need to justify that F is lsc to infer F ∈ Γ0(L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We let un → u be in L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H) and must show that F(u) ≤ lim inf F(un).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Upon extraction of a subsequence, we may assume that F(un) → lim inf F(un), and that un(t) → u(t) in H for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' t ∈ (0, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, using successively the lsc of f and Fatou’s lemma, we find F(u) = � T 0 f(u(t)) dt ≤ � T 0 lim inf f(un(t)) dt ≤ lim inf � T 0 f(un(t)) dt = lim inf F(un).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For p ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H), we compute F ∗(p) = sup u∈L2(0,T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='H) ⟨p, u⟩L2(0,T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='H) − � T 0 f(u(t)) dt = � T 0 � sup u∈H ⟨p(t), u⟩H − f(u(t)) � dt = � T 0 f ∗(p(t)) dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Using the characterisation given in (46), and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5, we have the following: ∂F(u) = arg max p∈L2(0,T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='H) {⟨p, u⟩ − F ∗(p)} = arg max p∈L2(0,T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='H) �� T 0 ⟨p(t), u(t)⟩dt − � T 0 f ∗(p(t))dt � = arg max p∈L2(0,T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='H) �� T 0 (⟨p(t), u(t)⟩ − f ∗(p(t))) dt � = � p ∈ L2(0, T ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' H), p(t) ∈ arg max p∈H {⟨p, u(t)⟩ − f ∗(p)} � , and the result follows by the same characterisation of the subdifferential set ∂f(u(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='4 Fenchel-Rockafellar duality Let E and F be two Hilbert spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let f and g be functions in Γ0(E) and Γ0(F), respectively, and A : E → F be a bounded operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Consider the (primal) optimisation problem π = inf x∈E (f(x) + g(Ax)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (C) and its dual problem d = sup z∈F (−f ∗(A∗z) − g∗(−z)) = − inf z∈F (f ∗(A∗z) + g∗(−z)) (D) With the above notations, weak duality always holds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', we always have π ≥ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The Fenchel-Rockafellar theorem states when and how strong duality holds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', when d = π [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 27 Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If there exists ¯x ∈ E such that g is continuous at A¯x and f(¯x) < +∞, then π = d and d is attained if finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Symmetrically, if there exists ¯z ∈ F such that f ∗ is continuous at A∗¯z and g∗(−¯z) < +∞, then d = π and π is attained if finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The second part of the theorem is obtained by applying the first part to (D), inf z∈F (f ∗(A∗z) + g∗(−z)) , seen as a primal problem, and (C), rewritten as sup x∈E (−f(x) − g(Ax)) , seen as its dual problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' This yields −d ≥ −π, with equality under the corresponding assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lagrangian and saddle-point interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let us now define the Lagrangian for (x, y) ∈ E × F by L(x, y) := ⟨y, Ax⟩ + f(x) − g∗(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If (x⋆, y⋆) is a saddle point of the Lagrangian, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', x⋆ ∈ arg min x∈E L(x, y⋆) and y⋆ ∈ arg max y∈F L(x⋆, y), then (x⋆, z⋆) (with z⋆ = −y⋆) is a pair of primal and dual optimal variables, and strong duality holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' What matters is the converse: if (x⋆, z⋆) is a pair of primal and dual optimal variables and if strong duality holds, then (x⋆, y⋆) (with y⋆ = −z⋆) is a saddle point of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Whenever (x⋆, y⋆) is a primal-dual optimal pair, Fermat’s rule and the Legendre-Fenchel identity yield x⋆ ∈ arg min x∈E L(x, y⋆) ⇐⇒ −A∗y⋆ ∈ ∂f(x⋆) ⇐⇒ x⋆ ∈ ∂f ∗(−A∗y⋆), as well as y⋆ ∈ arg max y∈F L(x⋆, y) ⇐⇒ Ax⋆ ∈ ∂g∗(y⋆) ⇐⇒ y⋆ ∈ ∂g(Ax⋆), Summing up, we have the following proposition: Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let (x⋆, z⋆) be a pair of primal and dual optimal variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' If strong duality holds, then x⋆ ∈ ∂f ∗(A∗z⋆), Ax⋆ ∈ ∂g∗(−z⋆), (48) z⋆ ∈ −∂g(Ax⋆), A∗z⋆ ∈ ∂f(x⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Reinterpreting the Fenchel-Rockafellar theorem with the above and in a way that is useful for control- lability issues, we end up with Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Under the assumption that there exists ¯x ∈ E such that g is continuous at A¯x and f(¯x) < +∞, if π is finite, and attained at x⋆ ∈ E, then d is attained at z⋆ ∈ F satisfying z⋆ ∈ −∂g(Ax⋆), A∗z⋆ ∈ ∂f(x⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (49) Conversely, if (x⋆, z⋆) satisfies (49), (x⋆, z⋆) is a pair of primal and dual optimal variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Similarly, under the assumption that there exists ¯z ∈ E such that f ∗ is continuous at A∗¯z and g∗(−¯z) < +∞, if d is finite, and attained at z⋆ ∈ F, then π is attained at x⋆ ∈ E satisfying x⋆ ∈ ∂f ∗(A∗z⋆), Ax⋆ ∈ ∂g∗(−z⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (50) Conversely, if (x⋆, z⋆) satisfies (50), (x⋆, z⋆) is a pair of primal and dual optimal variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 28 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='5 Parametric convex optimisation Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let H be a Hilbert space, Z be a metric space, f : H × Z → R ∪ {+∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that ∀α ∈ Z, f(·, α) is convex on H, ∀x ∈ H, f(x, ·) is continuous on Z, f is sequentially weak-strong lower semicontinuous on H × Z, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', ∀xn ⇀ x, ∀αn → α, f(x, α) ≤ lim inf n→+∞ f(xn, αn), there exists a unique xα ∈ H such that inf x∈H f(x, α) = f(xα, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then the mapping α ∈ Z �−→ inf x∈H f(x, α) is continuous on Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let αn → α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Denoting m(α) = inf x∈H f(x, α) = f(xα, α), let us show that m(αn) converges to m(α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Upper semicontinuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For x ∈ H fixed, thanks to the continuity of f(x, ·), we pass to the limit in f(x, αn) ≥ m(αn) and find m(α) = inf x∈H f(x, α) ≥ lim sup n→+∞ m(αn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lower semicontinuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We denote xn = xαn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let us for the moment admit that (xn) is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Upon extraction, we may assume that xn ⇀ ¯x for some x ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' By sequential weak-strong lower semicontinuity, f(¯x, α) ≤ lim inf n→+∞ f(xn, αn) = lim inf n→+∞ m(αn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Since the left-hand side is bounded from below by m(α), we have proved lower semicontinuity (and in fact ¯x = xα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' We are left to proving the boundedness of (xn) to conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Assume that (xn) is not bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Upon extraction, we may assume that yn := xn ∥xn∥H ⇀ y, for some y ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For any fixed λ > 0, we shall prove that xα + λy minimises f(·, α), which contradicts the fourth assumption that there exists a single minimum point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Indeed, we notice that � 1 − λ ∥xn∥H � xα + λ ∥xn∥H xn ⇀ xα + λy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hence, by weak-strong lower semicontinuity, convexity, the fact xn minimises f(·, αn) and continuity, f(xα + λy, α) ≤ lim inf n→+∞ f �� 1 − λ ∥xn∥H � xα + + λ ∥xn∥H xn, αn � ≤ lim inf n→+∞ � 1 − λ ∥xn∥H � f(xα, αn) + λ ∥xn∥H f(xn, αn) ≤ lim inf n→+∞ � 1 − λ ∥xn∥H � f(xα, αn) + λ ∥xn∥H f(xα, αn) = lim inf n→+∞ f(xα, αn) = f(xα, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 29 B The classical bathtub principle The classical bathtub principle characterises the maximisers, and gives the maximum value, of the con- strained scalar product maximisation: sup u∈ � U ∗ L � Ω u(x)v(x) dx, (51) where v ∈ L2(Ω) is arbitrary, and �U∗ L := � u ∈ L2(Ω), 0 ≤ u ≤ 1 and � Ω u = L|Ω| � , is the convex hull (and L∞ weak-∗ closure) of the set of characteristic functions whose support has the corresponding fixed measure: �UL := {χω, ω ⊂ Ω, |ω| = L|Ω|}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Recalling the notations (14) and (15) introduced in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3, the classical bathtub principle reads: Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='1 (classical bathtub principle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let v ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Denote ρ(v) := Φ−1 v (L|Ω|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The maximum in (51) equals �� v>ρ(v) v � + ρ(v)(L|Ω| − |{v > ρ(v)}|) = � L|Ω| 0 Φ−1 v , and the maximisers are given by u⋆ := χ{v>ρ(v)} + c(x)χ{v=ρ(v)}, where c is any measurable function such that 0 ≤ c ≤ 1 and � {v=ρ(v)} c = L|Ω| − |{v > ρ(v)}|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In particular, if all the level sets of the function v have zero measure, then the maximum is uniquely attained by u⋆ := χ{v>ρ(v)}, and the maximum hence equals � {v>ρ(v)} v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Now, recall that we defined UL by (11) and its convex hull U L by (12) in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' They are respective relaxations of ˜UL, and its convex hull ˜U∗ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' For v ∈ L2(Ω), we consider the relaxed version of (51): sup u∈UL � Ω u(x)v(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' (52) Then, the complete solution of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3 is given by the following: Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='2 (relaxed bathtub principle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Let v ∈ L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Denote h(v) = max(0, Φ−1 v (L|Ω|)) = max(0, ρ(v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Then, the maximum in (52) equals � min(Φv(0),L|Ω|) 0 Φ−1 v , and the maximisers are given by u⋆ := χ{v>h(v)} + c(x)χ{v=h(v)}, 30 where c is any measurable function such that 0 ≤ c ≤ 1 and \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 � {v=h(v)} c = L|Ω| − |{v > h(v)}| if h(v) > 0 � {v=h(v)} c ≤ L|Ω| − |{v > h(v)}| if h(v) = 0 Remark B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In particular, if h(v) > 0, there is a unique maximiser in (52) if and only if |{v > h(v)}| + |{v = h(v)}| = L|Ω|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Indeed, when the above does not hold, c can be chosen to have values in (0, 1) on a set of nonzero measure, and the maximisers is no longer unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the other hand, if h(v) = 0, as soon as |{v = h(v)}| > 0 the maximisers are no longer unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Ahmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Finite-time null controllability for a class of linear evolution equations on a Banach space with control constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal of optimization Theory and Applications, 47(2):129–158, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Publisher: Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [2] Nachman Aronszajn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Technical report, KANSAS UNIV LAWRENCE, 1956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [3] Larbi Berrahmoune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A variational approach to constrained controllability for distributed systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal of Mathematical Analysis and Applications, 416(2):805–823, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [4] Larbi Berrahmoune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Constrained null controllability for distributed systems and applications to hyperbolic-like equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' ESAIM: Control, Optimisation and Calculus of Variations, 25:32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [5] Larbi Berrahmoune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A variational approach to constrained null controllability for the heat equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' European Journal of Control, 52:42 – 48, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [6] Jean-Michel Bony.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Annales de l’Institut Fourier, 19(1):277–304, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [7] Franck Boyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' ESAIM: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', 41:15–58, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [8] Robert F Brammer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Controllability in linear autonomous systems with positive controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Journal on Control, 10(2):339–353, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [9] Haïm Brézis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Functional analysis, Sobolev spaces and partial differential equations, volume 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Springer, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [10] Antonin Chambolle and Thomas Pock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A first-order primal-dual algorithm for convex problems with applications to imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal of Mathematical Imaging and Vision, 40, 05 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [11] Frank H Clarke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Optimization and nonsmooth analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Coron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Amer- ican Mathematical Society, Providence, RI, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [13] O Yu Emanuilov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Controllability of parabolic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Sbornik: Mathematics, 186(6):879–900, jun 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 31 [14] Klaus-Jochen Engel and Rainer Nagel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' One-parameter semigroups for linear evolution equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Semigroup Forum, 63:278–280, 06 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [15] Sylvain Ervedoza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Control issues and linear projection constraints on the control and on the controlled trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' North-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', 6:165–197, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [16] Lawrence C Evans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Graduate studies in mathematics, 19(4):7, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [17] Jean-Baptiste Hiriart-Urruty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A note on the Legendre-Fenchel transform of convex composite func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' In Nonsmooth Mechanics and Analysis, pages 35–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Springer, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [18] Bernhard Kawohl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Rearrangements and convexity of level sets in PDE, volume 1150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Springer, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [19] Karl Kunisch and Lijuan Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Time optimal control of the heat equation with pointwise control constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' ESAIM: Control, Optimisation and Calculus of Variations, 19(2):460–485, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [20] Stéphane Labbé and Emmanuel Trélat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Uniform controllability of semidiscrete approximations of parabolic control systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Systems & Control Letters, 55(7):597–609, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [21] Gontran Lance, Emmanuel Trélat, and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Shape turnpike for linear parabolic PDE models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Systems & Control Letters, 142:104733, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [22] Gilles Lebeau and Luc Robbiano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Contrôle exact de l’équation de la chaleur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Communications in Partial Differential Equations, 20(1-2):335–356, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [23] Elliott H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Lieb and Michael Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Crm Proceedings & Lecture Notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' American Mathe- matical Society, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [24] Jacques-Louis Lions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Remarks on approximate controllability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal d’Analyse Mathématique, 59(1):103, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [25] Jérôme Lohéac, Emmanuel Trélat, and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Minimal controllability time for the heat equation under unilateral state or control constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Mathematical Models and Methods in Applied Sciences, 27(09):1587–1644, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [26] Jérôme Lohéac, Emmanuel Trélat, and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Minimal controllability time for finite- dimensional control systems under state constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Automatica, 96:380–392, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [27] Jérôme Lohéac, Emmanuel Trélat, and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Nonnegative control of finite-dimensional linear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 38(2):301–346, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [28] Idriss Mazari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Quantitative estimates for parabolic optimal control problems under L∞ and L1 con- straints in the ball: Quantifying parabolic isoperimetric inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Nonlinear Analysis, 215:112649, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [29] Sorin Micu, Ionel Roventa, and Marius Tucsnak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Time optimal boundary controls for the heat equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal of Functional Analysis, 263(1):25–49, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Publisher: Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [30] Sorin Micu and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' An introduction to the controllability of partial differential equa- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Quelques questions de théorie du contrôle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Sari, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=', Collection Travaux en Cours Hermann, to appear, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [31] Victor J Mizel and Thomas I Seidman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' An abstract bang-bang principle and time-optimal boundary control of the heat equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Journal on Control and Optimization, 35(4):1204–1216, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [32] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Métivier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Hypoellipticité d’opérateurs à caractéristiques multiples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Séminaire Équations aux dérivées partielles (Polytechnique), pages 1–13, 1980-1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [33] Edward Nelson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Analytic vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Annals of Mathematics, pages 572–615, 1959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 32 [34] Khoa Nguyen Son.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' A unified approach to constrained approximate controllability for the heat equa- tions and the retarded equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal of Mathematical Analysis and Applications, 150(1):1–19, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Publisher: Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [35] Amnon Pazy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Semigroups of linear operators and applications to partial differential equations, vol- ume 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Springer Science & Business Media, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [36] Dario Pighin and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Controllability under positivity constraints of semilinear heat equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Mathematical Control & Related Fields, 8(3&4):935–964, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [37] Camille Pouchol, Emmanuel Trélat, and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Phase portrait control for 1D monostable and bistable reaction–diffusion equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Nonlinearity, 32(3):884, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [38] Yannick Privat, Emmanuel Trélat, and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Optimal shape and location of sensors for parabolic equations with random initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Archive for Rational Mechanics and Analysis, 216(3):921–981, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Publisher: Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [39] Shulin Qin and Gengsheng Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Equivalence between minimal time and minimal norm control problems for the heat equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Journal on Control and Optimization, 56(2):981–1010, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [40] Ralph Rockafellar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Duality and stability in extremum problems involving convex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Pacific Journal of Mathematics, 21(1):167–187, 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [41] Domènec Ruiz-Balet and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Control under constraints for multi-dimensional reaction- diffusion monostable and bistable equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal de Mathématiques Pures et Appliquées, 143:345– 375, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [42] David L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Russell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Review, 20(4):639–739, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [43] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Georg Schmidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The “bang-bang” principle for the time-optimal problem in boundary control of the heat equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Journal on Control and Optimization, 18(2):101–107, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [44] Emmanuel Trélat, Gengsheng Wang, and Yashan Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Characterization by observability inequalities of controllability and stabilization properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Pure and Applied Analysis, 2(1):93–122, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [45] Gengsheng Wang, Yashan Xu, and Yubiao Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Attainable Subspaces and the Bang-Bang Prop- erty of Time Optimal Controls for Heat Equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Journal on Control and Optimization, 53(2):592–621, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [46] Gengsheng Wang and Enrique Zuazua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' On the Equivalence of Minimal Time and Minimal Norm Controls for Internally Controlled Heat Equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' SIAM Journal on Control and Optimization, 50(5):2938–2958, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' [47] Dong-Hui Yang, Bao-Zhu Guo, Weihua Gui, and Chunhua Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' The Bang–Bang Property of Time- Varying Optimal Time Control for Null Controllable Heat Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Journal of Optimization Theory and Applications, 182(2):588–605, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' Publisher: Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
+page_content=' 33' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/lNE4T4oBgHgl3EQfTwzv/content/2301.05011v1.pdf'}
diff --git a/ldE1T4oBgHgl3EQfNwO7/content/tmp_files/2301.03007v1.pdf.txt b/ldE1T4oBgHgl3EQfNwO7/content/tmp_files/2301.03007v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b137971d97d7e14dfbef58f9b60f07507f362e94
--- /dev/null
+++ b/ldE1T4oBgHgl3EQfNwO7/content/tmp_files/2301.03007v1.pdf.txt
@@ -0,0 +1,2032 @@
+arXiv:2301.03007v1 [math.NA] 8 Jan 2023
+AVERAGING-BASED LOCAL PROJECTIONS
+IN FINITE ELEMENT EXTERIOR CALCULUS
+MARTIN W. LICHT
+Abstract. We develop projection operators onto finite element differential
+forms over simplicial meshes. Our projection is locally bounded in Lebesgue
+and Sobolev-Slobodeckij norms, uniformly with respect to mesh parameters.
+Moreover, it incorporates homogeneous boundary conditions and satisfies a
+local broken Bramble-Hilbert estimate.
+The construction principle includes
+the Ern-Guermond projection and a modified Clément-type interpolant with
+the projection property.
+The latter seems to be a new result even for La-
+grange elements. This projection operator immediately enables an equivalence
+result on local- and global-best approximations. We combine techniques for
+the Scott-Zhang and Ern-Guermond projections and adopt the framework of
+finite element exterior calculus.
+We instantiate the abstract projection for
+Brezzi-Douglas-Marini, Nédélec, and Raviart-Thomas elements.
+1. Introduction
+Establishing convergence rates for finite element methods relies on interpolation
+operators. These are widely documented for Lagrange elements, famous examples
+being the Clément and Scott-Zhang interpolants.
+But only recently have these
+interpolants been generalized to the vector-valued finite elements that are known
+as Brezzi-Douglas-Marini, Nédélec, and Raviart-Thomas elements. Several classical
+and recent results on finite element interpolants have been transferred to the vector-
+valued setting over the last years [19, 22, 7, 17].
+In this article we study an interpolant for scalar and vector fields based on
+local weighted averaging. The Ern-Guermond interpolant and a Clément-type in-
+terpolant are special cases of the construction. Our interpolant has the following
+properties. Firstly, it is locally stable in Lebesgue and Sobolev-Slobodeckij norms,
+uniformly with respect to the local mesh size. Secondly, it can impose homogeneous
+traces along a fixed part of the domain boundary. Thirdly, it is a projection on the
+finite element space. Lastly, it satisfies a broken Bramble-Hilbert lemma [34, 6].
+We now give an overview of the broader context of this research, its motivation,
+and some mathematical tools. One necessary step in the convergence analysis of
+finite element methods is estimating best approximation errors: it is precisely that
+step that yields convergence rates in terms of the mesh size. The standard approach
+to analyzing the approximation error uses the canonical (or Lagrange) interpolant,
+2000 Mathematics Subject Classification. 65N30.
+Key words and phrases. broken Bramble-Hilbert lemma, finite element exterior calculus, Ern-
+Guermond interpolant.
+This material is based upon work supported by the National Science Foundation under Grant
+No. DMS-1439786 while the author was in residence at the Institute for Computational and
+Experimental Research in Mathematics in Providence, RI, during the “Advances in Computational
+Relativity” program.
+1
+
+2
+MARTIN W. LICHT
+Figure 1.
+A triangulated parametric domain (left) and a phys-
+ical domain (right) that is the formers image under a bi-Lipschitz
+piecewise smooth transformation. The image of the triangulation
+is drawn within the physical domain too.
+which is defined via the degrees of freedom. This suffices when the interpolated func-
+tion is smooth enough. However, the constants in the estimate are hard to control,
+and the overall idea faces practical limitations. An example are three-dimensional
+curl-curl problems over domains with reentrant corners: the solution vector field is
+not smooth enough for the canonical interpolant to be defined [30, 13, 1]. We know
+of interpolants that require less regularity, primarily for scalar finite elements. The
+Clément interpolant [12] enables localized error estimates but is well-defined even
+over functions in Lebesgue spaces and not idempotent. The interpolant by Scott
+and Zhang [32] requires some Sobolev or Sobolev-Slobodeckij regularity, but it is a
+projection and shows better properties in approximating boundary values. These
+well-known results suffice for deriving convergence rates in geometrically conform-
+ing settings.
+Additional challenges arise in geometrically non-conforming situations, as we
+now illustrate. Suppose a scalar function on a physical domain is approximated in
+a finite element space over a triangulated parametric domain. We need a transfor-
+mation between the physical and the parametric domains for comparing the original
+function with any finite element approximation. In practice, such transformations
+are bidirectionally Lipschitz; see also Figure 1. But then we face a dilemma: on the
+one hand, transforming any finite element approximation onto the physical domain
+generally does not preserve polynomials; on the other hand, transforming the orig-
+inal function onto the parametric domain generally does not preserve higher global
+regularity. In neither case can standard error estimates be applied. Such situations
+arise in finite element error analysis over manifolds, surfaces, and domains with
+non-polyhedral boundary, and irrespective of whether the transformation is explic-
+itly known or implicitly assumed. What resolves the aforementioned dilemma is
+that, in practice, the transformations are piecewise smooth and thus preserve the
+original regularity piecewise.
+Having transformed the original solution onto the
+parametric domain, we develop an interpolant onto the conforming finite element
+space that can exploit the piecewise regularity of the transformed solution.
+The Clément interpolant cannot recover higher convergence rates: its higher-
+order interpolation estimates require higher regularity of the solution over patches,
+but the physical solution transformed onto the parametric domain generally has
+no such regularity beyond H1 over patches. The Scott-Zhang interpolant, though,
+has a remedial feature that has risen to awareness in recent work by Veeser [34]
+and by Camacho and Demlow [6]. It is known as broken Bramble-Hilbert lemma.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+3
+An outline is as follows: if T is a cell of the triangulation, then the Scott-Zhang
+interpolation �u of a function u ∈ H1 satisfies
+∥u − �u∥L2(T ) ≤ Chs
+T
+�
+T ∩T ′̸=∅
+∥u∥Hs(T ′).
+Informally, any function in H1 can be approximated by continuous finite elements
+just as well as by discontinuous finite elements. This is also known as the equiv-
+alence of the global and local best approximations. We point that the Clément
+interpolant itself does not satisfy such a broken Bramble-Hilbert lemma. Our ex-
+position develops a very similar but apparently new Clément-type interpolant that
+does enable a broken Bramble-Hilbert lemma.
+Whereas interpolation operators for scalar finite elements are standard in the
+literature, recent research has contributed new interpolation operators for the vec-
+tor field spaces H(curl) and H(div).
+To the author’s best knowledge, Ern and
+Guermond [19] were the first to explicitly address interpolation error estimates
+for vector-valued finite element spaces. Their projection is bounded in Lebesgue
+spaces.
+Their discussion of boundary conditions relies on Sobolev trace theory,
+though. This does not cover the boundary conditions in H(curl) and H(div) that
+are defined via an integration by parts formula, and it also forecloses error estimates
+in the geometrically non-conforming situation.
+Boundary conditions in vector analysis show qualities not present in the scalar-
+valued setting. Tangential and normal boundary conditions in vector analysis may
+not only be defined via Sobolev trace theory but alternatively via a generalized
+integration by parts formula. Generalizing interpolants and their error estimates to
+vector-valued finite element spaces needs to accommodate that new quality. Succes-
+sive research [22] has contributed Clément and Scott-Zhang interpolants for finite
+element vector fields. The Clément interpolants are bounded in Lebesgue spaces
+but do not satisfy a broken Bramble-Hilbert lemma. The Scott-Zhang interpolants
+are bounded over H(curl) and H(div), thus requiring more regularity, and satisfy
+the broken Bramble-Hilbert lemma known from their scalar-valued inspiration.
+When the function to be approximated is sufficiently regular, then Veeser’s re-
+sults establish the equivalence of errors by local and global, or conforming and
+non-conforming, finite element approximations. Corresponding inequalities hold
+for curl- and divergence-conforming approximations [17, 7]. We derive an analo-
+gous comparison in finite element exterior calculus. Specifically: if an Lp-regular
+differential form has an Lp-regular exterior derivative, p ∈ [1, ∞], then the ap-
+proximations via conforming- and non-conforming finite element spaces produce
+comparable errors, up to higher order terms.
+We emphasize that our projection is very different from the commuting inter-
+polants discussed for finite element de Rham complexes [14, 2, 9, 10, 21, 18, 26, 25]
+but serves a complementary purpose. Whereas commuting projections establish
+the quasi-optimality of finite element solutions, our projection establishes specific
+convergence rates of best approximations in terms of the mesh size.
+A central tool for our analysis are representations of the degrees of freedom by
+integrals on volumes and facets. We borrow this in part from the work of Scott
+and Zhang.
+However, while they represent degrees of freedom shared between
+elements with boundary integrals on facets, we also use volume integrals based on
+
+4
+MARTIN W. LICHT
+an integration by parts formula. Thus, our estimates apply not only to differential
+forms with well-defined Sobolev traces, but also to rough forms such as H(curl).
+The latter result is crucial for our application to non-conforming geometries.
+Essentially, our operator satisfies the estimates of the Scott-Zhang-type opera-
+tor, but is continuous on Lebesgue spaces. In particular, our projection satisfies
+the broken Bramble-Hilbert lemma over H(curl) or H(div) vector fields. Unlike
+the Scott-Zhang interpolant, however, the new projection is bounded also over
+Lebesgue spaces. In fact, the interpolant also gives approximation results for forms
+in Lebesgue spaces, but then any extra Sobolev-Slobodeckij regularity must be
+global, as it must be for the classical Clément interpolant.
+There is a certain leeway in our construction; this has virtually no effect on
+the mathematical properties but allows us to relate the construction with several
+other interpolants. The interpolant of Ern and Guermond is a special case of our
+operator and we reproduce its most important properties. In particular, we show
+that Ern-Guermond interpolant also satisfies a broken Bramble-Hilbert lemma both
+for fields with sufficient global Sobolev-Slobodeckij regularity and for spaces such
+as H(curl) or H(div).
+Another special case of our interpolant is what one may call a modified Clément
+interpolant. While the original Clément interpolant evaluates the degrees of free-
+dom on patchwise projections, we propose to evaluate the degrees of freedom on
+elementwise projections instead. With this simple variation we not only retain all
+favorable properties of the Clément interpolant, but in addition we get a projec-
+tion and a broken Bramble-Hilbert lemma. This seems to be a new result even for
+Lagrange elements.
+We remark on the general picture of interpolation operators for low regular-
+ity fields. While our new interpolant and the Scott-Zhang interpolant have similar
+properties, there are some important differences. Our averaging-based interpolant is
+bounded over Lebesgue spaces whereas the Scott-Zhang interpolant requires enough
+regularity for traces to be well-defined.
+Homogeneous boundary conditions are
+“hardcoded” into the averaging-based interpolant: the interpolation always satisfies
+the boundary conditions and the approximation result is thus only valid for field
+satisfying the hardcoded boundary conditions in the first place. The Scott-Zhang
+interpolant is more subtle in imposing boundary conditions: it approximates the
+boundary values at any fixed boundary part. If the boundary values of the original
+field are zero, then the same is true for the Scott-Zhang interpolation. Its error
+estimates hold for all sufficiently regular fields.
+The introduction up to this point has addressed our results in the language of
+vector analysis. However, the remainder of the manuscript will adopt the calculus
+of differential forms and the framework of finite element exterior calculus [2, 4, 24].
+Only at the end will we return to the language of vector analysis to display our
+main results.
+The remainder of this writing is structured as follows. In Section 2 we review
+background on triangulations, function spaces, exterior calculus, and finite element
+spaces. In Section 3, biorthogonal systems of finite element bases and their degrees
+of freedom are discussed, and we fix some notational conventions for the rest of
+the manuscript. In Section 4, we construct the averaging-based projection, our
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+5
+main result. In Section 5, we develop stability and approximation estimates. In
+Section 6, we use the projection to compare local and global approximation errors.
+Lastly, we review applications of our results in the language of vector analysis in
+Section 7.
+2. Background
+In this section we review background on triangulations, function spaces, differen-
+tial forms, and finite element de Rham complexes. We also establish the notation,
+which generally follows the literature. Much of the content of this section is a sum-
+mary of the background given in [22]. We let Ω ⊆ Rn be a connected, bounded
+open set throughout the remainder of this article.
+2.1. Triangulations. A simplex of dimension d is the convex closure of d + 1
+affinely independent points, which we call the vertices of that simplex. A simplex
+F is called a subsimplex of a simplex T if each vertex of F is a vertex of T . We
+write ∆(T ) for the set of all subsimplices of a simplex T and ∆d(T ) for the set of
+its d-dimensional subsimplices. As is common in polyhedral theory, we reserve the
+term facet for the codimension one subsimplices of a given simplex.
+A simplicial complex T is a set of simplices such that ∆(T ) ⊆ T for all T ∈ T
+and for any two simplices T, T ′ ∈ T with non-empty intersection T ∩T ′ is a common
+subsimplex of T and T ′. A simplicial subcomplex of T is any subset U ⊆ T that is a
+simplicial complex by itself. We write ∆d(T ) for the set of d-dimensional simplices
+of T . Given any simplex T ∈ T , we write ∇d(T , T ) for the set of d-simplices in T
+that contain T :
+∇d(T , T ) := {S ∈ ∆d(T ) | S ⊆ T } .
+Suppose that T is a simplex of positive dimension d. We write hT for its diameter,
+vold(T ) for its d-dimensional Hausdorff volume, and µ(T ) = hd
+T / vold(T ) for its
+so-called shape measure. The shape measure µ(T ) of any simplicial complex T is
+the supremum of the shape measures of all its non-vertex simplices. There exists
+CQ(T ) > 0, bounded in terms of the shape measure of T , that bounds the ratio of
+the diameters of adjacent simplices. We let CN(T ) > 0 be the maximum number
+of simplices adjacent to to any given simplex in T , which is a quantity bounded in
+the shape measure of T . The “diameter” of a simplex V ∈ T is formally defined as
+the minimal length of all edges adjacent to that vertex.
+Lastly, we assume that all simplices are equipped with an arbitrary but fixed
+orientation. Whenever T is a simplex and F ∈ ∆(T ) is one of its facets, we let
+o(F, T ) = 1 if the orientation of F is induced from T and we let o(F, T ) = −1
+otherwise.
+2.2. Function spaces. We recapitulate several function spaces, in particular the
+Banach spaces that are known as Sobolev and Sobolev-Slobodeckij spaces [33, 5,
+15, 23]. Even though we formally define those spaces over domains, we assume
+analogous definitions for the corresponding spaces simplices without further men-
+tioning.
+The space of smooth functions over Ω with bounded derivatives of all orders is
+denoted C∞(Ω). We write Lp(Ω) for the Lebesgue space over Ω to the integrability
+exponent p ∈ [1, ∞], equipped with the norm ∥ · ∥Lp(Ω). For any θ ∈ (0, 1) we define
+
+6
+MARTIN W. LICHT
+the seminorm
+|ω|W θ,p(Ω) :=
+���|ω(x) − ω(y)| · |x − y|θ+ n
+p
+���
+Lp(Ω×Ω) ,
+and let W θ,p(Ω) be the subspace of Lp(Ω) for which that seminorm is finite. We
+let A(n) be the set of all multiindices over {1, . . . , n}. For any k ∈ N0, let W k,p(Ω)
+be the Sobolev space of measurable functions over Ω for which all distributional
+α-th derivatives with α ∈ A(n) and |α| ≤ k are functions in Lp(Ω). We use the
+seminorm and norm
+|ω|W k,p(Ω) :=
+�
+α∈A(n)
+|α|=k
+∥∂αω∥Lp(Ω),
+∥ω∥W k,p(Ω) :=
+k
+�
+l=0
+|ω|W l,p(Ω).
+When k ∈ N0 and θ ∈ (0, 1), then the Sobolev-Slobodeckij space W k+θ,p(Ω) is
+defined as the subspace of W k,p(Ω) whose member’s derivatives of k-th order are
+also in W θ,p(Ω). We then consider the norms and seminorms
+|ω|W k+θ,p(Ω) :=
+�
+α∈A(n)
+|α|=k
+|∂αω|W θ,p(Ω),
+∥ω∥W k+θ,p(Ω) := ∥ω∥W k,p(Ω) + |ω|W k+θ,p(Ω).
+Thus we have defined the Banach space W m,p(Ω) for all m ∈ [0, ∞). Its Banach
+space structure is induced by the norm ∥ · ∥W m,p(Ω).
+For our discussion of boundary conditions, the following will be necessary:
+Theorem 2.1. Suppose that Ω is a bounded Lipschitz domain, and that p ∈ [1, ∞]
+and m ∈ [0, ∞) with m > 1/p or s ≥ 1. Then the trace of continuous bounded
+functions extends to a bounded operator
+Tr : W m,p(Ω) → Lp(∂Ω).
+Proof. The case 1 ≤ p < ∞ is covered by Theorem 3.10 in [20]. For 1 < p < ∞,
+see also Theorem B in [29]. The case p = ∞ follows if we recall that W m,∞Λk(T )
+is the Hölder space with smoothness index m.
+□
+Whenever Γ ⊆ ∂Ω is any relatively open set and p ∈ [1, ∞] and m ∈ [0, ∞) with
+m > 1/p or s ≥ 1, then we define
+W m,p(Ω, Γ) :=
+�
+ω ∈ W m,p(Ω) | Tr ω|Γ = 0
+�
+.
+2.3. Spaces of differential forms. We review spaces of differential forms over
+domains and simplices. Since 0-forms are functions, this generalizes the definitions
+in the preceding subsection. We let C∞Λk(Ω) be the space of differential k-forms
+with coefficients in C∞(Ω). The spaces LpΛk(Ω) and W m,pΛk(Ω) are defined ac-
+cordingly for any p ∈ [1, ∞] and m ∈ [0, ∞) and we let ∥ · ∥LpΛk(Ω), ∥ · ∥W m,pΛk(Ω),
+and | · |W m,pΛk(Ω) denote the associated norms and seminorms.
+In accordance to Theorem 2.1, when p ∈ [1, ∞] and m ∈ [0, ∞) with m > 1/p
+or s ≥ 1, then differential forms in W m,pΛk(Ω) have components with well-defined
+traces. When Γ ⊆ ∂Ω is a relatively open set, then we let W m,pΛk(Ω, Γ) be the
+subspace of those members of W m,pΛk(Ω) for which the tangential components
+have vanishing trace along Γ.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+7
+We recall that the exterior product ω ∧ η of a k-form ω and an l-form η satisfies
+ω ∧ η = (−1)klη ∧ ω and is bilinear.
+We also recall the exterior derivative d :
+C∞Λk(Ω) → C∞Λk+1(Ω), which maps k-forms to (k + 1)-forms.
+We consider
+classes of differential k-forms with coefficients in Lebesgue spaces whose exterior
+derivative, a priori defined only in the sense of distributions, is again in a Lebesgue
+space. For p, q ∈ [0, ∞] we define
+Wp,qΛk(Ω) :=
+�
+ω ∈ LpΛk(Ω)
+�� dω ∈ LqΛk+1(Ω)
+�
+.
+As we discuss next, the spaces Wp,qΛk(Ω) allow a notion of homogeneous boundary
+values in terms of an integration by parts formula. This does not rely on Sobolev
+trace theory.
+Suppose Γ ⊆ ∂Ω is a relatively open subset of ∂Ω. We define Wp,qΛk(Ω, Γ) as
+the subspace of Wp,qΛk(Ω) whose members satisfy that for all x ∈ Γ there exists a
+radius ρ > 0 such that
+�
+Ω∩Bρ(x)
+ω ∧ dη = (−1)k+1
+�
+Ω∩Bρ(x)
+dω ∧ η
+for all η ∈ C∞Λn−k−1 (Rn) with compact support contained in the open ball cen-
+tered at x of radius ρ. We say that each ω ∈ Wp,qΛk(Ω, Γ) satisfies partial boundary
+conditions along Γ. The space Wp,qΛk(Ω, Γ) is a closed subspace of Wp,qΛk(Ω),
+since the former is the intersection of closed subspaces of the latter. Note that,
+dWp,qΛk(Ω, Γ) ⊆ Wq,rΛk+1(Ω, Γ) for all p, q, r ∈ [1, ∞], that is, partial boundary
+conditions are preserved under the exterior derivative.
+The definitions in this subsection have been over a domain.
+We can set up
+exterior calculus and the classes of differential forms introduced above also over
+any d-dimensional simplex with minor technical modifications.
+Only the space
+C∞Λk(S) and some of its subspaces will be needed. Importantly, the integral
+�
+S ω
+of any integrable k-form over a k-dimensional simplex S is well-defined. We write
+trS,F for the trace from any simplex S onto any of its subsimplices F ∈ ∆(S). The
+following trace lemma will be useful.
+Lemma 2.2. Let T be an n-dimensional simplex and F ∈ ∆n−1(T ) one of its facets.
+Let p ∈ [1, ∞] and m ∈ [0, ∞). If m > 1
+p or m ≥ 1 then trT,F : W m,pΛk(T ) →
+LpΛk(F) is a bounded operator. We then also have1
+∥ trT,F ω∥LpΛk(F ) ≤ Ctr
+�
+h
+− 1
+p
+F ∥ω∥LpΛk(T ) + h
+m− 1
+p
+F
+|ω|W m,pΛk(T )
+�
+,
+ω ∈ W m,pΛk(T ),
+where Ctr > 0 depends only on p, m, and µ(T ).
+Proof. Suppose first that T is a reference simplex. Then the statement follows via
+Theorem 2.1. For general simplices, we can use a scaling argument.
+□
+2.4. Finite element spaces over triangulations. In this article we adopt the
+framework of finite element exterior calculus [24, 2], of which we review basic def-
+inition and notation. We consider finite element spaces of polynomial differential
+forms, their construction via traces and extension operators, and spaces of degrees
+of freedom.
+For any simplex S, we let PrΛk(S) be the space of polynomial differential k-
+forms of degree (at most) r ≥ 0 over S, and we P−
+r Λk(S) be the space of trimmed
+1Here and in what follows, we stipulate 1/∞ = 0.
+
+8
+MARTIN W. LICHT
+polynomial differential k-forms of degree (at most) r ≥ 1 over S; we refer to the
+literature [2] for details of their definition.
+We consider spaces of polynomial differential forms satisfying boundary condi-
+tions. Over any simplex S, these are defined by
+˚
+PrΛk(S) :=
+�
+ω ∈ PrΛk(S) | ∀F ∈ ∆(S), F ̸= S : trS,F ω = 0
+�
+,
+˚
+P−
+r Λk(S) :=
+�
+ω ∈ P−
+r Λk(S)
+�� ∀F ∈ ∆(S), F ̸= S : trS,F ω = 0
+�
+.
+If T is a triangulation of the domain Ω, then we define finite element spaces over
+triangulations via
+PrΛk(T ) :=
+�
+ω ∈ W∞,∞Λk(Ω)
+�� ∀T ∈ ∆n(T ) : ω|T ∈ PrΛk(T )
+�
+,
+P−
+r Λk(T ) :=
+�
+ω ∈ W∞,∞Λk(Ω)
+�� ∀T ∈ ∆n(T ) : ω|T ∈ P−
+r Λk(T )
+�
+.
+For any simplicial complex U ⊆ T we define formally
+PrΛk(T , U) :=
+�
+u ∈ PrΛk(T ) | ∀F ∈ U : trF u = 0
+�
+,
+P−
+r Λk(T , U) :=
+�
+u ∈ P−
+r Λk(T )
+�� ∀F ∈ U : trF u = 0
+�
+.
+In the case where U = ∅, we have PΛk(T , U) = PΛk(T ).
+2.5. Geometric decompositions and degrees of freedom. For each F ∈ T
+we have the (global) trace operators
+TrF : PrΛk(T ) → PrΛk(F),
+TrF : P−
+r Λk(T ) → P−
+r Λk(F).
+We can assume without loss of generality that for each F ∈ T we have the extension
+operators
+Extr,k
+F,T : PrΛk(F) → PrΛk(T ),
+Extr,k,−
+F,T
+: P−
+r Λk(F) → P−
+r Λk(T )
+satisfying the following two properties. On the one hand, they are right-inverses of
+the traces,
+TrF Extr,k
+F,T = Id,
+TrF Extr,k,−
+F,T
+= Id .
+On the other hand, they are localized in the sense that for all S ∈ T with F ⊈ S
+we have
+TrS Extr,k
+F,T ˚
+PrΛk(F) = 0,
+TrS Extr,k,−
+F,T
+˚
+P−
+r Λk(F) = 0.
+Extension operators like these are discussed in the literature [2, 3, 8, 28].
+The finite element spaces decompose into direct sums
+PrΛk(T , U) =
+�
+F ∈T
+F /∈U
+Extr,k
+F,T ˚
+PrΛk(F),
+P−
+r Λk(T , U) =
+�
+F ∈T
+F /∈U
+Extr,k,−
+F,T
+˚
+P−
+r Λk(F).
+The geometric decomposition of finite element spaces, albeit abstract, corresponds
+the common notion that the shape functions of finite element spaces can be asso-
+ciated with specific simplices of the triangulation and are localized around those
+simplices.
+We consider the dual space of the finite element space, commonly known as
+degrees of freedom, since we need functionals in that space to define interpolation
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+9
+operators. When F ∈ T and m = dim(F), then we define
+CrΛk(F) :=
+�
+ω �→
+�
+F
+η ∧ TrF ω
+���� η ∈ P−
+r+k−mΛm−k(F)
+�
+,
+C−
+r Λk(F) :=
+�
+ω �→
+�
+F
+η ∧ TrF ω
+���� η ∈ Pr+k−m−1Λm−k(F)
+�
+.
+One can show [2, 27] that these spaces of functionals span the dual spaces of the
+respective finite element spaces:
+PrΛk(T , U)∗ =
+�
+F ∈T
+F /∈U
+CrΛk(F),
+P−
+r Λk(T , U)∗ =
+�
+F ∈T
+F /∈U
+C−
+r Λk(F).
+Analogous to the geometric decomposition of the finite element spaces, we have
+geometric decompositions of the degrees of freedom: we work with functionals over
+finite element spaces that can be associated with simplices of the triangulation.
+3. Rough degrees of freedom
+For the discussion of our projection operator we need to establish degrees of
+freedom with particular properties. In doing so, we also establish several notational
+conventions to be used in subsequent sections. We begin by fixing the geometric
+setting.
+Convention 3.1. For the remainder of this article we let T be an n-dimensional
+simplicial complex, and we let U ⊆ T be a simplicial subcomplex. We assume that
+T triangulates a domain Ω ⊆ Rn and that U triangulates a relatively open part of
+the domain boundary Γ ⊆ ∂Ω.
+We will construct the projection operator for both families of finite element dif-
+ferential forms, and the constructions will be completely analogous. As to avoid
+duplication when there are only minor technical differences, we establish the fol-
+lowing convention.
+Convention 3.2. We let p ∈ [1, ∞], k ∈ N0, and r ∈ N, and we fix a family of
+finite element spaces of differential forms. Depending on the choice of finite element
+family, we make one of the following two choices of notation:
+
+
+
+
+
+PΛk(T ) := PrΛk(T ),
+PΛk(T , U) := PrΛk(T , U),
+and for all S ∈ T :
+PΛk(S) = PrΛk(S), ˚
+PΛk(S) = ˚
+PrΛk(S), CΛk(S) = CrΛk(S),
+(A)
+or
+
+
+
+
+
+PΛk(T ) := P−
+r Λk(T ),
+PΛk(T , U) := P−
+r Λk(T , U),
+and for all S ∈ T :
+PΛk(S) = P−
+r Λk(S), ˚
+PΛk(S) = ˚
+P−
+r Λk(S), CΛk(S) = C−
+r Λk(S).
+(B)
+For every S ∈ T we fix an index set I(S) := {1, . . . , dim ˚
+PΛk(S)}.
+We assume2 that the first option holds if k = 0 and that the second option holds
+if k = n.
+2Recall that PrΛ0 = P−
+r Λ0 and Pr−1Λn = P−
+r Λn.
+
+10
+MARTIN W. LICHT
+We can assume that the specific shape functions and the degrees of freedom con-
+stitute a biorthogonal system. In fact, this is a common assumption in finite element
+methods and can easily be implemented in algorithms [20]. The following theorem
+(see [22, Theorem 5.2, Theorem 5.4]) formalizes the idea and also establishes some
+important inverse estimates.
+Theorem 3.3. There exist bases
+�
+φ∗
+S,i
+�
+i∈I(S) of CΛk(S) for each S, and a basis
+{φS,i}S∈T ,i∈I(S) of PΛk(T ) such that the following conditions are satisfied:
+(1) φ∗
+S,i(φS′,j) = 1 if S = S′ and i = j and is zero otherwise.
+(2) TrS′ φS,i = 0 for any S, S′ ∈ T where S ⊈ S′.
+(3) The set {φS,i}S∈T \U,i∈I(S) is a basis of PΛk(T , U).
+There exists CA,s > 0, depending on p, n, the polynomial degree r, s, and µ(T ),
+such that for all T ∈ T and S ∈ ∆(T ):
+|φS,i|W s,pΛk(T ) ≤ CA,sh
+n
+p −k−s
+S
+,
+(1a)
+|φ∗
+S,i(ω)| ≤ CA,sh
+k− n
+p +s
+S
+∥ω∥W s,pΛk(T ),
+ω ∈ PrΛk(T ).
+(1b)
+The degrees of freedom are initially defined via integrals over lower-dimensional
+subsimplices. Thus they are initially defined only for differential forms whose co-
+efficients are sufficiently smooth, since only those have the necessary traces well-
+defined.
+But we can extend the degrees of freedom to much rougher spaces of
+differential forms via an integration by parts formulas [22, Theorem 7.1].
+This
+observation is critical for our endeavor in this article.
+Theorem 3.4. For every S, F ∈ T with dim(F) = n − 1 and S ⊆ F and every
+i ∈ I(S) there exists ΞT,F,S,i ∈ C∞Λn−k−1(T ) whose support has positive distance
+from all facets of T except F and which satisfies
+φ∗
+S,i(ω) = o(F, T )
+�
+T
+dΞT,F,S,i ∧ ω + (−1)n−k−1ΞT,F,S,i ∧ dω,
+ω ∈ PrΛk(T ).
+Moreover, we have
+φ∗
+S,i(ω) = o(F, T )
+�
+F
+trT,F ΞT,F,S,i ∧ trT,F ω,
+ω ∈ PrΛk(T ).
+There exists CΞ > 0, depending only on r, n, q ∈ [1, ∞], and µ(T ), such that
+∥ΞT,F,S,i∥LqΛn−k−1(T ) ≤ CΞh
+n
+q −n+k+1
+S
+,
+(2a)
+∥dΞT,F,S,i∥LqΛn−k(T ) ≤ CΞh
+n
+q −n+k
+S
+,
+(2b)
+∥ trT,F ΞT,F,S,i∥LqΛn−k−1(F ) ≤ CΞh
+n−1
+q
+−n+k+1
+S
+.
+(2c)
+We can represent degrees of freedom via integrals over facets or volumes. It will
+be helpful to fix a particular such pair of facet and volume for each degree of freedom
+as “representatives”. Most importantly, our discussion of boundary conditions will
+need that degrees of freedom associated to simplices in U have a representative
+facet within U again.
+Convention 3.5. For any simplex S ∈ T of dimension at most n − 1 we fix
+FS ∈ ∆n−1(T ) and TS ∈ ∆n(T ) with S ⊆ FS ⊆ TS. If S ∈ U, then we require
+FS ∈ U. We also introduce the abbreviations
+ΞS,i := ΞTS,FS,S,i ∈ C∞Λn−k−1(TS).
+(3)
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+11
+4. Averaging-based projection
+This section develops the main result: an averaging-based finite element projec-
+tion. We follow ideas discussed by Ern and Guermond [19], building upon earlier
+work by Oswald [31]. Our projection is composed of two components: first, a cell-
+wise interpolator onto a piecewise polynomial non-conforming (i.e., broken) finite
+element spaces without any continuity conditions, and second, weighted averaging
+of the degrees of freedom to construct a conforming interpolant.
+Since we need projection operators for each single cell for the first component,
+we first establish the following proposition.
+Proposition 4.1. Let T ∈ T . There exist bounded projections
+PT : LpΛk(Ω) → PΛk(T ) ⊂ LpΛk(T ),
+QT : LpΛk+1(Ω) → PΛk+1(T ) ⊂ LpΛk+1(T ),
+that satisfy the following inequalities. If PΛk(T ) = PrΛk(T ) and ω ∈ W m,pΛk(T )
+with m ∈ [0, r + 1] and s ∈ [0, m], then
+|ω − PT ω|W sΛk(T ) ≤ CΠhm−s
+T
+|ω|W m,pΛk(T ).
+(4a)
+If PΛk(T ) = P−
+r Λk(T ) and ω ∈ W m,pΛk(T ) with m ∈ [0, r] and s ∈ [0, m], then
+|ω − PT ω|W s,pΛk(T ) ≤ CΠhm−s
+T
+|ω|W m,pΛk(T ).
+(4b)
+If ω ∈ Wp,pΛk(Ω) with dω ∈ W l,pΛk(T ) for some l ∈ [0, r] and s ∈ [0, l], then
+dPT ω = QT dω,
+(4c)
+and we have
+∥dω − dPT ω∥LpΛk+1(T ) ≤ CΠhl
+T |dω|W l,pΛk+1(T ).
+(4d)
+Here, CΠ > 0 depends only on n, p, the polynomial degree r, and µ(T ).
+Proof. We consider the case where T is a reference simplex. The general case then
+follows from reference transformations.
+Consider the case PΛk(T ) = PrΛk(T ). There exist bounded projections [16]
+P k,r
+T
+: LpΛk(T ) → PrΛk(T ),
+for all 0 ≤ k ≤ n and r ≥ 0 with the following property: whenever s, m ∈ [0, ∞)
+with s ≤ m ≤ r + 1 and ω ∈ W m,pΛk(T ), then
+���ω − P k,r
+T ω
+���
+W sΛk(T ) ≤ Chm−s
+T
+|ω|W m,pΛk(T ),
+where C > 0 depends only on m, n, and r.
+Moreover, dP k,r
+T ω = P k+1,r−1
+T
+dω
+whenever ω ∈ Wp,pΛk(T ), and r ≥ 1. The operators PT = P k,r
+T
+and QT = P k+1,r−1
+T
+satisfies (4a), (4c) and (4d) over the reference simplex T .
+Next, consider the case PΛk(T ) = P−
+r Λk(T ). Let 0 ≤ k ≤ n and r ≥ 1. There
+exists a linear projection [2]
+Ik,r+1
+T
+: Pr+1Λk(T ) → P−
+r Λk(T )
+such that dIk,r+1
+T
+ω = dω for all ω ∈ PrΛk(T ). We set PT = Ik,r+1
+T
+P k,r+1
+T
+. Thus
+(4c), and (4b) and (4d) in the case PΛk(T ) = P−
+r Λk(T ) are a consequence of the
+Bramble-Hilbert lemma.
+□
+
+12
+MARTIN W. LICHT
+Our projection operators are actually a class of projection operators that involve
+an arbitrary parameter choice. This does not affect the relevant properties of the
+operator; instead, it should be thought of as a variability that produces a few
+interesting examples. We have a look at such interpolation operators, before we
+address them in a general framework.
+A projection inspired by Ern and Guermond [19] is composed of two steps.
+Firstly, we take the piecewise polynomial projections PT of the original field ω over
+every single volume T . That produces a discontinuous finite element approximation.
+Secondly, we compute a continuous finite element approximation via averaging the
+degrees of freedom of that interpolant (with some modification at the boundary).
+The composition of both steps is the desired interpolation operator:
+PEG : LpΛk(Ω) → PΛk(T ),
+ω �→
+�
+S∈T
+i∈I(S)
+S /∈U
+1
+|∇n(T , S)|
+�
+T ∈∇n(T ,S)
+φ∗
+S,i
+�
+PT ω|T
+�
+φS,i.
+An alternative construction is inspired by the Clément interpolant and the Scott-
+Zhang interpolant. For every degree of freedom associated to some simplex S ∈ T ,
+we evaluate it at the piecewise projections PTS over the fixed volume TS that
+contains S. Thus we get the the projection
+PC : LpΛk(Ω) → PΛk(T ),
+ω �→
+�
+S∈T
+i∈I(S)
+S /∈U
+φ∗
+S,i
+�
+PTSω|TS
+�
+φS,i.
+Remark 4.2. The operator PEG is basically the Ern-Guermond projection whereas
+the projection PC seems to be new. We point out how the latter resembles the
+Clément interpolant but differs in some crucial ways.
+The Clément interpolant [12] is standard for the mathematical theory of finite el-
+ement methods. It evaluates each degree of freedom on a patchwise projection, where
+the local patch contains the subsimplex associated to that degree of freedom. The
+essential difference is that PC evaluates each degree of freedom not over patchwise
+projections but over elementwise projections.
+As we shall see, this ostensibly minor change preserves many important proper-
+ties of the Clément interpolant, but the resulting operator is a projection.
+Remark 4.3. A comparison with the Scott-Zhang operator is insightful. We have
+derived representations of the degrees of freedom (Proposition 3.4) by which these
+functionals are not only defined over polynomials but much rougher spaces. In the
+constructions above, we apply them to cellwise polynomial projections of the original
+field. If we instead apply them to the original field instead, leaving out the cellwise
+polynomial projection, then the definition of PC changes into the definition of the
+Scott-Zhang operator.
+The two operators introduced above are examples of a general construction. We
+henceforth assume that for every S ∈ T and every T ∈ ∇n(T , S) we have a fixed
+non-negative weight c(S, T ) such that
+1 =
+�
+T ∈∇n(T ,S)
+c(S, T ).
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+13
+We introduce the operator
+P : LpΛk(Ω) → PΛk(T ),
+ω �→
+�
+S∈T
+i∈I(S)
+S /∈U
+�
+T ∈∇n(T ,S)
+c(S, T )φ∗
+S,i
+�
+PT ω|T
+�
+φS,i.
+In other words, we project the original differential form onto a space of piecewise
+polynomial differential forms, without imposing any continuity assumptions, and
+then construct a conforming interpolation by taking weighted averages of degrees
+of freedom over the local projections.
+Example 4.4. The exemplaric operators PEG and PC are recovered with par-
+ticular natural choices of coefficients.
+On the one hand, the construction yields
+the Ern-Guermond interpolant PEG if we choose the weights uniformly for each
+simplex S, that is,
+c(S, T ) =
+1
+|∇n(T , S)|.
+(5)
+On the other hand, we obtain the Clément-type interpolant if all the coefficients are
+zero except c(S, TS) = 1 for every S ∈ T .
+Before we study the analytical properties of the interpolant in more detail, we
+first verify its most important algebraic property: that it is, indeed, a projection.
+Lemma 4.5. If ω ∈ PΛk(T , U), then Pω = ω.
+Proof. Since ω is piecewise polynomial,
+Pω =
+�
+S∈T
+i∈I(S)
+S /∈U
+�
+T ∈∇n(T ,S)
+c(S, T )φ∗
+S,i
+�
+ω|T
+�
+φS,i.
+Next, for S′ ∈ ∆(T ) \ U, and j ∈ I(S′), we notice that
+φS′,i (Pω) =
+�
+S∈T
+i∈I(S)
+S /∈U
+�
+T ∈∇n(T ,S)
+c(S, T )φ∗
+S,i
+�
+ω|T
+�
+φS′,j (φS,i)
+=
+�
+T ′∈∇n(T ,S′)
+c(S′, T )φ∗
+S′,j
+�
+ω|T ′�
+=
+�
+T ′∈∇n(T ,S′)
+c(S′, T )φ∗
+S′,j
+�
+ω|T
+�
+= φ∗
+S′,j
+�
+ω|T
+�
+.
+Here, we have used the biorthogonality property in Proposition (3.3), the conformity
+of ω ∈ PΛk(T , U), and the summation (5). This shows that P is a projection.
+□
+Remark 4.6. We remark that the projection property is also satisfied by Scott-
+Zhang-type interpolants [32].
+The same is true for the generalized Scott-Zhang
+interpolant for differential forms [22] but it was not proven in that publication.
+5. Approximation error estimates
+We address the analytical properties of the projection operator with a sequence
+of auxiliary results. Together, these will show the local stability of the projection in
+
+14
+MARTIN W. LICHT
+Lebesgue and Sobolev-Slobodeckij norms, and also establish numerous approxima-
+tion estimates for various smoothness classes of differential forms. We commence
+with the stability result.
+Theorem 5.1. Let m, s ∈ [0, ∞). If PΛk(T , U) = PrΛk(T , U), suppose that m ≤
+r + 1. If PΛk(T , U) = P−
+r Λk(T , U), suppose that m ≤ r. Then
+|Pω|W s,pΛk(T ) ≤ Chm−s
+T
+�
+T ′∈∆n(T )
+T ∩T ′̸=∅
+|ω|W m,pΛk(T ′) .
+Here, C > 0 depends only on p, m, s, r, n, and µ(T ).
+Proof. By definitions,
+|Pω|W s,pΛk(T ) ≤
+�
+S∈∆(T )
+i∈I(S)
+S /∈U
+T ′∈∇n(T ,S)
+c(S, T )
+��φ∗
+S,i
+�
+PT ′ω|T ′�
+φS,i
+��
+W s,pΛk(T ) .
+For any T, T ′ ∈ T sharing a common simplex S and i ∈ I(S) we have
+��φ∗
+S,i
+�
+PT ′ω|T ′�
+φS,i
+��
+W s,pΛk(T ) ≤
+��φ∗
+S,i
+�
+PT ′ω|T ′��� · |φS,i|W s,pΛk(T ) .
+Theorem 3.3 implies
+|φS,i|W s,pΛk(T ) ≤ CA,sh
+n
+p −s−k
+T
+.
+Together with PT ′ω|T ′ ∈ PΛk(T ′), Theorem 3.3 and Proposition 4.1 show that
+��φ∗
+S,i
+�
+PT ′ω|T ′��� ≤ CA,mh
+m+k− n
+p
+T ′
+��PT ′ω|T ′
+��
+W m,pΛk(T ′)
+≤ CBHCA,mh
+m+k− n
+p
+T ′
+��ω|T ′
+��
+W m,pΛk(T ′) .
+Noting that, first, adjacent simplices have comparable diameters, and that, second,
+only finitely many simplices touch any given simplex, we conclude the proof.
+□
+Further discussion requires an additional property of simplicial complexes. Sup-
+pose that we have two n-dimensional simplices T0, T ∈ T with non-empty intersec-
+tion S = T0 ∩T . A face-connection from T0 to T around S is a sequence T1, . . . , TN
+of pairwise distinct n-dimensional simplices of T with TN = T such that for all
+1 ≤ i ≤ N we have that Fi = Ti ∩ Ti−1 satisfies Fi ∈ ∆n−1(Ti) ∩ ∆n−1(Ti−1) and
+S ⊆ Fi. We then call T0 and T face-connected, and the triangulation T is called face-
+connected if any two simplices with non-empty intersection are face-connected. The
+length of any face-connection is bounded in terms of triangulation’s shape measure.
+For example, any simplicial complex that triangulates a domain is face-connected
+[32, 34, 22].
+We explore different ways of estimating the interpolation error. For that reason
+we develop a standardized estimate at first in the following lemma.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+15
+Lemma 5.2. Let p ∈ [1, ∞] and s ∈ [0, ∞). There exists C > 0 such that for
+ω ∈ LpΛk(Ω) and T ∈ T we have
+|ω − Pω|W s,pΛk(T ) ≤ |ω − PT ω|W s,pΛk(T )
++ Ch
+n
+p −k−s
+T
+�
+S∈∆(T ), i∈I(S)
+T1,T2∈∇n(T ,S)
+T1∩T2∈∆n−1(T )
+|φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω) |
++ Ch
+n
+p −k−s
+T
+�
+S∈∆(T )
+i∈I(S)
+S∈U
+|φ∗
+S,i (PTSω) |.
+Here, C > 0 depends only on p, s, r, n, and the mesh regularity.
+Proof. We begin with
+|ω − Pω|W s,pΛk(T ) ≤ |ω − PT ω|W s,pΛk(T ) + |PT ω − Pω|W s,pΛk(T ).
+We observe that
+PT ω =
+�
+S∈∆(T )
+i∈I(S)
+S /∈U
+φ∗
+S,i (PT ω) φS,i +
+�
+S∈∆(T )
+i∈I(S)
+S∈U
+φ∗
+S,i (PT ω) φS,i
+=
+�
+S∈∆(T )
+i∈I(S)
+S /∈U
+�
+T ′∈∇n(T ,S)
+c(S, T ′)φ∗
+S,i (PT ω) φS,i +
+�
+S∈∆(T )
+i∈I(S)
+S∈U
+φ∗
+S,i (PT ω) φS,i.
+Whence PT ω − Pω|T equals
+�
+S∈∆(T )
+i∈I(S)
+S /∈U
+�
+T ′∈∇n(T ,S)
+c(S, T ′)
+�
+φ∗
+S,i (PT ω) − φ∗
+S,i (PT ′ω)
+�
+φS,i +
+�
+S∈∆(T )
+i∈I(S)
+S∈U
+φ∗
+S,i (PT ω) φS,i.
+We infer that |PT ω − Pω|W s,pΛk(T ) is bounded by
+�
+S∈∆(T )
+i∈I(S)
+S /∈U
+�
+T ′∈∇n(T ,S)
+��φ∗
+S,i (PT ω) − φ∗
+S,i (PT ′ω)
+�� · |φS,i|W s,pΛk(T )
++
+�
+S∈∆(T )
+i∈I(S)
+S∈U
+|φ∗
+S,i (PT ω) | · |φS,i|W s,pΛk(T ).
+We apply the inverse inequality (1a):
+|φS,i|W s,pΛk(T ) ≤ CA,sh
+n
+p −k−s
+T
+.
+We consider two cases. If S ∈ U, then there exists a face-connection T0, T1, . . . , TN
+between T0 = T and TN = TS around S. We then estimate
+|φ∗
+S,i (PT ω) | ≤ |φ∗
+S,i (PTSω) | +
+N
+�
+j=1
+|φ∗
+S,i
+�
+PTj−1ω
+�
+− φ∗
+S,i
+�
+PTjω
+�
+|.
+
+16
+MARTIN W. LICHT
+If S /∈ U, then there exists a face-connection T0, T1, . . . , TN between T0 = T and
+TN = T ′ around S.
+|φ∗
+S,i (PT0ω) − φ∗
+S,i (PTN ω) | ≤
+N
+�
+i=j
+|φ∗
+S,i
+�
+PTj−1ω
+�
+− φ∗
+S,i
+�
+PTjω
+�
+|.
+Noting that only finitely simplices are adjacent to T , the proof is completed.
+□
+We use that preliminary error estimate to develop more specific error estimates
+in different regularity settings. First we bound the terms associated to degrees of
+freedom along the boundary part Γ in our standard error representation as follows.
+Lemma 5.3. Let p ∈ [1, ∞] and s ∈ [0, ∞). If T ∈ T and S ∈ ∆(T ) with S ∈ U,
+then for every ω ∈ Wp,pΛk(Ω, Γ) we have
+|φ∗
+S,i (PT ω) | ≤ CΞh
+− n
+p +k
+S
+�
+∥PSω − ω∥LpΛk(TS) + hS∥dPSω − dω∥LpΛk+1(TS)
+�
+.
+Proof. We use the representation of the degrees of freedom in Theorem 3.4:
+φ∗
+S,i (PT ω) = o(FS, TS)
+�
+TS
+dΞS,i ∧ (PSω)|TS + (−1)n−k−1ΞS,i ∧ d(PSω)|TS.
+Since ω ∈ Wp,pΛk(Ω, Γ) and FS ⊆ Γ,
+0 =
+�
+TS
+dΞS,i ∧ ω + (−1)n−k−1ΞS,i ∧ dω.
+Subtracting the second from the first equation gives
+o(FS, TS)φ∗
+S,i (PT ω)
+=
+�
+TS
+dΞS,i ∧
+�
+(PSω)|TS − ω
+�
++ (−1)n−k−1ΞS,i ∧ d
+�
+(PSω)|TS − ω
+�
+.
+Let q ∈ [1, ∞] such that 1 = 1/p + 1/q. Hölder’s inequality gives
+��φ∗
+S,i (PT ω)
+�� ≤ ∥dΞS,i∥LqΛn−k(TS)∥PSω − ω∥LpΛk(TS)
++ ∥ΞS,i∥LqΛn−k−1(TS)∥dPSω − dω∥LpΛk+1(TS).
+Together with the inverse inequalities (2a) and (2b), the desired result follows.
+□
+Next we bound the differences associated to degrees of freedom over neighboring
+volumes in our standard error representation as follows.
+Lemma 5.4. Let p ∈ [1, ∞] and s ∈ [0, ∞). Suppose that T1, T2 ∈ T share a
+common facet, that S ∈ ∆(T1)∩∆(T2), and that i ∈ I(S). For every ω ∈ Wp,pΛk(Ω)
+we have
+|φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω) |
+≤ CΞ
+�
+h
+− n
+p +k
+S
+∥ω − PT1ω∥LpΛk(T1) + h
+− n
+p +k+1
+S
+∥dω − dPT1ω∥LpΛk+1(T1)
++ h
+− n
+p +k
+S
+∥ω − PT2ω∥LpΛk(T2) + h
+− n
+p +k+1
+S
+∥dω − dPT2ω∥LpΛk+1(T2)
+�
+.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+17
+Proof. Let F ∈ T be the common facet of T1 and T2. On the one hand, we have
+φ∗
+S,i(PT1ω) = o(F, T1)
+�
+T1
+dΞT1,F,S,i ∧ PT1ω + (−1)n−k+1ΞT1,F,S,i ∧ dPT1ω
+φ∗
+S,i(PT2ω) = o(F, T2)
+�
+T2
+dΞT2,F,S,i ∧ PT2ω + (−1)n−k+1ΞT2,F,S,i ∧ dPT2ω.
+On the other hand, let ΞF,S,i ∈ L∞Λn−k−1(Ω) be the differential form with compact
+support in the interior of T1 ∪ T2 and
+ΞF,S,i|T1 = ΞT1,F,S,i,
+ΞF,S,i|T2 = ΞT2,F,S,i.
+We have ΞF,S,i ∈ W∞,∞Λn−k−1(Ω). Consequently,
+0 =
+�
+T1∪T2
+dΞF,S,i ∧ ω + (−1)n−k+1ΞF,S,i ∧ dω.
+Since T1 and T2 induce opposing orientations on their common facet F, we have
+o(F, T1) = −o(F, T2). We split the last integral and find
+o(F, T1)
+�
+T1
+dΞT1,F,S,i ∧ ω + (−1)n−k+1ΞT1,F,S,i ∧ dω
+− o(F, T2)
+�
+T2
+dΞT2,F,S,i ∧ ω + (−1)n−k+1ΞT2,F,S,i ∧ dω = 0.
+The combination of these identities shows that
+φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω)
+= o(F, T1)
+�
+T1
+dΞT1,F,S,i ∧ (PT1ω − ω) + (−1)n−k+1ΞT1,F,S,i ∧ d (PT1ω − ω)
+− o(F, T2)
+�
+T2
+dΞT2,F,S,i ∧ (PT2ω − ω) + (−1)n−k+1ΞT2,F,S,i ∧ d (PT2ω − ω) .
+Using Hölder’s inequality, we bound
+��φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω)
+�� by
+∥dΞT1,F,S,i∥LqΛn−k(T1)∥ω − PT1ω∥LpΛk(T1)
++ ∥ΞT1,F,S,i∥LqΛn−k−1(T1)∥dω − dPT1ω∥LpΛk+1(T1)
++ ∥dΞT2,F,S,i∥LqΛn−k(T2)∥ω − PT2ω∥LpΛk(T2)
++ ∥ΞT2,F,S,i∥LqΛn−k−1(T2)∥dω − dPT2ω∥LpΛk+1(T2).
+The proof is completed with the inverse inequalities (2a) and (2b).
+□
+We can now combine our first main result, which is the broken Bramble-Hilbert
+lemma for differential forms of modest regularity.
+Theorem 5.5. Let p ∈ [1, ∞] and s ∈ [0, ∞). For ω ∈ Wp,pΛk(Ω) and T ∈ T we
+have
+|ω − Pω|W s,pΛk(T )
+≤ |ω − PT ω|W s,p(T )
++ Ch−s
+T
+�
+T ′∈∆n(T )
+T ′∩T ̸=∅
+�
+∥ω − PT ′ω∥LpΛk(T ′) + hT ∥dω − dPT ′ω∥LpΛk+1(T ′)
+�
+.
+Here, C > 0 depends only on p, s, r, n and the mesh regularity.
+
+18
+MARTIN W. LICHT
+Proof. This is a combination of Lemmas 5.2, 5.3, and 5.4.
+□
+The main result above is as specific as we go without invoking specific properties
+of the finite element spaces. The two families have slightly different convergence
+properties, and state a more specific result in the following corollaries.
+Corollary 5.6. Suppose that PΛk(T , U) = PrΛk(T , U).
+Let p ∈ [1, ∞] and
+m, l, s ∈ [0, ∞) with m ≤ r + 1 and m − 1 ≤ l ≤ r.
+For any T ∈ T and
+ω ∈ Wp,pΛk(Ω) ∩ W m,pΛk(Ω) we have
+|ω − Pω|W s,pΛk(T ) ≤ Chm−s
+T
+�
+T ′∈∆n(T )
+T ′∩T ̸=∅
+�
+|ω|W m,pΛk(T ′) + hl+1−m
+T
+|dω|W l,pΛk+1(T ′)
+�
+.
+Here, C > 0 depends only on s, m, l, r, n and the mesh regularity.
+Corollary 5.7. Suppose that PΛk(T , U) = P−
+r Λk(T , U).
+Let p ∈ [1, ∞] and
+l, m, s ∈ [0, ∞) with m ≤ r and m − 1 ≤ l ≤ m.
+For any T ∈ T and ω ∈
+Wp,pΛk(Ω) ∩ W m,pΛk(Ω) with dω ∈ W m,pΛk+1(Ω) we have
+|ω − Pω|W s,pΛk(T ) ≤ Chm−s
+T
+�
+T ′∈∆n(T )
+T ′∩T ̸=∅
+�
+|ω|W m,pΛk(T ′) + hT |dω|W m,pΛk+1(T ′)
+�
+.
+Here, C > 0 depends only on s, m, l, r, n and the mesh regularity.
+Proof. This follows from Theorem 5.5 and Proposition 4.1.
+□
+Remark 5.8. A close reading of the proof of Theorem 3.1 in [32], specifically the
+last inequality on p.489, shows that the essential techniques for the broken Bramble-
+Hilbert lemma are already contained in the original contribution by Scott and Zhang.
+The inequality apparently was not recognized as a result in its own right. Veeser
+[34] identified the result as an instrument in nonlinear approximation theory and
+[6] employed the inequality in the analysis of surface finite element methods. The
+motivation of the present research is closest in spirit the latter.
+We turn our attention to error estimates via Sobolev trace theory. This is differ-
+ent from the trace theory via an integration by parts formula, and neither is a subset
+of the other. The following analysis bears some similarity with Ciarlet’s analysis of
+the Scott-Zhang operator [11]. We rely on the trace inequality of Lemma 2.2.
+Lemma 5.9. Let p ∈ [1, ∞] and t > 1/p or t ≥ 1. If T ∈ T and S ∈ ∆(T ) with
+S ∈ U, then for every ω ∈ W t,pΛk(Ω, Γ) we have
+|φ∗
+S,i (PT ω) | ≤ Ch
+− n
+p +k
+S
+�
+∥PSω − ω∥LpΛk(TS) + ht
+S∥PSω − ω∥W t,pΛk(TS)
+�
+.
+Here, C > 0 depends only on p, t, r, n, and the mesh regularity.
+Proof. By assumption, trTS,FS ω = 0. We use the representation of the degrees of
+freedom in Theorem 3.4:
+φ∗
+S,i (PT ω) =
+�
+FS
+˚ξS,i ∧ trTS,FS(PSω)|TS
+=
+�
+FS
+˚ξS,i ∧ trTS,FS(ω − PSω)|TS.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+19
+Let q ∈ [1, ∞] such that 1 = 1/p + 1/q. We utilize Hölder’s inequality and obtain:
+��φ∗
+S,i (PT ω)
+�� ≤ ∥˚ξS,i∥LqΛn−k(FS)∥ω − PSω∥LpΛk(FS)
+≤ CΞh
+n−1
+q
+−n+k+1
+S
+∥ω − PSω∥LpΛk(FS)
+≤ CΞCtrh
+n−1
+q
+−n+k+1
+TS
+�
+h
+− 1
+p
+T
+∥ω∥LpΛk(T ) + h
+t− 1
+p
+T
+|ω|W t,pΛk(T )
+�
+.
+Here, we have used the inverse inequality (2c) and Lemma 2.2.
+□
+Lemma 5.10. Let p ∈ [1, ∞] and t > 1/p or t ≥ 1. If T1, T2 ∈ T share a common
+facet, S ∈ ∆(T1) ∩ ∆(T2), and i ∈ I(S), then for every ω ∈ W t,pΛk(Ω) we have
+|φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω) |
+≤ h
+− n
+p +k
+S
+C
+�
+∥ω − PT1ω∥LpΛk(T1) + ht
+S|ω − PT1ω|W t,pΛk(T1)
++ ∥ω − PT2ω∥LpΛk(T2) + ht
+S|ω − PT2ω|W t,pΛk(T2)
+�
+.
+Here, C > 0 depends only on p, t, r, n, and the mesh regularity.
+Proof. Let F ∈ T be the common facet of T1 and T2. The differential form ω
+satisfies trT1,F ω = trT2,F ω. For j ∈ {1, 2} we notice
+φ∗
+S,i
+�
+PTjω
+�
+= o(F, Tj)
+�
+F
+trTj,F ΞTj,F,S,i ∧ trTj,F PTjω
+= o(F, Tj)
+�
+F
+trTj,F ΞTj,F,S,i ∧ trTj,F
+�
+PTjω − ω
+�
+.
+Next, via Hölders inequality and the inverse inequality (2c),
+����
+�
+F
+˚ξTj,F,S,i ∧ trTj,F
+�
+PTjω − ω
+����� ≤ CΞh
+n− n
+p − 1
+q −k
+S
+��PTjω − ω
+��
+LpΛk(F ) .
+The inequality in Lemma 2.2 completes the proof.
+□
+Theorem 5.11. Let p ∈ [1, ∞], t, s ∈ [0, ∞) with t > 1/p or t ≥ 1. For every
+T ∈ T and ω ∈ W t,pΛk(Ω) we have
+|ω − Pω|W s,pΛk(T )
+≤ |ω − PT ω|W s,p(T )
++ C
+�
+T ′∈∆n(T )
+T ′∩T ̸=∅
+�
+h−s
+T ∥ω − PT ′ω∥LpΛk(T ′) + ht−s
+T
+|ω − PT ′ω|W t,pΛk(T ′)
+�
+.
+Here, C > 0 depends only on p, s, t, r, n and the mesh regularity.
+Proof. This is a combination of Lemmas 5.2, 5.3, and 5.4.
+□
+Corollary 5.12. Let p ∈ [1, ∞] and m, s ∈ [0, ∞) with s ≤ m. If PΛk(T , U) =
+PrΛk(T , U), suppose that m ≤ r + 1. If PΛk(T , U) = P−
+r Λk(T , U), suppose that
+m ≤ r. Suppose that m > 1/p or m ≥ 1. For every T ∈ T and ω ∈ W m,pΛk(Ω) we
+have
+|ω − Pω|W s,pΛk(T ) ≤ Chm−s
+T
+�
+T ′∈∆n(T )
+T ′∩T ̸=∅
+|ω|W m,pΛk(T ′) .
+
+20
+MARTIN W. LICHT
+Here, C > 0 depends only on p, s, m, r, n and the mesh regularity.
+Proof. This follows from Theorem 5.11 and Proposition 4.1.
+□
+We can also show an estimate for lower regularity differential forms via our
+standard error representation. We need a modicum of additional notation before
+we formulate that result.
+For any facet F ∈ ∆n−1(T ) we let DF denote the polyhedral domain that is
+described by the n-dimensional simplices of the triangulation that contain F. The
+situation is simple. If F a facet at the boundary, then there is only simplex T
+containing F and hence DF = T . If instead F is an interior facet, then there are
+exactly two simplices T1, T2 ∈ T that describe contain F, and hence DF = T1 ∪ T2.
+We write PrΛk(DF ) for the space of polynomial k-forms of degree r over the domain
+DF .
+Lemma 5.13. Let p ∈ [1, ∞] and s ∈ [0, ∞). If T1, T2 ∈ T share a common facet
+F, S ∈ ∆(F), and i ∈ I(S), then for every ω ∈ LpΛk(Ω) and every ˜ω ∈ PrΛk(DF )
+we have
+��φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω)
+��
+≤ Ch
+− n
+p +k+s
+F
+�
+|ω − PT1ω|W s,pΛk(T1) + |ω − PT2ω|W s,pΛk(T2) + |ω − ˜ω|W s,pΛk(DF )
+�
+.
+Here, C > depends only on p, s, n, and the mesh regularity.
+Proof. Note that φ∗
+S,i(˜ω) is well-defined, thus
+φ∗
+S,i (PT1ω) − φ∗
+S,i (PT2ω) = φ∗
+S,i (PT1ω) − φ∗
+S,i (˜ω) + φ∗
+S,i (˜ω) − φ∗
+S,i (PT2ω)
+Let j ∈ {1, 2}. We use the inverse inequality (1b) to see that
+��φ∗
+S,i (˜ω) − φ∗
+S,i
+�
+PTjω
+��� ≤ CA,sh
+− n
+p +k+s
+S
+|˜ω − ω|W s,pΛk(Tj) .
+Lastly, we can use the triangle inequality:
+|˜ω − ω|W s,pΛk(Tj) ≤ |˜ω − ω|W s,pΛk(Tj) +
+��ω − PTjω
+��
+W s,pΛk(Tj) .
+The inequality follows.
+□
+This enables the following estimate away from the boundary.
+Theorem 5.14. Let p ∈ [1, ∞] and s, m ∈ [0, ∞) such that s ≤ m ≤ r + 1, and
+T ∈ T with ∆(T ) ∩ U = ∅ For any ω ∈ W m,pΛk(Ω) we have
+|ω − Pω|W s,pΛk(T )
+≤ C
+�
+T ′∈∆n(T )
+T ∩T ′̸=∅
+|ω − PT ′ω|W s,p(T ′) + Chm−s
+T
+�
+F ∈∆n−1(T )
+T ∩F ̸=∅
+|ω|W m,p(DF ) .
+Here, C > 0 depends only on p, s, m, r, n and the mesh regularity.
+Proof. This uses Lemma 5.13 together with a standard error estimate on polynomial
+interpolation over star-shaped domains [16].
+□
+Again, this is a general result that does not invoke the specific choice of finite
+element families. Concretely, we bound the error term as follows.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+21
+Corollary 5.15. Let p ∈ [1, ∞] and m, s ∈ [0, ∞) with s ≤ m. If PΛk(T , U) =
+PrΛk(T , U), suppose that m ≤ r + 1. If PΛk(T , U) = P−
+r Λk(T , U), suppose that
+m ≤ r. For any T ∈ T and ω ∈ W m,pΛk(Ω) we have
+|ω − Pω|W s,pΛk(T ) ≤ Chm−s
+T
+�
+T ′∈∆n(T )
+T ′∩T ̸=∅
+|ω|W m,pΛk(T ′) .
+Here, C > 0 depends only on s, m, r, n and the mesh regularity.
+Remark 5.16. A differential form in W 1,pΛk(Ω) has well-defined traces in the
+sense Sobolev theory and via the integration by parts formula, and both traces agree.
+Those two approaches allow us to define trace, and hence our interpolation operator,
+to differential forms in Wp,pΛk(Ω) and in rougher Sobolev-Slobodeckij spaces. These
+two classes are distinct and none is a special case of the other outside of scalar fields.
+Remark 5.17. The following informal observation is of interest. An interpolant
+that is bounded in Lebesgue spaces can respect homogeneous boundary conditions
+only by incorporating them in the definition of the interpolant, and will satisfy a
+Bramble-Hilbert-type inequality near that boundary part only for sufficiently reg-
+ular differential forms. By contrast, an interpolant that requires differentiability
+everywhere can be built to satisfy such an inequality for all functions of sufficient
+regularity regardless of whether they satisfy the boundary conditions or not.
+6. Local and global approximation errors
+We understand piecewise polynomial approximations of differential forms very
+well. We can interpret those as approximation discontinuous or non-conforming
+finite element spaces: the approximation on each cell only uses local data. How
+much approximation quality is lost if we instead insist on approximation via con-
+forming finite element spaces? That is, if we insist on continuity and boundary
+conditions? As it turns out, in many cases conforming and non-conforming finite
+element approximations have comparable errors, and so the coupling of the local
+approximations does not essentially worsen the approximation. Such result have re-
+ceived attention in the literature for H(curl) and H(div) [17, 7]. We prove analogous
+results in finite element exterior calculus but with slightly different requirements.
+We begin with some definitions. For p ∈ [1, ∞] and ω ∈ Wp,pΛk(Ω, Γ) we define
+when p < ∞ or p = ∞, respectively,
+Ep(ω) :=
+min
+ωh∈PΛk(T ,U)
+
+∥ω − ωh∥p
+LpΛk(Ω) +
+�
+T ∈∆n(T )
+hp
+T ∥dω − dωh∥p
+LpΛk(Ω)
+
+
+1
+p
+,
+E∞(ω) :=
+min
+ωh∈PΛk(T ,U) ∥ω − ωh∥L∞Λk(Ω) + hT ∥dω − dωh∥L∞Λk(Ω).
+These terms measure the best approximation of the differential form ω by members
+of PΛk(T ) in terms of a weighted Wp,pΛk(Ω, Γ) norm. As the mesh size goes to
+zero, those norms converge pointwise to the Lebesgue norms.
+On the other hand, we define local error terms over each simplex.
+Here we
+consider the minimum of the local polynomial space over each simplex, notably
+without any local boundary conditions. For p ∈ [1, ∞], any full-dimensional simplex
+
+22
+MARTIN W. LICHT
+T ∈ ∆n(T ) and any differential form ω ∈ Wp,pΛk(Ω, Γ) we define
+ep,T(ω) :=
+min
+ωh∈PΛk(T )
+�
+∥ω − ωh∥p
+LpΛk(T ) + hp
+T ∥dω − dωh∥p
+LpΛk(T )
+� 1
+p ,
+p < ∞,
+e∞,T (ω) :=
+min
+ωh∈PΛk(T ) ∥ω − ωh∥L∞Λk(T ) + hT ∥dω − dωh∥L∞Λk(T ).
+These use the same finite element space on each simplex but no boundary and
+continuity conditions are imposed. They measure the approximation error in local
+terms.
+We want to compare the global and the local approximation errors. On the one
+hand, the sum of the local approximation errors is a lower bound for the global
+approximation error.
+�
+T ∈∆n(T )
+ep,T (ω)p ≤ Ep(ω)p,
+ω ∈ Wp,pΛk(Ω, Γ),
+p < ∞,
+max
+T ∈∆n(T ) e∞,T(ω) ≤ E∞(ω),
+ω ∈ W∞,∞Λk(Ω, Γ).
+We want to show the converse bound. A conditional converse is provided by the
+following theorem, which is inspired by [17, Theorem 3.3] and [7, Theorem 2]. But
+very similar to those references, we show the converse inequality only for differential
+forms whose exterior derivative is in the finite element space.
+Theorem 6.1. Let p ∈ [1, ∞] and ω ∈ Wp,pΛk(Ω, Γ) with dω ∈ PΛk(T , U). Then
+Ep(ω) ≤ C
+�
+T ∈T
+ep,T(ω).
+Here, C > 0 depends only on p, r, n, and the mesh regularity.
+Proof. In what follows, C > 0 depends only on p, r, n, and the mesh regularity.
+We begin with
+Ep(ω)p ≤ ∥ω − Pω∥p
+LpΛk(Ω) +
+�
+T ∈∆n(T )
+hp
+T ∥dω − dPω∥p
+LpΛk(Ω),
+p < ∞,
+E∞(ω) ≤ ∥ω − Pω∥∞
+L∞Λk(Ω) +
+max
+T ∈∆n(T ) hT ∥dω − dPω∥L∞Λk(Ω).
+Since dω ∈ PΛk(T , U), we have an inverse inequality over any T ∈ ∆n(T ),
+∥dω − dPω∥LpΛk(T ) ≤ Ch−1
+T ∥ω − Pω∥LpΛk(T ),
+and consequently,
+Ep(ω)p ≤ C∥ω − Pω∥p
+LpΛk(Ω),
+p < ∞,
+E∞(ω) ≤ C∥ω − Pω∥L∞Λk(Ω).
+In accordance with our main result, Theorem 5.5, and since every simplex of the
+triangulation has only finitely many neighbors, we find
+Ep(ω)p ≤ C
+�
+T ∈∆n(T )
+�
+∥ω − PT ω∥LpΛk(T ) + hT ∥dω − dPT ω∥LpΛk+1(T )
+�p ,
+p < ∞,
+E∞(ω) ≤ C
+max
+T ∈∆n(T ) ∥ω − PT ω∥L∞Λk(T ) + hT ∥dω − dPT ω∥L∞Λk+1(T ).
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+23
+We use the quasi-optimality of the local projections in Proposition 4.1. For any
+T ∈ ∆n(T ) and ωh ∈ PΛk(T ) we estimate
+∥ω − PT ω∥LpΛk(T ) + hT ∥dω − dPT ω∥LpΛk(T )
+≤ ∥ω − ωh + PT ωh − PT ω∥LpΛk(T ) + hT ∥dω − dωh + PT dωh − PT dω∥LpΛk(T )
+≤ C∥ω − ωh∥LpΛk(T ) + ChT ∥dω − dωh∥LpΛk(T ).
+But this just implies the desired inequality, and the proof is complete.
+□
+The following corollary addresses the special case when exterior derivatives are
+approximated and is inspired by Theorem 1 in [7]. However, we do not assume that
+the domain is simply-connected and also make no topological assumptions on Γ.
+Corollary 6.2. Let p ∈ [1, ∞] and ω ∈ Wp,pΛk(Ω, Γ) with dω = 0. Then
+∥ω − Pω∥p
+LpΛk(T ) ≤ C
+�
+T ∈∆n(T )
+∥ω − PT ω∥p
+LpΛk(T ),
+p < ∞,
+∥ω − Pω∥L∞Λk(T ) ≤ C
+max
+T ∈∆n(T ) ∥ω − PT ω∥L∞Λk(T ).
+Here, C > 0 depends only on p, r, n, and the mesh regularity.
+Proof. This follows from Theorem 6.1 and the commutativity property in Proposi-
+tion 4.1.
+□
+Remark 6.3. The analysis in the relevant references [17, 7] addresses the depen-
+dence of the constants on the polynomial degree, which is not within the scope of
+this article. However, we do not assume that the domain Ω is simply-connected nor
+do we make assumptions on the topology of Γ, which seems to be new at least for
+the case of approximation in H(curl).
+One way of interpreting the results of this and the former section is this: if a
+differential form features enough regularity to have continuity and boundary con-
+ditions, then every piecewise polynomial (but not necessarily continuous) approxi-
+mation must replicate those continuity and boundary conditions so closely that we
+can just require those conditions directly on the approximation itself.
+7. Applications
+As a service to the reader, we review our results in the context of three-dimensional
+vector analysis. Let Ω ⊆ R3 be a bounded Lipschitz domain endowed with a tri-
+angulation T , and let a two-dimensional submanifold Γ ⊆ ∂Ω of the boundary,
+possible empty, be endowed with a triangulation U ⊂ T .
+We focus on the Hilbert space theory, the extension to the Banach space case
+is obvious. We abbreviate Hm(Ω) = W m,2(Ω) when m ≥ 0. L2(Ω) is the space
+of square-integrable vector fields over Ω, and Hm(Ω), where m ≥ 0, is the space
+of vector fields with coefficients in W m,2(Ω). We write | · |Hm for the associated
+seminorm. Let
+H(curl) :=
+�
+u ∈ L2(Ω) | curl u ∈ L2(Ω)
+�
+,
+H(div) :=
+�
+u ∈ L2(Ω) | div u ∈ L2(Ω)
+�
+.
+Subspaces with boundary conditions can be defined in different ways. We abbrevi-
+ate H1(Ω, Γ) = W 1,2(Ω, Γ). In accordance with Theorem 2.1, whenever m > 1/2,
+we write Hm
+tan(Ω, Γ) and Hm
+nor(Ω, Γ) for the subspaces of Hm(Γ) that have vanishing
+
+24
+MARTIN W. LICHT
+tangential or normal traces along Γ, respectively. We also have boundary condi-
+tions defined via integration by parts formulas. We let H(curl, Γ) be the subspace
+of H(curl) whose members u satisfy
+�
+Ω
+⟨curl u, φ⟩ dx =
+�
+Ω
+⟨u, curl φ⟩ dx
+for all vector fields φ ∈ C∞(Ω)3 vanishing near Γ. We let H(div, Γ) be the subspace
+of H(div) whose members u satisfy
+�
+Ω
+⟨div u, φ⟩ dx = −
+�
+Ω
+⟨u, grad φ⟩ dx
+for all functions φ ∈ C∞(Ω) vanishing near Γ.
+We introduce finite element spaces. The Lagrange space of degree r is writ-
+ten Pr(T ) = Pr(T ). We write Nedfst
+r (T ) and Nedsnd
+r
+(T ) for the curl-conforming
+Nédélec spaces of first and second kind, respectively, and BDMr(T ) and RTr(T )
+for the divergence-conforming Brezzi-Douglas-Marini space and the Raviart-Thomas
+space, respectively, of degree r over T . By the convention that we adopt in this
+article, these finite element spaces contain the polynomial vector fields up to de-
+gree r, and the spaces Nedfst
+r (T ) and RTr(T ) correspond to the trimmed spaces
+P−
+r Λ1(T ) and P−
+r Λ2(T ), respectively. Thus,
+Nedsnd
+r
+(T ) ⊆ Nedfst
+r (T ),
+BDMr(T ) ⊆ RTr(T )
+In addition, we use the following notation for the subspaces satisfying partial bound-
+ary conditions:
+Pr(T , U) := H(Ω, Γ) ∩ Pr(T ),
+Nedfst
+r (T , U) := H(curl, Γ) ∩ Nedfst
+r (T ),
+Nedsnd
+r
+(T , U) := H(curl, Γ) ∩ Nedsnd
+r
+(T ),
+BDMr(T , U) := H(div, Γ) ∩ BDMr(T ),
+RTr(T , U) := H(div, Γ) ∩ RTr(T ).
+We may define these spaces equivalently, and more explicitly, by setting the degrees
+of freedom of the finite element spaces to zero along the boundary part, that is, for
+all simplices in the subcomplex U.
+With an abuse of notation, we let T (T ) be the collection of tetrahedra of T that
+are adjacent to T , and also the polyhedral domain described by that collection.
+We first discuss the approximation results for the finite element spaces that
+contain exactly the polynomial spaces up to degree r on each element.
+Theorem 7.1. Let r ≥ 1. There exist projections
+PP : L2(Ω) → Pr(T , U),
+PBDM : L2(Ω) → BDMr(T , U),
+PNedsnd : L2(Ω) → Nedsnd
+r
+(T , U),
+such that for m ∈ [0, r+1], l ∈ [0, r], all tetrahedra T ∈ T , the following inequalities
+hold whenever the respective right-hand sides are well-defined.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+25
+For all u ∈ H1(Ω, Γ) we have
+∥u − PPu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + hl+1
+T
+|∇u|Hl(T ′) .
+For all u ∈ H(curl, Γ) we have
+∥u − PNedsndu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + hl+1
+T
+|curl u|Hl(T ′) .
+For all u ∈ Hm
+tan(Ω, Γ), where m ≥ 2, we have
+∥u − PNedsndu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + h1/2
+T
+|curl u|Hm−1/2(T ′) .
+For all u ∈ H(div, Γ) we have
+∥u − PBDMu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + hl+1
+T
+|div u|Hl(T ′) .
+For all u ∈ Hm
+nor(Ω, Γ), where m ≥ 2, we have
+∥u − PBDMu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + h1/2
+T
+|div u|Hm−1/2(T ′) .
+If T ∩ Γ = ∅, then for all u ∈ Hm(Ω) we have
+|u − PPu|L2(T ) ≤ Chm
+T |u|Hm(T (T ))
+|u − PBDMu|L2(T ) ≤ Chm
+T |u|Hm(T (T ))
+|u − PNedsndu|L2(T ) ≤ Chm
+T |u|Hm(T (T )) .
+Here, C > 0 only on the polynomial degree r, m, l, and the mesh regularity.
+Next we discuss approximation results for the finite element spaces that contain
+not only contain the polynomial spaces up to degree r on each element but also
+additional degrees of freedom such that their curls and divergences, respectively,
+have approximation capability of degree r.
+Theorem 7.2. Let r ≥ 0. There exist projections
+PNedfst : H(curl, Γ) → Nedfst
+r (T , U),
+PRT : H(div, Γ) → RTr(T , U),
+such that for m ∈ [0, r + 1], l ∈ [0, r + 1], all tetrahedra T ∈ T , the following
+inequalities hold whenever the respective right-hand sides are well-defined.
+For all u ∈ H(curl, Γ) we have
+∥u − PNedfstu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T ∥u∥Hm(T ′) + hl+1
+T
+∥ curl u∥Hl(T ′)
+For all u ∈ Hm
+tan(Ω, Γ), where m ≥ 2, we have
+∥u − PNedfstu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + h1/2
+T
+|curl u|Hm−1/2(T ′) .
+For all u ∈ H(div, Γ) we have
+∥u − PRTu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T ∥u∥Hm(T ′) + hl+1
+T
+∥ div u∥Hl(T ′)
+
+26
+MARTIN W. LICHT
+For all u ∈ Hm
+nor(Ω, Γ), where m ≥ 2, we have
+∥u − PRTu∥L2(T ) ≤ C
+�
+T ′∈T (T )
+hm
+T |u|Hm(T ′) + h1/2
+T
+|div u|Hm−1/2(T ′) .
+If T ∩ Γ = ∅, then for all u ∈ Hm(Ω) we have
+∥u − PNedfstu∥L2(T ) ≤ Chm
+T |u|Hm(T (T )) ,
+∥u − PRTu∥L2(T ) ≤ Chm
+T |u|Hm(T (T )) .
+Here, C > 0 only on the polynomial degree r, m, l, and the mesh regularity.
+Remark 7.3. In the two-dimensional case, projections with completely analogous
+properties exist for the Raviart-Thomas and Brezzi-Douglas-Marini elements.
+References
+[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-
+dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, 21 (1998),
+pp. 823–864.
+[2] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological
+techniques, and applications, Acta Numerica, 15 (2006), pp. 1–155.
+[3]
+, Geometric decompositions and local bases for spaces of finite element differential
+forms, Computer Methods in Applied Mechanics and Engineering, 198 (2009), pp. 1660–
+1672.
+[4]
+, Finite element exterior calculus: from Hodge theory to numerical stability, Bulletin
+of the American Mathematical Society, 47 (2010), pp. 281–354.
+[5] V. I. Burenkov, Sobolev spaces on domains, vol. 137, Springer, 1998.
+[6] F. Camacho and A. Demlow, L2 and pointwise a posteriori error estimates for FEM for
+elliptic PDEs on surfaces, IMA Journal of Numerical Analysis, 35 (2015), pp. 1199–1227.
+[7] T. Chaumont-Frelet and M. Vohralík, Equivalence of local-best and global-best approx-
+imations in H(curl), Calcolo, 58 (2021), pp. 1–12.
+[8] S. H. Christiansen, A construction of spaces of compatible differential forms on cellular
+complexes, Mathematical Models and Methods in Applied Sciences, 18 (2008), pp. 739–757.
+[9] S. H. Christiansen, H. Z. Munthe-Kaas, and B. Owren, Topics in structure-preserving
+discretization, Acta Numerica, 20 (2011), p. 1.
+[10] S. H. Christiansen and R. Winther, Smoothed projections in finite element exterior
+calculus, Mathematics of Computation, 77 (2008), pp. 813–829.
+[11] P. Ciarlet, Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces,
+Journal of Numerical Mathematics, 21 (2013), pp. 173–180.
+[12] P. Clément, Approximation by finite element functions using local regularization, Re-
+vue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9
+(1975), pp. 77–84.
+[13] M. Costabel, A coercive bilinear form for maxwell’s equations, Journal of mathematical
+analysis and applications, 157 (1991), pp. 527–541.
+[14] L. Demkowicz and A. Buffa, H1, H(curl) and H(div)-conforming projection-based inter-
+polation in three dimensions: Quasi-optimal p-interpolation estimates, Computer Methods
+in Applied Mechanics and Engineering, 194 (2005), pp. 267–296.
+[15] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev
+spaces, Bulletin des sciences mathématiques, 136 (2012), pp. 521–573.
+[16] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math-
+ematics of Computation, 34 (1980), pp. 441–463.
+[17] A. Ern, T. Gudi, I. Smears, and M. Vohralík, Equivalence of local-and global-best
+approximations, a simple stable local commuting projector, and optimal hp approximation
+estimates in H(div), IMA Journal of Numerical Analysis, 42 (2022), pp. 1023–1049.
+[18] A. Ern and J.-L. Guermond, Mollification in strongly Lipschitz domains with applica-
+tion to continuous and discrete de Rham complexes, Computational Methods in Applied
+Mathematics, 16 (2016), pp. 51–75.
+
+AVERAGING-BASED LOCAL PROJECTIONS IN FEEC
+27
+[19]
+, Finite element quasi-interpolation and best approximation, ESAIM: Mathematical
+Modelling and Numerical Analysis, 51 (2017), pp. 1367–1385.
+[20]
+, Finite Elements II, Springer, 2021.
+[21] R. Falk and R. Winther, Local bounded cochain projections, Mathematics of Computation,
+83 (2014), pp. 2631–2656.
+[22] E. S. Gawlik, M. J. Holst, and M. W. Licht, Local finite element approximation of
+Sobolev differential forms, ESAIM:M2AN, 5 (2021), pp. 2075–2099.
+[23] N. Heuer, On the equivalence of fractional-order Sobolev semi-norms, Journal of Mathe-
+matical Analysis and Applications, 417 (2014), pp. 505–518.
+[24] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002),
+pp. 237–339.
+[25] M. Licht, Smoothed projections and mixed boundary conditions, Mathematics of Computa-
+tion, 88 (2019), pp. 607–635.
+[26]
+, Smoothed projections over weakly Lipschitz domains, Mathematics of Computation,
+88 (2019), pp. 179–210.
+[27] M. W. Licht, On the a priori and a posteriori error analysis in finite element exterior
+calculus, PhD thesis, Dissertation, Department of Mathematics, University of Oslo, Norway,
+2017.
+[28] M. W. Licht, On basis constructions in finite element exterior calculus, Adv Comput Math,
+14 (2022).
+[29] D. Mitrea, M. Mitrea, and M.-C. Shaw, Traces of differential forms on Lipschitz do-
+mains, the boundary de Rham complex, and Hodge decompositions, Indiana University math-
+ematics journal, (2008), pp. 2061–2095.
+[30] P. Monk, Finite element methods for Maxwell’s equations, Oxford University Press, USA,
+2003.
+[31] P. Oswald, On a BPX-preconditioner for P1 elements, Computing, 51 (1993), pp. 125–133.
+[32] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying
+boundary conditions, Mathematics of Computation, 54 (1990), pp. 483–493.
+[33] L. Slobodeckij, Generalized Sobolev spaces and their applications to boundary value prob-
+lems of partial differential equations, Gos. Ped. Inst. Ucep. Zap, 197 (1958), pp. 54–112.
+[34] A. Veeser, Approximating gradients with continuous piecewise polynomial functions, Foun-
+dations of Computational Mathematics, 16 (2016), pp. 723–750.
+École Polytechnique Fé´derale Lausanne (EPFL), 1015, Lausanne, Switzerland
+Email address: martin.licht@epfl.ch
+
diff --git a/ldE1T4oBgHgl3EQfNwO7/content/tmp_files/load_file.txt b/ldE1T4oBgHgl3EQfNwO7/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..57aa69bddd18ca89c3e6a2e71aa019aa5324149d
--- /dev/null
+++ b/ldE1T4oBgHgl3EQfNwO7/content/tmp_files/load_file.txt
@@ -0,0 +1,829 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf,len=828
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='03007v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='NA] 8 Jan 2023 AVERAGING-BASED LOCAL PROJECTIONS IN FINITE ELEMENT EXTERIOR CALCULUS MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We develop projection operators onto finite element differential forms over simplicial meshes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Our projection is locally bounded in Lebesgue and Sobolev-Slobodeckij norms, uniformly with respect to mesh parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Moreover, it incorporates homogeneous boundary conditions and satisfies a local broken Bramble-Hilbert estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The construction principle includes the Ern-Guermond projection and a modified Clément-type interpolant with the projection property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The latter seems to be a new result even for La- grange elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This projection operator immediately enables an equivalence result on local- and global-best approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We combine techniques for the Scott-Zhang and Ern-Guermond projections and adopt the framework of finite element exterior calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We instantiate the abstract projection for Brezzi-Douglas-Marini, Nédélec, and Raviart-Thomas elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Introduction Establishing convergence rates for finite element methods relies on interpolation operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' These are widely documented for Lagrange elements, famous examples being the Clément and Scott-Zhang interpolants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' But only recently have these interpolants been generalized to the vector-valued finite elements that are known as Brezzi-Douglas-Marini, Nédélec, and Raviart-Thomas elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Several classical and recent results on finite element interpolants have been transferred to the vector- valued setting over the last years [19, 22, 7, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In this article we study an interpolant for scalar and vector fields based on local weighted averaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Ern-Guermond interpolant and a Clément-type in- terpolant are special cases of the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Our interpolant has the following properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Firstly, it is locally stable in Lebesgue and Sobolev-Slobodeckij norms, uniformly with respect to the local mesh size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Secondly, it can impose homogeneous traces along a fixed part of the domain boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thirdly, it is a projection on the finite element space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lastly, it satisfies a broken Bramble-Hilbert lemma [34, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We now give an overview of the broader context of this research, its motivation, and some mathematical tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' One necessary step in the convergence analysis of finite element methods is estimating best approximation errors: it is precisely that step that yields convergence rates in terms of the mesh size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The standard approach to analyzing the approximation error uses the canonical (or Lagrange) interpolant, 2000 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 65N30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' broken Bramble-Hilbert lemma, finite element exterior calculus, Ern- Guermond interpolant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This material is based upon work supported by the National Science Foundation under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' DMS-1439786 while the author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Advances in Computational Relativity” program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1 2 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A triangulated parametric domain (left) and a phys- ical domain (right) that is the formers image under a bi-Lipschitz piecewise smooth transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The image of the triangulation is drawn within the physical domain too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' which is defined via the degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This suffices when the interpolated func- tion is smooth enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' However, the constants in the estimate are hard to control, and the overall idea faces practical limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' An example are three-dimensional curl-curl problems over domains with reentrant corners: the solution vector field is not smooth enough for the canonical interpolant to be defined [30, 13, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We know of interpolants that require less regularity, primarily for scalar finite elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Clément interpolant [12] enables localized error estimates but is well-defined even over functions in Lebesgue spaces and not idempotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The interpolant by Scott and Zhang [32] requires some Sobolev or Sobolev-Slobodeckij regularity, but it is a projection and shows better properties in approximating boundary values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' These well-known results suffice for deriving convergence rates in geometrically conform- ing settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Additional challenges arise in geometrically non-conforming situations, as we now illustrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose a scalar function on a physical domain is approximated in a finite element space over a triangulated parametric domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We need a transfor- mation between the physical and the parametric domains for comparing the original function with any finite element approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In practice, such transformations are bidirectionally Lipschitz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' see also Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' But then we face a dilemma: on the one hand, transforming any finite element approximation onto the physical domain generally does not preserve polynomials;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' on the other hand, transforming the orig- inal function onto the parametric domain generally does not preserve higher global regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In neither case can standard error estimates be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Such situations arise in finite element error analysis over manifolds, surfaces, and domains with non-polyhedral boundary, and irrespective of whether the transformation is explic- itly known or implicitly assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' What resolves the aforementioned dilemma is that, in practice, the transformations are piecewise smooth and thus preserve the original regularity piecewise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Having transformed the original solution onto the parametric domain, we develop an interpolant onto the conforming finite element space that can exploit the piecewise regularity of the transformed solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Clément interpolant cannot recover higher convergence rates: its higher- order interpolation estimates require higher regularity of the solution over patches, but the physical solution transformed onto the parametric domain generally has no such regularity beyond H1 over patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Scott-Zhang interpolant, though, has a remedial feature that has risen to awareness in recent work by Veeser [34] and by Camacho and Demlow [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' It is known as broken Bramble-Hilbert lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 3 An outline is as follows: if T is a cell of the triangulation, then the Scott-Zhang interpolation �u of a function u ∈ H1 satisfies ∥u − �u∥L2(T ) ≤ Chs T � T ∩T ′̸=∅ ∥u∥Hs(T ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Informally, any function in H1 can be approximated by continuous finite elements just as well as by discontinuous finite elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This is also known as the equiv- alence of the global and local best approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We point that the Clément interpolant itself does not satisfy such a broken Bramble-Hilbert lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Our ex- position develops a very similar but apparently new Clément-type interpolant that does enable a broken Bramble-Hilbert lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Whereas interpolation operators for scalar finite elements are standard in the literature, recent research has contributed new interpolation operators for the vec- tor field spaces H(curl) and H(div).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' To the author’s best knowledge, Ern and Guermond [19] were the first to explicitly address interpolation error estimates for vector-valued finite element spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Their projection is bounded in Lebesgue spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Their discussion of boundary conditions relies on Sobolev trace theory, though.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This does not cover the boundary conditions in H(curl) and H(div) that are defined via an integration by parts formula, and it also forecloses error estimates in the geometrically non-conforming situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Boundary conditions in vector analysis show qualities not present in the scalar- valued setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Tangential and normal boundary conditions in vector analysis may not only be defined via Sobolev trace theory but alternatively via a generalized integration by parts formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Generalizing interpolants and their error estimates to vector-valued finite element spaces needs to accommodate that new quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Succes- sive research [22] has contributed Clément and Scott-Zhang interpolants for finite element vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Clément interpolants are bounded in Lebesgue spaces but do not satisfy a broken Bramble-Hilbert lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Scott-Zhang interpolants are bounded over H(curl) and H(div), thus requiring more regularity, and satisfy the broken Bramble-Hilbert lemma known from their scalar-valued inspiration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' When the function to be approximated is sufficiently regular, then Veeser’s re- sults establish the equivalence of errors by local and global, or conforming and non-conforming, finite element approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Corresponding inequalities hold for curl- and divergence-conforming approximations [17, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We derive an analo- gous comparison in finite element exterior calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Specifically: if an Lp-regular differential form has an Lp-regular exterior derivative, p ∈ [1, ∞], then the ap- proximations via conforming- and non-conforming finite element spaces produce comparable errors, up to higher order terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We emphasize that our projection is very different from the commuting inter- polants discussed for finite element de Rham complexes [14, 2, 9, 10, 21, 18, 26, 25] but serves a complementary purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Whereas commuting projections establish the quasi-optimality of finite element solutions, our projection establishes specific convergence rates of best approximations in terms of the mesh size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A central tool for our analysis are representations of the degrees of freedom by integrals on volumes and facets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We borrow this in part from the work of Scott and Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' However, while they represent degrees of freedom shared between elements with boundary integrals on facets, we also use volume integrals based on 4 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT an integration by parts formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thus, our estimates apply not only to differential forms with well-defined Sobolev traces, but also to rough forms such as H(curl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The latter result is crucial for our application to non-conforming geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Essentially, our operator satisfies the estimates of the Scott-Zhang-type opera- tor, but is continuous on Lebesgue spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In particular, our projection satisfies the broken Bramble-Hilbert lemma over H(curl) or H(div) vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Unlike the Scott-Zhang interpolant, however, the new projection is bounded also over Lebesgue spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In fact, the interpolant also gives approximation results for forms in Lebesgue spaces, but then any extra Sobolev-Slobodeckij regularity must be global, as it must be for the classical Clément interpolant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There is a certain leeway in our construction;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' this has virtually no effect on the mathematical properties but allows us to relate the construction with several other interpolants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The interpolant of Ern and Guermond is a special case of our operator and we reproduce its most important properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In particular, we show that Ern-Guermond interpolant also satisfies a broken Bramble-Hilbert lemma both for fields with sufficient global Sobolev-Slobodeckij regularity and for spaces such as H(curl) or H(div).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Another special case of our interpolant is what one may call a modified Clément interpolant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' While the original Clément interpolant evaluates the degrees of free- dom on patchwise projections, we propose to evaluate the degrees of freedom on elementwise projections instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' With this simple variation we not only retain all favorable properties of the Clément interpolant, but in addition we get a projec- tion and a broken Bramble-Hilbert lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This seems to be a new result even for Lagrange elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We remark on the general picture of interpolation operators for low regular- ity fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' While our new interpolant and the Scott-Zhang interpolant have similar properties, there are some important differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Our averaging-based interpolant is bounded over Lebesgue spaces whereas the Scott-Zhang interpolant requires enough regularity for traces to be well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Homogeneous boundary conditions are “hardcoded” into the averaging-based interpolant: the interpolation always satisfies the boundary conditions and the approximation result is thus only valid for field satisfying the hardcoded boundary conditions in the first place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Scott-Zhang interpolant is more subtle in imposing boundary conditions: it approximates the boundary values at any fixed boundary part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If the boundary values of the original field are zero, then the same is true for the Scott-Zhang interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Its error estimates hold for all sufficiently regular fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The introduction up to this point has addressed our results in the language of vector analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' However, the remainder of the manuscript will adopt the calculus of differential forms and the framework of finite element exterior calculus [2, 4, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Only at the end will we return to the language of vector analysis to display our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The remainder of this writing is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In Section 2 we review background on triangulations, function spaces, exterior calculus, and finite element spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In Section 3, biorthogonal systems of finite element bases and their degrees of freedom are discussed, and we fix some notational conventions for the rest of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In Section 4, we construct the averaging-based projection, our AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 5 main result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In Section 5, we develop stability and approximation estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In Section 6, we use the projection to compare local and global approximation errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lastly, we review applications of our results in the language of vector analysis in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Background In this section we review background on triangulations, function spaces, differen- tial forms, and finite element de Rham complexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We also establish the notation, which generally follows the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Much of the content of this section is a sum- mary of the background given in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let Ω ⊆ Rn be a connected, bounded open set throughout the remainder of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Triangulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A simplex of dimension d is the convex closure of d + 1 affinely independent points, which we call the vertices of that simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A simplex F is called a subsimplex of a simplex T if each vertex of F is a vertex of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write ∆(T ) for the set of all subsimplices of a simplex T and ∆d(T ) for the set of its d-dimensional subsimplices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' As is common in polyhedral theory, we reserve the term facet for the codimension one subsimplices of a given simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A simplicial complex T is a set of simplices such that ∆(T ) ⊆ T for all T ∈ T and for any two simplices T, T ′ ∈ T with non-empty intersection T ∩T ′ is a common subsimplex of T and T ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A simplicial subcomplex of T is any subset U ⊆ T that is a simplicial complex by itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write ∆d(T ) for the set of d-dimensional simplices of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Given any simplex T ∈ T , we write ∇d(T , T ) for the set of d-simplices in T that contain T : ∇d(T , T ) := {S ∈ ∆d(T ) | S ⊆ T } .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose that T is a simplex of positive dimension d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write hT for its diameter, vold(T ) for its d-dimensional Hausdorff volume, and µ(T ) = hd T / vold(T ) for its so-called shape measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The shape measure µ(T ) of any simplicial complex T is the supremum of the shape measures of all its non-vertex simplices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exists CQ(T ) > 0, bounded in terms of the shape measure of T , that bounds the ratio of the diameters of adjacent simplices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let CN(T ) > 0 be the maximum number of simplices adjacent to to any given simplex in T , which is a quantity bounded in the shape measure of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The “diameter” of a simplex V ∈ T is formally defined as the minimal length of all edges adjacent to that vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lastly, we assume that all simplices are equipped with an arbitrary but fixed orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Whenever T is a simplex and F ∈ ∆(T ) is one of its facets, we let o(F, T ) = 1 if the orientation of F is induced from T and we let o(F, T ) = −1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Function spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We recapitulate several function spaces, in particular the Banach spaces that are known as Sobolev and Sobolev-Slobodeckij spaces [33, 5, 15, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Even though we formally define those spaces over domains, we assume analogous definitions for the corresponding spaces simplices without further men- tioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The space of smooth functions over Ω with bounded derivatives of all orders is denoted C∞(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write Lp(Ω) for the Lebesgue space over Ω to the integrability exponent p ∈ [1, ∞], equipped with the norm ∥ · ∥Lp(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any θ ∈ (0, 1) we define 6 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT the seminorm |ω|W θ,p(Ω) := ���|ω(x) − ω(y)| · |x − y|θ+ n p ��� Lp(Ω×Ω) , and let W θ,p(Ω) be the subspace of Lp(Ω) for which that seminorm is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let A(n) be the set of all multiindices over {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any k ∈ N0, let W k,p(Ω) be the Sobolev space of measurable functions over Ω for which all distributional α-th derivatives with α ∈ A(n) and |α| ≤ k are functions in Lp(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We use the seminorm and norm |ω|W k,p(Ω) := � α∈A(n) |α|=k ∥∂αω∥Lp(Ω), ∥ω∥W k,p(Ω) := k � l=0 |ω|W l,p(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' When k ∈ N0 and θ ∈ (0, 1), then the Sobolev-Slobodeckij space W k+θ,p(Ω) is defined as the subspace of W k,p(Ω) whose member’s derivatives of k-th order are also in W θ,p(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We then consider the norms and seminorms |ω|W k+θ,p(Ω) := � α∈A(n) |α|=k |∂αω|W θ,p(Ω), ∥ω∥W k+θ,p(Ω) := ∥ω∥W k,p(Ω) + |ω|W k+θ,p(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thus we have defined the Banach space W m,p(Ω) for all m ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Its Banach space structure is induced by the norm ∥ · ∥W m,p(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For our discussion of boundary conditions, the following will be necessary: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose that Ω is a bounded Lipschitz domain, and that p ∈ [1, ∞] and m ∈ [0, ∞) with m > 1/p or s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Then the trace of continuous bounded functions extends to a bounded operator Tr : W m,p(Ω) → Lp(∂Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The case 1 ≤ p < ∞ is covered by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='10 in [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For 1 < p < ∞, see also Theorem B in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The case p = ∞ follows if we recall that W m,∞Λk(T ) is the Hölder space with smoothness index m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Whenever Γ ⊆ ∂Ω is any relatively open set and p ∈ [1, ∞] and m ∈ [0, ∞) with m > 1/p or s ≥ 1, then we define W m,p(Ω, Γ) := � ω ∈ W m,p(Ω) | Tr ω|Γ = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Spaces of differential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We review spaces of differential forms over domains and simplices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Since 0-forms are functions, this generalizes the definitions in the preceding subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let C∞Λk(Ω) be the space of differential k-forms with coefficients in C∞(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The spaces LpΛk(Ω) and W m,pΛk(Ω) are defined ac- cordingly for any p ∈ [1, ∞] and m ∈ [0, ∞) and we let ∥ · ∥LpΛk(Ω), ∥ · ∥W m,pΛk(Ω), and | · |W m,pΛk(Ω) denote the associated norms and seminorms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In accordance to Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1, when p ∈ [1, ∞] and m ∈ [0, ∞) with m > 1/p or s ≥ 1, then differential forms in W m,pΛk(Ω) have components with well-defined traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' When Γ ⊆ ∂Ω is a relatively open set, then we let W m,pΛk(Ω, Γ) be the subspace of those members of W m,pΛk(Ω) for which the tangential components have vanishing trace along Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 7 We recall that the exterior product ω ∧ η of a k-form ω and an l-form η satisfies ω ∧ η = (−1)klη ∧ ω and is bilinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We also recall the exterior derivative d : C∞Λk(Ω) → C∞Λk+1(Ω), which maps k-forms to (k + 1)-forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We consider classes of differential k-forms with coefficients in Lebesgue spaces whose exterior derivative, a priori defined only in the sense of distributions, is again in a Lebesgue space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For p, q ∈ [0, ∞] we define Wp,qΛk(Ω) := � ω ∈ LpΛk(Ω) �� dω ∈ LqΛk+1(Ω) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' As we discuss next, the spaces Wp,qΛk(Ω) allow a notion of homogeneous boundary values in terms of an integration by parts formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This does not rely on Sobolev trace theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose Γ ⊆ ∂Ω is a relatively open subset of ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We define Wp,qΛk(Ω, Γ) as the subspace of Wp,qΛk(Ω) whose members satisfy that for all x ∈ Γ there exists a radius ρ > 0 such that � Ω∩Bρ(x) ω ∧ dη = (−1)k+1 � Ω∩Bρ(x) dω ∧ η for all η ∈ C∞Λn−k−1 (Rn) with compact support contained in the open ball cen- tered at x of radius ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We say that each ω ∈ Wp,qΛk(Ω, Γ) satisfies partial boundary conditions along Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The space Wp,qΛk(Ω, Γ) is a closed subspace of Wp,qΛk(Ω), since the former is the intersection of closed subspaces of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Note that, dWp,qΛk(Ω, Γ) ⊆ Wq,rΛk+1(Ω, Γ) for all p, q, r ∈ [1, ∞], that is, partial boundary conditions are preserved under the exterior derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The definitions in this subsection have been over a domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We can set up exterior calculus and the classes of differential forms introduced above also over any d-dimensional simplex with minor technical modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Only the space C∞Λk(S) and some of its subspaces will be needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Importantly, the integral � S ω of any integrable k-form over a k-dimensional simplex S is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write trS,F for the trace from any simplex S onto any of its subsimplices F ∈ ∆(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The following trace lemma will be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let T be an n-dimensional simplex and F ∈ ∆n−1(T ) one of its facets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and m ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If m > 1 p or m ≥ 1 then trT,F : W m,pΛk(T ) → LpΛk(F) is a bounded operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We then also have1 ∥ trT,F ω∥LpΛk(F ) ≤ Ctr � h − 1 p F ∥ω∥LpΛk(T ) + h m− 1 p F |ω|W m,pΛk(T ) � , ω ∈ W m,pΛk(T ), where Ctr > 0 depends only on p, m, and µ(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose first that T is a reference simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Then the statement follows via Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For general simplices, we can use a scaling argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Finite element spaces over triangulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In this article we adopt the framework of finite element exterior calculus [24, 2], of which we review basic def- inition and notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We consider finite element spaces of polynomial differential forms, their construction via traces and extension operators, and spaces of degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any simplex S, we let PrΛk(S) be the space of polynomial differential k- forms of degree (at most) r ≥ 0 over S, and we P− r Λk(S) be the space of trimmed 1Here and in what follows, we stipulate 1/∞ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 8 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT polynomial differential k-forms of degree (at most) r ≥ 1 over S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' we refer to the literature [2] for details of their definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We consider spaces of polynomial differential forms satisfying boundary condi- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Over any simplex S, these are defined by ˚ PrΛk(S) := � ω ∈ PrΛk(S) | ∀F ∈ ∆(S), F ̸= S : trS,F ω = 0 � , ˚ P− r Λk(S) := � ω ∈ P− r Λk(S) �� ∀F ∈ ∆(S), F ̸= S : trS,F ω = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T is a triangulation of the domain Ω, then we define finite element spaces over triangulations via PrΛk(T ) := � ω ∈ W∞,∞Λk(Ω) �� ∀T ∈ ∆n(T ) : ω|T ∈ PrΛk(T ) � , P− r Λk(T ) := � ω ∈ W∞,∞Λk(Ω) �� ∀T ∈ ∆n(T ) : ω|T ∈ P− r Λk(T ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any simplicial complex U ⊆ T we define formally PrΛk(T , U) := � u ∈ PrΛk(T ) | ∀F ∈ U : trF u = 0 � , P− r Λk(T , U) := � u ∈ P− r Λk(T ) �� ∀F ∈ U : trF u = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In the case where U = ∅, we have PΛk(T , U) = PΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Geometric decompositions and degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For each F ∈ T we have the (global) trace operators TrF : PrΛk(T ) → PrΛk(F), TrF : P− r Λk(T ) → P− r Λk(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We can assume without loss of generality that for each F ∈ T we have the extension operators Extr,k F,T : PrΛk(F) → PrΛk(T ), Extr,k,− F,T : P− r Λk(F) → P− r Λk(T ) satisfying the following two properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the one hand, they are right-inverses of the traces, TrF Extr,k F,T = Id, TrF Extr,k,− F,T = Id .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the other hand, they are localized in the sense that for all S ∈ T with F ⊈ S we have TrS Extr,k F,T ˚ PrΛk(F) = 0, TrS Extr,k,− F,T ˚ P− r Λk(F) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Extension operators like these are discussed in the literature [2, 3, 8, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The finite element spaces decompose into direct sums PrΛk(T , U) = � F ∈T F /∈U Extr,k F,T ˚ PrΛk(F), P− r Λk(T , U) = � F ∈T F /∈U Extr,k,− F,T ˚ P− r Λk(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The geometric decomposition of finite element spaces, albeit abstract, corresponds the common notion that the shape functions of finite element spaces can be asso- ciated with specific simplices of the triangulation and are localized around those simplices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We consider the dual space of the finite element space, commonly known as degrees of freedom, since we need functionals in that space to define interpolation AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 9 operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' When F ∈ T and m = dim(F), then we define CrΛk(F) := � ω �→ � F η ∧ TrF ω ���� η ∈ P− r+k−mΛm−k(F) � , C− r Λk(F) := � ω �→ � F η ∧ TrF ω ���� η ∈ Pr+k−m−1Λm−k(F) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' One can show [2, 27] that these spaces of functionals span the dual spaces of the respective finite element spaces: PrΛk(T , U)∗ = � F ∈T F /∈U CrΛk(F), P− r Λk(T , U)∗ = � F ∈T F /∈U C− r Λk(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Analogous to the geometric decomposition of the finite element spaces, we have geometric decompositions of the degrees of freedom: we work with functionals over finite element spaces that can be associated with simplices of the triangulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Rough degrees of freedom For the discussion of our projection operator we need to establish degrees of freedom with particular properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In doing so, we also establish several notational conventions to be used in subsequent sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We begin by fixing the geometric setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Convention 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For the remainder of this article we let T be an n-dimensional simplicial complex, and we let U ⊆ T be a simplicial subcomplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We assume that T triangulates a domain Ω ⊆ Rn and that U triangulates a relatively open part of the domain boundary Γ ⊆ ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We will construct the projection operator for both families of finite element dif- ferential forms, and the constructions will be completely analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' As to avoid duplication when there are only minor technical differences, we establish the fol- lowing convention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Convention 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let p ∈ [1, ∞], k ∈ N0, and r ∈ N, and we fix a family of finite element spaces of differential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Depending on the choice of finite element family, we make one of the following two choices of notation: \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 PΛk(T ) := PrΛk(T ), PΛk(T , U) := PrΛk(T , U), and for all S ∈ T : PΛk(S) = PrΛk(S), ˚ PΛk(S) = ˚ PrΛk(S), CΛk(S) = CrΛk(S), (A) or \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 PΛk(T ) := P− r Λk(T ), PΛk(T , U) := P− r Λk(T , U), and for all S ∈ T : PΛk(S) = P− r Λk(S), ˚ PΛk(S) = ˚ P− r Λk(S), CΛk(S) = C− r Λk(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (B) For every S ∈ T we fix an index set I(S) := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' , dim ˚ PΛk(S)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We assume2 that the first option holds if k = 0 and that the second option holds if k = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2Recall that PrΛ0 = P− r Λ0 and Pr−1Λn = P− r Λn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 10 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT We can assume that the specific shape functions and the degrees of freedom con- stitute a biorthogonal system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In fact, this is a common assumption in finite element methods and can easily be implemented in algorithms [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The following theorem (see [22, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4]) formalizes the idea and also establishes some important inverse estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exist bases � φ∗ S,i � i∈I(S) of CΛk(S) for each S, and a basis {φS,i}S∈T ,i∈I(S) of PΛk(T ) such that the following conditions are satisfied: (1) φ∗ S,i(φS′,j) = 1 if S = S′ and i = j and is zero otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (2) TrS′ φS,i = 0 for any S, S′ ∈ T where S ⊈ S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (3) The set {φS,i}S∈T \\U,i∈I(S) is a basis of PΛk(T , U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exists CA,s > 0, depending on p, n, the polynomial degree r, s, and µ(T ), such that for all T ∈ T and S ∈ ∆(T ): |φS,i|W s,pΛk(T ) ≤ CA,sh n p −k−s S , (1a) |φ∗ S,i(ω)| ≤ CA,sh k− n p +s S ∥ω∥W s,pΛk(T ), ω ∈ PrΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (1b) The degrees of freedom are initially defined via integrals over lower-dimensional subsimplices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thus they are initially defined only for differential forms whose co- efficients are sufficiently smooth, since only those have the necessary traces well- defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' But we can extend the degrees of freedom to much rougher spaces of differential forms via an integration by parts formulas [22, Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This observation is critical for our endeavor in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For every S, F ∈ T with dim(F) = n − 1 and S ⊆ F and every i ∈ I(S) there exists ΞT,F,S,i ∈ C∞Λn−k−1(T ) whose support has positive distance from all facets of T except F and which satisfies φ∗ S,i(ω) = o(F, T ) � T dΞT,F,S,i ∧ ω + (−1)n−k−1ΞT,F,S,i ∧ dω, ω ∈ PrΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Moreover, we have φ∗ S,i(ω) = o(F, T ) � F trT,F ΞT,F,S,i ∧ trT,F ω, ω ∈ PrΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exists CΞ > 0, depending only on r, n, q ∈ [1, ∞], and µ(T ), such that ∥ΞT,F,S,i∥LqΛn−k−1(T ) ≤ CΞh n q −n+k+1 S , (2a) ∥dΞT,F,S,i∥LqΛn−k(T ) ≤ CΞh n q −n+k S , (2b) ∥ trT,F ΞT,F,S,i∥LqΛn−k−1(F ) ≤ CΞh n−1 q −n+k+1 S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (2c) We can represent degrees of freedom via integrals over facets or volumes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' It will be helpful to fix a particular such pair of facet and volume for each degree of freedom as “representatives”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Most importantly, our discussion of boundary conditions will need that degrees of freedom associated to simplices in U have a representative facet within U again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Convention 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any simplex S ∈ T of dimension at most n − 1 we fix FS ∈ ∆n−1(T ) and TS ∈ ∆n(T ) with S ⊆ FS ⊆ TS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If S ∈ U, then we require FS ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We also introduce the abbreviations ΞS,i := ΞTS,FS,S,i ∈ C∞Λn−k−1(TS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (3) AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Averaging-based projection This section develops the main result: an averaging-based finite element projec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We follow ideas discussed by Ern and Guermond [19], building upon earlier work by Oswald [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Our projection is composed of two components: first, a cell- wise interpolator onto a piecewise polynomial non-conforming (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=', broken) finite element spaces without any continuity conditions, and second, weighted averaging of the degrees of freedom to construct a conforming interpolant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Since we need projection operators for each single cell for the first component, we first establish the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let T ∈ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exist bounded projections PT : LpΛk(Ω) → PΛk(T ) ⊂ LpΛk(T ), QT : LpΛk+1(Ω) → PΛk+1(T ) ⊂ LpΛk+1(T ), that satisfy the following inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T ) = PrΛk(T ) and ω ∈ W m,pΛk(T ) with m ∈ [0, r + 1] and s ∈ [0, m], then |ω − PT ω|W sΛk(T ) ≤ CΠhm−s T |ω|W m,pΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (4a) If PΛk(T ) = P− r Λk(T ) and ω ∈ W m,pΛk(T ) with m ∈ [0, r] and s ∈ [0, m], then |ω − PT ω|W s,pΛk(T ) ≤ CΠhm−s T |ω|W m,pΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (4b) If ω ∈ Wp,pΛk(Ω) with dω ∈ W l,pΛk(T ) for some l ∈ [0, r] and s ∈ [0, l], then dPT ω = QT dω, (4c) and we have ∥dω − dPT ω∥LpΛk+1(T ) ≤ CΠhl T |dω|W l,pΛk+1(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (4d) Here, CΠ > 0 depends only on n, p, the polynomial degree r, and µ(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We consider the case where T is a reference simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The general case then follows from reference transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Consider the case PΛk(T ) = PrΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exist bounded projections [16] P k,r T : LpΛk(T ) → PrΛk(T ), for all 0 ≤ k ≤ n and r ≥ 0 with the following property: whenever s, m ∈ [0, ∞) with s ≤ m ≤ r + 1 and ω ∈ W m,pΛk(T ), then ���ω − P k,r T ω ��� W sΛk(T ) ≤ Chm−s T |ω|W m,pΛk(T ), where C > 0 depends only on m, n, and r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Moreover, dP k,r T ω = P k+1,r−1 T dω whenever ω ∈ Wp,pΛk(T ), and r ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The operators PT = P k,r T and QT = P k+1,r−1 T satisfies (4a), (4c) and (4d) over the reference simplex T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Next, consider the case PΛk(T ) = P− r Λk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let 0 ≤ k ≤ n and r ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exists a linear projection [2] Ik,r+1 T : Pr+1Λk(T ) → P− r Λk(T ) such that dIk,r+1 T ω = dω for all ω ∈ PrΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We set PT = Ik,r+1 T P k,r+1 T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thus (4c), and (4b) and (4d) in the case PΛk(T ) = P− r Λk(T ) are a consequence of the Bramble-Hilbert lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ 12 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT Our projection operators are actually a class of projection operators that involve an arbitrary parameter choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This does not affect the relevant properties of the operator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' instead, it should be thought of as a variability that produces a few interesting examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We have a look at such interpolation operators, before we address them in a general framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A projection inspired by Ern and Guermond [19] is composed of two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Firstly, we take the piecewise polynomial projections PT of the original field ω over every single volume T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' That produces a discontinuous finite element approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Secondly, we compute a continuous finite element approximation via averaging the degrees of freedom of that interpolant (with some modification at the boundary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The composition of both steps is the desired interpolation operator: PEG : LpΛk(Ω) → PΛk(T ), ω �→ � S∈T i∈I(S) S /∈U 1 |∇n(T , S)| � T ∈∇n(T ,S) φ∗ S,i � PT ω|T � φS,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' An alternative construction is inspired by the Clément interpolant and the Scott- Zhang interpolant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For every degree of freedom associated to some simplex S ∈ T , we evaluate it at the piecewise projections PTS over the fixed volume TS that contains S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thus we get the the projection PC : LpΛk(Ω) → PΛk(T ), ω �→ � S∈T i∈I(S) S /∈U φ∗ S,i � PTSω|TS � φS,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The operator PEG is basically the Ern-Guermond projection whereas the projection PC seems to be new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We point out how the latter resembles the Clément interpolant but differs in some crucial ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Clément interpolant [12] is standard for the mathematical theory of finite el- ement methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' It evaluates each degree of freedom on a patchwise projection, where the local patch contains the subsimplex associated to that degree of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The essential difference is that PC evaluates each degree of freedom not over patchwise projections but over elementwise projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' As we shall see, this ostensibly minor change preserves many important proper- ties of the Clément interpolant, but the resulting operator is a projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A comparison with the Scott-Zhang operator is insightful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We have derived representations of the degrees of freedom (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4) by which these functionals are not only defined over polynomials but much rougher spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In the constructions above, we apply them to cellwise polynomial projections of the original field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If we instead apply them to the original field instead, leaving out the cellwise polynomial projection, then the definition of PC changes into the definition of the Scott-Zhang operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The two operators introduced above are examples of a general construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We henceforth assume that for every S ∈ T and every T ∈ ∇n(T , S) we have a fixed non-negative weight c(S, T ) such that 1 = � T ∈∇n(T ,S) c(S, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 13 We introduce the operator P : LpΛk(Ω) → PΛk(T ), ω �→ � S∈T i∈I(S) S /∈U � T ∈∇n(T ,S) c(S, T )φ∗ S,i � PT ω|T � φS,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In other words, we project the original differential form onto a space of piecewise polynomial differential forms, without imposing any continuity assumptions, and then construct a conforming interpolation by taking weighted averages of degrees of freedom over the local projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The exemplaric operators PEG and PC are recovered with par- ticular natural choices of coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the one hand, the construction yields the Ern-Guermond interpolant PEG if we choose the weights uniformly for each simplex S, that is, c(S, T ) = 1 |∇n(T , S)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' (5) On the other hand, we obtain the Clément-type interpolant if all the coefficients are zero except c(S, TS) = 1 for every S ∈ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Before we study the analytical properties of the interpolant in more detail, we first verify its most important algebraic property: that it is, indeed, a projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If ω ∈ PΛk(T , U), then Pω = ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Since ω is piecewise polynomial, Pω = � S∈T i∈I(S) S /∈U � T ∈∇n(T ,S) c(S, T )φ∗ S,i � ω|T � φS,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Next, for S′ ∈ ∆(T ) \\ U, and j ∈ I(S′), we notice that φS′,i (Pω) = � S∈T i∈I(S) S /∈U � T ∈∇n(T ,S) c(S, T )φ∗ S,i � ω|T � φS′,j (φS,i) = � T ′∈∇n(T ,S′) c(S′, T )φ∗ S′,j � ω|T ′� = � T ′∈∇n(T ,S′) c(S′, T )φ∗ S′,j � ω|T � = φ∗ S′,j � ω|T � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, we have used the biorthogonality property in Proposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3), the conformity of ω ∈ PΛk(T , U), and the summation (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This shows that P is a projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We remark that the projection property is also satisfied by Scott- Zhang-type interpolants [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The same is true for the generalized Scott-Zhang interpolant for differential forms [22] but it was not proven in that publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Approximation error estimates We address the analytical properties of the projection operator with a sequence of auxiliary results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Together, these will show the local stability of the projection in 14 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT Lebesgue and Sobolev-Slobodeckij norms, and also establish numerous approxima- tion estimates for various smoothness classes of differential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We commence with the stability result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let m, s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T , U) = PrΛk(T , U), suppose that m ≤ r + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T , U) = P− r Λk(T , U), suppose that m ≤ r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Then |Pω|W s,pΛk(T ) ≤ Chm−s T � T ′∈∆n(T ) T ∩T ′̸=∅ |ω|W m,pΛk(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, m, s, r, n, and µ(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' By definitions, |Pω|W s,pΛk(T ) ≤ � S∈∆(T ) i∈I(S) S /∈U T ′∈∇n(T ,S) c(S, T ) ��φ∗ S,i � PT ′ω|T ′� φS,i �� W s,pΛk(T ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any T, T ′ ∈ T sharing a common simplex S and i ∈ I(S) we have ��φ∗ S,i � PT ′ω|T ′� φS,i �� W s,pΛk(T ) ≤ ��φ∗ S,i � PT ′ω|T ′��� · |φS,i|W s,pΛk(T ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3 implies |φS,i|W s,pΛk(T ) ≤ CA,sh n p −s−k T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Together with PT ′ω|T ′ ∈ PΛk(T ′), Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3 and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1 show that ��φ∗ S,i � PT ′ω|T ′��� ≤ CA,mh m+k− n p T ′ ��PT ′ω|T ′ �� W m,pΛk(T ′) ≤ CBHCA,mh m+k− n p T ′ ��ω|T ′ �� W m,pΛk(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Noting that, first, adjacent simplices have comparable diameters, and that, second, only finitely many simplices touch any given simplex, we conclude the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Further discussion requires an additional property of simplicial complexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Sup- pose that we have two n-dimensional simplices T0, T ∈ T with non-empty intersec- tion S = T0 ∩T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A face-connection from T0 to T around S is a sequence T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' , TN of pairwise distinct n-dimensional simplices of T with TN = T such that for all 1 ≤ i ≤ N we have that Fi = Ti ∩ Ti−1 satisfies Fi ∈ ∆n−1(Ti) ∩ ∆n−1(Ti−1) and S ⊆ Fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We then call T0 and T face-connected, and the triangulation T is called face- connected if any two simplices with non-empty intersection are face-connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The length of any face-connection is bounded in terms of triangulation’s shape measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For example, any simplicial complex that triangulates a domain is face-connected [32, 34, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We explore different ways of estimating the interpolation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For that reason we develop a standardized estimate at first in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 15 Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exists C > 0 such that for ω ∈ LpΛk(Ω) and T ∈ T we have |ω − Pω|W s,pΛk(T ) ≤ |ω − PT ω|W s,pΛk(T ) + Ch n p −k−s T � S∈∆(T ), i∈I(S) T1,T2∈∇n(T ,S) T1∩T2∈∆n−1(T ) |φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) | + Ch n p −k−s T � S∈∆(T ) i∈I(S) S∈U |φ∗ S,i (PTSω) |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, s, r, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We begin with |ω − Pω|W s,pΛk(T ) ≤ |ω − PT ω|W s,pΛk(T ) + |PT ω − Pω|W s,pΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We observe that PT ω = � S∈∆(T ) i∈I(S) S /∈U φ∗ S,i (PT ω) φS,i + � S∈∆(T ) i∈I(S) S∈U φ∗ S,i (PT ω) φS,i = � S∈∆(T ) i∈I(S) S /∈U � T ′∈∇n(T ,S) c(S, T ′)φ∗ S,i (PT ω) φS,i + � S∈∆(T ) i∈I(S) S∈U φ∗ S,i (PT ω) φS,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Whence PT ω − Pω|T equals � S∈∆(T ) i∈I(S) S /∈U � T ′∈∇n(T ,S) c(S, T ′) � φ∗ S,i (PT ω) − φ∗ S,i (PT ′ω) � φS,i + � S∈∆(T ) i∈I(S) S∈U φ∗ S,i (PT ω) φS,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We infer that |PT ω − Pω|W s,pΛk(T ) is bounded by � S∈∆(T ) i∈I(S) S /∈U � T ′∈∇n(T ,S) ��φ∗ S,i (PT ω) − φ∗ S,i (PT ′ω) �� · |φS,i|W s,pΛk(T ) + � S∈∆(T ) i∈I(S) S∈U |φ∗ S,i (PT ω) | · |φS,i|W s,pΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We apply the inverse inequality (1a): |φS,i|W s,pΛk(T ) ≤ CA,sh n p −k−s T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We consider two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If S ∈ U, then there exists a face-connection T0, T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' , TN between T0 = T and TN = TS around S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We then estimate |φ∗ S,i (PT ω) | ≤ |φ∗ S,i (PTSω) | + N � j=1 |φ∗ S,i � PTj−1ω � − φ∗ S,i � PTjω � |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 16 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT If S /∈ U, then there exists a face-connection T0, T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' , TN between T0 = T and TN = T ′ around S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' |φ∗ S,i (PT0ω) − φ∗ S,i (PTN ω) | ≤ N � i=j |φ∗ S,i � PTj−1ω � − φ∗ S,i � PTjω � |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Noting that only finitely simplices are adjacent to T , the proof is completed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ We use that preliminary error estimate to develop more specific error estimates in different regularity settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' First we bound the terms associated to degrees of freedom along the boundary part Γ in our standard error representation as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T ∈ T and S ∈ ∆(T ) with S ∈ U, then for every ω ∈ Wp,pΛk(Ω, Γ) we have |φ∗ S,i (PT ω) | ≤ CΞh − n p +k S � ∥PSω − ω∥LpΛk(TS) + hS∥dPSω − dω∥LpΛk+1(TS) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We use the representation of the degrees of freedom in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4: φ∗ S,i (PT ω) = o(FS, TS) � TS dΞS,i ∧ (PSω)|TS + (−1)n−k−1ΞS,i ∧ d(PSω)|TS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Since ω ∈ Wp,pΛk(Ω, Γ) and FS ⊆ Γ, 0 = � TS dΞS,i ∧ ω + (−1)n−k−1ΞS,i ∧ dω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Subtracting the second from the first equation gives o(FS, TS)φ∗ S,i (PT ω) = � TS dΞS,i ∧ � (PSω)|TS − ω � + (−1)n−k−1ΞS,i ∧ d � (PSω)|TS − ω � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let q ∈ [1, ∞] such that 1 = 1/p + 1/q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Hölder’s inequality gives ��φ∗ S,i (PT ω) �� ≤ ∥dΞS,i∥LqΛn−k(TS)∥PSω − ω∥LpΛk(TS) + ∥ΞS,i∥LqΛn−k−1(TS)∥dPSω − dω∥LpΛk+1(TS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Together with the inverse inequalities (2a) and (2b), the desired result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Next we bound the differences associated to degrees of freedom over neighboring volumes in our standard error representation as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose that T1, T2 ∈ T share a common facet, that S ∈ ∆(T1)∩∆(T2), and that i ∈ I(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For every ω ∈ Wp,pΛk(Ω) we have |φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) | ≤ CΞ � h − n p +k S ∥ω − PT1ω∥LpΛk(T1) + h − n p +k+1 S ∥dω − dPT1ω∥LpΛk+1(T1) + h − n p +k S ∥ω − PT2ω∥LpΛk(T2) + h − n p +k+1 S ∥dω − dPT2ω∥LpΛk+1(T2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 17 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let F ∈ T be the common facet of T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the one hand, we have φ∗ S,i(PT1ω) = o(F, T1) � T1 dΞT1,F,S,i ∧ PT1ω + (−1)n−k+1ΞT1,F,S,i ∧ dPT1ω φ∗ S,i(PT2ω) = o(F, T2) � T2 dΞT2,F,S,i ∧ PT2ω + (−1)n−k+1ΞT2,F,S,i ∧ dPT2ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the other hand, let ΞF,S,i ∈ L∞Λn−k−1(Ω) be the differential form with compact support in the interior of T1 ∪ T2 and ΞF,S,i|T1 = ΞT1,F,S,i, ΞF,S,i|T2 = ΞT2,F,S,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We have ΞF,S,i ∈ W∞,∞Λn−k−1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Consequently, 0 = � T1∪T2 dΞF,S,i ∧ ω + (−1)n−k+1ΞF,S,i ∧ dω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Since T1 and T2 induce opposing orientations on their common facet F, we have o(F, T1) = −o(F, T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We split the last integral and find o(F, T1) � T1 dΞT1,F,S,i ∧ ω + (−1)n−k+1ΞT1,F,S,i ∧ dω − o(F, T2) � T2 dΞT2,F,S,i ∧ ω + (−1)n−k+1ΞT2,F,S,i ∧ dω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The combination of these identities shows that φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) = o(F, T1) � T1 dΞT1,F,S,i ∧ (PT1ω − ω) + (−1)n−k+1ΞT1,F,S,i ∧ d (PT1ω − ω) − o(F, T2) � T2 dΞT2,F,S,i ∧ (PT2ω − ω) + (−1)n−k+1ΞT2,F,S,i ∧ d (PT2ω − ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Using Hölder’s inequality, we bound ��φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) �� by ∥dΞT1,F,S,i∥LqΛn−k(T1)∥ω − PT1ω∥LpΛk(T1) + ∥ΞT1,F,S,i∥LqΛn−k−1(T1)∥dω − dPT1ω∥LpΛk+1(T1) + ∥dΞT2,F,S,i∥LqΛn−k(T2)∥ω − PT2ω∥LpΛk(T2) + ∥ΞT2,F,S,i∥LqΛn−k−1(T2)∥dω − dPT2ω∥LpΛk+1(T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The proof is completed with the inverse inequalities (2a) and (2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ We can now combine our first main result, which is the broken Bramble-Hilbert lemma for differential forms of modest regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For ω ∈ Wp,pΛk(Ω) and T ∈ T we have |ω − Pω|W s,pΛk(T ) ≤ |ω − PT ω|W s,p(T ) + Ch−s T � T ′∈∆n(T ) T ′∩T ̸=∅ � ∥ω − PT ′ω∥LpΛk(T ′) + hT ∥dω − dPT ′ω∥LpΛk+1(T ′) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, s, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 18 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This is a combination of Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3, and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ The main result above is as specific as we go without invoking specific properties of the finite element spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The two families have slightly different convergence properties, and state a more specific result in the following corollaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose that PΛk(T , U) = PrΛk(T , U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and m, l, s ∈ [0, ∞) with m ≤ r + 1 and m − 1 ≤ l ≤ r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any T ∈ T and ω ∈ Wp,pΛk(Ω) ∩ W m,pΛk(Ω) we have |ω − Pω|W s,pΛk(T ) ≤ Chm−s T � T ′∈∆n(T ) T ′∩T ̸=∅ � |ω|W m,pΛk(T ′) + hl+1−m T |dω|W l,pΛk+1(T ′) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on s, m, l, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose that PΛk(T , U) = P− r Λk(T , U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and l, m, s ∈ [0, ∞) with m ≤ r and m − 1 ≤ l ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any T ∈ T and ω ∈ Wp,pΛk(Ω) ∩ W m,pΛk(Ω) with dω ∈ W m,pΛk+1(Ω) we have |ω − Pω|W s,pΛk(T ) ≤ Chm−s T � T ′∈∆n(T ) T ′∩T ̸=∅ � |ω|W m,pΛk(T ′) + hT |dω|W m,pΛk+1(T ′) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on s, m, l, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This follows from Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='5 and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A close reading of the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1 in [32], specifically the last inequality on p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='489, shows that the essential techniques for the broken Bramble- Hilbert lemma are already contained in the original contribution by Scott and Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The inequality apparently was not recognized as a result in its own right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Veeser [34] identified the result as an instrument in nonlinear approximation theory and [6] employed the inequality in the analysis of surface finite element methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The motivation of the present research is closest in spirit the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We turn our attention to error estimates via Sobolev trace theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This is differ- ent from the trace theory via an integration by parts formula, and neither is a subset of the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The following analysis bears some similarity with Ciarlet’s analysis of the Scott-Zhang operator [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We rely on the trace inequality of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and t > 1/p or t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T ∈ T and S ∈ ∆(T ) with S ∈ U, then for every ω ∈ W t,pΛk(Ω, Γ) we have |φ∗ S,i (PT ω) | ≤ Ch − n p +k S � ∥PSω − ω∥LpΛk(TS) + ht S∥PSω − ω∥W t,pΛk(TS) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, t, r, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' By assumption, trTS,FS ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We use the representation of the degrees of freedom in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4: φ∗ S,i (PT ω) = � FS ˚ξS,i ∧ trTS,FS(PSω)|TS = � FS ˚ξS,i ∧ trTS,FS(ω − PSω)|TS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 19 Let q ∈ [1, ∞] such that 1 = 1/p + 1/q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We utilize Hölder’s inequality and obtain: ��φ∗ S,i (PT ω) �� ≤ ∥˚ξS,i∥LqΛn−k(FS)∥ω − PSω∥LpΛk(FS) ≤ CΞh n−1 q −n+k+1 S ∥ω − PSω∥LpΛk(FS) ≤ CΞCtrh n−1 q −n+k+1 TS � h − 1 p T ∥ω∥LpΛk(T ) + h t− 1 p T |ω|W t,pΛk(T ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, we have used the inverse inequality (2c) and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and t > 1/p or t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T1, T2 ∈ T share a common facet, S ∈ ∆(T1) ∩ ∆(T2), and i ∈ I(S), then for every ω ∈ W t,pΛk(Ω) we have |φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) | ≤ h − n p +k S C � ∥ω − PT1ω∥LpΛk(T1) + ht S|ω − PT1ω|W t,pΛk(T1) + ∥ω − PT2ω∥LpΛk(T2) + ht S|ω − PT2ω|W t,pΛk(T2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, t, r, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let F ∈ T be the common facet of T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The differential form ω satisfies trT1,F ω = trT2,F ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For j ∈ {1, 2} we notice φ∗ S,i � PTjω � = o(F, Tj) � F trTj,F ΞTj,F,S,i ∧ trTj,F PTjω = o(F, Tj) � F trTj,F ΞTj,F,S,i ∧ trTj,F � PTjω − ω � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Next, via Hölders inequality and the inverse inequality (2c), ���� � F ˚ξTj,F,S,i ∧ trTj,F � PTjω − ω ����� ≤ CΞh n− n p − 1 q −k S ��PTjω − ω �� LpΛk(F ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The inequality in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2 completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞], t, s ∈ [0, ∞) with t > 1/p or t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For every T ∈ T and ω ∈ W t,pΛk(Ω) we have |ω − Pω|W s,pΛk(T ) ≤ |ω − PT ω|W s,p(T ) + C � T ′∈∆n(T ) T ′∩T ̸=∅ � h−s T ∥ω − PT ′ω∥LpΛk(T ′) + ht−s T |ω − PT ′ω|W t,pΛk(T ′) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, s, t, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This is a combination of Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3, and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and m, s ∈ [0, ∞) with s ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T , U) = PrΛk(T , U), suppose that m ≤ r + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T , U) = P− r Λk(T , U), suppose that m ≤ r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Suppose that m > 1/p or m ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For every T ∈ T and ω ∈ W m,pΛk(Ω) we have |ω − Pω|W s,pΛk(T ) ≤ Chm−s T � T ′∈∆n(T ) T ′∩T ̸=∅ |ω|W m,pΛk(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 20 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT Here, C > 0 depends only on p, s, m, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This follows from Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='11 and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ We can also show an estimate for lower regularity differential forms via our standard error representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We need a modicum of additional notation before we formulate that result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any facet F ∈ ∆n−1(T ) we let DF denote the polyhedral domain that is described by the n-dimensional simplices of the triangulation that contain F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The situation is simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If F a facet at the boundary, then there is only simplex T containing F and hence DF = T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If instead F is an interior facet, then there are exactly two simplices T1, T2 ∈ T that describe contain F, and hence DF = T1 ∪ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write PrΛk(DF ) for the space of polynomial k-forms of degree r over the domain DF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T1, T2 ∈ T share a common facet F, S ∈ ∆(F), and i ∈ I(S), then for every ω ∈ LpΛk(Ω) and every ˜ω ∈ PrΛk(DF ) we have ��φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) �� ≤ Ch − n p +k+s F � |ω − PT1ω|W s,pΛk(T1) + |ω − PT2ω|W s,pΛk(T2) + |ω − ˜ω|W s,pΛk(DF ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > depends only on p, s, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Note that φ∗ S,i(˜ω) is well-defined, thus φ∗ S,i (PT1ω) − φ∗ S,i (PT2ω) = φ∗ S,i (PT1ω) − φ∗ S,i (˜ω) + φ∗ S,i (˜ω) − φ∗ S,i (PT2ω) Let j ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We use the inverse inequality (1b) to see that ��φ∗ S,i (˜ω) − φ∗ S,i � PTjω ��� ≤ CA,sh − n p +k+s S |˜ω − ω|W s,pΛk(Tj) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Lastly, we can use the triangle inequality: |˜ω − ω|W s,pΛk(Tj) ≤ |˜ω − ω|W s,pΛk(Tj) + ��ω − PTjω �� W s,pΛk(Tj) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The inequality follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ This enables the following estimate away from the boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and s, m ∈ [0, ∞) such that s ≤ m ≤ r + 1, and T ∈ T with ∆(T ) ∩ U = ∅ For any ω ∈ W m,pΛk(Ω) we have |ω − Pω|W s,pΛk(T ) ≤ C � T ′∈∆n(T ) T ∩T ′̸=∅ |ω − PT ′ω|W s,p(T ′) + Chm−s T � F ∈∆n−1(T ) T ∩F ̸=∅ |ω|W m,p(DF ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, s, m, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This uses Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='13 together with a standard error estimate on polynomial interpolation over star-shaped domains [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Again, this is a general result that does not invoke the specific choice of finite element families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Concretely, we bound the error term as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 21 Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and m, s ∈ [0, ∞) with s ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T , U) = PrΛk(T , U), suppose that m ≤ r + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If PΛk(T , U) = P− r Λk(T , U), suppose that m ≤ r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any T ∈ T and ω ∈ W m,pΛk(Ω) we have |ω − Pω|W s,pΛk(T ) ≤ Chm−s T � T ′∈∆n(T ) T ′∩T ̸=∅ |ω|W m,pΛk(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on s, m, r, n and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A differential form in W 1,pΛk(Ω) has well-defined traces in the sense Sobolev theory and via the integration by parts formula, and both traces agree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Those two approaches allow us to define trace, and hence our interpolation operator, to differential forms in Wp,pΛk(Ω) and in rougher Sobolev-Slobodeckij spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' These two classes are distinct and none is a special case of the other outside of scalar fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The following informal observation is of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' An interpolant that is bounded in Lebesgue spaces can respect homogeneous boundary conditions only by incorporating them in the definition of the interpolant, and will satisfy a Bramble-Hilbert-type inequality near that boundary part only for sufficiently reg- ular differential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' By contrast, an interpolant that requires differentiability everywhere can be built to satisfy such an inequality for all functions of sufficient regularity regardless of whether they satisfy the boundary conditions or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Local and global approximation errors We understand piecewise polynomial approximations of differential forms very well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We can interpret those as approximation discontinuous or non-conforming finite element spaces: the approximation on each cell only uses local data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' How much approximation quality is lost if we instead insist on approximation via con- forming finite element spaces?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' That is, if we insist on continuity and boundary conditions?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' As it turns out, in many cases conforming and non-conforming finite element approximations have comparable errors, and so the coupling of the local approximations does not essentially worsen the approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Such result have re- ceived attention in the literature for H(curl) and H(div) [17, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We prove analogous results in finite element exterior calculus but with slightly different requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We begin with some definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For p ∈ [1, ∞] and ω ∈ Wp,pΛk(Ω, Γ) we define when p < ∞ or p = ∞, respectively, Ep(ω) := min ωh∈PΛk(T ,U) \uf8eb \uf8ed∥ω − ωh∥p LpΛk(Ω) + � T ∈∆n(T ) hp T ∥dω − dωh∥p LpΛk(Ω) \uf8f6 \uf8f8 1 p , E∞(ω) := min ωh∈PΛk(T ,U) ∥ω − ωh∥L∞Λk(Ω) + hT ∥dω − dωh∥L∞Λk(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' These terms measure the best approximation of the differential form ω by members of PΛk(T ) in terms of a weighted Wp,pΛk(Ω, Γ) norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' As the mesh size goes to zero, those norms converge pointwise to the Lebesgue norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the other hand, we define local error terms over each simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here we consider the minimum of the local polynomial space over each simplex, notably without any local boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For p ∈ [1, ∞], any full-dimensional simplex 22 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT T ∈ ∆n(T ) and any differential form ω ∈ Wp,pΛk(Ω, Γ) we define ep,T(ω) := min ωh∈PΛk(T ) � ∥ω − ωh∥p LpΛk(T ) + hp T ∥dω − dωh∥p LpΛk(T ) � 1 p , p < ∞, e∞,T (ω) := min ωh∈PΛk(T ) ∥ω − ωh∥L∞Λk(T ) + hT ∥dω − dωh∥L∞Λk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' These use the same finite element space on each simplex but no boundary and continuity conditions are imposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' They measure the approximation error in local terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We want to compare the global and the local approximation errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' On the one hand, the sum of the local approximation errors is a lower bound for the global approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' � T ∈∆n(T ) ep,T (ω)p ≤ Ep(ω)p, ω ∈ Wp,pΛk(Ω, Γ), p < ∞, max T ∈∆n(T ) e∞,T(ω) ≤ E∞(ω), ω ∈ W∞,∞Λk(Ω, Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We want to show the converse bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' A conditional converse is provided by the following theorem, which is inspired by [17, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3] and [7, Theorem 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' But very similar to those references, we show the converse inequality only for differential forms whose exterior derivative is in the finite element space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and ω ∈ Wp,pΛk(Ω, Γ) with dω ∈ PΛk(T , U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Then Ep(ω) ≤ C � T ∈T ep,T(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, r, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In what follows, C > 0 depends only on p, r, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We begin with Ep(ω)p ≤ ∥ω − Pω∥p LpΛk(Ω) + � T ∈∆n(T ) hp T ∥dω − dPω∥p LpΛk(Ω), p < ∞, E∞(ω) ≤ ∥ω − Pω∥∞ L∞Λk(Ω) + max T ∈∆n(T ) hT ∥dω − dPω∥L∞Λk(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Since dω ∈ PΛk(T , U), we have an inverse inequality over any T ∈ ∆n(T ), ∥dω − dPω∥LpΛk(T ) ≤ Ch−1 T ∥ω − Pω∥LpΛk(T ), and consequently, Ep(ω)p ≤ C∥ω − Pω∥p LpΛk(Ω), p < ∞, E∞(ω) ≤ C∥ω − Pω∥L∞Λk(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In accordance with our main result, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='5, and since every simplex of the triangulation has only finitely many neighbors, we find Ep(ω)p ≤ C � T ∈∆n(T ) � ∥ω − PT ω∥LpΛk(T ) + hT ∥dω − dPT ω∥LpΛk+1(T ) �p , p < ∞, E∞(ω) ≤ C max T ∈∆n(T ) ∥ω − PT ω∥L∞Λk(T ) + hT ∥dω − dPT ω∥L∞Λk+1(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 23 We use the quasi-optimality of the local projections in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For any T ∈ ∆n(T ) and ωh ∈ PΛk(T ) we estimate ∥ω − PT ω∥LpΛk(T ) + hT ∥dω − dPT ω∥LpΛk(T ) ≤ ∥ω − ωh + PT ωh − PT ω∥LpΛk(T ) + hT ∥dω − dωh + PT dωh − PT dω∥LpΛk(T ) ≤ C∥ω − ωh∥LpΛk(T ) + ChT ∥dω − dωh∥LpΛk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' But this just implies the desired inequality, and the proof is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ The following corollary addresses the special case when exterior derivatives are approximated and is inspired by Theorem 1 in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' However, we do not assume that the domain is simply-connected and also make no topological assumptions on Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let p ∈ [1, ∞] and ω ∈ Wp,pΛk(Ω, Γ) with dω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Then ∥ω − Pω∥p LpΛk(T ) ≤ C � T ∈∆n(T ) ∥ω − PT ω∥p LpΛk(T ), p < ∞, ∥ω − Pω∥L∞Λk(T ) ≤ C max T ∈∆n(T ) ∥ω − PT ω∥L∞Λk(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 depends only on p, r, n, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' This follows from Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1 and the commutativity property in Proposi- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' □ Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The analysis in the relevant references [17, 7] addresses the depen- dence of the constants on the polynomial degree, which is not within the scope of this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' However, we do not assume that the domain Ω is simply-connected nor do we make assumptions on the topology of Γ, which seems to be new at least for the case of approximation in H(curl).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' One way of interpreting the results of this and the former section is this: if a differential form features enough regularity to have continuity and boundary con- ditions, then every piecewise polynomial (but not necessarily continuous) approxi- mation must replicate those continuity and boundary conditions so closely that we can just require those conditions directly on the approximation itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Applications As a service to the reader, we review our results in the context of three-dimensional vector analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let Ω ⊆ R3 be a bounded Lipschitz domain endowed with a tri- angulation T , and let a two-dimensional submanifold Γ ⊆ ∂Ω of the boundary, possible empty, be endowed with a triangulation U ⊂ T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We focus on the Hilbert space theory, the extension to the Banach space case is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We abbreviate Hm(Ω) = W m,2(Ω) when m ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' L2(Ω) is the space of square-integrable vector fields over Ω, and Hm(Ω), where m ≥ 0, is the space of vector fields with coefficients in W m,2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write | · |Hm for the associated seminorm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let H(curl) := � u ∈ L2(Ω) | curl u ∈ L2(Ω) � , H(div) := � u ∈ L2(Ω) | div u ∈ L2(Ω) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Subspaces with boundary conditions can be defined in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We abbrevi- ate H1(Ω, Γ) = W 1,2(Ω, Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In accordance with Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1, whenever m > 1/2, we write Hm tan(Ω, Γ) and Hm nor(Ω, Γ) for the subspaces of Hm(Γ) that have vanishing 24 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT tangential or normal traces along Γ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We also have boundary condi- tions defined via integration by parts formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let H(curl, Γ) be the subspace of H(curl) whose members u satisfy � Ω ⟨curl u, φ⟩ dx = � Ω ⟨u, curl φ⟩ dx for all vector fields φ ∈ C∞(Ω)3 vanishing near Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We let H(div, Γ) be the subspace of H(div) whose members u satisfy � Ω ⟨div u, φ⟩ dx = − � Ω ⟨u, grad φ⟩ dx for all functions φ ∈ C∞(Ω) vanishing near Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We introduce finite element spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' The Lagrange space of degree r is writ- ten Pr(T ) = Pr(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We write Nedfst r (T ) and Nedsnd r (T ) for the curl-conforming Nédélec spaces of first and second kind, respectively, and BDMr(T ) and RTr(T ) for the divergence-conforming Brezzi-Douglas-Marini space and the Raviart-Thomas space, respectively, of degree r over T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' By the convention that we adopt in this article, these finite element spaces contain the polynomial vector fields up to de- gree r, and the spaces Nedfst r (T ) and RTr(T ) correspond to the trimmed spaces P− r Λ1(T ) and P− r Λ2(T ), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Thus, Nedsnd r (T ) ⊆ Nedfst r (T ), BDMr(T ) ⊆ RTr(T ) In addition, we use the following notation for the subspaces satisfying partial bound- ary conditions: Pr(T , U) := H(Ω, Γ) ∩ Pr(T ), Nedfst r (T , U) := H(curl, Γ) ∩ Nedfst r (T ), Nedsnd r (T , U) := H(curl, Γ) ∩ Nedsnd r (T ), BDMr(T , U) := H(div, Γ) ∩ BDMr(T ), RTr(T , U) := H(div, Γ) ∩ RTr(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We may define these spaces equivalently, and more explicitly, by setting the degrees of freedom of the finite element spaces to zero along the boundary part, that is, for all simplices in the subcomplex U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' With an abuse of notation, we let T (T ) be the collection of tetrahedra of T that are adjacent to T , and also the polyhedral domain described by that collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' We first discuss the approximation results for the finite element spaces that contain exactly the polynomial spaces up to degree r on each element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let r ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exist projections PP : L2(Ω) → Pr(T , U), PBDM : L2(Ω) → BDMr(T , U), PNedsnd : L2(Ω) → Nedsnd r (T , U), such that for m ∈ [0, r+1], l ∈ [0, r], all tetrahedra T ∈ T , the following inequalities hold whenever the respective right-hand sides are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 25 For all u ∈ H1(Ω, Γ) we have ∥u − PPu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + hl+1 T |∇u|Hl(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For all u ∈ H(curl, Γ) we have ∥u − PNedsndu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + hl+1 T |curl u|Hl(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For all u ∈ Hm tan(Ω, Γ), where m ≥ 2, we have ∥u − PNedsndu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + h1/2 T |curl u|Hm−1/2(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For all u ∈ H(div, Γ) we have ∥u − PBDMu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + hl+1 T |div u|Hl(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For all u ∈ Hm nor(Ω, Γ), where m ≥ 2, we have ∥u − PBDMu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + h1/2 T |div u|Hm−1/2(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T ∩ Γ = ∅, then for all u ∈ Hm(Ω) we have |u − PPu|L2(T ) ≤ Chm T |u|Hm(T (T )) |u − PBDMu|L2(T ) ≤ Chm T |u|Hm(T (T )) |u − PNedsndu|L2(T ) ≤ Chm T |u|Hm(T (T )) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 only on the polynomial degree r, m, l, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Next we discuss approximation results for the finite element spaces that contain not only contain the polynomial spaces up to degree r on each element but also additional degrees of freedom such that their curls and divergences, respectively, have approximation capability of degree r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Let r ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' There exist projections PNedfst : H(curl, Γ) → Nedfst r (T , U), PRT : H(div, Γ) → RTr(T , U), such that for m ∈ [0, r + 1], l ∈ [0, r + 1], all tetrahedra T ∈ T , the following inequalities hold whenever the respective right-hand sides are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For all u ∈ H(curl, Γ) we have ∥u − PNedfstu∥L2(T ) ≤ C � T ′∈T (T ) hm T ∥u∥Hm(T ′) + hl+1 T ∥ curl u∥Hl(T ′) For all u ∈ Hm tan(Ω, Γ), where m ≥ 2, we have ∥u − PNedfstu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + h1/2 T |curl u|Hm−1/2(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' For all u ∈ H(div, Γ) we have ∥u − PRTu∥L2(T ) ≤ C � T ′∈T (T ) hm T ∥u∥Hm(T ′) + hl+1 T ∥ div u∥Hl(T ′) 26 MARTIN W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' LICHT For all u ∈ Hm nor(Ω, Γ), where m ≥ 2, we have ∥u − PRTu∥L2(T ) ≤ C � T ′∈T (T ) hm T |u|Hm(T ′) + h1/2 T |div u|Hm−1/2(T ′) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' If T ∩ Γ = ∅, then for all u ∈ Hm(Ω) we have ∥u − PNedfstu∥L2(T ) ≤ Chm T |u|Hm(T (T )) , ∥u − PRTu∥L2(T ) ≤ Chm T |u|Hm(T (T )) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Here, C > 0 only on the polynomial degree r, m, l, and the mesh regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' In the two-dimensional case, projections with completely analogous properties exist for the Raviart-Thomas and Brezzi-Douglas-Marini elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Amrouche, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Bernardi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Dauge, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Girault, Vector potentials in three- dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, 21 (1998), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 823–864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Arnold, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Falk, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica, 15 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1–155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [3] , Geometric decompositions and local bases for spaces of finite element differential forms, Computer Methods in Applied Mechanics and Engineering, 198 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1660– 1672.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [4] , Finite element exterior calculus: from Hodge theory to numerical stability, Bulletin of the American Mathematical Society, 47 (2010), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 281–354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [5] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Burenkov, Sobolev spaces on domains, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 137, Springer, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Camacho and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Demlow, L2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces, IMA Journal of Numerical Analysis, 35 (2015), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1199–1227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Chaumont-Frelet and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Vohralík, Equivalence of local-best and global-best approx- imations in H(curl), Calcolo, 58 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Christiansen, A construction of spaces of compatible differential forms on cellular complexes, Mathematical Models and Methods in Applied Sciences, 18 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 739–757.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Christiansen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Munthe-Kaas, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Owren, Topics in structure-preserving discretization, Acta Numerica, 20 (2011), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Christiansen and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Winther, Smoothed projections in finite element exterior calculus, Mathematics of Computation, 77 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 813–829.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [11] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Ciarlet, Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces, Journal of Numerical Mathematics, 21 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 173–180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Clément, Approximation by finite element functions using local regularization, Re- vue française d’automatique, informatique, recherche opérationnelle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Analyse numérique, 9 (1975), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 77–84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Costabel, A coercive bilinear form for maxwell’s equations, Journal of mathematical analysis and applications, 157 (1991), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 527–541.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Demkowicz and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Buffa, H1, H(curl) and H(div)-conforming projection-based inter- polation in three dimensions: Quasi-optimal p-interpolation estimates, Computer Methods in Applied Mechanics and Engineering, 194 (2005), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 267–296.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Di Nezza, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Palatucci, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des sciences mathématiques, 136 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 521–573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Dupont and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Scott, Polynomial approximation of functions in Sobolev spaces, Math- ematics of Computation, 34 (1980), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 441–463.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Ern, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Gudi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Smears, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Vohralík, Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div), IMA Journal of Numerical Analysis, 42 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1023–1049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Ern and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Guermond, Mollification in strongly Lipschitz domains with applica- tion to continuous and discrete de Rham complexes, Computational Methods in Applied Mathematics, 16 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 51–75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' AVERAGING-BASED LOCAL PROJECTIONS IN FEEC 27 [19] , Finite element quasi-interpolation and best approximation, ESAIM: Mathematical Modelling and Numerical Analysis, 51 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 1367–1385.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [20] , Finite Elements II, Springer, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [21] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Falk and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Winther, Local bounded cochain projections, Mathematics of Computation, 83 (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2631–2656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [22] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Gawlik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Holst, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Licht, Local finite element approximation of Sobolev differential forms, ESAIM:M2AN, 5 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2075–2099.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [23] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Heuer, On the equivalence of fractional-order Sobolev semi-norms, Journal of Mathe- matical Analysis and Applications, 417 (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 505–518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [24] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 237–339.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Licht, Smoothed projections and mixed boundary conditions, Mathematics of Computa- tion, 88 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 607–635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [26] , Smoothed projections over weakly Lipschitz domains, Mathematics of Computation, 88 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 179–210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Licht, On the a priori and a posteriori error analysis in finite element exterior calculus, PhD thesis, Dissertation, Department of Mathematics, University of Oslo, Norway, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Licht, On basis constructions in finite element exterior calculus, Adv Comput Math, 14 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Mitrea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Mitrea, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Shaw, Traces of differential forms on Lipschitz do- mains, the boundary de Rham complex, and Hodge decompositions, Indiana University math- ematics journal, (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 2061–2095.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [30] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Monk, Finite element methods for Maxwell’s equations, Oxford University Press, USA, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Oswald, On a BPX-preconditioner for P1 elements, Computing, 51 (1993), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 125–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [32] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Scott and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation, 54 (1990), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 483–493.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [33] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Slobodeckij, Generalized Sobolev spaces and their applications to boundary value prob- lems of partial differential equations, Gos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Ped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Ucep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Zap, 197 (1958), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 54–112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' Veeser, Approximating gradients with continuous piecewise polynomial functions, Foun- dations of Computational Mathematics, 16 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' 723–750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content=' École Polytechnique Fé´derale Lausanne (EPFL), 1015, Lausanne, Switzerland Email address: martin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='licht@epfl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
+page_content='ch' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE1T4oBgHgl3EQfNwO7/content/2301.03007v1.pdf'}
diff --git a/ldE3T4oBgHgl3EQf6Atx/vector_store/index.faiss b/ldE3T4oBgHgl3EQf6Atx/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..5f892c4f35ccd3aea1a325a326ff2c88c349d150
--- /dev/null
+++ b/ldE3T4oBgHgl3EQf6Atx/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:22fe679ff88de14cd5a0f8ead1d00be61341e3d08a21a70f9a1d8653945a9b5c
+size 5111853
diff --git a/ltFRT4oBgHgl3EQfZTcN/vector_store/index.faiss b/ltFRT4oBgHgl3EQfZTcN/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..8f50366045870b159f2072e9df7c3429bf23b6af
--- /dev/null
+++ b/ltFRT4oBgHgl3EQfZTcN/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5825f2a1984307a565de48168345b5c515073505205d186ad25f09e2fa2cd392
+size 4587565
diff --git a/ltFRT4oBgHgl3EQfZTcN/vector_store/index.pkl b/ltFRT4oBgHgl3EQfZTcN/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..28a7d4edead6e71c4d18a8ba5d54d81f138b1d56
--- /dev/null
+++ b/ltFRT4oBgHgl3EQfZTcN/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6bf3eff2da87419165f6ba962ebfa1efee9a24cd42ec52339c74505076dd0596
+size 159232
diff --git a/mdE1T4oBgHgl3EQfOAP6/vector_store/index.faiss b/mdE1T4oBgHgl3EQfOAP6/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..65c53a98facf061e724f8f1de8d3fe7dde99e884
--- /dev/null
+++ b/mdE1T4oBgHgl3EQfOAP6/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:44f6b743463eb98a3d989e46015caff96ddade98030934d8456ae533fea9efb6
+size 7471149
diff --git a/mtAyT4oBgHgl3EQflPh9/content/2301.00449v1.pdf b/mtAyT4oBgHgl3EQflPh9/content/2301.00449v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..71a8e25b55ceca8b4d2a1f6a2342528492c9efa8
--- /dev/null
+++ b/mtAyT4oBgHgl3EQflPh9/content/2301.00449v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c2afe1e93e7cf522b072d2b568bba7fda8626d08c88fa89f96bbfe57325c4c8a
+size 17066008
diff --git a/mtE1T4oBgHgl3EQfhQRC/vector_store/index.faiss b/mtE1T4oBgHgl3EQfhQRC/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..f9231abc730817c171c09abcd1e3b75b648c71e0
--- /dev/null
+++ b/mtE1T4oBgHgl3EQfhQRC/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1244ebf3ab18bef9fb2f47d1babe9524f45d1c1ab9ca4a02e2e06fd40db78bff
+size 3014701
diff --git a/n9FPT4oBgHgl3EQfKTRi/content/tmp_files/2301.13018v1.pdf.txt b/n9FPT4oBgHgl3EQfKTRi/content/tmp_files/2301.13018v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8c4216de82290fea114090d33c0752773afcccd1
--- /dev/null
+++ b/n9FPT4oBgHgl3EQfKTRi/content/tmp_files/2301.13018v1.pdf.txt
@@ -0,0 +1,4140 @@
+Published as a conference paper at ICLR 2023
+DELTA: DEGRADATION-FREE FULLY TEST-TIME ADAP-
+TATION∗
+Bowen Zhao1,2, Chen Chen3,�, Shu-Tao Xia1,4,�
+1Tsinghua University, 2Tencent TEG AI, 3OPPO research institute, 4Peng Cheng Laboratory
+zbw18@mails.tsinghua.edu.cn, chen1634chen@gmail.com, xiast@sz.tsinghua.edu.cn
+ABSTRACT
+Fully test-time adaptation aims at adapting a pre-trained model to the test stream
+during real-time inference, which is urgently required when the test distribution
+differs from the training distribution. Several efforts have been devoted to improv-
+ing adaptation performance. However, we find that two unfavorable defects are
+concealed in the prevalent adaptation methodologies like test-time batch normal-
+ization (BN) and self-learning. First, we reveal that the normalization statistics
+in test-time BN are completely affected by the currently received test samples,
+resulting in inaccurate estimates. Second, we show that during test-time adap-
+tation, the parameter update is biased towards some dominant classes. In addi-
+tion to the extensively studied test stream with independent and class-balanced
+samples, we further observe that the defects can be exacerbated in more compli-
+cated test environments, such as (time) dependent or class-imbalanced data. We
+observe that previous approaches work well in certain scenarios while show per-
+formance degradation in others due to their faults. In this paper, we provide a
+plug-in solution called DELTA for Degradation-freE fuLly Test-time Adaptation,
+which consists of two components: (i) Test-time Batch Renormalization (TBR),
+introduced to improve the estimated normalization statistics. (ii) Dynamic Online
+re-weighTing (DOT), designed to address the class bias within optimization. We
+investigate various test-time adaptation methods on three commonly used datasets
+with four scenarios, and a newly introduced real-world dataset. DELTA can help
+them deal with all scenarios simultaneously, leading to SOTA performance.
+1
+INTRODUCTION
+Models suffer from performance decrease when test and training distributions are mis-
+matched (Quinonero-Candela et al., 2008). Numerous studies have been conducted to narrow the
+performance gap based on a variety of hypotheses/settings. Unsupervised domain adaptation meth-
+ods (Ganin et al., 2016) necessitate simultaneous access to labeled training data and unlabeled target
+data, limiting their applications. Source-free domain adaptation approaches (Liang et al., 2020) only
+need a trained model and do not require original training data when performing adaptation. Nonethe-
+less, in a more difficult and realistic setting, known as fully test-time adaptation (Wang et al., 2021),
+the model must perform online adaptation to the test stream in real-time inference. The model
+is adapted in a single pass on the test stream using a pre-trained model and continuously arriving
+test data (rather than a prepared target set). Offline iterative training or extra heavy computational
+burdens beyond normal inference do not meet the requirements.
+There have been several studies aimed at fully test-time adaptation. Test-time BN (Nado et al.,
+2020) / BN adapt (Schneider et al., 2020) directly uses the normalization statistics derived from test
+samples instead of those inherited from the training data, which is found to be beneficial in reducing
+the performance gap. Entropy-minimization-based methods, such as TENT (Wang et al., 2021),
+further optimize model parameters during inference. Contrastive learning (Chen et al., 2022), data
+augmentation (Wang et al., 2022a) and uncertainty-aware optimization (Niu et al., 2022) have been
+introduced to enhance adaptation performance. Efforts have also been made to address test-time
+adaptation in more complex test environments, like LAME (Boudiaf et al., 2022).
+∗work done by Bowen Zhao (during internship) and Chen Chen at Tencent.
+1
+arXiv:2301.13018v1 [cs.LG] 30 Jan 2023
+
+Published as a conference paper at ICLR 2023
+−→
+IS+CB
+DS+CB
+IS+CI
+DS+CI
+Figure 1: IS+CB / DS+CB: the test stream which is inde-
+pendently / dependently sampled from a class-balanced test
+distribution; IS+CI/ DS+CI: independently / dependently
+drawn from a class-imbalanced test distribution. Each bar
+represents a sample, each color represents a category.
+Table 1: Comparison of fully test-time
+adaptation methods against the pre-
+trained model on CIFAR100-C. DELTA
+achieves improvement in all scenarios.
+Scenario
+TENT
+LAME
+DELTA (Ours)
+IS+CB
+DS+CB
+IS+CI
+DS+CI
+Despite the achieved progress, we find that there are non-negligible defects hidden in the popular
+methods. First, we take a closer look at the normalization statistics within inference (Section 3.2).
+We observe that the statistics used in BN adapt is inaccurate in per batch compared to the actual pop-
+ulation statistics. Second, we reveal that the prevalent test-time model updating is biased towards
+some dominant categories (Section 3.3). We notice that the model predictions are extremely imbal-
+anced on out-of-distribution data, which can be exacerbated by the self-learning-based adaptation
+methods. Besides the most common independent and class-balanced test samples considered in ex-
+isting studies, following Boudiaf et al. (2022), we investigate other three test scenarios as illustrated
+in Figure 1 (please see details in Section 3.1) and find when facing the more intricate test streams,
+like dependent samples or class-imbalanced data, the prevalent methods would suffer from severe
+performance degradation, which limits the usefulness of these test-time adaptation strategies.
+To address the aforementioned issues, we propose two powerful tools. Specifically, to handle the in-
+accurate normalization statistics, we introduce test-time batch renormalization (TBR) (Section 3.2),
+which uses the test-time moving averaged statistics to rectify the normalized features and considers
+normalization during gradient optimization. By taking advantage of the observed test samples, the
+calibrated normalization is more accurate. We further propose dynamic online re-weighting (DOT)
+(Section 3.3) to tackle the biased optimization, which is derived from cost-sensitive learning. To bal-
+ance adaptation, DOT assigns low/high weights to the frequent/infrequent categories. The weight
+mapping function is based on a momentum-updated class-frequency vector that takes into account
+multiple sources of category bias, including the pre-trained model, the test stream, and the adap-
+tation methods (the methods usually do not have an intrinsic bias towards certain classes, but can
+accentuate existing bias). TBR can be applied directly to the common BN-based pre-trained mod-
+els and does not interfere with the training process (corresponding to the fully test-time adaptation
+setting), and DOT can be easily combined with other adaptation approaches as well.
+Table 1 compares our method to others on CIFAR100-C across various scenarios. The existing
+test-time adaptation methods behave differently across the four scenarios and show performance
+degradation in some scenarios. While our tools perform well in all four scenarios simultaneously
+without any prior knowledge of the test data, which is important for real-world applications. Thus,
+the whole method is named DELTA (Degradation-freE fuLly Test-time Adaptation).
+The major contributions of our work are as follows. (i) We expose the defects in commonly used
+test-time adaptation methods, which ultimately harm adaptation performance. (ii) We demonstrate
+that the defects will be even more severe in complex test environments, causing performance degra-
+dation. (iii) To achieve degradation-free fully test-time adaptation, we propose DELTA which com-
+prises two components: TBR and DOT, to improve the normalization statistics estimates and mit-
+igate the bias within optimization. (iv) We evaluate DELTA on three common datasets with four
+scenarios and a newly introduced real-world dataset, and find that it can consistently improve the
+popular test-time adaptation methods on all scenarios, yielding new state-of-the-art results.
+2
+RELATED WORK
+Unsupervised domain adaptation (UDA). In reality, test distribution is frequently inconsistent with
+the training distribution, resulting in poor performance. UDA aims to alleviate the phenomenon with
+the collected unlabeled samples from the target distribution. One popular approach is to align the sta-
+tistical moments across different distributions (Gretton et al., 2006; Zellinger et al., 2017; Long et al.,
+2017). Another line of studies adopts adversarial training to achieve adaptation (Ganin et al., 2016;
+2
+
+Published as a conference paper at ICLR 2023
+Long et al., 2018). UDA has been developed for many tasks including object classification (Saito
+et al., 2017)/detection (Li et al., 2021) and semantic segmentation (Hoffman et al., 2018).
+Source-free domain adaptation (SFDA). SFDA deals with domain gap with only the trained model
+and the prepared unlabeled target data. To be more widely used, SFDA methods should be built on
+a common source model trained by a standard pipeline. SHOT (Liang et al., 2020) freezes the
+source model’s classifier and optimizes the feature extractor via entropy minimization, diversity
+regularization, and pseudo-labeling. SHOT incorporates weight normalization, 1D BN, and label-
+smoothing into backbones and training, which do not exist in most off-the-shelf trained models, but
+its other ideas can be used. USFDA (Kundu et al., 2020) utilizes synthesized samples to achieve
+compact decision boundaries. NRC (Yang et al., 2021b) encourages label consistency among local
+target features with the same network architecture as SHOT. GSFDA (Yang et al., 2021a) further
+expects the adapted model performs well not only on target data but also on source data.
+Fully test-time adaptation (FTTA). FTTA is a more difficult and realistic setting. In the same way
+that SFDA does not provide the source training data, only the trained model is provided. Unlike
+SFDA, FTTA cannot access the entire target dataset; however, the methods should be capable of do-
+ing online adaptation on the test stream and providing instant predictions for the arrived test samples.
+BN adapt (Nado et al., 2020; Schneider et al., 2020) replaces the normalization statistics estimated
+during training with those derived from the test mini-batch. On top of it, TENT (Wang et al., 2021)
+optimizes the affine parameters in BN through entropy minimization during test. EATA (Niu et al.,
+2022) and CoTTA (Wang et al., 2022a) study long-term test-time adaptation in continually changing
+environments. ETA (Niu et al., 2022) excludes unreliable and redundant samples from the opti-
+mization. AdaContrast (Chen et al., 2022) resorts to contrastive learning to promote feature learning
+along with a pseudo label refinement mechanism. Both AdaContrast and CoTTA utilize heavy data
+augmentation during test, which will increase inference latency. Besides, AdaContrast modifies the
+model architecture as in SHOT. Different from them, LAME (Boudiaf et al., 2022) does not rectify
+the model’s parameters but only the model’s output probabilities via the introduced unsupervised
+objective laplacian adjusted maximum-likelihood estimation.
+Class-imbalanced learning. Training with class-imbalanced data has attracted widespread atten-
+tion (Liu et al., 2019). Cost-sensitive learning (Elkan, 2001) and resampling (Wang et al., 2020) are
+the classical strategies to handle this problem. Ren et al. (2018) designs a meta-learning paradigm
+to assign weights to samples. Class-balanced loss (Cui et al., 2019) uses the effective number of
+samples when performing re-weighting. Decoupled training (Kang et al., 2020b) learns the feature
+extractor and the classifier separately. Menon et al. (2021) propose logit adjustment from a statis-
+tical perspective. Other techniques such as weight balancing (Alshammari et al., 2022; Zhao et al.,
+2020), contrastive learning (Kang et al., 2020a), knowledge distillation (He et al., 2021), etc. have
+also been applied to solve this problem.
+3
+DELTA: DEGRADATION-FREE FULLY TEST-TIME ADAPTATION
+3.1
+PROBLEM DEFINITION
+Assume that we have the training data Dtrain = {(xi, yi)}N train
+i=1 ∼ P train(x, y), where x ∈ X is the input
+and y ∈ Y = {1, 2, · · · , K} is the target label; f{θ0,a0} denotes the model with parameters θ0 and
+normalization statistics a0 learned or estimated on Dtrain. Without loss of generality, we denote the
+test stream as Dtest = {(xj, yj)}N test
+j=1 ∼ P test(x, y), where {yj} are not available actually, the subscript
+j also indicates the sample position within the test stream. When P test(x, y) ̸= P train(x, y) (the
+input/output space X/Y is consistent between training and test data), f{θ0,a0} may perform poorly
+on Dtest. Under fully test-time adaptation scheme (Wang et al., 2021), during inference step t ≥ 1,
+the model f{θt−1,at−1} receives a mini-batch of test data {xmt+b}B
+b=1 with B batch size (mt is the
+number of test samples observed before inference step t), and then elevates itself to f{θt,at} based
+on current test mini-batch and outputs the real-time predictions {pmt+b}B
+b=1 (p ∈ RK). Finally,
+the evaluation metric is calculated based on the online predictions from each inference step. Fully
+test-time adaptation emphasizes performing adaptation during real-time inference entirely, i.e., the
+training process cannot be interrupted, the training data is no longer available during test, and the
+adaptation should be accomplished in a single pass over the test stream.
+3
+
+Published as a conference paper at ICLR 2023
+The most common hypothesis is that Dtest is independently sampled from P test(x, y). However, in
+real environment, the assumption does not always hold, e.g., samples of some classes may appear
+more frequently in a certain period of time, leading to another hypothesis: the test samples are depen-
+dently sampled. Most studies only considered the scenario with class-balanced test samples, while
+in real-world, the test stream can be class-imbalanced1. We investigate fully test-time adaptation
+under the four scenarios below, considering the latent sampling strategies and the test class distri-
+bution. For convenience, we denote the scenario where test samples are independently/dependently
+sampled from a class-balanced test distribution as IS+CB / DS+CB; denote the scenario where test
+samples are independently/dependently sampled from a class-imbalanced test distribution as IS+CI/
+DS+CI, as shown in Figure 1. Among them, IS+CB is the most common scenario within FTTA
+studies, and the other three scenarios also frequently appear in real-world applications.
+3.2
+A CLOSER LOOK AT NORMALIZATION STATISTICS
+We revisit BN (Ioffe & Szegedy, 2015) briefly. Let v ∈ RB×C×S×S′ be a mini-batch of features
+with C channels, height S and width S′. BN normalizes v with the normalization statistics µ, σ
+∈ RC: v∗ =
+v−µ
+σ , v⋆ = γ · v∗ + β, where γ, β ∈ RC are the learnable affine parameters,
+{γ, β} ⊂ θ. We mainly focus on the first part v → v∗ (all the discussed normalization meth-
+ods adopt the affine parameters). In BN, during training, µ, σ are set to the empirical mean µbatch
+and standard deviation σbatch calculated for each channel c: µbatch[c] =
+1
+BSS′
+�
+b,s,s′ v[b, c, s, s′],
+σbatch[c] =
+�
+1
+BSS′
+�
+b,s,s′(v[b, c, s, s′] − µbatch[c])2 + ϵ, where ϵ is a small value to avoid division
+by zero. During inference, µ, σ are set to µema, σema which are the exponential-moving-average
+(EMA) estimates over training process (a0 is formed by the EMA statistics of all BN modules).
+However, when P test(x, y) ̸= P train(x, y), studies found that replacing µema, σema with the statistics
+of the test mini-batch: ˆµbatch, ˆσbatch can improve model accuracy (Nado et al., 2020) (for clarify,
+statistics estimated on test samples are denoted with ‘ˆ’). The method is also marked as “BN
+adapt” (Schneider et al., 2020).
+0
+10
+20
+30
+40
+50
+60
+70
+80
+Test mini-batch
+0.072
+0.071
+0.070
+0.069
+0.068
+0.067
+0.066
+0.065
+0.064
+ for normalization
+Global
+BN adapt
+BN adapt+TEMA
+(a) µ, IS+CB
+0
+10
+20
+30
+40
+50
+60
+70
+80
+Test mini-batch
+0.072
+0.071
+0.070
+0.069
+0.068
+0.067
+0.066
+0.065
+0.064
+ for normalization
+Global
+BN adapt
+BN adapt+TEMA
+(b) µ, DS+CB
+0
+10
+20
+30
+40
+50
+60
+70
+80
+Test mini-batch
+0.062
+0.064
+0.066
+0.068
+0.070
+0.072
+0.074
+ for normalization
+Global
+BN adapt
+BN adapt+TEMA
+(c) σ, IS+CB
+0
+10
+20
+30
+40
+50
+60
+70
+80
+Test mini-batch
+0.062
+0.064
+0.066
+0.068
+0.070
+0.072
+0.074
+ for normalization
+Global
+BN adapt
+BN adapt+TEMA
+(d) σ, DS+CB
+Figure 2: Normalization statistics in
+different scenarios on CIFAR100-C.
+Diagnosis I: Normalization statistics are inaccurate
+within each test mini-batch.
+We conduct experiments on
+CIFAR100-C. From Figure 2 we can see that the statistics
+ˆµbatch, ˆσbatch used in BN adapt fluctuate dramatically during
+adaptation, and are inaccurate in most test mini-batches. It
+should be noted that for BN adapt, predictions are made
+online based on real-time statistics, so poor estimates can
+have a negative impact on performance. More seriously,
+the estimates in the DS+CB scenario are worse.
+In Ta-
+ble 2, though BN adapt and TENT can improve accuracy
+compared to Source (test with the fixed pre-trained model
+f{θ0,a0}) in IS+CB scenario, they suffer from degradation
+in the DS+CB cases. Overall, we can see that the poor
+statistics severely impede test-time adaptation because they
+are derived solely from the current small mini-batch.
+Table 2: Average accuracy (%) of 15
+corrupted sets on CIFAR100-C.
+Method
+IS+CB
+DS+CB
+Source
+53.5±0.00 53.5±0.00
+BN adapt
+64.3±0.05 27.3±1.12
+BN adapt+TEMA 64.8±0.04 63.5±0.51
+TENT
+68.5±0.13 23.7±1.04
+TENT+TEMA
+21.8±0.84 26.2±1.27
+TENT+TBR
+68.8±0.13 64.1±0.57
+Treatment I: Test-time batch renormalization (TBR) is
+a simple and powerful tool to improve the normaliza-
+tion.
+It is natural to simply employ the test-time moving
+averages ˆµema, ˆσema to perform normalization during adap-
+tation, referring to as TEMA, where ˆµema
+t
+= α · ˆµema
+t−1 +
+(1 − α) · sg(ˆµbatch
+t
+), ˆσema
+t
+= α · ˆσema
+t−1 + (1 − α) · sg(ˆσbatch
+t
+),
+sg(·) stands for the operation of stopping gradient, e.g., the
+Tensor.detach() function in PyTorch, α is a smoothing coef-
+1Regarding training class distribution, in experiments, we primarily use models learned on balanced training
+data following the benchmark of previous studies. Furthermore, when P train(y) is skewed, some techniques are
+commonly used to bring the model closer to the one trained on balanced data, such as on YTBB-sub (Section 4),
+where the trained model is learned with logit adjustment on class-imbalanced training data.
+4
+
+Published as a conference paper at ICLR 2023
+ficient. TEMA can consistently improve BN adapt: the normalization statistics in Figure 2 become
+more stable and accurate, and the test accuracy in Table 2 is improved as well.
+However, for TENT which involves parameters update, TEMA can destroy the trained model as
+shown in Table 2. As discussed in Ioffe & Szegedy (2015), simply employing the moving averages
+would neutralize the effects of gradient optimization and normalization, as the gradient descent
+optimization does not consider the normalization, leading to unlimited growth of model parameters.
+Thus, we introduce batch renormalization (Ioffe, 2017) into test-time adaptation, leading to TBR,
+which is formulated by
+v∗ = v − ˆµbatch
+ˆσbatch
+· r + d,
+where
+r = sg(ˆσbatch)
+ˆσema
+,
+d = sg(ˆµbatch) − ˆµema
+ˆσema
+,
+(1)
+We present a detailed algorithm description in Appendix A.2. Different from BN adapt, we use the
+test-time moving averages to rectify the normalization (through r and d). Different from the TEMA,
+TBR is well compatible with gradient-based adaptation methods (e.g., TENT) and can improve them
+as summarised in Table 2. For BN adapt, TEMA is equal to TBR. Different from the original batch
+renormalization used in the training phase, TBR is employed in the inference phase which uses the
+statistics and moving averages derived from test batches. Besides, as the adaptation starts with a
+trained model f{θ0,a0}, TBR discards the warm-up and truncation operation to r and d, thus does
+not introduce additional hyper-parameters. TBR can be applied directly to a common pre-trained
+model with BN without requiring the model to be trained with such calibrated normalization.
+3.3
+A CLOSER LOOK AT TEST-TIME PARAMETER OPTIMIZATION
+0
+50
+100
+Sorted classes
+0
+50
+100
+150
+200
+250
+300
+# Predictions
+0
+50
+100
+Sorted classes
+0
+50
+100
+150
+200
+250
+300
+# Predictions
+0
+50
+100
+Sorted classes
+0
+50
+100
+150
+200
+250
+300
+# Predictions
+0
+50
+100
+Sorted classes
+0
+50
+100
+150
+200
+250
+300
+# Predictions
+[Clean, IS+CB, Source]
+[Gauss, IS+CB, Source]
+[Gauss, IS+CB, BN adapt+TEMA]
+[Gauss, IS+CB, TENT+TBR+DOT]
+[Gauss, IS+CB, TENT+TBR]
+[Gauss, DS+CB, TENT+TBR]
+Figure 3: Per-class number of predictions under combina-
+tions of [data, scenario, method].
+Table 3: Standard Deviation (STD), Range (R) of per-class
+number of predictions and accuracy (Acc, %) on Gauss data.
+Method
+IS+CB
+DS+CB
+STD
+R
+Acc
+STD
+R
+Acc
+Source
+158.3±0.0 956.0±0.0 27.0±0.0 158.3±0.0 956.0±0.0 27.0±0.0
+BN adapt+TEMA
+18.4±0.2 121.6±3.7 58.0±0.2 19.8±1.1 130.0±13.6 56.7±0.5
+TENT+TBR
+35.8±2.9 269.8±44.0 62.2±0.4 52.4±9.1 469.2±104.2 57.1±0.8
+TENT+TBR+DOT 20.4±1.1 122.0±15.2 63.9±0.2 25.5±2.1 164.6±43.0 60.4±0.5
+Building on BN adapt, TENT (Wang
+et al., 2021) further optimizes the
+affine parameters γ, β through en-
+tropy minimization and shows that
+test-time parameter optimization can
+yield better results compared to em-
+ploying BN adapt alone. We further
+take a closer look at this procedure.
+Diagnosis
+II:
+the
+test-time
+op-
+timization
+is
+biased
+towards
+dominant
+classes.
+We
+evaluate
+the model on IS+CB and DS+CB
+gaussian-noise-corrupted
+test
+data
+(Gauss) of CIFAR100-C. We also
+test the model on the original clean
+test set of CIFAR100 for comparison.
+Figure 3 depicts the per-class number
+of predictions, while Table 3 shows the corresponding standard deviation, range (maximum subtract
+minimum), and accuracy. We draw the following five conclusions.
+• Predictions are imbalanced, even for a model trained on class-balanced training data and tested
+on a class-balanced test set with P test(x, y) = P train(x, y): the “clean” curve in Figure 3 (left) with
+standard deviation 8.3 and range 46. This phenomenon is also studied in Wang et al. (2022b).
+• Predictions becomes more imbalanced when P test(x, y) ̸= P train(x, y) as shown in Figure 3 (left):
+the ranges are 46 and 956 on the clean and corrupted test set respectively.
+• BN adapt+TEMA improves accuracy (from 27.0% to 58.0%) and alleviates the prediction imbal-
+ance at the same time (the range dropped from 956 to 121.6).
+• Though accuracy is further improved with TENT+TBR (from 58.0% to 62.2%), the predictions
+become more imbalanced inversely (the range changed from 121.6 to 269.8). The entropy mini-
+mization loss focuses on data with low entropy, while samples of some classes may have relatively
+lower entropy owing to the trained model, thus TENT would aggravate the prediction imbalance.
+• On dependent test streams, not only the model accuracy drops, but also the predictions become
+more imbalanced (range 269.8 / range 469.2 on independent/dependent samples for TENT+TBR),
+as the model may be absolutely dominated by some classes over a period of time in DS+CB
+scenario.
+5
+
+Published as a conference paper at ICLR 2023
+Algorithm 1: Dynamic Online reweighTing (DOT)
+Input: inference step t := 0; test stream samples {xj}; pre-trained model f{θ0,a0}; class-frequency
+vector z0; loss function L; smooth coefficient λ.
+1 while the test mini-batch {xmt+b}B
+b=1 arrives do
+2
+t = t + 1
+3
+{pmt+b}B
+b=1, f{θt−1,at} ← Forward({xmt+b}B
+b=1, f{θt−1,at−1}) // output predictions
+4
+for b = 1 to B do
+5
+k∗
+mt+b = arg maxk∈[1,K] pmt+b[k] // predicted label
+6
+wmt+b = 1/(zt−1[k∗
+mt+b]+ϵ) // assign sample weight
+7
+¯wmt+b = B · wmt+b/ �B
+b′=1 wmt+b′, b = 1, 2, · · · , B // normalize sample weight
+8
+l =
+1
+B
+�B
+b=1 ¯wmt+b · L(pmt+b) // combine sample weight with loss
+9
+f{θt,at} ← Backward & Update(l, f{θt−1,at}) // update θ
+10
+zt ← λzt−1 + (1−λ)
+B
+�B
+b=1 pmt+b // update z
+The imbalanced data is harmful during the normal training phase, resulting in biased models and
+poor overall accuracy (Liu et al., 2019; Menon et al., 2021). Our main motivation is that the test-time
+adaptation methods also involve gradient-based optimization which is built on the model predictions;
+however, the predictions are actually imbalanced, particularly for dependent or class-imbalanced
+streams and the low-entropy-emphasized adaptation methods. Therefore, we argue that the test-time
+optimization is biased towards some dominant classes actually, resulting in inferior performance. A
+vicious circle is formed by skewed optimization and imbalanced predictions.
+Treatment II: Dynamic online re-weighting (DOT) can alleviate the biased optimization.
+Many methods have been developed to deal with class imbalance during the training phase, but
+they face several challenges when it comes to fully test-time adaptation: (i) Network architectures
+are immutable. (ii) Because test sample class frequencies are dynamic and agnostic, the common
+constraint of making the output distribution uniform (Liang et al., 2020) is no longer reasonable.
+(iii) Inference and adaptation must occur in real-time when test mini-batch arrived (only a single
+pass through test data, no iterative learning).
+Given these constraints, we propose DOT as presented in Algorithm 1. DOT is mainly derived
+from class-wise re-weighting (Cui et al., 2019). To tackle the dynamically changing and unknown
+class frequencies, we use a momentum-updated class-frequency vector z ∈ RK instead (Line 10
+of Algorithm 1), which is initiated with z[k] =
+1
+K , k = 1, 2, · · · , K. For each inference step,
+we assign weights to each test sample based on its pseudo label and the current z (Line 5,6 of
+Algorithm 1). Specifically, when z[k] is relatively large, during the subsequent adaptation, DOT
+will reduce the contributions of the kth class samples (pseudo label) and emphasize others. It is
+worth noting that DOT can alleviate the biased optimization caused by the pre-trained model (e.g.,
+inter-class similarity), test stream (e.g., class-imbalanced scenario) simultaneously.
+DOT is a general idea to tackle the biased optimization, some parts in Algorithm 1 have multi-
+ple options, so it can be combined with different existing test-time adaptation techniques. For
+the “Forward (·)” function (Line 3 of Algorithm 1), the discussed BN adapt and TBR can be in-
+corporated. For the loss function L(·) (Line 8 of Algorithm 1), studies usually employ the en-
+tropy minimization loss: L(pb) = − �K
+k=1 pb[k] log pb[k] or the cross-entropy loss with pseudo
+labels: L(pb) = −Ipb[k∗
+b ]≥τ · log pb[k∗
+b] (commonly, only samples with high prediction con-
+fidence are utilized, τ is a pre-defined threshold).
+Similarly, for entropy minimization, Ent-
+W (Niu et al., 2022) also discards the high-entropy samples and emphasizes the low-entropy ones:
+L(pb) = −IHb<τ · eτ−Hb · �K
+k=1 pb[k] log pb[k], where Hb is the entropy of sample xb.
+4
+EXPERIMENTS
+Datasets and models. We conduct experiments on common datasets CIFAR100-C, ImageNet-
+C (Hendrycks & Dietterich, 2019), ImageNet-R (Hendrycks et al., 2021), and a newly introduced
+video (segments) dataset: the subset of YouTube-BoundingBoxes (YTBB-sub) (Real et al., 2017).
+CIFAR100-C / ImageNet-C contains 15 corruption types, each with 5 severity levels; we use the
+6
+
+Published as a conference paper at ICLR 2023
+highest level unless otherwise specified. ImageNet-R contains various styles (e.g., paintings) of Ima-
+geNet categories. Following Wang et al. (2022a); Niu et al. (2022), for evaluations on CIFAR100-C,
+we adopt the trained ResNeXt-29 (Xie et al., 2017) model from Hendrycks et al. (2020) as f{θ0,a0};
+for ImageNet-C / -R, we use the trained ResNet-50 model from Torchvision. The models are trained
+on the corresponding original training data. For YTBB-sub, we use a ResNet-18 trained on the
+related images of COCO. Details of the tasks, datasets and examples are provided in Appendix A.1.
+Metrics. Unless otherwise specified, we report the mean accuracy over classes (Acc, %) (Liu et al.,
+2019); results are averaged over 15 different corruption types for CIFAR100-C and ImageNet-C in
+the main text, please see detailed performance on each corruption type in Appendix A.5, A.6.
+Implementation. The configurations are mainly followed previous work Wang et al. (2021; 2022a);
+Niu et al. (2022) for comparison, details are listed in Appendix A.3. Code will be available online.
+Table 4: Acc in IS+CB scenario.
+Method
+CIFAR100-C ImageNet-C
+Source
+53.5±0.00
+18.0±0.00
+TTA
+–
+17.7
+BN adapt 64.6±0.03
+31.5±0.02
+MEMO
+–
+23.9
+ETA
+69.3±0.14
+48.0±0.06
+LAME
+50.8±0.06
+17.2±0.01
+CoTTA
+65.5±0.04
+34.4±0.11
+CoTTA* 67.3±0.13
+34.8±0.53
+PL
+68.0±0.13
+40.2±0.11
++DELTA 68.7±0.12
+41.8±0.03
++0.7
++1.6
+TENT
+68.7±0.16
+42.7±0.03
++DELTA 69.5±0.03
+45.1±0.03
++0.8
++2.4
+Ent-W
+69.3±0.15
+44.3±0.41
++DELTA 70.1±0.05
+49.9±0.05
++0.8
++5.6
+Baselines.
+We adopt the following SOTA methods as base-
+lines:
+pseudo label (PL) (Lee et al., 2013), test-time aug-
+mentation (TTA) (Ashukha et al., 2020), BN adaptation (BN
+adapt) (Schneider et al., 2020; Nado et al., 2020), test-time en-
+tropy minimization (TENT) (Wang et al., 2021), marginal en-
+tropy minimization with one test point (MEMO) (Zhang et al.,
+2021), efficient test-time adaptation (ETA) (Niu et al., 2022),
+entropy-based weighting (Ent-W) (Niu et al., 2022), lapla-
+cian adjusted maximum-likelihood estimation (LAME) (Boudiaf
+et al., 2022), continual test-time adaptation (CoTTA/CoTTA*:
+w/wo resetting) (Wang et al., 2022a). We combine DELTA with
+PL, TENT, and Ent-W in this work.
+Evaluation in IS+CB scenario. The results on CIFAR100-C
+are reported in Table 4. As can be seen, the proposed DELTA
+consistently improves the previous adaptation approaches PL
+(gain 0.7%), TENT (gain 0.8%), and Ent-W (gain 0.8%), achiev-
+ing new state-of-the-art performance.
+The results also indi-
+cate that current test-time adaptation methods indeed suffer from the discussed drawbacks, and
+the proposed methods can help them obtain superior performance. Then we evaluate the meth-
+ods on the more challenging dataset ImageNet-C. Consistent with the results on CIFAR100-
+C, DELTA remarkably improves the existing methods.
+As the adaptation batch size (64) is
+too small compared to the class number (1,000) on ImageNet-C, the previous methods un-
+dergo more severe damage than on CIFAR100-C. Consequently, DELTA achieves greater gains
+on ImageNet-C: 1.6% gain over PL, 2.4% gain over TENT, and 5.6% gain over Ent-W.
+Table 5: Acc in DS+CB scenario with varying ρ.
+Method
+CIFAR100-C
+ImageNet-C
+1.0
+0.5
+0.1
+1.0
+0.5
+0.1
+Source
+53.5±0.00 53.5±0.00 53.5±0.00 18.0±0.00 18.0±0.00 18.0±0.00
+BN adapt 53.0±0.48 49.0±0.32 35.2±0.64 21.8±0.12 19.2±0.09 12.1±0.13
+ETA
+55.4±0.63 50.5±0.34 34.5±0.83 27.6±0.31 22.4±0.20 9.7±0.24
+LAME
+60.3±0.25 61.8±0.26 65.4±0.41 21.9±0.03 22.7±0.05 24.7±0.03
+CoTTA
+53.8±0.51 50.0±0.23 36.3±0.63 23.4±0.15 20.5±0.05 12.6±0.15
+CoTTA* 54.1±0.65 50.2±0.23 36.1±0.71 23.5±0.27 20.3±0.55 12.8±0.26
+PL
+54.9±0.54 50.1±0.29 34.8±0.76 25.9±0.18 22.5±0.14 13.0±0.09
++DELTA 68.0±0.25 67.5±0.30 66.0±0.45 40.5±0.05 39.9±0.07 37.3±0.10
++13.1
++17.4
++31.2
++14.6
++17.4
++24.3
+TENT
+54.6±0.52 49.7±0.40 33.7±0.70 26.0±0.20 22.1±0.12 12.1±0.10
++DELTA 68.9±0.20 68.5±0.40 67.1±0.47 43.7±0.06 43.1±0.07 40.3±0.06
++14.3
++18.8
++33.4
++17.7
++21.0
++28.2
+Ent-W
+55.4±0.63 50.5±0.35 34.5±0.83 17.4±0.40 13.0±0.22 4.1±0.22
++DELTA 69.4±0.22 68.8±0.35 67.1±0.45 48.3±0.12 47.4±0.04 43.2±0.11
++14.0
++18.3
++32.6
++30.9
++34.4
++39.1
+Evaluation in DS+CB scenario. To simu-
+late dependent streams, following Yurochkin
+et al. (2019), we arrange the samples via
+the Dirichlet distribution with a concentra-
+tion factor ρ > 0 (the smaller ρ is, the more
+concentrated the same-class samples will be,
+which is detailed in Appendix A.1). We test
+models with ρ ∈ {1.0, 0.5, 0.1}. The exper-
+imental results are provided in Table 5 (we
+provide the results of more extreme cases
+with ρ = 0.01 in Appendix A.4). The repre-
+sentative test-time adaptation methods suffer
+from performance degradation in the depen-
+dent scenario, especially on data sampled
+with small ρ.
+DELTA successfully helps
+models adapt to environments across different concentration factors. It is worth noting that DELTA’s
+DS+CB results are close to the IS+CB results, e.g., TENT+DELTA achieves 69.5% and 68.5% ac-
+curacy on IS+CB and DS+CB (ρ = 0.5) test streams from CIFAR100-C.
+Evaluation in IS+CI and DS+CI scenarios. Following Cui et al. (2019), we resample the test
+samples with an imbalance factor π (the smaller π is, the more imbalanced the test data will be,
+7
+
+Published as a conference paper at ICLR 2023
+Table 6: Mean acc in IS+CI, DS+CI scenarios with different π.
+Method
+IS+CI
+DS+CI (ρ = 0.5)
+CIFAR100-C
+ImageNet-C
+CIFAR100-C
+ImageNet-C
+0.1
+0.05
+0.1
+0.05
+0.1
+0.05
+0.1
+0.05
+Source
+53.3±0.00 53.3±0.00 17.9±0.00 17.9±0.00 53.3±0.00 53.3±0.00 17.9±0.00 17.9±0.00
+BN adapt 64.3±0.16 64.2±0.48 31.5±0.24 31.4±0.19 49.8±0.47 49.9±0.63 20.0±0.22 20.5±0.22
+ETA
+68.2±0.24 68.2±0.59 47.4±0.23 47.1±0.18 51.1±0.45 51.0±0.54 21.7±0.52 21.0±0.40
+LAME
+50.6±0.18 50.8±0.39 17.2±0.10 17.2±0.07 60.4±0.34 59.6±0.43 21.8±0.12 21.5±0.07
+CoTTA
+65.1±0.13 65.1±0.58 34.2±0.26 34.2±0.16 50.5±0.47 50.5±0.60 21.4±0.21 22.0±0.26
+CoTTA* 67.0±0.17 66.9±0.66 34.6±0.78 34.3±0.51 50.7±0.52 50.6±0.63 21.6±0.56 22.1±0.24
+PL
+67.2±0.21 67.3±0.57 39.4±0.21 39.3±0.18 50.7±0.41 50.6±0.53 22.8±0.35 23.1±0.25
++DELTA 67.6±0.36 67.6±0.46 40.9±0.26 40.7±0.22 66.6±0.39 66.3±0.57 38.8±0.27 38.5±0.21
++0.4
++0.3
++1.5
++1.4
++15.9
++15.7
++16.0
++15.4
+TENT
+67.7±0.29 67.7±0.58 42.2±0.26 42.0±0.21 50.3±0.41 50.2±0.56 22.3±0.25 22.5±0.23
++DELTA 68.5±0.31 68.6±0.60 44.4±0.25 44.2±0.22 67.7±0.41 67.5±0.70 42.1±0.28 41.9±0.24
++0.8
++0.9
++2.2
++2.2
++17.4
++17.3
++19.8
++19.4
+Ent-W
+68.3±0.26 68.2±0.58 40.8±0.76 39.5±0.82 51.1±0.44 51.0±0.53 11.3±0.81 10.8±0.40
++DELTA 69.1±0.25 69.2±0.53 48.4±0.31 47.7±0.21 68.0±0.30 67.8±0.60 45.4±0.53 44.8±0.24
++0.8
++1.0
++7.6
++8.2
++16.9
++16.8
++34.1
++34.0
+Table 7: Results on in-distri-
+bution test set of CIFAR100.
+Method
+Accuracy
+Source
+78.9±0.00
+BN adapt
+76.1±0.15
+TENT
+78.5±0.16
++DELTA
+78.9±0.03 (+0.4)
+Ent-W
+78.6±0.19
++DELTA
+79.1±0.09 (+0.5)
+ResNet18
+ResNet50
+ResNet101
+ResNet152
+WideResNet50
+ResNeXt50
+35.0
+37.5
+40.0
+42.5
+45.0
+47.5
+50.0
+52.5
+55.0
+Accuracy (%)
+TENT
+TENT+DELTA
+Ent-W
+Ent-W+DELTA
+Figure 4: Across architecture.
+which is detailed in Appendix A.1). We test models with π ∈ {0.1, 0.05} (similarly, we show the
+extreme experiments with π = 0.001 in Appendix A.4). Table 6 summarizes the results in IS+CI
+and DS+CI scenarios, with the following observations: (i) Under class-imbalanced scenario, the
+performance degradation is not as severe as under dependent data. This is primarily because the
+imbalanced test data has relatively little effect on the normalization statistics. DELTA works well on
+the imbalanced test stream. (ii) The hybrid DS+CI scenario can be more difficult than the individual
+scenarios. DELTA can also boost baselines in the hybrid scenario. (iii) Though the low-entropy-
+emphasized method Ent-W improves TENT in IS+CB scenario (Table 4), it can be inferior to TENT
+in dependent or class-imbalanced scenarios (the results on ImageNet-C in Table 5,6). The reason
+is that Ent-W leads to a side effect — amplifying the class bias, which would neutralize or even
+overwhelm its benefits. DELTA eliminates Ent-W’s side effects while retaining its benefits, so Ent-
+W+DELTA always significantly outperforms TENT+DELTA.
+Table
+8:
+Mean
+acc
+on
+ImageNet-R and YTBB-sub.
+Method
+ImageNet-R YTBB-sub
+Source
+38.4±0.00
+74.0±0.00
+BN adapt 41.9±0.15
+51.4±0.29
+ETA
+48.3±0.37
+51.5±0.32
+TENT
+44.7±0.23
+51.7±0.27
++DELTA 45.3±0.08
+75.7±0.21
++0.6
++24.0
+Ent-W
+48.3±0.26
+51.5±0.28
++DELTA 49.6±0.09
+76.2±0.23
++1.3
++24.7
+Evaluation on realistic out-of-distribution datasets ImageNet-R
+and YTBB-sub. ImageNet-R is inherently class-imbalanced and
+consists of mixed variants such as cartoon, art, painting, sketch,
+toy, etc. As shown in Table 8, DELTA also leads to consistent im-
+provement on it. While compared to ImageNet-C, ImageNet-R is
+collected individually, which consists of more hard cases that are
+still difficult to recognize for DELTA, the gain is not as great as on
+ImageNet-C. For YTBB-sub, dependent and class-imbalanced sam-
+ples are encountered naturally. We see that classical methods suffer
+from severe degradation, whereas DELTA assists them in achieving
+good performance.
+Evaluation on in-distribution test data.
+A qualified FTTA method should be “safe” on in-
+distribution datasets, i.e., P test(x, y) = P train(x, y). According to Table 7, (i) DELTA continues to
+improve performance, albeit slightly; (ii) most adaptation methods can produce comparable results
+to Source, and the combination with DELTA even outperforms Source on in-distribution data.
+Evaluation with different architectures. Figure 4 indicates that DELTA can help improve previous
+test-time adaptation methods with different model architectures. More analyses (e.g., evaluations
+with small batch size, different severity levels) are provided in Appendix A.4.
+Contribution of each component of DELTA. DELTA consists of two tools: TBR and DOT. In
+Table 9, we analyze their contributions on the basis of TENT with four scenarios and two datasets.
+Row #1 indicates the results of TENT. Applying either TBR or DOT alone on TENT brings gain
+in most scenarios and datasets. While, we find that TBR achieves less improvement when the test
+stream is IS+CB and the batch size is large (e.g., performing adaptation with TBR alone on the
+IS+CB data of CIFAR100-C with batch size of 200 does not improve TENT). However, when the
+batch size is relatively small (e.g., ImageNet-C, batch size of 64), the benefits of TBR will be-
+come apparent. More importantly, TBR is extremely effective and necessary for dependent samples.
+8
+
+Published as a conference paper at ICLR 2023
+Table 9: Ablation on the effectiveness of each component
+(on top of TENT) measured in various scenarios: IS+CB,
+DS+CB (ρ=0.5), IS+CI (π=0.1), DS+CI (ρ=0.5, π=0.05).
+# TBR DOT
+CIFAR100-C
+ImageNet-C
+IS+CB
+DS+CB
+IS+CI
+DS+CI
+IS+CB
+DS+CB
+IS+CI
+DS+CI
+1
+68.7±0.16 49.7±0.40 67.7±0.29 50.2±0.56 42.7±0.03 22.1±0.12 42.0±0.21 22.5±0.23
+2 ✓
+68.9±0.03 67.4±0.41 67.9±0.27 66.6±0.72 43.4±0.05 40.9±0.11 42.8±0.25 39.6±0.24
+3
+✓ 69.1±0.07 50.6±0.37 68.1±0.27 51.0±0.60 44.3±0.02 23.7±0.17 43.9±0.25 24.8±0.26
+4 ✓
+✓ 69.5±0.03 68.5±0.40 68.5±0.31 67.5±0.70 45.1±0.03 43.1±0.07 44.2±0.22 41.9±0.24
+DOT can consistently promote TENT
+or TENT+TBR in all scenarios, espe-
+cially when the class number is large.
+These results demonstrate that both
+the inaccurate normalization statis-
+tics and the biased optimization are
+detrimental, TBR and DOT can effec-
+tively alleviate them.
+Table 10: Ablation on different techniques for class imbal-
+ance (on top of Ent-W+TBR) measured in various scenarios
+(same as in Table 9).
+Method
+CIFAR100-C
+ImageNet-C
+IS+CB
+DS+CB
+IS+CI
+DS+CI
+IS+CB
+DS+CB
+IS+CI
+DS+CI
+Div-W (0.05) 67.5±0.12 68.1±0.30 66.8±0.31 67.1±0.59 48.8±0.02 45.1±0.25 47.9±0.25 41.0±0.49
+Div-W (0.1) 69.3±0.09 68.6±0.34 68.3±0.30 67.6±0.53 48.4±0.08 43.0±0.28 47.7±0.29 39.6±0.56
+Div-W (0.2) 69.7±0.10 68.2±0.37 68.6±0.28 67.4±0.61 46.4±0.46 40.3±0.18 46.5±0.38 37.5±0.48
+Div-W (0.4) 69.7±0.08 68.0±0.41 68.4±0.23 67.2±0.63 43.6±0.54 37.5±0.35 44.1±0.47 35.1±0.54
+LA
+70.0±0.06 66.9±0.36 69.0±0.27 66.4±0.63 42.2±0.73 28.6±0.57 43.1±0.73 27.5±0.86
+KL-div (1e2)
+–
+–
+–
+–
+47.6±1.11 39.9±0.94 46.6±0.62 36.5±1.21
+KL-div (1e3)
+–
+–
+–
+–
+48.9±0.07 27.7±0.36 43.1±0.30 22.5±0.60
+Sample-drop 70.1±0.08 68.7±0.34 69.0±0.26 67.5±0.55 49.5±0.06 46.9±0.09 48.2±0.34 42.6±0.28
+DOT
+70.1±0.05 68.8±0.35 69.1±0.25 67.8±0.60 49.9±0.05 47.4±0.04 48.4±0.31 44.8±0.24
+Comparing DOT with other tech-
+niques for class imbalance.
+On
+the basis of Ent-W+TBR, Table 10
+compares DOT against the follow-
+ing strategies for solving class imbal-
+ance.
+Diversity-based weight (Div-
+W) (Niu et al., 2022) computes the
+cosine similarity between the arrived
+test samples’ prediction and a moving
+average one like z, then only employs
+the samples with low similarity to up-
+date model. Although the method is
+proposed to reduce redundancy, we find it can resist class imbalance too. The method relies on a pre-
+defined similarity threshold to determine whether to use a sample. We report the results of Div-W
+with varying thresholds (shown in parentheses). We observe that the threshold is very sensitive and
+the optimal value varies greatly across datasets. Logit adjustment (LA) (Menon et al., 2021) shows
+strong performance when training on imbalanced data. Following Wang et al. (2022b), we can per-
+form LA with the estimated class-frequency vector z in test-time adaptation tasks. While we find
+that LA does not show satisfactory results here. We speculate that this is because the estimated class
+distribution is not accurate under the one-pass adaptation and small batch size, while LA requires a
+high-quality class distribution estimate. KL divergence regularizer (KL-div) (Mummadi et al., 2021)
+augments loss function to encourage the predictions of test samples to be uniform. While, this is
+not always reasonable for TTA, e.g., for the class-imbalanced test data, forcing the outputs to be
+uniform will hurt the performance conversely. We examine multiple regularization strength options
+(shown in parentheses) and report the best two. The results show that KL-div is clearly inferior in
+dependent or class-imbalanced scenarios. We further propose another strategy called Sample-drop.
+It records the (pseudo) categories of the test samples that have been employed, then Sample-drop
+will directly discard a newly arrived test sample (i.e., not use the sample to update the model) if its
+pseudo category belongs to the majority classes among the counts. This simple strategy is valid but
+inferior to DOT, as it completely drops too many useful samples.
+0.80
+0.85
+0.90
+0.95
+1.00
+55
+60
+65
+70
+75
+Accuracy (%)
+Source
+TENT
+TENT+DELTA
+0.80
+0.85
+0.90
+0.95
+1.00
+55
+60
+65
+70
+75
+Accuracy (%)
+Source
+TENT
+TENT+DELTA
+Figure 5: Impacts of α and λ.
+Impacts of α in TBR and λ in DOT. Similar to most
+exponential-moving-average-based methods, when the
+smoothing coefficient α (or λ) is too small, the adaptation
+may be unstable; when α (or λ) is too large, the adapta-
+tion would be slow. Figure 5 provides the ablation studies
+of α (left) and λ (right) on the DS+CB (ρ = 0.5) samples
+of CIFAR100-C (from the validation set). We find that
+TBR and DOT perform reasonably well under a wide range of α and λ.
+5
+CONCLUSION
+In this paper, we expose the defects in test-time adaptation methods which cause suboptimal or even
+degraded performance, and propose DELTA to mitigate them. First, the normalization statistics
+used in BN adapt are heavily influenced by the current test mini-batch, which can be one-sided and
+highly fluctuant. We introduce TBR to improve it using the (approximate) global statistics. Second,
+the optimization is highly skewed towards dominant classes, making the model more biased. DOT
+alleviates this problem by re-balancing the contributions of each class in an online manner. The
+combination of these two powerful tools results in our plug-in method DELTA, which achieves
+improvement in different scenarios (IS+CB, DS+CB, IS+CI, and DS+CI) at the same time.
+9
+
+Published as a conference paper at ICLR 2023
+ACKNOWLEDGMENTS
+This work is supported in part by the National Natural Science Foundation of China under Grant
+62171248, the R&D Program of Shenzhen under Grant JCYJ20220818101012025, the PCNL KEY
+project (PCL2021A07), and Shenzhen Science and Technology Innovation Commission (Research
+Center for Computer Network (Shenzhen) Ministry of Education).
+REFERENCES
+Shaden Alshammari, Yu-Xiong Wang, Deva Ramanan, and Shu Kong. Long-tailed recognition via
+weight balancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
+Recognition, pp. 6897–6907, 2022.
+Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
+uncertainty estimation and ensembling in deep learning. In International Conference on Learning
+Representations, 2020. URL https://openreview.net/forum?id=BJxI5gHKDr.
+Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-
+time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
+Recognition, pp. 8344–8353, 2022.
+Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In
+CVPR, 2022.
+Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
+on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
+and pattern recognition, pp. 9268–9277, 2019.
+Charles Elkan. The foundations of cost-sensitive learning. In International joint conference on
+artificial intelligence, volume 17, pp. 973–978. Lawrence Erlbaum Associates Ltd, 2001.
+Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Franc¸ois
+Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
+works. The journal of machine learning research, 17(1):2096–2030, 2016.
+Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Sch¨olkopf, and Alex Smola.
+A
+kernel method for the two-sample-problem.
+In B. Sch¨olkopf, J. Platt, and T. Hoff-
+man
+(eds.),
+Advances
+in
+Neural
+Information
+Processing
+Systems,
+volume
+19.
+MIT
+Press,
+2006.
+URL
+https://proceedings.neurips.cc/paper/2006/file/
+e9fb2eda3d9c55a0d89c98d6c54b5b3e-Paper.pdf.
+Yin-Yin He, Jianxin Wu, and Xiu-Shen Wei. Distilling virtual examples for long-tailed recognition.
+In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 235–244,
+2021.
+Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
+ruptions and perturbations. In International Conference on Learning Representations, 2019. URL
+https://openreview.net/forum?id=HJz6tiCqYm.
+Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
+narayanan. AugMix: A simple data processing method to improve robustness and uncertainty.
+Proceedings of the International Conference on Learning Representations (ICLR), 2020.
+Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
+Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
+analysis of out-of-distribution generalization.
+In Proceedings of the IEEE/CVF International
+Conference on Computer Vision, pp. 8340–8349, 2021.
+Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
+and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
+conference on machine learning, pp. 1989–1998. Pmlr, 2018.
+10
+
+Published as a conference paper at ICLR 2023
+Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
+models. Advances in neural information processing systems, 30, 2017.
+Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
+reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
+PMLR, 2015.
+Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for
+representation learning. In International Conference on Learning Representations, 2020a.
+Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yan-
+nis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In Interna-
+tional Conference on Learning Representations, 2020b. URL https://openreview.net/
+forum?id=r1gRTCVFvB.
+Jogendra Nath Kundu, Naveen Venkat, Rahul M V, and R. Venkatesh Babu. Universal source-free
+domain adaptation. June 2020.
+Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
+deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
+pp. 896, 2013.
+Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, Xiaoya Li, and
+Boyang Xia. Progressive domain expansion network for single domain generalization. 2021
+IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 224–233, 2021.
+Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
+hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
+Learning, pp. 6028–6039. PMLR, 2020.
+Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
+scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
+Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.
+Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
+adaptation networks. In International conference on machine learning, pp. 2208–2217. PMLR,
+2017.
+Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
+domain adaptation. Advances in neural information processing systems, 31, 2018.
+Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
+Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
+Representations, 2021. URL https://openreview.net/forum?id=37nvvqkCo5.
+Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas
+Brox, and Jan Hendrik Metzen. Test-time adaptation to distribution shift by confidence maxi-
+mization and input transformation. arXiv preprint arXiv:2106.14999, 2021.
+Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
+Jasper Snoek.
+Evaluating prediction-time batch normalization for robustness under covariate
+shift. arXiv preprint arXiv:2006.10963, 2020.
+Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
+Tan. Efficient test-time model adaptation without forgetting. In Kamalika Chaudhuri, Stefanie
+Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
+International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
+Research, pp. 16888–16905. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
+press/v162/niu22a.html.
+Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
+Dataset shift in machine learning. Mit Press, 2008.
+11
+
+Published as a conference paper at ICLR 2023
+Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke. Youtube-
+boundingboxes: A large high-precision human-annotated data set for object detection in video.
+2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464–7473,
+2017.
+Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
+robust deep learning. In International conference on machine learning, pp. 4334–4343. PMLR,
+2018.
+Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-training for unsupervised
+domain adaptation. In International Conference on Machine Learning, pp. 2988–2997. PMLR,
+2017.
+Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
+Bethge. Improving robustness against common corruptions by covariate shift adaptation. Ad-
+vances in Neural Information Processing Systems, 33:11539–11551, 2020.
+Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
+test-time adaptation by entropy minimization. In International Conference on Learning Repre-
+sentations, 2021. URL https://openreview.net/forum?id=uXl3bZLkr3c.
+Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
+In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
+7201–7211, 2022a.
+Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao Liew, Sheng Tang, Steven Hoi, and Jiashi Feng.
+The devil is in classification: A simple framework for long-tail instance segmentation. In Euro-
+pean conference on computer vision, pp. 728–744. Springer, 2020.
+Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu. Debiased learning from naturally im-
+balanced pseudo-labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and
+Pattern Recognition, pp. 14647–14657, 2022b.
+Saining Xie, Ross Girshick, Piotr Doll´ar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
+formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
+and pattern recognition, pp. 1492–1500, 2017.
+Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui.
+Generalized
+source-free domain adaptation. In 2021 IEEE/CVF International Conference on Computer Vision
+(ICCV), pp. 8958–8967, 2021a. doi: 10.1109/ICCV48922.2021.00885.
+Shiqi Yang, Yaxing Wang, Joost van de weijer, Luis Herranz, and SHANGLING JUI. Exploit-
+ing the intrinsic neighborhood structure for source-free domain adaptation. In A. Beygelzimer,
+Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
+Systems, 2021b. URL https://openreview.net/forum?id=ueGDv64HmO.
+Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
+Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
+tional Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.
+Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschl¨ager, and Susanne
+Saminger-Platz. Central moment discrepancy (CMD) for domain-invariant representation learn-
+ing.
+In International Conference on Learning Representations, 2017.
+URL https://
+openreview.net/forum?id=SkB-_mcel.
+M. Zhang, S. Levine, and C. Finn. MEMO: Test time robustness via adaptation and augmentation.
+2021.
+Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and
+fairness in class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
+Vision and Pattern Recognition, pp. 13208–13217, 2020.
+12
+
+Published as a conference paper at ICLR 2023
+Art
+Cartoon
+Deviantart
+Graffiti
+Graphic
+Misc
+Origami
+Painting
+Sculpture
+Sketch
+Sticker
+Tattoo
+Toy
+Videogame
+Figure 6: Different renditions of class n01694178 (African chameleon) from ImageNet-R.
+A
+APPENDIX
+A.1
+DATASETS
+Examples of ImageNet-R and ImageNet-C are shown in Figure 6 and Figure 7 respectively.
+ImageNet-R Hendrycks et al. (2021) holds a variety of renditions (sketches, graphics, paint-
+ings, plastic objects, cartoons, graffiti, origami, patterns, deviantart, plush objects, sculptures,
+art, tattoos, toys, embroidery, video game) of 200 ImageNet classes, resulting in 30,000 images.
+CIFAR100-C and ImageNet-C are established in Hendrycks & Dietterich (2019). CIFAR100-C
+contains 10,000 images with 15 corruption types: Gaussian Noise (abbr. Gauss), Shot Noise (Shot),
+Impulse Noise (Impul), Defocus Blur (Defoc), Frosted Glass Blur (Glass), Motion Blur (Motion),
+Zoom Blur (Zoom), Snow, Frost, Fog, Brightness (Brit), Contrast (Contr), Elastic, Pixelate (Pixel),
+JPEG. There are 50,000 images for each corruption type in ImageNet-C, others are the same as
+CIFAR100-C.
+For the real-word applications with dependent and class-imbalanced test samples, we consider an
+automatic video content moderation task (e.g., for the short-video platform), which needs to recog-
+nize the categories of interest from the extracted frames. It is exactly a natural DS+CI scenario. We
+collect 1686 test videos from YouTube, which are annotated in YouTube-BoundingBoxes dataset.
+49006 video segments are extracted from these videos and form the test stream in this experiment,
+named YTBB-sub here. We consider 21 categories. For the trained model, we adopt a model
+(ResNet18) trained on the related images from COCO dataset. Thus, there is a natural difference
+between the training domain and test domain. The consecutive video segments form the natural
+dependent samples (an object usually persists over several frames) as shown in Figure 8. Moreover,
+the test class distribution is also skewed naturally as shown in Figure 8.
+To simulate dependent test samples, for each class, we sample qk ∼ DirJ(ρ), qk ∈ RJ and allocate
+a qk,j proportion of the kth class samples to piece j, then the J pieces are concatenated to form a
+test stream in our experiments (J is set to 10 for all experiments); ρ > 0 is a concentration factor,
+when ρ is small, samples belong to the same category will concentrate in test stream.
+To simulate class-imbalanced test samples, we re-sample data points with an exponential decay in
+frequencies across different classes. We control the degree of imbalance through an imbalance factor
+π, which is defined as the ratio between sample sizes of the least frequent class and the most frequent
+class.
+For DS+CI scenario, we mimic a class-imbalanced test set first, then the final test samples are
+dependently sampled from it.
+13
+
+iPod
+2:52 PM
+tangledQ123RF
+Q123RF
+Q123RF
+Q123RFPublished as a conference paper at ICLR 2023
+Brightness
+JPEG
+Pixelate
+Elastic
+Contrast
+Fog
+Frost
+Snow
+Zoom Blur
+Motion Blur
+Frosted Glass Blur
+Defocus Blur
+Shot Noise
+Impulse Noise
+Gaussian Noise
+Figure 7: Different corruption types of class n01694178 (African chameleon) from ImageNet-C.
+−→
+boat
+potted plant truck
+car
+train
+cow boat
+bus
+cow
+36uMLT9BKYA
+1WsbZj-NsfQ
+0Wigb079iMk
+0N7yCdf7DPs
+3u7iTx8CViY
+1ceprZO-VEU
+0Neg9vT08to
+08u9yvYwrTc
+17Z_zMVLeqU
+3ZyPIcwx_n8
+2yDeK7WyDUM
+0vK_6B2ikEA
+https://www.youtube.com/watch?v={the above video ID}
+video ID:
+category:
+(a) The natural dependent samples in YTBB-sub. Each bar represents a sample, each color represents a
+category. The videos can be found at “https://www.youtube.com/watch?v={the above video ID}”.
+0
+10
+20
+Class ID
+0
+1000
+2000
+3000
+4000
+# Samples
+(b) The test class distribution.
+Figure 8: Characters of YTBB-sub dataset.
+A.2
+THE ALGORITHM DESCRIPTION OF TBR
+We present the detailed algorithm description of TBR in Algorithm 2.
+14
+
+WonanakaehlerIRURS
+11:43iKOTVA
+HASICI
+MANC99835533553ConnexxionPublished as a conference paper at ICLR 2023
+Algorithm 2: Test-time Batch Renormalization (TBR) module
+Input: mini-batch test features v ∈ RB×C×S×S′ with batch size B, C channels, height S and width S′;
+learnable affine parameters γ ∈ RC, β ∈ RC; current test-time moving mean ˆµema ∈ RC and
+standard deviation ˆσema ∈ RC; smoothing coefficient α.
+1 ˆµbatch[c] =
+1
+BSS′
+�
+b,s,s′ v[b, c, s, s′], c = 1, 2, · · · , C // get mean (for each channel)
+2 ˆσbatch[c] =
+�
+1
+BSS′
+�
+b,s,s′(v[b, c, s, s′] − ˆµbatch[c])2 + ϵ, c = 1, 2, · · · , C // get standard
+deviation (for each channel)
+3 r = sg(ˆσbatch)
+ˆσema
+// get r
+4 d = sg(ˆµbatch)−ˆµema
+ˆσema
+// get d
+5 v∗ = v−ˆµbatch
+ˆσbatch
+· r + d // normalize
+6 v⋆ = γ · v∗ + β // scale and shift
+7 ˆµema ← α · ˆµema + (1 − α) · sg(ˆµbatch) // update ˆµema
+8 ˆσema ← α · ˆσema + (1 − α) · sg(ˆσbatch) // update ˆσema
+Output: v⋆, ˆµema, ˆσema
+A.3
+IMPLEMENTATIONS
+We use Adam optimizer with learning rate of 1e-3, batch size of 200 for CIFAR100-C; SGD opti-
+mizer with learning rate of 2.5e-4, batch size of 64 for ImageNet-C/-R; SGD optimizer with learn-
+ing rate of 2.5e-4, batch size of 200 for YTBB-sub. For DELTA, the hyper-parameters α and λ
+are roughly selected from {0.9, 0.95, 0.99, 0.999} on validation sets, e.g., the extra sets with cor-
+ruption types outside the 15 types used in the benchmark. The smoothing coefficient α in TBR is
+set to 0.95 for CIFAR100-C and ImageNet-C/-R, 0.999 for YTBB-sub, λ in DOT is set to 0.95 for
+ImageNet-C/-R and 0.9 for CIFAR100-C / YTBB-sub.
+Then, we summarize the implementation details of the compared methods here, including BN adapt,
+PL, TENT, LAME, ETA, Ent-W, and CoTTA (CoTTA*). Unless otherwise specified, the optimizer,
+learning rate, and batch size are the same as those described in the main paper. For BN adapt, we fol-
+low the operation in Nado et al. (2020) and the official code of TENT (https://github.com/
+DequanWang/tent), i.e., using the test-time normalization statistics completely. Though one
+can introduce a hyper-parameter to adjust the trade-off between current statistics and those inherited
+from the trained model (a0) (Schneider et al., 2020), we find this strategy does not lead to significant
+improvement and its effect varies from dataset to dataset. For PL and TENT, besides the normaliza-
+tion statistics, we update the affine parameters in BN modules. The confidence threshold in PL is set
+to 0.4, which can produce acceptable results in most cases. We adopt/modify the official implemen-
+tation https://github.com/DequanWang/tent to produce the results of TENT/PL. For
+LAME, we use the k-NN affinity matrix with 5 nearest neighbors following Boudiaf et al. (2022)
+and the official implementation https://github.com/fiveai/LAME. For ETA, the entropy
+constant threshold is set to 0.4 × ln K (K is the number of task classes), and the similarity threshold
+is set to 0.4/0.05 for CIFAR/ImageNet experiments following the authors’ suggestion and official
+implementation https://github.com/mr-eggplant/EATA. For Ent-W, the entropy con-
+stant threshold is set to 0.4 or 0.5 times ln K. For CoTTA, the used random augmentations include
+color jitter, random affine, gaussian blur, random horizontal flip, and gaussian noise. 32 augmen-
+tations are employed in this method. The learning rate is set to 0.01 for ImageNet experiments
+following official implementation https://github.com/qinenergy/cotta. The restora-
+tion probability is set to 0.01 for CIFAR experiments and 0.001 for ImageNet experiments. The
+augmentation threshold is set to 0.72 for CIFAR experiments and 0.1 for ImageNet experiments.
+The exponential-moving-average factor is set to 0.999 for all experiments. CoTTA optimizes all
+learnable parameters during adaptation.
+A.4
+ADDITIONAL ANALYSIS
+Fully test-time adaptation with small (test) batch size. In the main paper, we report results with
+the default batch size following previous studies. Here, we study test-time adaptation with a much
+smaller batch size. The small batch size brings two serious challenges: the normalization statistics
+can be inaccurate and fluctuate dramatically; the gradient-based optimization can be noisy. Previ-
+15
+
+Published as a conference paper at ICLR 2023
+ous study (Niu et al., 2022) employs a sliding window with L samples in total (including L − B
+previous samples, assuming L > B, L%B = 0 here) to perform adaptation. However, this strat-
+egy significantly increases the computational cost:
+L
+B × forward and backward, e.g., 64× when
+B = 1, L = 64. We employ another strategy, called “fast-inference and slow-update”. When the
+samples arrive, infer them instantly with the current model but do not perform adaptation; the model
+is updated with the recent L samples every L
+B mini-batches. Thus, this strategy only needs 2× for-
+ward and 1× backward. Note that the two strategies both need to cache some recent test samples,
+which may be a bit against the “online adaptation”. We evaluate TENT and DELTA on the IS+CB
+test stream of CIFAR100-C with batch sizes 128, 16, 8, and 1. The results are listed in Table 11. We
+find that TENT suffers from severe performance degeneration when the batch size is small, which
+is due to TENT always using the normalization statistics derived from the test mini-batches, thus
+it is still affected by the small batch size during “fast-inference”. With the assistance of DELTA,
+the performance degradation can be significantly alleviated: it only drops by 0.7% (from 69.8% to
+69.1%) when B = 1.
+Table 11: Results (classification accuracy, %) with different batch sizes on IS+CB test stream of
+CIFAR100-C.
+Method
+128
+16
+8
+1
+Source
+53.5
+53.5
+53.5
+53.5
+TENT
+68.7
+64.9
+59.9
+1.6
+TENT+DELTA
+69.8
+69.4
+69.0
+69.1
+The initialization of TBR’s normalization statistics. As described in Section 3.2, TBR keeps
+the moving normalization statistics ˆµema, ˆσema, we usually have two ways to initialize them: using
+the statistics ˆµbatch
+1
+, ˆσbatch
+1
+derived from the first test mini-batch (First); using the statistics µema,
+σema inherited from the trained model (Inherit). In the main paper, we use the “First” initialization
+strategy. However, it is worth noting that “First” is not reasonable for too small batch size. We
+perform TENT+DELTA with the above two initialization strategies and different batch sizes on the
+IS+CB test stream of CIFAR100-C. Figure 9 summaries the results, we can see that when the batch
+size is too small, using the inherited normalization statistics as initialization is better; when the batch
+size is acceptable (just > 8 for CIFAR100-C), using the “First” initialization strategy is superior.
+128
+16
+8
+1
+Batch size
+60.0
+62.5
+65.0
+67.5
+70.0
+72.5
+Accuracy (%)
+Inherit
+First
+Figure 9: Comparison of two TBR initialization strategies on top of TENT+DELTA in IS+CB sce-
+nario on CIFAR100-C.
+Performance under different severity levels on CIFAR100-C and ImageNet-C. In the main pa-
+per, for CIFAR100-C and ImageNet-C, we report the results with the highest severity level 5 follow-
+ing previous studies. Here, we investigate DELTA on top of TENT with different severity levels on
+CIFAR100-C (IS+CB scenario). Figure 10 presents the results. We observe that (i) as the corruption
+level increases, the model accuracy decreases; (ii) DELTA works well under all severity levels.
+Performance in extreme cases. We examine the performance of DELTA with more extreme con-
+ditions: DS+CB with ρ = 0.01, IS+CI with π = 0.001. Table 12 shows DELTA can manage the
+intractable cases.
+Influence of random seeds. As fully test-time adaptation is established based on a pre-trained
+model, i.e., does not need random initialization; methods like PL, TENT, Ent-W, and our DELTA
+16
+
+Published as a conference paper at ICLR 2023
+1
+2
+3
+4
+5
+Severity Level
+70
+72
+74
+76
+Accuracy (%)
+TENT
+TENT+DELTA
+Figure 10: Comparison under different severity levels on CIFAR100-C.
+Table 12: Performance in extreme cases.
+DS+CB (ρ = 0.01)
+IS+CI (π = 0.001)
+Source
+18.0
+17.9
+BN adapt
+6.8
+31.1
+ETA
+3.3
+44.1
+LAME
+26.0
+17.4
+CoTTA
+7.0
+33.5
+CoTTA*
+7.2
+33.6
+PL
+6.6
+37.9
++DELTA
+34.2
+38.9
+TENT
+6.0
+39.8
++DELTA
+36.7
+41.8
+Ent-W
+1.4
+39.9
++DELTA
+36.5
+45.1
+also do not bring random initialization. As a result, the adaptation results are always the same on
+one fixed test stream. However, the random seeds can affect sample order in our experiments. We
+study the influence of random seeds on Gauss and Shot data (IS+CB scenario) of ImageNet-C with
+seeds {2020, 2021, 2022, 2023}. The results of TENT and DELTA are summarized in Table 13,
+from which one can see the methods are not greatly affected by the sample order within the same
+scenario. For fair comparison, all methods are investigated under the same sample order for each
+specific scenario in our experiments.
+Table 13: Influence of random seeds. Classification accuracies (%) are reported on two kinds of
+corrupted data (IS+CB) of ImageNet-C under four random seeds (2020, 2021, 2022, and 2023).
+Data
+TENT
+TENT+DELTA
+2020
+2021
+2022
+2023
+2020
+2021
+2022
+2023
+Gauss
+28.672
+28.434
+28.774
+28.796
+31.186
+30.916
+31.270
+31.208
+Shot
+30.536
+30.496
+30.370
+30.458
+33.146
+33.140
+33.124
+32.994
+Ablation on DOT. We examine the performance of DOT with another way to get the sample weights
+(Line 5,6 in Algorithm 1). One can discard line 5 and modify line 6 to adopt the original soft
+probabilities: ωmt+b = �K
+k=1 1/(zt−1[k] + ϵ) · pmt+b[k]. We compare the hard label strategy
+(Algorithm 1) with the soft one in Table 14 (on the basis of Enw-W+TBR, on ImageNet-C). We find
+that both strategies work well in all scenarios, demonstrating the effectiveness of the idea of DOT.
+The performance of the soft strategy is slightly worse than the hard strategy in some scenarios.
+However, we think it is difficult to say “hard labels are necessarily better than soft labels” or “soft
+labels are necessarily better than hard labels”, for example, the two strategies both exist in recent
+semi-supervised methods: hard label in FixMatch, soft label in UDA.
+17
+
+Published as a conference paper at ICLR 2023
+Table 14: Ablation on DOT.
+IS+CB
+DS+CB
+DS+CB
+DS+CB
+IS+CI
+IS+CI
+DS+CI
+DS+CI
+ρ = 1.0
+ρ = 0.5
+ρ = 0.1
+π = 0.1
+π = 0.05
+ρ = 0.5, π = 0.1
+ρ = 0.5, π = 0.05
+Hard
+49.9
+48.3
+47.4
+43.2
+48.4
+47.7
+45.4
+44.8
+Soft
+49.7
+48.0
+47.3
+43.0
+48.3
+47.5
+45.1
+44.5
+A.5
+RESULTS OF EACH CORRUPTION TYPE ON CIFAR100-C.
+Table 2 has compared the usages of different normalization statistics, we further provide the detailed
+results of all corruption types in Table 15.
+Table 16 presents the results of all corruption types under different batch sizes and the two initial-
+ization strategies for normalization statistics in TBR, the averaged results have been illustrated in
+Table 11 and Figure 9 respectively.
+Table 17 summarises the detailed performance on IS+CB test stream with different severity levels.
+Table 18 compares the test-time adaptation methods in IS+CB scenario; Table 19 for DS+CB test
+stream (ρ = 1.0), Table 20 for DS+CB test stream (ρ = 0.5), Table 21 for DS+CB test stream (ρ =
+0.1); Table 22, 23 for IS+CI data with π = 0.1, π = 0.05; Table 24 / Table 25 for DS+CI test data
+with ρ = 0.5 and π = 0.1 / π = 0.05.
+A.6
+RESULTS OF EACH CORRUPTION TYPE ON IMAGENET-C.
+Table 26 compares the test-time adaptation methods in IS+CB scenario and Table 27 further com-
+pares them with different model architectures; Table 28, Table 29, and Table 30 for DS+CB test
+streams with ρ = 1.0, ρ = 0.5 and ρ = 0.1, respectively; Table 31, 32 for IS+CI data with π = 0.1, π
+= 0.05; Table 33 / Table 34 for DS+CI test data with ρ = 0.5 and π = 0.1 / π = 0.05. The results in
+Table 15-Table 34 are obtained with seed 2020.
+Table 15: Comparison of the normalization statistics on IS+CB and DS+CB test streams of
+CIFAR100-C with B = 128 in terms of classification accuracy (%).
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+IS+CB scenario
+BN adapt
+57.6 59.0 56.9
+72.3 58.0
+70.3
+71.8 64.8 64.8 58.1 73.3 69.7
+64.0
+66.7 58.4 64.4
+BN adapt+TEMA 58.0 59.7 57.1
+72.5 58.6
+70.3
+72.5 65.3 65.5 58.3 74.1 70.2
+64.4
+67.0 59.2 64.9
+TENT
+62.4 64.7 67.3
+74.3 62.5
+72.4
+74.2 69.4 67.6 66.8 75.6 71.8
+66.9
+71.3 62.6 68.7
+TENT+TEMA
+19.4 14.9 16.4
+31.9 14.8
+25.0
+28.9 24.3 25.0 19.3 31.1 24.3
+25.5
+26.0 18.2 23.0
+TENT+TBR
+62.1 64.7 67.7
+74.6 62.0
+72.6
+74.0 69.7 67.9 67.8 76.2 71.6
+67.1
+71.8 63.3 68.9
+DS+CB scenario
+BN adapt
+24.1 24.7 23.4
+30.2 23.2
+29.9
+29.8 26.6 27.2 24.2 30.0 28.6
+25.7
+27.8 23.8 26.6
+BN adapt+TEMA 56.0 57.8 55.2
+70.7 56.7
+68.6
+70.2 63.2 63.6 56.6 71.7 67.8
+62.2
+64.8 57.2 62.8
+TENT
+21.2 22.7 21.9
+26.6 20.0
+25.5
+26.6 23.0 22.2 21.7 26.3 21.6
+21.7
+24.7 20.3 23.1
+TENT+TEMA
+18.0 17.3 15.2
+34.2 18.6
+26.3
+36.6 18.9 27.2 24.6 36.2 25.8
+26.5
+28.6 20.4 25.0
+TENT+TBR
+55.8 60.0 58.8
+70.7 57.2
+67.4
+69.7 64.4 62.8 60.2 71.5 64.0
+60.9
+67.1 56.4 63.1
+18
+
+Published as a conference paper at ICLR 2023
+Table 16: Comparison of different batch sizes and the initialization strategies for TBR’s normaliza-
+tion statistics on IS+CB test stream of CIFAR100-C in terms of classification accuracy (%).
+Method
+Init
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+–
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+TENT, B=128
+–
+62.4 64.7 67.3
+74.3 62.5
+72.4
+74.2 69.4 67.6 66.8 75.6 71.8
+66.9
+71.3 62.6 68.7
+TENT, B=16
+–
+58.7 61.0 63.8
+70.8 58.7
+68.8
+70.3 65.8 64.1 63.3 72.2 66.9
+62.7
+67.6 59.4 64.9
+TENT, B=8
+–
+54.0 56.1 58.6
+65.9 53.0
+64.1
+65.4 61.0 58.6 57.8 67.1 62.9
+58.1
+62.8 53.8 59.9
+TENT, B=1
+–
+1.5
+1.5
+1.6
+1.6
+1.6
+1.8
+1.7
+1.8
+1.6
+1.5 1.6
+1.6
+1.5
+1.8
+1.6
+1.6
+TENT+DELTA, B=128 Inherit 62.4 63.9 69.0
+75.3 63.2
+73.2
+74.8 69.8 69.2 66.6 76.0 71.3
+67.4
+69.7 64.3 69.1
+TENT+DELTA, B=128 First
+64.0 66.0 69.1
+75.3 63.3
+73.0
+74.6 70.3 69.4 68.1 76.7 72.9
+67.6
+72.3 64.6 69.8
+TENT+DELTA, B=16 Inherit 62.3 64.0 69.1
+75.2 63.1
+73.3
+74.8 69.6 69.3 66.7 76.0 70.8
+67.3
+69.7 64.3 69.0
+TENT+DELTA, B=16 First
+63.5 65.5 68.2
+74.8 63.2
+72.7
+74.6 70.2 69.3 67.7 76.2 72.4
+67.5
+71.9 63.9 69.4
+TENT+DELTA, B=8
+Inherit 62.4 64.0 69.0
+75.2 63.1
+73.3
+74.8 69.7 69.4 66.6 75.9 71.2
+67.3
+69.6 64.2 69.0
+TENT+DELTA, B=8
+First
+63.1 65.1 67.1
+74.8 62.4
+72.6
+74.3 69.9 69.2 67.2 75.7 71.2
+67.0
+71.6 63.0 68.9
+TENT+DELTA, B=1
+Inherit 62.2 64.0 68.9
+75.3 63.1
+73.2
+74.7 69.7 69.4 66.6 76.1 71.6
+67.4
+69.6 64.4 69.1
+TENT+DELTA, B=1
+First
+60.0 62.0 64.4
+71.4 59.5
+69.0
+71.4 65.6 65.7 62.9 72.6 64.0
+63.6
+68.6 59.8 65.4
+Table 17: Classification accuracy (%) on IS+CB test stream of CIFAR100-C with different severity
+levels (B = 128).
+Method
+Level Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+1
+64.2 70.9 77.6
+78.9 54.4
+77.0
+76.8 76.5 74.2 78.4 78.7 78.2
+74.4
+76.5 70.5 73.8
+2
+49.3 63.6 75.3
+78.1 56.6
+75.1
+76.6 69.9 69.7 76.1 77.7 75.2
+75.0
+72.3 65.8 70.4
+3
+36.5 47.2 73.1
+76.8 60.6
+72.3
+75.4 69.6 62.1 72.3 76.6 71.9
+73.7
+69.1 64.1 66.8
+4
+31.2 40.6 68.0
+75.2 39.5
+72.4
+74.0 65.2 61.1 65.8 74.9 65.7
+68.9
+52.3 62.5 61.2
+5
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+TENT
+1
+73.8 75.8 77.2
+77.9 69.4
+76.6
+77.1 76.3 75.8 78.0 77.9 77.3
+73.3
+76.3 71.3 75.6
+2
+70.2 73.7 76.0
+77.9 69.6
+75.6
+76.8 73.4 74.0 76.2 77.8 75.2
+74.8
+76.0 68.5 74.4
+3
+66.7 70.0 74.5
+77.4 68.7
+73.7
+76.4 72.1 71.4 74.9 77.3 74.4
+73.9
+75.6 66.3 72.9
+4
+64.4 68.3 70.9
+76.3 62.6
+74.2
+75.3 70.5 70.4 72.2 76.9 74.1
+70.5
+74.3 65.2 71.1
+5
+62.4 64.7 67.3
+74.3 62.5
+72.4
+74.2 69.4 67.6 66.8 75.6 71.8
+66.9
+71.3 62.6 68.7
+TENT+DELTA
+1
+74.4 76.1 78.0
+78.7 70.3
+77.2
+77.7 77.1 76.6 78.6 78.5 78.3
+74.5
+77.1 72.0 76.3
+2
+70.9 74.7 76.4
+78.4 70.3
+75.8
+77.4 74.5 74.8 76.9 78.4 76.9
+75.4
+77.0 69.8 75.2
+3
+67.8 70.2 75.3
+77.9 69.8
+74.5
+76.8 73.1 72.5 75.6 78.1 76.6
+74.8
+76.5 67.6 73.8
+4
+65.6 69.2 72.5
+76.9 63.4
+74.9
+76.0 71.0 71.3 73.2 77.9 75.8
+71.3
+75.1 66.4 72.0
+5
+64.0 66.0 69.1
+75.3 63.3
+73.0
+74.6 70.3 69.4 68.1 76.7 72.9
+67.6
+72.3 64.6 69.8
+Table 18: Classification accuracy (%) on IS+CB test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+BN adapt
+57.9 59.3 57.3
+72.4 58.2
+70.3
+72.1 65.1 65.0 58.5 73.5 69.7
+64.3
+67.1 58.8 64.6
+ETA
+63.2 65.3 66.9
+75.1 63.2
+73.1
+74.9 70.0 69.7 66.9 76.5 73.6
+67.7
+72.0 64.0 69.5
+LAME
+24.1 29.0 59.2
+69.0 42.8
+67.0
+68.9 58.3 50.7 46.5 67.6 39.2
+60.3
+21.4 56.7 50.7
+CoTTA
+60.0 61.8 60.1
+72.6 60.2
+70.5
+72.3 64.8 65.5 56.7 73.6 69.9
+64.3
+68.4 62.6 65.5
+CoTTA*
+60.0 62.2 60.8
+73.2 62.3
+71.9
+73.7 67.0 67.9 59.8 75.4 72.9
+67.5
+72.0 66.6 67.5
+PL
+61.8 64.5 65.0
+74.6 62.0
+72.1
+74.2 68.9 68.4 64.8 75.5 72.0
+66.8
+70.8 61.9 68.2
+PL+DELTA
+62.8 64.8 66.3
+74.3 62.7
+72.7
+74.6 69.4 68.5 65.7 75.5 72.8
+66.8
+71.3 62.7 68.7
+TENT
+62.8 65.4 66.3
+74.8 62.3
+72.8
+74.6 69.6 68.6 66.8 76.1 72.3
+67.3
+71.6 63.5 69.0
+TENT+TBR
+62.5 64.9 67.0
+74.8 62.1
+72.9
+74.3 69.8 68.3 66.8 76.6 72.0
+67.1
+71.9 63.0 68.9
+TENT+DOT
+63.6 65.7 66.9
+75.1 63.0
+73.1
+74.8 69.8 69.0 67.1 76.2 73.2
+67.6
+71.8 63.8 69.4
+TENT+DELTA
+63.5 65.7 67.8
+75.1 63.3
+73.1
+74.7 70.3 69.3 67.4 76.8 72.8
+67.8
+72.3 63.6 69.6
+Ent-W
+63.5 65.5 67.2
+75.1 63.2
+73.1
+74.8 70.1 69.8 67.1 76.6 73.5
+67.7
+72.0 64.1 69.6
+Ent-W+TBR+Div-W(0.05) 60.3 63.5 63.8
+73.5 60.8
+71.8
+73.7 68.6 66.2 63.8 74.9 71.8
+66.7
+69.9 61.7 67.4
+Ent-W+TBR+Div-W(0.1)
+63.5 65.3 67.0
+75.2 62.7
+72.8
+74.7 70.0 69.4 66.7 76.1 73.2
+67.1
+71.7 63.8 69.3
+Ent-W+TBR+Div-W(0.2)
+63.8 65.6 68.1
+75.3 63.1
+73.4
+75.0 70.7 70.0 67.4 77.0 73.5
+67.3
+72.5 64.1 69.8
+Ent-W+TBR+Div-W(0.4)
+63.6 65.4 68.2
+75.3 63.1
+73.3
+75.0 70.8 69.9 67.3 76.9 73.6
+67.1
+72.6 64.0 69.7
+Ent-W+TBR+LA
+64.0 65.9 68.4
+75.4 63.5
+73.6
+75.1 71.0 70.2 67.6 77.0 73.8
+67.6
+72.8 64.5 70.0
+Ent-W+TBR+Sample-drop 64.1 66.2 68.6
+75.8 63.8
+73.5
+75.5 70.9 70.2 67.7 77.0 73.9
+68.2
+72.8 64.4 70.2
+Ent-W+DELTA
+64.2 66.1 68.5
+75.6 63.6
+73.5
+75.2 71.2 70.3 68.0 77.1 74.0
+68.0
+72.8 64.7 70.2
+19
+
+Published as a conference paper at ICLR 2023
+Table 19: Classification accuracy (%) on DS+CB (ρ = 1.0) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+BN adapt
+47.2 47.8 46.2
+59.5 47.2
+57.4
+58.8 52.2 53.2 46.7 59.9 57.4
+51.9
+54.4 46.9 52.4
+ETA
+50.1 51.2 52.6
+60.3 49.4
+58.7
+60.2 55.2 54.7 51.2 61.0 58.0
+53.2
+56.8 50.1 54.9
+LAME
+28.0 34.2 68.6
+80.1 52.1
+78.6
+80.7 70.5 61.1 57.4 79.3 49.2
+73.3
+26.1 68.7 60.5
+CoTTA
+49.1 51.2 49.7
+57.7 49.3
+56.8
+58.6 52.8 53.6 46.6 60.0 53.6
+52.6
+57.3 50.9 53.3
+CoTTA*
+49.1 51.3 49.5
+57.4 49.8
+56.6
+58.4 53.1 54.1 46.9 59.1 54.2
+53.3
+57.1 52.8 53.5
+PL
+49.9 50.5 51.5
+60.0 48.3
+58.2
+60.4 54.2 54.6 50.4 60.7 57.4
+53.0
+56.5 49.2 54.3
+PL+DELTA
+61.3 62.9 64.4
+73.9 61.8
+71.7
+74.0 68.1 68.0 63.9 74.9 71.2
+66.2
+70.1 62.2 67.6
+TENT
+49.3 50.7 52.6
+59.9 48.7
+57.8
+59.5 53.8 53.5 50.7 60.2 56.8
+52.7
+56.1 49.4 54.1
+TENT+DELTA 62.3 64.4 66.7
+74.5 62.6
+72.0
+74.3 68.9 68.5 65.8 75.6 72.0
+66.8
+71.4 63.4 68.6
+Ent-W
+50.0 51.3 52.9
+60.3 49.3
+58.9
+60.3 54.9 54.9 51.1 61.0 57.8
+53.1
+56.7 50.0 54.8
+Ent-W+DELTA 62.7 64.9 67.4
+74.6 62.7
+72.6
+74.4 69.6 69.2 66.1 75.7 72.4
+66.8
+71.7 64.2 69.0
+Table 20: Classification accuracy (%) on DS+CB (ρ = 0.5) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+BN adapt
+43.8 45.2 43.9
+56.2 44.5
+54.7
+55.5 49.1 50.0 43.9 57.0 54.2
+48.7
+51.2 45.0 49.5
+ETA
+45.8 47.5 48.9
+56.4 45.3
+54.5
+55.8 51.2 51.2 48.1 57.4 53.8
+49.4
+53.1 45.9 50.9
+LAME
+28.5 34.8 69.7
+80.8 53.5
+79.6
+81.8 71.9 62.7 58.6 81.1 50.6
+74.5
+26.9 69.5 61.6
+CoTTA
+46.9 48.3 46.5
+55.1 46.6
+54.2
+55.2 49.3 50.6 43.4 56.9 50.8
+49.3
+54.2 48.3 50.4
+CoTTA*
+46.9 48.4 46.5
+54.5 47.2
+53.8
+54.4 50.0 51.2 43.9 56.1 51.5
+50.3
+53.9 49.4 50.5
+PL
+45.4 47.0 47.8
+56.0 45.7
+54.3
+55.7 50.8 51.3 47.2 57.1 52.6
+49.4
+52.7 45.9 50.6
+PL+DELTA
+61.3 62.5 63.2
+73.1 61.3
+70.8
+73.6 68.0 67.0 63.3 74.5 70.0
+65.7
+69.7 61.2 67.0
+TENT
+44.8 46.7 48.4
+55.9 45.5
+54.0
+55.2 50.0 50.1 47.3 56.6 52.2
+48.4
+52.6 45.6 50.2
+TENT+TBR
+59.7 62.4 64.6
+73.3 60.7
+70.7
+72.9 67.3 66.6 64.2 74.2 68.9
+65.0
+69.5 61.0 66.7
+TENT+DOT
+45.9 47.5 49.3
+56.8 46.4
+54.8
+55.8 50.8 51.1 48.2 57.4 53.6
+49.6
+53.0 46.4 51.1
+TENT+DELTA
+61.3 63.5 65.5
+73.9 62.2
+71.5
+73.8 68.3 67.5 65.6 74.8 70.8
+66.1
+70.4 62.0 67.8
+Ent-W
+45.8 47.5 49.0
+56.3 45.5
+54.5
+55.6 51.6 51.1 48.3 57.2 53.8
+49.3
+53.0 45.9 51.0
+Ent-W+TBR+Div-W(0.05) 61.5 64.0 64.1
+73.8 60.7
+71.7
+73.5 67.6 68.2 64.2 74.8 71.0
+66.4
+70.3 62.2 67.6
+Ent-W+TBR+Div-W(0.1)
+62.4 63.9 65.7
+74.3 61.9
+71.8
+73.8 68.3 68.5 65.0 75.0 71.1
+66.2
+70.5 62.4 68.1
+Ent-W+TBR+Div-W(0.2)
+61.0 63.5 65.5
+73.6 60.8
+71.2
+72.9 68.0 67.9 65.1 74.5 70.7
+65.7
+70.2 62.2 67.5
+Ent-W+TBR+Div-W(0.4)
+60.5 63.4 65.2
+73.4 60.3
+71.2
+72.9 67.6 67.9 65.0 74.4 70.6
+65.3
+69.9 61.8 67.3
+Ent-W+TBR+LA
+60.0 62.8 64.2
+72.3 59.5
+69.9
+71.7 66.8 66.8 63.9 73.3 69.4
+64.7
+69.1 61.0 66.4
+Ent-W+TBR+Sample-drop 61.9 64.2 65.6
+74.2 61.8
+71.7
+73.8 68.3 68.4 65.5 74.9 71.4
+66.2
+70.7 62.7 68.1
+Ent-W+DELTA
+61.9 64.2 66.0
+74.3 61.9
+71.9
+73.9 68.3 68.5 65.9 74.9 71.5
+66.4
+70.9 62.9 68.2
+Table 21: Classification accuracy (%) on DS+CB (ρ = 0.1) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+27.0 32.0 60.6
+70.7 45.9
+69.2
+71.2 60.5 54.2 49.7 70.5 44.9
+62.8
+25.3 58.8 53.5
+BN adapt
+31.5 32.8 31.4
+40.4 31.0
+39.3
+40.0 35.3 35.7 31.5 40.7 38.0
+34.5
+36.7 31.7 35.4
+ETA
+31.2 32.2 32.6
+38.4 30.4
+37.7
+38.4 34.6 34.7 32.2 39.4 36.3
+33.2
+36.3 31.2 34.6
+LAME
+30.3 36.9 73.2
+84.3 57.2
+83.3
+85.0 76.7 66.4 63.1 84.7 54.3
+79.2
+28.6 73.9 65.1
+CoTTA
+33.7 34.8 34.1
+39.5 33.2
+39.3
+40.1 36.3 36.8 31.8 39.9 36.8
+35.8
+39.6 35.3 36.5
+CoTTA*
+33.7 35.0 33.7
+39.0 33.2
+38.7
+39.4 35.8 36.6 31.8 39.1 36.1
+35.6
+38.8 35.5 36.1
+PL
+32.2 32.0 32.5
+39.2 30.7
+37.8
+39.2 35.0 35.0 32.1 39.5 36.8
+33.5
+36.9 31.2 34.9
+PL+DELTA
+59.2 61.0 61.6
+72.0 58.8
+70.1
+72.2 66.2 65.2 61.6 72.8 69.2
+63.5
+67.4 59.6 65.4
+TENT
+29.9 31.1 32.1
+37.8 30.0
+36.6
+37.6 33.6 33.3 31.4 38.1 34.4
+32.0
+36.0 30.1 33.6
+TENT+DELTA 60.3 62.7 63.1
+72.7 60.2
+70.7
+72.1 66.7 65.9 63.4 73.6 69.8
+64.5
+68.5 60.2 66.3
+Ent-W
+31.0 32.1 32.7
+38.3 30.1
+37.7
+38.5 34.5 34.5 32.0 39.3 36.0
+32.9
+36.2 30.6 34.4
+Ent-W+DELTA 60.2 62.3 63.5
+72.3 59.6
+70.0
+72.3 67.3 66.3 63.2 73.7 70.3
+64.2
+69.2 60.5 66.3
+20
+
+Published as a conference paper at ICLR 2023
+Table 22: Classification accuracy (%) on IS+CI (π = 0.1) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+26.2 31.7 60.1
+70.3 45.7
+69.5
+71.2 60.1 53.9 49.7 69.7 45.1
+62.5
+25.6 58.9 53.3
+BN adapt
+58.0 58.8 56.7
+71.6 58.3
+69.6
+71.5 64.9 65.1 58.6 72.9 68.7
+64.4
+66.3 58.5 64.3
+ETA
+62.6 63.7 65.2
+73.6 62.9
+71.6
+73.8 68.6 68.9 65.6 75.2 72.1
+65.9
+70.7 62.7 68.2
+LAME
+23.5 28.6 59.4
+68.8 43.3
+67.1
+68.8 58.2 50.9 46.6 67.1 39.4
+60.4
+21.6 56.7 50.7
+CoTTA
+59.8 61.3 59.7
+71.8 59.8
+69.6
+71.6 64.4 65.3 56.5 73.1 68.5
+64.2
+68.2 62.5 65.1
+CoTTA*
+59.8 61.9 60.1
+72.0 61.7
+70.9
+72.6 66.2 67.4 59.1 74.5 71.3
+67.3
+71.5 66.3 66.8
+PL
+61.7 62.3 62.8
+73.1 61.7
+71.1
+73.6 67.2 68.1 63.7 74.3 71.3
+65.5
+69.7 61.3 67.2
+PL+DELTA
+62.4 63.0 63.2
+73.4 61.3
+71.9
+73.5 67.2 68.3 64.0 75.0 71.5
+65.6
+70.1 62.2 67.5
+TENT
+61.7 63.3 63.9
+73.0 62.3
+71.4
+73.1 67.6 68.1 65.1 74.9 71.4
+65.5
+70.7 62.5 67.6
+TENT+TBR
+61.6 63.8 64.4
+73.3 62.2
+71.5
+73.6 68.0 68.0 64.9 74.8 71.4
+65.5
+71.0 63.0 67.8
+TENT+DOT
+62.4 63.6 64.7
+73.1 62.6
+71.6
+73.7 68.0 68.6 65.3 74.7 71.8
+66.1
+70.7 63.0 68.0
+TENT+DELTA
+62.5 64.3 65.3
+73.8 62.4
+71.3
+73.6 68.3 69.0 66.1 75.1 71.6
+66.2
+71.1 63.9 68.3
+Ent-W
+62.5 63.8 65.2
+73.6 62.9
+71.7
+73.7 68.5 68.9 65.5 75.3 72.0
+66.3
+70.7 62.9 68.2
+Ent-W+TBR+Div-W(0.05) 61.1 62.0 62.6
+73.0 60.8
+71.1
+73.1 66.9 66.9 63.4 74.1 70.2
+65.6
+68.6 60.5 66.7
+Ent-W+TBR+Div-W(0.1)
+62.5 63.5 64.8
+73.7 62.8
+72.0
+74.2 68.5 68.7 65.5 75.2 71.7
+66.7
+70.7 62.4 68.2
+Ent-W+TBR+Div-W(0.2)
+63.3 64.1 66.2
+73.9 63.2
+72.0
+73.8 68.9 69.5 65.8 75.7 72.5
+66.8
+71.2 62.9 68.7
+Ent-W+TBR+Div-W(0.4)
+62.7 63.7 65.7
+73.5 62.9
+71.8
+74.2 68.3 69.5 65.5 75.6 73.1
+66.5
+70.9 62.9 68.5
+Ent-W+TBR+LA
+63.6 64.6 66.4
+74.2 63.7
+72.1
+74.2 69.0 70.1 66.0 76.0 73.3
+67.2
+71.8 63.4 69.0
+Ent-W+TBR+Sample-drop 63.3 64.6 65.8
+73.8 63.6
+72.2
+74.0 69.5 69.7 66.4 75.6 72.5
+67.0
+71.5 63.1 68.8
+Ent-W+DELTA
+63.9 64.8 66.4
+74.1 63.7
+72.2
+74.4 69.2 70.5 66.2 75.6 73.3
+67.0
+71.6 63.3 69.1
+Table 23: Classification accuracy (%) on IS+CI (π = 0.05) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+26.2 31.8 60.5
+70.5 46.4
+68.9
+70.6 59.8 53.7 50.3 70.4 44.9
+61.8
+24.7 58.2 53.3
+BN adapt
+56.7 58.0 55.5
+71.4 57.5
+69.5
+71.1 64.7 64.1 57.5 72.5 69.0
+63.1
+66.2 58.0 63.6
+ETA
+61.3 63.2 64.6
+73.6 61.5
+72.2
+73.3 68.1 67.7 65.0 74.4 71.4
+65.6
+70.2 62.8 67.7
+LAME
+23.2 28.9 59.0
+67.9 43.8
+66.7
+67.8 58.2 50.5 47.1 67.7 39.8
+59.7
+20.6 56.9 50.5
+CoTTA
+58.4 60.6 58.8
+71.6 58.2
+69.4
+71.2 63.5 64.2 55.6 72.5 68.6
+62.4
+67.9 61.0 64.3
+CoTTA*
+58.4 60.9 59.1
+72.0 59.9
+70.9
+71.8 65.2 66.5 58.6 73.9 71.0
+65.7
+70.5 65.2 66.0
+PL
+60.4 62.1 62.9
+72.8 60.8
+71.4
+72.7 67.7 67.1 62.6 73.5 71.3
+65.4
+69.4 61.4 66.8
+PL+DELTA
+61.0 63.1 62.8
+73.2 61.8
+71.6
+73.2 67.9 67.6 63.5 74.2 71.4
+65.3
+69.6 62.0 67.2
+TENT
+61.0 63.4 64.0
+73.3 60.6
+71.7
+73.2 68.7 66.9 64.9 73.9 71.0
+65.1
+70.0 62.0 67.3
+TENT+DELTA 61.7 64.8 65.6
+73.5 62.1
+71.2
+73.4 69.0 68.6 65.4 74.6 71.1
+66.1
+70.6 63.1 68.1
+Ent-W
+61.4 63.2 64.7
+73.7 61.5
+72.1
+73.2 68.4 67.8 64.9 74.4 71.3
+65.6
+70.1 62.7 67.7
+Ent-W+DELTA 62.8 64.4 65.6
+74.4 62.5
+72.3
+74.1 69.1 68.9 66.2 75.5 73.0
+66.1
+71.7 63.0 68.6
+Table 24: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.1) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+26.2 31.7 60.1
+70.3 45.7
+69.5
+71.2 60.1 53.9 49.7 69.7 45.1
+62.5
+25.6 58.9 53.3
+BN adapt
+44.9 45.6 44.7
+56.1 44.8
+54.4
+56.4 49.4 50.8 44.3 56.5 53.4
+49.2
+51.7 46.0 49.9
+ETA
+46.5 47.0 48.6
+56.2 46.1
+55.1
+56.5 51.4 51.9 47.1 56.7 53.5
+49.3
+53.4 46.7 51.1
+LAME
+27.2 34.0 68.5
+80.0 52.5
+78.9
+80.5 70.3 60.5 56.6 78.2 49.9
+72.7
+26.4 68.6 60.3
+CoTTA
+47.0 48.3 47.5
+55.0 47.0
+54.6
+55.5 49.7 51.6 44.0 55.9 50.3
+50.5
+55.2 49.0 50.7
+CoTTA*
+47.0 48.3 47.6
+54.7 48.0
+54.1
+54.7 49.7 51.7 45.1 55.2 50.1
+50.6
+54.7 50.6 50.8
+PL
+46.0 45.9 47.7
+56.0 45.8
+55.4
+56.4 50.7 50.7 46.4 56.3 53.5
+48.8
+53.2 46.8 50.6
+PL+DELTA
+60.3 62.1 62.9
+72.6 60.9
+70.9
+72.4 66.6 67.4 62.2 73.5 69.9
+65.6
+69.3 62.5 66.6
+TENT
+46.3 46.1 47.6
+55.8 45.2
+54.7
+55.6 49.8 50.5 47.4 56.7 51.3
+48.6
+52.4 45.2 50.2
+TENT+DELTA 62.5 63.7 64.9
+73.5 62.2
+70.8
+72.1 67.6 68.0 65.7 75.0 70.5
+66.6
+69.9 63.4 67.8
+Ent-W
+46.7 46.9 48.7
+56.1 46.1
+55.0
+56.3 51.2 51.9 47.7 57.1 53.5
+49.2
+53.2 46.6 51.1
+Ent-W+DELTA 62.4 63.9 65.0
+73.5 61.9
+71.4
+73.5 68.1 68.8 65.4 74.7 70.7
+66.2
+70.4 63.3 67.9
+21
+
+Published as a conference paper at ICLR 2023
+Table 25: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.05) test stream of CIFAR100-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+26.2 31.8 60.5
+70.5 46.4
+68.9
+70.6 59.8 53.7 50.3 70.4 44.9
+61.8
+24.7 58.2 53.3
+BN adapt
+43.0 45.0 42.3
+55.4 44.0
+54.2
+54.9 49.1 49.4 43.8 56.2 53.1
+48.5
+51.3 44.3 49.0
+ETA
+45.4 46.4 46.8
+56.2 45.3
+54.7
+54.8 50.7 50.1 46.5 56.4 52.2
+48.8
+53.0 45.5 50.2
+LAME
+27.1 33.3 67.6
+78.7 51.7
+77.1
+78.9 68.5 59.7 56.0 77.5 49.3
+70.1
+25.1 66.6 59.2
+CoTTA
+46.5 47.3 45.3
+54.5 45.5
+53.7
+55.0 48.6 49.9 42.4 56.0 49.0
+49.1
+53.5 47.2 49.6
+CoTTA*
+46.5 47.8 45.5
+54.1 46.2
+53.4
+54.2 48.8 50.6 43.5 54.2 49.4
+49.6
+52.8 48.7 49.7
+PL
+44.3 45.8 46.4
+55.8 45.2
+54.2
+54.8 50.7 49.3 45.8 56.5 52.4
+49.1
+52.0 45.5 49.9
+PL+DELTA
+59.3 61.1 62.2
+71.6 59.4
+70.3
+70.8 66.3 65.5 61.4 74.0 69.0
+64.5
+67.5 59.8 65.5
+TENT
+44.7 46.7 45.7
+55.3 44.6
+53.8
+53.7 50.0 48.6 46.1 55.5 50.0
+48.9
+52.0 44.6 49.3
+TENT+TBR
+58.8 61.6 62.5
+72.2 58.6
+70.3
+70.9 67.0 64.8 62.5 73.5 68.1
+63.4
+68.5 59.4 65.5
+TENT+DOT
+45.2 47.1 46.7
+55.6 45.4
+54.3
+54.3 50.9 49.7 47.3 56.1 51.7
+49.2
+52.9 45.6 50.1
+TENT+DELTA
+60.3 62.3 63.7
+72.9 60.3
+70.3
+71.3 67.8 66.2 64.1 74.2 68.7
+64.3
+69.1 60.7 66.4
+Ent-W
+45.6 46.4 47.0
+56.0 45.4
+54.9
+54.9 50.7 50.1 46.8 56.3 52.2
+48.6
+53.1 45.1 50.2
+Ent-W+TBR+Div-W(0.05) 60.9 62.3 62.9
+73.0 59.5
+70.7
+72.0 67.0 66.2 62.4 74.5 69.8
+64.9
+69.0 60.7 66.4
+Ent-W+TBR+Div-W(0.1)
+61.2 62.8 64.5
+73.5 59.9
+71.3
+71.8 67.4 66.4 63.7 74.5 70.6
+65.2
+69.5 61.0 66.9
+Ent-W+TBR+Div-W(0.2)
+60.4 62.4 63.6
+73.5 59.4
+70.7
+72.0 67.1 65.8 63.4 74.4 70.1
+64.5
+69.5 60.4 66.5
+Ent-W+TBR+Div-W(0.4)
+59.7 62.3 63.3
+72.9 59.4
+70.6
+71.9 67.0 65.8 63.1 74.3 69.6
+63.9
+69.4 60.3 66.2
+Ent-W+TBR+LA
+59.2 61.6 62.3
+71.9 58.9
+69.5
+71.3 65.7 65.1 62.8 73.2 69.0
+63.3
+68.2 60.0 65.5
+Ent-W+TBR+Sample-drop 60.9 62.6 63.7
+73.2 60.0
+70.6
+72.0 66.9 66.6 64.1 74.9 69.4
+64.6
+69.9 61.1 66.7
+Ent-W+DELTA
+61.2 62.9 64.0
+73.7 60.4
+71.1
+72.3 67.4 67.0 64.2 74.7 70.2
+64.7
+69.8 61.0 67.0
+Table 26: Classification accuracy (%) on IS+CB test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.2
+2.9
+1.9
+17.9
+9.8
+14.8
+22.5 16.9 23.3 24.4 58.9 5.4
+17.0
+20.6 31.6 18.0
+TTA
+4.1
+4.9
+4.5
+12.5
+8.2
+12.9
+25.8 14.0 19.1 21.3 53.0 12.4
+14.6
+24.6 33.6 17.7
+BN adapt
+15.2 15.8 15.8
+15.0 15.3
+26.4
+38.8 34.3 33.1 47.8 65.3 16.8
+43.9
+48.9 39.7 31.5
+MEMO
+7.5
+8.7
+9.0
+19.7 13.0
+20.7
+27.6 25.3 28.8 32.1 61.0 11.0
+23.8
+33.0 37.5 23.9
+ETA
+35.6 37.5 36.2
+33.7 33.1
+47.7
+52.5 51.9 45.8 60.0 67.8 44.7
+57.8
+60.9 55.2 48.0
+LAME
+1.6
+2.4
+1.3
+17.6
+9.1
+13.9
+21.9 15.6 22.5 22.8 58.6 5.2
+15.2
+19.9 31.1 17.2
+CoTTA
+17.6 18.0 17.4
+15.6 18.2
+31.2
+43.6 36.6 35.1 53.0 66.5 19.5
+46.3
+54.9 42.6 34.4
+CoTTA*
+17.6 22.1 24.3
+19.8 22.7
+29.7
+38.1 36.0 37.2 45.2 60.1 26.4
+46.6
+53.4 46.8 35.1
+PL
+26.2 26.2 27.0
+25.2 24.3
+37.2
+46.5 43.3 39.5 55.0 66.7 30.2
+51.2
+55.7 49.1 40.2
+PL+DELTA
+27.7 29.4 28.5
+27.0 26.1
+38.1
+47.9 44.1 40.7 55.9 67.4 34.1
+52.9
+56.6 50.3 41.8
+TENT
+28.7 30.5 30.1
+28.0 27.2
+41.4
+49.4 47.2 41.2 57.4 67.4 26.5
+54.6
+58.5 52.5 42.7
+TENT+TBR
+29.5 31.4 30.9
+28.8 28.0
+41.9
+50.3 47.7 41.8 58.3 68.1 26.9
+55.4
+59.3 53.3 43.5
+TENT+DOT
+30.5 32.3 31.6
+29.6 29.3
+42.5
+49.9 47.8 42.2 57.5 67.5 37.5
+55.4
+58.8 52.9 44.4
+TENT+DELTA
+31.2 33.1 32.1
+30.5 30.2
+42.9
+50.9 48.2 43.0 58.5 68.1 37.9
+56.2
+59.5 53.6 45.1
+Ent-W
+34.5 29.0 33.1
+29.6 26.3
+47.4
+52.2 51.9 45.6 59.9 67.8 17.8
+57.8
+60.9 55.0 44.6
+Ent-W+TBR+Div-W(0.05) 36.1 37.9 37.8
+34.4 33.5
+49.1
+53.3 53.2 46.7 60.9 68.5 45.1
+58.9
+61.7 56.0 48.9
+Ent-W+TBR+Div-W(0.1)
+35.3 37.3 36.3
+33.6 32.2
+49.1
+53.4 53.1 46.6 61.0 68.4 43.1
+58.7
+61.7 55.9 48.4
+Ent-W+TBR+Div-W(0.2)
+32.5 35.4 33.5
+26.7 25.8
+48.9
+53.0 52.9 46.2 60.9 68.4 31.1
+58.7
+61.7 56.0 46.1
+Ent-W+TBR+Div-W(0.4)
+28.7 32.8 31.7
+20.3 19.3
+48.9
+53.0 52.7 46.2 60.8 68.4 13.9
+58.7
+61.7 56.0 43.5
+Ent-W+TBR+LA
+26.7 22.4 29.6
+20.3 20.0
+49.2
+53.4 52.9 46.7 60.7 68.0 10.1
+58.8
+61.5 56.0 42.4
+Ent-W+TBR+Sample-drop 37.0 38.9 38.2
+35.8 35.4
+49.6
+53.8 53.3 47.4 61.0 68.5 46.4
+59.1
+62.0 56.4 49.5
+Ent-W+DELTA
+38.1 39.6 39.0
+36.3 36.5
+49.9
+54.0 53.5 47.6 61.1 68.4 46.9
+59.2
+61.9 56.6 49.9
+22
+
+Published as a conference paper at ICLR 2023
+Table 27: Classification accuracy (%) on IS+CB test stream of ImageNet-C with different architec-
+tures.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+ResNet18
+Source
+1.2
+1.8
+1.0
+11.4
+8.7
+11.2
+17.6 10.9 16.5 14.3 51.3 3.4
+16.8
+23.1 29.6 14.6
+TENT
+22.3 24.7 22.2
+20.3 21.1
+32.2
+41.1 37.8 33.7 49.0 59.2 19.5
+46.9
+50.6 45.8 35.1
+TENT+DELTA 24.5 26.8 24.4
+22.6 23.7
+34.0
+42.7 38.9 35.4 50.2 60.3 27.5
+48.5
+51.9 47.0 37.2
+Ent-W
+27.1 30.7 24.3
+22.3 17.5
+37.6
+44.2 42.5 37.8 51.5 59.9 5.5
+49.5
+52.9 48.5 36.8
+Ent-W+DELTA 31.7 33.8 32.0
+29.0 30.3
+40.2
+46.1 44.2 39.7 53.1 60.9 36.9
+51.5
+54.7 49.8 42.3
+ResNet50
+Source
+2.2
+2.9
+1.9
+17.9
+9.8
+14.8
+22.5 16.9 23.3 24.4 58.9 5.4
+17.0
+20.6 31.6 18.0
+TENT
+28.7 30.5 30.1
+28.0 27.2
+41.4
+49.4 47.2 41.2 57.3 67.4 26.7
+54.6
+58.5 52.5 42.7
+TENT+DELTA 31.2 33.1 32.1
+30.5 30.2
+42.9
+50.9 48.2 43.0 58.5 68.1 37.9
+56.2
+59.5 53.6 45.1
+Ent-W
+34.5 29.0 33.1
+29.6 26.3
+47.4
+52.2 51.9 45.6 59.9 67.8 17.8
+57.8
+60.9 55.0 44.6
+Ent-W+DELTA 38.1 39.6 39.0
+36.3 36.5
+49.9
+54.0 53.5 47.6 61.1 68.4 46.9
+59.2
+61.9 56.6 49.9
+ResNet101
+Source
+3.5
+4.3
+3.5
+21.9 13.1
+19.2
+26.5 21.0 26.7 28.1 61.4 7.2
+24.3
+35.0 42.3 22.5
+TENT
+32.6 34.0 33.2
+32.2 32.4
+45.1
+53.0 50.8 45.0 59.6 69.1 33.8
+58.6
+61.1 55.8 46.4
+TENT+DELTA 35.1 37.4 35.6
+34.9 35.1
+46.8
+54.6 51.8 46.7 60.7 69.9 42.6
+60.1
+62.3 57.2 48.7
+Ent-W
+36.1 20.8 37.3
+33.6 31.7
+50.3
+55.6 54.9 46.8 62.4 69.8 19.7
+61.1
+63.2 58.2 46.8
+Ent-W+DELTA 40.9 43.0 41.9
+39.8 40.1
+53.1
+57.4 56.5 50.8 63.4 70.2 50.6
+62.3
+64.2 59.8 53.0
+ResNet152
+Source
+3.6
+4.4
+3.3
+22.1 11.9
+24.8
+25.5 22.1 28.9 27.7 63.1 5.2
+24.9
+27.1 42.2 22.5
+TENT
+34.0 36.8 35.3
+34.1 34.0
+46.9
+54.0 52.4 47.0 61.3 70.7 35.5
+59.9
+62.4 57.2 48.1
+TENT+DELTA 36.6 39.2 37.7
+36.7 36.3
+48.7
+55.6 54.0 48.4 62.4 71.2 44.0
+61.3
+63.3 58.4 50.2
+Ent-W
+38.7 33.4 34.6
+36.6 33.2
+52.9
+57.4 56.9 46.5 64.2 71.0 29.3
+62.7
+64.8 60.0 49.5
+Ent-W+DELTA 42.6 45.4 44.5
+42.0 42.2
+55.5
+58.9 58.5 52.7 65.5 71.4 51.9
+63.7
+65.8 61.2 54.8
+WideResNet50
+TENT
+34.5 37.2 34.7
+30.6 31.6
+45.2
+52.0 51.1 45.8 60.5 69.9 38.4
+58.3
+61.7 54.9 47.1
+TENT+DELTA 36.7 39.6 37.2
+33.5 34.6
+47.4
+54.5 53.0 47.6 62.2 71.2 44.1
+60.3
+63.4 56.9 49.5
+Ent-W
+34.0 37.1 33.6
+25.0 27.7
+51.0
+54.7 55.5 49.9 62.8 70.4 24.9
+60.7
+63.9 57.6 47.3
+Ent-W+DELTA 41.1 44.9 42.9
+38.6 39.3
+53.4
+57.3 57.6 51.8 64.7 71.4 52.0
+62.4
+65.7 59.8 53.5
+ResNeXt50
+TENT
+33.3 36.2 34.2
+32.3 30.9
+45.5
+52.2 51.1 45.9 59.6 69.3 39.0
+57.1
+61.5 53.8 46.8
+TENT+DELTA 35.3 38.5 36.1
+34.5 33.5
+46.6
+53.7 52.1 47.0 60.5 69.9 43.9
+58.4
+62.4 55.0 48.5
+Ent-W
+31.4 37.5 34.7
+34.0 25.2
+51.0
+54.6 55.1 49.1 62.2 70.0 49.1
+60.3
+64.3 57.1 49.0
+Ent-W+DELTA 40.7 43.6 42.0
+39.5 39.1
+53.1
+56.7 56.6 51.1 63.2 70.4 50.7
+61.5
+64.9 58.2 52.8
+Table 28: Classification accuracy (%) on DS+CB (ρ = 1.0) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.2
+2.9
+1.9
+17.9
+9.8
+14.8
+22.5 16.9 23.3 24.4 58.9 5.4
+17.0
+20.6 31.6 18.0
+BN adapt
+10.6 10.9 10.9
+10.2 10.3
+17.5
+25.8 23.5 23.1 33.0 46.5 11.3
+30.2
+33.3 27.0 21.6
+ETA
+17.0 19.2 18.2
+14.1 12.0
+25.9
+31.1 30.9 26.8 38.6 46.1 18.9
+36.0
+38.7 33.5 27.1
+LAME
+1.8
+2.7
+1.5
+22.4 11.3
+17.2
+28.4 19.8 28.4 29.8 74.4 5.9
+20.0
+25.6 40.4 22.0
+CoTTA
+12.2 12.5 12.8
+9.5
+11.2
+19.7
+28.4 24.7 23.9 35.9 47.4 12.8
+31.1
+37.0 28.4 23.2
+CoTTA*
+12.2 14.9 16.2
+12.3 14.2
+18.9
+24.2 24.4 25.2 30.0 41.5 15.3
+30.8
+35.5 31.2 23.1
+PL
+15.9 15.6 16.4
+14.4 13.9
+23.1
+29.8 28.1 26.2 37.3 47.2 12.8
+34.2
+37.2 32.2 25.6
+PL+DELTA
+26.3 27.4 27.1
+25.5 25.1
+37.4
+46.5 43.0 39.8 54.8 66.6 32.7
+51.4
+55.6 48.6 40.5
+TENT
+16.1 16.8 16.8
+15.1 14.1
+23.3
+30.2 28.8 24.9 37.5 46.7 9.3
+34.9
+37.8 33.0 25.7
+TENT+DELTA 29.6 31.7 30.4
+29.1 28.6
+41.5
+49.8 47.0 42.1 57.6 67.5 35.7
+54.9
+58.5 52.0 43.7
+Ent-W
+4.2
+2.8
+3.1
+2.9
+3.6
+11.3
+20.2 20.0 12.5 34.4 44.7 1.7
+32.0
+37.1 21.5 16.8
+Ent-W+DELTA 35.6 37.9 36.0
+34.4 34.4
+47.9
+52.8 51.9 46.5 60.1 67.8 44.2
+57.9
+60.8 55.4 48.3
+23
+
+Published as a conference paper at ICLR 2023
+Table 29: Classification accuracy (%) on DS+CB (ρ = 0.5) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.2
+2.9
+1.9
+17.9
+9.8
+14.8
+22.5 16.9 23.3 24.4 58.9 5.4
+17.0
+20.6 31.6 18.0
+BN adapt
+9.6
+9.9
+9.8
+8.8
+9.1
+15.8
+22.8 21.0 20.8 29.5 41.9 10.3
+26.7
+29.5 24.2 19.3
+ETA
+13.9 15.5 13.3
+11.1 10.3
+21.4
+26.2 26.1 22.9 33.4 40.5 13.4
+30.9
+33.2 29.3 22.8
+LAME
+1.9
+2.8
+1.6
+23.6 11.7
+17.8
+29.4 20.4 29.4 30.5 76.1 6.2
+20.8
+26.4 41.5 22.7
+CoTTA
+10.8 11.0 11.0
+7.8
+10.4
+17.4
+25.0 22.0 21.6 32.0 42.6 9.9
+27.9
+32.5 25.8 20.5
+CoTTA*
+10.8 13.3 14.3
+11.0 12.9
+17.1
+22.0 21.8 22.8 27.6 38.0 14.8
+27.8
+32.6 28.0 21.0
+PL
+14.2 13.4 14.5
+12.5 11.5
+20.0
+26.3 24.9 23.4 33.2 42.4 11.1
+30.5
+33.1 28.5 22.6
+PL+DELTA
+25.6 27.3 26.2
+25.2 24.6
+36.0
+45.7 42.9 39.3 54.4 66.5 31.0
+50.6
+55.0 47.9 39.9
+TENT
+13.9 14.6 14.5
+12.6 11.7
+19.0
+26.1 25.2 21.5 33.2 41.6 6.5
+30.5
+33.1 28.9 22.2
+TENT+TBR
+27.3 28.5 28.2
+26.0 25.4
+38.9
+48.5 46.0 39.6 57.1 67.3 18.5
+53.6
+57.6 51.2 40.9
+TENT+DOT
+15.5 16.5 15.9
+14.2 14.0
+20.9
+27.1 25.9 23.5 33.7 41.8 15.2
+31.4
+33.5 29.5 23.9
+TENT+DELTA
+29.1 30.9 29.7
+28.2 27.8
+40.3
+49.0 46.7 41.5 57.3 67.3 33.9
+54.4
+58.1 51.6 43.1
+Ent-W
+2.9
+2.5
+3.5
+1.4
+1.0
+7.1
+11.9 15.1
+8.5 27.7 37.0 1.3
+22.2
+31.1 20.1 12.9
+Ent-W+TBR+Div-W(0.05) 32.4 34.6 33.3
+27.2 28.3
+45.2
+51.3 50.5 44.3 59.3 67.4 36.0
+57.0
+60.1 54.3 45.4
+Ent-W+TBR+Div-W(0.1)
+30.1 33.4 31.1
+25.5 21.7
+44.8
+51.1 50.4 43.4 59.3 67.4 16.3
+56.9
+60.2 54.3 43.1
+Ent-W+TBR+Div-W(0.2)
+23.7 30.5 26.5
+19.7 12.2
+44.3
+51.1 50.5 41.1 59.4 67.4 7.0
+56.8
+60.2 54.2 40.3
+Ent-W+TBR+Div-W(0.4)
+17.1 15.3 22.2
+11.2
+4.8
+43.7
+51.1 50.2 36.5 59.5 67.4 6.1
+56.7
+60.3 54.2 37.1
+Ent-W+TBR+LA
+10.9
+7.2
+14.3
+5.1
+5.0
+35.0
+39.9 39.3 23.2 46.8 53.6 4.1
+44.6
+47.2 42.4 27.9
+Ent-W+TBR+Sample-drop 33.7 36.4 35.1
+31.9 30.8
+46.7
+52.2 51.2 45.6 60.0 67.6 40.4
+57.3
+60.6 54.7 46.9
+Ent-W+DELTA
+34.9 37.5 35.8
+32.7 32.3
+46.7
+52.3 51.5 46.0 59.7 67.3 42.8
+57.3
+60.4 54.9 47.5
+Table 30: Classification accuracy (%) on DS+CB (ρ = 0.1) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.2
+2.9
+1.9
+17.9
+9.8
+14.8
+22.5 16.9 23.3 24.4 58.9 5.4
+17.0
+20.6 31.6 18.0
+BN adapt
+6.3
+6.4
+6.2
+5.6
+5.6
+9.8
+13.9 13.6 13.4 18.4 26.1 6.4
+16.5
+18.1 15.0 12.1
+ETA
+4.6
+5.2
+5.1
+2.3
+2.8
+7.0
+12.3 11.6 10.9 17.5 22.5 2.3
+14.5
+17.1 14.4 10.0
+LAME
+1.9
+2.9
+1.6
+26.2 12.8
+19.8
+32.7 22.8 32.5 33.8 80.0 6.6
+22.5
+29.0 45.5 24.7
+CoTTA
+7.1
+7.0
+7.1
+5.0
+6.2
+10.5
+15.0 14.1 13.7 19.3 26.5 6.4
+17.1
+19.6 15.8 12.7
+CoTTA*
+7.1
+8.2
+8.7
+6.3
+7.3
+10.3
+13.4 14.3 14.5 17.9 23.7 7.9
+16.9
+19.4 17.3 12.9
+PL
+7.7
+7.6
+8.3
+6.4
+6.1
+10.8
+15.4 15.0 14.0 20.0 25.9 5.0
+17.5
+19.4 17.0 13.1
+PL+DELTA
+23.4 24.6 24.0
+22.0 21.5
+33.3
+43.4 40.0 37.3 52.2 65.0 26.1
+47.8
+52.5 45.4 37.2
+TENT
+7.4
+7.8
+7.8
+6.2
+5.9
+8.9
+14.7 12.5 11.6 19.0 24.5 3.0
+16.8
+18.5 16.5 12.1
+TENT+DELTA 26.7 28.2 27.3
+25.0 24.8
+37.1
+46.6 43.6 39.6 55.1 65.7 27.2
+51.6
+55.6 49.0 40.2
+Ent-W
+1.5
+0.6
+1.4
+1.1
+0.8
+2.3
+4.6
+4.4
+3.1
+8.4 15.5 0.5
+7.0
+9.7
+5.7
+4.4
+Ent-W+DELTA 30.4 33.1 31.4
+26.8 28.1
+42.2
+48.9 48.2 42.6 56.9 65.4 31.5
+54.4
+57.8 51.5 43.3
+Table 31: Classification accuracy (%) on IS+CI (π = 0.1) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.4
+3.0
+1.9
+17.8
+9.7
+14.7
+22.4 16.5 23.1 24.2 58.9 5.5
+16.9
+20.4 31.5 17.9
+BN adapt
+15.0 15.8 15.4
+14.7 15.1
+25.6
+39.1 34.4 33.2 47.8 65.1 17.5
+44.4
+48.8 39.8 31.5
+ETA
+34.6 36.7 35.7
+33.1 32.5
+46.5
+51.9 51.3 45.4 59.5 67.6 44.8
+57.3
+60.9 55.1 47.5
+LAME
+1.8
+2.5
+1.5
+17.5
+9.0
+13.9
+21.8 15.1 22.3 22.6 58.5 5.3
+14.9
+19.8 30.9 17.2
+CoTTA
+17.1 17.8 17.5
+15.9 16.7
+30.2
+43.2 36.8 35.7 51.9 66.4 17.7
+47.1
+54.0 42.8 34.1
+CoTTA*
+17.1 22.0 24.1
+19.0 22.2
+28.0
+35.7 35.2 35.8 42.8 57.8 22.9
+44.8
+50.4 45.3 33.5
+PL
+24.9 24.8 25.9
+24.3 23.4
+36.2
+45.7 42.3 39.5 54.6 66.5 28.6
+49.9
+55.5 48.5 39.4
+PL+DELTA
+26.4 27.7 27.0
+26.3 24.9
+37.5
+46.9 43.3 40.2 55.3 66.8 33.3
+52.1
+56.5 49.8 40.9
+TENT
+27.8 29.3 29.2
+28.1 26.6
+40.8
+48.7 46.5 41.0 57.2 67.3 25.7
+53.6
+58.2 51.9 42.1
+TENT+TBR
+28.5 30.1 29.7
+28.7 27.3
+41.3
+49.9 47.0 41.7 57.6 67.9 25.1
+54.5
+59.0 52.9 42.7
+TENT+DOT
+29.8 31.6 30.9
+29.4 28.8
+41.7
+49.4 47.0 42.1 57.3 67.3 36.8
+54.9
+58.6 52.4 43.9
+TENT+DELTA
+30.7 32.5 31.3
+30.3 29.3
+42.0
+50.5 47.5 42.9 57.8 67.7 36.4
+55.7
+59.2 53.1 44.4
+Ent-W
+23.2 21.7 29.4
+19.1 19.6
+46.7
+51.7 51.0 39.0 58.9 67.5 10.1
+57.2
+60.5 54.9 40.7
+Ent-W+TBR+Div-W(0.05) 34.1 37.4 36.4
+32.5 32.9
+47.7
+52.9 52.1 45.7 60.0 67.9 42.6
+57.8
+61.7 55.7 47.8
+Ent-W+TBR+Div-W(0.1)
+34.5 36.1 35.9
+32.4 32.0
+48.0
+52.9 52.1 45.8 59.8 68.0 40.2
+57.9
+61.5 55.7 47.5
+Ent-W+TBR+Div-W(0.2)
+32.5 34.1 35.3
+30.0 29.7
+47.6
+52.7 51.9 45.5 59.7 68.0 30.2
+57.9
+61.5 55.7 46.1
+Ent-W+TBR+Div-W(0.4)
+29.2 27.5 34.3
+27.4 25.1
+47.8
+52.8 51.8 44.7 59.5 68.0 6.1
+58.0
+61.4 55.8 43.3
+Ent-W+TBR+LA
+24.8 23.5 34.6
+25.1 20.4
+48.2
+52.9 52.2 45.0 59.7 67.3 4.2
+58.0
+61.3 55.8 42.2
+Ent-W+TBR+Sample-drop 36.1 37.8 37.3
+33.7 33.2
+47.3
+52.9 52.1 46.0 59.7 68.0 43.7
+57.9
+61.5 55.5 48.2
+Ent-W+DELTA
+36.6 38.6 37.8
+34.9 34.4
+47.7
+52.6 51.9 46.1 59.5 67.4 44.6
+57.9
+60.9 55.4 48.4
+24
+
+Published as a conference paper at ICLR 2023
+Table 32: Classification accuracy (%) on IS+CI (π = 0.05) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.2
+2.9
+1.9
+18.0 10.0
+14.6
+22.5 16.6 23.1 24.4 58.4 5.5
+16.9
+20.6 31.5 17.9
+BN adapt
+15.1 15.2 15.6
+14.9 15.8
+25.6
+39.0 34.6 33.2 47.8 64.7 17.2
+44.1
+48.2 39.9 31.4
+ETA
+34.2 36.1 35.0
+32.0 32.0
+46.1
+52.0 50.6 45.0 59.4 67.3 43.4
+57.0
+60.3 54.5 47.0
+LAME
+1.6
+2.4
+1.4
+17.7
+9.1
+13.9
+21.9 15.4 22.3 22.7 58.0 5.2
+15.1
+19.8 30.9 17.2
+CoTTA
+17.3 17.4 17.8
+15.4 17.1
+29.8
+43.1 37.5 35.4 51.9 65.8 19.3
+46.8
+53.3 42.5 34.0
+CoTTA*
+17.3 21.6 23.8
+19.9 22.9
+29.3
+37.4 35.7 36.6 44.5 59.0 24.2
+45.5
+51.8 45.9 34.4
+PL
+24.2 24.6 25.8
+24.7 23.5
+36.2
+45.8 42.7 38.9 54.3 65.9 27.0
+49.0
+55.0 48.0 39.0
+PL+DELTA
+26.1 27.3 27.1
+25.8 25.3
+36.2
+46.8 43.2 39.9 54.8 66.4 32.6
+51.1
+55.4 48.8 40.5
+TENT
+27.1 29.0 28.8
+27.7 27.1
+40.3
+49.1 46.4 40.7 57.1 66.6 24.8
+53.1
+57.8 51.3 41.8
+TENT+DELTA 30.1 32.3 31.2
+29.6 29.6
+41.4
+50.0 47.4 42.4 57.6 67.2 35.3
+55.1
+58.5 52.6 44.0
+Ent-W
+17.2 13.4 25.6
+15.8 12.1
+45.9
+51.0 50.4 44.6 59.3 66.9 10.0
+56.5
+60.0 54.1 38.9
+Ent-W+DELTA 35.7 38.2 37.1
+34.1 33.8
+46.5
+51.7 51.1 45.6 58.4 66.0 43.5
+57.0
+59.3 54.5 47.5
+Table 33: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.1) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.4
+3.0
+1.9
+17.8
+9.7
+14.7
+22.4 16.5 23.1 24.2 58.9 5.5
+16.9
+20.4 31.5 17.9
+BN adapt
+9.7
+10.1 10.1
+9.3
+9.5
+16.1
+24.2 21.7 21.4 30.8 43.5 11.2
+27.0
+30.9 25.7 20.1
+ETA
+11.9 12.7 12.7
+8.6
+7.3
+18.8
+27.1 25.9 22.8 34.0 41.9 7.9
+30.7
+34.9 30.3 21.8
+LAME
+2.0
+2.8
+1.5
+22.4 11.4
+17.1
+27.5 19.4 28.0 29.5 73.1 6.0
+19.8
+24.9 40.0 21.7
+CoTTA
+11.4 11.6 11.7
+9.8
+10.4
+17.9
+26.4 22.9 22.6 33.3 44.4 11.6
+28.6
+33.8 27.3 21.6
+CoTTA*
+11.4 13.9 14.9
+11.7 13.3
+17.9
+22.8 22.7 23.5 29.2 39.4 14.6
+28.2
+33.1 29.6 21.7
+PL
+14.4 12.5 14.0
+12.6 11.8
+20.2
+27.2 25.3 24.1 34.1 43.9 10.7
+29.8
+34.2 29.8 23.0
+PL+DELTA
+24.8 25.5 25.4
+23.6 23.0
+34.9
+44.8 41.0 38.8 53.2 65.9 29.6
+49.7
+54.1 47.3 38.8
+TENT
+12.9 13.9 14.3
+12.8 11.7
+18.5
+27.0 25.0 21.7 34.1 42.9 6.6
+30.1
+34.5 30.1 22.4
+TENT+DELTA 28.3 30.1 29.1
+27.5 27.2
+39.3
+48.3 45.2 41.2 56.3 66.8 31.0
+53.6
+57.2 51.2 42.2
+Ent-W
+1.6
+1.6
+2.4
+2.3
+1.3
+5.6
+12.9 13.5 11.1 16.7 40.4 1.1
+16.8
+17.4 16.6 10.8
+Ent-W+DELTA 32.2 35.0 34.1
+30.5 29.4
+44.8
+50.7 49.5 44.5 58.1 66.6 36.6
+55.7
+58.4 53.7 45.3
+Table 34: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.05) test stream of ImageNet-C.
+Method
+Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg
+Source
+2.2
+2.9
+1.9
+18.0 10.0
+14.6
+22.5 16.6 23.1 24.4 58.4 5.5
+16.9
+20.6 31.5 17.9
+BN adapt
+9.8
+9.9
+10.5
+9.6
+9.5
+15.8
+23.8 22.1 21.8 31.4 43.9 11.2
+26.9
+30.6 25.8 20.2
+ETA
+9.1
+11.2 12.5
+3.9
+7.8
+18.2
+26.3 25.6 22.4 34.4 41.9 6.4
+30.7
+33.7 29.7 20.9
+LAME
+1.8
+2.7
+1.6
+21.9 11.5
+16.9
+27.3 19.3 28.3 29.3 71.4 5.8
+20.2
+24.6 39.1 21.5
+CoTTA
+11.3 11.4 12.1
+8.9
+10.0
+17.9
+26.3 23.4 23.0 33.9 44.6 10.1
+29.0
+34.1 27.6 21.6
+CoTTA*
+11.3 13.6 14.9
+12.1 13.4
+17.8
+23.1 23.3 23.5 29.1 40.0 13.9
+28.4
+33.1 29.8 21.8
+PL
+13.3 11.2 14.7
+12.4 12.4
+19.6
+27.1 25.7 24.2 34.7 44.4 8.4
+29.7
+34.0 30.0 22.8
+PL+DELTA
+23.8 25.0 25.1
+23.4 22.6
+33.6
+44.3 41.2 38.7 53.1 65.4 27.9
+48.9
+53.6 46.6 38.2
+TENT
+12.6 13.6 14.3
+12.6 11.4
+17.2
+26.6 25.2 21.7 34.6 43.0 6.0
+29.6
+34.2 30.3 22.2
+TENT+TBR
+24.7 26.6 26.9
+24.8 24.7
+37.1
+47.0 44.4 39.0 55.5 66.2 15.5
+51.0
+56.3 50.0 39.3
+TENT+DOT
+15.4 16.6 16.4
+14.6 14.5
+20.1
+27.7 26.5 24.1 35.4 43.3 13.6
+31.4
+35.2 31.3 24.4
+TENT+DELTA
+27.5 29.4 28.9
+26.3 27.2
+38.4
+47.7 45.3 40.8 56.0 66.4 29.1
+52.7
+56.8 50.5 41.5
+Ent-W
+0.9
+1.5
+3.6
+0.8
+1.4
+5.9
+11.7 10.8
+8.9 23.0 36.2 0.5
+18.0
+23.5 13.9 10.7
+Ent-W+TBR+Div-W(0.05) 27.0 28.5 29.4
+21.3 23.3
+40.1
+48.5 48.1 42.1 57.3 66.1 13.4
+54.4
+58.3 52.6 40.7
+Ent-W+TBR+Div-W(0.1)
+24.3 28.8 28.8
+16.5 22.0
+40.0
+48.6 48.1 41.5 57.1 66.2 6.9
+54.7
+58.5 52.5 39.6
+Ent-W+TBR+Div-W(0.2)
+20.6 22.6 24.4
+9.4
+15.0
+39.9
+49.2 48.5 42.4 57.2 66.4 3.2
+54.7
+58.7 52.5 37.6
+Ent-W+TBR+Div-W(0.4)
+12.5 10.7 15.0
+7.4
+13.4
+41.0
+49.3 48.5 37.9 57.1 66.4 2.1
+54.9
+58.6 52.7 35.2
+Ent-W+TBR+LA
+7.5
+7.6
+13.0
+3.6
+6.4
+33.8
+39.7 39.3 30.4 46.3 54.1 1.7
+44.3
+47.3 42.7 27.8
+Ent-W+TBR+Sample-drop 27.9 32.2 30.9
+24.3 27.0
+40.8
+48.9 48.2 41.9 56.4 65.8 29.3
+54.0
+58.0 52.2 42.5
+Ent-W+DELTA
+30.8 34.4 33.0
+28.7 29.3
+42.8
+49.7 49.1 43.9 57.2 65.3 36.7
+54.9
+58.6 52.7 44.5
+25
+
diff --git a/n9FPT4oBgHgl3EQfKTRi/content/tmp_files/load_file.txt b/n9FPT4oBgHgl3EQfKTRi/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ce1cc43c32726a74399b70a0f02021be598bbff2
--- /dev/null
+++ b/n9FPT4oBgHgl3EQfKTRi/content/tmp_files/load_file.txt
@@ -0,0 +1,7089 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf,len=7088
+page_content='Published as a conference paper at ICLR 2023 DELTA: DEGRADATION-FREE FULLY TEST-TIME ADAP- TATION∗ Bowen Zhao1,2, Chen Chen3,�, Shu-Tao Xia1,4,� 1Tsinghua University, 2Tencent TEG AI, 3OPPO research institute, 4Peng Cheng Laboratory zbw18@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='cn, chen1634chen@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com, xiast@sz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='cn ABSTRACT Fully test-time adaptation aims at adapting a pre-trained model to the test stream during real-time inference, which is urgently required when the test distribution differs from the training distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Several efforts have been devoted to improv- ing adaptation performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, we find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normal- ization (BN) and self-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Second, we show that during test-time adap- tation, the parameter update is biased towards some dominant classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In addi- tion to the extensively studied test stream with independent and class-balanced samples, we further observe that the defects can be exacerbated in more compli- cated test environments, such as (time) dependent or class-imbalanced data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We observe that previous approaches work well in certain scenarios while show per- formance degradation in others due to their faults.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In this paper, we provide a plug-in solution called DELTA for Degradation-freE fuLly Test-time Adaptation, which consists of two components: (i) Test-time Batch Renormalization (TBR), introduced to improve the estimated normalization statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (ii) Dynamic Online re-weighTing (DOT), designed to address the class bias within optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We investigate various test-time adaptation methods on three commonly used datasets with four scenarios, and a newly introduced real-world dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA can help them deal with all scenarios simultaneously, leading to SOTA performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 1 INTRODUCTION Models suffer from performance decrease when test and training distributions are mis- matched (Quinonero-Candela et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Numerous studies have been conducted to narrow the performance gap based on a variety of hypotheses/settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Unsupervised domain adaptation meth- ods (Ganin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2016) necessitate simultaneous access to labeled training data and unlabeled target data, limiting their applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Source-free domain adaptation approaches (Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) only need a trained model and do not require original training data when performing adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Nonethe- less, in a more difficult and realistic setting, known as fully test-time adaptation (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), the model must perform online adaptation to the test stream in real-time inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The model is adapted in a single pass on the test stream using a pre-trained model and continuously arriving test data (rather than a prepared target set).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Offline iterative training or extra heavy computational burdens beyond normal inference do not meet the requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' There have been several studies aimed at fully test-time adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Test-time BN (Nado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) / BN adapt (Schneider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) directly uses the normalization statistics derived from test samples instead of those inherited from the training data, which is found to be beneficial in reducing the performance gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Entropy-minimization-based methods, such as TENT (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), further optimize model parameters during inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Contrastive learning (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022), data augmentation (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022a) and uncertainty-aware optimization (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) have been introduced to enhance adaptation performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Efforts have also been made to address test-time adaptation in more complex test environments, like LAME (Boudiaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ∗work done by Bowen Zhao (during internship) and Chen Chen at Tencent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13018v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='LG] 30 Jan 2023 Published as a conference paper at ICLR 2023 −→ IS+CB DS+CB IS+CI DS+CI Figure 1: IS+CB / DS+CB: the test stream which is inde- pendently / dependently sampled from a class-balanced test distribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CI/ DS+CI: independently / dependently drawn from a class-imbalanced test distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Each bar represents a sample, each color represents a category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 1: Comparison of fully test-time adaptation methods against the pre- trained model on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA achieves improvement in all scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Scenario TENT LAME DELTA (Ours) IS+CB DS+CB IS+CI DS+CI Despite the achieved progress, we find that there are non-negligible defects hidden in the popular methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' First, we take a closer look at the normalization statistics within inference (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We observe that the statistics used in BN adapt is inaccurate in per batch compared to the actual pop- ulation statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Second, we reveal that the prevalent test-time model updating is biased towards some dominant categories (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We notice that the model predictions are extremely imbal- anced on out-of-distribution data, which can be exacerbated by the self-learning-based adaptation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Besides the most common independent and class-balanced test samples considered in ex- isting studies, following Boudiaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022), we investigate other three test scenarios as illustrated in Figure 1 (please see details in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) and find when facing the more intricate test streams, like dependent samples or class-imbalanced data, the prevalent methods would suffer from severe performance degradation, which limits the usefulness of these test-time adaptation strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To address the aforementioned issues, we propose two powerful tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Specifically, to handle the in- accurate normalization statistics, we introduce test-time batch renormalization (TBR) (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2), which uses the test-time moving averaged statistics to rectify the normalized features and considers normalization during gradient optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' By taking advantage of the observed test samples, the calibrated normalization is more accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We further propose dynamic online re-weighting (DOT) (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3) to tackle the biased optimization, which is derived from cost-sensitive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To bal- ance adaptation, DOT assigns low/high weights to the frequent/infrequent categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The weight mapping function is based on a momentum-updated class-frequency vector that takes into account multiple sources of category bias, including the pre-trained model, the test stream, and the adap- tation methods (the methods usually do not have an intrinsic bias towards certain classes, but can accentuate existing bias).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' TBR can be applied directly to the common BN-based pre-trained mod- els and does not interfere with the training process (corresponding to the fully test-time adaptation setting), and DOT can be easily combined with other adaptation approaches as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 1 compares our method to others on CIFAR100-C across various scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The existing test-time adaptation methods behave differently across the four scenarios and show performance degradation in some scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' While our tools perform well in all four scenarios simultaneously without any prior knowledge of the test data, which is important for real-world applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Thus, the whole method is named DELTA (Degradation-freE fuLly Test-time Adaptation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The major contributions of our work are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (i) We expose the defects in commonly used test-time adaptation methods, which ultimately harm adaptation performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (ii) We demonstrate that the defects will be even more severe in complex test environments, causing performance degra- dation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (iii) To achieve degradation-free fully test-time adaptation, we propose DELTA which com- prises two components: TBR and DOT, to improve the normalization statistics estimates and mit- igate the bias within optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (iv) We evaluate DELTA on three common datasets with four scenarios and a newly introduced real-world dataset, and find that it can consistently improve the popular test-time adaptation methods on all scenarios, yielding new state-of-the-art results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2 RELATED WORK Unsupervised domain adaptation (UDA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In reality, test distribution is frequently inconsistent with the training distribution, resulting in poor performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' UDA aims to alleviate the phenomenon with the collected unlabeled samples from the target distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' One popular approach is to align the sta- tistical moments across different distributions (Gretton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Zellinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Long et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Another line of studies adopts adversarial training to achieve adaptation (Ganin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2 Published as a conference paper at ICLR 2023 Long et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' UDA has been developed for many tasks including object classification (Saito et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2017)/detection (Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021) and semantic segmentation (Hoffman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Source-free domain adaptation (SFDA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' SFDA deals with domain gap with only the trained model and the prepared unlabeled target data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To be more widely used, SFDA methods should be built on a common source model trained by a standard pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' SHOT (Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) freezes the source model’s classifier and optimizes the feature extractor via entropy minimization, diversity regularization, and pseudo-labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' SHOT incorporates weight normalization, 1D BN, and label- smoothing into backbones and training, which do not exist in most off-the-shelf trained models, but its other ideas can be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' USFDA (Kundu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) utilizes synthesized samples to achieve compact decision boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' NRC (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021b) encourages label consistency among local target features with the same network architecture as SHOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' GSFDA (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021a) further expects the adapted model performs well not only on target data but also on source data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Fully test-time adaptation (FTTA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' FTTA is a more difficult and realistic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In the same way that SFDA does not provide the source training data, only the trained model is provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Unlike SFDA, FTTA cannot access the entire target dataset;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' however, the methods should be capable of do- ing online adaptation on the test stream and providing instant predictions for the arrived test samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' BN adapt (Nado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Schneider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) replaces the normalization statistics estimated during training with those derived from the test mini-batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' On top of it, TENT (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021) optimizes the affine parameters in BN through entropy minimization during test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' EATA (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) and CoTTA (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022a) study long-term test-time adaptation in continually changing environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ETA (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) excludes unreliable and redundant samples from the opti- mization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' AdaContrast (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) resorts to contrastive learning to promote feature learning along with a pseudo label refinement mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Both AdaContrast and CoTTA utilize heavy data augmentation during test, which will increase inference latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Besides, AdaContrast modifies the model architecture as in SHOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Different from them, LAME (Boudiaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) does not rectify the model’s parameters but only the model’s output probabilities via the introduced unsupervised objective laplacian adjusted maximum-likelihood estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Class-imbalanced learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Training with class-imbalanced data has attracted widespread atten- tion (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Cost-sensitive learning (Elkan, 2001) and resampling (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) are the classical strategies to handle this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2018) designs a meta-learning paradigm to assign weights to samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Class-balanced loss (Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2019) uses the effective number of samples when performing re-weighting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Decoupled training (Kang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020b) learns the feature extractor and the classifier separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Menon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2021) propose logit adjustment from a statis- tical perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Other techniques such as weight balancing (Alshammari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020), contrastive learning (Kang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020a), knowledge distillation (He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' have also been applied to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 3 DELTA: DEGRADATION-FREE FULLY TEST-TIME ADAPTATION 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 PROBLEM DEFINITION Assume that we have the training data Dtrain = {(xi, yi)}N train i=1 ∼ P train(x, y), where x ∈ X is the input and y ∈ Y = {1, 2, · · · , K} is the target label;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' f{θ0,a0} denotes the model with parameters θ0 and normalization statistics a0 learned or estimated on Dtrain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Without loss of generality, we denote the test stream as Dtest = {(xj, yj)}N test j=1 ∼ P test(x, y), where {yj} are not available actually, the subscript j also indicates the sample position within the test stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' When P test(x, y) ̸= P train(x, y) (the input/output space X/Y is consistent between training and test data), f{θ0,a0} may perform poorly on Dtest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Under fully test-time adaptation scheme (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), during inference step t ≥ 1, the model f{θt−1,at−1} receives a mini-batch of test data {xmt+b}B b=1 with B batch size (mt is the number of test samples observed before inference step t), and then elevates itself to f{θt,at} based on current test mini-batch and outputs the real-time predictions {pmt+b}B b=1 (p ∈ RK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Finally, the evaluation metric is calculated based on the online predictions from each inference step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Fully test-time adaptation emphasizes performing adaptation during real-time inference entirely, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', the training process cannot be interrupted, the training data is no longer available during test, and the adaptation should be accomplished in a single pass over the test stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 3 Published as a conference paper at ICLR 2023 The most common hypothesis is that Dtest is independently sampled from P test(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, in real environment, the assumption does not always hold, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', samples of some classes may appear more frequently in a certain period of time, leading to another hypothesis: the test samples are depen- dently sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Most studies only considered the scenario with class-balanced test samples, while in real-world, the test stream can be class-imbalanced1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We investigate fully test-time adaptation under the four scenarios below, considering the latent sampling strategies and the test class distri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For convenience, we denote the scenario where test samples are independently/dependently sampled from a class-balanced test distribution as IS+CB / DS+CB;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' denote the scenario where test samples are independently/dependently sampled from a class-imbalanced test distribution as IS+CI/ DS+CI, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Among them, IS+CB is the most common scenario within FTTA studies, and the other three scenarios also frequently appear in real-world applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 A CLOSER LOOK AT NORMALIZATION STATISTICS We revisit BN (Ioffe & Szegedy, 2015) briefly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Let v ∈ RB×C×S×S′ be a mini-batch of features with C channels, height S and width S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' BN normalizes v with the normalization statistics µ, σ ∈ RC: v∗ = v−µ σ , v⋆ = γ · v∗ + β, where γ, β ∈ RC are the learnable affine parameters, {γ, β} ⊂ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We mainly focus on the first part v → v∗ (all the discussed normalization meth- ods adopt the affine parameters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In BN, during training, µ, σ are set to the empirical mean µbatch and standard deviation σbatch calculated for each channel c: µbatch[c] = 1 BSS′ � b,s,s′ v[b, c, s, s′], σbatch[c] = � 1 BSS′ � b,s,s′(v[b, c, s, s′] − µbatch[c])2 + ϵ, where ϵ is a small value to avoid division by zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' During inference, µ, σ are set to µema, σema which are the exponential-moving-average (EMA) estimates over training process (a0 is formed by the EMA statistics of all BN modules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, when P test(x, y) ̸= P train(x, y), studies found that replacing µema, σema with the statistics of the test mini-batch: ˆµbatch, ˆσbatch can improve model accuracy (Nado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) (for clarify, statistics estimated on test samples are denoted with ‘ˆ’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The method is also marked as “BN adapt” (Schneider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 0 10 20 30 40 50 60 70 80 Test mini-batch 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='064 for normalization Global BN adapt BN adapt+TEMA (a) µ, IS+CB 0 10 20 30 40 50 60 70 80 Test mini-batch 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='064 for normalization Global BN adapt BN adapt+TEMA (b) µ, DS+CB 0 10 20 30 40 50 60 70 80 Test mini-batch 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='074 for normalization Global BN adapt BN adapt+TEMA (c) σ, IS+CB 0 10 20 30 40 50 60 70 80 Test mini-batch 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='074 for normalization Global BN adapt BN adapt+TEMA (d) σ, DS+CB Figure 2: Normalization statistics in different scenarios on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Diagnosis I: Normalization statistics are inaccurate within each test mini-batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We conduct experiments on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' From Figure 2 we can see that the statistics ˆµbatch, ˆσbatch used in BN adapt fluctuate dramatically during adaptation, and are inaccurate in most test mini-batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' It should be noted that for BN adapt, predictions are made online based on real-time statistics, so poor estimates can have a negative impact on performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' More seriously, the estimates in the DS+CB scenario are worse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Ta- ble 2, though BN adapt and TENT can improve accuracy compared to Source (test with the fixed pre-trained model f{θ0,a0}) in IS+CB scenario, they suffer from degradation in the DS+CB cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Overall, we can see that the poor statistics severely impede test-time adaptation because they are derived solely from the current small mini-batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 2: Average accuracy (%) of 15 corrupted sets on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method IS+CB DS+CB Source 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 BN adapt 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 BN adapt+TEMA 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='04 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='51 TENT 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='04 TENT+TEMA 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='84 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 TENT+TBR 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='57 Treatment I: Test-time batch renormalization (TBR) is a simple and powerful tool to improve the normaliza- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' It is natural to simply employ the test-time moving averages ˆµema, ˆσema to perform normalization during adap- tation, referring to as TEMA, where ˆµema t = α · ˆµema t−1 + (1 − α) · sg(ˆµbatch t ), ˆσema t = α · ˆσema t−1 + (1 − α) · sg(ˆσbatch t ), sg(·) stands for the operation of stopping gradient, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', the Tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='detach() function in PyTorch, α is a smoothing coef- 1Regarding training class distribution, in experiments, we primarily use models learned on balanced training data following the benchmark of previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Furthermore, when P train(y) is skewed, some techniques are commonly used to bring the model closer to the one trained on balanced data, such as on YTBB-sub (Section 4), where the trained model is learned with logit adjustment on class-imbalanced training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 4 Published as a conference paper at ICLR 2023 ficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' TEMA can consistently improve BN adapt: the normalization statistics in Figure 2 become more stable and accurate, and the test accuracy in Table 2 is improved as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, for TENT which involves parameters update, TEMA can destroy the trained model as shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As discussed in Ioffe & Szegedy (2015), simply employing the moving averages would neutralize the effects of gradient optimization and normalization, as the gradient descent optimization does not consider the normalization, leading to unlimited growth of model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Thus, we introduce batch renormalization (Ioffe, 2017) into test-time adaptation, leading to TBR, which is formulated by v∗ = v − ˆµbatch ˆσbatch r + d, where r = sg(ˆσbatch) ˆσema , d = sg(ˆµbatch) − ˆµema ˆσema , (1) We present a detailed algorithm description in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Different from BN adapt, we use the test-time moving averages to rectify the normalization (through r and d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Different from the TEMA, TBR is well compatible with gradient-based adaptation methods (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', TENT) and can improve them as summarised in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For BN adapt, TEMA is equal to TBR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Different from the original batch renormalization used in the training phase, TBR is employed in the inference phase which uses the statistics and moving averages derived from test batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Besides, as the adaptation starts with a trained model f{θ0,a0}, TBR discards the warm-up and truncation operation to r and d, thus does not introduce additional hyper-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' TBR can be applied directly to a common pre-trained model with BN without requiring the model to be trained with such calibrated normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 A CLOSER LOOK AT TEST-TIME PARAMETER OPTIMIZATION 0 50 100 Sorted classes 0 50 100 150 200 250 300 # Predictions 0 50 100 Sorted classes 0 50 100 150 200 250 300 # Predictions 0 50 100 Sorted classes 0 50 100 150 200 250 300 # Predictions 0 50 100 Sorted classes 0 50 100 150 200 250 300 # Predictions [Clean,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Source] [Gauss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Source] [Gauss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' BN adapt+TEMA] [Gauss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' TENT+TBR+DOT] [Gauss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' TENT+TBR] [Gauss,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DS+CB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' TENT+TBR] Figure 3: Per-class number of predictions under combina- tions of [data,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' scenario,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' method].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 3: Standard Deviation (STD), Range (R) of per-class number of predictions and accuracy (Acc, %) on Gauss data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method IS+CB DS+CB STD R Acc STD R Acc Source 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 BN adapt+TEMA 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT+TBR 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT+TBR+DOT 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Building on BN adapt, TENT (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021) further optimizes the affine parameters γ, β through en- tropy minimization and shows that test-time parameter optimization can yield better results compared to em- ploying BN adapt alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We further take a closer look at this procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Diagnosis II: the test-time op- timization is biased towards dominant classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We evaluate the model on IS+CB and DS+CB gaussian-noise-corrupted test data (Gauss) of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We also test the model on the original clean test set of CIFAR100 for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Figure 3 depicts the per-class number of predictions, while Table 3 shows the corresponding standard deviation, range (maximum subtract minimum), and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We draw the following five conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Predictions are imbalanced, even for a model trained on class-balanced training data and tested on a class-balanced test set with P test(x, y) = P train(x, y): the “clean” curve in Figure 3 (left) with standard deviation 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 and range 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' This phenomenon is also studied in Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Predictions becomes more imbalanced when P test(x, y) ̸= P train(x, y) as shown in Figure 3 (left): the ranges are 46 and 956 on the clean and corrupted test set respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' BN adapt+TEMA improves accuracy (from 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0% to 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0%) and alleviates the prediction imbal- ance at the same time (the range dropped from 956 to 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Though accuracy is further improved with TENT+TBR (from 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0% to 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2%), the predictions become more imbalanced inversely (the range changed from 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 to 269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The entropy mini- mization loss focuses on data with low entropy, while samples of some classes may have relatively lower entropy owing to the trained model, thus TENT would aggravate the prediction imbalance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' On dependent test streams, not only the model accuracy drops, but also the predictions become more imbalanced (range 269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 / range 469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 on independent/dependent samples for TENT+TBR), as the model may be absolutely dominated by some classes over a period of time in DS+CB scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 5 Published as a conference paper at ICLR 2023 Algorithm 1: Dynamic Online reweighTing (DOT) Input: inference step t := 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' test stream samples {xj};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' pre-trained model f{θ0,a0};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' class-frequency vector z0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' loss function L;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' smooth coefficient λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 1 while the test mini-batch {xmt+b}B b=1 arrives do 2 t = t + 1 3 {pmt+b}B b=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' f{θt−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='at} ← Forward({xmt+b}B b=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' f{θt−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='at−1}) // output predictions 4 for b = 1 to B do 5 k∗ mt+b = arg maxk∈[1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='K] pmt+b[k] // predicted label 6 wmt+b = 1/(zt−1[k∗ mt+b]+ϵ) // assign sample weight 7 ¯wmt+b = B · wmt+b/ �B b′=1 wmt+b′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' b = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' B // normalize sample weight 8 l = 1 B �B b=1 ¯wmt+b · L(pmt+b) // combine sample weight with loss 9 f{θt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='at} ← Backward & Update(l,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' f{θt−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='at}) // update θ 10 zt ← λzt−1 + (1−λ) B �B b=1 pmt+b // update z The imbalanced data is harmful during the normal training phase,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' resulting in biased models and poor overall accuracy (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Menon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Our main motivation is that the test-time adaptation methods also involve gradient-based optimization which is built on the model predictions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' however, the predictions are actually imbalanced, particularly for dependent or class-imbalanced streams and the low-entropy-emphasized adaptation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Therefore, we argue that the test-time optimization is biased towards some dominant classes actually, resulting in inferior performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A vicious circle is formed by skewed optimization and imbalanced predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Treatment II: Dynamic online re-weighting (DOT) can alleviate the biased optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Many methods have been developed to deal with class imbalance during the training phase, but they face several challenges when it comes to fully test-time adaptation: (i) Network architectures are immutable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (ii) Because test sample class frequencies are dynamic and agnostic, the common constraint of making the output distribution uniform (Liang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020) is no longer reasonable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (iii) Inference and adaptation must occur in real-time when test mini-batch arrived (only a single pass through test data, no iterative learning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Given these constraints, we propose DOT as presented in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DOT is mainly derived from class-wise re-weighting (Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To tackle the dynamically changing and unknown class frequencies, we use a momentum-updated class-frequency vector z ∈ RK instead (Line 10 of Algorithm 1), which is initiated with z[k] = 1 K , k = 1, 2, · · · , K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For each inference step, we assign weights to each test sample based on its pseudo label and the current z (Line 5,6 of Algorithm 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Specifically, when z[k] is relatively large, during the subsequent adaptation, DOT will reduce the contributions of the kth class samples (pseudo label) and emphasize others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' It is worth noting that DOT can alleviate the biased optimization caused by the pre-trained model (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', inter-class similarity), test stream (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', class-imbalanced scenario) simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DOT is a general idea to tackle the biased optimization, some parts in Algorithm 1 have multi- ple options, so it can be combined with different existing test-time adaptation techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For the “Forward (·)” function (Line 3 of Algorithm 1), the discussed BN adapt and TBR can be in- corporated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For the loss function L(·) (Line 8 of Algorithm 1), studies usually employ the en- tropy minimization loss: L(pb) = − �K k=1 pb[k] log pb[k] or the cross-entropy loss with pseudo labels: L(pb) = −Ipb[k∗ b ]≥τ · log pb[k∗ b] (commonly, only samples with high prediction con- fidence are utilized, τ is a pre-defined threshold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Similarly, for entropy minimization, Ent- W (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) also discards the high-entropy samples and emphasizes the low-entropy ones: L(pb) = −IHb<τ · eτ−Hb · �K k=1 pb[k] log pb[k], where Hb is the entropy of sample xb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 4 EXPERIMENTS Datasets and models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We conduct experiments on common datasets CIFAR100-C, ImageNet- C (Hendrycks & Dietterich, 2019), ImageNet-R (Hendrycks et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), and a newly introduced video (segments) dataset: the subset of YouTube-BoundingBoxes (YTBB-sub) (Real et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' CIFAR100-C / ImageNet-C contains 15 corruption types, each with 5 severity levels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' we use the 6 Published as a conference paper at ICLR 2023 highest level unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ImageNet-R contains various styles (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', paintings) of Ima- geNet categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Following Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022), for evaluations on CIFAR100-C, we adopt the trained ResNeXt-29 (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2017) model from Hendrycks et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2020) as f{θ0,a0};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' for ImageNet-C / -R, we use the trained ResNet-50 model from Torchvision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The models are trained on the corresponding original training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For YTBB-sub, we use a ResNet-18 trained on the related images of COCO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Details of the tasks, datasets and examples are provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Unless otherwise specified, we report the mean accuracy over classes (Acc, %) (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' results are averaged over 15 different corruption types for CIFAR100-C and ImageNet-C in the main text, please see detailed performance on each corruption type in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The configurations are mainly followed previous work Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2022a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022) for comparison, details are listed in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Code will be available online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 4: Acc in IS+CB scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method CIFAR100-C ImageNet-C Source 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 TTA – 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 BN adapt 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='02 MEMO – 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 ETA 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='14 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='06 LAME 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='06 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='01 CoTTA 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='04 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='11 CoTTA* 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='53 PL 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='11 +DELTA 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='16 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 +DELTA 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='15 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 +DELTA 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We adopt the following SOTA methods as base- lines: pseudo label (PL) (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2013), test-time aug- mentation (TTA) (Ashukha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020), BN adaptation (BN adapt) (Schneider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Nado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020), test-time en- tropy minimization (TENT) (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), marginal en- tropy minimization with one test point (MEMO) (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021), efficient test-time adaptation (ETA) (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022), entropy-based weighting (Ent-W) (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022), lapla- cian adjusted maximum-likelihood estimation (LAME) (Boudiaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022), continual test-time adaptation (CoTTA/CoTTA*: w/wo resetting) (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We combine DELTA with PL, TENT, and Ent-W in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Evaluation in IS+CB scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The results on CIFAR100-C are reported in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As can be seen, the proposed DELTA consistently improves the previous adaptation approaches PL (gain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7%), TENT (gain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8%), and Ent-W (gain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8%), achiev- ing new state-of-the-art performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The results also indi- cate that current test-time adaptation methods indeed suffer from the discussed drawbacks, and the proposed methods can help them obtain superior performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Then we evaluate the meth- ods on the more challenging dataset ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Consistent with the results on CIFAR100- C, DELTA remarkably improves the existing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As the adaptation batch size (64) is too small compared to the class number (1,000) on ImageNet-C, the previous methods un- dergo more severe damage than on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Consequently, DELTA achieves greater gains on ImageNet-C: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6% gain over PL, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4% gain over TENT, and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6% gain over Ent-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 5: Acc in DS+CB scenario with varying ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method CIFAR100-C ImageNet-C 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Source 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 BN adapt 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='48 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='32 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='64 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='09 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13 ETA 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='34 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='83 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='31 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='20 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 LAME 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 CoTTA 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='51 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='15 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='15 CoTTA* 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='65 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='71 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='55 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 PL 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='54 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='29 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='76 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='18 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='14 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='09 +DELTA 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='30 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='45 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='10 +13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 +17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 +14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 +17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 TENT 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='52 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='70 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='20 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='10 +DELTA 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='20 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='47 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='06 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='06 +14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 +18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 +21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 +28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='35 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='83 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 +DELTA 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='35 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='45 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='04 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='11 +14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 +18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 +32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 +30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 +34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Evaluation in DS+CB scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To simu- late dependent streams, following Yurochkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2019), we arrange the samples via the Dirichlet distribution with a concentra- tion factor ρ > 0 (the smaller ρ is, the more concentrated the same-class samples will be, which is detailed in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We test models with ρ ∈ {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The exper- imental results are provided in Table 5 (we provide the results of more extreme cases with ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='01 in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The repre- sentative test-time adaptation methods suffer from performance degradation in the depen- dent scenario, especially on data sampled with small ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA successfully helps models adapt to environments across different concentration factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' It is worth noting that DELTA’s DS+CB results are close to the IS+CB results, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', TENT+DELTA achieves 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5% and 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5% ac- curacy on IS+CB and DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5) test streams from CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Evaluation in IS+CI and DS+CI scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Following Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2019), we resample the test samples with an imbalance factor π (the smaller π is, the more imbalanced the test data will be, 7 Published as a conference paper at ICLR 2023 Table 6: Mean acc in IS+CI, DS+CI scenarios with different π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method IS+CI DS+CI (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5) CIFAR100-C ImageNet-C CIFAR100-C ImageNet-C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 Source 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 BN adapt 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='16 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='48 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='19 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='47 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 ETA 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='59 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='18 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='45 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='54 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='52 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 LAME 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='18 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='39 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='10 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='34 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='43 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 CoTTA 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='13 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='58 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='16 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='47 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='60 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 CoTTA* 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='17 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='66 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='78 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='51 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='52 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='56 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 PL 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='57 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='18 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='53 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='35 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 +DELTA 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='36 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='46 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='39 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='57 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 +15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 +16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 +15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='29 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='58 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='56 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 +DELTA 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='31 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='60 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='70 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='28 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 +17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 +17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 +19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='58 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='76 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='82 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='44 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='53 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='81 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 +DELTA 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='53 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='31 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='30 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='60 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='53 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 +7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 +8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 +16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 +16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 +34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Table 7: Results on in-distri- bution test set of CIFAR100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Accuracy Source 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 BN adapt 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='15 TENT 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='16 +DELTA 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) Ent-W 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='19 +DELTA 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='09 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5) ResNet18 ResNet50 ResNet101 ResNet152 WideResNet50 ResNeXt50 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Accuracy (%) TENT TENT+DELTA Ent-W Ent-W+DELTA Figure 4: Across architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' which is detailed in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We test models with π ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05} (similarly, we show the extreme experiments with π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='001 in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 6 summarizes the results in IS+CI and DS+CI scenarios, with the following observations: (i) Under class-imbalanced scenario, the performance degradation is not as severe as under dependent data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' This is primarily because the imbalanced test data has relatively little effect on the normalization statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA works well on the imbalanced test stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (ii) The hybrid DS+CI scenario can be more difficult than the individual scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA can also boost baselines in the hybrid scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (iii) Though the low-entropy- emphasized method Ent-W improves TENT in IS+CB scenario (Table 4), it can be inferior to TENT in dependent or class-imbalanced scenarios (the results on ImageNet-C in Table 5,6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The reason is that Ent-W leads to a side effect — amplifying the class bias, which would neutralize or even overwhelm its benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA eliminates Ent-W’s side effects while retaining its benefits, so Ent- W+DELTA always significantly outperforms TENT+DELTA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 8: Mean acc on ImageNet-R and YTBB-sub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method ImageNet-R YTBB-sub Source 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 BN adapt 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='15 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='29 ETA 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='37 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='32 TENT 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 +DELTA 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='08 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 +24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Ent-W 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='28 +DELTA 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='09 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 +24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Evaluation on realistic out-of-distribution datasets ImageNet-R and YTBB-sub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ImageNet-R is inherently class-imbalanced and consists of mixed variants such as cartoon, art, painting, sketch, toy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As shown in Table 8, DELTA also leads to consistent im- provement on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' While compared to ImageNet-C, ImageNet-R is collected individually, which consists of more hard cases that are still difficult to recognize for DELTA, the gain is not as great as on ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For YTBB-sub, dependent and class-imbalanced sam- ples are encountered naturally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We see that classical methods suffer from severe degradation, whereas DELTA assists them in achieving good performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Evaluation on in-distribution test data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A qualified FTTA method should be “safe” on in- distribution datasets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', P test(x, y) = P train(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' According to Table 7, (i) DELTA continues to improve performance, albeit slightly;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (ii) most adaptation methods can produce comparable results to Source, and the combination with DELTA even outperforms Source on in-distribution data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Evaluation with different architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Figure 4 indicates that DELTA can help improve previous test-time adaptation methods with different model architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' More analyses (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', evaluations with small batch size, different severity levels) are provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Contribution of each component of DELTA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DELTA consists of two tools: TBR and DOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Table 9, we analyze their contributions on the basis of TENT with four scenarios and two datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Row #1 indicates the results of TENT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Applying either TBR or DOT alone on TENT brings gain in most scenarios and datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' While, we find that TBR achieves less improvement when the test stream is IS+CB and the batch size is large (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', performing adaptation with TBR alone on the IS+CB data of CIFAR100-C with batch size of 200 does not improve TENT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, when the batch size is relatively small (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', ImageNet-C, batch size of 64), the benefits of TBR will be- come apparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' More importantly, TBR is extremely effective and necessary for dependent samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 8 Published as a conference paper at ICLR 2023 Table 9: Ablation on the effectiveness of each component (on top of TENT) measured in various scenarios: IS+CB, DS+CB (ρ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5), IS+CI (π=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1), DS+CI (ρ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' # TBR DOT CIFAR100-C ImageNet-C IS+CB DS+CB IS+CI DS+CI IS+CB DS+CB IS+CI DS+CI 1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='16 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='29 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='56 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 2 ✓ 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='72 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='11 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 3 ✓ 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='37 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='60 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='02 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='17 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 4 ✓ ✓ 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='40 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='31 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='70 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='03 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='22 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 DOT can consistently promote TENT or TENT+TBR in all scenarios, espe- cially when the class number is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' These results demonstrate that both the inaccurate normalization statis- tics and the biased optimization are detrimental, TBR and DOT can effec- tively alleviate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 10: Ablation on different techniques for class imbal- ance (on top of Ent-W+TBR) measured in various scenarios (same as in Table 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method CIFAR100-C ImageNet-C IS+CB DS+CB IS+CI DS+CI IS+CB DS+CB IS+CI DS+CI Div-W (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='12 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='30 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='31 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='59 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='02 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='49 Div-W (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='09 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='34 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='30 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='53 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='08 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='28 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='29 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='56 Div-W (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='10 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='37 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='28 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='61 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='46 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='18 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='38 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='48 Div-W (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='08 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='41 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='23 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='54 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='35 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='47 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='54 LA 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='06 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='36 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='27 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='63 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='73 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='57 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='73 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='86 KL-div (1e2) – – – – 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='11 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='94 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='62 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='21 KL-div (1e3) – – – – 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='07 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='36 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='30 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='60 Sample-drop 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='08 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='34 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='26 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='55 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='06 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='09 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='34 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='28 DOT 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='35 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='25 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='60 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='04 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='31 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='24 Comparing DOT with other tech- niques for class imbalance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' On the basis of Ent-W+TBR, Table 10 compares DOT against the follow- ing strategies for solving class imbal- ance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Diversity-based weight (Div- W) (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) computes the cosine similarity between the arrived test samples’ prediction and a moving average one like z, then only employs the samples with low similarity to up- date model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Although the method is proposed to reduce redundancy, we find it can resist class imbalance too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The method relies on a pre- defined similarity threshold to determine whether to use a sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We report the results of Div-W with varying thresholds (shown in parentheses).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We observe that the threshold is very sensitive and the optimal value varies greatly across datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Logit adjustment (LA) (Menon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021) shows strong performance when training on imbalanced data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Following Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022b), we can per- form LA with the estimated class-frequency vector z in test-time adaptation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' While we find that LA does not show satisfactory results here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We speculate that this is because the estimated class distribution is not accurate under the one-pass adaptation and small batch size, while LA requires a high-quality class distribution estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' KL divergence regularizer (KL-div) (Mummadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2021) augments loss function to encourage the predictions of test samples to be uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' While, this is not always reasonable for TTA, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', for the class-imbalanced test data, forcing the outputs to be uniform will hurt the performance conversely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We examine multiple regularization strength options (shown in parentheses) and report the best two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The results show that KL-div is clearly inferior in dependent or class-imbalanced scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We further propose another strategy called Sample-drop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' It records the (pseudo) categories of the test samples that have been employed, then Sample-drop will directly discard a newly arrived test sample (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', not use the sample to update the model) if its pseudo category belongs to the majority classes among the counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' This simple strategy is valid but inferior to DOT, as it completely drops too many useful samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 55 60 65 70 75 Accuracy (%) Source TENT TENT+DELTA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00 55 60 65 70 75 Accuracy (%) Source TENT TENT+DELTA Figure 5: Impacts of α and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Impacts of α in TBR and λ in DOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Similar to most exponential-moving-average-based methods, when the smoothing coefficient α (or λ) is too small, the adaptation may be unstable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' when α (or λ) is too large, the adapta- tion would be slow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Figure 5 provides the ablation studies of α (left) and λ (right) on the DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5) samples of CIFAR100-C (from the validation set).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We find that TBR and DOT perform reasonably well under a wide range of α and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 5 CONCLUSION In this paper, we expose the defects in test-time adaptation methods which cause suboptimal or even degraded performance, and propose DELTA to mitigate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' First, the normalization statistics used in BN adapt are heavily influenced by the current test mini-batch, which can be one-sided and highly fluctuant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We introduce TBR to improve it using the (approximate) global statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Second, the optimization is highly skewed towards dominant classes, making the model more biased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DOT alleviates this problem by re-balancing the contributions of each class in an online manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The combination of these two powerful tools results in our plug-in method DELTA, which achieves improvement in different scenarios (IS+CB, DS+CB, IS+CI, and DS+CI) at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 9 Published as a conference paper at ICLR 2023 ACKNOWLEDGMENTS This work is supported in part by the National Natural Science Foundation of China under Grant 62171248, the R&D Program of Shenzhen under Grant JCYJ20220818101012025, the PCNL KEY project (PCL2021A07), and Shenzhen Science and Technology Innovation Commission (Research Center for Computer Network (Shenzhen) Ministry of Education).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' REFERENCES Shaden Alshammari, Yu-Xiong Wang, Deva Ramanan, and Shu Kong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Long-tailed recognition via weight balancing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 6897–6907, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Pitfalls of in-domain uncertainty estimation and ensembling in deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=BJxI5gHKDr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Parameter-free online test- time adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 8344–8353, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Contrastive test-time adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Class-balanced loss based on effective number of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 9268–9277, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Charles Elkan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The foundations of cost-sensitive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International joint conference on artificial intelligence, volume 17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 973–978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Lawrence Erlbaum Associates Ltd, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Franc¸ois Laviolette, Mario Marchand, and Victor Lempitsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Domain-adversarial training of neural net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The journal of machine learning research, 17(1):2096–2030, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Sch¨olkopf, and Alex Smola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A kernel method for the two-sample-problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Sch¨olkopf, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Platt, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Hoff- man (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems, volume 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' MIT Press, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='cc/paper/2006/file/ e9fb2eda3d9c55a0d89c98d6c54b5b3e-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Yin-Yin He, Jianxin Wu, and Xiu-Shen Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Distilling virtual examples for long-tailed recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 235–244, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dan Hendrycks and Thomas Dietterich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Benchmarking neural network robustness to common cor- ruptions and perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=HJz6tiCqYm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dan Hendrycks, Norman Mu, Ekin D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi- narayanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' AugMix: A simple data processing method to improve robustness and uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Proceedings of the International Conference on Learning Representations (ICLR), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The many faces of robustness: A critical analysis of out-of-distribution generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 8340–8349, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Cycada: Cycle-consistent adversarial domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 1989–1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Pmlr, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 10 Published as a conference paper at ICLR 2023 Sergey Ioffe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Batch renormalization: Towards reducing minibatch dependence in batch-normalized models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Sergey Ioffe and Christian Szegedy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Batch normalization: Accelerating deep network training by reducing internal covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 448–456.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Exploring balanced feature spaces for representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yan- nis Kalantidis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Decoupling representation and classifier for long-tailed recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Interna- tional Conference on Learning Representations, 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/ forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=r1gRTCVFvB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Jogendra Nath Kundu, Naveen Venkat, Rahul M V, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Venkatesh Babu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Universal source-free domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' June 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dong-Hyun Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Workshop on challenges in representation learning, ICML, volume 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 896, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, Xiaoya Li, and Boyang Xia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Progressive domain expansion network for single domain generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 224–233, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Jian Liang, Dapeng Hu, and Jiashi Feng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Do we really need to access the source data?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' source hypothesis transfer for unsupervised domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 6028–6039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Large- scale long-tailed recognition in an open world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2537–2546, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Deep transfer learning with joint adaptation networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2208–2217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Conditional adversarial domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Advances in neural information processing systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Long-tail learning via logit adjustment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=37nvvqkCo5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox, and Jan Hendrik Metzen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Test-time adaptation to distribution shift by confidence maxi- mization and input transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='14999, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Evaluating prediction-time batch normalization for robustness under covariate shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='10963, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Efficient test-time model adaptation without forgetting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 16888–16905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 17–23 Jul 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' press/v162/niu22a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dataset shift in machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Mit Press, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 11 Published as a conference paper at ICLR 2023 Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Youtube- boundingboxes: A large high-precision human-annotated data set for object detection in video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 7464–7473, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Learning to reweight examples for robust deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International conference on machine learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 4334–4343.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Asymmetric tri-training for unsupervised domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2988–2997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Improving robustness against common corruptions by covariate shift adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Ad- vances in Neural Information Processing Systems, 33:11539–11551, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Tent: Fully test-time adaptation by entropy minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Learning Repre- sentations, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=uXl3bZLkr3c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Continual test-time domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 7201–7211, 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao Liew, Sheng Tang, Steven Hoi, and Jiashi Feng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The devil is in classification: A simple framework for long-tail instance segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Euro- pean conference on computer vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 728–744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Debiased learning from naturally im- balanced pseudo-labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 14647–14657, 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Saining Xie, Ross Girshick, Piotr Doll´ar, Zhuowen Tu, and Kaiming He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Aggregated residual trans- formations for deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 1492–1500, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Generalized source-free domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 8958–8967, 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1109/ICCV48922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='00885.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Shiqi Yang, Yaxing Wang, Joost van de weijer, Luis Herranz, and SHANGLING JUI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Exploit- ing the intrinsic neighborhood structure for source-free domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Beygelzimer, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Dauphin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Liang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Wortman Vaughan (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems, 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=ueGDv64HmO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman Khazaeni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Bayesian nonparametric federated learning of neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Interna- tional Conference on Machine Learning, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 7252–7261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschl¨ager, and Susanne Saminger-Platz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Central moment discrepancy (CMD) for domain-invariant representation learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' URL https:// openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='id=SkB-_mcel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Levine, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Finn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' MEMO: Test time robustness via adaptation and augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Maintaining discrimination and fairness in class incremental learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 13208–13217, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 12 Published as a conference paper at ICLR 2023 Art Cartoon Deviantart Graffiti Graphic Misc Origami Painting Sculpture Sketch Sticker Tattoo Toy Videogame Figure 6: Different renditions of class n01694178 (African chameleon) from ImageNet-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 DATASETS Examples of ImageNet-R and ImageNet-C are shown in Figure 6 and Figure 7 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ImageNet-R Hendrycks et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2021) holds a variety of renditions (sketches, graphics, paint- ings, plastic objects, cartoons, graffiti, origami, patterns, deviantart, plush objects, sculptures, art, tattoos, toys, embroidery, video game) of 200 ImageNet classes, resulting in 30,000 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' CIFAR100-C and ImageNet-C are established in Hendrycks & Dietterich (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' CIFAR100-C contains 10,000 images with 15 corruption types: Gaussian Noise (abbr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Gauss), Shot Noise (Shot), Impulse Noise (Impul), Defocus Blur (Defoc), Frosted Glass Blur (Glass), Motion Blur (Motion), Zoom Blur (Zoom), Snow, Frost, Fog, Brightness (Brit), Contrast (Contr), Elastic, Pixelate (Pixel), JPEG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' There are 50,000 images for each corruption type in ImageNet-C, others are the same as CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For the real-word applications with dependent and class-imbalanced test samples, we consider an automatic video content moderation task (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', for the short-video platform), which needs to recog- nize the categories of interest from the extracted frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' It is exactly a natural DS+CI scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We collect 1686 test videos from YouTube, which are annotated in YouTube-BoundingBoxes dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 49006 video segments are extracted from these videos and form the test stream in this experiment, named YTBB-sub here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We consider 21 categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For the trained model, we adopt a model (ResNet18) trained on the related images from COCO dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Thus, there is a natural difference between the training domain and test domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The consecutive video segments form the natural dependent samples (an object usually persists over several frames) as shown in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Moreover, the test class distribution is also skewed naturally as shown in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To simulate dependent test samples, for each class, we sample qk ∼ DirJ(ρ), qk ∈ RJ and allocate a qk,j proportion of the kth class samples to piece j, then the J pieces are concatenated to form a test stream in our experiments (J is set to 10 for all experiments);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ρ > 0 is a concentration factor, when ρ is small, samples belong to the same category will concentrate in test stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' To simulate class-imbalanced test samples, we re-sample data points with an exponential decay in frequencies across different classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We control the degree of imbalance through an imbalance factor π, which is defined as the ratio between sample sizes of the least frequent class and the most frequent class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For DS+CI scenario, we mimic a class-imbalanced test set first, then the final test samples are dependently sampled from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 13 iPod 2:52 PM tangledQ123RF Q123RF Q123RF Q123RFPublished as a conference paper at ICLR 2023 Brightness JPEG Pixelate Elastic Contrast Fog Frost Snow Zoom Blur Motion Blur Frosted Glass Blur Defocus Blur Shot Noise Impulse Noise Gaussian Noise Figure 7: Different corruption types of class n01694178 (African chameleon) from ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' −→ boat potted plant truck car train cow boat bus cow 36uMLT9BKYA 1WsbZj-NsfQ 0Wigb079iMk 0N7yCdf7DPs 3u7iTx8CViY 1ceprZO-VEU 0Neg9vT08to 08u9yvYwrTc 17Z_zMVLeqU 3ZyPIcwx_n8 2yDeK7WyDUM 0vK_6B2ikEA https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='youtube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/watch?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='v={the above video ID} video ID: category: (a) The natural dependent samples in YTBB-sub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Each bar represents a sample, each color represents a category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The videos can be found at “https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='youtube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/watch?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='v={the above video ID}”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 0 10 20 Class ID 0 1000 2000 3000 4000 # Samples (b) The test class distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Figure 8: Characters of YTBB-sub dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 THE ALGORITHM DESCRIPTION OF TBR We present the detailed algorithm description of TBR in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 14 WonanakaehlerIRURS 11:43iKOTVA HASICI MANC99835533553ConnexxionPublished as a conference paper at ICLR 2023 Algorithm 2: Test-time Batch Renormalization (TBR) module Input: mini-batch test features v ∈ RB×C×S×S′ with batch size B, C channels, height S and width S′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' learnable affine parameters γ ∈ RC, β ∈ RC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' current test-time moving mean ˆµema ∈ RC and standard deviation ˆσema ∈ RC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' smoothing coefficient α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 1 ˆµbatch[c] = 1 BSS′ � b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='s′ v[b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' s′],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' c = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' C // get mean (for each channel) 2 ˆσbatch[c] = � 1 BSS′ � b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='s′(v[b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' s′] − ˆµbatch[c])2 + ϵ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' c = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' C // get standard deviation (for each channel) 3 r = sg(ˆσbatch) ˆσema // get r 4 d = sg(ˆµbatch)−ˆµema ˆσema // get d 5 v∗ = v−ˆµbatch ˆσbatch r + d // normalize 6 v⋆ = γ · v∗ + β // scale and shift 7 ˆµema ← α · ˆµema + (1 − α) · sg(ˆµbatch) // update ˆµema 8 ˆσema ← α · ˆσema + (1 − α) · sg(ˆσbatch) // update ˆσema Output: v⋆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ˆµema,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' ˆσema A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 IMPLEMENTATIONS We use Adam optimizer with learning rate of 1e-3, batch size of 200 for CIFAR100-C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' SGD opti- mizer with learning rate of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5e-4, batch size of 64 for ImageNet-C/-R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' SGD optimizer with learn- ing rate of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5e-4, batch size of 200 for YTBB-sub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For DELTA, the hyper-parameters α and λ are roughly selected from {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='95, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='99, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='999} on validation sets, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', the extra sets with cor- ruption types outside the 15 types used in the benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The smoothing coefficient α in TBR is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='95 for CIFAR100-C and ImageNet-C/-R, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='999 for YTBB-sub, λ in DOT is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='95 for ImageNet-C/-R and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 for CIFAR100-C / YTBB-sub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Then, we summarize the implementation details of the compared methods here, including BN adapt, PL, TENT, LAME, ETA, Ent-W, and CoTTA (CoTTA*).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Unless otherwise specified, the optimizer, learning rate, and batch size are the same as those described in the main paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For BN adapt, we fol- low the operation in Nado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2020) and the official code of TENT (https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/ DequanWang/tent), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', using the test-time normalization statistics completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Though one can introduce a hyper-parameter to adjust the trade-off between current statistics and those inherited from the trained model (a0) (Schneider et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2020), we find this strategy does not lead to significant improvement and its effect varies from dataset to dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For PL and TENT, besides the normaliza- tion statistics, we update the affine parameters in BN modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The confidence threshold in PL is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4, which can produce acceptable results in most cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We adopt/modify the official implemen- tation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/DequanWang/tent to produce the results of TENT/PL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For LAME, we use the k-NN affinity matrix with 5 nearest neighbors following Boudiaf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (2022) and the official implementation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/fiveai/LAME.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For ETA, the entropy constant threshold is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 × ln K (K is the number of task classes), and the similarity threshold is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 for CIFAR/ImageNet experiments following the authors’ suggestion and official implementation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/mr-eggplant/EATA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For Ent-W, the entropy con- stant threshold is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 times ln K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For CoTTA, the used random augmentations include color jitter, random affine, gaussian blur, random horizontal flip, and gaussian noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 32 augmen- tations are employed in this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The learning rate is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='01 for ImageNet experiments following official implementation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='com/qinenergy/cotta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The restora- tion probability is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='01 for CIFAR experiments and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='001 for ImageNet experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The augmentation threshold is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='72 for CIFAR experiments and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 for ImageNet experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The exponential-moving-average factor is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='999 for all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' CoTTA optimizes all learnable parameters during adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 ADDITIONAL ANALYSIS Fully test-time adaptation with small (test) batch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In the main paper, we report results with the default batch size following previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Here, we study test-time adaptation with a much smaller batch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The small batch size brings two serious challenges: the normalization statistics can be inaccurate and fluctuate dramatically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' the gradient-based optimization can be noisy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Previ- 15 Published as a conference paper at ICLR 2023 ous study (Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 2022) employs a sliding window with L samples in total (including L − B previous samples, assuming L > B, L%B = 0 here) to perform adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, this strat- egy significantly increases the computational cost: L B × forward and backward, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', 64× when B = 1, L = 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We employ another strategy, called “fast-inference and slow-update”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' When the samples arrive, infer them instantly with the current model but do not perform adaptation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' the model is updated with the recent L samples every L B mini-batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Thus, this strategy only needs 2× for- ward and 1× backward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Note that the two strategies both need to cache some recent test samples, which may be a bit against the “online adaptation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We evaluate TENT and DELTA on the IS+CB test stream of CIFAR100-C with batch sizes 128, 16, 8, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The results are listed in Table 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We find that TENT suffers from severe performance degeneration when the batch size is small, which is due to TENT always using the normalization statistics derived from the test mini-batches, thus it is still affected by the small batch size during “fast-inference”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' With the assistance of DELTA, the performance degradation can be significantly alleviated: it only drops by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7% (from 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8% to 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1%) when B = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 11: Results (classification accuracy, %) with different batch sizes on IS+CB test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method 128 16 8 1 Source 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT+DELTA 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 The initialization of TBR’s normalization statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2, TBR keeps the moving normalization statistics ˆµema, ˆσema, we usually have two ways to initialize them: using the statistics ˆµbatch 1 , ˆσbatch 1 derived from the first test mini-batch (First);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' using the statistics µema, σema inherited from the trained model (Inherit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In the main paper, we use the “First” initialization strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, it is worth noting that “First” is not reasonable for too small batch size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We perform TENT+DELTA with the above two initialization strategies and different batch sizes on the IS+CB test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Figure 9 summaries the results, we can see that when the batch size is too small, using the inherited normalization statistics as initialization is better;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' when the batch size is acceptable (just > 8 for CIFAR100-C), using the “First” initialization strategy is superior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 128 16 8 1 Batch size 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Accuracy (%) Inherit First Figure 9: Comparison of two TBR initialization strategies on top of TENT+DELTA in IS+CB sce- nario on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Performance under different severity levels on CIFAR100-C and ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' In the main pa- per, for CIFAR100-C and ImageNet-C, we report the results with the highest severity level 5 follow- ing previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Here, we investigate DELTA on top of TENT with different severity levels on CIFAR100-C (IS+CB scenario).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Figure 10 presents the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We observe that (i) as the corruption level increases, the model accuracy decreases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' (ii) DELTA works well under all severity levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Performance in extreme cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We examine the performance of DELTA with more extreme con- ditions: DS+CB with ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='01, IS+CI with π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 12 shows DELTA can manage the intractable cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Influence of random seeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As fully test-time adaptation is established based on a pre-trained model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=', does not need random initialization;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' methods like PL, TENT, Ent-W, and our DELTA 16 Published as a conference paper at ICLR 2023 1 2 3 4 5 Severity Level 70 72 74 76 Accuracy (%) TENT TENT+DELTA Figure 10: Comparison under different severity levels on CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 12: Performance in extreme cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='01) IS+CI (π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='001) Source 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 BN adapt 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 ETA 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 LAME 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 CoTTA 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA* 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 PL 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 +DELTA 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 +DELTA 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 +DELTA 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 also do not bring random initialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' As a result, the adaptation results are always the same on one fixed test stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, the random seeds can affect sample order in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We study the influence of random seeds on Gauss and Shot data (IS+CB scenario) of ImageNet-C with seeds {2020, 2021, 2022, 2023}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The results of TENT and DELTA are summarized in Table 13, from which one can see the methods are not greatly affected by the sample order within the same scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' For fair comparison, all methods are investigated under the same sample order for each specific scenario in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 13: Influence of random seeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Classification accuracies (%) are reported on two kinds of corrupted data (IS+CB) of ImageNet-C under four random seeds (2020, 2021, 2022, and 2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Data TENT TENT+DELTA 2020 2021 2022 2023 2020 2021 2022 2023 Gauss 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='672 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='434 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='774 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='796 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='186 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='916 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='270 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='208 Shot 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='536 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='496 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='370 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='458 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='146 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='140 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='124 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='994 Ablation on DOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We examine the performance of DOT with another way to get the sample weights (Line 5,6 in Algorithm 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' One can discard line 5 and modify line 6 to adopt the original soft probabilities: ωmt+b = �K k=1 1/(zt−1[k] + ϵ) · pmt+b[k].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We compare the hard label strategy (Algorithm 1) with the soft one in Table 14 (on the basis of Enw-W+TBR, on ImageNet-C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' We find that both strategies work well in all scenarios, demonstrating the effectiveness of the idea of DOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The performance of the soft strategy is slightly worse than the hard strategy in some scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' However, we think it is difficult to say “hard labels are necessarily better than soft labels” or “soft labels are necessarily better than hard labels”, for example, the two strategies both exist in recent semi-supervised methods: hard label in FixMatch, soft label in UDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' 17 Published as a conference paper at ICLR 2023 Table 14: Ablation on DOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' IS+CB DS+CB DS+CB DS+CB IS+CI IS+CI DS+CI DS+CI ρ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05 Hard 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Soft 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 RESULTS OF EACH CORRUPTION TYPE ON CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 2 has compared the usages of different normalization statistics, we further provide the detailed results of all corruption types in Table 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 16 presents the results of all corruption types under different batch sizes and the two initial- ization strategies for normalization statistics in TBR, the averaged results have been illustrated in Table 11 and Figure 9 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 17 summarises the detailed performance on IS+CB test stream with different severity levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 18 compares the test-time adaptation methods in IS+CB scenario;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 19 for DS+CB test stream (ρ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0), Table 20 for DS+CB test stream (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5), Table 21 for DS+CB test stream (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 22, 23 for IS+CI data with π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 24 / Table 25 for DS+CI test data with ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 and π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 / π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 RESULTS OF EACH CORRUPTION TYPE ON IMAGENET-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 26 compares the test-time adaptation methods in IS+CB scenario and Table 27 further com- pares them with different model architectures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 28, Table 29, and Table 30 for DS+CB test streams with ρ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0, ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 and ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 31, 32 for IS+CI data with π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 33 / Table 34 for DS+CI test data with ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 and π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 / π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' The results in Table 15-Table 34 are obtained with seed 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Table 15: Comparison of the normalization statistics on IS+CB and DS+CB test streams of CIFAR100-C with B = 128 in terms of classification accuracy (%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 IS+CB scenario BN adapt 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 BN adapt+TEMA 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+TEMA 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT+TBR 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 DS+CB scenario BN adapt 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 BN adapt+TEMA 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+TEMA 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT+TBR 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 18 Published as a conference paper at ICLR 2023 Table 16: Comparison of different batch sizes and the initialization strategies for TBR’s normaliza- tion statistics on IS+CB test stream of CIFAR100-C in terms of classification accuracy (%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Init Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source – 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT, B=128 – 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT, B=16 – 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT, B=8 – 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT, B=1 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT+DELTA, B=128 Inherit 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA, B=128 First 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT+DELTA, B=16 Inherit 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT+DELTA, B=16 First 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT+DELTA, B=8 Inherit 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT+DELTA, B=8 First 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT+DELTA, B=1 Inherit 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA, B=1 First 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Table 17: Classification accuracy (%) on IS+CB test stream of CIFAR100-C with different severity levels (B = 128).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Level Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 5 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+DELTA 1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Table 18: Classification accuracy (%) on IS+CB test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 BN adapt 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 ETA 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 LAME 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA* 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 PL 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 PL+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT+TBR 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT+DOT 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT+DELTA 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+TBR+LA 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Ent-W+TBR+Sample-drop 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+DELTA 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 19 Published as a conference paper at ICLR 2023 Table 19: Classification accuracy (%) on DS+CB (ρ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 BN adapt 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 ETA 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 LAME 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 CoTTA* 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 PL 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 PL+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Table 20: Classification accuracy (%) on DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 BN adapt 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 ETA 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 LAME 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 CoTTA 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 CoTTA* 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 PL 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 PL+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT+TBR 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+DOT 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W+TBR+LA 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+TBR+Sample-drop 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Table 21: Classification accuracy (%) on DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 BN adapt 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 ETA 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 LAME 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 CoTTA 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA* 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 PL 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 PL+DELTA 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT+DELTA 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+DELTA 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 20 Published as a conference paper at ICLR 2023 Table 22: Classification accuracy (%) on IS+CI (π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 BN adapt 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 ETA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 LAME 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 CoTTA* 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 PL 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 PL+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT+TBR 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT+DOT 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+TBR+LA 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Ent-W+TBR+Sample-drop 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+DELTA 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Table 23: Classification accuracy (%) on IS+CI (π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 BN adapt 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 ETA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 LAME 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 CoTTA* 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 PL 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 PL+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 TENT+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Table 24: Classification accuracy (%) on DS+CI (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 BN adapt 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 ETA 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 LAME 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 CoTTA 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA* 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 PL 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 PL+DELTA 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+DELTA 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 21 Published as a conference paper at ICLR 2023 Table 25: Classification accuracy (%) on DS+CI (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) test stream of CIFAR100-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 BN adapt 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 ETA 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 LAME 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 CoTTA 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 CoTTA* 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 PL 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 PL+DELTA 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 TENT+TBR 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT+DOT 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+TBR+LA 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+TBR+Sample-drop 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+DELTA 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Table 26: Classification accuracy (%) on IS+CB test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TTA 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 BN adapt 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 MEMO 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 ETA 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 CoTTA 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 CoTTA* 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 PL 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 PL+DELTA 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+TBR 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT+DOT 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT+DELTA 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+TBR+LA 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+TBR+Sample-drop 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+DELTA 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 22 Published as a conference paper at ICLR 2023 Table 27: Classification accuracy (%) on IS+CB test stream of ImageNet-C with different architec- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg ResNet18 Source 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 TENT 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+DELTA 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 ResNet50 Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 TENT 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+DELTA 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W+DELTA 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 ResNet101 Source 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT+DELTA 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+DELTA 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 ResNet152 Source 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+DELTA 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 WideResNet50 TENT 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W+DELTA 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 ResNeXt50 TENT 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT+DELTA 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Ent-W+DELTA 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Table 28: Classification accuracy (%) on DS+CB (ρ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 BN adapt 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 ETA 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 CoTTA 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 CoTTA* 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 PL 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 PL+DELTA 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+DELTA 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+DELTA 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23 Published as a conference paper at ICLR 2023 Table 29: Classification accuracy (%) on DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 BN adapt 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 ETA 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA* 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 PL 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 PL+DELTA 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT+TBR 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT+DOT 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT+DELTA 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+TBR+LA 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 Ent-W+TBR+Sample-drop 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 Ent-W+DELTA 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Table 30: Classification accuracy (%) on DS+CB (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 BN adapt 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 ETA 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA* 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 PL 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 PL+DELTA 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+DELTA 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W+DELTA 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Table 31: Classification accuracy (%) on IS+CI (π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 BN adapt 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 ETA 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 CoTTA 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 CoTTA* 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 PL 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 PL+DELTA 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 TENT+TBR 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 TENT+DOT 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 TENT+DELTA 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 Ent-W 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Ent-W+TBR+LA 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+TBR+Sample-drop 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+DELTA 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 24 Published as a conference paper at ICLR 2023 Table 32: Classification accuracy (%) on IS+CI (π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 BN adapt 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 ETA 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 CoTTA 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 CoTTA* 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 PL 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 PL+DELTA 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 TENT 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT+DELTA 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 Ent-W 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 Ent-W+DELTA 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Table 33: Classification accuracy (%) on DS+CI (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 BN adapt 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 ETA 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 LAME 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 CoTTA 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 CoTTA* 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 PL 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 PL+DELTA 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 TENT 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT+DELTA 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+DELTA 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 Table 34: Classification accuracy (%) on DS+CI (ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5, π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) test stream of ImageNet-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content=' Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg Source 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 BN adapt 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 ETA 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 LAME 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 CoTTA 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 CoTTA* 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 PL 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 PL+DELTA 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 TENT+TBR 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 TENT+DOT 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 TENT+DELTA 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='05) 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 Ent-W+TBR+Div-W(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 Ent-W+TBR+LA 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 Ent-W+TBR+Sample-drop 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 Ent-W+DELTA 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='0 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='1 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='7 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
+page_content='5 25' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/n9FPT4oBgHgl3EQfKTRi/content/2301.13018v1.pdf'}
diff --git a/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf b/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..729290c8a3e9671a73a7b065b2a936a9703e603c
--- /dev/null
+++ b/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d77ad2c811fe410a77114fa6c06eae55cfa303a4a49b39f0bd7db22948902bff
+size 1717635
diff --git a/ntAyT4oBgHgl3EQflfh4/vector_store/index.pkl b/ntAyT4oBgHgl3EQflfh4/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..b0f25aaaf2a08da30e3b38fd4a32efd181a2eedd
--- /dev/null
+++ b/ntAyT4oBgHgl3EQflfh4/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e1a264211f06b448889e804fe0119701ae4b922d5f5f4909c0198f4644ee0a97
+size 182496
diff --git a/o9FIT4oBgHgl3EQfvium/content/tmp_files/2301.11348v1.pdf.txt b/o9FIT4oBgHgl3EQfvium/content/tmp_files/2301.11348v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9f08cd9cbff510283b287bb991913eb9a672aafc
--- /dev/null
+++ b/o9FIT4oBgHgl3EQfvium/content/tmp_files/2301.11348v1.pdf.txt
@@ -0,0 +1,1091 @@
+Topological Nodal Point Superconductivity in Checkerboard Magnet-Superconductor
+Hybrid Systems
+Tuan Kieu1, Eric Mascot2,3, Jasmin Bedow1, Roland Wiesendanger2 and Dirk K. Morr1
+1Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
+2 Department of Physics, University of Hamburg, D-20355 Hamburg, Germany and
+3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
+We demonstrate that checkerboard magnet-superconductor hybrid systems possess a rich phase
+diagram exhibiting both strong topological superconducting (STSC) and topological nodal point
+superconducting (TNPSC) phases.
+We show that TNPSC phases exist both for ferromagnetic
+and antiferromagnetic systems, yielding a plethora of qualitatively different edge mode structures.
+Checkerboard MSH systems also facilitate the emergence of STSC phases which can be induced even
+in the limit of vanishing magnetization. Our results provide a new path for the quantum engineering
+of topological superconducting phases using atomic manipulation techniques.
+Introduction Magnet-superconductor hybrid (MSH) sys-
+tems provide a versatile platform for the quantum en-
+gineering of topological superconductivity and the ensu-
+ing Majorana zero modes. The versatility of MSH sys-
+tems arises from the fact that their topological phase
+diagram can be manipulated by changing the MSH sys-
+tem’s magnetic structure.
+While experimentally, only
+two-dimensional (2D) ferromagnetic (FM) [1–3] and an-
+tiferromagnetic (AFM) [4] MSH systems have been real-
+ized so far, intriguing topological phase diagrams – in-
+volving strong, weak and higher-order topological super-
+conducting phases – have been theoretically proposed to
+exist in bicollinear AFM [5], skyrmionic [6], 3Q [7], and
+stacked magnetic structures [8]. Advances in atomic ma-
+nipulation techniques [9, 10] have raised the intriguing
+possibility to quantum engineer MSH systems [2, 11] that
+interpolate between these various magnetic structures,
+potentially giving rise to intriguing new topological phase
+diagrams.
+In this Letter, we consider one of these possibilities by
+studying MSH systems with two sublattices of differ-
+ent magnetic adatoms, yielding a checkerboard mag-
+netic structure [see Fig. 1(a)].
+We demonstrate that
+such systems possess a rich topological phase diagram,
+exhibiting not only strong topological superconducting
+(STSC) phases [12, 13] characterized by non-zero Chern
+numbers, but also extended regions of topological nodal
+point superconductivity (TNPSC) [5, 14–17]. The latter
+were recently reported to exist in the AFM MSH system
+Mn/Nb(110) [4], as well as in 4Hb-TaS2 [18]. We show
+that TNPSC phases do not only exist in AFM checker-
+board systems, but also in FM MSH systems where the
+AFM chiral symmetry is broken. Moreover, the interplay
+between the magnetic structures of edges and their real
+space direction yields a plethora of qualitatively different
+edge mode structures. We demonstrate that in checker-
+board MSH systems STSC phases can be induced even in
+the limit of vanishing magnetization, in contrast to uni-
+form FM MSH systems [12, 13]. Finally, we show that
+TNPSC phases can be created using a single species of
+magnetic adatoms, simplifying their experimental real-
+ization. Our results provide a new path to quantum en-
+gineer topological superconducting phases using atomic
+manipulation techniques.
+Theoretical Model Starting point for our study of MSH
+systems with a magnetic checkerboard structure [see
+Fig. 1(a)] is the Hamiltonian [12, 13]
+H = − t
+�
+⟨r,r′⟩,
+α,β
+c†
+r,αcr′,β − µ
+�
+r,α
+c†
+r,αcr,α
++ iα
+�
+r,δ,α,β
+c†
+r,α (δ × σ)z
+α,β cr+δ,β
+− ∆
+�
+r
+�
+c†
+r,↑c†
+r,↓ + cr,↓cr,↑
+�
+−
+�
+r,α,β
+�
+J + JQeiQ·r�
+c†
+r,αSr · σα,βcr,β .
+(1)
+Here, the operator c†
+r,α creates an electron of spin α at
+site r, −t is the nearest-neighbor hopping amplitude on a
+two-dimensional square lattice, µ is the chemical poten-
+tial, α is the Rashba spin-orbit coupling between nearest-
+neighbor sites r and r + δ, and ∆ is the s-wave super-
+conducting order parameter.
+The last term in Eq.(1)
+describes the coupling between the adatoms’ spin Sr of
+magnitude S at site r and the conduction electrons, with
+exchange couplings J ± JQ in the two sublattices, and
+Q = (π, π) [for details, see Supplemental Material (SM)
+Sec.I]. Due to the hard superconducting gap, which sup-
+presses Kondo screening, we can consider the spins of the
+magnetic adatoms to be classical in nature [19, 20].
+To characterize the strong topological phases, we com-
+pute its topological invariant, the Chern number, via [21]
+C =
+1
+2πi
+�
+BZ
+d2kTr(Pk[∂kxPk, ∂kyPk])
+Pk =
+�
+En(k)<0
+|Ψn(k)⟩⟨Ψn(k)|
+(2)
+where En(k) and |Ψn(k)⟩ are the eigenenergies and the
+eigenvectors of the Hamiltonian in Eq.(1), with n being
+arXiv:2301.11348v1 [cond-mat.supr-con] 26 Jan 2023
+
+2
+a band index, and the trace is taken over Nambu, spin
+and sublattice space. Since STSC phases occur only for
+J ̸= 0, they belong to the topological class D [16, 22, 23].
+Finally, for antiferromagnetic TNPSC phases (J = 0)
+the chiral symmetry of the system allows us to compute
+a topological charge and characteristic angle associated
+with nodal points (see SM Sec. II). We note that trivial
+nodal point superconductivity was previously discussed
+in the context of antiferromagnetic semimetals [24].
+FIG. 1.
+(a) Schematic structure of the checkerboard mag-
+netic structure with exchange couplings J ± ∆J in the two
+sublattices. (b)-(e) Topological phase diagrams of the MSH
+system in the (µ, JS)-plane for different values of JQS with
+(α, ∆) = (0.2, 0.3)t.
+Results We begin by considering the topological phase di-
+agram of the Hamiltonian in Eq.(1), which is presented in
+Figs. 1(b)-(e) for different values of JQS (the qualitative
+form of these phase diagrams is independent of the partic-
+ular values of α and ∆, see SM Sec. III). In addition to the
+strong topological C = 2, −1 phases which are already
+present for JQS = 0, two new features appear in the
+phase diagram with increasing JQS. First, a C = 1 phase
+emerges due to the backfolding of the Brillouin zone (BZ),
+and the splitting of the bands at the X/Y -points. Sec-
+ondly, an extended region of the phase diagram (shown
+in grey), lying between the gap closing lines of the M-
+FIG. 2.
+(a) Energy dispersion of the bulk system in the
+magnetic BZ. (b) Nodal points and edge modes (dashed green
+lines) projected onto momenta parallel to the FM and AFM
+edges. Schematic representation of (c) diagonal (FM) and (d)
+vertical (AFM) edges. Electronic structure of a ribbon with
+(e) FM and (f) and AFM edges. (g),(h) Spectral functions at
+the ribbon’s left (upper panel) and right (lower panel) edges
+corresponding to (e) and (f). (i), (j) LDOS at the edges cor-
+responding to (e) and (f). (k) Zero-energy LDOS of a mag-
+netic island (dashed white line) with FM and AFM edges.
+(µ, α, ∆, JS, JQS) = (1.2, 0.2, 0.3, 0, 1.0)t.
+(solid black line) and X/Y -points (dotted black line), be-
+comes gapless (an analytic expression for the phase tran-
+sition lines is given in SM Sec. IV). As one moves in the
+gapless region between these two gap closing lines, the
+nodal points move along the magnetic BZ boundary from
+
+(b) 2
+(a)
+1
+[] sr
+JS = O
+0
+2
+3
+0
+1
+.4
+μ [t]
+(c)
+(d)
+2
+1
+1
+[1] sr
+[1] sr
+JQS = 0.2t
+0
+JQS = 0.5t
+0
+-1
+1
+- 2 -
+2.
+1
+3
+0
+2
+4
+3
+0
+2
+4
+μ [t]
+μ [t]
+(e) 2
+c
+2
+1
+1
+M
+0
+[] S]
+JQS = 1.0t
+0
+-1
+-2
+X/Y
+gapless
+- 2
+2
+3
+0
+1
+4
+μ [t](b)
+q=+1
+(a)
+q=-
+AFM edge
+(d)
+(c)
+0.3
+0.3
+(f)
+(e)
+0.2
+0.2
+0.1
+0.1
+energy
+0
+0
+-0.1
+-0.1
+-0.2
+-0.2
+-0.3
+-0.3
+0
+ku [元/b]
+.1
+0
+ku [元/a]
+(g)
+0.3
+(h)
+0.3
+0.2 -
+0.2
+0.1
+0.1
+0.0 -
+0.0 -
+-0.1 -
+-0.1
+-0.2
+-0.2
+energy
+-0.3
+A(kll/ の)
+-0.3
+0.2
+ 0.2
+0.1
+01
+0.0
+-0.1 -
+-0.1
+-0.2 -
+-0.2
+-0.3 -
+-0.3 -
+ku [元/b]
+.1
+-1
+ku [元/a]
+1.0
+1.0
+units]
+(0)
+. units]
+0.8
+0.8
+'que]
+0.6
+[arb.
+0.4 -
+0.4
+LDOS
+0.2
+0.2
+V
+0.0 +
+0.0 +
+-0.3
+-0.2
+-0.1
+0.0
+0.1
+0.2
+0.3
+-0.3
+-0.2
+0.0
+0.1
+0.2
+0.3
+-0.1
+energy [t]
+energy [t]
+(k)
+max
+40 -
+N(r,E=0)
+20 -
+a
+0-
+y
+-20 -
+x [a]
+-40
+0
+80
+60.
+40
+20.0
+20
+40
+80
+603
+the M to the X/Y -points. For JQS ≥
+�
+2α2 + ∆2
+0, the
+strong topological C = ±1 phases touch at a single anti-
+ferromagnetic (JS = 0) point in the phase diagram with
+chemical potential µc =
+�
+(JQS)2 − ∆2. At this point,
+any non-zero magnetization, which can be induced by ar-
+bitrarily small magnetic fields, pushes the system into a
+STSC phase, in contrast to uniform FM MSH systems,
+where JS > ∆ is required [12, 13] for the emergence of
+strong topological phases.
+To exemplify the electronic structure of an antiferro-
+magnetic MSH system (JS = 0) in the gap-less region
+around µc [yellow line in Fig. 1(e)], we consider a sys-
+tem with µ = 1.2t [red dot in Fig. 1(e)]. In Fig. 2(a)
+we present the resulting electronic structure exhibiting
+eight nodal points located along the boundary of the
+magnetic BZ. Due to the chiral symmetry of the sys-
+tem along the JS = 0 line, we find that these nodal
+points possess a non-zero topological charge q = ±1 [see
+Fig. 2(b)], the corresponding characteristic angles are
+shown in SM Sec. II. The presence of nodal points with
+opposite topological charges allows for the emergence
+of edge modes connecting such nodal points [schemati-
+cally shown as dashed green lines in Fig. 2(b)] in MSH
+systems exhibiting edges [5, 14–17]. When considering
+MSH systems in a ribbon geometry possessing diago-
+nal ferromagnetic (FM) or vertical/horizontal antiferro-
+magnetic (AFM) edges [see Figs. 2(c) and (d)], we find
+that their electronic structures indeed exhibit such in-
+gap edge modes as shown by red lines in Figs. 2(e) and
+(f), respectively. However, in contrast to an MSH sys-
+tem with AFM edges, the edge modes along FM edges
+disperse only weakly around zero-energy. To understand
+this qualitative difference, we note that the projection
+of the bulk band structure onto momenta parallel to ei-
+ther an FM or AFM edge leads to two overlapping (in
+momentum space) edge modes (see Fig. 2(b), and SM
+Sec. V). These two edge modes can in general hybridize,
+and thus split in energy. The spectral functions at the
+FM and AFM edges, shown in the upper and lower pan-
+els of Figs. 2(g) and (h), respectively, for the two edges
+of each ribbon, provide insight into the different nature
+of the resulting edge modes.
+In contrast to the AFM
+edge, the edge mode along the FM edge is chiral in na-
+ture [13] (due to the broken time-reversal symmetry along
+the edge) with opposite Fermi velocities on the two FM
+edges, as shown in Fig. 2(g). Thus, the two modes along
+the FM edges are spatially separated, and thus do not hy-
+bridize. In contrast, the spectral functions at the AFM
+edges [see Fig. 2(h)] show that both modes exist at the
+same edge and thus strongly hybridize, leading to the
+much larger energy splitting. This qualitative difference
+leads to distinct signatures in the local density of states
+(LDOS) of FM and AFM edges: while the LDOS at an
+FM edge exhibits a large zero-energy peak [see Fig. 2(i)],
+the LDOS at the AFM edge exhibits only a low-energy
+V-like shaped LDOS [see Fig. 2(j)], with the signatures
+of the edge modes seen only at higher energies [see black
+arrows].
+As a result, a spatial plot of the zero-energy
+LDOS of a finite magnetic island [see Fig. 2(k)] reveals
+large spectral weight along the FM edges, and vanishing
+spectral weight along the AFM edges.
+FIG. 3.
+(a) Schematic picture of a stair-case edge.
+(b)
+Magnetic BZ and nodal points projected onto the momen-
+tum parallel to the stair-case edge.
+(c) Electronic struc-
+ture of the ribbon.
+(d) Zero-energy LDOS for a magnetic
+island with horizontal and stair-case edges. Parameters are
+(µ, α, ∆, JS, JQS) = (1.2, 0.2, 0.3, 0, 1.0)t.
+To obtain flat, non-dispersive edge modes, it is neces-
+sary to consider edges in real space such that the pro-
+jected edge modes do not completely overlap in momen-
+tum space, as is the case for the FM and AFM edges (see
+SM Sec. V). For example, by considering a stair-case like
+edge in real space [see Fig. 3(a)], we find that the result-
+ing projection of the nodal points onto momenta parallel
+to the stair case edge [Fig. 3(b)] yields momentum re-
+gions with even and odd numbers of projected modes. In
+those regions where three projected modes overlap, one
+edge mode is non-dispersive and located at zero energy
+[see black arrows in Fig. 3(c)], while the other two pro-
+jected modes hybridize and thus shift to higher energies.
+As a result, a magnetic island that possesses both ver-
+tical and stair-case edges [see Fig. 3(d)] again shows a
+large zero-energy LDOS along the stair-case edges, and
+vanishing spectral weight along the vertical edges.
+
+(a)
+(b)
+stair-case
+π/(2a)
+0.100
+Projected
+bulk
+TXXX
+0.075
+Eo
+E1
+0.050
+E2
+En>2
+0.025
+Energy [t]
+0.000
+-0.025
+-0.050
+-0.075
+-0.100
+-1
+0
+kl [元/c]
+max
+(d)
+20
+N(r,E=0)
+10
+y
+10
+-20
+x[a]
+0
+-60
+-40
+-20
+0
+20
+40
+60
+80
+804
+FIG. 4. (a) Energy dispersion of the bulk system in the mag-
+netic BZ. Electronic structure of a ribbon with (b) FM and
+(c) AFM edges, as a function of momentum parallel to the
+edge.
+(k) Zero-energy LDOS of a magnetic island (dashed
+white line) with FM and AFM edges. (µ, α, ∆, JS, JQS) =
+(1.4, 0.2, 0.3, 0.25, 1.0)t.
+The question immediately arises whether the nature of
+the edge modes persists in those gapless regions of the
+phase diagram where the chiral symmetry of the AFM
+is broken due to a non-zero JS. To answer this ques-
+tion, we consider a system in the gapless region above
+the antiferromagnetic line, as indicated by a white star
+in Fig. 1(e). The electronic bulk structure of this sys-
+tem again reveals 8 nodal points along the magnetic BZ
+boundary, as shown in Fig. 4(a). The electronic disper-
+sions for ribbons with FM and AFM edges [Figs. 4(b) and
+(c), respectively] reveal the same qualitative nature of the
+respective edge modes as in the JS = 0 case discussed
+in Fig. 2.
+However, since the chiral symmetry of the
+AFM edge is broken due to the non-zero JS, the double-
+degeneracy of the AFM edge modes is lifted, leading to
+a further energy splitting among them. The zero-energy
+LDOS of a magnetic island [see Fig. 4(d)] thus again
+reveals large spectral weight along the FM edges, and
+vanishing spectral weight along the AFM edges.
+Sim-
+ilar results are obtained not only for any point in the
+gapless regions around µc [see Fig. 1(e)], but also in the
+gapless regions induced by much smaller values of JQS
+[see Figs. 1(c),(d)], we conclude that checkerboard MSH
+systems are ideally suited to quantum engineer topolog-
+ical nodal point superconductivity as the occurrence of
+TNPSC phases does not require the fine-tuning of param-
+eters. Of particular interest here are MSH systems with
+large Rashba spin-orbit coupling since the extent of gap-
+less regions in the phase diagram increases with α (see
+SM Sec. III). Our findings provide further support for
+the conclusion of recent scanning tunneling spectroscopy
+(STS) experiments [4] that the presence or absence of
+(near) zero-energy edge modes at various edges in the
+AFM MSH system Mn/Nb(110) are characteristics sig-
+natures of the underlying TNPSC phase.
+A special case of the magnetic checkerboard structure
+arises when J = JQ, implying that only a single species
+of magnetic adatoms is present in one of the two sublat-
+tices, as schematically shown in Fig. 5(a). In Fig. 5(b)
+FIG. 5.
+(a) Schematic structure of the checkerboard mag-
+netic structure for J = JQ. (b) Topological phase diagram
+for (α, ∆) = (0.2, 0.3)t. Electronic structure of an MSH rib-
+bon with (c),(e) FM and (d)(f) AFM edges for (µ, JS) =
+(1.0, 0.47)t [yellow dot in (b)], and (µ, JS) = (0.1, 0.4)t [blue
+dot in (b)], respectively.
+we present the resulting phase diagram. In addition the
+strong topological C = 1 phase, we obtain three types
+of gapless regions. Region 1 is entered from the gapped
+trivial (C = 0) region via a gap closing at the X/Y -
+points. As a result, the edge modes connect the nodal
+points of opposite topological charge that are located
+on the same edge of the magnetic BZ. In this region,
+the electronic structure along FM and AFM edges [see
+Figs. 5(c) and (d)] is similar to that shown in Fig. 2.
+In contrast, the transition into region 2 from the trivial
+phase requires a gap closing at the M-points, which yields
+edge modes connecting the nodal points of opposite topo-
+logical charge on neighboring edges of the magnetic BZ
+[see Figs. 5(e) and (f)]. In this case, neither edge shows
+a (nearly) non-dispersive edge mode, implying the ab-
+sence of any pronounced zero-energy peak in the LDOS
+at the edges. Finally, the transition line into region 3
+(red line) shows gap closings that vary along the mag-
+netic BZ boundary between the M and X/Y -points. We
+thus conclude that by even using a single species of mag-
+netic adatoms, it is possible to create a TNPSC phase.
+Discussion We have shown that checkerboard MSH sys-
+tems are ideally suited to quantum engineer STSC as well
+as TNPSC phases, with the latter existing both for AFM
+(J = 0) and FM (J ̸= 0) structures. The nature of edge
+
+(d)
+(a)
+max
+40.
+N(r,E=O)
+20 -
+a
+-0
+y
+-20
+-40
+-80
+-60
+-40
+-20
+0
+20
+40
+60
+80
+x [a]
+(b)
+0.3
+(c)
+0.3
+0.2
+0.2
+energy [t]
+0.1
+energy [t]
+0.1
+0
+0
+-0.1
+-0.1
+-0.2
+-0.2
+-0.3
+-0.3
+0
+0
+-1
+-1
+-0.5
+0.5
+1
+ku [元/b]
+ku [元/a](b)
+C
+(a)
+0.8
+0
+0.6
+S
+0.4
+gapless
+0.2
+2
+3
+JQ=J
+0.0
+0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
+μ [t]
+(c)
+0.3
+d)
+0.2
+energy [t]
+energy [t]
+0.1
+0
+-0.1
+-0.2
+-0.3
+-0.3
+0
+-1
+-1
+-0.5
+0
+0.5
+1
+kil [元/a]
+k [元/b]
+e)
+0.3
+(f)
+energy [t]
+XXX
+energy [t]
+0
+0
+0.1
+-0.2
+-0.3
+-0.3
+-1
+0
+-0.5
+0
+1
+0.5
+-1
+1
+ku [元/b]
+ku [元/a]5
+modes in the TNPSC phases is sensitively determined by
+the projection of nodal points onto the edge momenta,
+and the magnetic structure of the edge.
+This allows
+for the emergence of edge modes that are dispersive in
+some momentum ranges, and non-dispersive (flat) in oth-
+ers. Our results further support the conclusions of recent
+STS experiments in the AFM MSH system Mn/Nb(110)
+[4] that the underlying TNPSC phase can be identified
+through the presence or absence of (near) zero-energy
+edge modes along different edges in the system.
+The
+finding that TNPSC phases can be created even with a
+single species of magnetic adatoms when placed in only
+one of the two sublattices further supports the ubiquity
+of TNPSC phases in checkerboard MSH systems. Ad-
+vances in atomic manipulation techniques all but ensure
+that such checkerboard MSH systems and the ensuing
+TNPSC phases can be quantum engineered in the near
+future.
+ACKNOWLEDGMENTS
+The authors would like to thank S. Rachel for stimulat-
+ing discussions. T.K, E.M, J.B., and D.K.M. acknowl-
+edge support by the U. S. Department of Energy, Of-
+fice of Science, Basic Energy Sciences, under Award No.
+DE-FG02-05ER46225. R.W. acknowledges financial sup-
+port by the EU via the ERC Advanced Grant ADMIRE
+(No. 786020) and the DFG via the Cluster of Excellence
+“Advanced Imaging of Matter” (EXC 2056, Project ID
+390715994).
+[1] G. C. M´enard, S. Guissart, C. Brun, R. T. Leriche,
+M. Trif, F. Debontridder, D. Demaille, D. Roditchev,
+P. Simon, and T. Cren, Two-dimensional topological
+superconductivity in Pb/Co/Si(111), Nat. Commun. 8,
+2040 (2017).
+[2] A. Palacio-Morales, E. Mascot, S. Cocklin, H. Kim,
+S. Rachel, D. K. Morr, and R. Wiesendanger, Atomic-
+scale interface engineering of Majorana edge modes in a
+2D magnet-superconductor hybrid system, Sci. Adv. 5,
+eaav6600 (2019).
+[3] S. Kezilebieke, M. N. Huda, V. Vaˇno, M. Aapro, S. C.
+Ganguli, O. J. Silveira, S. G�lodzik, A. S. Foster, T. Oja-
+nen, and P. Liljeroth, Topological superconductivity in a
+van der Waals heterostructure, Nature 588, 424 (2020).
+[4] M. Bazarnik, R. L. Conte, E. Mascot, D. K. Morr, K. von
+Bergmann, and R. Wiesendanger, Antiferromagnetism-
+driven two-dimensional topological nodal-point super-
+conductivity, arXiv:2208.12018 (2022).
+[5] R.-X. Zhang, W. S. Cole, X. Wu, and S. Das Sarma,
+Higher-Order Topology and Nodal Topological Supercon-
+ductivity in Fe(Se,Te) Heterostructures, Phys. Rev. Lett.
+123, 167001 (2019).
+[6] E. Mascot, J. Bedow, M. Graham, S. Rachel, and D. K.
+Morr, Topological superconductivity in skyrmion lat-
+tices, npj Quantum Mater. 6, 6 (2021).
+[7] J. Bedow, E. Mascot, T. Posske, G. S. Uhrig, R. Wiesen-
+danger, S. Rachel, and D. K. Morr, Topological super-
+conductivity induced by a triple- q magnetic structure,
+Phys. Rev. B 102, 180504 (2020).
+[8] K. H. Wong, M. R. Hirsbrunner, J. Gliozzi, A. Malik,
+B. Bradlyn, T. L. Hughes, and D. K. Morr, Higher order
+topological superconductivity in magnet-superconductor
+hybrid systems, arXiv:2210.15582 (2022).
+[9] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C.
+Manoharan, Designer Dirac fermions and topological
+phases in molecular graphene, Nature 483, 306 (2012).
+[10] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoha-
+ran, and V. Pellegrini, Artificial honeycomb lattices for
+electrons, atoms and photons, Nature Nanotech 8, 625
+(2013).
+[11] H. Kim,
+A. Palacio-Morales,
+T. Posske,
+L. R´ozsa,
+K. Palot´as, L. Szunyogh, M. Thorwart, and R. Wiesen-
+danger, Toward tailoring Majorana bound states in ar-
+tificially constructed magnetic atom chains on elemental
+superconductors, Sci. Adv. 4, eaar5251 (2018).
+[12] J. Li, T. Neupert, Z. Wang, A. H. MacDonald, A. Yaz-
+dani, and B. A. Bernevig, Two-dimensional chiral topo-
+logical superconductivity in Shiba lattices, Nat. Com-
+mun. 7, 12297 (2016).
+[13] S. Rachel, E. Mascot, S. Cocklin, M. Vojta, and D. K.
+Morr, Quantized charge transport in chiral Majorana
+edge modes, Phys. Rev. B 96, 205131 (2017).
+[14] Y. Baum, T. Posske, I. C. Fulga, B. Trauzettel, and
+A. Stern, Gapless topological superconductors: Model
+Hamiltonian and realization, Phys. Rev. B 92, 045128
+(2015).
+[15] J.-T. Kao, S.-M. Huang, C.-Y. Mou, and C. C. Tsuei,
+Tunneling spectroscopy and Majorana modes emergent
+from topological gapless phases in high- T c cuprate su-
+perconductors, Phys. Rev. B 91, 134501 (2015).
+[16] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
+Classification of topological quantum matter with sym-
+metries, Rev. Mod. Phys. 88, 035005 (2016).
+[17] W.-Y. He, B. T. Zhou, J. J. He, N. F. Q. Yuan, T. Zhang,
+and K. T. Law, Magnetic field driven nodal topolog-
+ical superconductivity in monolayer transition metal
+dichalcogenides, Commun Phys 1, 40 (2018).
+[18] A. K. Nayak, A. Steinbok, Y. Roet, J. Koo, G. Mar-
+galit, I. Feldman, A. Almoalem, A. Kanigel, G. A. Fi-
+ete, B. Yan, Y. Oreg, N. Avraham, and H. Beidenkopf,
+Evidence of topological boundary modes with topologi-
+cal nodal-point superconductivity, Nat. Phys. 17, 1413
+(2021).
+[19] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Impurity-
+induced states in conventional and unconventional su-
+perconductors, Rev. Mod. Phys. 78, 373 (2006).
+[20] B. W. Heinrich, J. I. Pascual, and K. J. Franke, Sin-
+gle magnetic adsorbates on s -Wave superconductors,
+Progress in Surface Science 93, 1 (2018).
+[21] J. E. Avron, R. Seiler, and B. Simon, Homotopy and
+quantization in condensed matter physics, Phys. Rev.
+Lett. 51, 51 (1983).
+[22] A. Kitaev, Periodic table for topological insulators and
+superconductors, AIP Conference Proceedings 1134, 22
+(2009).
+[23] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Lud-
+wig, Topological insulators and superconductors: Tenfold
+way and dimensional hierarchy, New J. Phys. 12, 065010
+
+6
+(2010).
+[24] W. Brzezicki and M. Cuoco, Nodal s -Wave superconduc-
+tivity in antiferromagnetic semimetals, Phys. Rev. B 97,
+064513 (2018).
+
+Topological Nodal Point Superconductivity in Checkerboard Magnet-Superconductor
+Hybrid Systems
+Supplementary Material
+Tuan Kieu1, Eric Mascot2,3, Jasmin Bedow1, Roland Wiesendanger2 and Dirk K. Morr1
+1Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
+2Department of Physics, University of Hamburg, D-20355 Hamburg, Germany and
+3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
+I.
+HAMILTONIAN IN MOMENTUM SPACE
+For a checkerboard MSH system, the Hamiltonian of Eq.(1) in the main text can be written in momentum space
+as H = Ψ†
+k ˆHkΨk with spinor
+Ψ† =
+�
+c†
+k,↑, c†
+k+Q,↑, c†
+k,↓, c†
+k+Q,↓, c−k,↓, c−k+Q,↓, −c−k,↑, −c−k+Q,↑
+�
+and the Hamiltonian matrix ˆHk is given by
+ˆHk =
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+ϵk − JS
+−JQS
+−Ak
+0
+−∆
+0
+0
+0
+−JQS
+ϵk+Q − JS
+0
+−Ak+Q
+0
+−∆
+0
+0
+−A∗
+k
+0
+ϵk + JS
+JQS
+0
+0
+−∆
+0
+0
+−A∗
+k+Q
+JQS
+ϵk+Q + JS
+0
+0
+0
+−∆
+−∆
+0
+0
+0
+−ϵ−k − JS
+−JQS
+−A−k
+0
+0
+−∆
+0
+0
+−JQS
+−ϵ−k+Q − JS
+0
+−A−k+Q
+0
+0
+−∆
+0
+−A∗
+−k
+0
+−ϵ−k + JS
+JQS
+0
+0
+0
+−∆
+0
+−A∗
+−k+Q
+JQS
+−ϵ−k+Q + JS
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+,
+(S1)
+where ϵk = −2t(cos kx + cos ky) − µ and Ak = −2α(sin kx + i sin ky) is the Rashba spin-orbit interaction.
+Note that the spatial localization length of the (near) zero-energy edge modes is determined by the supercon-
+ducting coherence length, ξc, which decreases with increasing ∆. Thus in order to demonstrate the localization of
+edge modes along the FM edges in finite size magnetic islands [see, e.g., Fig. 2(k) of the main text], ξc has to be
+chosen significantly smaller than the linear dimensions of the real space systems we can consider (which is limited by
+computational resources). This resulted in the choice of a somewhat large superconducting gap of ∆ = 0.3t for the
+calculations shown in the main text. However, using smaller values of ∆ does not change the qualitative form of the
+phase diagram (see SM Sec. III), and thus does not affect the conclusions presented in the main text.
+II.
+TOPOLOGICAL CHARGE OF NODAL POINTS
+For an antiferromagnetic MSH systems with JS = 0, the Hamiltonian in Eq. (S1) possesses an effective time-
+reversal T = τ0σyλzK, particle-hole C = τyσyλ0K, and chiral symmetry S = τyσ0λz where τa, σb, λc are Pauli
+matrices in particle-hole, spin, and sublattice space, respectively, and K is the complex conjugate operator. The
+symmetries square to T 2 = −1 and C2 = S2 = 1, yielding the topological symmetry class DIII. To transform the
+Hamiltonian in Eq. (S1) to an off-diagonal block form, we choose a basis in which S is diagonal, yielding
+U †SU =
+�
+1
+0
+0 −1
+�
+ˆH′
+k = U † ˆHkU =
+� 0
+hk
+h†
+k
+0
+�
+.
+(S2)
+Next, we define,
+Qk =
+�
+n
+|nk⟩ sgn(En,k) ⟨nk| =
+� 0
+qk
+q†
+k
+0
+�
+,
+(S3)
+where En,k are the energies and |nk⟩ are the eigenvectors of ˆH′
+k in Eq. (S2). The characteristic angle, θk, is then
+defined via eiθk = det(qk). The topological charge of each nodal point is the winding number of the characteristic
+arXiv:2301.11348v1 [cond-mat.supr-con] 26 Jan 2023
+
+2
+angle around the nodal point, which is expressed as
+ν =
+1
+2πi
+�
+dk · Tr
+�
+q−1
+k ∇kqk
+�
+= ∆θk
+2π .
+(S4)
+Supplementary Figure S1. Characteristic angle θk in the BZ for parameters (µ, α, ∆, JS, JQS) = (1.2, 0.2, 0.3, 0, 1.0)t. The
+nodal points shown as filled yellow circles with black edges are connected by a branch cut.
+III.
+TOPOLOGICAL PHASE DIAGRAM
+The topological phase diagrams shown in Fig. 1 of the main text remain qualitatively unchanged when α and ∆
+are changed. To demonstrate this, we present in Fig. S2 the topological phase diagram for (α, ∆) = (0.3, 0.1)t and
+two different values of JQS, which contain the same topological phases and phase transitions as the phase diagrams
+shown in Fig. 1 of the main text. Note, however, that the extent of the gapless TNPSC regions in the phase diagram
+Supplementary Figure S2. Topological phase diagram in the (µ, JS)-plane with (α, ∆) = (0.3, 0.1)t and (a) JQS = 0.5t, and
+(b) JQS = 1.0t.
+increases with increasing Rashba spin-orbit coupling, making superconductors with a large Rashba spin-orbit coupling
+particularly interesting for the realization of checkerboard MSH systems.
+
+1.0
+元
+0.5-
+[e/]
+Ok0
+0.0
+ky L
+-0.5-
+-1.0
+一元
+-1.0
+-0.5
+0.0
+0.5
+1.0
+kx [元/a](a) 2
+(b) 2
+C
+2
+1
+1
+1
+0
+[ sr
+[] sr
+0
+JQS = 0.5t
+-1
+0
+JQS = 1.0t
+-1
+gapless
+- 2
+- 2
+0
+1
+2
+3
+4
+0
+1
+2
+3
+4
+μ [t]
+μ [t]3
+Supplementary Figure S3. High symmetry points of the magnetic Brillouin zone.
+IV.
+ANALYTIC EXPRESSION FOR THE PHASE TRANSITION LINES
+The various phase transition lines shown in Fig.1 of the main text are accompanied by gap closings at high
+symmetry points in the magnetic Brillouin zone – the Γ-, X/Y -, and M-points (see Fig. S3)– which are described by
+the relations
+JS = ±
+�
+16t2 + (JQS)2 + ∆2 + µ2 ± 2
+�
+16t2µ2 + (JQS)2(∆2 + µ2)
+�1/2
+(S5)
+at the Γ-point (dashed black line in Fig.1 of the main text), by
+JS = ±JQS ±
+�
+∆2 + µ2
+(S6)
+at the M-point (solid black line in Fig.1 of the main text), and by
+JS = ±
+�
+(JQS)2 − 8α2 + ∆2 + µ2 ± 2
+�
+(JQS)2∆2 − 8α2∆2 + (JQS)2µ2
+�1/2
+(S7)
+at the X/Y -points (dotted black line in Fig.1 of the main text).
+V.
+PROJECTIONS OF NODAL POINTS AND EMERGENCE OF EDGE MODES
+To understand the form of edge modes along FM and AFM edges in more detail, we consider the projection of
+the nodal points onto a momentum line parallel to the edges, as schematically shown in Fig. S4. If the gapless TNPSC
+phase is entered from the gapped trivial phase via a gap closing at the X/Y -points, the edge modes (dashed green
+lines) connect nodal points of opposite topological charge that are located on the same edge of the magnetic Brillouin
+zone, as shown in Fig. S4. For the FM edge, this yields two edges modes that overlap in a momenta region across the
+Γ-point [solid green line in Fig. S4(a)], while for the AFM edge, the two edges modes overlap in momentum regions
+to the left and right of the Γ-point [solid green lines in Fig. S4(b)].
+
+M
+(元,元)
+X/Y
+kx4
+Supplementary Figure S4. Nodal points and their projections onto momenta in the magnetic BZ (dashed black line) along (a)
+a FM edge, and (b) an AFM edge. The dashed green lines represent the edge modes connecting the nodal points of opposite
+topological charge, while the solid green lines represent their projections onto the edge momenta.
+
+(a)
+(b)
+q=-1
+q=-1
+q=+1
+q=+1
+AFM
+edge
+e
\ No newline at end of file
diff --git a/o9FIT4oBgHgl3EQfvium/content/tmp_files/load_file.txt b/o9FIT4oBgHgl3EQfvium/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b1e3994a44445e3c6b81db9e724e163a53c0a315
--- /dev/null
+++ b/o9FIT4oBgHgl3EQfvium/content/tmp_files/load_file.txt
@@ -0,0 +1,658 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf,len=657
+page_content='Topological Nodal Point Superconductivity in Checkerboard Magnet-Superconductor Hybrid Systems Tuan Kieu1, Eric Mascot2,3, Jasmin Bedow1, Roland Wiesendanger2 and Dirk K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr1 1Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA 2 Department of Physics, University of Hamburg, D-20355 Hamburg, Germany and 3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia We demonstrate that checkerboard magnet-superconductor hybrid systems possess a rich phase diagram exhibiting both strong topological superconducting (STSC) and topological nodal point superconducting (TNPSC) phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' We show that TNPSC phases exist both for ferromagnetic and antiferromagnetic systems, yielding a plethora of qualitatively different edge mode structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Checkerboard MSH systems also facilitate the emergence of STSC phases which can be induced even in the limit of vanishing magnetization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Our results provide a new path for the quantum engineering of topological superconducting phases using atomic manipulation techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Introduction Magnet-superconductor hybrid (MSH) sys- tems provide a versatile platform for the quantum en- gineering of topological superconductivity and the ensu- ing Majorana zero modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The versatility of MSH sys- tems arises from the fact that their topological phase diagram can be manipulated by changing the MSH sys- tem’s magnetic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' While experimentally, only two-dimensional (2D) ferromagnetic (FM) [1–3] and an- tiferromagnetic (AFM) [4] MSH systems have been real- ized so far, intriguing topological phase diagrams – in- volving strong, weak and higher-order topological super- conducting phases – have been theoretically proposed to exist in bicollinear AFM [5], skyrmionic [6], 3Q [7], and stacked magnetic structures [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Advances in atomic ma- nipulation techniques [9, 10] have raised the intriguing possibility to quantum engineer MSH systems [2, 11] that interpolate between these various magnetic structures, potentially giving rise to intriguing new topological phase diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In this Letter, we consider one of these possibilities by studying MSH systems with two sublattices of differ- ent magnetic adatoms, yielding a checkerboard mag- netic structure [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' We demonstrate that such systems possess a rich topological phase diagram, exhibiting not only strong topological superconducting (STSC) phases [12, 13] characterized by non-zero Chern numbers, but also extended regions of topological nodal point superconductivity (TNPSC) [5, 14–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The latter were recently reported to exist in the AFM MSH system Mn/Nb(110) [4], as well as in 4Hb-TaS2 [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' We show that TNPSC phases do not only exist in AFM checker- board systems, but also in FM MSH systems where the AFM chiral symmetry is broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Moreover, the interplay between the magnetic structures of edges and their real space direction yields a plethora of qualitatively different edge mode structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' We demonstrate that in checker- board MSH systems STSC phases can be induced even in the limit of vanishing magnetization, in contrast to uni- form FM MSH systems [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Finally, we show that TNPSC phases can be created using a single species of magnetic adatoms, simplifying their experimental real- ization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Our results provide a new path to quantum en- gineer topological superconducting phases using atomic manipulation techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Theoretical Model Starting point for our study of MSH systems with a magnetic checkerboard structure [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(a)] is the Hamiltonian [12, 13] H = − t � ⟨r,r′⟩, α,β c† r,αcr′,β − µ � r,α c† r,αcr,α + iα � r,δ,α,β c† r,α (δ × σ)z α,β cr+δ,β − ∆ � r � c† r,↑c† r,↓ + cr,↓cr,↑ � − � r,α,β � J + JQeiQ·r� c† r,αSr · σα,βcr,β .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (1) Here, the operator c† r,α creates an electron of spin α at site r, −t is the nearest-neighbor hopping amplitude on a two-dimensional square lattice, µ is the chemical poten- tial, α is the Rashba spin-orbit coupling between nearest- neighbor sites r and r + δ, and ∆ is the s-wave super- conducting order parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The last term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (1) describes the coupling between the adatoms’ spin Sr of magnitude S at site r and the conduction electrons, with exchange couplings J ± JQ in the two sublattices, and Q = (π, π) [for details, see Supplemental Material (SM) Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='I].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Due to the hard superconducting gap, which sup- presses Kondo screening, we can consider the spins of the magnetic adatoms to be classical in nature [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To characterize the strong topological phases, we com- pute its topological invariant, the Chern number, via [21] C = 1 2πi � BZ d2kTr(Pk[∂kxPk, ∂kyPk]) Pk = � En(k)<0 |Ψn(k)⟩⟨Ψn(k)| (2) where En(k) and |Ψn(k)⟩ are the eigenenergies and the eigenvectors of the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (1), with n being arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='11348v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='supr-con] 26 Jan 2023 2 a band index, and the trace is taken over Nambu, spin and sublattice space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Since STSC phases occur only for J ̸= 0, they belong to the topological class D [16, 22, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Finally, for antiferromagnetic TNPSC phases (J = 0) the chiral symmetry of the system allows us to compute a topological charge and characteristic angle associated with nodal points (see SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' We note that trivial nodal point superconductivity was previously discussed in the context of antiferromagnetic semimetals [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) Schematic structure of the checkerboard mag- netic structure with exchange couplings J ± ∆J in the two sublattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (b)-(e) Topological phase diagrams of the MSH system in the (µ, JS)-plane for different values of JQS with (α, ∆) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Results We begin by considering the topological phase di- agram of the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (1), which is presented in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(b)-(e) for different values of JQS (the qualitative form of these phase diagrams is independent of the partic- ular values of α and ∆, see SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In addition to the strong topological C = 2, −1 phases which are already present for JQS = 0, two new features appear in the phase diagram with increasing JQS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' First, a C = 1 phase emerges due to the backfolding of the Brillouin zone (BZ), and the splitting of the bands at the X/Y -points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Sec- ondly, an extended region of the phase diagram (shown in grey), lying between the gap closing lines of the M- FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) Energy dispersion of the bulk system in the magnetic BZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (b) Nodal points and edge modes (dashed green lines) projected onto momenta parallel to the FM and AFM edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Schematic representation of (c) diagonal (FM) and (d) vertical (AFM) edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Electronic structure of a ribbon with (e) FM and (f) and AFM edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (g),(h) Spectral functions at the ribbon’s left (upper panel) and right (lower panel) edges corresponding to (e) and (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (i), (j) LDOS at the edges cor- responding to (e) and (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (k) Zero-energy LDOS of a mag- netic island (dashed white line) with FM and AFM edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (µ, α, ∆, JS, JQS) = (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (solid black line) and X/Y -points (dotted black line), be- comes gapless (an analytic expression for the phase tran- sition lines is given in SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' IV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' As one moves in the gapless region between these two gap closing lines, the nodal points move along the magnetic BZ boundary from (b) 2 (a) 1 [] sr JS = O 0 2 3 0 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4 μ [t] (c) (d) 2 1 1 [1] sr [1] sr JQS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2t 0 JQS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5t 0 1 1 2 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1 3 0 2 4 3 0 2 4 μ [t] μ [t] (e) 2 c 2 1 1 M 0 [] S] JQS = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0t 0 1 2 X/Y gapless 2 2 3 0 1 4 μ [t](b) q=+1 (a) q=- AFM edge (d) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 (f) (e) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 energy 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0 ku [元/b] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0 ku [元/a] (g) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 (h) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 energy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 A(kll/ の) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 - ku [元/b] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 1 ku [元/a] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 units] (0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' units] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content="8 'que] 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='6 [arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4 LDOS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 V 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 energy [t] energy [t] (k) max 40 - N(r,E=0) 20 - a 0- y 20 - x [a] 40 0 80 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 40 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 20 40 80 603 the M to the X/Y -points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' For JQS ≥ � 2α2 + ∆2 0, the strong topological C = ±1 phases touch at a single anti- ferromagnetic (JS = 0) point in the phase diagram with chemical potential µc = � (JQS)2 − ∆2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' At this point, any non-zero magnetization, which can be induced by ar- bitrarily small magnetic fields, pushes the system into a STSC phase, in contrast to uniform FM MSH systems, where JS > ∆ is required [12, 13] for the emergence of strong topological phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To exemplify the electronic structure of an antiferro- magnetic MSH system (JS = 0) in the gap-less region around µc [yellow line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(e)], we consider a sys- tem with µ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2t [red dot in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(e)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(a) we present the resulting electronic structure exhibiting eight nodal points located along the boundary of the magnetic BZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Due to the chiral symmetry of the sys- tem along the JS = 0 line, we find that these nodal points possess a non-zero topological charge q = ±1 [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(b)], the corresponding characteristic angles are shown in SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The presence of nodal points with opposite topological charges allows for the emergence of edge modes connecting such nodal points [schemati- cally shown as dashed green lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(b)] in MSH systems exhibiting edges [5, 14–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' When considering MSH systems in a ribbon geometry possessing diago- nal ferromagnetic (FM) or vertical/horizontal antiferro- magnetic (AFM) edges [see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(c) and (d)], we find that their electronic structures indeed exhibit such in- gap edge modes as shown by red lines in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(e) and (f), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' However, in contrast to an MSH sys- tem with AFM edges, the edge modes along FM edges disperse only weakly around zero-energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To understand this qualitative difference, we note that the projection of the bulk band structure onto momenta parallel to ei- ther an FM or AFM edge leads to two overlapping (in momentum space) edge modes (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(b), and SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' These two edge modes can in general hybridize, and thus split in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The spectral functions at the FM and AFM edges, shown in the upper and lower pan- els of Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(g) and (h), respectively, for the two edges of each ribbon, provide insight into the different nature of the resulting edge modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In contrast to the AFM edge, the edge mode along the FM edge is chiral in na- ture [13] (due to the broken time-reversal symmetry along the edge) with opposite Fermi velocities on the two FM edges, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Thus, the two modes along the FM edges are spatially separated, and thus do not hy- bridize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In contrast, the spectral functions at the AFM edges [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(h)] show that both modes exist at the same edge and thus strongly hybridize, leading to the much larger energy splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' This qualitative difference leads to distinct signatures in the local density of states (LDOS) of FM and AFM edges: while the LDOS at an FM edge exhibits a large zero-energy peak [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(i)], the LDOS at the AFM edge exhibits only a low-energy V-like shaped LDOS [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(j)], with the signatures of the edge modes seen only at higher energies [see black arrows].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' As a result, a spatial plot of the zero-energy LDOS of a finite magnetic island [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(k)] reveals large spectral weight along the FM edges, and vanishing spectral weight along the AFM edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) Schematic picture of a stair-case edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (b) Magnetic BZ and nodal points projected onto the momen- tum parallel to the stair-case edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (c) Electronic struc- ture of the ribbon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (d) Zero-energy LDOS for a magnetic island with horizontal and stair-case edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Parameters are (µ, α, ∆, JS, JQS) = (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To obtain flat, non-dispersive edge modes, it is neces- sary to consider edges in real space such that the pro- jected edge modes do not completely overlap in momen- tum space, as is the case for the FM and AFM edges (see SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' For example, by considering a stair-case like edge in real space [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 3(a)], we find that the result- ing projection of the nodal points onto momenta parallel to the stair case edge [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 3(b)] yields momentum re- gions with even and odd numbers of projected modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In those regions where three projected modes overlap, one edge mode is non-dispersive and located at zero energy [see black arrows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 3(c)], while the other two pro- jected modes hybridize and thus shift to higher energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' As a result, a magnetic island that possesses both ver- tical and stair-case edges [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 3(d)] again shows a large zero-energy LDOS along the stair-case edges, and vanishing spectral weight along the vertical edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) (b) stair-case π/(2a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='100 Projected bulk TXXX 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='075 Eo E1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='050 E2 En>2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='025 Energy [t] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='100 1 0 kl [元/c] max (d) 20 N(r,E=0) 10 y 10 20 x[a] 0 60 40 20 0 20 40 60 80 804 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) Energy dispersion of the bulk system in the mag- netic BZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Electronic structure of a ribbon with (b) FM and (c) AFM edges, as a function of momentum parallel to the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (k) Zero-energy LDOS of a magnetic island (dashed white line) with FM and AFM edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (µ, α, ∆, JS, JQS) = (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='25, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The question immediately arises whether the nature of the edge modes persists in those gapless regions of the phase diagram where the chiral symmetry of the AFM is broken due to a non-zero JS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To answer this ques- tion, we consider a system in the gapless region above the antiferromagnetic line, as indicated by a white star in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The electronic bulk structure of this sys- tem again reveals 8 nodal points along the magnetic BZ boundary, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The electronic disper- sions for ribbons with FM and AFM edges [Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 4(b) and (c), respectively] reveal the same qualitative nature of the respective edge modes as in the JS = 0 case discussed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' However, since the chiral symmetry of the AFM edge is broken due to the non-zero JS, the double- degeneracy of the AFM edge modes is lifted, leading to a further energy splitting among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The zero-energy LDOS of a magnetic island [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 4(d)] thus again reveals large spectral weight along the FM edges, and vanishing spectral weight along the AFM edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Sim- ilar results are obtained not only for any point in the gapless regions around µc [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(e)], but also in the gapless regions induced by much smaller values of JQS [see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1(c),(d)], we conclude that checkerboard MSH systems are ideally suited to quantum engineer topolog- ical nodal point superconductivity as the occurrence of TNPSC phases does not require the fine-tuning of param- eters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Of particular interest here are MSH systems with large Rashba spin-orbit coupling since the extent of gap- less regions in the phase diagram increases with α (see SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Our findings provide further support for the conclusion of recent scanning tunneling spectroscopy (STS) experiments [4] that the presence or absence of (near) zero-energy edge modes at various edges in the AFM MSH system Mn/Nb(110) are characteristics sig- natures of the underlying TNPSC phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' A special case of the magnetic checkerboard structure arises when J = JQ, implying that only a single species of magnetic adatoms is present in one of the two sublat- tices, as schematically shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 5(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 5(b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) Schematic structure of the checkerboard mag- netic structure for J = JQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (b) Topological phase diagram for (α, ∆) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Electronic structure of an MSH rib- bon with (c),(e) FM and (d)(f) AFM edges for (µ, JS) = (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='47)t [yellow dot in (b)], and (µ, JS) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4)t [blue dot in (b)], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' we present the resulting phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In addition the strong topological C = 1 phase, we obtain three types of gapless regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Region 1 is entered from the gapped trivial (C = 0) region via a gap closing at the X/Y - points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' As a result, the edge modes connect the nodal points of opposite topological charge that are located on the same edge of the magnetic BZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In this region, the electronic structure along FM and AFM edges [see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 5(c) and (d)] is similar to that shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In contrast, the transition into region 2 from the trivial phase requires a gap closing at the M-points, which yields edge modes connecting the nodal points of opposite topo- logical charge on neighboring edges of the magnetic BZ [see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 5(e) and (f)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' In this case, neither edge shows a (nearly) non-dispersive edge mode, implying the ab- sence of any pronounced zero-energy peak in the LDOS at the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Finally, the transition line into region 3 (red line) shows gap closings that vary along the mag- netic BZ boundary between the M and X/Y -points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' We thus conclude that by even using a single species of mag- netic adatoms, it is possible to create a TNPSC phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Discussion We have shown that checkerboard MSH sys- tems are ideally suited to quantum engineer STSC as well as TNPSC phases, with the latter existing both for AFM (J = 0) and FM (J ̸= 0) structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The nature of edge (d) (a) max 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' N(r,E=O) 20 - a 0 y 20 40 80 60 40 20 0 20 40 60 80 x [a] (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 energy [t] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 energy [t] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0 0 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 1 ku [元/b] ku [元/a](b) C (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='6 S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4 gapless 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 2 3 JQ=J 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='4 μ [t] (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 energy [t] energy [t] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 1 kil [元/a] k [元/b] e) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 (f) energy [t] XXX energy [t] 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 1 1 ku [元/b] ku [元/a]5 modes in the TNPSC phases is sensitively determined by the projection of nodal points onto the edge momenta, and the magnetic structure of the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' This allows for the emergence of edge modes that are dispersive in some momentum ranges, and non-dispersive (flat) in oth- ers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Our results further support the conclusions of recent STS experiments in the AFM MSH system Mn/Nb(110) [4] that the underlying TNPSC phase can be identified through the presence or absence of (near) zero-energy edge modes along different edges in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The finding that TNPSC phases can be created even with a single species of magnetic adatoms when placed in only one of the two sublattices further supports the ubiquity of TNPSC phases in checkerboard MSH systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Ad- vances in atomic manipulation techniques all but ensure that such checkerboard MSH systems and the ensuing TNPSC phases can be quantum engineered in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' ACKNOWLEDGMENTS The authors would like to thank S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rachel for stimulat- ing discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='K, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='M, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=', and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' acknowl- edge support by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Department of Energy, Of- fice of Science, Basic Energy Sciences, under Award No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' DE-FG02-05ER46225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' acknowledges financial sup- port by the EU via the ERC Advanced Grant ADMIRE (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 786020) and the DFG via the Cluster of Excellence “Advanced Imaging of Matter” (EXC 2056, Project ID 390715994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' M´enard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Guissart, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Brun, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Leriche, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Trif, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Debontridder, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Demaille, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Roditchev, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Simon, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Cren, Two-dimensional topological superconductivity in Pb/Co/Si(111), Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 8, 2040 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Palacio-Morales, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mascot, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Cocklin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rachel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wiesendanger, Atomic- scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 5, eaav6600 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Kezilebieke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Huda, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Vaˇno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Aapro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Ganguli, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Silveira, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' G�lodzik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Foster, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Oja- nen, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Liljeroth, Topological superconductivity in a van der Waals heterostructure, Nature 588, 424 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Bazarnik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Conte, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mascot, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' von Bergmann, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wiesendanger, Antiferromagnetism- driven two-dimensional topological nodal-point super- conductivity, arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='12018 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Cole, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Das Sarma, Higher-Order Topology and Nodal Topological Supercon- ductivity in Fe(Se,Te) Heterostructures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 123, 167001 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mascot, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Bedow, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Graham, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rachel, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr, Topological superconductivity in skyrmion lat- tices, npj Quantum Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 6, 6 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Bedow, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mascot, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Posske, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Uhrig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wiesen- danger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rachel, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr, Topological super- conductivity induced by a triple- q magnetic structure, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' B 102, 180504 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Hirsbrunner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Gliozzi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Malik, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Bradlyn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Hughes, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr, Higher order topological superconductivity in magnet-superconductor hybrid systems, arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='15582 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [9] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Gomes, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mar, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Ko, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Guinea, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Manoharan, Designer Dirac fermions and topological phases in molecular graphene, Nature 483, 306 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Polini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Guinea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Lewenstein, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Manoha- ran, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Pellegrini, Artificial honeycomb lattices for electrons, atoms and photons, Nature Nanotech 8, 625 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Kim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Palacio-Morales, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Posske, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' R´ozsa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Palot´as, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Szunyogh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Thorwart, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wiesen- danger, Toward tailoring Majorana bound states in ar- tificially constructed magnetic atom chains on elemental superconductors, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 4, eaar5251 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Neupert, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' MacDonald, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Yaz- dani, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Bernevig, Two-dimensional chiral topo- logical superconductivity in Shiba lattices, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 7, 12297 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rachel, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mascot, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Cocklin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Vojta, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr, Quantized charge transport in chiral Majorana edge modes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' B 96, 205131 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Baum, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Posske, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Fulga, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Trauzettel, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Stern, Gapless topological superconductors: Model Hamiltonian and realization, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' B 92, 045128 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Kao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mou, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Tsuei, Tunneling spectroscopy and Majorana modes emergent from topological gapless phases in high- T c cuprate su- perconductors, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' B 91, 134501 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Chiu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Teo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Schnyder, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Ryu, Classification of topological quantum matter with sym- metries, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 88, 035005 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [17] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' He, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' He, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Yuan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Zhang, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Law, Magnetic field driven nodal topolog- ical superconductivity in monolayer transition metal dichalcogenides, Commun Phys 1, 40 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Nayak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Steinbok, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Roet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Koo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mar- galit, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Feldman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Almoalem, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Kanigel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Fi- ete, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Yan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Oreg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Avraham, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Beidenkopf, Evidence of topological boundary modes with topologi- cal nodal-point superconductivity, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 17, 1413 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Balatsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Vekhter, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Zhu, Impurity- induced states in conventional and unconventional su- perconductors, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 78, 373 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [20] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Heinrich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Pascual, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Franke, Sin- gle magnetic adsorbates on s -Wave superconductors, Progress in Surface Science 93, 1 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Avron, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Seiler, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Simon, Homotopy and quantization in condensed matter physics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 51, 51 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Kitaev, Periodic table for topological insulators and superconductors, AIP Conference Proceedings 1134, 22 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Ryu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Schnyder, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Furusaki, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Lud- wig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 12, 065010 6 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' [24] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Brzezicki and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Cuoco, Nodal s -Wave superconduc- tivity in antiferromagnetic semimetals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' B 97, 064513 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Topological Nodal Point Superconductivity in Checkerboard Magnet-Superconductor Hybrid Systems Supplementary Material Tuan Kieu1, Eric Mascot2,3, Jasmin Bedow1, Roland Wiesendanger2 and Dirk K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Morr1 1Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA 2Department of Physics, University of Hamburg, D-20355 Hamburg, Germany and 3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' HAMILTONIAN IN MOMENTUM SPACE For a checkerboard MSH system, the Hamiltonian of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (1) in the main text can be written in momentum space as H = Ψ† k ˆHkΨk with spinor Ψ† = � c† k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' c† k+Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' c† k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' c† k+Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' c−k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' c−k+Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' −c−k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' −c−k+Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='↑ � and the Hamiltonian matrix ˆHk is given by ˆHk = � � � � � � � � � � � ϵk − JS −JQS −Ak 0 −∆ 0 0 0 −JQS ϵk+Q − JS 0 −Ak+Q 0 −∆ 0 0 −A∗ k 0 ϵk + JS JQS 0 0 −∆ 0 0 −A∗ k+Q JQS ϵk+Q + JS 0 0 0 −∆ −∆ 0 0 0 −ϵ−k − JS −JQS −A−k 0 0 −∆ 0 0 −JQS −ϵ−k+Q − JS 0 −A−k+Q 0 0 −∆ 0 −A∗ −k 0 −ϵ−k + JS JQS 0 0 0 −∆ 0 −A∗ −k+Q JQS −ϵ−k+Q + JS � � � � � � � � � � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (S1) where ϵk = −2t(cos kx + cos ky) − µ and Ak = −2α(sin kx + i sin ky) is the Rashba spin-orbit interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Note that the spatial localization length of the (near) zero-energy edge modes is determined by the supercon- ducting coherence length, ξc, which decreases with increasing ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Thus in order to demonstrate the localization of edge modes along the FM edges in finite size magnetic islands [see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=', Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 2(k) of the main text], ξc has to be chosen significantly smaller than the linear dimensions of the real space systems we can consider (which is limited by computational resources).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' This resulted in the choice of a somewhat large superconducting gap of ∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3t for the calculations shown in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' However, using smaller values of ∆ does not change the qualitative form of the phase diagram (see SM Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' III), and thus does not affect the conclusions presented in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' TOPOLOGICAL CHARGE OF NODAL POINTS For an antiferromagnetic MSH systems with JS = 0, the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (S1) possesses an effective time- reversal T = τ0σyλzK, particle-hole C = τyσyλ0K, and chiral symmetry S = τyσ0λz where τa, σb, λc are Pauli matrices in particle-hole, spin, and sublattice space, respectively, and K is the complex conjugate operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The symmetries square to T 2 = −1 and C2 = S2 = 1, yielding the topological symmetry class DIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To transform the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (S1) to an off-diagonal block form, we choose a basis in which S is diagonal, yielding U †SU = � 1 0 0 −1 � ˆH′ k = U † ˆHkU = � 0 hk h† k 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (S2) Next, we define, Qk = � n |nk⟩ sgn(En,k) ⟨nk| = � 0 qk q† k 0 � , (S3) where En,k are the energies and |nk⟩ are the eigenvectors of ˆH′ k in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The characteristic angle, θk, is then defined via eiθk = det(qk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The topological charge of each nodal point is the winding number of the characteristic arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='11348v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='supr-con] 26 Jan 2023 2 angle around the nodal point, which is expressed as ν = 1 2πi � dk · Tr � q−1 k ∇kqk � = ∆θk 2π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (S4) Supplementary Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Characteristic angle θk in the BZ for parameters (µ, α, ∆, JS, JQS) = (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3, 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The nodal points shown as filled yellow circles with black edges are connected by a branch cut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' TOPOLOGICAL PHASE DIAGRAM The topological phase diagrams shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1 of the main text remain qualitatively unchanged when α and ∆ are changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' To demonstrate this, we present in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S2 the topological phase diagram for (α, ∆) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1)t and two different values of JQS, which contain the same topological phases and phase transitions as the phase diagrams shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1 of the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Note, however, that the extent of the gapless TNPSC regions in the phase diagram Supplementary Figure S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Topological phase diagram in the (µ, JS)-plane with (α, ∆) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1)t and (a) JQS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5t, and (b) JQS = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' increases with increasing Rashba spin-orbit coupling, making superconductors with a large Rashba spin-orbit coupling particularly interesting for the realization of checkerboard MSH systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 元 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5- [e/] Ok0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 ky L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 一元 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0 kx [元/a](a) 2 (b) 2 C 2 1 1 1 0 [ sr [] sr 0 JQS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='5t 1 0 JQS = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='0t 1 gapless 2 2 0 1 2 3 4 0 1 2 3 4 μ [t] μ [t]3 Supplementary Figure S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' High symmetry points of the magnetic Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' ANALYTIC EXPRESSION FOR THE PHASE TRANSITION LINES The various phase transition lines shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 of the main text are accompanied by gap closings at high symmetry points in the magnetic Brillouin zone – the Γ-, X/Y -, and M-points (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S3)– which are described by the relations JS = ± � 16t2 + (JQS)2 + ∆2 + µ2 ± 2 � 16t2µ2 + (JQS)2(∆2 + µ2) �1/2 (S5) at the Γ-point (dashed black line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 of the main text), by JS = ±JQS ± � ∆2 + µ2 (S6) at the M-point (solid black line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 of the main text), and by JS = ± � (JQS)2 − 8α2 + ∆2 + µ2 ± 2 � (JQS)2∆2 − 8α2∆2 + (JQS)2µ2 �1/2 (S7) at the X/Y -points (dotted black line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content='1 of the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' PROJECTIONS OF NODAL POINTS AND EMERGENCE OF EDGE MODES To understand the form of edge modes along FM and AFM edges in more detail, we consider the projection of the nodal points onto a momentum line parallel to the edges, as schematically shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' If the gapless TNPSC phase is entered from the gapped trivial phase via a gap closing at the X/Y -points, the edge modes (dashed green lines) connect nodal points of opposite topological charge that are located on the same edge of the magnetic Brillouin zone, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' For the FM edge, this yields two edges modes that overlap in a momenta region across the Γ-point [solid green line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S4(a)], while for the AFM edge, the two edges modes overlap in momentum regions to the left and right of the Γ-point [solid green lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' S4(b)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' M (元,元) X/Y kx4 Supplementary Figure S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' Nodal points and their projections onto momenta in the magnetic BZ (dashed black line) along (a) a FM edge, and (b) an AFM edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' The dashed green lines represent the edge modes connecting the nodal points of opposite topological charge, while the solid green lines represent their projections onto the edge momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
+page_content=' (a) (b) q=-1 q=-1 q=+1 q=+1 AFM edge e' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/o9FIT4oBgHgl3EQfvium/content/2301.11348v1.pdf'}
diff --git a/pNAyT4oBgHgl3EQfZPcw/content/tmp_files/2301.00218v1.pdf.txt b/pNAyT4oBgHgl3EQfZPcw/content/tmp_files/2301.00218v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..299bb2054ea5a9f7c5b0e36645ec440031d5b6bd
--- /dev/null
+++ b/pNAyT4oBgHgl3EQfZPcw/content/tmp_files/2301.00218v1.pdf.txt
@@ -0,0 +1,1088 @@
+Many-body spin rotation by adiabatic passage in
+spin-1/2 XXZ chains of ultracold atoms
+Ivana Dimitrova1,∗, Stuart Flannigan2,∗∗, Yoo Kyung Lee1,
+Hanzhen Lin1, Jesse Amato-Grill1,∗∗∗, Niklas Jepsen1,∗∗∗, Ieva
+ˇCepait˙e2, Andrew J. Daley2 and Wolfgang Ketterle1
+1 Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms,
+Department of Physics, Massachusetts Institute of Technology, Cambridge,
+Massachusetts 02139, USA.
+2 Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG,
+United Kingdom.
+∗ Present address: Department of Physics, Harvard University, Cambridge,
+Massachusetts 02138, USA.
+∗∗ Present address: Strangeworks, Austin, Texas 78702, USA.
+∗∗∗ Present address: QuEra Computing, Inc., Boston, MA 02135, USA.
+Abstract.
+Quantum many-body phases offer unique properties and emergent
+phenomena, making them an active area of research.
+A promising approach for
+their experimental realization in model systems is to adiabatically follow the ground
+state of a quantum Hamiltonian from a product state of isolated particles to one
+that is strongly-correlated. Such protocols are relevant also more broadly in coherent
+quantum annealing and adiabatic quantum computing.
+Here we explore one such
+protocol in a system of ultracold atoms in an optical lattice.
+A fully magnetized
+state is connected to a correlated zero-magnetization state (an xy-ferromagnet) by a
+many-body spin rotation, realized by sweeping the detuning and power of a microwave
+field.
+The efficiency is characterized by applying a reverse sweep with a variable
+relative phase. We restore up to 50% of the original magnetization independent of
+the relative phase, evidence for the formation of correlations. The protocol is limited
+by the many-body gap of the final state, which is inversely proportional to system size,
+and technical noise. Our experimental and theoretical studies highlight the potential
+and challenges for adiabatic preparation protocols to prepare many-body eigenstates
+of spin Hamiltonians.
+Keywords:
+quantum simulation, ultracold atoms in optical lattices, quantum spin
+Hamiltonian engineering, adiabatic state preparation, many-body states
+arXiv:2301.00218v1 [cond-mat.quant-gas] 31 Dec 2022
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms2
+1. Introduction
+The study of many-body quantum states is at the intersection of fundamental quantum
+physics and quantum technologies. Entangled and highly correlated quantum states lead
+to intriguing new properties of materials and are resources for quantum computation.
+A leading platform for engineering quantum spin Hamiltonians is provided by ultracold
+atoms in optical lattices [1]. Many recent studies in these systems have explored non-
+equilibrium quantum dynamics, often involving evolution from an initial state that
+is straight-forward to prepare on a single-particle level [2, 3, 4, 5, 6, 7, 8, 9].
+The
+focus on such quench experiments reflects not only the strong general interest in such
+dynamics, but also the challenges of realising more complex many-body eigenstates.
+This is often related to the prevalence of low-lying excitations which lead to requirements
+of extremely low spin entropies. Entropy redistribution techniques in which a reservoir
+system absorbs excess entropy have been proposed [10, 11, 12] and used to prepare
+low-entropy entangled states [13, 14], but robustly preparing many-body ground states
+remains challenging.
+An alternative approach is to start with an uncorrelated state, which could be
+prepared with very low entropy, and adiabatically transform it into a many-body
+quantum state.
+For example, quantum antiferromagnetic correlations have been
+observed by adiabatically loading a spin-mixture into an optical lattice [15, 16, 17, 18].
+However, many such protocols require mass and entropy redistribution across the
+system which increases the coherence time requirements. Local transformations of the
+Hamiltonian have the promise of being faster and scalable to larger systems.
+Such
+protocols have been proposed [19, 20, 21, 22, 8] and realized [23, 24] using microscopic
+engineering of the initial state by optical superlattices, ladder systems, or spin-dependent
+lattices.
+Finally, the importance of adiabatic preparation protocols extends beyond
+optical lattice systems and they have been recently utilized to prepare correlated states
+of quantum Hamiltonians in systems of Rydberg atom arrays [25, 26, 27, 28].
+Here we use an adiabatic scheme which involves a direct manipulation of the spin
+state, and not the external potential, and requires control only over a microwave field.
+We demonstrate that by a many-body spin rotation, realized by an adiabatic sweep of
+the detuning and power of the microwave field, states with different magnetization can be
+connected. The properties of such rotation protocols have been explored theoretically in
+[29, 30]. We realize a spin-1/2 XXZ chain in which a z-ferromagnet (a highly magnetized
+state) is rotated into an xy-ferromagnet, which is a strongly-correlated state with no
+gap in the infinite-chain limit. In a finite system, the gap is inversely proportional to the
+system size, allowing the adiabatic connection. The xy-ferromagnet is a magnet which
+points nowhere on average, i.e. it is a superposition of states which point in different
+directions in the xy-plane and for which the spin operator Sz = 0, but the expectation
+values are also ⟨Sx⟩ = 0 and ⟨Sy⟩ = 0, Fig.1(a). We employ a new technique to show the
+presence of correlations in the many-body state: we apply a reverse microwave sweep
+but with a different phase relative to the initial sweep. This protocol can distinguish
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms3
+-0.45
+-0.3
+-0.15
+0
+0.15
+Final detuning f (kHz)
+0
+0.25
+0.5
+0.75
+1
+Fraction of atoms
+Time
+XY FM
+Z FM
+f
+Bef
+Bef
+Z FM
+|↓〉
+|↑〉
+|↑〉
+|↓〉
+Bef
+Bef
+Bef=0
+(a)
+(b)
+(c)
+Figure 1. Many-body spin rotation in 1D chains. (a) A fully magnetized state is
+rotated by an adiabatic passage into a correlated phase in the xy-plane which has no
+magnetization. (b) Schematic representation of the phase diagram. Starting from the
+z-ferromagnet (Z FM) in |↓⟩⊗N, where N is the number spins, a microwave field is
+applied coupling the two spin states with detuning δ (effective z-magnetic field) and
+Rabi frequency Ω (effective x-magnetic field) with |δ| ≫ |Ω|. First, the detuning is
+ramped to zero, rotating the spins to the xy-plane, then the Rabi frequency is ramped
+to zero, ideally realizing the xy-ferromagnet (XY FM). (c) Measured fraction of atoms
+in each state as a function of the final detuning: |↓⟩ (circles) and |↑⟩ (triangles) for a
+deep 35 ER lattice of isolated sites (orange) and a shallow 11 ER lattice of coupled
+sites (blue). The solid lines are phenomenological fits of the form: a tanh((δ-δ0)/w)+c.
+between isolated spins, coupled spins, and dephased spins (a collection of spins with
+random orientations). We recover up to 50 % of the initial magnetization independent
+of the phase of the reverse sweep, a strong evidence for the successful preparation of
+a spin state with xy-ferromagnetic correlations. The presence of correlations is further
+corroborated by measuring excess fluctuations in ⟨S2
+x⟩, which are proportional to the
+Quantum Fisher information. Detailed numerical simulations verify our protocols and
+show that the coherence time in our system is limited by intensity noise in the microwave
+pulse during the final stages of the preparation when the gap is the smallest. For these
+timescales, our results are consistent with creating correlations over a few lattice sites.
+Longer chains require considerably longer time evolution to ensure adiabaticity.
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms4
+2. Experimental setup and spin Hamiltonian
+The system is a Mott insulator of 7Li atoms in an optical lattice. With one particle per
+site and two hyperfine states, it realizes the (anisotropic) spin-1/2 Heisenberg model,
+where effective spin-spin interactions between neighboring sites are realized by a second-
+order tunneling process (superexchange) [31, 32]. We apply a microwave field coupling
+the two hyperfine states with detuning δ = ω − ω0, where ℏω0 is the energy difference
+between the two hyperfine states and ω is the frequency of the microwave field, and with
+Rabi frequency Ω. This is equivalent to having a z- and an x- magnetic field in a spin
+system respectively, realizing the anisotropic spin-1/2 Hamiltonian with external fields:
+H = Jz
+�
+⟨i,j⟩
+Sz
+i Sz
+j + Jxy
+�
+⟨i,j⟩
+�
+Sx
+i Sx
+j + Sy
+i Sy
+j
+�
++ δ(t)
+�
+i
+Sz
+i + Ω(t)
+�
+i
+Sx
+i ,
+(1)
+where ⟨i, j⟩ denotes nearest neighbors, and Sα
+i are spin operators. Here Jz/h = −73.9
+Hz and Jxy/h = 76.5 Hz are the superexchange parameters, which are ∼ ˜t2/Uαβ where
+˜t is the tunneling between neighboring sites and Uαβ are the on-site interactions with
+α, β ∈ (|↑⟩, |↓⟩). The on-site interactions and hence the superexchange parameters can
+be varied by changing the applied magnetic field via Feshbach resonances (Appendix
+B).
+The spins are encoded in the second-lowest and third-lowest hyperfine states
+|↓⟩ = |mi, mj⟩ = |1/2, −1/2⟩ and |↑⟩ = |−1/2, −1/2⟩, respectively, at a magnetic field
+of 1000 G and can be imaged separately (Appendix C). Rather than using the lowest
+two hyperfine states, this encoding reduces the sensitivity to magnetic field noise by an
+order of magnitude. The optical lattice is formed by retroreflecting three orthogonal
+1064 nm laser beams. Throughout this work we compare deep (35 ER) and shallow
+(11 ER) lattices in two configurations: i) isolated spins: all three lattices at 35 ER,
+making the superexchange coupling between them small compared to the timescales of
+the experiment (h/(4˜t2/U↑↓) = 80s); and ii) coupled spins in 1D chains: lowering the
+depth of one lattice arm to 11 ER to enable tunneling, which creates a collection of
+spin chains with an average length of 16 sites as determined by the confining potential
+(Appendix E).
+3. Preparation protocol
+The protocol for preparing an xy-ferromagnet using a many-body spin rotation starts
+with a Mott insulator of isolated spins in |↓⟩.
+This is the z-ferromagnetic state
+|Ψ0⟩ = |↓⟩⊗N trivially prepared by loading a Bose-Einstein condensate of |↓⟩ atoms
+into the lattice from an optical dipole trap. This is the highest excited state of the
+spin Hamiltonian 1 in the limit of large detuning δ ≫ Ω. The adiabatic connection is
+realized at low lattice depths by performing half a Landau-Zener sweep (δ → 0) followed
+by an adiabatic ramp off of the driving field Ω → 0, Fig.1(b). Without interactions
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms5
+between sites, each atom would be individually prepared in the superposition state
+1/
+√
+2 (|↓⟩ + |↑⟩). However, nearest-neighbor interactions (Jxy) along the chain open a
+many-body gap in the eigenspectrum, so that the initial multi-particle state is instead
+adiabatically connected to an entangled state: the xy-ferromagnet. In the mean-field
+picture, sweeping the detuning to zero at a constant Rabi frequency rotates the spins
+into the xy-plane. Sweeping the Rabi frequency to zero removes the guiding x-bias field,
+leaving the system in the xy-ferromagnetic state which is stabilized by the spin-spin
+correlations, similar to the Weiss mean field.
+We first measure the effect of the adiabatic protocol on the populations in the two
+spin states and calibrate the resonance of the transition |↑⟩ ←→ |↓⟩ by varying the
+final point of the detuning sweep δf. Fig.1 (c) shows the population going smoothly
+from all atoms in |↑⟩ to all atoms in |↓⟩. We denote zero detuning the point at which
+there is an equal number of atoms in each spin state, i.e. the total Sz = 0. This point
+is shifted for the 11 ER lattice, which is due to the non-zero tunneling at low lattice
+depths. From the mapping of the Bose-Hubbard Hamiltonian to the Heisenberg model,
+there is an additional effective z-magnetic field term ∼ ˜t 2(1/U↑↑ − 1/U↓↓) [33]. This
+term is exceptionally small (and typically negligible) in a deep lattice, but in a shallow
+lattice it shifts the effective zero detuning point. The width of the feature in Fig. 1(c)
+is also larger at 11 ER and is proportional to the coupling matrix element Jxy between
+lattice sites.
+4. Probing the resulting state
+We perform the adiabatic sweep and use the corresponding zero-point detunings as
+the endpoint of the ramp for deep and shallow lattices respectively.
+To probe the
+resulting state, we implement a Ramsey-like protocol which allows us to distinguish
+between single-particle and correlated evolution of the spins. After performing the state
+preparation, we introduce a phase jump ∆φ in the drive and then perform the sweep
+of the driving field in reverse, Fig. 2(a). Our observable is the return magnetization
+MR = ⟨N↓−N↑⟩/(N↓+N↑) averaged over the cloud, which can be extracted directly from
+spin-sensitive images. In an ideal system of isolated spins, the state of each spin after
+the initial sweep has a well-defined phase and MR exhibits a Ramsey-type oscillation
+between −1 and 1 as a function of ∆φ. In a system of coupled spins, if the protocol has
+successfully connected the z-ferromagnet to the xy-ferromagnet and back, we expect to
+measure MR = 1, independent of ∆φ. Finally, if the spin rotation had instead resulted
+in a collection of spins with random orientations, would measure MR = 0 independent
+of ∆φ. While a measurement of zero-magnetization after the initial sweep could be due
+to the formation of a correlated phase or to dephasing, a non-zero return magnetization
+can emerge from a state with Sz = 0 after the return sweep if correlations have been
+established.
+The results of the measurement are shown in Fig. 2(b). We parameterize the return
+magnetization MR = ∆M cos(∆φ) + M R by its amplitude ∆M and offset M R. For
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms6
+0
+1
+2
+3
+Phase difference
+ ( )
+-1
+-0.5
+0
+0.5
+1
+Magnetization M R
+0
+10
+20
+Hold time
+t (ms)
+0
+0.4
+0.8
+Amplitude
+MR
+0
+100
+200
+Hold time
+t (ms)
+0.1
+0.2
+0.3
+Magnetization M R
+Time
+sweep in
+sweep out
+35 ER
+11 ER
+Time
+(a)
+(b)
+(c)
+(d)
+Figure 2. Reversing the initial sweep. (a) After the initial sweep, we hold for time
+∆t and apply an inverse sweep with relative phase ∆φ. (b) Return magnetization for
+a deep lattice (orange) and a shallow lattice (blue) for ∆t = 0. The solid lines are
+sinusoidal fits of the form MR = ∆M cos(∆φ)+M R and the dashed lines are M R. The
+non-zero M R is an indication that a correlated phase related to xy-ferromagnetism has
+been realized in the shallow lattice. (c) Amplitude ∆MR as a function of hold time
+between the sweeps. The solid lines are fits of the form a exp[−(t/τ)2] with τ35 = 15(5)
+ms and τ11 = 17(10) ms for the deep and shallow lattices respectively. (d) M R as a
+function of hold time in a shallow lattice, which remains non-zero for much longer
+times than ∆M. The solid line is an exponential fit a exp[−t/τ] with decay time of
+217(48) ms.
+isolated spins we observe oscillations with M R = 0.015(38) and ∆M ∼ 0.65(5). We
+attribute the smaller than 1 amplitude to dephasing during the sweeps, caused by
+technical noise, such as magnetic field noise. In the case of coupled spins (blue), we
+observe a non-zero M R = 0.29(2) and a much smaller amplitude ∆M ∼ 0.11(2). The
+residual oscillation could be due to non-adiabaticities of the sweeps and to isolated
+atoms at the edges of the cloud. The measured M R > 0 shows that the final state can
+be reversibly populated and indicates the formation of correlations within the spins in
+each chain.
+The dependence of MR on the hold time ∆t between the initial and reverse sweep
+reveals the different sensitivity of the isolated and coupled spins to noise sources. The
+amplitude ∆MR decays on similar timescales in both a deep and a shallow lattice, shown
+Fig. 2(c). The oscillations have dephased after ∼ 15 ms, consistent with magnetic field
+noise on the 10−5 level affecting isolated spins. By contrast, we expect the correlations
+in the coupled system to be insesitive to this level of magnetic field noise and we observe
+that M R remains non-zero for longer, Fig. 2(d). Finally, for hold times longer than 150ms
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms7
+0
+5
+10
+Sweep time T (h/Jxy)
+0
+0.25
+0.5
+Magnetization M R
+0 = 5.5 Jxy/h
+0 = 19.3 Jxy/h
+0
+5
+10
+15
+Initial Rabi frequency
+0 (Jxy/h)
+0
+0.25
+0.5
+Magnetization M R
+T = 2 h/J xy
+T = 6 h/J xy
+0
+10
+20
+30
+40
+50
+Sweep time T (h/Jxy)
+10
+15
+20
+25
+Correlation length (aL)
+0
+10
+20
+30
+Chain length (aL)
+0
+5
+10
+15
+Sweep time T (h/Jxy)
+F=0.9
+F=0.95
+F=0.995
+ (t)
+T
+ (t)
+0
+(a)
+(b)
+(c)
+(d)
+Figure 3. Optimization of sweep parameters. The return magnetization M R can be
+improved by varying: (a) the sweep time TΩ of the Rabi frequency and (b) the initial
+Rabi frequency Ω0.
+(c) Numerical simulations of the ideal preparation scheme for
+N = 100 sites. The correlation length η is extracted by an exponential fit A exp(−ηm)
+to the off-diagonal spin correlation function ⟨ ˆS+
+N/2 ˆS−
+N/2+m⟩. (d) Ramp time TΩ required
+for the fidelity F = |⟨ψprep(TΩ)|ψGS⟩|2 to reach a certain threshold as a function of
+chain length. Here |ψGS⟩ is the ground state, |ψprep⟩ is the prepared state and aL is
+the lattice spacing.
+we measure 10% atom loss, possibly due to lattice heating or spin-changing collisions.
+5. Improving the return magnetization M R
+The non-oscillating return magnetization M R is a measure of the fidelity of the
+preparation of the target state and can be used to optimize the sweep parameters.
+We observe that M R can be increased by using lower initial Rabi frequency Ω0 and
+shorter Rabi frequency sweeps.
+This is plotted in Fig. 3.
+M R reaches a maximum
+of 0.51 for Ω0 ∼ 5Jxy/h = 382 Hz and for a one-way Rabi frequency sweep time
+of TΩ ∼ 2h/Jxy = 26 ms.
+In principle, the longer the sweep timescale, the better
+the adiabaticicy and therefore the fidelity of the preparation. Numerical simulations
+show that in a system of 100 sites, the correlation length increases logarithmically with
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms8
+-10
+-5
+0
+5
+10
+Spin imbalance (%)
+0
+0.05
+0.1
+Fraction of occurences
+10
+20
+30
+40
+50
+Chain length (aL)
+0
+1
+2
+3
+4
+5
+6
+Relative QFI
+ground state
+T = 10 h/Jxy
+T = 4 h/J xy
+T = 2 h/J xy
+(a)
+(b)
+Figure 4. Quantum Fisher Information. (a) Histograms of the spin imbalance I for
+isolated sites rotated to the xy-plane (orange) and for coupled sites (blue). The protocol
+in each case is shown above. The variance of Sx, as measured by the variance of I,
+is 2.66 times larger for coupled sited as compared to the shot-noise-limited variance
+of single sites, indicating the presence of correlations at low lattice depths.
+Here
+TΩ = 3.2 h/Jxy, Ω0 = 5.5 Jxy/h. (b) Numerical simulations showing the QFI for pure
+states, QFI = 4⟨ ˆS2
+x⟩ − 4⟨ ˆSx⟩2 as a function of chain length for different ramp times.
+Values are given relative to the QFI for independent spins.
+sweep time as seen in Fig. 3(c), making the preparation of fully correlated long chains
+challenging. The required time to reach a certain fidelity as a function of chain size
+is plotted in Fig. 3(d). For chain lengths of 15-20 sites, as used here, the ramp times
+for the Rabi frequency sweep required to reach a fidelity of 0.9 are 6-7 h/Jxy. This
+corresponds to correlation lengths of about 13 sites and return magnetization of more
+than 0.90. The experimental values are lower. This and the fact that there is a maximum
+in the observed M R as a function of ramp time points to the presence of technical noise
+in the experiment leading to dephasing. Numerical simulations of various sources and
+levels of technical noise suggest that the main source of noise affecting the fidelity of
+the preparation is intensity noise of the microwave pulse during the final stages of the
+sweep (Appendix G). For example, for a Rabi frequency of 0.2 Jxy/h the coherence time
+of single-particle Rabi oscillations in a deep lattice is ∼ 1.5 h/Jxy, allowing for a single
+superexchange event.
+6. Quantum Fisher Information
+A way to probe the correlated phase without the reverse ramp is to measure the variance
+of the spin operator Sx = �
+i Sx
+i , where the sum is over lattice sites i. In the case that we
+assume the state to be pure, we note that the variance is proportional to the Quantum
+Fisher Information (QFI) in this system, which can be used to quantify many-body
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms9
+entanglement [30]. When single spins are rotated to the xy-plane, the variance of Sx is
+shot noise-limited: ⟨S2
+x⟩ ∝ N, where N is the total number of spins. By contrast, the
+presence of correlations in a coupled system render it delocalized in the xy-plane (i.e.
+spins do not “point” in a particular direction in the xy-plane), so that a measurement
+of Sx should exhibit larger fluctuations, compared to shot noise. The variance of Sx
+can be measured by applying a π/2 pulse after the initial sweep, which maps Sx to
+Sz = N↑ − N↓. The statistics of the spin imbalance I = ⟨N↑ − N↓⟩/(N↑ + N↓) are shown
+in Fig. 4(a) for the coupled system, compared to a system of isolated spins rotated to
+the xy-plane. While the standard deviation of the latter is measured to be given by shot
+noise, we find that the variance of the spin imbalance is larger for coupled spins by a
+factor of ⟨S2
+x⟩coupled/⟨S2
+x⟩isolated = 2.66. The predicted QFI relative to the QFI of single
+spins as a function of chain length is plotted in Fig. 4(b). The increased variance of Sx
+measured here corresponds to a relative QFI of 2.66 and corroborates the existence of
+correlations over a few sites.
+7. Conclusions
+Our combined experimental and theoretical study demonstrates the potential of
+adiabatic spin rotation for creating new many-body quantum states. The comparison of
+experimental and numerical results provided guidance for optimized sweep parameters,
+and allowed us to identify which sources of noise limited the fidelity of the state
+preparation. The calculations also show that the fidelity depends drastically on the
+chain length. In our current system, we average over an ensemble of chain lengths.
+A major improvement would be the use of a quantum gas microscope where chains
+of specific lengths can either be prepared or post-selected. In addition, the effect of
+holes in chains could be characterized. Longer correlated states could be created by
+extending the coherence timescale by improving the stability of the microwave field and
+the magnetic field and by using defect-free initial Mott insulating states.
+Our results showcase adiabatic passage protocols for preparing correlated quantum
+phases.
+With improved detection methods, our system can be used to study the
+properties of entangled many-body states. As an example, in the limit Jz/Jxy → −1 the
+QFI of the xy-ferromagnet is maximized with possible applications in quantum sensing.
+Our protocol can be extended to preparing other many-body states since the anisotropy
+of the spin Hamiltonian can be widely varied. For example, the xy-antiferromagnet can
+also be prepared through adiabatic spin rotation by including a magnetic field gradient
+which is ramped adiabatically. In addition, our platform can be used to develop other
+state preparation protocols, e.g. counter-diabatic driving [34, 35, 36], which are faster
+than adiabatic ramps and possibly superior when technical noise limits the preparation
+time.
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms10
+Acknowledgments
+We thank Araceli Venegas-Gomez and Johannes Schachenmayer for useful discussions.
+We acknowledge support from the NSF through the Center for Ultracold Atoms and
+Grant No. 1506369, the Vannevar-Bush Faculty Fellowship, and DARPA. Y. K. L. is
+supported in part by the National Science Foundation Graduate Research Fellowship
+under Grant No. 1745302. Work at the University of Strathclyde was supported by
+the EPSRC Programme Grant DesOEQ (Grant No. EP/P009565/1), and by AFOSR
+Grant No. FA9550-18-1-0064.
+References
+[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80(3) 885–964 URL https://link.
+aps.org/doi/10.1103/RevModPhys.80.885
+[2] yoon Choi J, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A,
+Bloch I and Gross C 2016 Science 352 1547–1552 URL https://www.science.org/doi/abs/
+10.1126/science.aaf8834
+[3] Nichols M A, Cheuk L W, Okan M, Hartke T R, Mendez E, Senthil T, Khatami E, Zhang H
+and Zwierlein M W 2019 Science 363 383–387 (Preprint https://www.science.org/doi/pdf/
+10.1126/science.aat4387)
+URL
+https://www.science.org/doi/abs/10.1126/science.
+aat4387
+[4] Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, L´eonard J and Greiner M 2019 Nature 573
+385–389
+[5] Guardado-Sanchez E, Morningstar A, Spar B M, Brown P T, Huse D A and Bakr W S 2020 Phys.
+Rev. X 10(1) 011042 URL https://link.aps.org/doi/10.1103/PhysRevX.10.011042
+[6] Jepsen P N, Amato-Grill J, Dimitrova I, Ho W W, Demler E and Ketterle W 2020 Nature 588
+403–407
+[7] Scherg S, Kohlert T, Sala P, Pollmann F, Hebbe Madhusudhana B, Bloch I and Aidelsburger M
+2021 Nature Communications 12 4490
+[8] Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J,
+Gopalakrishnan S, Yao N Y, Bloch I and Zeiher J 2022 Science 376 716–720 (Preprint https:
+//www.science.org/doi/pdf/10.1126/science.abk2397) URL https://www.science.org/
+doi/abs/10.1126/science.abk2397
+[9] Darkwah Oppong N, Pasqualetti G, Bettermann O, Zechmann P, Knap M, Bloch I and F¨olling
+S 2022 Phys. Rev. X 12(3) 031026 URL https://link.aps.org/doi/10.1103/PhysRevX.12.
+031026
+[10] Bernier J S, Kollath C, Georges A, De Leo L, Gerbier F, Salomon C and K¨ohl M 2009 Phys. Rev.
+A 79(6) 061601 URL https://link.aps.org/doi/10.1103/PhysRevA.79.061601
+[11] Kantian A, Langer S and Daley A J 2018 Phys. Rev. Lett. 120(6) 060401 URL https://link.
+aps.org/doi/10.1103/PhysRevLett.120.060401
+[12] Zaletel M P, Kaufman A, Stamper-Kurn D M and Yao N Y 2021 Phys. Rev. Lett. 126(10) 103401
+URL https://link.aps.org/doi/10.1103/PhysRevLett.126.103401
+[13] Chiu C S, Ji G, Mazurenko A, Greif D and Greiner M 2018 Phys. Rev. Lett. 120(24) 243201 URL
+https://link.aps.org/doi/10.1103/PhysRevLett.120.243201
+[14] Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S and Pan J W
+2020 Science 369 550–553 (Preprint https://www.science.org/doi/pdf/10.1126/science.
+aaz6801) URL https://www.science.org/doi/abs/10.1126/science.aaz6801
+[15] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I and Gross C 2016 Science
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms11
+353 1257–1260 (Preprint https://www.science.org/doi/pdf/10.1126/science.aag1635)
+URL https://www.science.org/doi/abs/10.1126/science.aag1635
+[16] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Science 353
+1253–1256 (Preprint https://www.science.org/doi/pdf/10.1126/science.aag1430) URL
+https://www.science.org/doi/abs/10.1126/science.aag1430
+[17] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N,
+Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260–1264 (Preprint https:
+//www.science.org/doi/pdf/10.1126/science.aag3349) URL https://www.science.org/
+doi/abs/10.1126/science.aag3349
+[18] Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P and
+Bakr W S 2018 Nature Physics 14 173–177
+[19] Rabl P, Daley A J, Fedichev P O, Cirac J I and Zoller P 2003 Phys. Rev. Lett. 91(11) 110403
+URL https://link.aps.org/doi/10.1103/PhysRevLett.91.110403
+[20] Sørensen A S, Altman E, Gullans M, Porto J V, Lukin M D and Demler E 2010 Phys. Rev. A
+81(6) 061603 URL https://link.aps.org/doi/10.1103/PhysRevA.81.061603
+[21] Lubasch M, Murg V, Schneider U, Cirac J I and Ba˜nuls M C 2011 Phys. Rev. Lett. 107(16) 165301
+URL https://link.aps.org/doi/10.1103/PhysRevLett.107.165301
+[22] Schachenmayer J, Weld D M, Miyake H, Siviloglou G A, Ketterle W and Daley A J 2015 Phys.
+Rev. A 92(4) 041602 URL https://link.aps.org/doi/10.1103/PhysRevA.92.041602
+[23] Sun H, Yang B, Wang H Y, Zhou Z Y, Su G X, Dai H N, Yuan Z S and Pan J W 2021 Nature
+Physics URL https://doi.org/10.1038/s41567-021-01277-1
+[24] Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojovi´c P, Verresen R, Pollmann
+F, Salomon G, Gross C, Hilker T A and Bloch I 2022 Nature 606 484–488
+[25] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R,
+Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuleti´c V and Lukin M D 2021 Nature 595
+227–232
+[26] Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler
+H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuleti´c V
+and Lukin M D 2021 Science 374 1242–1247 (Preprint https://www.science.org/doi/pdf/
+10.1126/science.abi8794)
+URL
+https://www.science.org/doi/abs/10.1126/science.
+abi8794
+[27] Ebadi S, Keesling A, Cain M, Wang T T, Levine H, Bluvstein D, Semeghini G, Omran A, Liu
+J G, Samajdar R, Luo X Z, Nash B, Gao X, Barak B, Farhi E, Sachdev S, Gemelke N, Zhou
+L, Choi S, Pichler H, Wang S T, Greiner M, Vuleti´c V and Lukin M D 2022 Science 376
+1209–1215 (Preprint https://www.science.org/doi/pdf/10.1126/science.abo6587) URL
+https://www.science.org/doi/abs/10.1126/science.abo6587
+[28] Chen C, Bornet G, Bintz M, Emperauger G, Leclerc L, Liu V S, Scholl P, Barredo D, Hauschild
+J, Chatterjee S, Schuler M, Laeuchli A M, Zaletel M P, Lahaye T, Yao N Y and Browaeys
+A 2022 Continuous symmetry breaking in a two-dimensional rydberg array (Preprint arXiv:
+2207.12930)
+[29] Venegas-Gomez A, Buyskikh A S, Schachenmayer J, Ketterle W and Daley A J 2020 Phys. Rev.
+A 102(2) 023321 URL https://link.aps.org/doi/10.1103/PhysRevA.102.023321
+[30] Venegas-Gomez A, Schachenmayer J, Buyskikh A S, Ketterle W, Chiofalo M L and Daley A J
+2020 Quantum Science and Technology 5 045013 URL https://doi.org/10.1088/2058-9565/
+abb004
+[31] Altman E, Hofstetter W, Demler E and Lukin M D 2003 New Journal of Physics 5 113–113 URL
+https://doi.org/10.1088%2F1367-2630%2F5%2F1%2F113
+[32] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91(9) 090402 URL https:
+//link.aps.org/doi/10.1103/PhysRevLett.91.090402
+[33] Jepsen P N, Ho W W, Amato-Grill J, Dimitrova I, Demler E and Ketterle W 2021 Phys. Rev. X
+11(4) 041054 URL https://link.aps.org/doi/10.1103/PhysRevX.11.041054
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms12
+[34] Berry M V 2009 Journal of Physics A: Mathematical and Theoretical 42 365303 URL https:
+//dx.doi.org/10.1088/1751-8113/42/36/365303
+[35] Demirplak M and Rice S A 2003 The Journal of Physical Chemistry A 107 9937–9945
+[36] ˇCepait˙e I, Polkovnikov A, Daley A J and Duncan C W 2022 Counterdiabatic optimised local
+driving (Preprint arXiv:2203.01948)
+[37] Dimitrova
+I,
+Jepsen
+N,
+Buyskikh
+A,
+Venegas-Gomez
+A,
+Amato-Grill
+J,
+Daley
+A
+and
+Ketterle W 2020 Phys. Rev. Lett. 124(4) 043204 URL https://link.aps.org/doi/10.1103/
+PhysRevLett.124.043204
+[38] Amato-Grill J, Jepsen N, Dimitrova I, Lunden W and Ketterle W 2019 Phys. Rev. A 99(3) 033612
+URL https://link.aps.org/doi/10.1103/PhysRevA.99.033612
+Appendix A. Hamiltonian
+Spin Hamiltonians can be realized with ultracold bosons in optical lattices in the Mott
+insulator state using the tunneling between lattice sites ˜t and on-site interactions U [31].
+Here we use a Mott insulator with one atom per site and two hyperfine states, which
+encodes the anisotropic spin-1/2 Heisenberg model, which we have implemented before
+[37, 6]:
+H = Jz
+�
+⟨i,j⟩
+Sz
+i Sz
+j + Jxy
+�
+⟨i,j⟩
+�
+Sx
+i Sx
+j + Sy
+i Sy
+j
+�
+where the sums are over nearest-neighbors. The spin parameters are:
+Jz = 4˜t2
+U↑↓
+− 4˜t2
+U↑↑
+− 4˜t2
+U↓↓
+Jxy = − 4˜t2
+U↑↓
+(A.1)
+and the spin matrices Sα
+i are defined as Sz
+i = (ni↑ − ni↓)/2, Sx
+i = (a†
+i↑ai↓ + a†
+i↓ai↑)/2, and
+Sy
+i = − i(a†
+i↑ai↓ − a†
+i↓ai↑)/2.
+In this model, the xy-ferromagnet is the highest excited state in the range −1 <
+Jz/Jxy < 1. The gap to the nearest state increases smoothly when the anisotropy is
+varied from Jz/Jxy → 1 to Jz/Jxy → −1. Also, the state itself varies in that range but
+it remains in the realm if xy-ferromagnetism. For technical reasons, we took the data
+for Fig.2 in the main text at 1025 G, where Jz/Jxy = −0.15 (with Jz/h = −12.8 Hz and
+Jxy/h = 88.7 Hz) and the data for all other figures at 1000 G where Jz/Jxy = −0.97
+with (Jz/h = −73.9 Hz and Jxy/h = 76.5 Hz). Since the gap is bigger at the latter
+point, we expect our state preparation to work better there. However, no significant
+difference in the return magnetization M R was observed.
+The evolution of the energy level diagram as a function of sweep time is illustrated
+in Fig.A1 for Jz/Jxy = −0.88. Note that the gap decreases as a function of time for this
+protocol and the smallest gap is at the end of the sweep.
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms13
+0
+10
+20
+30
+-100
+-50
+0
+50
+100
+40
+50
+60
+70
+-0.3
+-0.15
+0
+0.15
+0.3
+0.45
+32
+34
+36
+38
+-1
+-0.5
+0
+0.5
+1
+0
+32
+72
+0
+400
+0
+30
+ (Hz) (kHz)
+Time (ms)
+Energy (kHz)
+(a)
+(b)
+Figure A1. Adiabatic sweep. (a) The sweep of the detuning δ(t) and Rabi frequency
+Ω(t) of the microwave drive between |↑⟩ and |↓⟩. (b) The evolution of the energy level
+diagram, shown here for a spin chain of 6 sites, highlighting the highest excited state
+which we follow during the sweep.
+Appendix B. Choice of spin states
+The spin parameters Jz and Jxy can be varied by the 7Li Feshbach resonances in the
+region 500-1500 G. In this region, the lowest 4 hyperfine states with mJ = −1/2 could
+be suitable choices of spin states. Typically, the lowest two have been used to realize
+spin models. However, here we use the second and third lowest states with |mI⟩ = −1/2
+and |mI⟩ = 1/2 due to their lower sensitivity to magnetic field noise. These states have
+a very small relative magnetic moment |µ↓−µ↑| = 2.76 kHz/G, compared to ∼ 30kHz/G
+for the lowest two hyperfine states. The magnetic field noise in our system is ∼ 3.5 mG,
+corresponding to stability at the 10−5 level, and resulting in 10 Hz noise, which is ∼ 7.5
+times smaller than the superexchange timescale.
+To determine the scattering lengths for these energy levels, we use interaction
+spectroscopy, as in [38], to measure the energy differences Ubc − Ubb and Ucc − Ubc,
+where we use spectroscopic notation, shown in Fig.B1(a). The scattering length as a
+function of magnetic field B can be approximated as a parabola:
+a(B) = abg
+�
+1 −
+�
+i
+∆i
+B − Bi,0
+�
+(B.1)
+where abg is the background scattering length, Bi,0 are the magnetic fields of the
+Feshbach resonances and ∆i are the widths of the resonances. Using the data for the bb
+channel from [38], we can determine the parameters for the bc and cc channels. This is
+summarized in Table B1.
+The scattering lengths of the relevant hyperfine states are plotted in Fig. B1(b) and
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms14
+Channel
+abg/a0
+∆ (G)
+B0 (G)
+bb [38]
+−23.0(1.4)
+−14.9(0.9)
+845.45(02)
+bb [38]
+−23.0(1.4)
+−172.7(10.0)
+893.84(18)
+bc
+−35.4(2.3)
+−56.9(3.7)
+938.11(0.05)
+cc
+−34.3(4.9)
+−104.3(10.4)
+1036.19(0.56)
+Table B1. Feshbach resonance parameters for the b and c states of 7Li from interaction
+spectroscopy in a 3D Mott insulator at 35 ER.
+the corresponding spin parameters are plotted in Fig. B1(c).
+850
+900
+950
+1000
+Magnetic field (Gauss)
+-50
+0
+50
+100
+Energy difference (kHz)
+Ubc-Ubb
+Ucc-Ubc
+-200
+-100
+0
+100
+200
+Scattering length (a0)
+abb
+abc
+acc
+940
+960
+980
+1000
+1020
+Magnetic field (Gauss)
+-600
+-400
+-200
+0
+200
+J/h (Hz)
+-2
+-1
+0
+1
+2
+Jz/Jxy
+Jxy
+Jz
+(a)
+(b)
+(c)
+Figure B1. Feshbach resonances in 7Li for the b and c states. (a) Energy differences
+Ubc − Ubb and Ucc − Ubc as measured by interaction spectroscopy of an n=2 Mott
+Insulator at a lattice depth of 35 ER. (b) Scattering lengths as a function of magnetic
+field. (c) Parameters of the XXZ Hamiltonian as a function of magnetic field. The
+dashed line at 1000 G indicates the point where the data is taken except for the data
+in Fig.2 of the main text, which is taken at 1025 G (dotted line).
+Appendix C. State-selective imaging
+In this paper we use two different imaging techniques. For the data in Fig.2, we use
+standard absorption imaging, in which the two states are imaged separately, since the
+imaging frequencies differ by ∼ 200 MHz. This requires repeating the experimental
+sequence in order to image each state, which requires longer experimental times and is
+sensitive to shot-to-shot atom number fluctuations. Therefore, for the data in all other
+figures, we implemented a more efficient technique, using Stern-Gerlach imaging, in
+which the two states are separated in space and can be imaged at the same time. Since
+the spin states have similar magnetic moments at high field, in order to separate them
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms15
+spatially, we map them to their low-field counterparts.
+We transfer the population
+in the |↓⟩ = |1/2, −1/2⟩ to |a⟩ = |3/2, −1/2⟩ via a Landau Zener sweep (Fig. C1).
+This is possible because the energy differences between the different pairs of hyperfine
+states at these magnetic fields are significantly different, so that the different transitions
+can be spectroscopically distinguished. Now the two states map to the low-field states
+|a⟩ → |F, mF⟩ = |1, −1⟩ and |↑⟩ → |F, mF⟩ = |1, 1⟩, which have a relative magnetic
+field moment of 1.4 MHz/G.
+In order to measure the populations in each of these states, we quickly ramp all
+lattice arms to 35ER, lower the magnetic field in 10 ms to about 5 G. We apply a
+magnetic field gradient of 50 G/cm, lower the lattice arm in the direction of the magnetic
+field gradient to 0 and the other two arms to 13ER and let the atoms expand. This
+results in two spatially separated clouds corresponding to the original spin states. We
+calibrate the relative number of atoms in the spin states by driving Rabi oscillations
+between the two spin states at high and at low fields. The oscillation amplitude for the
+two coupled spin states corresponds to the same atom number.
+0
+500
+1000
+Magnetic field (Gauss)
+-2
+-1
+0
+Energy (GHz)
+0
+10
+Figure C1. Stern-Gerlach imaging. First, at high field, the population in the |↓⟩
+(blue) is transferred to the lowest hyperfine state by a Landau-Zener transfer. Then,
+the field is lowered to ∼ 5 G, where the differential magnetic moment between the two
+states is large. A magnetic field gradient separates the atoms in the two states after
+the lattice depths are ramped down.
+Appendix D. Sweep parameters
+We explored two types of sweeps: piece-wise linear (used for the data in Fig.2) and
+exponential (used for all other figures). We find no significant difference between the
+two sweeps when the timescales of the two are matched. The optimized linear sweeps
+and the optimized exponential sweeps are plotted in Fig. D1(a-b).
+Fig.D1(c) shows the average return magnetization M R as a function of the length of
+the Rabi frequency sweep for both piece-wise linear and exponential pulses. In both cases
+we start with the maximum Rabi frequency Ω0 = 19.3 Jxy/h. For the piece-wise linear
+sweeps only the length of the second linear part is varied. The return magnetization is
+about 0.3 in both cases.
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms16
+0
+1
+2
+3
+Time (h/Jxy)
+0
+200
+400
+Detuning (Jxy/h)
+0
+1
+2
+3
+4
+Time (h/Jxy)
+0
+10
+20
+Rabi frequency (Jxy/h)
+(a)
+(b)
+0
+1
+2
+3
+4
+5
+Omega sweep time T (h/Jxy)
+0
+0.05
+0.1
+0.15
+0.2
+0.25
+0.3
+Magnetization MR
+(c)
+Figure D1. Sweep parameters: (a) detuning and (b) Rabi frequency sweeps showing
+the optimized piece-wise linear sweep used in Fig.2 in the main text (blue) and the
+optimized exponential sweep used in all other figures (red). (c) Dependence of the
+return magnetization M R on the total length of the Rabi frequency sweep for (blue)
+piece-wise linear sweeps and (green) exponential sweeps (green data in Fig.3(a) in the
+main text).
+Appendix E. Distribution of chain lengths
+In order to achieve deep lattices, we focus the lattice beams to 125 µm 1/e2 radius. This
+curvature leads to a considerable trapping potential which gives the Mott insulator a
+spherical shape. This leads to a distributions of chains with different lengths and to
+some isolated atoms at the edges of the sample. As we have discussed in Supplementary
+Fig. 10 of [6], this results in the following distribution: For N = 6000 atoms in the Mott
+insulator, the maximum chain length is Lmax = 21aL, where aL = 532 nm is the lattice
+spacing. The average chain length is Lavg = (3/4)Lmax = 16aL and the total number
+of chains is π(Lmax/2aL)2 = 350. This distribution of chain lengths complicates the
+optimization of the adiabatic protocol since its performance depends on chain length.
+Appendix F. Characterization of isolated particles
+A source of error in the measurement of the return magnetization is the presence of
+isolated particles at low lattice depths. These could be thermal atoms from imperfect
+state preparation or isolated particles at the edges of the cloud, where, due to the lattice
+curvature, the energy difference between neighboring sites ∆ > 4˜t. Since they behave
+as single particles, their presence will artificially increase the return magnetization at
+low lattice depths. This is due to the different detunings at which ⟨Sz⟩ = 0, i.e. the
+spins are in the xy-plane, which is due to the fictitious magnetic field at low lattice
+depths (Fig 1(c)). At deep lattices for single spins ⟨Sz⟩ = 0 for δ(s)
+f
+= 0 and at 11 ER for
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms17
+coupled spins δ(c)
+f
+= −0.15 kHz. Therefore, for ideal sweeps, M R → 1 for single spins at
+the resonance of the coupled spins δ(c)
+f .
+This effect can be used to estimate the fraction of single particles at low lattice
+depths by measuring the return magnetization MR(δ = 0) at low lattice depths at
+δ(s)
+f
+= 0. MR(0) is the sum of M (s)
+R (0) = 0 for single particles and M (c)
+R (0) ̸= 0 for
+coupled spins. More generally:
+MR(δ) = αsM (s)
+R (δ) + (1 − αs)M (c)
+R (δ)
+(F.1)
+where αs is the fraction of single particles present.
+This is shown in Fig.F1. For deep lattices (orange), the return magnetization at zero
+detuning (dashed line) is 0. At shallower lattices, the dip of the return magnetization at
+zero detuning signals the presence of isolated particles.
+By varying the preparation
+protocol, the number of single particles can be increased.
+The Mott insulator is
+created by loading a Bose-Einstein condensate into an optical lattice. We can vary the
+condensate fraction, thus increasing the thermal atoms and holes in the Mott insulator.
+We can estimate the fraction of isolated atoms by using Eq.(F.1) and subtracting a
+fraction of a fit of the 35 ER data. Note that the width of the 35 ER data is limited
+by magnetic field noise, estimated to 3.5 mG rms. For lower initial condensate fraction
+(dark blue points), this gives us a single-atom fraction of approximately 30%.
+For
+higher initial condensate fraction (dark blue points), this gives us a single-atom fraction
+of approximately 8 − 10%. Therefore, the measured M R could be too high by at most
+10%. Improved detection methods, such as a quantum gas microscope, could give a
+better picture.
+-0.15 -0.1 -0.05
+0
+0.05 0.1 0.15
+Final detuning f (kHz)
+0
+0.2
+0.4
+0.6
+0.8
+1
+R
+Magnetization M
+Figure F1. Effects of single atoms on M R. Isolated atoms at 35 ER (orange points)
+or coupled atoms at 11 ER with lower (dark blue) or higher (light blue points) initial
+condensate fraction. The solid lines are phenomenological fits to guide to the eye. The
+dashed vertical line is the ⟨Sz⟩ = 0 point for isolated sites (35 ER lattice) and the
+dotted line is the ⟨Sz⟩ = 0 point for coupled sites in 1D chains (11 ER lattice).
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms18
+0
+0.01
+0.02
+0.03
+0.04
+Noise Strength (Jxy/h/�Hz)
+0
+0.2
+0.4
+0.6
+0.8
+1
+Magnetization MR
+Detuning noise
+Intensity noise
+Figure G1. Noise sources. Plotted are the calculated effects of detuning noise (x-
+field noise) and intensity noise of the microwave field (x-field noise) on the return
+magnetization M R, assuming white noise and optimized exponential ramps.
+Our
+observed M R around 0.5 are probably limited by intensity noise.
+Appendix G. Noise sources
+The main sources of noise in our adiabatic protocol are detuning and intensity noise
+of the microwave field, which map to noise in the z− and x−field respectively. For
+individual spins, we expect noise in the z−field to be dominant. This is evident in
+the dephasing of individual spins rotated to the xy−plane, as shown in Fig.2(c) in the
+main text. For coupled spins, the adiabatic preparation protocol relies on the noise
+being smaller than the gap to the next excited state, which is the smallest at the final
+stages of the ramp in our case. Numerical simulations show the effects of detuning and
+intensity noise on the return magnetization M R given our preparation protocol with
+optimized ramp times and assuming white noise, Fig. G1. For the same power spectral
+density, intensity noise results in a larger decrease of M R.
+We estimate the power spectral density of the detuning noise by measuring the
+current in the coils creating the magnetic field. We see a flat profile up to several kHz,
+beyond which, due to the large inductance of the coils, fluctuations are suppressed.
+We estimate that the rms-noise of 3.5 mG corresponds to power spectral density of
+0.002 Jxy/h/
+√
+Hz, which is not limiting.
+To estimate the amount of intensity noise, we measure the decay time of Rabi
+oscillations of individual atoms. For Rabi oscillations in a two-level system, we can
+include intensity noise in the Rabi frequency:
+Ω(t) = Ω(t) + ∆Ωϵ(t)
+(G.1)
+where ϵ(t)ϵ(t′) = S0δ(t−t′), which describes white noise with strength S0. For this type
+of noise, the Rabi oscillations envelope will decay as e−t/τ, where τ is the characteristic
+
+Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms19
+decay time. We can then express the decay time as:
+τ =
+2
+S0(∆Ω)2
+(G.2)
+and the noise strength as:
+fN ≡
+�
+2
+τ
+1
+Jxy/ℏ
+(G.3)
+in units of Jxy/h
+√
+Hz where Jxy/ℏ = 2π 84.5 Hz.
+In our experiment, the decay
+time increases with decreasing Rabi frequency, probably due to decreasing signal-to-
+noise ratio given by the constant noise added by the power amplifier. We can put an
+upper bound on the intensity noise by assuming that the decay of the Rabi oscillations
+is only due to intensity fluctuations.
+Assuming white noise, we estimate that the
+intensity noise is fN =0.0094 Jxy/h/
+√
+Hz for large Rabi frequencies and increases to
+0.019 Jxy/h/
+√
+Hz at the very final stages of the ramp. Given that for optimized sweeps
+a return magnetization of M R ∼ 0.5 corresponds to Rabi frequency intensity noise of
+∼ 0.01 Jxy/
+√
+Hz, we can conclude that our experiment is mainly limited by intensity
+noise in the microwave field at the final stages of the ramp.
+
diff --git a/pNAyT4oBgHgl3EQfZPcw/content/tmp_files/load_file.txt b/pNAyT4oBgHgl3EQfZPcw/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..877876a06ce7a69b6cb36346b54311cee393328c
--- /dev/null
+++ b/pNAyT4oBgHgl3EQfZPcw/content/tmp_files/load_file.txt
@@ -0,0 +1,702 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf,len=701
+page_content='Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms Ivana Dimitrova1,∗, Stuart Flannigan2,∗∗, Yoo Kyung Lee1, Hanzhen Lin1, Jesse Amato-Grill1,∗∗∗, Niklas Jepsen1,∗∗∗, Ieva ˇCepait˙e2, Andrew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Daley2 and Wolfgang Ketterle1 1 Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 2 Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' ∗ Present address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' ∗∗ Present address: Strangeworks, Austin, Texas 78702, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' ∗∗∗ Present address: QuEra Computing, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=', Boston, MA 02135, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Quantum many-body phases offer unique properties and emergent phenomena, making them an active area of research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A promising approach for their experimental realization in model systems is to adiabatically follow the ground state of a quantum Hamiltonian from a product state of isolated particles to one that is strongly-correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Such protocols are relevant also more broadly in coherent quantum annealing and adiabatic quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Here we explore one such protocol in a system of ultracold atoms in an optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A fully magnetized state is connected to a correlated zero-magnetization state (an xy-ferromagnet) by a many-body spin rotation, realized by sweeping the detuning and power of a microwave field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The efficiency is characterized by applying a reverse sweep with a variable relative phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We restore up to 50% of the original magnetization independent of the relative phase, evidence for the formation of correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The protocol is limited by the many-body gap of the final state, which is inversely proportional to system size, and technical noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Our experimental and theoretical studies highlight the potential and challenges for adiabatic preparation protocols to prepare many-body eigenstates of spin Hamiltonians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Keywords: quantum simulation, ultracold atoms in optical lattices, quantum spin Hamiltonian engineering, adiabatic state preparation, many-body states arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='00218v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='quant-gas] 31 Dec 2022 Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Introduction The study of many-body quantum states is at the intersection of fundamental quantum physics and quantum technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Entangled and highly correlated quantum states lead to intriguing new properties of materials and are resources for quantum computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A leading platform for engineering quantum spin Hamiltonians is provided by ultracold atoms in optical lattices [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many recent studies in these systems have explored non- equilibrium quantum dynamics, often involving evolution from an initial state that is straight-forward to prepare on a single-particle level [2, 3, 4, 5, 6, 7, 8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The focus on such quench experiments reflects not only the strong general interest in such dynamics, but also the challenges of realising more complex many-body eigenstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is often related to the prevalence of low-lying excitations which lead to requirements of extremely low spin entropies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Entropy redistribution techniques in which a reservoir system absorbs excess entropy have been proposed [10, 11, 12] and used to prepare low-entropy entangled states [13, 14], but robustly preparing many-body ground states remains challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' An alternative approach is to start with an uncorrelated state, which could be prepared with very low entropy, and adiabatically transform it into a many-body quantum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For example, quantum antiferromagnetic correlations have been observed by adiabatically loading a spin-mixture into an optical lattice [15, 16, 17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' However, many such protocols require mass and entropy redistribution across the system which increases the coherence time requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Local transformations of the Hamiltonian have the promise of being faster and scalable to larger systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Such protocols have been proposed [19, 20, 21, 22, 8] and realized [23, 24] using microscopic engineering of the initial state by optical superlattices, ladder systems, or spin-dependent lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Finally, the importance of adiabatic preparation protocols extends beyond optical lattice systems and they have been recently utilized to prepare correlated states of quantum Hamiltonians in systems of Rydberg atom arrays [25, 26, 27, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Here we use an adiabatic scheme which involves a direct manipulation of the spin state, and not the external potential, and requires control only over a microwave field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We demonstrate that by a many-body spin rotation, realized by an adiabatic sweep of the detuning and power of the microwave field, states with different magnetization can be connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The properties of such rotation protocols have been explored theoretically in [29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We realize a spin-1/2 XXZ chain in which a z-ferromagnet (a highly magnetized state) is rotated into an xy-ferromagnet, which is a strongly-correlated state with no gap in the infinite-chain limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In a finite system, the gap is inversely proportional to the system size, allowing the adiabatic connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The xy-ferromagnet is a magnet which points nowhere on average, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' it is a superposition of states which point in different directions in the xy-plane and for which the spin operator Sz = 0, but the expectation values are also ⟨Sx⟩ = 0 and ⟨Sy⟩ = 0, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We employ a new technique to show the presence of correlations in the many-body state: we apply a reverse microwave sweep but with a different phase relative to the initial sweep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This protocol can distinguish Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 Final detuning f (kHz) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='75 1 Fraction of atoms Time XY FM Z FM f Bef Bef Z FM |↓〉 |↑〉 |↑〉 |↓〉 Bef Bef Bef=0 (a) (b) (c) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many-body spin rotation in 1D chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (a) A fully magnetized state is rotated by an adiabatic passage into a correlated phase in the xy-plane which has no magnetization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (b) Schematic representation of the phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Starting from the z-ferromagnet (Z FM) in |↓⟩⊗N, where N is the number spins, a microwave field is applied coupling the two spin states with detuning δ (effective z-magnetic field) and Rabi frequency Ω (effective x-magnetic field) with |δ| ≫ |Ω|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' First, the detuning is ramped to zero, rotating the spins to the xy-plane, then the Rabi frequency is ramped to zero, ideally realizing the xy-ferromagnet (XY FM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (c) Measured fraction of atoms in each state as a function of the final detuning: |↓⟩ (circles) and |↑⟩ (triangles) for a deep 35 ER lattice of isolated sites (orange) and a shallow 11 ER lattice of coupled sites (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The solid lines are phenomenological fits of the form: a tanh((δ-δ0)/w)+c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' between isolated spins, coupled spins, and dephased spins (a collection of spins with random orientations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We recover up to 50 % of the initial magnetization independent of the phase of the reverse sweep, a strong evidence for the successful preparation of a spin state with xy-ferromagnetic correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The presence of correlations is further corroborated by measuring excess fluctuations in ⟨S2 x⟩, which are proportional to the Quantum Fisher information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Detailed numerical simulations verify our protocols and show that the coherence time in our system is limited by intensity noise in the microwave pulse during the final stages of the preparation when the gap is the smallest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For these timescales, our results are consistent with creating correlations over a few lattice sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Longer chains require considerably longer time evolution to ensure adiabaticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Experimental setup and spin Hamiltonian The system is a Mott insulator of 7Li atoms in an optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' With one particle per site and two hyperfine states, it realizes the (anisotropic) spin-1/2 Heisenberg model, where effective spin-spin interactions between neighboring sites are realized by a second- order tunneling process (superexchange) [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We apply a microwave field coupling the two hyperfine states with detuning δ = ω − ω0, where ℏω0 is the energy difference between the two hyperfine states and ω is the frequency of the microwave field, and with Rabi frequency Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is equivalent to having a z- and an x- magnetic field in a spin system respectively, realizing the anisotropic spin-1/2 Hamiltonian with external fields: H = Jz � ⟨i,j⟩ Sz i Sz j + Jxy � ⟨i,j⟩ � Sx i Sx j + Sy i Sy j � + δ(t) � i Sz i + Ω(t) � i Sx i , (1) where ⟨i, j⟩ denotes nearest neighbors, and Sα i are spin operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Here Jz/h = −73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9 Hz and Jxy/h = 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Hz are the superexchange parameters, which are ∼ ˜t2/Uαβ where ˜t is the tunneling between neighboring sites and Uαβ are the on-site interactions with α, β ∈ (|↑⟩, |↓⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The on-site interactions and hence the superexchange parameters can be varied by changing the applied magnetic field via Feshbach resonances (Appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The spins are encoded in the second-lowest and third-lowest hyperfine states |↓⟩ = |mi, mj⟩ = |1/2, −1/2⟩ and |↑⟩ = |−1/2, −1/2⟩, respectively, at a magnetic field of 1000 G and can be imaged separately (Appendix C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rather than using the lowest two hyperfine states, this encoding reduces the sensitivity to magnetic field noise by an order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The optical lattice is formed by retroreflecting three orthogonal 1064 nm laser beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Throughout this work we compare deep (35 ER) and shallow (11 ER) lattices in two configurations: i) isolated spins: all three lattices at 35 ER, making the superexchange coupling between them small compared to the timescales of the experiment (h/(4˜t2/U↑↓) = 80s);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' and ii) coupled spins in 1D chains: lowering the depth of one lattice arm to 11 ER to enable tunneling, which creates a collection of spin chains with an average length of 16 sites as determined by the confining potential (Appendix E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Preparation protocol The protocol for preparing an xy-ferromagnet using a many-body spin rotation starts with a Mott insulator of isolated spins in |↓⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is the z-ferromagnetic state |Ψ0⟩ = |↓⟩⊗N trivially prepared by loading a Bose-Einstein condensate of |↓⟩ atoms into the lattice from an optical dipole trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is the highest excited state of the spin Hamiltonian 1 in the limit of large detuning δ ≫ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The adiabatic connection is realized at low lattice depths by performing half a Landau-Zener sweep (δ → 0) followed by an adiabatic ramp off of the driving field Ω → 0, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Without interactions Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms5 between sites, each atom would be individually prepared in the superposition state 1/ √ 2 (|↓⟩ + |↑⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' However, nearest-neighbor interactions (Jxy) along the chain open a many-body gap in the eigenspectrum, so that the initial multi-particle state is instead adiabatically connected to an entangled state: the xy-ferromagnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In the mean-field picture, sweeping the detuning to zero at a constant Rabi frequency rotates the spins into the xy-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Sweeping the Rabi frequency to zero removes the guiding x-bias field, leaving the system in the xy-ferromagnetic state which is stabilized by the spin-spin correlations, similar to the Weiss mean field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We first measure the effect of the adiabatic protocol on the populations in the two spin states and calibrate the resonance of the transition |↑⟩ ←→ |↓⟩ by varying the final point of the detuning sweep δf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1 (c) shows the population going smoothly from all atoms in |↑⟩ to all atoms in |↓⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We denote zero detuning the point at which there is an equal number of atoms in each spin state, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' the total Sz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This point is shifted for the 11 ER lattice, which is due to the non-zero tunneling at low lattice depths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' From the mapping of the Bose-Hubbard Hamiltonian to the Heisenberg model, there is an additional effective z-magnetic field term ∼ ˜t 2(1/U↑↑ − 1/U↓↓) [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This term is exceptionally small (and typically negligible) in a deep lattice, but in a shallow lattice it shifts the effective zero detuning point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The width of the feature in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 1(c) is also larger at 11 ER and is proportional to the coupling matrix element Jxy between lattice sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Probing the resulting state We perform the adiabatic sweep and use the corresponding zero-point detunings as the endpoint of the ramp for deep and shallow lattices respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' To probe the resulting state, we implement a Ramsey-like protocol which allows us to distinguish between single-particle and correlated evolution of the spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' After performing the state preparation, we introduce a phase jump ∆φ in the drive and then perform the sweep of the driving field in reverse, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Our observable is the return magnetization MR = ⟨N↓−N↑⟩/(N↓+N↑) averaged over the cloud, which can be extracted directly from spin-sensitive images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In an ideal system of isolated spins, the state of each spin after the initial sweep has a well-defined phase and MR exhibits a Ramsey-type oscillation between −1 and 1 as a function of ∆φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In a system of coupled spins, if the protocol has successfully connected the z-ferromagnet to the xy-ferromagnet and back, we expect to measure MR = 1, independent of ∆φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Finally, if the spin rotation had instead resulted in a collection of spins with random orientations, would measure MR = 0 independent of ∆φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' While a measurement of zero-magnetization after the initial sweep could be due to the formation of a correlated phase or to dephasing, a non-zero return magnetization can emerge from a state with Sz = 0 after the return sweep if correlations have been established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The results of the measurement are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We parameterize the return magnetization MR = ∆M cos(∆φ) + M R by its amplitude ∆M and offset M R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms6 0 1 2 3 Phase difference ( ) 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 1 Magnetization M R 0 10 20 Hold time t (ms) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='8 Amplitude MR 0 100 200 Hold time t (ms) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 Magnetization M R Time sweep in sweep out 35 ER 11 ER Time (a) (b) (c) (d) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Reversing the initial sweep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (a) After the initial sweep, we hold for time ∆t and apply an inverse sweep with relative phase ∆φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (b) Return magnetization for a deep lattice (orange) and a shallow lattice (blue) for ∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The solid lines are sinusoidal fits of the form MR = ∆M cos(∆φ)+M R and the dashed lines are M R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The non-zero M R is an indication that a correlated phase related to xy-ferromagnetism has been realized in the shallow lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (c) Amplitude ∆MR as a function of hold time between the sweeps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The solid lines are fits of the form a exp[−(t/τ)2] with τ35 = 15(5) ms and τ11 = 17(10) ms for the deep and shallow lattices respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (d) M R as a function of hold time in a shallow lattice, which remains non-zero for much longer times than ∆M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The solid line is an exponential fit a exp[−t/τ] with decay time of 217(48) ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' isolated spins we observe oscillations with M R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='015(38) and ∆M ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='65(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We attribute the smaller than 1 amplitude to dephasing during the sweeps, caused by technical noise, such as magnetic field noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In the case of coupled spins (blue), we observe a non-zero M R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='29(2) and a much smaller amplitude ∆M ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='11(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The residual oscillation could be due to non-adiabaticities of the sweeps and to isolated atoms at the edges of the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The measured M R > 0 shows that the final state can be reversibly populated and indicates the formation of correlations within the spins in each chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The dependence of MR on the hold time ∆t between the initial and reverse sweep reveals the different sensitivity of the isolated and coupled spins to noise sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The amplitude ∆MR decays on similar timescales in both a deep and a shallow lattice, shown Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 2(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The oscillations have dephased after ∼ 15 ms, consistent with magnetic field noise on the 10−5 level affecting isolated spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' By contrast, we expect the correlations in the coupled system to be insesitive to this level of magnetic field noise and we observe that M R remains non-zero for longer, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 2(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Finally, for hold times longer than 150ms Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms7 0 5 10 Sweep time T (h/Jxy) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Magnetization M R 0 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Jxy/h 0 = 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 Jxy/h 0 5 10 15 Initial Rabi frequency 0 (Jxy/h) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Magnetization M R T = 2 h/J xy T = 6 h/J xy 0 10 20 30 40 50 Sweep time T (h/Jxy) 10 15 20 25 Correlation length (aL) 0 10 20 30 Chain length (aL) 0 5 10 15 Sweep time T (h/Jxy) F=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9 F=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='95 F=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='995 (t) T (t) 0 (a) (b) (c) (d) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Optimization of sweep parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The return magnetization M R can be improved by varying: (a) the sweep time TΩ of the Rabi frequency and (b) the initial Rabi frequency Ω0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (c) Numerical simulations of the ideal preparation scheme for N = 100 sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The correlation length η is extracted by an exponential fit A exp(−ηm) to the off-diagonal spin correlation function ⟨ ˆS+ N/2 ˆS− N/2+m⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (d) Ramp time TΩ required for the fidelity F = |⟨ψprep(TΩ)|ψGS⟩|2 to reach a certain threshold as a function of chain length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Here |ψGS⟩ is the ground state, |ψprep⟩ is the prepared state and aL is the lattice spacing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' we measure 10% atom loss, possibly due to lattice heating or spin-changing collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Improving the return magnetization M R The non-oscillating return magnetization M R is a measure of the fidelity of the preparation of the target state and can be used to optimize the sweep parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We observe that M R can be increased by using lower initial Rabi frequency Ω0 and shorter Rabi frequency sweeps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' M R reaches a maximum of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='51 for Ω0 ∼ 5Jxy/h = 382 Hz and for a one-way Rabi frequency sweep time of TΩ ∼ 2h/Jxy = 26 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In principle, the longer the sweep timescale, the better the adiabaticicy and therefore the fidelity of the preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Numerical simulations show that in a system of 100 sites, the correlation length increases logarithmically with Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms8 10 5 0 5 10 Spin imbalance (%) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1 Fraction of occurences 10 20 30 40 50 Chain length (aL) 0 1 2 3 4 5 6 Relative QFI ground state T = 10 h/Jxy T = 4 h/J xy T = 2 h/J xy (a) (b) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Quantum Fisher Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (a) Histograms of the spin imbalance I for isolated sites rotated to the xy-plane (orange) and for coupled sites (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The protocol in each case is shown above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The variance of Sx, as measured by the variance of I, is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='66 times larger for coupled sited as compared to the shot-noise-limited variance of single sites, indicating the presence of correlations at low lattice depths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Here TΩ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 h/Jxy, Ω0 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Jxy/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (b) Numerical simulations showing the QFI for pure states, QFI = 4⟨ ˆS2 x⟩ − 4⟨ ˆSx⟩2 as a function of chain length for different ramp times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Values are given relative to the QFI for independent spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' sweep time as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 3(c), making the preparation of fully correlated long chains challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The required time to reach a certain fidelity as a function of chain size is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 3(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For chain lengths of 15-20 sites, as used here, the ramp times for the Rabi frequency sweep required to reach a fidelity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9 are 6-7 h/Jxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This corresponds to correlation lengths of about 13 sites and return magnetization of more than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The experimental values are lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This and the fact that there is a maximum in the observed M R as a function of ramp time points to the presence of technical noise in the experiment leading to dephasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Numerical simulations of various sources and levels of technical noise suggest that the main source of noise affecting the fidelity of the preparation is intensity noise of the microwave pulse during the final stages of the sweep (Appendix G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For example, for a Rabi frequency of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 Jxy/h the coherence time of single-particle Rabi oscillations in a deep lattice is ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 h/Jxy, allowing for a single superexchange event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Quantum Fisher Information A way to probe the correlated phase without the reverse ramp is to measure the variance of the spin operator Sx = � i Sx i , where the sum is over lattice sites i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In the case that we assume the state to be pure, we note that the variance is proportional to the Quantum Fisher Information (QFI) in this system, which can be used to quantify many-body Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms9 entanglement [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' When single spins are rotated to the xy-plane, the variance of Sx is shot noise-limited: ⟨S2 x⟩ ∝ N, where N is the total number of spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' By contrast, the presence of correlations in a coupled system render it delocalized in the xy-plane (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' spins do not “point” in a particular direction in the xy-plane), so that a measurement of Sx should exhibit larger fluctuations, compared to shot noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The variance of Sx can be measured by applying a π/2 pulse after the initial sweep, which maps Sx to Sz = N↑ − N↓.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The statistics of the spin imbalance I = ⟨N↑ − N↓⟩/(N↑ + N↓) are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 4(a) for the coupled system, compared to a system of isolated spins rotated to the xy-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' While the standard deviation of the latter is measured to be given by shot noise, we find that the variance of the spin imbalance is larger for coupled spins by a factor of ⟨S2 x⟩coupled/⟨S2 x⟩isolated = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The predicted QFI relative to the QFI of single spins as a function of chain length is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The increased variance of Sx measured here corresponds to a relative QFI of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='66 and corroborates the existence of correlations over a few sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Conclusions Our combined experimental and theoretical study demonstrates the potential of adiabatic spin rotation for creating new many-body quantum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The comparison of experimental and numerical results provided guidance for optimized sweep parameters, and allowed us to identify which sources of noise limited the fidelity of the state preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The calculations also show that the fidelity depends drastically on the chain length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In our current system, we average over an ensemble of chain lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A major improvement would be the use of a quantum gas microscope where chains of specific lengths can either be prepared or post-selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In addition, the effect of holes in chains could be characterized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Longer correlated states could be created by extending the coherence timescale by improving the stability of the microwave field and the magnetic field and by using defect-free initial Mott insulating states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Our results showcase adiabatic passage protocols for preparing correlated quantum phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' With improved detection methods, our system can be used to study the properties of entangled many-body states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' As an example, in the limit Jz/Jxy → −1 the QFI of the xy-ferromagnet is maximized with possible applications in quantum sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Our protocol can be extended to preparing other many-body states since the anisotropy of the spin Hamiltonian can be widely varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For example, the xy-antiferromagnet can also be prepared through adiabatic spin rotation by including a magnetic field gradient which is ramped adiabatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In addition, our platform can be used to develop other state preparation protocols, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' counter-diabatic driving [34, 35, 36], which are faster than adiabatic ramps and possibly superior when technical noise limits the preparation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms10 Acknowledgments We thank Araceli Venegas-Gomez and Johannes Schachenmayer for useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We acknowledge support from the NSF through the Center for Ultracold Atoms and Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 1506369, the Vannevar-Bush Faculty Fellowship, and DARPA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' is supported in part by the National Science Foundation Graduate Research Fellowship under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 1745302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Work at the University of Strathclyde was supported by the EPSRC Programme Grant DesOEQ (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' EP/P009565/1), and by AFOSR Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' FA9550-18-1-0064.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' References [1] Bloch I, Dalibard J and Zwerger W 2008 Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 80(3) 885–964 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='885 [2] yoon Choi J, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547–1552 URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aaf8834 [3] Nichols M A, Cheuk L W, Okan M, Hartke T R, Mendez E, Senthil T, Khatami E, Zhang H and Zwierlein M W 2019 Science 363 383–387 (Preprint https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aat4387) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' aat4387 [4] Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, L´eonard J and Greiner M 2019 Nature 573 385–389 [5] Guardado-Sanchez E, Morningstar A, Spar B M, Brown P T, Huse D A and Bakr W S 2020 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' X 10(1) 011042 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='011042 [6] Jepsen P N, Amato-Grill J, Dimitrova I, Ho W W, Demler E and Ketterle W 2020 Nature 588 403–407 [7] Scherg S, Kohlert T, Sala P, Pollmann F, Hebbe Madhusudhana B, Bloch I and Aidelsburger M 2021 Nature Communications 12 4490 [8] Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I and Zeiher J 2022 Science 376 716–720 (Preprint https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='abk2397) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/ doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='abk2397 [9] Darkwah Oppong N, Pasqualetti G, Bettermann O, Zechmann P, Knap M, Bloch I and F¨olling S 2022 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' X 12(3) 031026 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 031026 [10] Bernier J S, Kollath C, Georges A, De Leo L, Gerbier F, Salomon C and K¨ohl M 2009 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A 79(6) 061601 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='061601 [11] Kantian A, Langer S and Daley A J 2018 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 120(6) 060401 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='060401 [12] Zaletel M P, Kaufman A, Stamper-Kurn D M and Yao N Y 2021 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 126(10) 103401 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='103401 [13] Chiu C S, Ji G, Mazurenko A, Greif D and Greiner M 2018 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 120(24) 243201 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='243201 [14] Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S and Pan J W 2020 Science 369 550–553 (Preprint https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' aaz6801) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aaz6801 [15] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I and Gross C 2016 Science Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms11 353 1257–1260 (Preprint https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aag1635) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aag1635 [16] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Science 353 1253–1256 (Preprint https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aag1430) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aag1430 [17] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260–1264 (Preprint https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aag3349) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/ doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aag3349 [18] Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P and Bakr W S 2018 Nature Physics 14 173–177 [19] Rabl P, Daley A J, Fedichev P O, Cirac J I and Zoller P 2003 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 91(11) 110403 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='110403 [20] Sørensen A S, Altman E, Gullans M, Porto J V, Lukin M D and Demler E 2010 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A 81(6) 061603 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='061603 [21] Lubasch M, Murg V, Schneider U, Cirac J I and Ba˜nuls M C 2011 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 107(16) 165301 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='165301 [22] Schachenmayer J, Weld D M, Miyake H, Siviloglou G A, Ketterle W and Daley A J 2015 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A 92(4) 041602 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='041602 [23] Sun H, Yang B, Wang H Y, Zhou Z Y, Su G X, Dai H N, Yuan Z S and Pan J W 2021 Nature Physics URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1038/s41567-021-01277-1 [24] Sompet P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Hirthe S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Bourgund D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Chalopin T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Bibo J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Koepsell J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Bojovi´c P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Verresen R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Pollmann F,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Salomon G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Gross C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Hilker T A and Bloch I 2022 Nature 606 484–488 [25] Ebadi S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Wang T T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Levine H,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Keesling A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Semeghini G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Omran A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Bluvstein D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Samajdar R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Pichler H,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Ho W W,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Choi S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Sachdev S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Greiner M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Vuleti´c V and Lukin M D 2021 Nature 595 227–232 [26] Semeghini G,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Levine H,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Keesling A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Ebadi S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Wang T T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Bluvstein D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Verresen R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Pichler H,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Kalinowski M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Samajdar R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Omran A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Sachdev S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Vishwanath A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Greiner M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Vuleti´c V and Lukin M D 2021 Science 374 1242–1247 (Preprint https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='abi8794) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' abi8794 [27] Ebadi S, Keesling A, Cain M, Wang T T, Levine H, Bluvstein D, Semeghini G, Omran A, Liu J G, Samajdar R, Luo X Z, Nash B, Gao X, Barak B, Farhi E, Sachdev S, Gemelke N, Zhou L, Choi S, Pichler H, Wang S T, Greiner M, Vuleti´c V and Lukin M D 2022 Science 376 1209–1215 (Preprint https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/pdf/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='abo6587) URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='abo6587 [28] Chen C, Bornet G, Bintz M, Emperauger G, Leclerc L, Liu V S, Scholl P, Barredo D, Hauschild J, Chatterjee S, Schuler M, Laeuchli A M, Zaletel M P, Lahaye T, Yao N Y and Browaeys A 2022 Continuous symmetry breaking in a two-dimensional rydberg array (Preprint arXiv: 2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='12930) [29] Venegas-Gomez A, Buyskikh A S, Schachenmayer J, Ketterle W and Daley A J 2020 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A 102(2) 023321 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='023321 [30] Venegas-Gomez A, Schachenmayer J, Buyskikh A S, Ketterle W, Chiofalo M L and Daley A J 2020 Quantum Science and Technology 5 045013 URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1088/2058-9565/ abb004 [31] Altman E, Hofstetter W, Demler E and Lukin M D 2003 New Journal of Physics 5 113–113 URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1088%2F1367-2630%2F5%2F1%2F113 [32] Duan L M, Demler E and Lukin M D 2003 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 91(9) 090402 URL https: //link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='090402 [33] Jepsen P N, Ho W W, Amato-Grill J, Dimitrova I, Demler E and Ketterle W 2021 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' X 11(4) 041054 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='041054 Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms12 [34] Berry M V 2009 Journal of Physics A: Mathematical and Theoretical 42 365303 URL https: //dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1088/1751-8113/42/36/365303 [35] Demirplak M and Rice S A 2003 The Journal of Physical Chemistry A 107 9937–9945 [36] ˇCepait˙e I, Polkovnikov A, Daley A J and Duncan C W 2022 Counterdiabatic optimised local driving (Preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='01948) [37] Dimitrova I, Jepsen N, Buyskikh A, Venegas-Gomez A, Amato-Grill J, Daley A and Ketterle W 2020 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 124(4) 043204 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='043204 [38] Amato-Grill J, Jepsen N, Dimitrova I, Lunden W and Ketterle W 2019 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A 99(3) 033612 URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='033612 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Hamiltonian Spin Hamiltonians can be realized with ultracold bosons in optical lattices in the Mott insulator state using the tunneling between lattice sites ˜t and on-site interactions U [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Here we use a Mott insulator with one atom per site and two hyperfine states, which encodes the anisotropic spin-1/2 Heisenberg model, which we have implemented before [37, 6]: H = Jz � ⟨i,j⟩ Sz i Sz j + Jxy � ⟨i,j⟩ � Sx i Sx j + Sy i Sy j � where the sums are over nearest-neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The spin parameters are: Jz = 4˜t2 U↑↓ − 4˜t2 U↑↑ − 4˜t2 U↓↓ Jxy = − 4˜t2 U↑↓ (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1) and the spin matrices Sα i are defined as Sz i = (ni↑ − ni↓)/2, Sx i = (a† i↑ai↓ + a† i↓ai↑)/2, and Sy i = − i(a† i↑ai↓ − a† i↓ai↑)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In this model, the xy-ferromagnet is the highest excited state in the range −1 < Jz/Jxy < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The gap to the nearest state increases smoothly when the anisotropy is varied from Jz/Jxy → 1 to Jz/Jxy → −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Also, the state itself varies in that range but it remains in the realm if xy-ferromagnetism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For technical reasons, we took the data for Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 in the main text at 1025 G, where Jz/Jxy = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 (with Jz/h = −12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='8 Hz and Jxy/h = 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='7 Hz) and the data for all other figures at 1000 G where Jz/Jxy = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='97 with (Jz/h = −73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9 Hz and Jxy/h = 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Hz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Since the gap is bigger at the latter point, we expect our state preparation to work better there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' However, no significant difference in the return magnetization M R was observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The evolution of the energy level diagram as a function of sweep time is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='A1 for Jz/Jxy = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Note that the gap decreases as a function of time for this protocol and the smallest gap is at the end of the sweep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms13 0 10 20 30 100 50 0 50 100 40 50 60 70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='45 32 34 36 38 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 1 0 32 72 0 400 0 30 (Hz) (kHz) Time (ms) Energy (kHz) (a) (b) Figure A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Adiabatic sweep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (a) The sweep of the detuning δ(t) and Rabi frequency Ω(t) of the microwave drive between |↑⟩ and |↓⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (b) The evolution of the energy level diagram, shown here for a spin chain of 6 sites, highlighting the highest excited state which we follow during the sweep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Choice of spin states The spin parameters Jz and Jxy can be varied by the 7Li Feshbach resonances in the region 500-1500 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In this region, the lowest 4 hyperfine states with mJ = −1/2 could be suitable choices of spin states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Typically, the lowest two have been used to realize spin models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' However, here we use the second and third lowest states with |mI⟩ = −1/2 and |mI⟩ = 1/2 due to their lower sensitivity to magnetic field noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' These states have a very small relative magnetic moment |µ↓−µ↑| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='76 kHz/G, compared to ∼ 30kHz/G for the lowest two hyperfine states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The magnetic field noise in our system is ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 mG, corresponding to stability at the 10−5 level, and resulting in 10 Hz noise, which is ∼ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 times smaller than the superexchange timescale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' To determine the scattering lengths for these energy levels, we use interaction spectroscopy, as in [38], to measure the energy differences Ubc − Ubb and Ucc − Ubc, where we use spectroscopic notation, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='B1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The scattering length as a function of magnetic field B can be approximated as a parabola: a(B) = abg � 1 − � i ∆i B − Bi,0 � (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1) where abg is the background scattering length, Bi,0 are the magnetic fields of the Feshbach resonances and ∆i are the widths of the resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Using the data for the bb channel from [38], we can determine the parameters for the bc and cc channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is summarized in Table B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The scattering lengths of the relevant hyperfine states are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' B1(b) and Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms14 Channel abg/a0 ∆ (G) B0 (G) bb [38] −23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='0(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4) −14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9) 845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='45(02) bb [38] −23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='0(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4) −172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='7(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='0) 893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='84(18) bc −35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3) −56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='7) 938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='11(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='05) cc −34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='9) −104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4) 1036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='19(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='56) Table B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Feshbach resonance parameters for the b and c states of 7Li from interaction spectroscopy in a 3D Mott insulator at 35 ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' the corresponding spin parameters are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' B1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 850 900 950 1000 Magnetic field (Gauss) 50 0 50 100 Energy difference (kHz) Ubc-Ubb Ucc-Ubc 200 100 0 100 200 Scattering length (a0) abb abc acc 940 960 980 1000 1020 Magnetic field (Gauss) 600 400 200 0 200 J/h (Hz) 2 1 0 1 2 Jz/Jxy Jxy Jz (a) (b) (c) Figure B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Feshbach resonances in 7Li for the b and c states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (a) Energy differences Ubc − Ubb and Ucc − Ubc as measured by interaction spectroscopy of an n=2 Mott Insulator at a lattice depth of 35 ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (b) Scattering lengths as a function of magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (c) Parameters of the XXZ Hamiltonian as a function of magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The dashed line at 1000 G indicates the point where the data is taken except for the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 of the main text, which is taken at 1025 G (dotted line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' State-selective imaging In this paper we use two different imaging techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2, we use standard absorption imaging, in which the two states are imaged separately, since the imaging frequencies differ by ∼ 200 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This requires repeating the experimental sequence in order to image each state, which requires longer experimental times and is sensitive to shot-to-shot atom number fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Therefore, for the data in all other figures, we implemented a more efficient technique, using Stern-Gerlach imaging, in which the two states are separated in space and can be imaged at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Since the spin states have similar magnetic moments at high field, in order to separate them Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms15 spatially, we map them to their low-field counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We transfer the population in the |↓⟩ = |1/2, −1/2⟩ to |a⟩ = |3/2, −1/2⟩ via a Landau Zener sweep (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' C1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is possible because the energy differences between the different pairs of hyperfine states at these magnetic fields are significantly different, so that the different transitions can be spectroscopically distinguished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Now the two states map to the low-field states |a⟩ → |F, mF⟩ = |1, −1⟩ and |↑⟩ → |F, mF⟩ = |1, 1⟩, which have a relative magnetic field moment of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4 MHz/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In order to measure the populations in each of these states, we quickly ramp all lattice arms to 35ER, lower the magnetic field in 10 ms to about 5 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We apply a magnetic field gradient of 50 G/cm, lower the lattice arm in the direction of the magnetic field gradient to 0 and the other two arms to 13ER and let the atoms expand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This results in two spatially separated clouds corresponding to the original spin states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We calibrate the relative number of atoms in the spin states by driving Rabi oscillations between the two spin states at high and at low fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The oscillation amplitude for the two coupled spin states corresponds to the same atom number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 0 500 1000 Magnetic field (Gauss) 2 1 0 Energy (GHz) 0 10 Figure C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Stern-Gerlach imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' First, at high field, the population in the |↓⟩ (blue) is transferred to the lowest hyperfine state by a Landau-Zener transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Then, the field is lowered to ∼ 5 G, where the differential magnetic moment between the two states is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' A magnetic field gradient separates the atoms in the two states after the lattice depths are ramped down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Sweep parameters We explored two types of sweeps: piece-wise linear (used for the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2) and exponential (used for all other figures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We find no significant difference between the two sweeps when the timescales of the two are matched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The optimized linear sweeps and the optimized exponential sweeps are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' D1(a-b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='D1(c) shows the average return magnetization M R as a function of the length of the Rabi frequency sweep for both piece-wise linear and exponential pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In both cases we start with the maximum Rabi frequency Ω0 = 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 Jxy/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For the piece-wise linear sweeps only the length of the second linear part is varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The return magnetization is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 in both cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms16 0 1 2 3 Time (h/Jxy) 0 200 400 Detuning (Jxy/h) 0 1 2 3 4 Time (h/Jxy) 0 10 20 Rabi frequency (Jxy/h) (a) (b) 0 1 2 3 4 5 Omega sweep time T (h/Jxy) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3 Magnetization MR (c) Figure D1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Sweep parameters: (a) detuning and (b) Rabi frequency sweeps showing the optimized piece-wise linear sweep used in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 in the main text (blue) and the optimized exponential sweep used in all other figures (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (c) Dependence of the return magnetization M R on the total length of the Rabi frequency sweep for (blue) piece-wise linear sweeps and (green) exponential sweeps (green data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3(a) in the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Distribution of chain lengths In order to achieve deep lattices, we focus the lattice beams to 125 µm 1/e2 radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This curvature leads to a considerable trapping potential which gives the Mott insulator a spherical shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This leads to a distributions of chains with different lengths and to some isolated atoms at the edges of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' As we have discussed in Supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 10 of [6], this results in the following distribution: For N = 6000 atoms in the Mott insulator, the maximum chain length is Lmax = 21aL, where aL = 532 nm is the lattice spacing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The average chain length is Lavg = (3/4)Lmax = 16aL and the total number of chains is π(Lmax/2aL)2 = 350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This distribution of chain lengths complicates the optimization of the adiabatic protocol since its performance depends on chain length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Characterization of isolated particles A source of error in the measurement of the return magnetization is the presence of isolated particles at low lattice depths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' These could be thermal atoms from imperfect state preparation or isolated particles at the edges of the cloud, where, due to the lattice curvature, the energy difference between neighboring sites ∆ > 4˜t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Since they behave as single particles, their presence will artificially increase the return magnetization at low lattice depths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is due to the different detunings at which ⟨Sz⟩ = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' the spins are in the xy-plane, which is due to the fictitious magnetic field at low lattice depths (Fig 1(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' At deep lattices for single spins ⟨Sz⟩ = 0 for δ(s) f = 0 and at 11 ER for Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms17 coupled spins δ(c) f = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Therefore, for ideal sweeps, M R → 1 for single spins at the resonance of the coupled spins δ(c) f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This effect can be used to estimate the fraction of single particles at low lattice depths by measuring the return magnetization MR(δ = 0) at low lattice depths at δ(s) f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' MR(0) is the sum of M (s) R (0) = 0 for single particles and M (c) R (0) ̸= 0 for coupled spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' More generally: MR(δ) = αsM (s) R (δ) + (1 − αs)M (c) R (δ) (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1) where αs is the fraction of single particles present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For deep lattices (orange), the return magnetization at zero detuning (dashed line) is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' At shallower lattices, the dip of the return magnetization at zero detuning signals the presence of isolated particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' By varying the preparation protocol, the number of single particles can be increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The Mott insulator is created by loading a Bose-Einstein condensate into an optical lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We can vary the condensate fraction, thus increasing the thermal atoms and holes in the Mott insulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We can estimate the fraction of isolated atoms by using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1) and subtracting a fraction of a fit of the 35 ER data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Note that the width of the 35 ER data is limited by magnetic field noise, estimated to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 mG rms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For lower initial condensate fraction (dark blue points), this gives us a single-atom fraction of approximately 30%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For higher initial condensate fraction (dark blue points), this gives us a single-atom fraction of approximately 8 − 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Therefore, the measured M R could be too high by at most 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Improved detection methods, such as a quantum gas microscope, could give a better picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='15 Final detuning f (kHz) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='8 1 R Magnetization M Figure F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Effects of single atoms on M R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Isolated atoms at 35 ER (orange points) or coupled atoms at 11 ER with lower (dark blue) or higher (light blue points) initial condensate fraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The solid lines are phenomenological fits to guide to the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' The dashed vertical line is the ⟨Sz⟩ = 0 point for isolated sites (35 ER lattice) and the dotted line is the ⟨Sz⟩ = 0 point for coupled sites in 1D chains (11 ER lattice).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms18 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='04 Noise Strength (Jxy/h/�Hz) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='8 1 Magnetization MR Detuning noise Intensity noise Figure G1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Noise sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Plotted are the calculated effects of detuning noise (x- field noise) and intensity noise of the microwave field (x-field noise) on the return magnetization M R, assuming white noise and optimized exponential ramps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Our observed M R around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 are probably limited by intensity noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Appendix G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Noise sources The main sources of noise in our adiabatic protocol are detuning and intensity noise of the microwave field, which map to noise in the z− and x−field respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For individual spins, we expect noise in the z−field to be dominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' This is evident in the dephasing of individual spins rotated to the xy−plane, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2(c) in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For coupled spins, the adiabatic preparation protocol relies on the noise being smaller than the gap to the next excited state, which is the smallest at the final stages of the ramp in our case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Numerical simulations show the effects of detuning and intensity noise on the return magnetization M R given our preparation protocol with optimized ramp times and assuming white noise, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' G1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For the same power spectral density, intensity noise results in a larger decrease of M R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We estimate the power spectral density of the detuning noise by measuring the current in the coils creating the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We see a flat profile up to several kHz, beyond which, due to the large inductance of the coils, fluctuations are suppressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We estimate that the rms-noise of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 mG corresponds to power spectral density of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='002 Jxy/h/ √ Hz, which is not limiting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' To estimate the amount of intensity noise, we measure the decay time of Rabi oscillations of individual atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For Rabi oscillations in a two-level system, we can include intensity noise in the Rabi frequency: Ω(t) = Ω(t) + ∆Ωϵ(t) (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='1) where ϵ(t)ϵ(t′) = S0δ(t−t′), which describes white noise with strength S0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' For this type of noise, the Rabi oscillations envelope will decay as e−t/τ, where τ is the characteristic Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms19 decay time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We can then express the decay time as: τ = 2 S0(∆Ω)2 (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='2) and the noise strength as: fN ≡ � 2 τ 1 Jxy/ℏ (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='3) in units of Jxy/h √ Hz where Jxy/ℏ = 2π 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' In our experiment, the decay time increases with decreasing Rabi frequency, probably due to decreasing signal-to- noise ratio given by the constant noise added by the power amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' We can put an upper bound on the intensity noise by assuming that the decay of the Rabi oscillations is only due to intensity fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Assuming white noise, we estimate that the intensity noise is fN =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='0094 Jxy/h/ √ Hz for large Rabi frequencies and increases to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='019 Jxy/h/ √ Hz at the very final stages of the ramp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content=' Given that for optimized sweeps a return magnetization of M R ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='5 corresponds to Rabi frequency intensity noise of ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
+page_content='01 Jxy/ √ Hz, we can conclude that our experiment is mainly limited by intensity noise in the microwave field at the final stages of the ramp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNAyT4oBgHgl3EQfZPcw/content/2301.00218v1.pdf'}
diff --git a/pNFPT4oBgHgl3EQfLjS4/content/tmp_files/2301.13023v1.pdf.txt b/pNFPT4oBgHgl3EQfLjS4/content/tmp_files/2301.13023v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..54a2d3fba01bffacd5c7938375bab386cc5090a0
--- /dev/null
+++ b/pNFPT4oBgHgl3EQfLjS4/content/tmp_files/2301.13023v1.pdf.txt
@@ -0,0 +1,935 @@
+1
+
+The Application of Coherent Microwave Scattering and Multiphoton
+Ionization for Diagnostics of Electric Propulsion Systems
+Adam R. Patel, Sashin L. B. Karunarathne, Nicholas Babusis, and Alexey Shashurin
+School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA
+
+Keywords: Nonintrusive Plasma Diagnostics, Microwave Plasma Diagnostics, Coherent Microwave Scattering,
+Resonance-Enhanced Multiphoton Ionization (REMPI), Multiphoton Ionization (MPI), Electric Propulsion, Ion
+Thrusters
+
+Abstract
+Nonintrusive measurements of plasma properties are essential to evaluate, and numerically
+simulate, the in-flight performance of electric propulsion systems. As a logical first step in the
+development of new diagnostic techniques, this work depicts the implementation of multiphoton
+ionization and coherent microwave scattering (MPI-CMS) in a gridded-ion accelerator operating
+on rare gases. Presented studies primarily comprise photoionization spectroscopy of ground &
+excited state-populations of both neutrals and ions – supplemented by optical emission
+spectroscopy and Langmuir probe derived plume properties. Results suggest the potential of MPI-
+CMS for non-intrusive measurements of specie number densities.
+
+
+
+
+2
+
+Introduction
+
+Ion thrusters are electrostatic, high-specific impulse rarefied propulsion systems deployed
+in the context of astronautics. Standard inert gas-fed embodiments typically consume 1-7 kW of
+power and exhibit very low thrust (~25-250 mN) but maintain excellent exhaust velocities on the
+order of ~ 20-50 km/s [1]. Initially debuting on the SERT-1 [2], ion engines have found use in
+applications ranging from geosynchronous Earth-orbit communication satellite upkeep (XIPS
+thruster [3],…) to asteroid probing (Deep Space 1 [4], Dawn [5], Hayabusa / Hayabusa 2 [6], …).
+Current state-of-the-art concerns application of the 6.9 kW NEXT-C in NASA’s double asteroid
+redirection test (DART) through spacecraft impact-induced deflection of the minor-planet moon
+Dimorphos [7]. Aside, ion beams have found general use in a diverse array of applications –
+ranging from etching & ultra-precision machining (encompassing semiconductor manufacturing)
+[8]–[12] to focused deposition [13], scanning electron microscopes [14], helium ion microscopes
+[15], radiobiology [16], and particle therapy [17].
+
+In comparison to alternate electric propulsion technological classifications, ion thrusters
+exhibit relatively straightforward operational principles. These devices are delegated three primary
+tasks: ion generation, ion acceleration, and plume neutralization [1]. In a standard thruster
+configuration, neutral rare-gas propellant is fed into a crossed-field electron collision-based
+ionization chamber. Generated ions in the resulting quasi-neutral plasma are sequentially
+accelerated via a biased-grid through a space-charge limited channel. To restore quasi-neutrality
+in the exhaust plume (and thus, alleviate spacecraft charge buildup), an electron source neutralizer
+is used. A decelerator grid is further utilized to reduce erosion of the accelerator grid from ion-
+impact sputtering [18].
+
+Although the physics of ion thrusters are relatively well-established [19], the overarching
+domain of electric propulsion encompasses unresolved phenomena and topics. E.g., deriving
+factors which foster differences between in-space and facility performance [20], minimizing
+erosion rates [21]–[24], studying anomalous electron diffusion, microturbulence, axial ion-ion
+streaming instabilities [25]–[29], etc. The resolution of this phenomena is particularly important
+in the improvement of numerical simulations – seeking to partially supplant timely, expensive test
+and qualification campaigns. Thus, there is a need to develop spatially and temporally-resolved
+diagnostics for ground testing of parameters/performance of electric propulsion devices.
+
+3
+
+
+A variety of intrusive techniques have been historically implemented for broad plasma
+characterization, but these diagnostics are largely perturbative and often suffer from poor spatial
+and temporal resolutions [30]. Prior art includes Langmuir probes (plasma potentials, electron
+densities, electron temperatures), Faraday probes (local ion charge fluxes, local electron charge
+fluxes), retarding potential analyzers (ion energy distribution functions), and Wien ExB filters
+(charge-states, ion energy distribution functions) [31]–[34]. Limitations of invasive techniques
+quickly sparked interest in nonintrusive / passive diagnostics – including optical emission
+spectroscopy (populations corresponding to specie state transitions), laser-induced fluorescence
+(populations corresponding to specie state absorption then emission, ion drift velocities), and laser
+Thomson scattering (electron number densities, temperatures, and distribution functions) [30],
+[35], [36]. However, these non-intrusive methods exhibit their own set of disadvantages – typically
+referring to time and path-averaging, sensitivity-issues, a difficulty in absolute calibration, and /
+or great experimental complexities. To further broaden the diagnostic options pool and
+(potentially) circumvent pre-existing technique drawbacks, multiphoton ionization + coherent
+microwave scattering (MPI-CMS) may suffice as an appropriate novel diagnostic for non-
+intrusive, single-shot standoff measurements of electron propulsion plasma parameters.
+Coherent microwave scattering (CMS) is a technique used to measure the total number of
+electrons (𝑁𝑒) in an unmagnetized, classical small plasma object through the constructive elastic
+scattering of microwaves [37]. Specifically, the diagnostic is used when the microwave skin depth
+𝛿 ≫ plasma diameter 𝐷 and microwave wavelength 𝜆 ≫ 𝐷, plasma length 𝐿. In this case, the
+plasma is periodically polarized and emits short-dipole-like radiation which can be attributed to
+𝑁𝑒 through a calibration sample [38]. Note that this condition is not satisfied by the ion thruster
+plume but, rather, an electron number density inhomogeneity induced by the MPI process – to be
+further elaborated in the results. From spatial phase related considerations, wavelet contributions
+from the larger plasma body will not interfere constructively and, correspondingly, produce a
+negligible signal.
+CMS has found use in applications ranging from electron rate measurements [38]–[45] to
+trace species detection [46], gaseous mixture and reaction characterization [47]–[49], molecular
+spectroscopy [50], and standoff measurement of local vector magnetic fields in gases through
+magnetically-induced depolarization [51]. Advantages of the technique include a high sensitivity
+(total number of electrons detectable > 107), good temporal resolution, single-shot acquisition, and
+
+4
+
+the capability of time gating due to continuous scanning. Often, as in this study, CMS is coupled
+with laser-induced resonance-enhanced multiphoton ionization (REMPI) – a special case of
+multiphoton ionization (MPI) which provides an efficient pathway for species’ state-selective
+ionization, following the m+n (m simultaneous photons to an excited intermediate state and n
+subsequent photons to continuum) ionization scheme. Further, the nonlinear nature of resonant
+photoionization adds measurement locality at the focal point of the laser. REMPI is highly
+selective and can ionize trace species, can be used to perform detailed spectroscopy (including fine
+structure populations, selectivity rules, spin polarizations [52]), measure temperature [50], and is
+directly linked to various phenomena (such as Doppler shifting / broadening, homogeneous
+collisional broadening, the Stark effect, and the Zeeman effect). Compared with CMS alone, the
+inclusion of REMPI allows selective species ionization – enabling (with proper calibration) a
+method to diagnose the number density of the selected species / state [47].
+Recent extension of CMS to the Thomson low-pressure regime [53] enables application of
+the technique to electric propulsion systems. The Thomson scattering regime refers to the instance
+where the electron mobility (when driven by a microwave field) is unbound by collisions
+(Shneider-Miles scattering) and polarization effects (Rayleigh scattering) – accomplished when
+the microwave generator frequency greatly exceeds the effective collisional frequency and
+modified plasma frequency. In this case, a detailed knowledge of plasma parameters is not required
+to characterize scattering and, even further, the Thomson regime shares a space with regions of
+low optical nonlinearities (from reduced background number densities). Thus, MPI-CMS (or the
+subset REMPI-CMS) may suffice as an appropriate diagnostic for non-intrusive, single-shot
+standoff measurements of specie / state populations in EP systems – with the potential for further
+use in applications ranging from vector magnetic field mapping to velocity measurements via
+Doppler-shifted photoionization spectroscopy.
+As a natural first step in assessing the applicability of REMPI-CMS in electric propulsion,
+this study specifically investigates integration of the diagnostic in an ion accelerator operating on
+noble gas propellants. The continuous, relatively-simple (no B-field) operation of ion accelerators,
+alongside microwave transparency due to sufficiently-low plume electron number densities,
+advocate the devices as an ideal demonstration candidate.
+
+
+5
+
+Methodology
+Schematics of the experimental assembly are depicted in Figure 1 and Figure 2.
+
+
+Figure 1: Experimental configuration for the implementation of MPI-CMS in an ion accelerator.
+
+
+Figure 2: Photograph of the experimental assembly.
+
+A full description of the vacuum chamber, nanosecond laser system, and microwave
+scattering circuitry can be found in [53]. Experiments were conducted in a diffusion-pumped,
+ionization gauge-equipped vacuum chamber lined with a phenolic-based high power microwave
+absorber. 4.93 ± 0.25 ns FWHM, linearly polarized laser pulses from 210 – 400 nm (FWHM 0.1
+nm) were delivered by a 10 Hz, broadly tunable Ekspla NT342 Q-switched Nd:YAG laser system.
+The 7 mm diameter top-hat beam with full divergence angle < 2 mrad was focused through a f =
+175 mm plano-convex spherical lens to a peak laser intensity on the order of ~ 109 W/cm2 for
+plasma generation. From our previous work [53], the case of (2+1) REMPI (~ cubic laser intensity
+
+RX
+Tx
+Neutralizer
+Mixer
+《
+LO
+K
+phase
+Splitter
+Oscilloscope
+Shifter
+Q
+RF
+K
+ThrusterPlume
+Rx
+Microwave
+TX
+lonSource
+Horn
+Generator
+Horn
+Laser-Generated Plasma
+PhenolicMw
+MFC
+MFC
+Krypton
+Absorber
+MFC
+MFC
+Argon6
+
+process) generates a plasma object that can be regarded as an oblate spheroid with upper bound
+semi-axis estimates of 𝔞 = 𝔟 = 280 μm and 𝔠 = 4.5 mm – our effective measurement spatial
+resolution. The ellipsoid is further reduced in volume for a (3+2) process. Following this trend, the
+case of non-resonant one photon ionization will produce an electron number density distribution
+consistent with the laser’s Gaussian profile.
+For CMS measurements, the microwave field scattered off the plasma volume was
+correspondingly measured by a receiving (Rx) horn coupled with an in-phase / quadrature (I/Q)
+mixer-based homodyne detection system that provides an output voltage VS proportional to the
+scattered electric field. First, an Anritsu 68369B synthesized signal generator was used to produce
+a continuous microwave signal at 11 GHz (FWHM 1 MHz). The microwaves were then amplified
+and split. One arm was connected to an I/Q mixer local oscillator (LO) port, with a confirmed
+operational power in the linear mixer regime (10 – 13 dBm). The other arm was then further
+amplified, isolated, and sent to a pyramidal 20 dB transmitting (Tx) horn for plasma irradiation. A
+receiving horn was then installed and connected to the I/Q mixer radio frequency (RF) port to
+detect the scattered electric field (proportional to the number of electrons). The in-phase and
+quadrature channels of the mixer were subsequently connected to a WavePro 735Zi 3.5 GHz
+oscilloscope with 50 Ohm DC termination. Calibrated amplification of the MW scattering signals
+(before the RF port) and the I/Q channels were used as needed to improve system sensitivity. Note
+that absolute calibration of in-phase CMS via a dielectric scatterer (attribution to the total number
+of electrons generated) is not included in this work but is an available feature of CMS.
+The gridded ion source considered is a flange-mounted KDC-40 ion accelerator with
+complementary LFN neutralizer. Operation of the device is governed by a set of four controllers
+and functions in the regime where beam current does not exceed the limit which will cause direct
+impingement of energetic ions on the accelerator grid. Further, the accelerator voltage is greater
+than the electron backstreaming limit to avoid false contribution to the indicated ion beam current.
+Two noble gas propellants (argon, krypton) were respectively fed into the combined neutralizer-
+ion source system via a mass flow controller.
+
+A test matrix for relevant operational parameters of the gridded-ion accelerator is shown
+in Table 1. Considered beam currents 𝐼𝐵 (fixed for a given voltage) are well-under the fundamental
+Child-Langmuir limit. As a simple estimate, the relative electron / ion number densities (𝑛𝑒 ≈ 𝑛𝑖)
+between various 𝑉𝐵 can be evaluated:
+
+7
+
+𝐼𝐵 ∝ 𝑛𝑒√𝑉𝐵
+Eq. 1
+
+Table 1: Operational parameters of the KDC-40 gridded-ion accelerator.
+Standard Anode
+Flow Rate (SCCM)
+Fixed Neutralizer
+Flow Rate (SCCM)
+Noble Gas
+Standard Background
+Pressure (Torr)
+Beam Voltage VB
+(V)
+Beam Current IB
+(mA)
+10
+6
+Argon
+3.6 ∙ 10−4
+400
+14
+600
+30
+800
+46
+Krypton
+5 ∙ 10−4
+400
+14
+600
+30
+800
+46
+
+Note that the magnitude of LFN neutralizer current is equivalent to the beam current. Aside, a
+neutralizer is redundant in the considered experimental setup due to the KDC-40 grounding.
+
+To supplement REMPI-CMS results, 1.) optical emission spectroscopy (OES) and 2.)
+Langmuir probe measurements were conducted at the laser focal position (~ 500 mm from the
+accelerator). 1.) A calibrated Ocean Optics USB4000, with the range 300-900 nm & focused via a
+NIKKOR 24-120 mm f/4 lens, was used for OES-based general identification of excited species.
+2.) Langmuir probes were used to extract electron temperatures and number densities. These values
+were used to verify both microwave transparency and relative ion-number density measurements
+from resonance-enhanced multiphoton ionization of ions. A transformer circuit was installed to
+rapidly determine the V-I dependency through an alternating bias, and the Langmuir probe current
+was measured through a 20 kΩ shunt resistor. Plasma density and electron temperature were
+correspondingly determined from the experimentally measured V-I characteristics, represented by
+a Boltzmann relation with Maxwellian velocity distribution (prior to electron saturation). In
+experiment, the copper disk electrode was oriented parallel to the plume flow. This situation refers
+to the collection of Bohm’s saturation current and mitigates the influence of directed ion velocity.
+
+Results and Discussion
+
+We initially evaluate viability of the proposed environment before continuing forward with
+the implementation of REMPI-CMS in a gridded-ion accelerator. Namely, providing quantitative
+evidence for sufficiently-detectable photoionization at rarefied pressures (with the considered
+nanosecond laser features) and microwave transparency of the exhaust plume. First, in a krypton
+
+8
+
+fed configuration, the scattering waveform for (2+1) 212.5 nm resonance-enhanced multiphoton
+ionization Kr 4p6( S
+
+1
+0)
+
+→
+2ph Kr 4p5( P3 2
+⁄
+°
+
+2
+)5p [1 2
+⁄ ]
+
+2
+0
+
+→
+1ph Kr+ 4p5 ( P
+
+2
+3 2
+⁄ or 1 2
+⁄
+°
+) (with resulting
+photoelectron energies of ℇ𝑝𝑒 ≈ 3.5 eV or 2.8 eV, respectively, from multiphoton excess
+estimates) was recorded at pressures 𝑃 = 3.6 ∙ 10−4 , 4.85 ∙ 10−4 Torr without the presence of
+plasma – suggesting adequate detector sensitivity in Figure 3 (Ne ∝ VS ∝ the scattered electric
+field).
+
+
+Figure 3: Detection of (2+1) 212.5 nm REMPI of krypton at rarefied pressures.
+
+
+Next, electron number densities and temperatures were derived from Langmuir-probe V-I
+curves – shown in Figure 4. These results are summarized in Table 2 below. In the most extreme
+instance of the electron number density 3.3 ∙ 1016 m-3 (an ionization degree of 𝛼 ≈ 0.005), the
+collisionless permittivity of the plasma can be estimated for 11 GHz microwaves: 𝜀 = 1 −
+𝜔𝑝2
+𝜔2 =
+0.978 > 0, well above the transition to evanescence / reflection. The considered ion thruster
+background can thus be regarded as CMS-transparent. Furthermore, contribution of the plasma
+plume to the microwave scattering signal VS was confirmed to be negligible (without the laser) –
+indicative of destructive and/or incoherent scattering. Physically, this destructive scattering can
+occur for phase-locked electrons exhibiting uniform and continuous relative scattered phase
+distributions (at the detector) on the interval [0, 2π) – enabled by large plasma dimensions (the ion
+thruster plume) relative to the microwave wavelength. Withholding a non-uniform plume electron
+number density distribution, phase randomization from thermal motion, microscopic density
+fluctuations, and Doppler broadening will produce some small scattered power proportional to the
+total number of electrons 𝑁𝑒. However, a relatively localized dense plasma ellipsoid (produced by
+
+12
+10
+8
+(mV)
+6
+4
+9.5SCCMKr(3.6e-4Torr)
+2
+13.5SCCMKr(4.85e-4Torr)
+0
+100
+200
+300
+400
+500
+600
+700
+800
+Time (ns)9
+
+the laser) can produce constructive wavelet contributions with scattered power dependence 𝑁𝑒
+2 –
+far exceeding the plasma plume contribution [53].
+
+
+Figure 4: Langmuir probe VI curves for various ion thruster operational parameters.
+
+Table 2: Langmuir-probe derived electron number densities and temperatures.
+
+Argon
+Krypton
+VB (V)
+400
+600
+800
+400
+600
+800
+ne (m-3)
+1.0e16
+1.8e16
+3.3e16
+1.1e16
+1.7e16
+2.6e16
+Te (K)
+23500
+20000
+17500
+14700
+13600
+11500
+
+
+Compatibility of the considered background with REMPI-CMS permits microwave-based
+detection of photoionization embedded inside the ion engine plume. The resulting photoionization
+spectroscopy will reflect underlying exhaust constituents: predominantly composed of ground-
+state neutral atoms, excited-state neutral atoms, and singly-ionized species. For a qualitative
+characterization of these populations, the presence of unique quantum state transitions (strictly
+electronic for monatomic species) can be measured through optical emission spectroscopy – as
+depicted in Figure 5.
+
+
+Argon
+Krypton
+1
+1
+VB = 400 v
+VB=400v
+0.8
+0.8
+Current (mA)
+0.6
+Current (mA)
+0.6
+0.4
+0.4
+0.2
+0.2
+0
+0
+-0.2
+-0.2
+-40
+-30
+-20
+-10
+0
+-40
+-30
+-20
+-10
+0
+LangmuirProbeBias(V)
+LangmuirProbeBias(V)10
+
+
+Figure 5: Calibrated optical emission spectroscopy of the ion thruster plume.
+
+Identification of various species / transitions are depicted in Table 3. A complete analysis of
+observed lines is excessive and beyond the spectrometer resolution – see [54] for a full survey on
+transitions (particularly, those with low Einstein coefficients Aki or in ions). However, just a few
+entries in Table 3 suggest significant excited species near the ionization threshold which can be
+readily ionized by single UV photons. These contributions must be considered to isolate the effect
+of REMPI for relative population measurements. Furthermore, the considered plasma may contain
+long-lifetime (~ 50 s) metastable states undetectable by emission [55], [56].
+
+Table 3: A few relevant transitions in argon and krypton [54].
+Ion
+𝜆 (nm)
+Rel. Int.
+Aki (s-1)
+Lower Level
+Upper Level
+Ar II
+488.0
+0.47
+8.23e7
+3s23p4(3P)4s 2P
+3/2
+138243.6 cm-1
+17.14 eV
+3s23p4(3P)4p 2D°
+5/2
+158730.3 cm-1
+19.68 eV
+Ar I
+738.4
+0.50
+8.50e6
+3s23p5(2P°3/2)4s
+2[3/2]° 1
+93750.6 cm-1
+11.62 eV
+3s23p5(2P°1/2)4p
+2[3/2] 2
+107289.7 cm-1
+13.3 eV
+Ar I
+763.5
+1.00
+2.45e7
+3s23p5(2P°3/2)4s
+2[3/2]° 2
+93143.8 cm-1
+11.55 eV
+3s23p5(2P°3/2)4p
+2[3/2] 2
+106237.6 cm-1
+13.17 eV
+Kr I
+645.6
+0.22
+6.65e6
+4s24p5(2P°3/2)5p
+2[5/2] 3
+92294.4 cm-1
+11.44 eV
+4s24p5(2P°3/2)6d
+2[7/2]° 4
+107778.9 cm-1
+13.36 eV
+Kr I
+760.2
+1.00
+2.73e7
+4s24p5(2P°3/2)5s
+2[3/2]° 2
+79971.7 cm-1
+9.92 eV
+4s24p5(2P°3/2)5p
+2[3/2] 2
+93123.3 cm-1
+11.55 eV
+Kr I
+811.3
+0.27
+3.61e7
+4s24p5(2P°3/2)5s
+2[3/2]° 2
+79971.7 cm-1
+9.92 eV
+4s24p5(2P°3/2)5p
+2[5/2] 3
+92294.4 cm-1
+11.44 eV
+
+
+Waveforms for coherent microwave scattering off plasma-embedded photoionized
+filaments are depicted in Figure 6 for various laser wavelengths and ion engine propellants ((a)-
+
+Argon (V,=800 V)
+Krypton (V,=800 V)
+0.8
+0.8
+(n'
+Intensity
+Intensity
+0.4
+0.4
+0.2
+0.2
+0
+400
+450
+500
+550
+600
+650
+700
+750
+800
+850
+400
+450
+500
+550
+600
+650
+700
+750
+800
+850
+Wavelength(nm)
+Wavelength(nm)11
+
+(c) krypton, (d) argon). Subfigure (a) corresponds to the previously-discussed 212.5 nm krypton
+(2+1) REMPI mechanism. Observed scattering signals between considered ion beam accelerator
+voltages are qualitatively similar and suggest minimal background perturbance (see [52] for
+instances of laser-induced avalanche ionization – numerical simulations are likely required to
+confirm non-invasive characteristics of the nanosecond pulse). Temporal decay in the measured
+intensity can be attributed to a deviation in constructive scattering from significant electron
+diffusion. As a general trend, 𝑉𝑆 for 𝜆𝐿 = 212.5 nm appears to be proportionally correlated with
+the ion beam voltage VB. This dependency seems counterintuitive – given an accompanying
+increase in the plume electron number density at sufficiently low ionization degrees such that VS
+should remain nearly invariant. However, the presence of excited species enables an avenue for
+single-photon ionization with a significantly greater PI rate (omitting the corresponding number
+density term) than REMPI. Even further, one-photon photoionization scaling laws enable a larger
+plasma volume compared to the case of (2+1) REMPI (which would appear as a dense ellipsoid
+core in the larger plasma structure). Contribution from ponderomotive and quiver-collision
+induced ionization is assumed negligible for the rarefied pressures and photon frequencies
+considered.
+
+The influence of single-photon ionization can be visualized in Figure 6(b) for an off-
+resonant laser wavelength of 215 nm. This signal can be effectively subtracted from VS for 212.5
+nm to isolate the effect of REMPI. Aside, exclusive ionization of excited species may be possible
+through optical and/or infrared multiphoton absorption to an intermediate energy level
+(subsequently followed through to continuum). This may also yield a novel way of detecting
+metastable states, which conventionally evade optical emission spectroscopy.
+
+Inclusion of krypton-based plasma enables a new resonant-photoionization mechanism
+near 𝜆𝐿 = 214 nm. This process corresponds to the (3+2): Kr+4p5 P
+ 2
+3 2
+⁄
+°
+
+
+→
+3ph Kr+ 4p4( P
+ 3 )5p D
+ 4
+1 2
+⁄
+°
+
+
+→
+2ph Kr+2
+Or Kr+ 4p5 P
+ 2
+3 2
+⁄
+°
+
+
+→
+3ph Kr+ 4p4( P
+ 3 )5p P
+ 2
+3 2
+⁄
+°
+
+
+→
+2ph Kr+2 in singly-ionized krypton with ℇ𝑝𝑒 ≈ 4.6 eV, where
+upper Figure 6(c) indicates 𝑉𝑆 ∝ 𝑉𝐵 ∝ 𝑛𝑒 unexplainable solely by Figure 6(b). Doubly-ionized
+Kr will likely maintain the exhaust-related drift velocity – opening the pathway for phase, multiple-
+horn, or laser-horn misalignment-based measurements of ion velocity. Digressing, Figure 6(d)
+refers to off-resonant illumination of argon. An increase in VB generates additional excited species
+for single-photon ionization.
+
+12
+
+
+(a)
+
+(b)
+
+(d)
+
+(c)
+
+Figure 6: Waveforms for constructive elastic microwave scattering-based detection of plasma-
+embedded laser-induced filaments at several irradiating 𝜆𝐿.
+
+
+The photoionization response (peak VS) can be plotted as a function of 𝜆𝐿 (Figure 7) to
+derive information on the underlying plume populations and non-resonant excited-state one-
+photon PI contribution. Comparison between gaseous and plasma-based krypton emphasizes
+introduction of the 214 nm resonant-pathway to doubly-ionized Kr III. In the case of argon I,
+photoionization spectroscopy yields a broad nearly-uniform response until the photon energy (3
+eV at 400 nm) becomes comparable with the difference between excited states (11 - 14 eV) and
+ionization threshold (15.76 eV). Note that resonant photoionization beginning from an excited
+state (Kr* → Kr* → Kr+) is not observed in Figure 7. From energy considerations, these
+resonances will begin to appear > 500 nm - the subject of future work. However, the technique for
+measuring relative excited state populations is equivalent to the process depicted in Table 4 (to be
+discussed shortly).
+
+
+13
+
+
+Figure 7: CMS+REMPI spectroscopy of underlying plume populations.
+
+
+A comparison between REMPI-isolated (subtracted non-resonant excited-state one-photon
+PI contributions from neighboring non-resonant wavelengths), normalized 𝑉𝑆 for 𝜆𝐿 = 214 nm
+(corresponding to ground state krypton ion populations), normalized Langmuir-probe derived 𝑛𝑒,
+and normalized ion beam-current derived 𝑛𝑒 is tabulated in Table 4. The case of 𝜆𝐿 = 214.0 nm
+bears some-correspondence to the electron number density (𝑛𝑒 ≈ 𝑛𝑖) and agrees well with
+Langmuir-based measurements – opening the pathway for normalized ne mapping (assuming ion
+populations predominantly lie in the 4p5 P
+ 2
+3 2
+⁄
+°
+ state).
+
+Table 4: Normalized measurements.
+
+Iso. Norm. VS (214.0 nm)
+Norm. LP ne
+Norm. 𝐈𝐁 √𝐕𝐁
+⁄
+
+VB = 400 V, IB = 14 mA
+0.423
+0.423
+0.430
+VB = 600 V, IB = 30 mA
+0.672
+0.654
+0.753
+VB = 800 V, IB = 46 mA
+1.000
+1.000
+1.000
+
+Conclusion
+
+In this work, we reported the first implementation of coherent microwave scattering and
+multiphoton ionization-based diagnostics in an ion-gridded accelerator. Namely, photoionization
+spectroscopy of ground and excited-state specie populations – including resonance-enhanced MPI
+of ground-state ions. Results advocate potential of the technique for relative ion number density
+(𝑛𝑖 ≈ 𝑛𝑒) mapping and plume characterization.
+
+
+
+10SCCMKr
+0.8
+10SCCMKr(800V)
+10SSCMAr(400V)
+0.6
+5SCCMAr(800V)
+10SCCMAr(800V)
+0.4
+0.2
+0
+220
+240
+260
+280
+300
+320
+340
+360
+380
+400
+入, (nm)14
+
+References
+[1]
+R. Jahn, Physics of Electric Propulsion. Dover Publications, 2006.
+[2]
+J. S. Sovey, V. K. Rawlin, and M. J. Patterson, “Ion propulsion development projects in U.S.: Space
+Electric Rocket Test I to Deep Space 1,” J Propuls Power, vol. 17, no. 3, 2001, doi: 10.2514/2.5806.
+[3]
+J. Zhang, S. Zhao, Z. Zhou, and X. Li, “Optimal Station Keeping for XIPS Thrusters in Failure
+Mode under Eclipse Constraints,” J Aerosp Eng, vol. 29, no. 6, 2016, doi: 10.1061/(asce)as.1943-
+5525.0000638.
+[4]
+J. R. Brophy, “NASA’s deep space 1 ion engine (plenary),” in Review of Scientific Instruments,
+2002, vol. 73, no. 2 II. doi: 10.1063/1.1432470.
+[5]
+J. E. Polk et al., “An Overview of NASA ’ s Electric Propulsion Programs , 2010-11,” Iepc-2011-
+330, 2011.
+[6]
+K. Nishiyama, Y. Shimizu, I. Funaki, H. Kuninaka, and K. Toki, “Ground chamber measurements
+of the electromagnetic emissions from the hayabusa ion engine,” J Propuls Power, vol. 23, no. 3,
+2007, doi: 10.2514/1.19473.
+[7]
+J. Fisher et al., “NEXT-C Flight Ion Propulsion System Development Status,” 35th International
+Electric Propulsion Conference, 2017.
+[8]
+M. Manoccio, M. Esposito, A. Passaseo, M. Cuscunà, and V. Tasco, “Focused ion beam processing
+for 3d chiral photonics nanostructures,” Micromachines, vol. 12, no. 1. 2021. doi:
+10.3390/mi12010006.
+[9]
+S. Tacke et al., “A streamlined workflow for automated cryo focused ion beam milling,” J Struct
+Biol, vol. 213, no. 3, 2021, doi: 10.1016/j.jsb.2021.107743.
+[10]
+D. Xia, Y. B. Jiang, J. Notte, and D. Runt, “GaAs milling with neon focused ion beam: Comparison
+with gallium focused ion beam milling and subsurface damage analysis,” Appl Surf Sci, vol. 538,
+2021, doi: 10.1016/j.apsusc.2020.147922.
+[11]
+D. M. Allen et al., “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann
+Manuf Technol, vol. 58, no. 2, 2009, doi: 10.1016/j.cirp.2009.09.007.
+[12]
+H. E. Joe, E. G. Kang, and M. B. G. Jun, “A review of state of the art of electron beam and ion beam
+machining,” Journal of the Korean Society for Precision Engineering, vol. 35, no. 3, 2018, doi:
+10.7736/KSPE.2018.35.3.241.
+[13]
+L. S. Lunin et al., “Ion-Beam Deposition of Thin AlN Films on Al2O3 Substrate,” Technical Physics
+Letters, vol. 45, no. 12, 2019, doi: 10.1134/S106378501912023X.
+[14]
+C. Kizilyaprak, J. Daraspe, and B. M. Humbel, “Focused ion beam scanning electron microscopy in
+biology,” J Microsc, vol. 254, no. 3, 2014, doi: 10.1111/jmi.12127.
+[15]
+F. I. Allen, “A review of defect engineering, ion implantation, and nanofabrication using the helium
+ion microscope,” Beilstein Journal of Nanotechnology, vol. 12, 2021, doi: 10.3762/BJNANO.12.52.
+
+15
+
+[16]
+E. Fokas, G. Kraft, H. An, and R. Engenhart-Cabillic, “Ion beam radiobiology and cancer: Time to
+update ourselves,” Biochimica et Biophysica Acta - Reviews on Cancer, vol. 1796, no. 2. 2009. doi:
+10.1016/j.bbcan.2009.07.005.
+[17]
+D. Schulz-Ertner and H. Tsujii, “Particle radiation therapy using proton and heavier ion beams,”
+Journal of Clinical Oncology, vol. 25, no. 8. 2007. doi: 10.1200/JCO.2006.09.7816.
+[18]
+M. W. Crofton, I. D. Boyd, M. W. Crofton, and I. D. Boyd, “Origins of accelerator grid current:
+Analysis of t5 grid test results,” J Propuls Power, vol. 17, no. 1, 2001, doi: 10.2514/2.5729.
+[19]
+K. Holste et al., “Ion thrusters for electric propulsion: Scientific issues developing a niche
+technology into a game changer,” Review of Scientific Instruments, vol. 91, no. 6. 2020. doi:
+10.1063/5.0010134.
+[20]
+E. Dale, B. Jorns, and A. Gallimore, “Future directions for electric propulsion research,” Aerospace,
+vol. 7, no. 9, 2020, doi: 10.3390/AEROSPACE7090120.
+[21]
+J. D. Frieman et al., “Wear trends of the 12.5 kW HERMeS Hall thruster,” J Appl Phys, vol. 130,
+no. 14, 2021, doi: 10.1063/5.0062579.
+[22]
+S. Cao et al., “Performance and plume evolutions during the lifetime test of a Hall-effect thruster,”
+Acta Astronaut, vol. 170, 2020, doi: 10.1016/j.actaastro.2019.12.036.
+[23]
+T. Burton, A. M. Schinder, G. Capuano, J. J. Rimoli, M. L. R. Walker, and G. B. Thompson,
+“Plasma-induced erosion on ceramic wall structures in hall-effect thrusters,” J Propuls Power, vol.
+30, no. 3, 2014, doi: 10.2514/1.B34882.
+[24]
+C. Bundesmann et al., “In situ erosion measurement tools for electric propulsion thrusters: triangular
+laser head and telemicroscope,” EPJ Tech Instrum, vol. 9, no. 1, 2022, doi: 10.1140/epjti/s40485-
+022-00076-z.
+[25]
+M. S. McDonald and A. D. Gallimore, “Parametric Investigation of the Rotating Spoke Instability
+in Hall Thrusters,” 32nd International Electric Propulsion Conference, 2011.
+[26]
+S. Tsikata, A. Héron, and C. Honoré, “Hall thruster microturbulence under conditions of modified
+electron wall emission,” Phys Plasmas, vol. 24, no. 5, 2017, doi: 10.1063/1.4984255.
+[27]
+S. Cho et al., “Study of electron transport in a Hall thruster by axial-radial fully kinetic particle
+simulation,” Phys Plasmas, vol. 22, no. 10, 2015, doi: 10.1063/1.4935049.
+[28]
+B. Jorns, “Predictive, data-driven model for the anomalous electron collision frequency in a Hall
+effect thruster,” Plasma Sources Sci Technol, vol. 27, no. 10, 2018, doi: 10.1088/1361-6595/aae472.
+[29]
+E. T. Dale and B. A. Jorns, “Non-invasive time-resolved measurements of anomalous collision
+frequency in a Hall thruster,” Phys Plasmas, vol. 26, no. 1, 2019, doi: 10.1063/1.5077008.
+[30]
+Y. Dancheva et al., “Non-intrusive tools for electric propulsion diagnostics,” CEAS Space Journal,
+vol. 14, no. 1, 2022, doi: 10.1007/s12567-021-00360-w.
+[31]
+R. B. Lobbia and B. E. Beal, “Recommended practice for use of langmuir probes in electric
+propulsion testing,” J Propuls Power, vol. 33, no. 3, 2017, doi: 10.2514/1.B35531.
+
+16
+
+[32]
+C. Bundesmann et al., “An advanced electric propulsion diagnostic (AEPD) platform for in-situ
+characterization of electric propulsion thrusters and ion beam sources,” European Physical Journal
+D, vol. 70, no. 10, 2016, doi: 10.1140/epjd/e2016-70236-0.
+[33]
+C. Bundesmann et al., “Advanced Electric Propulsion Diagnostic Tools at IOM,” in Procedia
+Engineering, 2017, vol. 185. doi: 10.1016/j.proeng.2017.03.283.
+[34]
+J. S. Snyder, D. M. Goebel, R. R. Hofer, J. E. Polk, N. C. Wallace, and H. Simpson, “Performance
+evaluation of the T6 ion engine,” J Propuls Power, vol. 28, no. 2, 2012, doi: 10.2514/1.B34173.
+[35]
+R. L. Washeleski, E. J. Meyer, and L. B. King, “Laser Thomson Scattering measurements of electron
+temperature and density in the near-field plume of a Hall-effect thruster,” in 48th
+AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2012, 2012. doi: 10.2514/6.2012-
+4118.
+[36]
+W. A. Hargus, “Laser-induced-fluorescence-derived hall effect thruster ion velocity distribution
+visualization,” IEEE Transactions on Plasma Science, vol. 39, no. 11 PART 1, 2011, doi:
+10.1109/TPS.2011.2132149.
+[37]
+M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J Appl Phys,
+vol. 98, no. 3, 2005, doi: 10.1063/1.1996835.
+[38]
+A. Shashurin, M. N. Shneider, A. Dogariu, R. B. Miles, and M. Keidar, “Temporary-resolved
+measurement of electron density in small atmospheric plasmas,” Appl Phys Lett, vol. 96, no. 17,
+2010, doi: 10.1063/1.3389496.
+[39]
+A. Sharma, M. N. Slipchenko, K. A. Rahman, M. N. Shneider, and A. Shashurin, “Direct
+measurement of electron numbers created at near-infrared laser-induced ionization of various
+gases,” J Appl Phys, vol. 125, no. 19, 2019, doi: 10.1063/1.5082551.
+[40]
+A. Sharma, M. N. Slipchenko, M. N. Shneider, X. Wang, K. A. Rahman, and A. Shashurin,
+“Counting the electrons in a multiphoton ionization by elastic scattering of microwaves,” Sci Rep,
+vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-21234-y.
+[41]
+C. A. Galea, M. N. Shneider, M. Gragston, and Z. Zhang, “Coherent microwave scattering from
+xenon resonance-enhanced multiphoton ionization-initiated plasma in air,” J Appl Phys, vol. 127,
+no. 5, 2020, doi: 10.1063/1.5135316.
+[42]
+Y. Wu, Z. Zhang, N. Jiang, S. Roy, and J. R. Gord, “Resonant- and avalanche-ionization
+amplification of laser-induced plasma in air,” J Appl Phys, vol. 116, no. 14, 2014, doi:
+10.1063/1.4896789.
+[43]
+M. N. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton
+ionization in inert gas,” J Appl Phys, vol. 102, no. 12, 2007, doi: 10.1063/1.2825041.
+[44]
+Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in
+nanosecond and picosecond laser-induced air breakdown,” J Appl Phys, vol. 119, no. 17, 2016, doi:
+10.1063/1.4948431.
+[45]
+X. Wang, P. Stockett, R. Jagannath, S. Bane, and A. Shashurin, “Time-resolved measurements of
+electron density in nanosecond pulsed plasmas using microwave scattering,” Plasma Sources Sci
+Technol, vol. 27, no. 7, 2018, doi: 10.1088/1361-6595/aacc06.
+
+17
+
+[46]
+A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced
+multi-photon ionization,” Appl Opt, vol. 50, no. 4, 2011, doi: 10.1364/AO.50.000A68.
+[47]
+A. Sharma et al., “Diagnostics of CO concentration in gaseous mixtures at elevated pressures by
+resonance enhanced multi-photon ionization and microwave scattering,” J Appl Phys, vol. 128, no.
+14, 2020, doi: 10.1063/5.0024194.
+[48]
+M. N. Shneider, Z. Zhang, and R. B. Miles, “Simultaneous resonant enhanced multiphoton
+ionization and electron avalanche ionization in gas mixtures,” J Appl Phys, vol. 104, no. 2, 2008,
+doi: 10.1063/1.2957059.
+[49]
+Y. Wu, Z. Zhang, T. M. Ombrello, and V. R. Katta, “Quantitative Radar REMPI measurements of
+methyl radicals in flames at atmospheric pressure,” Appl Phys B, vol. 111, no. 3, 2013, doi:
+10.1007/s00340-013-5345-1.
+[50]
+Y. Wu, Z. Zhang, and S. F. Adams, “O 2 rotational temperature measurements by coherent
+microwave scattering from REMPI,” Chem Phys Lett, vol. 513, no. 4–6, 2011, doi:
+10.1016/j.cplett.2011.07.092.
+[51]
+C. A. Galea, M. N. Shneider, A. Dogariu, and R. B. Miles, “Magnetically induced depolarization of
+microwave scattering from a laser-generated plasma,” Phys Rev Appl, vol. 12, no. 3, 2019, doi:
+10.1103/PhysRevApplied.12.034055.
+[52]
+C. Galea, “Coherent Microwave Scattering from Laser-Generated Plasma in External Magnetic
+Field and Weakly Ionized Plasma Environments,” Princeton University, 2021.
+[53]
+A. R. Patel, A. Ranjan, X. Wang, M. N. Slipchenko, M. N. Shneider, and A. Shashurin, “Thomson
+and Collisional Regimes of In-Phase Coherent Microwave Scattering Off Gaseous Microplasmas,”
+Sci Rep, 2021.
+[54]
+A. Kramida, Yu. Ralchenko, J. Reader, and The NIST ASD Team, “NIST Atomic Spectra Database
+(ver. 5.6.1),” NIST Atomic Spectra Database (ver. 5.6.1), 2019.
+[55]
+J. E. Velazco, J. H. Kolts, and D. W. Setser, “Rate constants and quenching mechanisms for the
+metastable states of argon, krypton, and xenon,” J Chem Phys, vol. 69, no. 10, 1978, doi:
+10.1063/1.436447.
+[56]
+Y. Raizer, Gas Discharge Physics. Springer, 1991.
+
+
+
+
+
+18
+
+Acknowledgements
+This project was supported by the National Science Foundation (Grant No. 1903415). The authors would like to thank Dr. Mikhail
+Shneider for useful discussions.
+
+
diff --git a/pNFPT4oBgHgl3EQfLjS4/content/tmp_files/load_file.txt b/pNFPT4oBgHgl3EQfLjS4/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..48870504b76eecf21fcbb8404f3b8d67568c8fe1
--- /dev/null
+++ b/pNFPT4oBgHgl3EQfLjS4/content/tmp_files/load_file.txt
@@ -0,0 +1,791 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf,len=790
+page_content='1 The Application of Coherent Microwave Scattering and Multiphoton Ionization for Diagnostics of Electric Propulsion Systems Adam R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Patel, Sashin L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Karunarathne,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Nicholas Babusis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' and Alexey Shashurin School of Aeronautics and Astronautics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Purdue University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' West Lafayette,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' IN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' USA Keywords: Nonintrusive Plasma Diagnostics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Microwave Plasma Diagnostics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Coherent Microwave Scattering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Resonance-Enhanced Multiphoton Ionization (REMPI),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Multiphoton Ionization (MPI),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Electric Propulsion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Ion Thrusters Abstract Nonintrusive measurements of plasma properties are essential to evaluate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' and numerically simulate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' the in-flight performance of electric propulsion systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' As a logical first step in the development of new diagnostic techniques, this work depicts the implementation of multiphoton ionization and coherent microwave scattering (MPI-CMS) in a gridded-ion accelerator operating on rare gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Presented studies primarily comprise photoionization spectroscopy of ground & excited state-populations of both neutrals and ions – supplemented by optical emission spectroscopy and Langmuir probe derived plume properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Results suggest the potential of MPI- CMS for non-intrusive measurements of specie number densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2 Introduction Ion thrusters are electrostatic, high-specific impulse rarefied propulsion systems deployed in the context of astronautics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Standard inert gas-fed embodiments typically consume 1-7 kW of power and exhibit very low thrust (~25-250 mN) but maintain excellent exhaust velocities on the order of ~ 20-50 km/s [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Initially debuting on the SERT-1 [2], ion engines have found use in applications ranging from geosynchronous Earth-orbit communication satellite upkeep (XIPS thruster [3],…) to asteroid probing (Deep Space 1 [4], Dawn [5], Hayabusa / Hayabusa 2 [6], …).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Current state-of-the-art concerns application of the 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='9 kW NEXT-C in NASA’s double asteroid redirection test (DART) through spacecraft impact-induced deflection of the minor-planet moon Dimorphos [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Aside, ion beams have found general use in a diverse array of applications – ranging from etching & ultra-precision machining (encompassing semiconductor manufacturing) [8]–[12] to focused deposition [13], scanning electron microscopes [14], helium ion microscopes [15], radiobiology [16], and particle therapy [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In comparison to alternate electric propulsion technological classifications, ion thrusters exhibit relatively straightforward operational principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' These devices are delegated three primary tasks: ion generation, ion acceleration, and plume neutralization [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In a standard thruster configuration, neutral rare-gas propellant is fed into a crossed-field electron collision-based ionization chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Generated ions in the resulting quasi-neutral plasma are sequentially accelerated via a biased-grid through a space-charge limited channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' To restore quasi-neutrality in the exhaust plume (and thus, alleviate spacecraft charge buildup), an electron source neutralizer is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A decelerator grid is further utilized to reduce erosion of the accelerator grid from ion- impact sputtering [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Although the physics of ion thrusters are relatively well-established [19], the overarching domain of electric propulsion encompasses unresolved phenomena and topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', deriving factors which foster differences between in-space and facility performance [20], minimizing erosion rates [21]–[24], studying anomalous electron diffusion, microturbulence, axial ion-ion streaming instabilities [25]–[29], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The resolution of this phenomena is particularly important in the improvement of numerical simulations – seeking to partially supplant timely, expensive test and qualification campaigns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Thus, there is a need to develop spatially and temporally-resolved diagnostics for ground testing of parameters/performance of electric propulsion devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3 A variety of intrusive techniques have been historically implemented for broad plasma characterization, but these diagnostics are largely perturbative and often suffer from poor spatial and temporal resolutions [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Prior art includes Langmuir probes (plasma potentials, electron densities, electron temperatures), Faraday probes (local ion charge fluxes, local electron charge fluxes), retarding potential analyzers (ion energy distribution functions), and Wien ExB filters (charge-states, ion energy distribution functions) [31]–[34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Limitations of invasive techniques quickly sparked interest in nonintrusive / passive diagnostics – including optical emission spectroscopy (populations corresponding to specie state transitions), laser-induced fluorescence (populations corresponding to specie state absorption then emission, ion drift velocities), and laser Thomson scattering (electron number densities, temperatures, and distribution functions) [30], [35], [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' However, these non-intrusive methods exhibit their own set of disadvantages – typically referring to time and path-averaging, sensitivity-issues, a difficulty in absolute calibration, and / or great experimental complexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' To further broaden the diagnostic options pool and (potentially) circumvent pre-existing technique drawbacks, multiphoton ionization + coherent microwave scattering (MPI-CMS) may suffice as an appropriate novel diagnostic for non- intrusive, single-shot standoff measurements of electron propulsion plasma parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Coherent microwave scattering (CMS) is a technique used to measure the total number of electrons (𝑁𝑒) in an unmagnetized, classical small plasma object through the constructive elastic scattering of microwaves [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Specifically, the diagnostic is used when the microwave skin depth 𝛿 ≫ plasma diameter 𝐷 and microwave wavelength 𝜆 ≫ 𝐷, plasma length 𝐿.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In this case, the plasma is periodically polarized and emits short-dipole-like radiation which can be attributed to 𝑁𝑒 through a calibration sample [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Note that this condition is not satisfied by the ion thruster plume but, rather, an electron number density inhomogeneity induced by the MPI process – to be further elaborated in the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' From spatial phase related considerations, wavelet contributions from the larger plasma body will not interfere constructively and, correspondingly, produce a negligible signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' CMS has found use in applications ranging from electron rate measurements [38]–[45] to trace species detection [46], gaseous mixture and reaction characterization [47]–[49], molecular spectroscopy [50], and standoff measurement of local vector magnetic fields in gases through magnetically-induced depolarization [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Advantages of the technique include a high sensitivity (total number of electrons detectable > 107), good temporal resolution, single-shot acquisition, and 4 the capability of time gating due to continuous scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Often, as in this study, CMS is coupled with laser-induced resonance-enhanced multiphoton ionization (REMPI) – a special case of multiphoton ionization (MPI) which provides an efficient pathway for species’ state-selective ionization, following the m+n (m simultaneous photons to an excited intermediate state and n subsequent photons to continuum) ionization scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Further, the nonlinear nature of resonant photoionization adds measurement locality at the focal point of the laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' REMPI is highly selective and can ionize trace species, can be used to perform detailed spectroscopy (including fine structure populations, selectivity rules, spin polarizations [52]), measure temperature [50], and is directly linked to various phenomena (such as Doppler shifting / broadening, homogeneous collisional broadening, the Stark effect, and the Zeeman effect).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Compared with CMS alone, the inclusion of REMPI allows selective species ionization – enabling (with proper calibration) a method to diagnose the number density of the selected species / state [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Recent extension of CMS to the Thomson low-pressure regime [53] enables application of the technique to electric propulsion systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The Thomson scattering regime refers to the instance where the electron mobility (when driven by a microwave field) is unbound by collisions (Shneider-Miles scattering) and polarization effects (Rayleigh scattering) – accomplished when the microwave generator frequency greatly exceeds the effective collisional frequency and modified plasma frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In this case, a detailed knowledge of plasma parameters is not required to characterize scattering and, even further, the Thomson regime shares a space with regions of low optical nonlinearities (from reduced background number densities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Thus, MPI-CMS (or the subset REMPI-CMS) may suffice as an appropriate diagnostic for non-intrusive, single-shot standoff measurements of specie / state populations in EP systems – with the potential for further use in applications ranging from vector magnetic field mapping to velocity measurements via Doppler-shifted photoionization spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' As a natural first step in assessing the applicability of REMPI-CMS in electric propulsion, this study specifically investigates integration of the diagnostic in an ion accelerator operating on noble gas propellants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The continuous, relatively-simple (no B-field) operation of ion accelerators, alongside microwave transparency due to sufficiently-low plume electron number densities, advocate the devices as an ideal demonstration candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 5 Methodology Schematics of the experimental assembly are depicted in Figure 1 and Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Figure 1: Experimental configuration for the implementation of MPI-CMS in an ion accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Figure 2: Photograph of the experimental assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A full description of the vacuum chamber, nanosecond laser system, and microwave scattering circuitry can be found in [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Experiments were conducted in a diffusion-pumped, ionization gauge-equipped vacuum chamber lined with a phenolic-based high power microwave absorber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='93 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='25 ns FWHM, linearly polarized laser pulses from 210 – 400 nm (FWHM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1 nm) were delivered by a 10 Hz, broadly tunable Ekspla NT342 Q-switched Nd:YAG laser system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The 7 mm diameter top-hat beam with full divergence angle < 2 mrad was focused through a f = 175 mm plano-convex spherical lens to a peak laser intensity on the order of ~ 109 W/cm2 for plasma generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' From our previous work [53], the case of (2+1) REMPI (~ cubic laser intensity RX Tx Neutralizer Mixer 《 LO K phase Splitter Oscilloscope Shifter Q RF K ThrusterPlume Rx Microwave TX lonSource Horn Generator Horn Laser Generated Plasma PhenolicMw MFC MFC Krypton Absorber MFC MFC Argon6 process) generates a plasma object that can be regarded as an oblate spheroid with upper bound semi-axis estimates of 𝔞 = 𝔟 = 280 μm and 𝔠 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 mm – our effective measurement spatial resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The ellipsoid is further reduced in volume for a (3+2) process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Following this trend, the case of non-resonant one photon ionization will produce an electron number density distribution consistent with the laser’s Gaussian profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' For CMS measurements, the microwave field scattered off the plasma volume was correspondingly measured by a receiving (Rx) horn coupled with an in-phase / quadrature (I/Q) mixer-based homodyne detection system that provides an output voltage VS proportional to the scattered electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' First, an Anritsu 68369B synthesized signal generator was used to produce a continuous microwave signal at 11 GHz (FWHM 1 MHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The microwaves were then amplified and split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' One arm was connected to an I/Q mixer local oscillator (LO) port, with a confirmed operational power in the linear mixer regime (10 – 13 dBm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The other arm was then further amplified, isolated, and sent to a pyramidal 20 dB transmitting (Tx) horn for plasma irradiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A receiving horn was then installed and connected to the I/Q mixer radio frequency (RF) port to detect the scattered electric field (proportional to the number of electrons).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The in-phase and quadrature channels of the mixer were subsequently connected to a WavePro 735Zi 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 GHz oscilloscope with 50 Ohm DC termination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Calibrated amplification of the MW scattering signals (before the RF port) and the I/Q channels were used as needed to improve system sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Note that absolute calibration of in-phase CMS via a dielectric scatterer (attribution to the total number of electrons generated) is not included in this work but is an available feature of CMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The gridded ion source considered is a flange-mounted KDC-40 ion accelerator with complementary LFN neutralizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Operation of the device is governed by a set of four controllers and functions in the regime where beam current does not exceed the limit which will cause direct impingement of energetic ions on the accelerator grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Further, the accelerator voltage is greater than the electron backstreaming limit to avoid false contribution to the indicated ion beam current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Two noble gas propellants (argon, krypton) were respectively fed into the combined neutralizer- ion source system via a mass flow controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A test matrix for relevant operational parameters of the gridded-ion accelerator is shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Considered beam currents 𝐼𝐵 (fixed for a given voltage) are well-under the fundamental Child-Langmuir limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' As a simple estimate, the relative electron / ion number densities (𝑛𝑒 ≈ 𝑛𝑖) between various 𝑉𝐵 can be evaluated: 7 𝐼𝐵 ∝ 𝑛𝑒√𝑉𝐵 Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1 Table 1: Operational parameters of the KDC-40 gridded-ion accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Standard Anode Flow Rate (SCCM) Fixed Neutralizer Flow Rate (SCCM) Noble Gas Standard Background Pressure (Torr) Beam Voltage VB (V) Beam Current IB (mA) 10 6 Argon 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 ∙ 10−4 400 14 600 30 800 46 Krypton 5 ∙ 10−4 400 14 600 30 800 46 Note that the magnitude of LFN neutralizer current is equivalent to the beam current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Aside, a neutralizer is redundant in the considered experimental setup due to the KDC-40 grounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' To supplement REMPI-CMS results, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=') optical emission spectroscopy (OES) and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=') Langmuir probe measurements were conducted at the laser focal position (~ 500 mm from the accelerator).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=') A calibrated Ocean Optics USB4000, with the range 300-900 nm & focused via a NIKKOR 24-120 mm f/4 lens, was used for OES-based general identification of excited species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=') Langmuir probes were used to extract electron temperatures and number densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' These values were used to verify both microwave transparency and relative ion-number density measurements from resonance-enhanced multiphoton ionization of ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A transformer circuit was installed to rapidly determine the V-I dependency through an alternating bias, and the Langmuir probe current was measured through a 20 kΩ shunt resistor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Plasma density and electron temperature were correspondingly determined from the experimentally measured V-I characteristics, represented by a Boltzmann relation with Maxwellian velocity distribution (prior to electron saturation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In experiment, the copper disk electrode was oriented parallel to the plume flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' This situation refers to the collection of Bohm’s saturation current and mitigates the influence of directed ion velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Results and Discussion We initially evaluate viability of the proposed environment before continuing forward with the implementation of REMPI-CMS in a gridded-ion accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Namely, providing quantitative evidence for sufficiently-detectable photoionization at rarefied pressures (with the considered nanosecond laser features) and microwave transparency of the exhaust plume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' First, in a krypton 8 fed configuration, the scattering waveform for (2+1) 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 nm resonance-enhanced multiphoton ionization Kr 4p6( S 1 0) → 2ph Kr 4p5( P3 2 ⁄ ° 2 )5p [1 2 ⁄ ] 2 0 → 1ph Kr+ 4p5 ( P 2 3 2 ⁄ or 1 2 ⁄ ° ) (with resulting photoelectron energies of ℇ𝑝𝑒 ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 eV or 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8 eV, respectively, from multiphoton excess estimates) was recorded at pressures 𝑃 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 ∙ 10−4 , 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='85 ∙ 10−4 Torr without the presence of plasma – suggesting adequate detector sensitivity in Figure 3 (Ne ∝ VS ∝ the scattered electric field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Figure 3: Detection of (2+1) 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 nm REMPI of krypton at rarefied pressures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Next, electron number densities and temperatures were derived from Langmuir-probe V-I curves – shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' These results are summarized in Table 2 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In the most extreme instance of the electron number density 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3 ∙ 1016 m-3 (an ionization degree of 𝛼 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='005), the collisionless permittivity of the plasma can be estimated for 11 GHz microwaves: 𝜀 = 1 − 𝜔𝑝2 𝜔2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='978 > 0, well above the transition to evanescence / reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The considered ion thruster background can thus be regarded as CMS-transparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Furthermore, contribution of the plasma plume to the microwave scattering signal VS was confirmed to be negligible (without the laser) – indicative of destructive and/or incoherent scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Physically, this destructive scattering can occur for phase-locked electrons exhibiting uniform and continuous relative scattered phase distributions (at the detector) on the interval [0, 2π) – enabled by large plasma dimensions (the ion thruster plume) relative to the microwave wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Withholding a non-uniform plume electron number density distribution, phase randomization from thermal motion, microscopic density fluctuations, and Doppler broadening will produce some small scattered power proportional to the total number of electrons 𝑁𝑒.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' However, a relatively localized dense plasma ellipsoid (produced by 12 10 8 (mV) 6 4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5SCCMKr(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6e 4Torr) 2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5SCCMKr(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='85e 4Torr) 0 100 200 300 400 500 600 700 800 Time (ns)9 the laser) can produce constructive wavelet contributions with scattered power dependence 𝑁𝑒 2 – far exceeding the plasma plume contribution [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Figure 4: Langmuir probe VI curves for various ion thruster operational parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Table 2: Langmuir-probe derived electron number densities and temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Argon Krypton VB (V) 400 600 800 400 600 800 ne (m 3) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0e16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8e16 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3e16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1e16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='7e16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6e16 Te (K) 23500 20000 17500 14700 13600 11500 Compatibility of the considered background with REMPI-CMS permits microwave-based detection of photoionization embedded inside the ion engine plume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The resulting photoionization spectroscopy will reflect underlying exhaust constituents: predominantly composed of ground- state neutral atoms, excited-state neutral atoms, and singly-ionized species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' For a qualitative characterization of these populations, the presence of unique quantum state transitions (strictly electronic for monatomic species) can be measured through optical emission spectroscopy – as depicted in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Argon Krypton 1 1 VB = 400 v VB=400v 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8 Current (mA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 Current (mA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 40 30 20 10 0 40 30 20 10 0 LangmuirProbeBias(V) LangmuirProbeBias(V)10 Figure 5: Calibrated optical emission spectroscopy of the ion thruster plume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Identification of various species / transitions are depicted in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A complete analysis of observed lines is excessive and beyond the spectrometer resolution – see [54] for a full survey on transitions (particularly, those with low Einstein coefficients Aki or in ions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' However, just a few entries in Table 3 suggest significant excited species near the ionization threshold which can be readily ionized by single UV photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' These contributions must be considered to isolate the effect of REMPI for relative population measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Furthermore, the considered plasma may contain long-lifetime (~ 50 s) metastable states undetectable by emission [55], [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Table 3: A few relevant transitions in argon and krypton [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Ion 𝜆 (nm) Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Aki (s-1) Lower Level Upper Level Ar II 488.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='47 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='23e7 3s23p4(3P)4s 2P 3/2 138243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 cm-1 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='14 eV 3s23p4(3P)4p 2D° 5/2 158730.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3 cm-1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='68 eV Ar I 738.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='50 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='50e6 3s23p5(2P°3/2)4s 2[3/2]° 1 93750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 cm-1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='62 eV 3s23p5(2P°1/2)4p 2[3/2] 2 107289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='7 cm-1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3 eV Ar I 763.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='00 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='45e7 3s23p5(2P°3/2)4s 2[3/2]° 2 93143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8 cm-1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='55 eV 3s23p5(2P°3/2)4p 2[3/2] 2 106237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 cm-1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='17 eV Kr I 645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='22 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='65e6 4s24p5(2P°3/2)5p 2[5/2] 3 92294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 cm-1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='44 eV 4s24p5(2P°3/2)6d 2[7/2]° 4 107778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='9 cm-1 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='36 eV Kr I 760.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='00 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='73e7 4s24p5(2P°3/2)5s 2[3/2]° 2 79971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='7 cm-1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='92 eV 4s24p5(2P°3/2)5p 2[3/2] 2 93123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3 cm-1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='55 eV Kr I 811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='27 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='61e7 4s24p5(2P°3/2)5s 2[3/2]° 2 79971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='7 cm-1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='92 eV 4s24p5(2P°3/2)5p 2[5/2] 3 92294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 cm-1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='44 eV Waveforms for coherent microwave scattering off plasma-embedded photoionized filaments are depicted in Figure 6 for various laser wavelengths and ion engine propellants ((a)- Argon (V,=800 V) Krypton (V,=800 V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content="8 (n' Intensity Intensity 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 0 400 450 500 550 600 650 700 750 800 850 400 450 500 550 600 650 700 750 800 850 Wavelength(nm) Wavelength(nm)11 (c) krypton, (d) argon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Subfigure (a) corresponds to the previously-discussed 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 nm krypton (2+1) REMPI mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Observed scattering signals between considered ion beam accelerator voltages are qualitatively similar and suggest minimal background perturbance (see [52] for instances of laser-induced avalanche ionization – numerical simulations are likely required to confirm non-invasive characteristics of the nanosecond pulse).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Temporal decay in the measured intensity can be attributed to a deviation in constructive scattering from significant electron diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' As a general trend, 𝑉𝑆 for 𝜆𝐿 = 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 nm appears to be proportionally correlated with the ion beam voltage VB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' This dependency seems counterintuitive – given an accompanying increase in the plume electron number density at sufficiently low ionization degrees such that VS should remain nearly invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' However, the presence of excited species enables an avenue for single-photon ionization with a significantly greater PI rate (omitting the corresponding number density term) than REMPI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Even further, one-photon photoionization scaling laws enable a larger plasma volume compared to the case of (2+1) REMPI (which would appear as a dense ellipsoid core in the larger plasma structure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Contribution from ponderomotive and quiver-collision induced ionization is assumed negligible for the rarefied pressures and photon frequencies considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The influence of single-photon ionization can be visualized in Figure 6(b) for an off- resonant laser wavelength of 215 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' This signal can be effectively subtracted from VS for 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 nm to isolate the effect of REMPI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Aside, exclusive ionization of excited species may be possible through optical and/or infrared multiphoton absorption to an intermediate energy level (subsequently followed through to continuum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' This may also yield a novel way of detecting metastable states, which conventionally evade optical emission spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Inclusion of krypton-based plasma enables a new resonant-photoionization mechanism near 𝜆𝐿 = 214 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' This process corresponds to the (3+2): Kr+4p5 P 2 3 2 ⁄ ° → 3ph Kr+ 4p4( P 3 )5p D 4 1 2 ⁄ ° → 2ph Kr+2 Or Kr+ 4p5 P 2 3 2 ⁄ ° → 3ph Kr+ 4p4( P 3 )5p P 2 3 2 ⁄ ° → 2ph Kr+2 in singly-ionized krypton with ℇ𝑝𝑒 ≈ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 eV, where upper Figure 6(c) indicates 𝑉𝑆 ∝ 𝑉𝐵 ∝ 𝑛𝑒 unexplainable solely by Figure 6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Doubly-ionized Kr will likely maintain the exhaust-related drift velocity – opening the pathway for phase, multiple- horn, or laser-horn misalignment-based measurements of ion velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Digressing, Figure 6(d) refers to off-resonant illumination of argon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' An increase in VB generates additional excited species for single-photon ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 12 (a) (b) (d) (c) Figure 6: Waveforms for constructive elastic microwave scattering-based detection of plasma- embedded laser-induced filaments at several irradiating 𝜆𝐿.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The photoionization response (peak VS) can be plotted as a function of 𝜆𝐿 (Figure 7) to derive information on the underlying plume populations and non-resonant excited-state one- photon PI contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Comparison between gaseous and plasma-based krypton emphasizes introduction of the 214 nm resonant-pathway to doubly-ionized Kr III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' In the case of argon I, photoionization spectroscopy yields a broad nearly-uniform response until the photon energy (3 eV at 400 nm) becomes comparable with the difference between excited states (11 - 14 eV) and ionization threshold (15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='76 eV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Note that resonant photoionization beginning from an excited state (Kr* → Kr* → Kr+) is not observed in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' From energy considerations, these resonances will begin to appear > 500 nm - the subject of future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' However, the technique for measuring relative excited state populations is equivalent to the process depicted in Table 4 (to be discussed shortly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 13 Figure 7: CMS+REMPI spectroscopy of underlying plume populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A comparison between REMPI-isolated (subtracted non-resonant excited-state one-photon PI contributions from neighboring non-resonant wavelengths), normalized 𝑉𝑆 for 𝜆𝐿 = 214 nm (corresponding to ground state krypton ion populations), normalized Langmuir-probe derived 𝑛𝑒, and normalized ion beam-current derived 𝑛𝑒 is tabulated in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The case of 𝜆𝐿 = 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0 nm bears some-correspondence to the electron number density (𝑛𝑒 ≈ 𝑛𝑖) and agrees well with Langmuir-based measurements – opening the pathway for normalized ne mapping (assuming ion populations predominantly lie in the 4p5 P 2 3 2 ⁄ ° state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Table 4: Normalized measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Iso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' VS (214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0 nm) Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' LP ne Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 𝐈𝐁 √𝐕𝐁 ⁄ VB = 400 V, IB = 14 mA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='430 VB = 600 V, IB = 30 mA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='672 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='654 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='753 VB = 800 V, IB = 46 mA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='000 Conclusion In this work, we reported the first implementation of coherent microwave scattering and multiphoton ionization-based diagnostics in an ion-gridded accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Namely, photoionization spectroscopy of ground and excited-state specie populations – including resonance-enhanced MPI of ground-state ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Results advocate potential of the technique for relative ion number density (𝑛𝑖 ≈ 𝑛𝑒) mapping and plume characterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 10SCCMKr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='8 10SCCMKr(800V) 10SSCMAr(400V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6 5SCCMAr(800V) 10SCCMAr(800V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2 0 220 240 260 280 300 320 340 360 380 400 入, (nm)14 References [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jahn, Physics of Electric Propulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dover Publications, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Sovey, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Rawlin, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Patterson, “Ion propulsion development projects in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=': Space Electric Rocket Test I to Deep Space 1,” J Propuls Power, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2001, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhou, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Li, “Optimal Station Keeping for XIPS Thrusters in Failure Mode under Eclipse Constraints,” J Aerosp Eng, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 6, 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1061/(asce)as.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1943- 5525.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0000638.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Brophy, “NASA’s deep space 1 ion engine (plenary),” in Review of Scientific Instruments, 2002, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 73, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1432470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Polk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “An Overview of NASA ’ s Electric Propulsion Programs , 2010-11,” Iepc-2011- 330, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [6] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Nishiyama, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shimizu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Funaki, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Kuninaka, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Toki, “Ground chamber measurements of the electromagnetic emissions from the hayabusa ion engine,” J Propuls Power, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2007, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='19473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Fisher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “NEXT-C Flight Ion Propulsion System Development Status,” 35th International Electric Propulsion Conference, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Manoccio, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Esposito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Passaseo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Cuscunà, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Tasco, “Focused ion beam processing for 3d chiral photonics nanostructures,” Micromachines, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3390/mi12010006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Tacke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “A streamlined workflow for automated cryo focused ion beam milling,” J Struct Biol, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 213, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='jsb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='107743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Xia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Notte, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Runt, “GaAs milling with neon focused ion beam: Comparison with gallium focused ion beam milling and subsurface damage analysis,” Appl Surf Sci, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 538, 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='apsusc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='147922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Allen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann Manuf Technol, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2, 2009, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='cirp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Joe, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Kang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jun, “A review of state of the art of electron beam and ion beam machining,” Journal of the Korean Society for Precision Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 35, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2018, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='7736/KSPE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Lunin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Ion-Beam Deposition of Thin AlN Films on Al2O3 Substrate,” Technical Physics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 45, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 12, 2019, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1134/S106378501912023X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Kizilyaprak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Daraspe, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Humbel, “Focused ion beam scanning electron microscopy in biology,” J Microsc, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 254, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2014, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1111/jmi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='12127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [15] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Allen, “A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope,” Beilstein Journal of Nanotechnology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 12, 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3762/BJNANO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 15 [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Fokas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Kraft, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' An, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Engenhart-Cabillic, “Ion beam radiobiology and cancer: Time to update ourselves,” Biochimica et Biophysica Acta - Reviews on Cancer, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1796, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='bbcan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Schulz-Ertner and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Tsujii, “Particle radiation therapy using proton and heavier ion beams,” Journal of Clinical Oncology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1200/JCO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='7816.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Crofton, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Boyd, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Crofton, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Boyd, “Origins of accelerator grid current: Analysis of t5 grid test results,” J Propuls Power, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1, 2001, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5729.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Holste et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer,” Review of Scientific Instruments, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 91, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0010134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dale, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jorns, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Gallimore, “Future directions for electric propulsion research,” Aerospace, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 9, 2020, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3390/AEROSPACE7090120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Frieman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Wear trends of the 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5 kW HERMeS Hall thruster,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 130, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 14, 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0062579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Cao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Performance and plume evolutions during the lifetime test of a Hall-effect thruster,” Acta Astronaut, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 170, 2020, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='actaastro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [23] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Burton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Schinder, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Capuano, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Rimoli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Walker, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Thompson, “Plasma-induced erosion on ceramic wall structures in hall-effect thrusters,” J Propuls Power, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2014, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='B34882.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [24] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Bundesmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “In situ erosion measurement tools for electric propulsion thrusters: triangular laser head and telemicroscope,” EPJ Tech Instrum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1, 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1140/epjti/s40485- 022-00076-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' McDonald and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Gallimore, “Parametric Investigation of the Rotating Spoke Instability in Hall Thrusters,” 32nd International Electric Propulsion Conference, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Tsikata, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Héron, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Honoré, “Hall thruster microturbulence under conditions of modified electron wall emission,” Phys Plasmas, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 24, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 5, 2017, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4984255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Cho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Study of electron transport in a Hall thruster by axial-radial fully kinetic particle simulation,” Phys Plasmas, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 10, 2015, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4935049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [28] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jorns, “Predictive, data-driven model for the anomalous electron collision frequency in a Hall effect thruster,” Plasma Sources Sci Technol, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 10, 2018, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1088/1361-6595/aae472.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [29] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dale and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jorns, “Non-invasive time-resolved measurements of anomalous collision frequency in a Hall thruster,” Phys Plasmas, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1, 2019, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5077008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dancheva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Non-intrusive tools for electric propulsion diagnostics,” CEAS Space Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1, 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1007/s12567-021-00360-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [31] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Lobbia and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Beal, “Recommended practice for use of langmuir probes in electric propulsion testing,” J Propuls Power, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2017, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='B35531.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 16 [32] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Bundesmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources,” European Physical Journal D, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 10, 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1140/epjd/e2016-70236-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Bundesmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Advanced Electric Propulsion Diagnostic Tools at IOM,” in Procedia Engineering, 2017, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='proeng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Snyder, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Goebel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Hofer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Polk, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wallace, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Simpson, “Performance evaluation of the T6 ion engine,” J Propuls Power, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2, 2012, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='B34173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [35] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Washeleski, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Meyer, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' King, “Laser Thomson Scattering measurements of electron temperature and density in the near-field plume of a Hall-effect thruster,” in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2012, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2514/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2012- 4118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [36] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Hargus, “Laser-induced-fluorescence-derived hall effect thruster ion velocity distribution visualization,” IEEE Transactions on Plasma Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 11 PART 1, 2011, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1109/TPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2132149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Miles, “Microwave diagnostics of small plasma objects,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 98, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2005, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1996835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [38] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shashurin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dogariu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Miles, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Keidar, “Temporary-resolved measurement of electron density in small atmospheric plasmas,” Appl Phys Lett, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 96, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 17, 2010, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='3389496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [39] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Sharma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Slipchenko, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Rahman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shashurin, “Direct measurement of electron numbers created at near-infrared laser-induced ionization of various gases,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 125, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 19, 2019, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5082551.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Sharma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Slipchenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Rahman, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shashurin, “Counting the electrons in a multiphoton ionization by elastic scattering of microwaves,” Sci Rep, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1, 2018, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1038/s41598-018-21234-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [41] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Galea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Gragston, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, “Coherent microwave scattering from xenon resonance-enhanced multiphoton ionization-initiated plasma in air,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 127, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 5, 2020, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='5135316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [42] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jiang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Roy, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Gord, “Resonant- and avalanche-ionization amplification of laser-induced plasma in air,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 116, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 14, 2014, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4896789.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 102, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 12, 2007, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2825041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [44] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Sawyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Su, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 119, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 17, 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='4948431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [45] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Stockett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Jagannath, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Bane, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shashurin, “Time-resolved measurements of electron density in nanosecond pulsed plasmas using microwave scattering,” Plasma Sources Sci Technol, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 7, 2018, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1088/1361-6595/aacc06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 17 [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dogariu and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl Opt, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 50, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 4, 2011, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1364/AO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='000A68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [47] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Sharma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=', “Diagnostics of CO concentration in gaseous mixtures at elevated pressures by resonance enhanced multi-photon ionization and microwave scattering,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 128, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 14, 2020, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='0024194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [48] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Miles, “Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures,” J Appl Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 104, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 2, 2008, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2957059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [49] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Ombrello, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Katta, “Quantitative Radar REMPI measurements of methyl radicals in flames at atmospheric pressure,” Appl Phys B, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 111, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2013, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1007/s00340-013-5345-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [50] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Zhang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Adams, “O 2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem Phys Lett, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 513, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 4–6, 2011, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='cplett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='092.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [51] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Galea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Dogariu, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Miles, “Magnetically induced depolarization of microwave scattering from a laser-generated plasma,” Phys Rev Appl, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 3, 2019, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1103/PhysRevApplied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='034055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [52] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Galea, “Coherent Microwave Scattering from Laser-Generated Plasma in External Magnetic Field and Weakly Ionized Plasma Environments,” Princeton University, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [53] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Patel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Ranjan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Slipchenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shneider, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Shashurin, “Thomson and Collisional Regimes of In-Phase Coherent Microwave Scattering Off Gaseous Microplasmas,” Sci Rep, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [54] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Kramida, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Ralchenko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Reader, and The NIST ASD Team, “NIST Atomic Spectra Database (ver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1),” NIST Atomic Spectra Database (ver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [55] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Velazco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Kolts, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Setser, “Rate constants and quenching mechanisms for the metastable states of argon, krypton, and xenon,” J Chem Phys, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 10, 1978, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content='436447.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' [56] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Raizer, Gas Discharge Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Springer, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 18 Acknowledgements This project was supported by the National Science Foundation (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' 1903415).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' The authors would like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
+page_content=' Mikhail Shneider for useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pNFPT4oBgHgl3EQfLjS4/content/2301.13023v1.pdf'}
diff --git a/ptAyT4oBgHgl3EQfzflz/vector_store/index.pkl b/ptAyT4oBgHgl3EQfzflz/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..25e873554854f1e24da4269a262fa4bdfc372383
--- /dev/null
+++ b/ptAyT4oBgHgl3EQfzflz/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f774c2b747e00cef8382b96807f22cc0e01bc6f03af8b83f5231ab10588ff004
+size 279553
diff --git a/qNFQT4oBgHgl3EQfszbV/content/tmp_files/2301.13389v1.pdf.txt b/qNFQT4oBgHgl3EQfszbV/content/tmp_files/2301.13389v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a5c3fed2bcea0fa605a28d96894c42a4e50771f3
--- /dev/null
+++ b/qNFQT4oBgHgl3EQfszbV/content/tmp_files/2301.13389v1.pdf.txt
@@ -0,0 +1,1489 @@
+Differentially Private Kernel Inducing Points (DP-KIP)
+for Privacy-preserving Data Distillation
+Margarita Vinaroz 1 2 Mi Jung Park 3 4
+Abstract
+While it is tempting to believe that data distilla-
+tion preserves privacy, distilled data’s empirical
+robustness against known attacks does not imply
+a provable privacy guarantee. Here, we develop a
+provably privacy-preserving data distillation algo-
+rithm, called differentially private kernel inducing
+points (DP-KIP). DP-KIP is an instantiation of
+DP-SGD on kernel ridge regression (KRR). Fol-
+lowing Nguyen et al. (2021a;b), we use neural
+tangent kernels and minimize the KRR loss to esti-
+mate the distilled datapoints (i.e., kernel inducing
+points). We provide a computationally efficient
+JAX implementation of DP-KIP, which we test
+on several popular image and tabular datasets to
+show its efficacy in data distillation with differen-
+tial privacy guarantees.
+1. Introduction
+First introduced by Wang et al. (2018), data distillation
+(DD) aims at extracting the knowledge of the entire training
+dataset to a few synthetic, distilled datapoints. What DD
+offers is that the models trained on the small number of
+distilled datapoints achieve high-performance relative to the
+models trained on the original, large training dataset. How-
+ever, DD’s usefulness does not remain in fast, cheaper, and
+light training of neural network models. Various applica-
+tions of DD include continual learning, neural architecture
+search, and more.
+Depending on the similarity metrics chosen for judging
+how close the small distilled datasets are to the original
+large datasets, there are different ways to formulate the
+DD problem. For instance, Zhao et al. (2021) formulate
+1Department of Computer Science, University of T¨ubingen,
+Germany 2International Max Planck Research School for In-
+telligent Systems (IMPRS-IS), Germany 3Department of Com-
+puter Science, University of British Columbia, Canada 4CIFAR
+AI Chair at AMII. Correspondence to:
+Margarita Vinaroz
+, Mi Jung Park .
+Under review.
+it as a gradient matching problem between the gradients
+of deep neural network weights trained on the original and
+distilled data. Nguyen et al. (2021a;b) formulate it as a
+kernel ridge regression problem where the distilled data
+correspond to the kernel inducing points (KIP). Regardless
+of what formulation one takes, the techniques for DD are
+fast improving, and their application domains are widening.
+Among the many application domains, Nguyen et al. (2021a)
+claim that DD is also useful for privacy-preserving dataset
+creation, by showing distilled images with 90% of their pix-
+els corrupted while test accuracy with those exhibits limited
+degradation. It is true that the distilled images with 90%
+of corrupted pixels are not humanly discernible. However,
+their illustration is merely experimental and does not involve
+any formal definition of privacy.
+Recently, Dong et al. (2022a) attempt to connect DD with
+differential privacy (Dwork & Roth, 2014), one of the pop-
+ular privacy notions, based on DD’s empirical robustness
+against some known attacks. Unfortunately, the empirical
+evaluation of the method and its theoretical analysis contain
+major flaws, as described in (Carlini et al., 2022).
+For a provable privacy guarantee, Chen et al. (2022a) apply
+DP-SGD, the off-the-shelf differential privacy algorithm
+(Abadi et al., 2016), to optimizing a gradient matching ob-
+jective to estimate a differentially private distilled dataset.
+More recently, Anonymous (2023) proposes a differentially
+private distribution matching framework, which further im-
+proves the performance of (Chen et al., 2022a).
+In this paper, we apply DP-SGD to the forementioned KIP
+framework for DD developed by Nguyen et al. (2021a;b).
+There are two important reasons we choose to privatize KIP
+over other existing DD methods. First, in DP-KIP, the gra-
+dients that DP-SGD privatize are the distilled datapoints.
+Typically, we consider only a few distilled datapoints. Con-
+sequently, the privacy-accuracy trade-off of DP-KIP is better
+than that of the gradient matching framework with DP-SGD
+(Chen et al., 2022a), as the latter needs to privatize high
+dimensional neural network gradients. Second, rather than
+relying on a particular parametric form of features as in
+gradient matching (i.e., the neural network gradients), in
+KIP we use infinite-dimensional features via an infinitely-
+arXiv:2301.13389v1 [cs.LG] 31 Jan 2023
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+wide neural tangent kernel (NTK). As in (Nguyen et al.,
+2021a;b), we use the infinite-dimensional features to com-
+pare the original large data and distilled data distributions,
+with matching the classification performance via kernel
+ridge regression. Indeed, empirically, we find that DP-KIP
+outperforms DP-gradient matching by Chen et al. (2022a)
+and DP-distribution matching by Anonymous (2023) when
+tested on several benchmark classification datasets.
+2. Background
+In the following section, we review the Kernel Inducing
+Points (KIP) algorithm, Neural Tangent Kernel (NTK), dif-
+ferential privacy (DP) and differentially private stochastic
+gradient descent (DP-SGD) algorithm.
+2.1. KIP
+In data distillation, the goal is to find a small dataset Ds
+that is ξ-approximation to a large, original dataset Dt drawn
+from a distribution P with respect to a learning algorithm
+A and a loss function l:
+��E(x,y)∈Pl(ADs(x), y) − E(x,y)∈Dtl(ADs(x), y)
+�� ≤ ξ.
+(1)
+In KIP, the loss l is a classification accuracy in terms of the
+L2-distance between true labels and predicted labels; and
+the learning algorithm A is kernel ridge regression (KRR).
+Consider a target dataset Dt = {(xti, yti)}n
+i=1 with input
+features xti ∈ RD and scalar labels yti. Given a kernel
+k (we will talk about what kernel we use shortly), the
+KIP algorithm constructs a small distilled dataset Ds =
+{(xsj, ysj)}m
+j=1, where xsj ∈ RD, and scalar labels ysj
+and importantly m ≪ n, such that its performance on a
+classification task approximates the performance of the tar-
+get dataset for the same task. Note that Nguyen et al. (2021a)
+call Ds “support” dataset (hence the subscript “s”). In this
+paper, we will use “support” and “distilled” datasets, inter-
+changeably.
+The KIP algorithm shown in Algorithm 1 starts by randomly
+initializing the support dataset and then iteratively refines
+Ds by minimizing the Kernel Ridge Regression (KRR) loss:
+L(Ds) =
+n
+�
+i=1
+(yti − ktis
+⊤(Kss + λI)−1ys)2,
+(2)
+with respect to the support dataset Ds = {(xsj, ysj)}m
+j=1.
+Here λ > 0 is a regularization parameter, Kss is a kernel
+matrix, where the (i, j)-th entry is k(xsi, xsj), ktis is a
+column vector where the j-th entry is k(xti, xsj), and ys is
+a column vector where the j-th entry is ysj.
+During the training phase, the support dataset is updated
+using a gradient-based optimization method (e.g., using
+Stochastic Gradient Descent (SGD)) until some convergence
+criterion is satisfied.
+Algorithm 1 KIP
+Input: Training dataset: Dt = {(xti, yti)}n
+i=1, number
+of distilled samples to generate: m, number of iterations:
+P, mini-batch size: B, regularization parameter: λ
+Initialize distilled dataset Ds
+for p = 1 to P do
+Step 1. Randomly subsample training data DtB
+Step 2. Evaluate the kernel function on the pairs of
+target and support datapoints.
+Step 3. Compute KRR loss in eq. 2
+Step 4. Update Ds using Stochastic Gradient Descent
+(SGD).
+end for
+Return: Learned support dataset Ds
+2.2. NTK
+Initially, NTKs were proposed to help understand neural
+networks’ training dynamics in a function space. In partic-
+ular, in the infinite-width limit, the parameters of a neural
+network do not change from the random initialization over
+the course of the training and the gradients of the network
+parameters converge to an infinite-dimensional feature map
+of the neural tangent kernel (NTK) (Jacot et al., 2018; Lee
+et al., 2019; Arora et al., 2019; Lee et al., 2020). Charac-
+terizing this neural tangent kernel is essential to analyzing
+the convergence of training and generalization of the neural
+network.
+Based on this finding, Nguyen et al. (2021a) motivate the
+use of NTK in KIP in the following sense: (a) the kernel
+ridge regression with an NTK approximates the training of
+the corresponding infinitely-wide neural network; and (b) it
+is likely that the use of NTK yields approximating Dt by Ds
+(in the sense of ξ-approximations given in eq. 1) for learning
+algorithms given by a broad class of neural networks. While
+there is no mathematical proof on point (b), Nguyen et al.
+(2021a) empirically backed up point (b).
+KIP’s superior performance over other DD methods is one
+of the reasons we also choose to use an NTK as our kernel k.
+But the other reason is that a growing number of papers show
+the usefulness of NTK as a kernel in learning distributions.
+Examples include (Jia et al., 2021) showing the efficacy of
+NTK features in comparing distributions in statistical testing,
+and (Dong et al., 2022b) using NTK for out-of-distribution
+detection.
+2.3. Differential privacy (DP)
+Differential privacy is a gold standard privacy notion in
+machine learning and statistics. Its popularity is due to the
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+mathematical provability. The definition of DP (Definition
+2.4 in (Dwork & Roth, 2014)) is given below.
+Definition 2.1. A randomized mechanism M is (ϵ, δ)-
+differentially private if for all neighboring datasets D, D′
+differing in an only single entry (d(D, D′) ≤ 1) and all sets
+S ⊂ range(M), the following inequality holds:
+Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ
+The definition states that for all datasets differing in an
+only single entry, the amount of information revealed by a
+randomized algorithm about any individual’s participation
+is bounded by ϵ with some probability of failure δ (which is
+preferably smaller than 1/|D|).
+A common paradigm for constructing differentially private
+algorithms is to add calibrated noise to an algorithm’s output.
+In our algorithm, we use the Gaussian mechanism to ensure
+that the distilled dataset satisfies the DP guarantee. For a
+deterministic function h : D → Rd, the Gaussian mecha-
+nism is defined by ˜h(D) = h(D) + N(0, ∆2
+hσ2Id). Here,
+the noise scale depends on the global sensitivity (Dwork
+et al., 2006a) of the function h, ∆h, and its defined as the
+maximum differencein terms of l2-norm, ∥h(D) − h(D′)∥2,
+for D and D′ differing in an only single entry and σ is a
+function of the privacy level parameters, ϵ, δ.
+Differential privacy has two fundamental properties that
+are useful for applications like ours: composability (Dwork
+et al., 2006a) and post-processing invariance (Dwork et al.,
+2006b). Composability ensures that if all components of a
+mechanism are differentially private, then its composition
+is also differentially private with some privacy guarantee
+degradation due to the repeated use of the training data. In
+our algorithm, we use the advance composition methods
+in (Wang et al., 2019), as they yield to tight bounds on the
+cumulative privacy loss when subsampling is used during
+training. Furthermore, the post-processing invariance prop-
+erty states that any application of arbitrary data-independent
+transformations to an (ϵ, δ)-DP algorithm is also (ϵ, δ)-DP.
+In our context, this means that no information other than the
+allowed by the privacy level ϵ, δ, can be inferred about the
+training data from the privatized mechanism.
+2.4. DP-SGD
+DP-SGD (Abadi et al., 2016) is one of the most commonly
+used differentially private algorithm for training deep neural
+network models. It modifies SGD by adding an appropriate
+amount of noise to the gradients in every training step to
+ensure the parameters of a neural network are differentially
+private. An analytic quantification of sensitivity of gradients
+is infeasible under deep neural network models. Hence, DP-
+SGD bounds the norm of the gradients given each data point
+by some pre-chosen value C and explicitly normalize the
+gradient norm given a datapoint if it exceeds C, such that the
+gradient norm given any datapoint’s difference between two
+neighbouring datasets cannot exceed C. Due to the compos-
+ability property of DP, privacy loss is accumulating over the
+course of training. How to compose the privacy loss during
+the training with DP-SGD is given in (Abadi et al., 2016;
+Wang et al., 2019), which exploits the subsamped Gaussian
+mechanism (i.e., applying the Gaussian mechanism on ran-
+domly subsampled data) to achieve a tight privacy bound. In
+practice, given a level of (ϵ, δ)-DP and the training schedule
+(e.g., how many epochs to run the experiment, mini-batch
+size, etc), one can numerically compute the noise scale σ to
+use in every training step using e.g., the auto-dp package by
+Wang et al. (2019). The DP-SGD algorithm is summarized
+in Algorithm 2.
+Algorithm 2 DP-SGD
+Input: Dataset D = {(xi, yi)}N
+i=1, number of iterations
+P, mini-batch size B, clipping norm C, learning rate η
+Step 1. Initialize θ0 randomly
+for p = 1 to P do
+Step 2. Take a random sample Bp with sampling prob-
+ability q = B/N
+Step 3. For each sample t ∈ Bp compute the gradient:
+gp(xt) = ∇θpL(θp, xt)
+Step
+4.
+Clip
+the
+gradient:
+ˆgp(xt)
+=
+gp(xt)/ max(1, ∥gp(xt)∥2/C)
+Step 5.
+Add noise:
+˜gp
+=
+1
+B
+�Bp
+t=1 ˆgp(xt) +
+N(0, σ2C2I)
+Step 5. Gradient descent: θp+1 = θp − η˜gp
+end for
+Return: θP and compute the overall privacy budget, ϵ,
+via Wang et al. (2019).
+3. Our algorithm: DP-KIP
+In this section, we introduce our proposed algorithm dif-
+ferentially private kernel inducing points (DP-KIP). The
+algorithm produces differentially private distilled samples
+by clipping and adding calibrated noise to the distilled data’s
+gradients during training.
+3.1. Outline of DP-KIP
+Our algorithm is shown in Algorithm 3. We first initialize
+the distilled (support) dataset Ds, where the learnable param-
+eters Xs = {xsj}m
+j=1 are drawn from a standard Gaussian
+distribution, (i.e. xsj ∼ N(0, ID) for xsj ∈ RD). We gen-
+erate labels ys by drawing them from a uniform distribution
+over the number of classes; and fix them during the training
+for Xs. Note that the original KIP algorithm has an option
+for optimizing the labels through Label Solve given opti-
+mized distilled images. However, we choose not to optimize
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+for the labels to reduce the privacy loss incurring during
+training.
+At each iteration of the algorithm, we randomly subsample
+B samples from the target dataset Dt, DtB. Same as in
+Algorithm 1, given a kernel k, we compute the loss given
+in eq. 2. Then, we compute the per target sample gradients
+with respect to the support dataset, given in
+g(xt,l, yt,l) := ∇DsL(Ds)
+= ∇Ds
+�
+ytl − ktls(Kss + λI)−1ys
+�2 .
+(3)
+As in DP-SGD, we ensure each datapoint’s gradient norm
+is bounded by explicitly normalizing the gradients if its
+l2-norm exceeds C. In the last steps of the algorithm, the
+clipped gradients are perturbed by the Gaussian mechanism
+and averaged as in DP-SGD algorithm and finally, the sup-
+port dataset is updated by using some gradient-based method
+(e.g. SGD, Adam).
+Algorithm 3 DP-KIP
+Input: Dataset Dt = {(xti, yti)}n
+i=1, number of distilled
+samples to generate m, number of iterations P, mini-
+batch size B, clipping norm C, privacy level (ϵ, δ)
+Step 1. Initialize distilled dataset Ds = {(xsj, ysj)}m
+j=1
+with xsi ∼ N(0, ID)
+Step 2. Given a desired level of (ϵ, δ)-DP, we compute
+the privacy parameter σ using the auto-dp package by
+Wang et al. (2019).
+for p = 1 to P do
+Step 3. Randomly subsample DtB = {(XtB, ytB)}
+Step 4. Compute KRR loss given in eq. 2.
+Step 5. Compute per-sample gradients in eq. 3 for each
+l ∈ tB.
+Step
+6.
+Clip
+the
+gradients
+via
+ˆg(xl)
+=
+g(xl)/ max(1, ∥g(xl)∥2/C)
+Step 7. Add noise: ˜g = �B
+l=1 ˆg(xl) + N(0, σ2C2I).
+Step 8. Update distilled dataset Ds with SGD.
+end for
+Return: Learned private support dataset Ds
+Prop. 1 states that the proposed algorithm is differentially
+private.
+Proposition 1. The DP-KIP algorithm produces a (ϵ, δ)-DP
+distilled dataset.
+Proof. Due to the Gaussian mechanism, the noisy-clipped
+gradients per sample are DP. By the post-processing in-
+variance property of DP, the average of the noisy-clipped
+gradients is also DP. Finally, updating the support dataset
+with the aggregated-noisy gradients and composing through
+iterations with the subsampled RDP composition (Wang
+et al., 2019) produces (ϵ, δ)-DP distilled dataset. The exact
+relationship between (ϵ, δ), T (number of iterations DP-KIP
+runs), B (mini-batch size), N (number of datapoints in the
+target dataset), and σ (the privacy parameter) follows the
+analysis of Wang et al. (2019).
+3.2. Few thoughts on the algorithm
+Support dataset initialization: The first step in DP-KIP
+initializes each support datapoint in Ds to be drawn from
+the standard Gaussian distribution, N(0, ID). This random
+initialization ensures that no sensitive information is inherit
+by the algorithm at the beginning of the training. Neverthe-
+less, one can choose a different type of initialization such
+as randomly selecting images from the training set as in
+(Nguyen et al., 2021a;b) and then, privatize those to ensure
+that no privacy violation incurs during the training process.
+The downside of this approach is that the additional private
+step in initialization itself is challenging, since computing
+the sensitivity for neighboring datasets has no trivial bound
+on the target dataset and incurs in an extra privacy cost.
+Clipping effect of the gradients: In our algorithm, we fol-
+low the approach from (Abadi et al., 2016) and clip the
+gradients to have l2-norm C. This clipping norm is treated
+as an hyperparameter since gradient values domain is un-
+bounded a priori. Setting C to a relatively small value is
+beneficial during training as the total noise variance is scaled
+down by the C factor. However, the small value may re-
+sult in a large amount of the gradients being clipped and
+thus, drastically discard useful or important information. In
+contrast, setting C to a large value helps preserving more
+information encoded in the gradients but it yields to a higher
+noise variance being added to the gradients, which may
+worsen the learned results. Consequently, finding a suitable
+C is crucial to maintain a googd privacy-accuracy tradeoff
+on DP-KIP algorithm.
+4. Related Work
+The most closely related work is (Chen et al., 2022a), which
+applies DP-SGD on the gradient matching objective. As
+concurrent work, Anonymous (2023) proposes a differen-
+tially private distribution matching framework. Our work
+differs from these two in the following sense. First, we
+use an infinitely-wide NTK as features in comparing the
+distilled and original data distributions. Second, we formu-
+late our problem as kernel inducing points, our DP-SGD’s
+privacy-accuracy trade-off is better than that of gradient
+matching due to privatizing a smaller dimensional quantity
+in our case.
+Another line of relevant work is differentially private data
+generation. While there are numerous papers to cite, we
+focus on a few that we compare our method against in Sec. 5.
+The majority of existing work uses DP-SGD to privatize a
+generator in the Generative Adversarial Networks (GANs)
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+framework. In GANs, the generator never has direct access
+to training data and thus requires no privatization, as long
+as the discriminator is differentially private. Examples of
+this approach include DP-CGAN (Torkzadehmahani et al.,
+2019), DP-GAN (Xie et al., 2018), G-PATE (Long et al.,
+2021), DataLens (Wang et al., 2021), and GS-WGAN (Chen
+et al., 2020). A couple of recent work outside the GANs
+framework include DP-MERF (Harder et al., 2021) and DP-
+HP (Vinaroz et al., 2022) that use the approximate versions
+of maximum mean discrepancy (MMD) as a loss function;
+and DP-Sinkhorn (Cao et al., 2021) that proposes using the
+Sinkhorn divergence in privacy settings.
+These data generation methods aim for more general-
+purpose machine learning. On the contrary, our method aims
+to create a privacy-preserving small dataset that matches
+the performance of a particular task in mind (classification).
+Hence, when comparing them in terms of classification per-
+formance, it is not necessarily fair for these general data
+generation methods. Nevertheless, at the same privacy level,
+we still want to show where our method stands relative to
+these general methods in the next section.
+5. Experiments
+Here, we show the performance of DP-KIP over different
+real world datasets. In Sec. 5.1 we follow previous data
+distillation work and focus our study on grayscale and color
+image datasets. In addition, we also test DP-KIP perfor-
+mance on imbalanced tabular datasets with numerical and
+categorical features in Sec. 5.2. Throughout all the exper-
+iments, we considered the infinitely wide NTK for a fully
+connected (FC) neural network with 1 hidden-layer and
+the ReLU activation in KIP and DP-KIP. The experiments
+were implemented using JAX (Bradbury et al., 2018) and
+Neural Tangents package (Novak et al., 2020). Our code
+is publicly available at: https://anonymous.4open.
+science/r/DP-KIP-5D51/
+5.1. Image data
+We start by testing DP-KIP performance on MNIST (LeCun
+et al., 2010), FashionMNIST (Xiao et al., 2017), SVHN
+(Netzer et al., 2011), CIFAR-10 (Krizhevsky & Hinton,
+2009) and CIFAR-100 datasets for image classification.
+Each of MNIST and FashionMNIST datasets consists of
+60,000 samples of 28×28 grey scale images depicting hand-
+written digits and items of clothing, respectively, sorted into
+10 classes. The SVHN dataset contains 600,000 samples of
+32×32 colour images of house numbers taken from Google
+Street View images, sorted into 10 classes. The CIFAR-10
+dataset contains a 50,000-sample of 32 × 32 colour images
+of 10 classes of objects, such as vehicles (cars and ships)
+and animals (horses and birds). CIFAR100 contains 100
+Table 1. KRR test accuracy on Image datasets. The average over
+five independent runs.
+Imgs/
+KIP FC
+DP-KIP FC
+Class
+ϵ = 1
+ϵ = 10
+MNIST
+1
+89.3 ± 0.1
+82.7 ± 0.1
+85.2 ± 0.1
+10
+96.6 ± 0.1
+87.5 ± 0.4
+89.3 ± 0.3
+50
+97.6 ± 0.1
+92.7 ± 0.2
+93.4 ± 0.1
+FASHION
+1
+80.3 ± 0.4
+76.9 ± 0.1
+78.3 ± 0.1
+10
+84.8 ± 0.4
+77.7 ± 0.1
+78.7 ± 0.4
+50
+86.1 ± 0.1
+78.8 ± 0.1
+81.1 ± 0.1
+SVHN
+1
+25.4 ± 0.3
+24.9 ± 0.3
+25.2 ± 0.2
+10
+59.7 ± 0.5
+40.5 ± 1.2
+47.2 ± 0.6
+50
+69.7 ± 0.1
+52.7 ± 0.4
+56.6 ± 0.4
+CIFAR-10
+1
+39.3 ± 1.6
+36.7 ± 0.3
+37.3 ± 0.1
+10
+49.1 ± 1.1
+38.3 ± 0.3
+39.7 ± 0.3
+50
+52.1 ± 0.8
+40.8 ± 0.2
+43.7 ± 0.1
+CIFAR-100
+1
+14.5 ± 0.4
+9.9 ± 0.6
+11.1 ± 0.1
+10
+12.2 ± 0.2
+10.1 ± 0.3
+12.1 ± 0.4
+classes of objects.
+In Table 1, we consider KIP as a non-private baseline and
+show as evaluation metric (for both private and non-private
+distilled samples) the averaged test accuracy using KRR as
+a classifier for 1, 10 and 50 distilled images per class over
+5 independent runs. For DP-KIP we consider ϵ ∈ {1, 10}
+and δ = 10−5. The general trend is that creating more
+images per class improves the classification accuracy, while
+the gradient dimension in DP-SGD increases. In Fig. 1, we
+show the learned distilled images at ϵ = 1 and ϵ = 10. It is
+surprising that the images created at ϵ = 10 are not humanly
+discernible, while the classifiers can still achieve a good
+classification performance.
+The detailed hyper-parameter setting can be found in
+Sec. A.1 in Appendix
+In Table 2, we explore the performance of DP-KIP com-
+pared to other methods for private data generation (DP-
+CGAN, G-PATE, DataLens, GS-WGAN, DP-MERF, DP-
+Sinkhorn) and private gradient matching by Chen et al.
+(2022b). We report the test accuracy of a ConvNet down-
+stream classifier consisting of 3 blocks, where each block
+contains one Conv layer with 128 filters, Instance Normal-
+ization, ReLU activation and AvgPooling modules and a
+FC layer as the final output. The classifier is trained us-
+ing private data and then, it is tested on real test data over
+3 independent runs for each method. Here, our method
+outperforms existing methods at the same privacy level.
+5.2. Tabular data
+In the following we present DP-KIP results applied to
+eight different tabular datasets for imbalanced data. These
+datasets contain both numerical and categorical input fea-
+tures and are described in detail in Table 4. To evaluate the
+utility of the distilled samples, we train 12 commonly used
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+Figure 1. Image data comparison for MNIST, FASHION and CIFAR-10. The images plotted correspondo to real and distilled samples
+with DP-KIP for different ϵ values. Top row: MNIST original images. Second row: DP-KIP learned distilled images at ϵ = 1. Third row:
+DP-KIP learned distilled images at ϵ = 10. Fourth row: FashionMNIST original images. Fifth row: DP-KIP learned distilled images at
+ϵ = 1. Sixth row: DP-KIP learned distilled images at ϵ = 10. Seventh row: CIFAR10 original images. Eighth row: DP-KIP learned
+distilled images at ϵ = 1. Bottom row: DP-KIP learned distilled images at ϵ = 10.
+Table 2. Left: Test accuracy of ConvNet downstream classifier trained on synthetic/distilled data with δ = 10−5. Right: Test accuracy
+of ConvNet downstream classifier trained with fixed ϵ = 10 and δ = 10−5 and varying the number of distilled samples per class. In
+concurrent work (Anonymous, 2023), the test accuracy on the same classifier tested on 50 MNIST distilled samples created at ϵ = 6.12
+and δ = 10−5 is 97.35%; that on 50 Fashion-MNIST distilled samples created at ϵ = 6.72 and δ = 10−5 is 52.68%
+MNIST
+FASHION
+ϵ = 1
+ϵ = 10
+ϵ = 1
+ϵ = 10
+DP-CGAN
+-
+52.5
+-
+50.2
+G-PATE
+58.8
+80.9
+58.1
+69.3
+DataLens
+71.2
+80.7
+64.8
+70.6
+GS-WGAN
+-
+84.9
+-
+63.1
+DP-MERF
+72.7
+85.7
+61.2
+72.4
+DP-Sinkhorn
+-
+83.2
+-
+71.1
+Chen et al. (2022a)
+(20 Imgs/Class)
+80.9
+95.6
+70.2
+77.7
+DP-KIP
+(10 Imgs/Class)
+93.53
+95.39
+87.7
+89.1
+DP-KIP
+(20 Imgs/Class)
+97.78
+97.96
+88.3
+90.2
+MNIST
+FASHION
+Imgs/Class
+10
+20
+full
+10
+20
+full
+Real
+93.6
+95.9
+99.6
+74.4
+77.4
+93.5
+DPSGD
+-
+-
+96.5
+-
+-
+82.9
+DP-CGAN
+57.4
+57.1
+52.5
+51.4
+53.0
+50.2
+GS-WGAN
+83.3
+85.5
+84.9
+58.7
+59.5
+63.1
+DP-MERF
+80.2
+83.2
+85.7
+66.6
+67.9
+72.4
+Chen et al. (2022a)
+94.9
+95.6
+-
+75.6
+77.7
+-
+DP-KIP
+95.39
+97.96
+-
+89.1
+90.2
+-
+
+.3
+4
+5
+6
+8
+20
+20
+20
+20
+20
+20
+20
+0
+20 -
+20
+20
+20
+20
+20
+20
+20
+20
+20
+0
+0
+20 -
+20
+20
+20
+20
+20
+20
+20
+20
+20
+0:
+0
+0
+20 -
+20
+20
+20
+20
+20
+20
+20
+20
+20
+0
+U
+0
+20 -
+20
+20
+20
+20
+20
+20
+20
+20
+20
+20 -
+20
+20
+20
+20
+20
+0
+20 -
+20
+20
+20
+20
+20
+20
+20
+20
+0:
+20
+20
+20-
+20
+25
+25
+25
+25
+25
+25
+25
+25
+25
+25Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+Table 3. Performance comparison on Tabular datasets. The average over five independent runs.
+Real
+DP-CGAN
+DP-GAN
+DP-MERF
+DP-HP
+DP-KIP
+(1, 10−5)-DP
+(1, 10−5)-DP
+(1, 10−5)-DP
+(1, 10−5)-DP
+(1, 10−5)-DP
+adult
+0.786
+0.683
+0.509
+0.444
+0.511
+0.445
+0.642
+0.524
+0.688
+0.632
+0.662
+0.365
+census
+0.776
+0.433
+0.655
+0.216
+0.529
+0.166
+0.685
+0.236
+0.699
+0.328
+0.766
+0.408
+cervical
+0.959
+0.858
+0.519
+0.200
+0.485
+0.183
+0.531
+0.176
+0.616
+0.312
+0.622
+0.316
+credit
+0.924
+0.864
+0.664
+0.356
+0.435
+0.150
+0.751
+0.622
+0.786
+0.744
+0.892
+0.610
+epileptic
+0.808
+0.636
+0.578
+0.241
+0.505
+0.196
+0.605
+0.316
+0.609
+0.554
+0.786
+0.979
+isolet
+0.895
+0.741
+0.511
+0.198
+0.540
+0.205
+0.557
+0.228
+0.572
+0.498
+0.762
+0.913
+F1
+F1
+F1
+F1
+F1
+F1
+covtype
+0.820
+0.285
+0.492
+0.467
+0.537
+0.582
+intrusion
+0.971
+0.302
+0.251
+0.892
+0.890
+0.648
+Table 4. Tabular datasets. Size, number of classes and feature types
+descriptions.
+dataset
+# samps
+# classes
+# features
+isolet
+4366
+2
+617 num
+covtype
+406698
+7
+10 num, 44 cat
+epileptic
+11500
+2
+178 num
+credit
+284807
+2
+29 num
+cervical
+753
+2
+11 num, 24 cat
+census
+199523
+2
+7 num, 33 cat
+adult
+48842
+2
+6 num, 8 cat
+intrusion
+394021
+5
+8 cat, 6 ord, 26 num
+classifiers on the distilled data samples and then evaluate
+their performance on real data for 5 independent runs.
+For datasets with binary labels, we use the area under the
+receiver characteristics curve (ROC) and the area under the
+precision recall curve (PRC) as evaluation metrics, and for
+multi-class datasets, we use F1 score. Table 3 shows the
+average over the classifiers (averaged again over the 5 in-
+dependent runs) trained on the synthetic privated generated
+samples for DP-CGAN(Torkzadehmahani et al., 2019), DP-
+GAN (Xie et al., 2018), DP-MERF(Harder et al., 2021) and
+DP-HP (Vinaroz et al., 2022) and trained on the privately
+distilled samples for DP-KIP under the same privacy budget
+ϵ = 1 and δ = 10−5. Details on the classifiers used in
+evaluation can be found in Table 7.
+For private synthetic methods we generate as many samples
+as the target dataset contains while for DP-KIP we set the
+images per class to 10. Unsurprisingly, our method out-
+performs the general data generation methods at the same
+privacy level.
+6. Summary and Discussion
+In this paper, we privatized KIP using DP-SGD and imple-
+mented this algorithm in JAX. Following KIP, our method
+uses infinite-dimensional features from a fully connected
+NTK. Experimental results show that our method ourper-
+forms existing methods at the same privacy level.
+Note that (Nguyen et al., 2021a;b) use an infinitely-wide
+convoluational network for NTK and further improves the
+performance. However, this code is not publicly available
+and when we contacted the authors, they were not able to
+share their code. We ended up implementing it ourselves.
+However, the KIP training with the convnet NTK requires
+an enormous memory (which only Googlers can fit in their
+memory in a distributed way) which we were unable to do
+at a decent size of mini-batch. Hence, in this paper, we
+only show the results of FC-NTK. In future work, we hope
+to further improve the performance using different NTK
+architectures including ConvNets.
+References
+Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
+Mironov, I., Talwar, K., and Zhang, L.
+Deep learn-
+ing with differential privacy.
+In Proceedings of the
+2016 ACM SIGSAC Conference on Computer and Com-
+munications Security. ACM, oct 2016. doi: 10.1145/
+2976749.2978318.
+URL https://doi.org/10.
+1145%2F2976749.2978318.
+Anonymous.
+Differentially private dataset conden-
+sation.
+In
+Submitted
+to
+The
+Eleventh
+Inter-
+national Conference on Learning Representations,
+2023. URL https://openreview.net/forum?
+id=H8XpqEkbua_. under review.
+Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
+Wang, R. On exact computation with an infinitely wide
+neural net. In Oh, A. H., Agarwal, A., Belgrave, D.,
+and Cho, K. (eds.), Advances in Neural Information Pro-
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+cessing Systems, 2019. URL https://openreview.
+net/pdf?id=rkl4aESeUH.
+Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
+C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
+Wanderman-Milne, S., and Zhang, Q. JAX: composable
+transformations of Python+NumPy programs, 2018. URL
+http://github.com/google/jax.
+Cao, T., Bie, A., Vahdat, A., Fidler, S., and Kreis, K. Don’t
+generate me: Training differentially private generative
+models with sinkhorn divergence.
+In Ranzato, M.,
+Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
+J. W. (eds.), Advances in Neural Information Processing
+Systems, volume 34, pp. 12480–12492. Curran Asso-
+ciates, Inc., 2021.
+URL https://proceedings.
+neurips.cc/paper/2021/file/
+67ed94744426295f96268f4ac1881b46-Paper.
+pdf.
+Carlini, N., Feldman, V., and Nasr, M. No free lunch in
+”privacy for free: How does dataset condensation help
+privacy”, 2022. URL https://arxiv.org/abs/
+2209.14987.
+Chen, D., Orekondy, T., and Fritz, M.
+GS-WGAN: A
+gradient-sanitized approach for learning differentially
+private generators. In Advances in Neural Information
+Processing Systems 33, 2020.
+Chen, D., Kerkouche, R., and Fritz, M.
+Private set
+generation with discriminative information.
+In Oh,
+A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
+Advances in Neural Information Processing Systems,
+2022a. URL https://openreview.net/forum?
+id=mxnxRw8jiru.
+Chen, D., Kerkouche, R., and Fritz, M. Private set genera-
+tion with discriminative information. In Neural Informa-
+tion Processing Systems (NeurIPS), 2022b.
+Dong, T., Zhao, B., and Lyu, L. Privacy for free: How does
+dataset condensation help privacy?
+In Chaudhuri, K.,
+Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
+S. (eds.), Proceedings of the 39th International Confer-
+ence on Machine Learning, volume 162 of Proceedings of
+Machine Learning Research, pp. 5378–5396. PMLR, 17–
+23 Jul 2022a. URL https://proceedings.mlr.
+press/v162/dong22c.html.
+Dong, X., Guo, J., Li, A., Ting, W.-T., Liu, C., and Kung, H.
+Neural mean discrepancy for efficient out-of-distribution
+detection. In Proceedings of the IEEE/CVF Conference
+on Computer Vision and Pattern Recognition (CVPR), pp.
+19217–19227, June 2022b.
+Dwork, C. and Roth, A. The Algorithmic Foundations
+of Differential Privacy. Found. Trends Theor. Comput.
+Sci., 9:211–407, aug 2014. ISSN 1551-305X. doi: 10.
+1561/0400000042. URL http://dx.doi.org/10.
+1561/0400000042.
+Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
+Naor, M. Our data, ourselves: Privacy via distributed
+noise generation. In Eurocrypt, volume 4004, pp. 486–
+503. Springer, 2006a.
+Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
+ibrating noise to sensitivity in private data analysis. In
+Halevi, S. and Rabin, T. (eds.), Theory of Cryptography,
+pp. 265–284, Berlin, Heidelberg, 2006b. Springer Berlin
+Heidelberg. ISBN 978-3-540-32732-5.
+Harder, F., Adamczewski, K., and Park, M. DP-MERF:
+Differentially private mean embeddings with randomfea-
+tures for practical privacy-preserving data generation. In
+Banerjee, A. and Fukumizu, K. (eds.), Proceedings of The
+24th International Conference on Artificial Intelligence
+and Statistics, volume 130 of Proceedings of Machine
+Learning Research, pp. 1819–1827. PMLR, 13–15 Apr
+2021. URL http://proceedings.mlr.press/
+v130/harder21a.html.
+Jacot, A., Gabriel, F., and Hongler, C.
+Neural tangent
+kernel:
+Convergence and generalization in neural
+networks.
+In Bengio, S., Wallach, H., Larochelle,
+H., Grauman, K., Cesa-Bianchi, N., and Garnett,
+R. (eds.),
+Advances in Neural Information Pro-
+cessing
+Systems,
+volume
+31.
+Curran
+Associates,
+Inc.,
+2018.
+URL
+https://proceedings.
+neurips.cc/paper/2018/file/
+5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.
+pdf.
+Jia, S., Nezhadarya, E., Wu, Y., and Ba, J.
+Effi-
+cient statistical tests:
+A neural tangent kernel ap-
+proach.
+In Meila, M. and Zhang, T. (eds.), Pro-
+ceedings of the 38th International Conference on Ma-
+chine Learning, volume 139 of Proceedings of Machine
+Learning Research, pp. 4893–4903. PMLR, 18–24 Jul
+2021. URL https://proceedings.mlr.press/
+v139/jia21a.html.
+Krizhevsky, A. and Hinton, G. Learning multiple layers of
+features from tiny images. Technical Report 0, University
+of Toronto, Toronto, Ontario, 2009.
+LeCun, Y., Cortes, C., and Burges, C.
+Mnist hand-
+written digit database. ATT Labs [Online]. Available:
+http://yann.lecun.com/exdb/mnist, 2, 2010.
+Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak,
+R., Sohl-Dickstein, J., and Pennington, J.
+Wide
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+neural networks of any depth evolve as linear models
+under gradient descent.
+In Wallach, H., Larochelle,
+H., Beygelzimer, A., d'Alch´e-Buc, F., Fox, E., and
+Garnett, R. (eds.), Advances in Neural Information Pro-
+cessing
+Systems,
+volume
+32.
+Curran
+Associates,
+Inc.,
+2019.
+URL
+https://proceedings.
+neurips.cc/paper/2019/file/
+0d1a9651497a38d8b1c3871c84528bd4-Paper.
+pdf.
+Lee, J., Schoenholz, S., Pennington, J., Adlam, B., Xiao, L.,
+Novak, R., and Sohl-Dickstein, J. Finite versus infinite
+neural networks: an empirical study.
+In Larochelle,
+H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
+H. (eds.), Advances in Neural Information Processing
+Systems, volume 33, pp. 15156–15172. Curran Asso-
+ciates, Inc., 2020.
+URL https://proceedings.
+neurips.cc/paper/2020/file/
+ad086f59924fffe0773f8d0ca22ea712-Paper.
+pdf.
+Long, Y., Wang, B., Yang, Z., Kailkhura, B., Zhang,
+A., Gunter, C., and Li, B.
+G-PATE: Scalable differ-
+entially private data generator via private aggregation
+of teacher discriminators.
+In Ranzato, M., Beygelz-
+imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
+(eds.), Advances in Neural Information Processing
+Systems, volume 34, pp. 2965–2977. Curran Asso-
+ciates, Inc., 2021.
+URL https://proceedings.
+neurips.cc/paper/2021/file/
+171ae1bbb81475eb96287dd78565b38b-Paper.
+pdf.
+Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
+B.,
+and Ng,
+A. Y.
+Reading digits in natural
+images with unsupervised feature learning.
+In
+NIPS Workshop on Deep Learning and Unsuper-
+vised Feature Learning 2011, 2011.
+URL http:
+//ufldl.stanford.edu/housenumbers/
+nips2011_housenumbers.pdf.
+Nguyen, T., Chen, Z., and Lee, J. Dataset meta-learning
+from kernel ridge-regression. In International Conference
+on Learning Representations, 2021a. URL https://
+openreview.net/forum?id=l-PrrQrK0QR.
+Nguyen, T., Novak, R., Xiao, L., and Lee, J.
+Dataset
+distillation with infinitely wide convolutional net-
+works.
+In Ranzato, M., Beygelzimer, A., Dauphin,
+Y.,
+Liang,
+P.,
+and Vaughan,
+J. W. (eds.),
+Ad-
+vances in Neural Information Processing Systems,
+volume
+34,
+pp.
+5186–5198.
+Curran
+Associates,
+Inc.,
+2021b.
+URL
+https://proceedings.
+neurips.cc/paper/2021/file/
+299a23a2291e2126b91d54f3601ec162-Paper.
+pdf.
+Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A.,
+Sohl-Dickstein, J., and Schoenholz, S. S. Neural tan-
+gents: Fast and easy infinite neural networks in python.
+In International Conference on Learning Representa-
+tions, 2020. URL https://github.com/google/
+neural-tangents.
+Torkzadehmahani, R., Kairouz, P., and Paten, B. DP-CGAN:
+Differentially private synthetic data and label generation.
+In The IEEE Conference on Computer Vision and Pattern
+Recognition (CVPR) Workshops, June 2019.
+Vinaroz, M., Charusaie, M.-A., Harder, F., Adamczewski,
+K., and Park, M. J. Hermite polynomial features for
+private data generation. In Chaudhuri, K., Jegelka, S.,
+Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.),
+Proceedings of the 39th International Conference on Ma-
+chine Learning, volume 162 of Proceedings of Machine
+Learning Research, pp. 22300–22324. PMLR, 17–23 Jul
+2022. URL https://proceedings.mlr.press/
+v162/vinaroz22a.html.
+Wang, B., Wu, F., Long, Y., Rimanic, L., Zhang, C., and
+Li, B.
+Datalens: Scalable privacy preserving train-
+ing via gradient compression and aggregation. In Pro-
+ceedings of the 2021 ACM SIGSAC Conference on
+Computer and Communications Security, CCS ’21, pp.
+2146–2168, New York, NY, USA, 2021. Association for
+Computing Machinery. ISBN 9781450384544. doi: 10.
+1145/3460120.3484579. URL https://doi.org/
+10.1145/3460120.3484579.
+Wang, T., Zhu, J., Torralba, A., and Efros, A. A. Dataset
+distillation. CoRR, abs/1811.10959, 2018. URL http:
+//arxiv.org/abs/1811.10959.
+Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P. Subsam-
+pled r´enyi differential privacy and analytical moments
+accountant. volume 89 of Proceedings of Machine Learn-
+ing Research, pp. 1226–1235. PMLR, April 2019.
+Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
+novel image dataset for benchmarking machine learning
+algorithms. arXiv preprint arXiv:1708.07747, 2017.
+Xie, L., Lin, K., Wang, S., Wang, F., and Zhou, J. Differ-
+entially private generative adversarial network. CoRR,
+abs/1802.06739, 2018.
+Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
+with gradient matching.
+In International Conference
+on Learning Representations, 2021. URL https://
+openreview.net/forum?id=mSAKhLYLSsl.
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+A. Expermental details
+A.1. Image data
+Here we provide the details of the DP-KIP training procedure we used on the image data experiments. Table 5 and Table 6
+shows the number of epochs, batch size, learning rate, clipping norm C and regularization parameter λ used during training
+for each image classification dataset at the corresponding images per class distilled.
+Table 5. DP-KIP hyper-parameter settings for Image data for ϵ = 1 and δ = 10−5
+Imgs/Class
+epochs
+batch size
+learning rate
+C
+λ
+MNIST
+1
+10
+500
+5 · 10−3
+10−2
+10−6
+10
+10
+500
+10−2
+10−6
+10−6
+50
+10
+500
+10−2
+10−6
+10−7
+FASHION
+1
+10
+500
+5 · 10−2
+10−6
+10−6
+10
+10
+500
+0.1
+10−6
+10−5
+50
+10
+200
+10−2
+10−2
+10−6
+SVHN
+1
+10
+50
+10−1
+10−6
+10−6
+10
+10
+500
+5 · 10−2
+10−6
+10−6
+50
+10
+500
+10−2
+10−5
+10−2
+CIFAR-10
+1
+20
+200
+10−2
+10−4
+10−5
+10
+10
+500
+5 · 10−2
+10−5
+10−6
+50
+10
+500
+5 · 10−2
+10−3
+10−6
+CIFAR-100
+1
+10
+200
+10−2
+10−5
+10−7
+10
+10
+100
+10−2
+10−4
+10−7
+Table 6. DP-KIP hyper-parameter settings for Image data for ϵ = 10 and δ = 10−5
+Imgs/Class
+epochs
+batch size
+learning rate
+C
+λ
+MNIST
+1
+10
+500
+5 · 10−3
+10−5
+10−6
+10
+10
+500
+5 · 10−3
+10−2
+10−6
+50
+10
+500
+5 · 10−3
+10−5
+10−6
+FASHION
+1
+10
+500
+10−2
+10−3
+10−6
+10
+10
+500
+10−2
+10−2
+10−5
+50
+10
+500
+10−2
+10−2
+10−7
+SVHN
+1
+10
+50
+5 · 10−2
+10−6
+10−6
+10
+10
+500
+10−1
+10−6
+10−6
+50
+10
+500
+10−2
+10−2
+10−7
+CIFAR-10
+1
+10
+500
+10−1
+10−6
+10−6
+10
+10
+500
+5 · 10−2
+10−5
+10−6
+50
+10
+500
+5 · 10−2
+10−5
+10−6
+CIFAR-100
+1
+10
+100
+10−2
+10−5
+10−6
+10
+10
+100
+10−2
+10−4
+10−6
+A.2. Tabular data
+Hyperparameters we used for Tabular data results can be found in our code repo.
+
+Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation
+Table 7. Hyperparameter settings for downstream classifiers used in tabular data experiments. Models are taken from scikit-learn 0.24.2
+and xgboost 0.90 python packages and hyperparameters have been set to achieve reasonable accuracies while limiting runtimes. Paramters
+not listed are kept as default values.
+Model
+Parameters
+Logistic Regression
+solver: lbfgs, max iter: 5000, multi class: auto
+Gaussian Naive Bayes
+-
+Bernoulli Naive Bayes
+binarize: 0.5
+LinearSVC
+max iter: 10000, tol: 1e-8, loss: hinge
+Decision Tree
+class weight: balanced
+LDA
+solver: eigen, n components: 9, tol: 1e-8, shrinkage: 0.5
+Adaboost
+n estimators: 1000, learning rate: 0.7, algorithm: SAMME.R
+Bagging
+max samples: 0.1, n estimators: 20
+Random Forest
+n estimators: 100, class weight: balanced
+Gradient Boosting
+subsample: 0.1, n estimators: 50
+MLP
+-
+XGB
+colsample bytree: 0.1, objective: multi:softprob, n estimators: 50
+
diff --git a/qNFQT4oBgHgl3EQfszbV/content/tmp_files/load_file.txt b/qNFQT4oBgHgl3EQfszbV/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7d2988a1879acd8c84e5da99b1ef603fd89e9fbc
--- /dev/null
+++ b/qNFQT4oBgHgl3EQfszbV/content/tmp_files/load_file.txt
@@ -0,0 +1,1146 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf,len=1145
+page_content='Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation Margarita Vinaroz 1 2 Mi Jung Park 3 4 Abstract While it is tempting to believe that data distilla- tion preserves privacy, distilled data’s empirical robustness against known attacks does not imply a provable privacy guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Here, we develop a provably privacy-preserving data distillation algo- rithm, called differentially private kernel inducing points (DP-KIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' DP-KIP is an instantiation of DP-SGD on kernel ridge regression (KRR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Fol- lowing Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='b), we use neural tangent kernels and minimize the KRR loss to esti- mate the distilled datapoints (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', kernel inducing points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' We provide a computationally efficient JAX implementation of DP-KIP, which we test on several popular image and tabular datasets to show its efficacy in data distillation with differen- tial privacy guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Introduction First introduced by Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2018), data distillation (DD) aims at extracting the knowledge of the entire training dataset to a few synthetic, distilled datapoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' What DD offers is that the models trained on the small number of distilled datapoints achieve high-performance relative to the models trained on the original, large training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' How- ever, DD’s usefulness does not remain in fast, cheaper, and light training of neural network models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Various applica- tions of DD include continual learning, neural architecture search, and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Depending on the similarity metrics chosen for judging how close the small distilled datasets are to the original large datasets, there are different ways to formulate the DD problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For instance, Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021) formulate 1Department of Computer Science, University of T¨ubingen, Germany 2International Max Planck Research School for In- telligent Systems (IMPRS-IS), Germany 3Department of Com- puter Science, University of British Columbia, Canada 4CIFAR AI Chair at AMII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Correspondence to: Margarita Vinaroz , Mi Jung Park .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Under review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' it as a gradient matching problem between the gradients of deep neural network weights trained on the original and distilled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='b) formulate it as a kernel ridge regression problem where the distilled data correspond to the kernel inducing points (KIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Regardless of what formulation one takes, the techniques for DD are fast improving, and their application domains are widening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Among the many application domains, Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a) claim that DD is also useful for privacy-preserving dataset creation, by showing distilled images with 90% of their pix- els corrupted while test accuracy with those exhibits limited degradation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' It is true that the distilled images with 90% of corrupted pixels are not humanly discernible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' However, their illustration is merely experimental and does not involve any formal definition of privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Recently, Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2022a) attempt to connect DD with differential privacy (Dwork & Roth, 2014), one of the pop- ular privacy notions, based on DD’s empirical robustness against some known attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Unfortunately, the empirical evaluation of the method and its theoretical analysis contain major flaws, as described in (Carlini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For a provable privacy guarantee, Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2022a) apply DP-SGD, the off-the-shelf differential privacy algorithm (Abadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2016), to optimizing a gradient matching ob- jective to estimate a differentially private distilled dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' More recently, Anonymous (2023) proposes a differentially private distribution matching framework, which further im- proves the performance of (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In this paper, we apply DP-SGD to the forementioned KIP framework for DD developed by Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' There are two important reasons we choose to privatize KIP over other existing DD methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' First, in DP-KIP, the gra- dients that DP-SGD privatize are the distilled datapoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Typically, we consider only a few distilled datapoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Con- sequently, the privacy-accuracy trade-off of DP-KIP is better than that of the gradient matching framework with DP-SGD (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022a), as the latter needs to privatize high dimensional neural network gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Second, rather than relying on a particular parametric form of features as in gradient matching (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', the neural network gradients), in KIP we use infinite-dimensional features via an infinitely- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='13389v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='LG] 31 Jan 2023 Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation wide neural tangent kernel (NTK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' As in (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='b), we use the infinite-dimensional features to com- pare the original large data and distilled data distributions, with matching the classification performance via kernel ridge regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Indeed, empirically, we find that DP-KIP outperforms DP-gradient matching by Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2022a) and DP-distribution matching by Anonymous (2023) when tested on several benchmark classification datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Background In the following section, we review the Kernel Inducing Points (KIP) algorithm, Neural Tangent Kernel (NTK), dif- ferential privacy (DP) and differentially private stochastic gradient descent (DP-SGD) algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' KIP In data distillation, the goal is to find a small dataset Ds that is ξ-approximation to a large, original dataset Dt drawn from a distribution P with respect to a learning algorithm A and a loss function l: ��E(x,y)∈Pl(ADs(x), y) − E(x,y)∈Dtl(ADs(x), y) �� ≤ ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (1) In KIP, the loss l is a classification accuracy in terms of the L2-distance between true labels and predicted labels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and the learning algorithm A is kernel ridge regression (KRR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Consider a target dataset Dt = {(xti, yti)}n i=1 with input features xti ∈ RD and scalar labels yti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Given a kernel k (we will talk about what kernel we use shortly), the KIP algorithm constructs a small distilled dataset Ds = {(xsj, ysj)}m j=1, where xsj ∈ RD, and scalar labels ysj and importantly m ≪ n, such that its performance on a classification task approximates the performance of the tar- get dataset for the same task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Note that Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a) call Ds “support” dataset (hence the subscript “s”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In this paper, we will use “support” and “distilled” datasets, inter- changeably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The KIP algorithm shown in Algorithm 1 starts by randomly initializing the support dataset and then iteratively refines Ds by minimizing the Kernel Ridge Regression (KRR) loss: L(Ds) = n � i=1 (yti − ktis ⊤(Kss + λI)−1ys)2, (2) with respect to the support dataset Ds = {(xsj, ysj)}m j=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Here λ > 0 is a regularization parameter, Kss is a kernel matrix, where the (i, j)-th entry is k(xsi, xsj), ktis is a column vector where the j-th entry is k(xti, xsj), and ys is a column vector where the j-th entry is ysj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' During the training phase, the support dataset is updated using a gradient-based optimization method (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', using Stochastic Gradient Descent (SGD)) until some convergence criterion is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Algorithm 1 KIP Input: Training dataset: Dt = {(xti, yti)}n i=1, number of distilled samples to generate: m, number of iterations: P, mini-batch size: B, regularization parameter: λ Initialize distilled dataset Ds for p = 1 to P do Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Randomly subsample training data DtB Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Evaluate the kernel function on the pairs of target and support datapoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Compute KRR loss in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2 Step 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Update Ds using Stochastic Gradient Descent (SGD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' end for Return: Learned support dataset Ds 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' NTK Initially, NTKs were proposed to help understand neural networks’ training dynamics in a function space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In partic- ular, in the infinite-width limit, the parameters of a neural network do not change from the random initialization over the course of the training and the gradients of the network parameters converge to an infinite-dimensional feature map of the neural tangent kernel (NTK) (Jacot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Charac- terizing this neural tangent kernel is essential to analyzing the convergence of training and generalization of the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Based on this finding, Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a) motivate the use of NTK in KIP in the following sense: (a) the kernel ridge regression with an NTK approximates the training of the corresponding infinitely-wide neural network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and (b) it is likely that the use of NTK yields approximating Dt by Ds (in the sense of ξ-approximations given in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1) for learning algorithms given by a broad class of neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' While there is no mathematical proof on point (b), Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2021a) empirically backed up point (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' KIP’s superior performance over other DD methods is one of the reasons we also choose to use an NTK as our kernel k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' But the other reason is that a growing number of papers show the usefulness of NTK as a kernel in learning distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Examples include (Jia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021) showing the efficacy of NTK features in comparing distributions in statistical testing, and (Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022b) using NTK for out-of-distribution detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Differential privacy (DP) Differential privacy is a gold standard privacy notion in machine learning and statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Its popularity is due to the Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation mathematical provability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The definition of DP (Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 in (Dwork & Roth, 2014)) is given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' A randomized mechanism M is (ϵ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' δ)- differentially private if for all neighboring datasets D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' D′ differing in an only single entry (d(D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' D′) ≤ 1) and all sets S ⊂ range(M),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' the following inequality holds: Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ The definition states that for all datasets differing in an only single entry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' the amount of information revealed by a randomized algorithm about any individual’s participation is bounded by ϵ with some probability of failure δ (which is preferably smaller than 1/|D|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' A common paradigm for constructing differentially private algorithms is to add calibrated noise to an algorithm’s output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In our algorithm, we use the Gaussian mechanism to ensure that the distilled dataset satisfies the DP guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For a deterministic function h : D → Rd, the Gaussian mecha- nism is defined by ˜h(D) = h(D) + N(0, ∆2 hσ2Id).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Here, the noise scale depends on the global sensitivity (Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2006a) of the function h, ∆h, and its defined as the maximum differencein terms of l2-norm, ∥h(D) − h(D′)∥2, for D and D′ differing in an only single entry and σ is a function of the privacy level parameters, ϵ, δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Differential privacy has two fundamental properties that are useful for applications like ours: composability (Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2006a) and post-processing invariance (Dwork et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2006b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Composability ensures that if all components of a mechanism are differentially private, then its composition is also differentially private with some privacy guarantee degradation due to the repeated use of the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In our algorithm, we use the advance composition methods in (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019), as they yield to tight bounds on the cumulative privacy loss when subsampling is used during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Furthermore, the post-processing invariance prop- erty states that any application of arbitrary data-independent transformations to an (ϵ, δ)-DP algorithm is also (ϵ, δ)-DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In our context, this means that no information other than the allowed by the privacy level ϵ, δ, can be inferred about the training data from the privatized mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' DP-SGD DP-SGD (Abadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2016) is one of the most commonly used differentially private algorithm for training deep neural network models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' It modifies SGD by adding an appropriate amount of noise to the gradients in every training step to ensure the parameters of a neural network are differentially private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' An analytic quantification of sensitivity of gradients is infeasible under deep neural network models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Hence, DP- SGD bounds the norm of the gradients given each data point by some pre-chosen value C and explicitly normalize the gradient norm given a datapoint if it exceeds C, such that the gradient norm given any datapoint’s difference between two neighbouring datasets cannot exceed C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Due to the compos- ability property of DP, privacy loss is accumulating over the course of training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' How to compose the privacy loss during the training with DP-SGD is given in (Abadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019), which exploits the subsamped Gaussian mechanism (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', applying the Gaussian mechanism on ran- domly subsampled data) to achieve a tight privacy bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In practice, given a level of (ϵ, δ)-DP and the training schedule (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', how many epochs to run the experiment, mini-batch size, etc), one can numerically compute the noise scale σ to use in every training step using e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', the auto-dp package by Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The DP-SGD algorithm is summarized in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Algorithm 2 DP-SGD Input: Dataset D = {(xi, yi)}N i=1, number of iterations P, mini-batch size B, clipping norm C, learning rate η Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Initialize θ0 randomly for p = 1 to P do Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Take a random sample Bp with sampling prob- ability q = B/N Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For each sample t ∈ Bp compute the gradient: gp(xt) = ∇θpL(θp, xt) Step 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Clip the gradient: ˆgp(xt) = gp(xt)/ max(1, ∥gp(xt)∥2/C) Step 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Add noise: ˜gp = 1 B �Bp t=1 ˆgp(xt) + N(0, σ2C2I) Step 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Gradient descent: θp+1 = θp − η˜gp end for Return: θP and compute the overall privacy budget, ϵ, via Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Our algorithm: DP-KIP In this section, we introduce our proposed algorithm dif- ferentially private kernel inducing points (DP-KIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The algorithm produces differentially private distilled samples by clipping and adding calibrated noise to the distilled data’s gradients during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Outline of DP-KIP Our algorithm is shown in Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' We first initialize the distilled (support) dataset Ds, where the learnable param- eters Xs = {xsj}m j=1 are drawn from a standard Gaussian distribution, (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' xsj ∼ N(0, ID) for xsj ∈ RD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' We gen- erate labels ys by drawing them from a uniform distribution over the number of classes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and fix them during the training for Xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Note that the original KIP algorithm has an option for optimizing the labels through Label Solve given opti- mized distilled images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' However, we choose not to optimize Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation for the labels to reduce the privacy loss incurring during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' At each iteration of the algorithm, we randomly subsample B samples from the target dataset Dt, DtB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Same as in Algorithm 1, given a kernel k, we compute the loss given in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Then, we compute the per target sample gradients with respect to the support dataset, given in g(xt,l, yt,l) := ∇DsL(Ds) = ∇Ds � ytl − ktls(Kss + λI)−1ys �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (3) As in DP-SGD, we ensure each datapoint’s gradient norm is bounded by explicitly normalizing the gradients if its l2-norm exceeds C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In the last steps of the algorithm, the clipped gradients are perturbed by the Gaussian mechanism and averaged as in DP-SGD algorithm and finally, the sup- port dataset is updated by using some gradient-based method (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' SGD, Adam).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Algorithm 3 DP-KIP Input: Dataset Dt = {(xti, yti)}n i=1, number of distilled samples to generate m, number of iterations P, mini- batch size B, clipping norm C, privacy level (ϵ, δ) Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Initialize distilled dataset Ds = {(xsj, ysj)}m j=1 with xsi ∼ N(0, ID) Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Given a desired level of (ϵ, δ)-DP, we compute the privacy parameter σ using the auto-dp package by Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' for p = 1 to P do Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Randomly subsample DtB = {(XtB, ytB)} Step 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Compute KRR loss given in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Step 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Compute per-sample gradients in eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 3 for each l ∈ tB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Step 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Clip the gradients via ˆg(xl) = g(xl)/ max(1, ∥g(xl)∥2/C) Step 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Add noise: ˜g = �B l=1 ˆg(xl) + N(0, σ2C2I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Step 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Update distilled dataset Ds with SGD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' end for Return: Learned private support dataset Ds Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1 states that the proposed algorithm is differentially private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The DP-KIP algorithm produces a (ϵ, δ)-DP distilled dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Due to the Gaussian mechanism, the noisy-clipped gradients per sample are DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' By the post-processing in- variance property of DP, the average of the noisy-clipped gradients is also DP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Finally, updating the support dataset with the aggregated-noisy gradients and composing through iterations with the subsampled RDP composition (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019) produces (ϵ, δ)-DP distilled dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The exact relationship between (ϵ, δ), T (number of iterations DP-KIP runs), B (mini-batch size), N (number of datapoints in the target dataset), and σ (the privacy parameter) follows the analysis of Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Few thoughts on the algorithm Support dataset initialization: The first step in DP-KIP initializes each support datapoint in Ds to be drawn from the standard Gaussian distribution, N(0, ID).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' This random initialization ensures that no sensitive information is inherit by the algorithm at the beginning of the training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Neverthe- less, one can choose a different type of initialization such as randomly selecting images from the training set as in (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='b) and then, privatize those to ensure that no privacy violation incurs during the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The downside of this approach is that the additional private step in initialization itself is challenging, since computing the sensitivity for neighboring datasets has no trivial bound on the target dataset and incurs in an extra privacy cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Clipping effect of the gradients: In our algorithm, we fol- low the approach from (Abadi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2016) and clip the gradients to have l2-norm C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' This clipping norm is treated as an hyperparameter since gradient values domain is un- bounded a priori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Setting C to a relatively small value is beneficial during training as the total noise variance is scaled down by the C factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' However, the small value may re- sult in a large amount of the gradients being clipped and thus, drastically discard useful or important information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In contrast, setting C to a large value helps preserving more information encoded in the gradients but it yields to a higher noise variance being added to the gradients, which may worsen the learned results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Consequently, finding a suitable C is crucial to maintain a googd privacy-accuracy tradeoff on DP-KIP algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Related Work The most closely related work is (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022a), which applies DP-SGD on the gradient matching objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' As concurrent work, Anonymous (2023) proposes a differen- tially private distribution matching framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Our work differs from these two in the following sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' First, we use an infinitely-wide NTK as features in comparing the distilled and original data distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Second, we formu- late our problem as kernel inducing points, our DP-SGD’s privacy-accuracy trade-off is better than that of gradient matching due to privatizing a smaller dimensional quantity in our case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Another line of relevant work is differentially private data generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' While there are numerous papers to cite, we focus on a few that we compare our method against in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The majority of existing work uses DP-SGD to privatize a generator in the Generative Adversarial Networks (GANs) Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In GANs, the generator never has direct access to training data and thus requires no privatization, as long as the discriminator is differentially private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Examples of this approach include DP-CGAN (Torkzadehmahani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019), DP-GAN (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2018), G-PATE (Long et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021), DataLens (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021), and GS-WGAN (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' A couple of recent work outside the GANs framework include DP-MERF (Harder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021) and DP- HP (Vinaroz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022) that use the approximate versions of maximum mean discrepancy (MMD) as a loss function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and DP-Sinkhorn (Cao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021) that proposes using the Sinkhorn divergence in privacy settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' These data generation methods aim for more general- purpose machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' On the contrary, our method aims to create a privacy-preserving small dataset that matches the performance of a particular task in mind (classification).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Hence, when comparing them in terms of classification per- formance, it is not necessarily fair for these general data generation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Nevertheless, at the same privacy level, we still want to show where our method stands relative to these general methods in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Experiments Here, we show the performance of DP-KIP over different real world datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 we follow previous data distillation work and focus our study on grayscale and color image datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In addition, we also test DP-KIP perfor- mance on imbalanced tabular datasets with numerical and categorical features in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Throughout all the exper- iments, we considered the infinitely wide NTK for a fully connected (FC) neural network with 1 hidden-layer and the ReLU activation in KIP and DP-KIP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The experiments were implemented using JAX (Bradbury et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2018) and Neural Tangents package (Novak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Our code is publicly available at: https://anonymous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' science/r/DP-KIP-5D51/ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Image data We start by testing DP-KIP performance on MNIST (LeCun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2010), FashionMNIST (Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2017), SVHN (Netzer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2011), CIFAR-10 (Krizhevsky & Hinton, 2009) and CIFAR-100 datasets for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Each of MNIST and FashionMNIST datasets consists of 60,000 samples of 28×28 grey scale images depicting hand- written digits and items of clothing, respectively, sorted into 10 classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The SVHN dataset contains 600,000 samples of 32×32 colour images of house numbers taken from Google Street View images, sorted into 10 classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The CIFAR-10 dataset contains a 50,000-sample of 32 × 32 colour images of 10 classes of objects, such as vehicles (cars and ships) and animals (horses and birds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' CIFAR100 contains 100 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' KRR test accuracy on Image datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The average over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Imgs/ KIP FC DP-KIP FC Class ϵ = 1 ϵ = 10 MNIST 1 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 10 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 50 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 FASHION 1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 10 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 50 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 SVHN 1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 10 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 50 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 CIFAR-10 1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 10 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 50 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 CIFAR-100 1 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 10 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 classes of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Table 1, we consider KIP as a non-private baseline and show as evaluation metric (for both private and non-private distilled samples) the averaged test accuracy using KRR as a classifier for 1, 10 and 50 distilled images per class over 5 independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For DP-KIP we consider ϵ ∈ {1, 10} and δ = 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The general trend is that creating more images per class improves the classification accuracy, while the gradient dimension in DP-SGD increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1, we show the learned distilled images at ϵ = 1 and ϵ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' It is surprising that the images created at ϵ = 10 are not humanly discernible, while the classifiers can still achieve a good classification performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The detailed hyper-parameter setting can be found in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 in Appendix In Table 2, we explore the performance of DP-KIP com- pared to other methods for private data generation (DP- CGAN, G-PATE, DataLens, GS-WGAN, DP-MERF, DP- Sinkhorn) and private gradient matching by Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' We report the test accuracy of a ConvNet down- stream classifier consisting of 3 blocks, where each block contains one Conv layer with 128 filters, Instance Normal- ization, ReLU activation and AvgPooling modules and a FC layer as the final output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The classifier is trained us- ing private data and then, it is tested on real test data over 3 independent runs for each method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Here, our method outperforms existing methods at the same privacy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Tabular data In the following we present DP-KIP results applied to eight different tabular datasets for imbalanced data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' These datasets contain both numerical and categorical input fea- tures and are described in detail in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' To evaluate the utility of the distilled samples, we train 12 commonly used Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Image data comparison for MNIST, FASHION and CIFAR-10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The images plotted correspondo to real and distilled samples with DP-KIP for different ϵ values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Top row: MNIST original images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Second row: DP-KIP learned distilled images at ϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Third row: DP-KIP learned distilled images at ϵ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Fourth row: FashionMNIST original images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Fifth row: DP-KIP learned distilled images at ϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Sixth row: DP-KIP learned distilled images at ϵ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Seventh row: CIFAR10 original images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Eighth row: DP-KIP learned distilled images at ϵ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Bottom row: DP-KIP learned distilled images at ϵ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Left: Test accuracy of ConvNet downstream classifier trained on synthetic/distilled data with δ = 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Right: Test accuracy of ConvNet downstream classifier trained with fixed ϵ = 10 and δ = 10−5 and varying the number of distilled samples per class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In concurrent work (Anonymous, 2023), the test accuracy on the same classifier tested on 50 MNIST distilled samples created at ϵ = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='12 and δ = 10−5 is 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='35%;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' that on 50 Fashion-MNIST distilled samples created at ϵ = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='72 and δ = 10−5 is 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='68% MNIST FASHION ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10 DP-CGAN 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 G-PATE 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='8 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 DataLens 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 GS-WGAN 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 DP-MERF 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 DP-Sinkhorn 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2022a) (20 Imgs/Class) 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 DP-KIP (10 Imgs/Class) 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='53 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='39 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 DP-KIP (20 Imgs/Class) 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='78 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='96 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 MNIST FASHION Imgs/Class 10 20 full 10 20 full Real 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 DPSGD 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 DP-CGAN 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 GS-WGAN 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 DP-MERF 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='4 Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (2022a) 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='9 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7 DP-KIP 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='39 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='96 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3 4 5 6 8 20 20 20 20 20 20 20 0 20 - 20 20 20 20 20 20 20 20 20 0 0 20 - 20 20 20 20 20 20 20 20 20 0: 0 0 20 - 20 20 20 20 20 20 20 20 20 0 U 0 20 - 20 20 20 20 20 20 20 20 20 20 - 20 20 20 20 20 0 20 - 20 20 20 20 20 20 20 20 0: 20 20 20- 20 25 25 25 25 25 25 25 25 25 25Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Performance comparison on Tabular datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The average over five independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Real DP-CGAN DP-GAN DP-MERF DP-HP DP-KIP (1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP (1, 10−5)-DP adult 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='509 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='444 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='445 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='642 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='688 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='632 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='662 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='365 census 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='433 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='655 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='216 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='529 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='166 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='685 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='699 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='328 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='408 cervical 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='959 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='858 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='519 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='485 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='183 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='176 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='616 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='312 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='622 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='316 credit 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='864 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='664 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='356 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='435 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='622 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='744 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='892 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='610 epileptic 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='808 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='636 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='578 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='241 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='505 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='196 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='605 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='316 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='609 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='554 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='979 isolet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='895 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='741 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='198 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='205 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='557 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='228 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='572 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='498 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='762 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='913 F1 F1 F1 F1 F1 F1 covtype 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='285 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='492 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='582 intrusion 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='302 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='251 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='892 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='890 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='648 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Tabular datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Size, number of classes and feature types descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' dataset # samps # classes # features isolet 4366 2 617 num covtype 406698 7 10 num, 44 cat epileptic 11500 2 178 num credit 284807 2 29 num cervical 753 2 11 num, 24 cat census 199523 2 7 num, 33 cat adult 48842 2 6 num, 8 cat intrusion 394021 5 8 cat, 6 ord, 26 num classifiers on the distilled data samples and then evaluate their performance on real data for 5 independent runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For datasets with binary labels, we use the area under the receiver characteristics curve (ROC) and the area under the precision recall curve (PRC) as evaluation metrics, and for multi-class datasets, we use F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Table 3 shows the average over the classifiers (averaged again over the 5 in- dependent runs) trained on the synthetic privated generated samples for DP-CGAN(Torkzadehmahani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019), DP- GAN (Xie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2018), DP-MERF(Harder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021) and DP-HP (Vinaroz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2022) and trained on the privately distilled samples for DP-KIP under the same privacy budget ϵ = 1 and δ = 10−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Details on the classifiers used in evaluation can be found in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' For private synthetic methods we generate as many samples as the target dataset contains while for DP-KIP we set the images per class to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Unsurprisingly, our method out- performs the general data generation methods at the same privacy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Summary and Discussion In this paper, we privatized KIP using DP-SGD and imple- mented this algorithm in JAX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Following KIP, our method uses infinite-dimensional features from a fully connected NTK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Experimental results show that our method ourper- forms existing methods at the same privacy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Note that (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='b) use an infinitely-wide convoluational network for NTK and further improves the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' However, this code is not publicly available and when we contacted the authors, they were not able to share their code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' We ended up implementing it ourselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' However, the KIP training with the convnet NTK requires an enormous memory (which only Googlers can fit in their memory in a distributed way) which we were unable to do at a decent size of mini-batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Hence, in this paper, we only show the results of FC-NTK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In future work, we hope to further improve the performance using different NTK architectures including ConvNets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' References Abadi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Chu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Goodfellow, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', McMahan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Mironov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Talwar, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Deep learn- ing with differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com- munications Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ACM, oct 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1145/ 2976749.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2978318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1145%2F2976749.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2978318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Anonymous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Differentially private dataset conden- sation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Submitted to The Eleventh Inter- national Conference on Learning Representations, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' id=H8XpqEkbua_.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' under review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Arora, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Du, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Hu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Salakhutdinov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' On exact computation with an infinitely wide neural net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Oh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Agarwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Belgrave, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Cho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Pro- Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation cessing Systems, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' net/pdf?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='id=rkl4aESeUH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Bradbury, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Frostig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Hawkins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Johnson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Leary, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Maclaurin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Necula, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Paszke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', VanderPlas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wanderman-Milne, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' JAX: composable transformations of Python+NumPy programs, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL http://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='com/google/jax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Cao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Bie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Vahdat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Fidler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Kreis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Don’t generate me: Training differentially private generative models with sinkhorn divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Ranzato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Beygelzimer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Dauphin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Liang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Vaughan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems, volume 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 12480–12492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Curran Asso- ciates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='cc/paper/2021/file/ 67ed94744426295f96268f4ac1881b46-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Carlini, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Feldman, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Nasr, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' No free lunch in ”privacy for free: How does dataset condensation help privacy”, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='org/abs/ 2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='14987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Orekondy, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Fritz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' GS-WGAN: A gradient-sanitized approach for learning differentially private generators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Advances in Neural Information Processing Systems 33, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Kerkouche, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Fritz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Private set generation with discriminative information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Oh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Agarwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Belgrave, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Cho, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems, 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' id=mxnxRw8jiru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Chen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Kerkouche, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Fritz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Private set genera- tion with discriminative information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Neural Informa- tion Processing Systems (NeurIPS), 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Zhao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Lyu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Privacy for free: How does dataset condensation help privacy?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Chaudhuri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Jegelka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Szepesvari, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Niu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Sabato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Proceedings of the 39th International Confer- ence on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5378–5396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' PMLR, 17– 23 Jul 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' press/v162/dong22c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dong, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Ting, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Kung, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Neural mean discrepancy for efficient out-of-distribution detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 19217–19227, June 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and Roth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' The Algorithmic Foundations of Differential Privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Trends Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 9:211–407, aug 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ISSN 1551-305X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1561/0400000042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1561/0400000042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Kenthapadi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', McSherry, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Mironov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Naor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Our data, ourselves: Privacy via distributed noise generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Eurocrypt, volume 4004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 486– 503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Springer, 2006a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', McSherry, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Nissim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Cal- ibrating noise to sensitivity in private data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Halevi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and Rabin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Theory of Cryptography, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 265–284, Berlin, Heidelberg, 2006b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Springer Berlin Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ISBN 978-3-540-32732-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Harder, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Adamczewski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Park, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' DP-MERF: Differentially private mean embeddings with randomfea- tures for practical privacy-preserving data generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Banerjee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and Fukumizu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1819–1827.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' PMLR, 13–15 Apr 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL http://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='press/ v130/harder21a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Jacot, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Gabriel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Hongler, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Neural tangent kernel: Convergence and generalization in neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Bengio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Larochelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Grauman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Cesa-Bianchi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Garnett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Pro- cessing Systems, volume 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='cc/paper/2018/file/ 5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Jia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Nezhadarya, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Ba, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Effi- cient statistical tests: A neural tangent kernel ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Meila, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Pro- ceedings of the 38th International Conference on Ma- chine Learning, volume 139 of Proceedings of Machine Learning Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 4893–4903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' PMLR, 18–24 Jul 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='press/ v139/jia21a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Krizhevsky, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' and Hinton, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Learning multiple layers of features from tiny images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Technical Report 0, University of Toronto, Toronto, Ontario, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' LeCun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Cortes, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Burges, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Mnist hand- written digit database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ATT Labs [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Available: http://yann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='lecun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='com/exdb/mnist, 2, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Xiao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Schoenholz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Bahri, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Novak, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Sohl-Dickstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Pennington, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Wide Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation neural networks of any depth evolve as linear models under gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Larochelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Beygelzimer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=", d'Alch´e-Buc, F." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Fox, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Garnett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Pro- cessing Systems, volume 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='cc/paper/2019/file/ 0d1a9651497a38d8b1c3871c84528bd4-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Schoenholz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Pennington, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Adlam, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Xiao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Novak, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Sohl-Dickstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Finite versus infinite neural networks: an empirical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Larochelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Ranzato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Hadsell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Balcan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Lin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems, volume 33, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 15156–15172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Curran Asso- ciates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='cc/paper/2020/file/ ad086f59924fffe0773f8d0ca22ea712-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Long, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Kailkhura, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Gunter, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' G-PATE: Scalable differ- entially private data generator via private aggregation of teacher discriminators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Ranzato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Beygelz- imer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Dauphin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Liang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Vaughan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Advances in Neural Information Processing Systems, volume 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2965–2977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Curran Asso- ciates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='cc/paper/2021/file/ 171ae1bbb81475eb96287dd78565b38b-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Netzer, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Coates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Bissacco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Ng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Reading digits in natural images with unsupervised feature learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In NIPS Workshop on Deep Learning and Unsuper- vised Feature Learning 2011, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL http: //ufldl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='stanford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='edu/housenumbers/ nips2011_housenumbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Nguyen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dataset meta-learning from kernel ridge-regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https:// openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='id=l-PrrQrK0QR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Nguyen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Novak, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Xiao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dataset distillation with infinitely wide convolutional net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Ranzato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Beygelzimer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Dauphin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Liang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Vaughan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Ad- vances in Neural Information Processing Systems, volume 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 5186–5198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='cc/paper/2021/file/ 299a23a2291e2126b91d54f3601ec162-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Novak, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Xiao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Hron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Alemi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Sohl-Dickstein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Schoenholz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Neural tan- gents: Fast and easy infinite neural networks in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In International Conference on Learning Representa- tions, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='com/google/ neural-tangents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Torkzadehmahani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Kairouz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Paten, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' DP-CGAN: Differentially private synthetic data and label generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Vinaroz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Charusaie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Harder, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Adamczewski, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Park, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Hermite polynomial features for private data generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Chaudhuri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Jegelka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Szepesvari, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Niu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Sabato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ), Proceedings of the 39th International Conference on Ma- chine Learning, volume 162 of Proceedings of Machine Learning Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 22300–22324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' PMLR, 17–23 Jul 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='press/ v162/vinaroz22a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Long, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Rimanic, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Datalens: Scalable privacy preserving train- ing via gradient compression and aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In Pro- ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS ’21, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 2146–2168, New York, NY, USA, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' ISBN 9781450384544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1145/3460120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3484579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1145/3460120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='3484579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Torralba, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Efros, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dataset distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' CoRR, abs/1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10959, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL http: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='org/abs/1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Balle, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Kasiviswanathan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Subsam- pled r´enyi differential privacy and analytical moments accountant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' volume 89 of Proceedings of Machine Learn- ing Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' 1226–1235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' PMLR, April 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Xiao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Rasul, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Vollgraf, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' arXiv preprint arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='07747, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Xie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Lin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Differ- entially private generative adversarial network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' CoRR, abs/1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='06739, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Zhao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', Mopuri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=', and Bilen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Dataset condensation with gradient matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' In International Conference on Learning Representations, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' URL https:// openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='id=mSAKhLYLSsl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Expermental details A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Image data Here we provide the details of the DP-KIP training procedure we used on the image data experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Table 5 and Table 6 shows the number of epochs, batch size, learning rate, clipping norm C and regularization parameter λ used during training for each image classification dataset at the corresponding images per class distilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' DP-KIP hyper-parameter settings for Image data for ϵ = 1 and δ = 10−5 Imgs/Class epochs batch size learning rate C λ MNIST 1 10 500 5 · 10−3 10−2 10−6 10 10 500 10−2 10−6 10−6 50 10 500 10−2 10−6 10−7 FASHION 1 10 500 5 · 10−2 10−6 10−6 10 10 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 10−6 10−5 50 10 200 10−2 10−2 10−6 SVHN 1 10 50 10−1 10−6 10−6 10 10 500 5 · 10−2 10−6 10−6 50 10 500 10−2 10−5 10−2 CIFAR-10 1 20 200 10−2 10−4 10−5 10 10 500 5 · 10−2 10−5 10−6 50 10 500 5 · 10−2 10−3 10−6 CIFAR-100 1 10 200 10−2 10−5 10−7 10 10 100 10−2 10−4 10−7 Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' DP-KIP hyper-parameter settings for Image data for ϵ = 10 and δ = 10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='Imgs/Class ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='epochs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='batch size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='learning rate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='MNIST ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 · 10−3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 · 10−3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 · 10−3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='FASHION ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='SVHN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 · 10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='CIFAR-10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 · 10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 · 10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='CIFAR-100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='10−6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Tabular data Hyperparameters we used for Tabular data results can be found in our code repo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Differentially Private Kernel Inducing Points (DP-KIP) for Privacy-preserving Data Distillation Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Hyperparameter settings for downstream classifiers used in tabular data experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Models are taken from scikit-learn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='2 and xgboost 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='90 python packages and hyperparameters have been set to achieve reasonable accuracies while limiting runtimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Paramters not listed are kept as default values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content=' Model Parameters Logistic Regression solver: lbfgs, max iter: 5000, multi class: auto Gaussian Naive Bayes Bernoulli Naive Bayes binarize: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 LinearSVC max iter: 10000, tol: 1e-8, loss: hinge Decision Tree class weight: balanced LDA solver: eigen, n components: 9, tol: 1e-8, shrinkage: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='5 Adaboost n estimators: 1000, learning rate: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='7, algorithm: SAMME.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='R Bagging max samples: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1, n estimators: 20 Random Forest n estimators: 100, class weight: balanced Gradient Boosting subsample: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1, n estimators: 50 MLP XGB colsample bytree: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
+page_content='1, objective: multi:softprob, n estimators: 50' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qNFQT4oBgHgl3EQfszbV/content/2301.13389v1.pdf'}
diff --git a/r9E1T4oBgHgl3EQfjAT1/content/tmp_files/2301.03259v1.pdf.txt b/r9E1T4oBgHgl3EQfjAT1/content/tmp_files/2301.03259v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..18293d71bbbae788ab3374e2754eb622c2010a9a
--- /dev/null
+++ b/r9E1T4oBgHgl3EQfjAT1/content/tmp_files/2301.03259v1.pdf.txt
@@ -0,0 +1,2519 @@
+arXiv:2301.03259v1 [math.FA] 9 Jan 2023
+MIXED MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+DOUADI DRIHEM
+Abstract. This paper is concerned with proving some embeddings of the form
+F s1
+p1,q · Bs2
+p2,∞ · ... · Bsm
+pm,∞ ֒→ F s1
+p,q,
+m ⩾ 2.
+The different embeddings obtained here are under certain restrictions on the parameters.
+In particular, we improve some results of pointwise multiplication on Triebel-Lizorkin
+spaces. Franke-Jawerth embeddings, the ± - method of Gustaffson-Peetre and the rela-
+tion between Hardy spaces and Triebel-Lizorkin spaces are the main tools.
+1. Introduction
+Approximately 45 years ago Peetre [14] and Triebel [18], [19], independent from each
+other, have applied a special decomposition of the product f ·g to investigate the product
+As1
+p1,q1 · As2
+p2,q2 ֒→ As
+p,q
+in case of p1 = p2 = p. Here As
+p,q stands for either the Besov space Bs
+p,q or the Triebel-
+Lizorkin space F s
+p,q. This method, nowadays called paramultiplication, was applied later
+on by many authors. Concerning earlier contributions to this subject the paper of Ya-
+mazaki [22] deals with the situation where p1 = p2 = p, whereas Sickel treats the cases
+with p1 = p2 ̸= p. Hanouzet [7] has investigated p1 ̸= p2 but restricted to Besov spaces.
+In the a recent work of Sickel and Triebel the case p1 ̸= p2 is also studied and a rather
+complete set of necessary conditions is given. A new necessary and sufficient conditions
+are given in the paper of J. Johnsen [8], see also J. Marschall [10] and [11], , see Amann
+[1] for Sobolev and Besov spaces.
+Concerning the case F s1
+p1,q1 · Bs2
+p2,q2 ֒→ F s
+p,q. This case were studied by Franke [5] and
+Marschall in [10] and [11] with p1 = p. In recent paper [4], the case p1 ̸= p is also studied
+where known sufficient conditions for pointwise multiplication have been improved. More
+close to this contribution is the book of T. Runst, W. Sickel [15], see also V. Maz’ya, T.
+Shaponiskova [12].
+The motivation to study the problem of multiplication on function spaces comes from
+applications to partial differential equations, see for example [23], where estimates of the
+product on function spaces are handy in dealing with the quadratic nonlinear term in
+many partial differential equations, see also, H. Bahouri, J.-Y. Chemin, and R. Danchin
+[2], V.G. Maz’ya and T.O. Shaposhnikova [12], and Zeidler [24]. Furthermore, estimates
+of products of functions have played a key role in investigations of composition operators,
+see [15, Chapter 5].
+Recently, Meyries and Veraar [13], and Lindemulder [9] considered Besov and Bessel
+potential spaces Bs
+p,q(Rn, w), Hs
+p(Rn, w) with respect to the weight w(x, t) = |t|α, x ∈
+Date: January 10, 2023.
+2010 Mathematics Subject Classification. 46E35, 41A05.
+Key words and phrases. Besov space, Triebel-Lizorkin space, ± - method of Gustaffson-Peetre.
+1
+
+2
+D. DRIHEM
+Rn−1, t ∈ R. Under some suitable assumptions on s, p, q and α, they observed that the
+characteristic function of the half space is a pointwise multiplier for Bs
+p,q(Rn, w), Hs
+p(Rn, w).
+The purpose of this paper is to study the m-linear map
+F s1
+p1,q · As2
+p2,∞ · ... · Asm
+pm,∞ ֒→ F s1
+p,q,
+m ⩾ 2,
+induced by
+(f1, f2, ..., fm) −→ f1 · f2 · ... · fm.
+We want to present here, briefly, the contents of our work. In Section 2 we recall the
+definition of the different spaces and some necessary tools. We shall apply the method of
+paramultilication to decompose the product
+f1 · f2 · ... · fm.
+Products in spaces with positive smoothness are given in subsection 3.1. In Subection
+3.2 the product in space with negative smoothness is given.
+We will adopt the following convention throughout this paper. As usual, we denote by
+Rn the n-dimensional real Euclidean space, N the collection of all natural numbers and
+N0 = N ∪ {0}. For a multi-index α = (α1, ..., αn) ∈ Nn
+0, we write |α| = α1 + ... + αn.
+The Euclidean scalar product of x = (x1, ..., xn) and y = (y1, ..., yn) is given by x · y =
+x1y1 + ... + xnyn. If a ∈ R, then we put a+ = max(0, a).
+As usual Lp(Rn) for 0 < p ⩽ ∞ stands for the Lebesgue spaces on Rn for which
+��f | Lp(Rn)
+�� =
+��f
+��
+p =
+� ˆ
+Rn |f(x)|p dx
+�1/p
+< ∞,
+0 < p < ∞
+and
+��f | L∞(Rn)
+�� =
+��f
+��
+∞ = ess-sup
+x∈Rn
+|f(x)| < ∞.
+By S(Rn) we denote the Schwartz space of all complex-valued, infinitely differentiable
+and rapidly decreasing functions on Rn and by S′(Rn) the dual space of all tempered
+distributions on Rn. We define the Fourier transform of a function f ∈ S(Rn) by
+F(f)(ξ) =
+∧
+f(ξ) = (2π)−n/2
+ˆ
+Rn e−ix·ξf(x)dx,
+ξ ∈ Rn.
+Its inverse is denoted by F −1f. Both F and F −1 are extended to the dual Schwartz space
+S′ (Rn) in the usual way.
+If s ∈ R and 0 < q ⩽ ∞, then ℓs
+q is the set of all sequences {fj}j∈N0 of complex numbers
+such that
+�� {fj}j∈N0 | ℓs
+q
+�� =
+�
+∞
+�
+j=0
+2jsq |fj|q �1/q
+< ∞
+with the obvious modification if q = ∞. If s = 0 then we shortly denote ℓ0
+q by ℓq.
+If 0 < p, q ⩽ ∞, then the space Lp(ℓq) (resp. ℓq(Lp)) is the set of the sequences of
+functions {fj}j∈N0 such that
+��{fj}j∈N0 | Lp(ℓq)
+�� =
+���
+�
+∞
+�
+j=0
+|fj|q �1/q���
+p < ∞,
+0 < p < ∞
+�
+resp.
+��{fj}j∈N0 | ℓq(Lp)
+�� =
+� ∞
+�
+j=0
+��fj
+��q
+p
+�1/q
+< ∞
+�
+,
+with the obvious modification if q = ∞.
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+3
+Given two quasi-Banach spaces X and Y , we write X ֒→ Y if X ⊂ Y and the natural
+embedding of X in Y is continuous. We shall use c to denote positive constant which
+may differ at each appearance.
+2. Functions spaces
+In this section we present the Fourier analytical definition of Besov and Triebel-Lizorkin
+spaces and recall their basic properties. Also, we present some useful results we need
+along the paper. We begin by a specific resolution of unity. Let Ψ be a function in
+S(Rn) satisfying Ψ(x) = 1 for |x| ⩽ 1 and Ψ(x) = 0 for |x| ⩾ 3
+2. We put ϕ0(x) = Ψ(x),
+ϕ1(x) = Ψ(x/2) − Ψ(x) and
+ϕj(x) = ϕ1(2−j+1x)
+for
+j = 2, 3, ....
+Then we have supp ϕj ⊂ {x ∈ Rn : 2j−1 ⩽ |x| ⩽ 3 · 2j−1}, ϕj (x) = 1 for 3·2j−2 ⩽ |x| ⩽ 2j
+and Ψ(x) + �∞
+j=1 ϕj(x) = 1 for all x ∈ Rn. The system of functions {ϕj}j∈N0 is called
+a smooth dyadic resolution of unity.
+We define the convolution operators ∆j by the
+following:
+∆jf = F −1ϕj ∗ f,
+j ∈ N
+and
+∆0f = F −1Ψ ∗ f,
+f ∈ S
+′(Rn).
+Thus we obtain the Littlewood-Paley decomposition f = �∞
+j=0 ∆jf of all f ∈ S
+′(Rn)
+(convergence in S
+′(Rn)).
+We define the convolution operators Qj, j ∈ N0 by the following:
+Qjf = F −1Ψj ∗ f,
+j ∈ N0,
+where Ψj = Ψ(2−j·), j ∈ N0 and we see that
+Qjf =
+j
+�
+k=0
+∆kf
+for any j ∈ N0.
+Now we present the definition and a summary of basic results for Besov and Triebel-
+Lizorkin spaces. In the interest of brevity, we shall only develop those aspects which are
+relevant for us in the sequel. More detailed accounts can be found in, e.g., J. Peetre [14],
+T. Runst and W. Sickel, [15] and H. Triebel [16, 17, 18].
+Definition 2.1. (i) Let s ∈ R and 0 < p, q ⩽ ∞. The Besov space Bs
+p,q is the collection of
+all f ∈ S
+′(Rn) such that
+��f | Bs
+p,q
+�� =
+��{∆jf}j∈N0 | ℓs
+q (Lp)
+�� < ∞.
+(ii) Let s ∈ R, 0 < p < ∞ and 0 < q ⩽ ∞. The Triebel-Lizorkin space F s
+p,q is the
+collection of all f ∈ S
+′(Rn) such that
+��f | F s
+p,q
+�� =
+��{∆jf}j∈N0 | Lp
+�
+ℓs
+q
+� �� < ∞.
+Now we give some properties of F s
+p,q and Bs
+p,q which are of interest for us, see T. Runst
+and W. Sickel, [15] and H. Triebel [16, 17, 18].
+Lemma 2.2. (i) The spaces Bs
+p,q and F s
+p,q are quasi Banach spaces (Banach space in the
+case p, q ⩾ 1) and in any case
+S(Rn) ֒→ Bs
+p,q ֒→ S′(Rn)
+and
+S(Rn) ֒→ F s
+p,q ֒→ S′(Rn).
+
+4
+D. DRIHEM
+(ii) Let si ∈ R, 0 < pi < ∞ (resp. 0 < pi ⩽ ∞) and 0 < qi ⩽ ∞ (with i = 0, 1). If
+s0 > s1 and p0 = p1, or s0 ⩾ s1 and s0 − n
+p0 = s1 − n
+p1, (q0 ⩽ q1 for Besov space), then it
+holds
+F s0
+p0, q0 ֒→ F s1
+p1, q1
+(resp. Bs0
+p0, q0 ֒→ Bs1
+p1, q1).
+(iii) Let s, si ∈ R, 0 < p, pi < ∞ and 0 < q, qi ⩽ ∞ (with i = 0, 1), such that s0 − n
+p0 =
+s − n
+p = s1 − n
+p1. If s0 > s > s1 and q0 ⩽ p ⩽ q1, or s0 = s = s1, q0 ⩽ min (p, q) and q1 ⩾
+max (p, q), then it holds
+Bs0
+p0, q0 ֒→ F s
+p, q ֒→ Bs1
+p1, q1,
+Franke-Jawerth embeddings.
+As usual, by ⟨A0, A1⟩θ we denote the result of the ±-method of Gustaffson-Peetre
+applied to quasi-Banach spaces A0 and A1. The next theorem was proved in [6].
+Theorem 2.3. Let 0 < θ < 1, 0 < p0, p1 < ∞, 0 < q0, q1 ⩽ ∞ and s0, s1 ∈ R. Then
+�
+F s0
+p0, q0, F s1
+p1, q1
+�
+θ = F s
+p, q
+provided that s = (1 − θ) s0 + θs1, 1
+p = 1−θ
+p0 + θ
+p1 and 1
+q = 1−θ
+q0 + θ
+q1.
+Remark 2.4. The ±-method has the so called interpolation property. Denote by L(A, B)
+the set of all bounded linear operators from A to B. Then this means that if T ∈ L(Ai, Bi),
+i = 1, 2, we have T maps ⟨A0, B0⟩θ into ⟨A1, B1⟩θ and
+��T | ⟨A0, B0⟩θ −→ ⟨A1, B1⟩θ
+�� ⩽
+��T | A0 −→ A1
+��1−θ��T | A0 −→ A1
+��θ,
+which plays a crucial role in this paper.
+Now we recall some results which are useful for us. The next lemma is a Hardy-type
+inequality which is easy to prove.
+Lemma 2.5. Let 0 < γ < 1 and 0 < q ⩽ ∞. Let {εk}k∈N0 be a sequence of positive real
+numbers, such that
+��{εk}k∈N0 | ℓq
+�� = A < ∞.
+Then the sequence δk = �k
+j=0 γk−jεj, k ∈ N0 belong to ℓq, and the estimate
+��{δk}k∈N0 | ℓq
+�� ⩽ c A
+holds. The constant c depends only on γ and q.
+Lemma 2.6. Let γ > 0. For any sequence {fj}j∈N0 of functions such that supp
+∧
+fj ⊂ {ξ ∈
+Rn : γ−12j ⩽ |ξ| ⩽ γ2j} we have
+���
+∞
+�
+j=0
+fj | F s
+p,q
+��� ⩽ c
+��{2jsfj}j∈N0 | Lp(ℓq)
+��
+if
+p < ∞
+and
+���
+∞
+�
+j=0
+fj | Bs
+p,q
+��� ⩽ c
+��{2jsfj}j∈N0 | ℓq(Lp)
+��.
+(2.7)
+The constant c depends on s, n, p and γ.
+Lemma 2.8. Let γ > 1, 0 < p, q ⩽ ∞ and s > n( 1
+p − 1)+. For any sequence {fj}j∈N0 of
+functions such that supp
+∧
+fj ⊂ {ξ ∈ Rn : |ξ| ⩽ γ2j}. Then (2.7) remains true.
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+5
+Lemma 2.9. Let 0 < p ⩽ q ⩽ ∞ and γ > 0. Then there exists a constant c = c(n, p, q) > 0
+such that for all f ∈ Lp with supp �f ⊂ {ξ ∈ Rn : |ξ| ⩽ γ}, one has
+��f
+��
+q ⩽ c γn( 1
+p − 1
+q )��f
+��
+p.
+For Lemma 2.6, we can see [15], while the proof of Lemma 2.8 is given in [11, Lemma
+3]. For the proof of Lemma 2.9, see [20, Section 1.3.2].
+Lemma 2.10. Let s ∈ R and 0 < p < ∞.
+(i) We have
+�� sup
+j∈N
+|Qjf|
+��
+p ⩽ c
+��f | F 0
+p,2
+��,
+for all f ∈ F 0
+p,2.
+(ii) Let j ∈ N0 and f ∈ Bs
+p,∞. Then there exists a positive constant c, independent of j,
+such that
+��Qjf
+��
+p ⩽ c εj
+��f | Bs
+p,∞
+��,
+where
+εj =
+
+
+
+2−js,
+if
+s < 0,
+1,
+if
+s > 0,
+(j + 1)
+1
+min(1,p) ,
+if
+s = 0.
+(iii) Let 0 < p ⩽ t ⩽ ∞, j ∈ N0 and f ∈ Bs
+p,∞. Then
+��∆jf
+��
+t ⩽ c 2( n
+p − n
+t −s)j��f | Bs
+p,∞
+��,
+where the positive constant c is independent of j.
+(iv) We have
+��Qjf
+��
+t ⩽ c εj
+��f | Bs
+p,∞
+��,
+for all j ∈ N0, all f ∈ Bs
+p,∞ and all p < t ⩽
+1
+( 1
+p − s
+n)+, where
+εj =
+
+
+
+1,
+if
+p < t <
+1
+( 1
+p − s
+n)+,
+(j + 1)
+1
+min(1,t),
+if
+t =
+1
+( 1
+p − s
+n )+
+and the positive constant c is independent of j.
+Proof. (i) follows from the equality between the local Hardy spaces hp and F 0
+p,2, (cf. see
+[20, Section 2.2, p. 37, and Theorem 2.5.8/1]). For (ii), it is sufficient to see that
+��Qjf
+��τ
+p ⩽
+j
+�
+i=0
+2−sτi2sτi��∆if
+��τ
+p ⩽ c ετ
+j
+��f | Bs
+p,∞
+��τ,
+j ∈ N0, τ = min(1, p)
+where if s < 0 we have used Lemma 2.5. Now Lemma 2.9 gives
+��∆jf
+��
+t ⩽ c 2
+(n
+p − n
+t )j��∆jf
+��
+p ⩽ c 2
+(n
+p − n
+t −s)j��f | Bs
+p,∞
+��
+and
+��Qjf
+��τ
+t ⩽ c
+j
+�
+i=0
+2
+(n
+p − n
+t −s)τi2sτi��∆if
+��τ
+p ⩽ c ετ
+j
+��f | Bs
+p,∞
+��τ,
+j ∈ N0, τ = min(1, t).
+Thus we complete the proof of (iii) and (iv).
+□
+
+6
+D. DRIHEM
+2.1. Decomposition of the product
+m�
+i=1
+fi. For all fi ∈ S′(Rn), i = 1, 2, ..., m the product
+�m
+i=1 fi is defined by
+m
+�
+i=1
+fi = lim
+j→∞
+m
+�
+i=1
+Qjfi,
+if the limit on the right-hand side exists in S′(Rn). The following decomposition of this
+product is given in [16, pages 77-78]. We have the following formal decomposition:
+m
+�
+i=1
+fi =
+∞
+�
+k1,...,km=0
+m
+�
+i=1
+(∆kifi).
+The fundamental idea is to split �m
+i=1 fi into two parts, both of them being always defined.
+Let N be a natural number greater than 1 + log2 3 (m − 1). Then we have the following
+decomposition:
+m
+�
+i=1
+fi =
+∞
+�
+j=0
+[Qj−Nf1 · ... · Qj−Nfm−1 · ∆jfm + ...
++ (Πl̸=kQj−Nfl) ∆kfj + ... + ∆jf1 · Qj−Nf2 · .... · Qj−Nfm]
++
+∞
+�
+j=0
+j
+�
+(∆k1f1) · .... · (∆kmfm) ,
+where the �j is taken over all k ∈ Zn
++ such that maxℓ=1,...,m k1 = kkm0 = j
+and
+maxℓ̸=m0 |ℓ − kℓ| < N. Of course, if k < 0 we put ∆kf = 0. Probably �j becomes
+more transparent by restricting to a typical part, which can be taken to be
+� �
+i∈I1
+∆jfi
+� �
+i∈I2
+Qjfi,
+where
+I1, I2 ⊂ {1, ..., m} ,
+I1 ∩ I2 = ∅,
+I1 ∪ I2 = {1, ..., m} = I,
+|I1| ⩾ 2.
+We introduce the following notations
+Π1,k(f1, f2, ..., fm) =
+∞
+�
+j=N
+� �
+i̸=k
+Qj−Nfi
+�
+∆jfk,
+k ∈ I
+and
+Π2 (f1, f2, ..., fm) =
+∞
+�
+j=0
+j
+� � m
+�
+i=1
+∆kifi
+�
+.
+The advantage of the above decomposition is based on
+supp F
+�� �
+i̸=k
+Qj−Nfi
+�
+∆jfk
+�
+⊂
+�
+ξ ∈ Rn : 2j−1 ⩽ |ξ| ⩽ 2j+1�
+,
+j ⩾ N
+and
+supp F
+�
+j
+� � m
+�
+i=1
+∆kifi
+��
+⊂
+�
+ξ ∈ Rn : |ξ| ⩽ 2j+N−2�
+,
+j ∈ N0.
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+7
+Finally, if j ∈ N0, J = J1 ∪ J2 where J1 ⊆ I1 and J2 ⊆ I2, we will use the following
+notation
+˜Qjfi =
+�
+∆jfi,
+if
+i ∈ J1,
+Qjfi,
+if
+i ∈ J2.
+3. Results and their proofs
+We present our results in two different subsections.
+3.1. Products in spaces with positive smoothness. In this subection we deal with the
+case
+0 < s1 < s2 ⩽ s3 ⩽ ... ⩽ sm.
+(3.1)
+The main result of this subsection is the following theorem.
+Theorem 3.2. Let si ∈ R, 1 ⩽ p1 < ∞, 0 < pi ⩽ ∞, i = 2, ..., m and 0 < q ⩽ ∞. Assume
+(3.1) and s1 < n
+p1. Suppose further
+1
+p =
+1
+p1 +
+m
+�
+i=2
+1
+hi < 1,
+(3.3)
+where
+� 1
+pi − si
+n
+�
++ <
+1
+hi ⩽ 1
+pi,
+i = 2, ..., m.
+(3.4)
+Then
+F s1
+p1,q · Bs2
+p2,∞ · ... · Bsm
+pm,∞ ֒→ F s1
+p,q,
+holds.
+Corollary 3.5. Under the hypotheses of Theorem 3.2, then it holds
+F s1
+p1,q · F s2
+p2,∞ · ... · F sm
+pm,∞ ֒→ F s1
+p,q.
+The proof of Corollary 3.5 is immediate because F si
+pi,∞ ֒→ Bsi
+pi,∞, i = 2, 3, ..., m.
+Remark 3.6. Corollary 3.5 is given in [16, Theorem 2.3.3] and [15, Theorem 4.5.2/1].
+Remark 3.7. We see that the condition �m
+i=1 si ⩾ max
+�
+0, �m
+i=1
+n
+pi − n
+�
+, is necessary for
+the pointwise multiplication, see [15, Theorem 4.3.1/2], which is covered by (3.4). For
+multiplication of type Bs1
+p1,q · Bs2
+p2,∞ · ... · Bsm
+pm,∞ ֒→ Bs1
+p,q, once again, we refer the reader to
+the monograph of T. Runst and W. Sickel [15, Chapter 4].
+Proof of Theorem 3.2. We begin by the estimation of Π1,k (f1, f2, ..., fm) .
+Estimation of Π1,k (f1, f2, ..., fm). Lemma 2.6 gives
+��Π1,k(f1, f2, ..., fm) | F s1
+p,q
+�� ⩽ c
+���
+�
+2js1� �
+i̸=k
+Qj−Nfi
+�
+∆jfk
+�
+j⩾N | Lp(ℓq)
+���
+(3.8)
+for any k ∈ I. First observe that
+sup
+j⩾N
+��Qj−Nfi
+��
+vi ⩽ c
+��fi | F 0
+vi,2
+��,
+0 < vi < ∞, i ∈ I.
+(3.9)
+Let 1
+p =
+1
+p1 + �m
+i=2
+1
+ti where
+� 1
+pi − si
+n
+�
++ < 1
+ti ⩽ 1
+pi,
+i ∈ I\{1}.
+We split the estimation into two separate cases.
+
+8
+D. DRIHEM
+• Case 1. k = 1. H¨older’s inequality gives that the right-hand side of (3.8) is dominated
+by
+c
+��f | F s1
+p1,q
+�� �
+i∈I\{1}
+��fi | F 0
+ti,2
+��.
+Since the ti, i ∈ I\{1} may be chosen independent we can sum up and leads to the
+restrictions
+1
+p1 +
+�
+i∈I\{1}
+� 1
+pi − si
+n
+�
++ < 1
+p ⩽
+1
+p1 +
+�
+i∈I\{1}
+1
+pi.
+Whereas is exactly (3.3), combined with (3.4). The estimate can be finished by taking
+into account
+Bsi
+pi,∞ ֒→ F 0
+ti,2,
+i ∈ I\{1}.
+• Case 2.
+k ̸= 1.
+The situation is quite different and more complicated.
+We set
+1
+b =
+1
+pk + �
+i∈I\{1,k}
+1
+ti + 1
+p1 − s1
+n , where
+� 1
+pi − si
+n
+�
++ < 1
+ti ⩽ 1
+pi,
+i ∈ I\{1, k}.
+To prove we additionally do it into the two Subcases 2.1, 2.2 and 2.3.
+• Subcase 2.1.
+n
+pk ⩾ sk or (s1 ⩽
+n
+pk < sk).
+First, assume that p ⩽ b.
+We put
+1
+p =
+1
+pk +�
+i∈I\{1,k}
+1
+ti + 1
+τ with
+1
+p1 − s1
+n ⩽ 1
+τ <
+1
+p1. Thanks to Lemma 2.10/(iv) it is obvious
+that
+��Qj−Nf1
+��
+τ ≲ γk
+��f1 | F s1
+p1,∞
+��,
+j ⩾ N,
+since
+n
+p1 − s1 − n
+τ ⩽ 0, where
+γk =
+�
+j − N + 1,
+if
+p = b,
+1,
+if
+p < b.
+H¨older’s inequality gives
+��Π1,k(f1, f2, ..., fm) | Bs1
+p,min(p,q)
+��
+⩽c
+���
+�
+i∈I\{k}
+sup
+j⩾N
+��Qj−Nfi
+���
+2js1|∆jfk|
+�
+j⩾N | ℓmin(p,q)(Lp)
+���
+⩽c
+�
+i∈I\{1,k}
+��fi | F 0
+ti,2
+����fk | Bsk
+pk,∞
+����f1 | F s1
+p1,∞
+��,
+because of s1 < sk, k ̸= 1. The estimation can be finished by taking into account
+Bs1
+p,min(p,q) ֒→ F s1
+p,q,
+Bsi
+pi,∞ ֒→ F 0
+ti,2,
+i ∈ I\{1, k}.
+(3.10)
+Now, assume that p > b. Let u1 be a positive number satisfying
+max
+�
+0, 1
+p − 1
+pk −
+�
+i∈I\{1,k}
+1
+ti
+�
+<
+1
+u1 <
+1
+p1 − s1
+n .
+We put
+1
+v =
+1
+pk +
+�
+i∈I\{1,k}
+1
+ti + 1
+u1,
+σ = s1 − n
+p + n
+v ,
+β = s1 − n
+p1 + n
+u1.
+These guarantee the embedding
+Bσ
+v,p ֒→ F s1
+p,q.
+(3.11)
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+9
+We need to estimate Π1,k(f1, f2, ..., fm) in Bσ
+v,p spaces. H¨older’s inequality yields that
+2jσ�� �
+i∈I\{k}
+Qj−Nfi · ∆jfk
+��
+v
+(3.12)
+⩽2jσ
+�
+i∈I\{1,k}
+��Qj−Nfi
+��
+ti
+��Qj−Nf1
+��
+u1
+��∆jfk
+��
+pk.
+By Lemmas 2.9 and 2.5 we obtain
+2kβ
+j−N
+�
+l=0
+��∆lf1
+��
+u1 ≲2kβ
+j−N
+�
+l=0
+2−jβ2jβ��∆lf1
+��
+u1
+≲
+��f1 | F β
+u1,∞
+��,
+since β < 0, where the implicit constant is independent of k. Consequently (3.12) is
+dominated by
+c2j(σ−β−sk)
+�
+i∈I\{1,k}
+��fi | F 0
+ti,2
+����fk | Bsk
+pk,∞
+����f | F β
+u1,∞
+��.
+Observe that σ − β − sk < 0, then the last expression in ℓp-quasi-norm is bounded by
+c
+�
+i∈I\{1,k}
+��fi | Bsi
+pi,∞
+����fk | Bsk
+pk,∞
+����f | F β
+u1,∞
+��,
+where we have used the second embedding of (3.10). The desired estimate follows by the
+embeddings (3.11) and F s1
+p1,∞ ֒→ F β
+u1,∞.
+• Subcase 2.2.
+n
+pk < s1 < sk. We have only the case p < b needs to study. As in
+Subcase 2.1 we obtain the desired estimate.
+• Subcase 2.3. We consider the case 1
+p = �m
+i=1
+1
+pi. We need to estimate Π1,k(f1, f2, ..., fm)
+in Bs1
+p,min(p,q) spaces. First observe that
+��Qj−Nfi
+��
+pi ≲
+��fi | F si
+pi,∞
+��,
+j ⩾ N, i ∈ I\{k},
+since si > 0, i ∈ I\{k}, see Lemma 2.10. H¨older’s inequality yields that
+2js�� �
+i∈I\{k}
+Qj−Nfi · ∆jfk
+��
+p
+⩽2j(s−sk)
+�
+i∈I\{k}
+��fi | F si
+pi,∞
+��2jsk��∆jfk
+��
+pk
+for any j ⩾ N. Since s1 < sk, Lemma 2.6 and the first embeddings of (3.10) yield the
+desired estimate.
+Estimation of Π2 (f1, f2, ..., fm). The situation is much more complicated. For simplic-
+ity we put
+1
+t =
+m
+�
+i=1
+1
+pi.
+From (3.3) and (3.4), we get
+s1
+n +
+m
+�
+i=1
+� 1
+pi − si
+n
+�
++ < 1
+p ⩽ 1
+t ⩽ 1.
+The whole estimate is divided to two steps.
+
+10
+D. DRIHEM
+• Step 1. We consider the case si = n
+pi, i ∈ K and si < n
+pi, i ∈ I\K, K ⊊ I. We have
+�
+i∈I\(K∪{1})
+� 1
+pi − si
+n
+�
++ 1
+p1 < 1
+p ⩽ 1
+t.
+(3.13)
+We decompose K ∪ {1} into the disjoint union of K1 and K2, where
+K1 ⊆ I1 and K2 ⊆ I2
+(3.14)
+and I1, I2 are defined in Section 3 (it seem obviously that K1 ⊊ I1 if K2 = I2 and K2 ⊊ I2
+if K1 = I1. Also 1 /∈ K and if 1 ∈ I1 then we have 1 ∈ K1). Due to some technical
+reasons, we split this step into three separate cases.
+• Case 1. I1\K1 ̸= ∅ and I2\K2 ̸= ∅. We continue with the following subcases.
+• Subcase 1.1.
+Assume that
+1
+p1 +
+�
+i∈I1\K1
+� 1
+pi − si
+n
+�
+< 1
+p −
+�
+i∈I2\K2
+� 1
+pi − si
+n
+�
+<
+1
+p1 − s1
+n +
+�
+i∈I1\K1
+1
+pi.
+We put
+1
+p =
+1
+p1 − s1
+n +
+�
+i∈I1\K1
+1
+pi +
+�
+i∈I2\K2
+1
+ti,
+βi = si − n
+pi + n
+ti,
+i ∈ I2\K2,
+where
+s1−�
+i∈I1\K1 si
+n|I2\K2|
+< 1
+ti −
+� 1
+pi − si
+n
+�
+< 0,
+i ∈ I2\K2.
+These are possible since both I1\K1 and I2\K2 are not empty. Thanks to Lemma 2.8 it
+follows
+��Π2(f1, f2, ..., fm) | Bs1
+p,min(p,q)
+�� ⩽ c
+���
+�
+j
+� � m
+�
+i=1
+∆kifi
+��
+| ℓs1
+min(p,q) (Lp)
+���.
+First we see that, Lemma 2.10/(iii)-(iv) yields
+�� ˜Qjf1
+��
+˜p1 ⩽ c uj
+��f1 | Bs1
+p1,∞
+��,
+with
+1
+˜p1 =
+1
+p1 − s1
+n and
+uj =
+�
+1,
+if
+1 ∈ I1,
+j + 1,
+if
+1 ∈ I2.
+(3.15)
+The H¨older inequality yields
+2js1
+���
+j
+� � m
+�
+i=1
+∆kifi
+����
+p
+(3.16)
+⩽c 2js1uj
+��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\K1
+��∆jfi
+��
+pi
+�
+i∈I2\K2
+��Qjfi
+��
+ti
+�
+i∈K
+�� ˜Qjfi
+��
+∞,
+for any j ∈ N0 with c > 0 independent of j. Since βi < 0 for any i ∈ I2\K2, then Lemma
+2.10/(ii)-(iii) gives
+��Qj−Nfi
+��
+ti ⩽ c 2−βij��fi | Bβi
+ti,∞
+��,
+i ∈ I2\K2
+and
+�� ˜Qjfi
+��
+∞ ⩽ c
+��fi | Bn/pi
+pi,∞
+�� ×
+�
+1,
+if
+i ∈ K1\ {1} ,
+j + 1,
+if
+i ∈ K2\ {1} .
+(3.17)
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+11
+Therefore the expression (3.16) is bounded by
+c 2γnju′
+j
+��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\K1
+��fi | Bsi
+pi,∞
+��
+�
+i∈I2\K2
+��fi | Bβi
+ti,∞
+�� �
+i∈K
+��fi | Bn/pi
+pi,∞
+��,
+where for j ∈ N0,
+u′
+j =
+�
+(j + 1)|K2| ,
+if
+1 ∈ I1 or 1 ∈ K2,
+(j + 1)|K2|+1 ,
+if
+1 /∈ K2 and 1 ∈ I2
+(3.18)
+and
+γ =
+�
+i∈I\(K∪{1})
+� 1
+pi − si
+n
+�
++ 1
+p1 − 1
+p.
+Using the embeddings
+F s1
+p,q ֒→ Bs1
+p,min(p,q),
+F s1
+p1,q ֒→ Bs1
+p1,∞
+(3.19)
+and
+Bsi
+pi,∞ ֒→ Bβi
+ti,∞,
+i ∈ I2\K2,
+we obtain that the F s1
+p,q-norm of Π2 (f1, f2, ..., fm) can be estimated by
+c
+��f1 | F s1
+p1,q
+��
+�
+i∈I\(K∪{1})
+��fi | Bsi
+pi,∞
+�� �
+i∈K
+��fi | Bn/pi
+pi,∞
+��,
+in view of the fact that
+�
+2γnju′
+j
+�
+∈ ℓmin(p,q).
+• Subcase 1.2. We consider the case
+1
+p1 − s1
+n +
+�
+i∈I\(K∪{1})
+1
+pi −
+�
+i∈I2\K2
+si
+n ⩽ 1
+p ⩽ 1
+t.
+(3.20)
+First, by H¨older’s inequality and Lemma 2.10/(ii)-(iii), we get
+2js1
+���
+j
+� � m
+�
+i=1
+∆kifi
+����
+t
+⩽c 2js1uj
+��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\K1
+��∆jfi
+��
+pi
+�
+i∈I2\K2
+��Qjfi
+��
+pi
+�
+i∈K
+�� ˜Qjfi
+��
+pi
+⩽c 2j̺uj
+�
+i∈I\K
+��fi | Bsi
+pi,∞
+�� �
+i∈K
+��fi | Bn/pi
+pi,∞
+��,
+j ∈ N0,
+where c > 0 independent of j and
+̺ =
+
+
+
+
+
+−
+�
+i∈I1\{1}
+si,
+if
+1 ∈ I1,
+s1 −
+�
+i∈I1\{1}
+si,
+if
+1 /∈ I1.
+Since, in view of the fact that |I1| ⩾ 2,
+�
+2j̺uj
+�
+∈ ℓmin(p,q),
+and then by (3.19) we conclude the desired estimate. Now let
+1
+t1 =
+1
+p1 − s1
+n +
+�
+i∈I1\K1
+1
+pi +
+�
+i∈I2\K2
+1
+ti,
+where
+1
+ti = 1
+pi − si
+n ,
+i ∈ I2\K2.
+
+12
+D. DRIHEM
+The H¨older inequality yields the estimate (3.16) (with t1 in place of p). Lemma 2.10/(iii)
+gives
+�
+i∈I2\K2
+��Qjfi
+��
+ti ⩽ c (j + 1)|I2\K2|
+�
+i∈I2\K2
+��fi | Bsi
+pi,∞
+��.
+(3.21)
+The last estimate and (3.17) yield that
+2js1
+���
+j
+� � m
+�
+i=1
+∆kifi
+����
+t1 ⩽ c 2γ2nj (j + 1)|I2\K2| u′
+j
+�
+i∈I\K
+��fi | Bsi
+pi,∞
+�� �
+i∈K
+��fi | Bn/pi
+pi,∞
+��,
+where
+γ2 = s1 −
+�
+i∈I1\K1
+si
+and
+�
+u′
+j
+�
+is defined in (3.18). We use the fact that
+�
+2γ2nj (j + 1)|I2\K2| u′
+j
+�
+∈ ℓmin(p,q),
+then the desired estimate can be obtained by the embeddings (3.19). Let fi ∈ Bsi
+pi,∞, i ∈
+{2, ..., m}. Hence
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t,q
+and
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t1,q.
+To cover all p satisfying (3.20) we apply Theorem 2.3 and Remark 2.4. That completes
+the proof of this subcase.
+• Case 2. I1\K1 ̸= ∅
+and I2\K2 = ∅. This case yields K ∪ {1} = I2 ∪ K1, where
+K1 ⊊ I1. Furthermore in view of (3.13), we have
+�
+i∈I1\K1
+� 1
+pi − si
+n
+�
++ 1
+p1 < 1
+p ⩽ 1
+t.
+• Subcase 2.1. Assume that
+�
+i∈I1\K1
+� 1
+pi − si
+n
+�
++ 1
+p1 < 1
+p ⩽
+1
+p1 +
+�
+i∈I1\K1
+1
+pi.
+We set
+1
+p =
+1
+p1 +
+�
+i∈I1\K1
+1
+ti,
+where
+1
+pi − si
+n < 1
+ti ⩽ 1
+pi,
+i ∈ I1\K1.
+The H¨older inequality, (3.17) and Lemma 2.10/(iii), yield
+2js1
+���
+j
+� � m
+�
+i=1
+∆kifi
+����
+p
+⩽c 2js1uj
+��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\K1
+��∆jfi
+��
+ti
+�
+i∈K
+�� ˜Qjfi
+��
+∞
+⩽c 2js1u′′
+j
+��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\K1
+��∆jfi
+��
+ti
+�
+i∈K
+��fi | Bn/pi
+pi,∞
+��
+⩽c 2γ3nju′′
+j
+�
+i∈(I1\K1)∪{1}
+��fi | Bsi
+pi,∞
+�� �
+i∈K
+��fi | Bn/pi
+pi,∞
+��,
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+13
+where c > 0 independent of j, {uj} is defined in (3.15) and for j ∈ N0
+u′′
+j =
+�
+(j + 1)|I2|−1
+if
+1 ∈ I2
+2−s1j (j + 1)|I2|
+if
+1 ∈ I1
+and
+γ3 =
+1
+p1 − 1
+p +
+�
+i∈I1\K1
+� 1
+pi − si
+n
+�
+.
+We take ℓmin(p,q)-quasi-norm and we conclude the desired estimate using (3.19), in view
+of the fact that γ3 < 0.
+• Subcase 2.2. Assume that
+1
+p1 +
+�
+i∈I1\K1
+1
+pi < 1
+p ⩽ 1
+t.
+This case can be covered by the interpolation method given in Subcase 1.2.
+• Case 3. I1\K1 = ∅ and I2\K2 ̸= ∅. This case yields K ∪ {1} = I1 ∪ K2, where
+K2 ⊊ I2. We set I2 = K2 ∪ I3. Therefore, by (3.13), we have
+1
+p1 +
+�
+i∈I3\{1}
+� 1
+pi − si
+n
+�
+< 1
+p ⩽ 1
+t.
+• Subcase 3.1. We consider the case
+1
+p1 < 1
+p −
+�
+i∈I3\{1}
+� 1
+pi − si
+n
+�
+<
+1
+p1 − s1
+n +
+�
+i∈I1\{1}
+1
+pi.
+Let 1 < v < p be such that
+1
+v =
+1
+p1 − s1
+n +
+�
+i∈I3\{1}
+1
+di +
+�
+i∈I1\{1}
+1
+ti,
+where ti > pi, i ∈ I1\ {1} and
+1
+di = 1
+pi − si
+n ,
+i ∈ I3\ {1} .
+We set σ = s1 − n
+p + n
+v . The H¨older inequality and Lemma 2.10/(iii), yield
+2j�
+j
+� � m
+�
+i=1
+∆kifi
+����
+v
+⩽c uj2jσ��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\{1}
+��∆jfi
+��
+ti
+�
+i∈K2\{1}
+��Qjfi
+��
+∞
+�
+i∈I3\{1}
+��Qkfi
+��
+di
+⩽c ηj
+m
+�
+i=1
+��fi | Bsi
+pi,∞
+��,
+where c > 0 independent of j, {uj} is defined in (3.15) and for j ∈ N0
+ηj = 2
+j( n
+p1 +�
+i∈I3\{1}( n
+pi −si)− n
+p ) ×
+�
+(j + 1)|I3| ,
+if
+1 ∈ I1 or 1 ∈ I3,
+(j + 1)|I3|+1 ,
+if
+1 ∈ K2
+.
+Since {ηj} ∈ ℓp and σ > 0 we conclude the desired estimate using Bσ
+v,p ֒→ F s1
+p,q and Lemma
+2.8.
+
+14
+D. DRIHEM
+• Subcase 3.2. We consider the case
+�
+i∈I1\{1}
+1
+pi +
+�
+i∈I3\{1}
+� 1
+pi − si
+n
+�
++ 1
+p1 − s1
+n ⩽ 1
+p ⩽ 1
+t .
+(3.22)
+Let
+1
+t1 be the real number given in the left-hand side of (3.22). First Lemma 2.10/(iii),
+gives the estimate (3.21) for ∞, K2\ {1} and for
+� 1
+pi − si
+n
+�−1, I3\ {1} in place of ti,
+I2\K2 respectively. The H¨older inequality, yields
+2js1
+���
+j
+� � m
+�
+i=1
+∆kifi
+����
+t1 ⩽ c ωj
+m
+�
+i=1
+��fi | Bsi
+pi,∞
+��,
+j ∈ N0,
+where c > 0 independent of j, with
+ωj = (j + 1)|I3\{1}|+|K2\{1}| 2j(s1−�
+i∈I1\{1} si)uj
+for any j ∈ N0. Since {ωj} ∈ ℓmin(p,q), we conclude the desired estimate using (3.19). Let
+fi ∈ Bsi
+pi,∞, i ∈ {2, ..., m}. By a simple modifications of arguments used in Subcase 1.2,
+we get
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t1,q
+and
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t,q.
+Hence by the same interpolation method given in Subcase 1.2, we get the desired result.
+• Step 2. We consider the case si > n
+pi, i ∈ I4 ⊊ I. We have
+I\I4 = {i : si ⩽ n
+pi} = ˜I.
+The desired estimation can be obtained by a simple modifications of arguments used in
+Step 1, where we replace I by ˜I and the fact that
+�� ˜Qjfi
+��
+∞ ⩽ c
+��fi | Bsi
+pi,∞
+��
+for any j ∈ N0 and any 0 < pi ⩽ ∞, i ∈ I4, where the positive constant c is independent
+of j.
+This finishes the proof of Theorem 3.2.
+□
+Remark 3.23. The result of this subsection with m = 2 is given in [4].
+3.2. Products in spaces with negative smoothness. In this subsection we deal with the
+case
+s1 ⩽ 0 < s2 ⩽ s3 ⩽ ... ⩽ sm.
+(3.24)
+The main result is the following statement.
+Theorem 3.25. Let 1 ⩽ p1 < ∞, 0 < pi ⩽ ∞ and 0 < q ⩽ ∞, i = 2, ..., m. Suppose
+further (3.3), (3.4), (3.24) and
+s1 + s2 > 0
+Then
+F s1
+p1,q · Bs2
+p2,∞ · ... · Bsm
+pm,∞ ֒→ F s1
+p,q
+holds.
+Corollary 3.26. Under the hypotheses of Theorem 3.25, then it holds
+F s1
+p1,q · F s2
+p2,∞ · ... · F sm
+pm,∞ ֒→ F s1
+p,q.
+The proof of Corollary 3.26 is immediate because F si
+pi,∞ ֒→ Bsi
+pi,∞, i = 2, ..., m.
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+15
+Remark 3.27. We note that Corollary 3.26 is given in [16, Theorem
+2.4.5] and [15,
+Theorem 4.5.2/1].
+Remark 3.28. As in the preceding subsection, the case m = 2 (with 0 < p, p1 < ∞) in
+this section was treated in[4].
+Proof of Theorem 3.25. In view of the estimation of Π1,k(f1, f2, ..., fm) in the proof
+of Theorem 3.2, it remains to consider Π2 (f1, f2, ..., fm). Indeed, we see that we need
+only to study the case k ̸= 1. Let 1
+p =
+1
+p1 + �m
+i=2
+1
+ti where
+� 1
+pi − si
+n
+�
++ < 1
+ti ⩽ 1
+pi,
+i ∈ I\{1}.
+Our estimate follows by using the estimate (3.9),
+sup
+j⩾N
+��∆jfk
+��
+tk ⩽ c
+��fk | Bsk
+pk,∞
+��.
+and the fact that
+���
+�
+2js1Qj−Nf1
+�
+j⩾N | Lp(ℓq)
+��� ≲
+��f1 | F s1
+p1,q
+��.
+Estimation of Π2(f1, f2, ..., fm). Let K be us in (3.14). For simplicity we put �
+i∈K
+1
+r =
+0 if K = ∅. From (3.3) and (3.4), we get
+s1
+n +
+m
+�
+i=1
+� 1
+pi − si
+n
+�
++ < 1
+p ⩽
+m
+�
+i=1
+1
+pi ⩽ 1.
+(3.29)
+We split estimation into several distinct parts;
+• Step 1. We consider the case si = n
+pi, i ∈ K and si < n
+pi, i ∈ I\K, K ⊊ I. We have
+s1
+n +
+� 1
+p1 − s1
+n
+�
++ =
+1
+p1.
+Again, we decompose K ∪ {1} into the disjoint union of K1 and K2, where K1 ⊆ I1 and
+K2 ⊆ I2, see (3.14). We are forced to consider the following cases separately:
+• Case 1. I1\K1 ̸= ∅ and I2\K2 ̸= ∅. We will divide this case into the following two
+subcases.
+• Subcase 1.1. Here we deal with
+1
+p1 +
+�
+i∈I1\K1
+1
+pi +
+�
+i∈I2\K2
+� 1
+pi − si
+n
+�
+⩽ 1
+p ⩽ 1
+t,
+(3.30)
+where t =
+� �m
+i=1
+1
+pi
+�−1. We choose θ such that −s1 < θ < s2. This guarantees
+Bs1+θ
+p,∞ ֒→ F s1
+p,q.
+(3.31)
+Thanks to Lemma 2.8 it follows
+��Π2(f1, f2, ..., fm) | Bs1+θ
+p,∞
+�� ⩽ c
+���
+�
+j
+� � m
+�
+i=1
+∆kifi
+��
+| ℓs1+θ
+∞
+(Lp)
+���.
+First let
+1
+p0 =
+1
+p1 +
+�
+i∈I1\K1
+1
+pi +
+�
+i∈I2\K2
+1
+ti,
+(3.32)
+where
+ti =
+� 1
+pi − si
+n
+�−1,
+i ∈ I2\K2.
+
+16
+D. DRIHEM
+The same arguments used in Subcase 1.2 in the proof of Theorem 3.2, yield
+2j(s1+θ)���
+j
+� � m
+�
+i=1
+∆kifi
+����
+p0 ⩽ c εj
+�
+i∈I\K
+��fi | Bsi
+pi,∞
+�� �
+i∈K
+��fi | Bn/pi
+pi,∞
+��,
+j ∈ N0,
+where the positive constant c is independent of j and
+εj = 2j(θ−�
+i∈I1\K1 si) (j + 1)|I2\{1}| ,
+j ∈ N0.
+The choice of θ ensure that �
+i∈I1\K1 si−θ > 0, this yields {εj} ∈ ℓ∞. The above estimate,
+combined with the embedding
+F s1
+p1,q ֒→ Bs1
+p1,∞,
+(3.33)
+give
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+p0,q.
+By the same technical above we can prove that
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t,q,
+where fi ∈ Bsi
+pi,∞, i ∈ {2, ..., m}. To cover all p satisfying (3.30) we apply Theorem 2.3
+and Remark 2.4.
+• Subcase 1.2. We consider the case when p in the following range:
+�
+i∈I2\K2
+si
+n <
+1
+p1 +
+�
+i∈I\(K∪{1})
+1
+pi − 1
+p <
+�
+i∈I\(K∪{1})
+si
+n .
+We recall that p0 is given in (3.32). Let α > 0 be such that
+n
+p0 − n
+p <
+�
+i∈I1\K1
+si − α
+and
+α <
+�
+i∈I1\K1
+si + s1.
+We see that
+B
+�
+i∈I1\K1 si+s1−α
+p0,∞
+֒→ B
+s1+ n
+p0 − n
+p
+p0,min(p,q) ֒→ Bs1
+p,min(p,q) ֒→ F s1
+p,q.
+Using the same technical used above, it is not hard to obtain the desired estimate.
+• Case 2. I1\K1 ̸= ∅ and I2\K2 = ∅. Then K ∪ {1} = I2 ∪ {1} ∪ I3 where I3 ⊊ I1.
+This case can be covered by the same arguments as in Case 1. So we omit the details.
+• Case 3. I1\K1 = ∅ and I2\K2 ̸= ∅. To prove we additionally do it into the two
+Substeps 3.1 and 3.2.
+• Subcase 3.1. We begin by the case when p in the following range:
+1
+p1 < 1
+p −
+�
+i∈I2\K2
+� 1
+pi − si
+n
+�
+<
+1
+p1 + s1
+n +
+�
+i∈I1\{1}
+1
+pi.
+• s1 > n
+p − n. Let v > 0 be such that
+1
+p − s1
+n < 1
+v <
+1
+p1 +
+�
+i∈I1\{1}
+1
+pi +
+�
+i∈I2\K2
+� 1
+pi − si
+n
+�
+.
+We set
+1
+v =
+1
+p1 +
+�
+i∈I2\K2
+1
+di +
+�
+i∈I1\{1}
+1
+ti,
+where ti > pi, i ∈ I1\ {1} and
+1
+di =
+1
+pi − si
+n , i ∈ I2\K2. With minor technical changes
+given in Subcase 3.1 in the proof of Theorem 3.2, we can get the desired result.
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+17
+• s1 ⩽ n
+p − n. Let v > 0 be such that
+1
+v =
+1
+p1 +
+�
+i∈I1\{1}
+1
+pi +
+�
+i∈I2\K2
+1
+ti,
+σ = s1 − n
+p + n
+v ,
+(3.34)
+where
+� 1
+pi − si
+n
+�−1 > ti > pi,
+i ∈ I2\K2.
+We have
+B
+n
+v −n+θ
+v,p
+֒→ B
+n
+v −n
+v,p
+֒→ Bσ
+v,p ֒→ F s1
+p,q,
+(3.35)
+where θ > n − n
+v . Therefore for any j ∈ N0,
+2j(n
+v −n+θ)���
+j
+� � m
+�
+i=1
+∆kifi
+����
+v
+⩽c 2jνu′
+j
+��f1 | Bs1
+p1,∞
+��
+�
+i∈I2\K2
+��fi | Bsi
+pi,∞
+��
+�
+i∈I1∪K2
+��fi | Bn/pi
+pi,∞
+��,
+where the positive constant c is independent of j,
+�
+u′
+j
+�
+is defined by (3.18) and
+ν = n
+v − n − s1 −
+�
+i∈I1\{1}
+n
+pi + θ.
+The choice of θ such that ν < 0, yields
+�
+2jν · u′
+j
+�
+∈ ℓp. We conclude the desired estimate
+using (3.33) and (3.35).
+• Subcase 3.2. We consider the case
+�
+i∈I1\{1}
+1
+pi +
+�
+i∈I2\K2
+� 1
+pi − si
+n
+�
++ 1
+p1 + s1
+n ⩽ 1
+p ⩽ 1
+t .
+First let
+1
+v =
+1
+p1 +
+�
+i∈I1\{1}
+� 1
+pi +
+s1
+|I1\{1}|n
+�
++
+�
+i∈I2\K2
+� 1
+pi − si
+n
+�
+.
+Here we observe that
+1
+pi +
+s1
+|I1\{1}|n > 0 for any i ∈ I1\ {1}, since s1 + si > 0 for any
+i ∈ I\ {1}. First Lemma 2.10/(iii), gives
+�
+i∈J2
+��Qjfi
+��
+∞ ⩽ c u′
+j
+�
+i∈K2
+��fi | Bsi
+pi,∞
+��,
+j ∈ N0.
+The H¨older inequality and Lemma 2.10/(iii), yield
+2j(s1+θ)���
+j
+� � m
+�
+i=1
+∆kifi
+����
+v ⩽ c u′
+j2j(θ−�
+i∈I1\{1} n/pi)
+m
+�
+i=1
+��fi | Bsi
+pi,∞
+��,
+j ∈ N0,
+where the positive constant c is independent of j ∈ N0. By taking
+− s1 < θ <
+�
+i∈I1\{1}
+n
+pi,
+(3.36)
+which is possible because of |I1\ {1}| ⩾ 1 and we get
+�
+2j(θ−�
+i∈I1\{1} n/pi)�
+∈ ℓmin(p,q). Let
+fi ∈ Bsi
+pi,∞, i ∈ {2, ..., m}. We conclude the desired estimate using (3.31) and (3.33).
+Therefore,
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+v,q.
+
+18
+D. DRIHEM
+Now if p = t, by a simple modifications of arguments used in Subcase 1.2, we get
+Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t,q.
+Hence by the same interpolation method given above, we get the desired result.
+• Step 2. The following substeps are involved in finding the desired estimate.
+• Substep 2.1. si = n
+pi, i ∈ I\ {1}. In this case we have p < p1. We distinguish between
+the following two cases:
+• Case 1.
+1
+p1 +
+�
+i∈I1\{1}
+1
+pi ⩽ 1
+p ⩽ 1
+t.
+We set
+1
+p =
+1
+p1 +
+�
+i∈I1\{1}
+1
+pi +
+�
+i∈I2\{1}
+1
+ti,
+ti ⩾ pi, i ∈ I2\ {1} .
+It is not hard to obtain
+2j(s1+θ)���
+j
+� � m
+�
+i=1
+∆kifi
+����
+p ⩽ c 2
+j(θ−�
+i∈I1\{1}
+n
+pi )��f1 | Bs1
+p1,∞
+��
+m
+�
+i=2
+��fi | Bn/pi
+pi,∞
+��
+for any j ∈ N0. We choose θ as in (3.36) and using (3.31) and (3.33) we get the desired
+estimate.
+• Case 2.
+1
+p1 < 1
+p <
+1
+p1 +
+�
+i∈I1\{1}
+1
+pi.
+First we see that s1 > n
+p1 − n, see (3.29). Let v > 0 be such that
+max
+�
+1
+p, 1
+p1 − s1
+n
+�
+< 1
+v <
+1
+p1 +
+�
+i∈I1\{1}
+1
+pi.
+We set
+1
+v =
+1
+p1 +
+�
+i∈I1\{1}
+1
+ti,
+ti > pi, i ∈ I1\ {1}
+and θ > 0 such that
+−s1 − n
+v < θ − n
+p < − n
+p1.
+Let σ be as in (3.34). We can prove the following estimates
+2j(σ+θ)���
+j
+� � m
+�
+i=1
+∆kifi
+����
+v ⩽c 2j(σ−s1+θ)��f1 | Bs1
+p1,∞
+��
+�
+i∈I1\{1}
+��∆jfi
+��
+ti
+�
+i∈I2\{1}
+��Qjfi
+��
+∞
+⩽c 2
+j(θ− n
+p + n
+p1 )��f1 | Bs1
+p1,∞
+��
+m
+�
+i=2
+��fi | Bn/pi
+pi,∞
+��,
+j ∈ N0.
+The result follows from (3.31), (3.33) and the fact that
+�
+2
+j(θ− n
+p + n
+p1 )�
+∈ ℓ∞.
+• Substep 2.2. si > n
+pi, i ∈ I3 ⊂ I. If si > n
+pi, i ∈ I3 ⊊ I, we can cover this case by the
+same arguments given in Step 1. Let fi ∈ Bsi
+pi,∞, i ∈ {2, ..., m}. If si > n
+pi, i ∈ I\ {1}, then
+we can prove that Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+t,q. We get Π2(·, f2, ..., fm) : F s1
+p1,q −→ F s1
+p1,q,
+by using the embeddings
+B
+s1+ n
+pi0
++θ
+v,∞
+֒→ F
+s1+ n
+pi0
+v,∞
+֒→ F s1
+p1,q
+
+MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
+19
+for some i0 ∈ I1\ {1} and 1
+v =
+1
+p1 +
+1
+pi0 , with
+−s1 −
+n
+pi0 < θ < si0 −
+n
+pi0 ,
+which is possible because of s1 + s2 > 0.
+We conclude the desired result using the
+interpolation method given in Subcase 1.2 in the proof of Theorem 3.2.
+□
+Remark 3.37. We hope that our results will be used in the theory of function spaces,
+composition operators and partial differential equations. We refer the reader to the paper
+[3] were the authors studied the 2-linear map
+As
+p1,q(Rn, | · |α) · Ar
+p2,q2(Rn, | · |α) ֒→ As
+p,q(Rn, | · |α),
+(3.38)
+induced by
+(f1, f2) −→ f1 · f2,
+with an application to the continuity of pseudodifferential operators on Triebel-Lizorkin
+spaces of power weight. Here As
+p,q(Rn, |·|α) stands for either the Besov space Bs
+p,q(Rn, |·|α)
+or the Triebel-Lizorkin space F s
+p,q(Rn, | · |α). Also, they have proved the necessity of the
+majority assumptions on the parameters.
+Acknowledgement. This work was supported by the General Directorate of Scientific
+Research and Technological Development of Algeria and the General Direction of Higher
+Education and Training (Grant no. C00L03UN280120220004), Algeria.
+References
+[1] H. Amann, Multiplication in Sobolev and Besov spaces. In: Nonlinear Analysis. Scuola Norm. Sup.
+Pisa, 1991, 27-50.
+[2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equa-
+tions, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
+ematical Sciences]. Springer, Heidelberg, 2011.
+[3] H. Brahim Boulares and D. Drihem,
+Multiplication on Besov and Triebel-Lizorkin spaces
+of
+power
+weights,
+Funct.
+Approx.
+Comment.
+Math.
+Advance
+Publication
+1-32,
+2022.
+https://doi.org/10.7169/facm/1991
+[4] D. Drihem and M. Moussai, On the pointwise multiplication in Besov and Triebel-Lizorkin
+spaces.
+Int.
+J.
+Math.
+Math.
+Sci.
+Volume
+2006,
+Article
+ID
+76182,
+Pages
+1-18
+DOI
+10.1155/IJMMS/2006/76182.
+[5] J. Franke, On the spaces F s,q
+p
+of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains.
+Math. Nachr. 125 (1986), 29-68.
+[6] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces. J. Funct.
+Anal. 93 (1990), 34-170.
+[7] B. Hanouzet, Applications bilineaires compatibles avec un systeme a coefficients variables continuite
+dans les espaces de Besov. Comm. Partial. Differential. Equations. 10 (1985), 433-465.
+[8] J. Johnsen, Pointwise multiplication of Besov and Triebel-Lizorkin spaces. Math. Nachr. 175 (1995),
+85-133.
+[9] N. Lindemulder, Pointwise multiplication by the characteristic function of the half-space on
+anisotropic vector-valued function spaces, arXiv: 2105.03087v1.
+[10] J. Marschall, On the boundedness and compactness of nonregular pseudo-differential operators. Math.
+Nachr. 175 (1995), 231-262.
+[11] J. Marschall, Remarks on nonregular pseudo-differential operators. Z. Anal. Anwendungen. 15
+(1996), 109-148.
+[12] V.G. Maz’ya and T.O. Shaposhnikova, Theory of Sobolev multipliers. With Applications to Differ-
+ential and Integral Operators. Springer, 2009.
+[13] M. Meyries, M.C. Veraar, Sharp embedding results for spaces of smooth functions with power weights,
+Studia. Math. 208(3) (2012), 257–293.
+
+20
+D. DRIHEM
+[14] J. Peetre, New Thoughts on Besov Spaces, Duke University Mathematics Series, no. 1, Mathematics
+Department, Duke University, North Carolina, 1976.
+[15] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial
+differential equations. De Gruyter, Berlin, 1996.
+[16] W. Sickel, Pointwise multiplication in Triebel-Lizorkin spaces. Forum Math. 5 (1993), 73-91.
+[17] W. Sickel and H. Triebel, H¨older inequalities and sharp embeddings in function spaces of Bs
+p,q and
+F s
+p,q type. Z. Anal. Anwendungen. 14 (1995), 105-140.
+[18] H. Triebel, Multiplication properties of the spaces Bs
+p,q and F s
+p,q. Quasi-Banach Algabras of func-
+tions. Ann. Mat. Pura. Appl. 113 (1977), 33-42.
+[19] H. Triebel, Multiplication properties of Besov spaces. Ann. Mat. Pura. Appl. 114 (1977), 87-102.
+[20] H. Triebel, Theory of function spaces. Birkh¨auser, Basel, 1983.
+[21] H. Triebel, Theory of function spaces II. Birkh¨auser, Basel, 1992.
+[22] M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces
+of Besov type. J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 33 (1986), 131-174.
+[23] J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J.
+Math. Anal. 36.3 (2004/05), 1014–1030.
+[24] E. Ziedler, Nonlinear functional analysis and its application. Springer-Verlag, Berlin, Heidelberg,
+New York, London, Paris, Tokyo 1990.
+M’sila University, Department of Mathematics, Laboratory of Functional Analysis
+and Geometry of Spaces, M’sila 28000, Algeria.
+Email address: douadidr@yahoo.fr, douadi.drihem@univ-msila.dz
+
diff --git a/r9E1T4oBgHgl3EQfjAT1/content/tmp_files/load_file.txt b/r9E1T4oBgHgl3EQfjAT1/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4f8ffad5edd1891a62a95e8a4400072454441c2e
--- /dev/null
+++ b/r9E1T4oBgHgl3EQfjAT1/content/tmp_files/load_file.txt
@@ -0,0 +1,883 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf,len=882
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='03259v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='FA] 9 Jan 2023 MIXED MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES DOUADI DRIHEM Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This paper is concerned with proving some embeddings of the form F s1 p1,q · Bs2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · Bsm pm,∞ ֒→ F s1 p,q, m ⩾ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The different embeddings obtained here are under certain restrictions on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In particular, we improve some results of pointwise multiplication on Triebel-Lizorkin spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Franke-Jawerth embeddings, the ± - method of Gustaffson-Peetre and the rela- tion between Hardy spaces and Triebel-Lizorkin spaces are the main tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Introduction Approximately 45 years ago Peetre [14] and Triebel [18], [19], independent from each other, have applied a special decomposition of the product f ·g to investigate the product As1 p1,q1 · As2 p2,q2 ֒→ As p,q in case of p1 = p2 = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Here As p,q stands for either the Besov space Bs p,q or the Triebel- Lizorkin space F s p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This method, nowadays called paramultiplication, was applied later on by many authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Concerning earlier contributions to this subject the paper of Ya- mazaki [22] deals with the situation where p1 = p2 = p, whereas Sickel treats the cases with p1 = p2 ̸= p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Hanouzet [7] has investigated p1 ̸= p2 but restricted to Besov spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In the a recent work of Sickel and Triebel the case p1 ̸= p2 is also studied and a rather complete set of necessary conditions is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' A new necessary and sufficient conditions are given in the paper of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Johnsen [8], see also J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Marschall [10] and [11], , see Amann [1] for Sobolev and Besov spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Concerning the case F s1 p1,q1 · Bs2 p2,q2 ֒→ F s p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This case were studied by Franke [5] and Marschall in [10] and [11] with p1 = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In recent paper [4], the case p1 ̸= p is also studied where known sufficient conditions for pointwise multiplication have been improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' More close to this contribution is the book of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Runst, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel [15], see also V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Maz’ya, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Shaponiskova [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The motivation to study the problem of multiplication on function spaces comes from applications to partial differential equations, see for example [23], where estimates of the product on function spaces are handy in dealing with the quadratic nonlinear term in many partial differential equations, see also, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Bahouri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Chemin, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Danchin [2], V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Maz’ya and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Shaposhnikova [12], and Zeidler [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Furthermore, estimates of products of functions have played a key role in investigations of composition operators, see [15, Chapter 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Recently, Meyries and Veraar [13], and Lindemulder [9] considered Besov and Bessel potential spaces Bs p,q(Rn, w), Hs p(Rn, w) with respect to the weight w(x, t) = |t|α, x ∈ Date: January 10, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 46E35, 41A05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Besov space, Triebel-Lizorkin space, ± - method of Gustaffson-Peetre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 1 2 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM Rn−1, t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Under some suitable assumptions on s, p, q and α, they observed that the characteristic function of the half space is a pointwise multiplier for Bs p,q(Rn, w), Hs p(Rn, w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The purpose of this paper is to study the m-linear map F s1 p1,q · As2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · Asm pm,∞ ֒→ F s1 p,q, m ⩾ 2, induced by (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) −→ f1 · f2 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · fm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We want to present here, briefly, the contents of our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In Section 2 we recall the definition of the different spaces and some necessary tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We shall apply the method of paramultilication to decompose the product f1 · f2 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · fm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Products in spaces with positive smoothness are given in subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In Subection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2 the product in space with negative smoothness is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We will adopt the following convention throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' As usual, we denote by Rn the n-dimensional real Euclidean space, N the collection of all natural numbers and N0 = N ∪ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For a multi-index α = (α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', αn) ∈ Nn 0, we write |α| = α1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' + αn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The Euclidean scalar product of x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', xn) and y = (y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', yn) is given by x · y = x1y1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' + xnyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If a ∈ R, then we put a+ = max(0, a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' As usual Lp(Rn) for 0 < p ⩽ ∞ stands for the Lebesgue spaces on Rn for which ��f | Lp(Rn) �� = ��f �� p = � ˆ Rn |f(x)|p dx �1/p < ∞, 0 < p < ∞ and ��f | L∞(Rn) �� = ��f �� ∞ = ess-sup x∈Rn |f(x)| < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' By S(Rn) we denote the Schwartz space of all complex-valued, infinitely differentiable and rapidly decreasing functions on Rn and by S′(Rn) the dual space of all tempered distributions on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We define the Fourier transform of a function f ∈ S(Rn) by F(f)(ξ) = ∧ f(ξ) = (2π)−n/2 ˆ Rn e−ix·ξf(x)dx, ξ ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Its inverse is denoted by F −1f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Both F and F −1 are extended to the dual Schwartz space S′ (Rn) in the usual way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If s ∈ R and 0 < q ⩽ ∞, then ℓs q is the set of all sequences {fj}j∈N0 of complex numbers such that �� {fj}j∈N0 | ℓs q �� = � ∞ � j=0 2jsq |fj|q �1/q < ∞ with the obvious modification if q = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If s = 0 then we shortly denote ℓ0 q by ℓq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If 0 < p, q ⩽ ∞, then the space Lp(ℓq) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' ℓq(Lp)) is the set of the sequences of functions {fj}j∈N0 such that ��{fj}j∈N0 | Lp(ℓq) �� = ��� � ∞ � j=0 |fj|q �1/q��� p < ∞, 0 < p < ∞ � resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' ��{fj}j∈N0 | ℓq(Lp) �� = � ∞ � j=0 ��fj ��q p �1/q < ∞ � , with the obvious modification if q = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 3 Given two quasi-Banach spaces X and Y , we write X ֒→ Y if X ⊂ Y and the natural embedding of X in Y is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We shall use c to denote positive constant which may differ at each appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Functions spaces In this section we present the Fourier analytical definition of Besov and Triebel-Lizorkin spaces and recall their basic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Also, we present some useful results we need along the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We begin by a specific resolution of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let Ψ be a function in S(Rn) satisfying Ψ(x) = 1 for |x| ⩽ 1 and Ψ(x) = 0 for |x| ⩾ 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We put ϕ0(x) = Ψ(x), ϕ1(x) = Ψ(x/2) − Ψ(x) and ϕj(x) = ϕ1(2−j+1x) for j = 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='. Then we have supp ϕj ⊂ {x ∈ Rn : 2j−1 ⩽ |x| ⩽ 3 · 2j−1}, ϕj (x) = 1 for 3·2j−2 ⩽ |x| ⩽ 2j and Ψ(x) + �∞ j=1 ϕj(x) = 1 for all x ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The system of functions {ϕj}j∈N0 is called a smooth dyadic resolution of unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We define the convolution operators ∆j by the following: ∆jf = F −1ϕj ∗ f, j ∈ N and ∆0f = F −1Ψ ∗ f, f ∈ S ′(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Thus we obtain the Littlewood-Paley decomposition f = �∞ j=0 ∆jf of all f ∈ S ′(Rn) (convergence in S ′(Rn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We define the convolution operators Qj, j ∈ N0 by the following: Qjf = F −1Ψj ∗ f, j ∈ N0, where Ψj = Ψ(2−j·), j ∈ N0 and we see that Qjf = j � k=0 ∆kf for any j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Now we present the definition and a summary of basic results for Besov and Triebel- Lizorkin spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In the interest of brevity, we shall only develop those aspects which are relevant for us in the sequel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' More detailed accounts can be found in, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Peetre [14], T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Runst and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel, [15] and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel [16, 17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (i) Let s ∈ R and 0 < p, q ⩽ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The Besov space Bs p,q is the collection of all f ∈ S ′(Rn) such that ��f | Bs p,q �� = ��{∆jf}j∈N0 | ℓs q (Lp) �� < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (ii) Let s ∈ R, 0 < p < ∞ and 0 < q ⩽ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The Triebel-Lizorkin space F s p,q is the collection of all f ∈ S ′(Rn) such that ��f | F s p,q �� = ��{∆jf}j∈N0 | Lp � ℓs q � �� < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Now we give some properties of F s p,q and Bs p,q which are of interest for us, see T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Runst and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel, [15] and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel [16, 17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (i) The spaces Bs p,q and F s p,q are quasi Banach spaces (Banach space in the case p, q ⩾ 1) and in any case S(Rn) ֒→ Bs p,q ֒→ S′(Rn) and S(Rn) ֒→ F s p,q ֒→ S′(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 4 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM (ii) Let si ∈ R, 0 < pi < ∞ (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 0 < pi ⩽ ∞) and 0 < qi ⩽ ∞ (with i = 0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If s0 > s1 and p0 = p1, or s0 ⩾ s1 and s0 − n p0 = s1 − n p1, (q0 ⩽ q1 for Besov space), then it holds F s0 p0, q0 ֒→ F s1 p1, q1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Bs0 p0, q0 ֒→ Bs1 p1, q1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (iii) Let s, si ∈ R, 0 < p, pi < ∞ and 0 < q, qi ⩽ ∞ (with i = 0, 1), such that s0 − n p0 = s − n p = s1 − n p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If s0 > s > s1 and q0 ⩽ p ⩽ q1, or s0 = s = s1, q0 ⩽ min (p, q) and q1 ⩾ max (p, q), then it holds Bs0 p0, q0 ֒→ F s p, q ֒→ Bs1 p1, q1, Franke-Jawerth embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' As usual, by ⟨A0, A1⟩θ we denote the result of the ±-method of Gustaffson-Peetre applied to quasi-Banach spaces A0 and A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The next theorem was proved in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let 0 < θ < 1, 0 < p0, p1 < ∞, 0 < q0, q1 ⩽ ∞ and s0, s1 ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then � F s0 p0, q0, F s1 p1, q1 � θ = F s p, q provided that s = (1 − θ) s0 + θs1, 1 p = 1−θ p0 + θ p1 and 1 q = 1−θ q0 + θ q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The ±-method has the so called interpolation property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Denote by L(A, B) the set of all bounded linear operators from A to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then this means that if T ∈ L(Ai, Bi), i = 1, 2, we have T maps ⟨A0, B0⟩θ into ⟨A1, B1⟩θ and ��T | ⟨A0, B0⟩θ −→ ⟨A1, B1⟩θ �� ⩽ ��T | A0 −→ A1 ��1−θ��T | A0 −→ A1 ��θ, which plays a crucial role in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Now we recall some results which are useful for us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The next lemma is a Hardy-type inequality which is easy to prove.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let 0 < γ < 1 and 0 < q ⩽ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let {εk}k∈N0 be a sequence of positive real numbers, such that ��{εk}k∈N0 | ℓq �� = A < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then the sequence δk = �k j=0 γk−jεj, k ∈ N0 belong to ℓq, and the estimate ��{δk}k∈N0 | ℓq �� ⩽ c A holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The constant c depends only on γ and q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let γ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For any sequence {fj}j∈N0 of functions such that supp ∧ fj ⊂ {ξ ∈ Rn : γ−12j ⩽ |ξ| ⩽ γ2j} we have ��� ∞ � j=0 fj | F s p,q ��� ⩽ c ��{2jsfj}j∈N0 | Lp(ℓq) �� if p < ∞ and ��� ∞ � j=0 fj | Bs p,q ��� ⩽ c ��{2jsfj}j∈N0 | ℓq(Lp) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='7) The constant c depends on s, n, p and γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let γ > 1, 0 < p, q ⩽ ∞ and s > n( 1 p − 1)+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For any sequence {fj}j∈N0 of functions such that supp ∧ fj ⊂ {ξ ∈ Rn : |ξ| ⩽ γ2j}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='7) remains true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 5 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let 0 < p ⩽ q ⩽ ∞ and γ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then there exists a constant c = c(n, p, q) > 0 such that for all f ∈ Lp with supp �f ⊂ {ξ ∈ Rn : |ξ| ⩽ γ}, one has ��f �� q ⩽ c γn( 1 p − 1 q )��f �� p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='6, we can see [15], while the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8 is given in [11, Lemma 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='9, see [20, Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let s ∈ R and 0 < p < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (i) We have �� sup j∈N |Qjf| �� p ⩽ c ��f | F 0 p,2 ��, for all f ∈ F 0 p,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (ii) Let j ∈ N0 and f ∈ Bs p,∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then there exists a positive constant c, independent of j, such that ��Qjf �� p ⩽ c εj ��f | Bs p,∞ ��, where εj = \uf8f1 \uf8f2 \uf8f3 2−js, if s < 0, 1, if s > 0, (j + 1) 1 min(1,p) , if s = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (iii) Let 0 < p ⩽ t ⩽ ∞, j ∈ N0 and f ∈ Bs p,∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then ��∆jf �� t ⩽ c 2( n p − n t −s)j��f | Bs p,∞ ��, where the positive constant c is independent of j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (iv) We have ��Qjf �� t ⩽ c εj ��f | Bs p,∞ ��, for all j ∈ N0, all f ∈ Bs p,∞ and all p < t ⩽ 1 ( 1 p − s n)+, where εj = \uf8f1 \uf8f2 \uf8f3 1, if p < t < 1 ( 1 p − s n)+, (j + 1) 1 min(1,t), if t = 1 ( 1 p − s n )+ and the positive constant c is independent of j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (i) follows from the equality between the local Hardy spaces hp and F 0 p,2, (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' see [20, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 37, and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8/1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For (ii), it is sufficient to see that ��Qjf ��τ p ⩽ j � i=0 2−sτi2sτi��∆if ��τ p ⩽ c ετ j ��f | Bs p,∞ ��τ, j ∈ N0, τ = min(1, p) where if s < 0 we have used Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Now Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='9 gives ��∆jf �� t ⩽ c 2 (n p − n t )j��∆jf �� p ⩽ c 2 (n p − n t −s)j��f | Bs p,∞ �� and ��Qjf ��τ t ⩽ c j � i=0 2 (n p − n t −s)τi2sτi��∆if ��τ p ⩽ c ετ j ��f | Bs p,∞ ��τ, j ∈ N0, τ = min(1, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Thus we complete the proof of (iii) and (iv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' □ 6 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Decomposition of the product m� i=1 fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For all fi ∈ S′(Rn), i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m the product �m i=1 fi is defined by m � i=1 fi = lim j→∞ m � i=1 Qjfi, if the limit on the right-hand side exists in S′(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The following decomposition of this product is given in [16, pages 77-78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We have the following formal decomposition: m � i=1 fi = ∞ � k1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=',km=0 m � i=1 (∆kifi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The fundamental idea is to split �m i=1 fi into two parts, both of them being always defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let N be a natural number greater than 1 + log2 3 (m − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then we have the following decomposition: m � i=1 fi = ∞ � j=0 [Qj−Nf1 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · Qj−Nfm−1 · ∆jfm + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' + (Πl̸=kQj−Nfl) ∆kfj + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' + ∆jf1 · Qj−Nf2 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='. · Qj−Nfm] + ∞ � j=0 j � (∆k1f1) · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='. · (∆kmfm) , where the �j is taken over all k ∈ Zn + such that maxℓ=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=',m k1 = kkm0 = j and maxℓ̸=m0 |ℓ − kℓ| < N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Of course, if k < 0 we put ∆kf = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Probably �j becomes more transparent by restricting to a typical part, which can be taken to be � � i∈I1 ∆jfi � � i∈I2 Qjfi, where I1, I2 ⊂ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m} , I1 ∩ I2 = ∅, I1 ∪ I2 = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m} = I, |I1| ⩾ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We introduce the following notations Π1,k(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) = ∞ � j=N � � i̸=k Qj−Nfi � ∆jfk, k ∈ I and Π2 (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) = ∞ � j=0 j � � m � i=1 ∆kifi � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The advantage of the above decomposition is based on supp F �� � i̸=k Qj−Nfi � ∆jfk � ⊂ � ξ ∈ Rn : 2j−1 ⩽ |ξ| ⩽ 2j+1� , j ⩾ N and supp F � j � � m � i=1 ∆kifi �� ⊂ � ξ ∈ Rn : |ξ| ⩽ 2j+N−2� , j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 7 Finally, if j ∈ N0, J = J1 ∪ J2 where J1 ⊆ I1 and J2 ⊆ I2, we will use the following notation ˜Qjfi = � ∆jfi, if i ∈ J1, Qjfi, if i ∈ J2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Results and their proofs We present our results in two different subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Products in spaces with positive smoothness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In this subection we deal with the case 0 < s1 < s2 ⩽ s3 ⩽ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' ⩽ sm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1) The main result of this subsection is the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let si ∈ R, 1 ⩽ p1 < ∞, 0 < pi ⩽ ∞, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m and 0 < q ⩽ ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Assume (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1) and s1 < n p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Suppose further 1 p = 1 p1 + m � i=2 1 hi < 1, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3) where � 1 pi − si n � + < 1 hi ⩽ 1 pi, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4) Then F s1 p1,q · Bs2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · Bsm pm,∞ ֒→ F s1 p,q, holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Under the hypotheses of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, then it holds F s1 p1,q · F s2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · F sm pm,∞ ֒→ F s1 p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The proof of Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5 is immediate because F si pi,∞ ֒→ Bsi pi,∞, i = 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5 is given in [16, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3] and [15, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2/1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We see that the condition �m i=1 si ⩾ max � 0, �m i=1 n pi − n � , is necessary for the pointwise multiplication, see [15, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1/2], which is covered by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For multiplication of type Bs1 p1,q · Bs2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · Bsm pm,∞ ֒→ Bs1 p,q, once again, we refer the reader to the monograph of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Runst and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel [15, Chapter 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We begin by the estimation of Π1,k (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Estimation of Π1,k (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='6 gives ��Π1,k(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) | F s1 p,q �� ⩽ c ��� � 2js1� � i̸=k Qj−Nfi � ∆jfk � j⩾N | Lp(ℓq) ��� (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8) for any k ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First observe that sup j⩾N ��Qj−Nfi �� vi ⩽ c ��fi | F 0 vi,2 ��, 0 < vi < ∞, i ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='9) Let 1 p = 1 p1 + �m i=2 1 ti where � 1 pi − si n � + < 1 ti ⩽ 1 pi, i ∈ I\\{1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We split the estimation into two separate cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 8 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' k = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' H¨older’s inequality gives that the right-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8) is dominated by c ��f | F s1 p1,q �� � i∈I\\{1} ��fi | F 0 ti,2 ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Since the ti, i ∈ I\\{1} may be chosen independent we can sum up and leads to the restrictions 1 p1 + � i∈I\\{1} � 1 pi − si n � + < 1 p ⩽ 1 p1 + � i∈I\\{1} 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Whereas is exactly (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3), combined with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The estimate can be finished by taking into account Bsi pi,∞ ֒→ F 0 ti,2, i ∈ I\\{1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' k ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The situation is quite different and more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set 1 b = 1 pk + � i∈I\\{1,k} 1 ti + 1 p1 − s1 n , where � 1 pi − si n � + < 1 ti ⩽ 1 pi, i ∈ I\\{1, k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' To prove we additionally do it into the two Subcases 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' n pk ⩾ sk or (s1 ⩽ n pk < sk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First, assume that p ⩽ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We put 1 p = 1 pk +� i∈I\\{1,k} 1 ti + 1 τ with 1 p1 − s1 n ⩽ 1 τ < 1 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Thanks to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iv) it is obvious that ��Qj−Nf1 �� τ ≲ γk ��f1 | F s1 p1,∞ ��, j ⩾ N, since n p1 − s1 − n τ ⩽ 0, where γk = � j − N + 1, if p = b, 1, if p < b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' H¨older’s inequality gives ��Π1,k(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) | Bs1 p,min(p,q) �� ⩽c ��� � i∈I\\{k} sup j⩾N ��Qj−Nfi ��� 2js1|∆jfk| � j⩾N | ℓmin(p,q)(Lp) ��� ⩽c � i∈I\\{1,k} ��fi | F 0 ti,2 ����fk | Bsk pk,∞ ����f1 | F s1 p1,∞ ��, because of s1 < sk, k ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The estimation can be finished by taking into account Bs1 p,min(p,q) ֒→ F s1 p,q, Bsi pi,∞ ֒→ F 0 ti,2, i ∈ I\\{1, k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10) Now, assume that p > b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let u1 be a positive number satisfying max � 0, 1 p − 1 pk − � i∈I\\{1,k} 1 ti � < 1 u1 < 1 p1 − s1 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We put 1 v = 1 pk + � i∈I\\{1,k} 1 ti + 1 u1, σ = s1 − n p + n v , β = s1 − n p1 + n u1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' These guarantee the embedding Bσ v,p ֒→ F s1 p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='11) MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 9 We need to estimate Π1,k(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) in Bσ v,p spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' H¨older’s inequality yields that 2jσ�� � i∈I\\{k} Qj−Nfi · ∆jfk �� v (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='12) ⩽2jσ � i∈I\\{1,k} ��Qj−Nfi �� ti ��Qj−Nf1 �� u1 ��∆jfk �� pk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' By Lemmas 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='9 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5 we obtain 2kβ j−N � l=0 ��∆lf1 �� u1 ≲2kβ j−N � l=0 2−jβ2jβ��∆lf1 �� u1 ≲ ��f1 | F β u1,∞ ��, since β < 0, where the implicit constant is independent of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Consequently (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='12) is dominated by c2j(σ−β−sk) � i∈I\\{1,k} ��fi | F 0 ti,2 ����fk | Bsk pk,∞ ����f | F β u1,∞ ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Observe that σ − β − sk < 0, then the last expression in ℓp-quasi-norm is bounded by c � i∈I\\{1,k} ��fi | Bsi pi,∞ ����fk | Bsk pk,∞ ����f | F β u1,∞ ��, where we have used the second embedding of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The desired estimate follows by the embeddings (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='11) and F s1 p1,∞ ֒→ F β u1,∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' n pk < s1 < sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We have only the case p < b needs to study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' As in Subcase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1 we obtain the desired estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case 1 p = �m i=1 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We need to estimate Π1,k(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) in Bs1 p,min(p,q) spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First observe that ��Qj−Nfi �� pi ≲ ��fi | F si pi,∞ ��, j ⩾ N, i ∈ I\\{k}, since si > 0, i ∈ I\\{k}, see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' H¨older’s inequality yields that 2js�� � i∈I\\{k} Qj−Nfi · ∆jfk �� p ⩽2j(s−sk) � i∈I\\{k} ��fi | F si pi,∞ ��2jsk��∆jfk �� pk for any j ⩾ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Since s1 < sk, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='6 and the first embeddings of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10) yield the desired estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Estimation of Π2 (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The situation is much more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For simplic- ity we put 1 t = m � i=1 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4), we get s1 n + m � i=1 � 1 pi − si n � + < 1 p ⩽ 1 t ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The whole estimate is divided to two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 10 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case si = n pi, i ∈ K and si < n pi, i ∈ I\\K, K ⊊ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We have � i∈I\\(K∪{1}) � 1 pi − si n � + 1 p1 < 1 p ⩽ 1 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='13) We decompose K ∪ {1} into the disjoint union of K1 and K2, where K1 ⊆ I1 and K2 ⊆ I2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='14) and I1, I2 are defined in Section 3 (it seem obviously that K1 ⊊ I1 if K2 = I2 and K2 ⊊ I2 if K1 = I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Also 1 /∈ K and if 1 ∈ I1 then we have 1 ∈ K1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Due to some technical reasons, we split this step into three separate cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' I1\\K1 ̸= ∅ and I2\\K2 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We continue with the following subcases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Assume that 1 p1 + � i∈I1\\K1 � 1 pi − si n � < 1 p − � i∈I2\\K2 � 1 pi − si n � < 1 p1 − s1 n + � i∈I1\\K1 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We put 1 p = 1 p1 − s1 n + � i∈I1\\K1 1 pi + � i∈I2\\K2 1 ti, βi = si − n pi + n ti, i ∈ I2\\K2, where s1−� i∈I1\\K1 si n|I2\\K2| < 1 ti − � 1 pi − si n � < 0, i ∈ I2\\K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' These are possible since both I1\\K1 and I2\\K2 are not empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Thanks to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8 it follows ��Π2(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) | Bs1 p,min(p,q) �� ⩽ c ��� � j � � m � i=1 ∆kifi �� | ℓs1 min(p,q) (Lp) ���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First we see that, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii)-(iv) yields �� ˜Qjf1 �� ˜p1 ⩽ c uj ��f1 | Bs1 p1,∞ ��, with 1 ˜p1 = 1 p1 − s1 n and uj = � 1, if 1 ∈ I1, j + 1, if 1 ∈ I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='15) The H¨older inequality yields 2js1 ��� j � � m � i=1 ∆kifi ���� p (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='16) ⩽c 2js1uj ��f1 | Bs1 p1,∞ �� � i∈I1\\K1 ��∆jfi �� pi � i∈I2\\K2 ��Qjfi �� ti � i∈K �� ˜Qjfi �� ∞, for any j ∈ N0 with c > 0 independent of j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Since βi < 0 for any i ∈ I2\\K2, then Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(ii)-(iii) gives ��Qj−Nfi �� ti ⩽ c 2−βij��fi | Bβi ti,∞ ��, i ∈ I2\\K2 and �� ˜Qjfi �� ∞ ⩽ c ��fi | Bn/pi pi,∞ �� × � 1, if i ∈ K1\\ {1} , j + 1, if i ∈ K2\\ {1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='17) MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 11 Therefore the expression (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='16) is bounded by c 2γnju′ j ��f1 | Bs1 p1,∞ �� � i∈I1\\K1 ��fi | Bsi pi,∞ �� � i∈I2\\K2 ��fi | Bβi ti,∞ �� � i∈K ��fi | Bn/pi pi,∞ ��, where for j ∈ N0, u′ j = � (j + 1)|K2| , if 1 ∈ I1 or 1 ∈ K2, (j + 1)|K2|+1 , if 1 /∈ K2 and 1 ∈ I2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='18) and γ = � i∈I\\(K∪{1}) � 1 pi − si n � + 1 p1 − 1 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Using the embeddings F s1 p,q ֒→ Bs1 p,min(p,q), F s1 p1,q ֒→ Bs1 p1,∞ (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='19) and Bsi pi,∞ ֒→ Bβi ti,∞, i ∈ I2\\K2, we obtain that the F s1 p,q-norm of Π2 (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) can be estimated by c ��f1 | F s1 p1,q �� � i∈I\\(K∪{1}) ��fi | Bsi pi,∞ �� � i∈K ��fi | Bn/pi pi,∞ ��, in view of the fact that � 2γnju′ j � ∈ ℓmin(p,q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case 1 p1 − s1 n + � i∈I\\(K∪{1}) 1 pi − � i∈I2\\K2 si n ⩽ 1 p ⩽ 1 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='20) First, by H¨older’s inequality and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(ii)-(iii), we get 2js1 ��� j � � m � i=1 ∆kifi ���� t ⩽c 2js1uj ��f1 | Bs1 p1,∞ �� � i∈I1\\K1 ��∆jfi �� pi � i∈I2\\K2 ��Qjfi �� pi � i∈K �� ˜Qjfi �� pi ⩽c 2j̺uj � i∈I\\K ��fi | Bsi pi,∞ �� � i∈K ��fi | Bn/pi pi,∞ ��, j ∈ N0, where c > 0 independent of j and ̺ = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 − � i∈I1\\{1} si, if 1 ∈ I1, s1 − � i∈I1\\{1} si, if 1 /∈ I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Since, in view of the fact that |I1| ⩾ 2, � 2j̺uj � ∈ ℓmin(p,q), and then by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='19) we conclude the desired estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Now let 1 t1 = 1 p1 − s1 n + � i∈I1\\K1 1 pi + � i∈I2\\K2 1 ti, where 1 ti = 1 pi − si n , i ∈ I2\\K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 12 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM The H¨older inequality yields the estimate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='16) (with t1 in place of p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii) gives � i∈I2\\K2 ��Qjfi �� ti ⩽ c (j + 1)|I2\\K2| � i∈I2\\K2 ��fi | Bsi pi,∞ ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='21) The last estimate and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='17) yield that 2js1 ��� j � � m � i=1 ∆kifi ���� t1 ⩽ c 2γ2nj (j + 1)|I2\\K2| u′ j � i∈I\\K ��fi | Bsi pi,∞ �� � i∈K ��fi | Bn/pi pi,∞ ��, where γ2 = s1 − � i∈I1\\K1 si and � u′ j � is defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We use the fact that � 2γ2nj (j + 1)|I2\\K2| u′ j � ∈ ℓmin(p,q), then the desired estimate can be obtained by the embeddings (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let fi ∈ Bsi pi,∞, i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Hence Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t,q and Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t1,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' To cover all p satisfying (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='20) we apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3 and Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' That completes the proof of this subcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' I1\\K1 ̸= ∅ and I2\\K2 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This case yields K ∪ {1} = I2 ∪ K1, where K1 ⊊ I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Furthermore in view of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='13), we have � i∈I1\\K1 � 1 pi − si n � + 1 p1 < 1 p ⩽ 1 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Assume that � i∈I1\\K1 � 1 pi − si n � + 1 p1 < 1 p ⩽ 1 p1 + � i∈I1\\K1 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set 1 p = 1 p1 + � i∈I1\\K1 1 ti, where 1 pi − si n < 1 ti ⩽ 1 pi, i ∈ I1\\K1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The H¨older inequality, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='17) and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii), yield 2js1 ��� j � � m � i=1 ∆kifi ���� p ⩽c 2js1uj ��f1 | Bs1 p1,∞ �� � i∈I1\\K1 ��∆jfi �� ti � i∈K �� ˜Qjfi �� ∞ ⩽c 2js1u′′ j ��f1 | Bs1 p1,∞ �� � i∈I1\\K1 ��∆jfi �� ti � i∈K ��fi | Bn/pi pi,∞ �� ⩽c 2γ3nju′′ j � i∈(I1\\K1)∪{1} ��fi | Bsi pi,∞ �� � i∈K ��fi | Bn/pi pi,∞ ��, MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 13 where c > 0 independent of j, {uj} is defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='15) and for j ∈ N0 u′′ j = � (j + 1)|I2|−1 if 1 ∈ I2 2−s1j (j + 1)|I2| if 1 ∈ I1 and γ3 = 1 p1 − 1 p + � i∈I1\\K1 � 1 pi − si n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We take ℓmin(p,q)-quasi-norm and we conclude the desired estimate using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='19), in view of the fact that γ3 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Assume that 1 p1 + � i∈I1\\K1 1 pi < 1 p ⩽ 1 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This case can be covered by the interpolation method given in Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' I1\\K1 = ∅ and I2\\K2 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This case yields K ∪ {1} = I1 ∪ K2, where K2 ⊊ I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set I2 = K2 ∪ I3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Therefore, by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='13), we have 1 p1 + � i∈I3\\{1} � 1 pi − si n � < 1 p ⩽ 1 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case 1 p1 < 1 p − � i∈I3\\{1} � 1 pi − si n � < 1 p1 − s1 n + � i∈I1\\{1} 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let 1 < v < p be such that 1 v = 1 p1 − s1 n + � i∈I3\\{1} 1 di + � i∈I1\\{1} 1 ti, where ti > pi, i ∈ I1\\ {1} and 1 di = 1 pi − si n , i ∈ I3\\ {1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set σ = s1 − n p + n v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The H¨older inequality and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii), yield 2jσ��� j � � m � i=1 ∆kifi ���� v ⩽c uj2jσ��f1 | Bs1 p1,∞ �� � i∈I1\\{1} ��∆jfi �� ti � i∈K2\\{1} ��Qjfi �� ∞ � i∈I3\\{1} ��Qkfi �� di ⩽c ηj m � i=1 ��fi | Bsi pi,∞ ��, where c > 0 independent of j, {uj} is defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='15) and for j ∈ N0 ηj = 2 j( n p1 +� i∈I3\\{1}( n pi −si)− n p ) × � (j + 1)|I3| , if 1 ∈ I1 or 1 ∈ I3, (j + 1)|I3|+1 , if 1 ∈ K2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Since {ηj} ∈ ℓp and σ > 0 we conclude the desired estimate using Bσ v,p ֒→ F s1 p,q and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 14 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM Subcase 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case � i∈I1\\{1} 1 pi + � i∈I3\\{1} � 1 pi − si n � + 1 p1 − s1 n ⩽ 1 p ⩽ 1 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='22) Let 1 t1 be the real number given in the left-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii), gives the estimate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='21) for ∞, K2\\ {1} and for � 1 pi − si n �−1, I3\\ {1} in place of ti, I2\\K2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The H¨older inequality, yields 2js1 ��� j � � m � i=1 ∆kifi ���� t1 ⩽ c ωj m � i=1 ��fi | Bsi pi,∞ ��, j ∈ N0, where c > 0 independent of j, with ωj = (j + 1)|I3\\{1}|+|K2\\{1}| 2j(s1−� i∈I1\\{1} si)uj for any j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Since {ωj} ∈ ℓmin(p,q), we conclude the desired estimate using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let fi ∈ Bsi pi,∞, i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' By a simple modifications of arguments used in Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, we get Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t1,q and Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Hence by the same interpolation method given in Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, we get the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case si > n pi, i ∈ I4 ⊊ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We have I\\I4 = {i : si ⩽ n pi} = ˜I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The desired estimation can be obtained by a simple modifications of arguments used in Step 1, where we replace I by ˜I and the fact that �� ˜Qjfi �� ∞ ⩽ c ��fi | Bsi pi,∞ �� for any j ∈ N0 and any 0 < pi ⩽ ∞, i ∈ I4, where the positive constant c is independent of j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This finishes the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The result of this subsection with m = 2 is given in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Products in spaces with negative smoothness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In this subsection we deal with the case s1 ⩽ 0 < s2 ⩽ s3 ⩽ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' ⩽ sm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='24) The main result is the following statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let 1 ⩽ p1 < ∞, 0 < pi ⩽ ∞ and 0 < q ⩽ ∞, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Suppose further (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='24) and s1 + s2 > 0 Then F s1 p1,q · Bs2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · Bsm pm,∞ ֒→ F s1 p,q holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Under the hypotheses of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='25, then it holds F s1 p1,q · F s2 p2,∞ · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' · F sm pm,∞ ֒→ F s1 p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The proof of Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='26 is immediate because F si pi,∞ ֒→ Bsi pi,∞, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 15 Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We note that Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='26 is given in [16, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5] and [15, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2/1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' As in the preceding subsection, the case m = 2 (with 0 < p, p1 < ∞) in this section was treated in[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In view of the estimation of Π1,k(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, it remains to consider Π2 (f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Indeed, we see that we need only to study the case k ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let 1 p = 1 p1 + �m i=2 1 ti where � 1 pi − si n � + < 1 ti ⩽ 1 pi, i ∈ I\\{1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Our estimate follows by using the estimate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='9), sup j⩾N ��∆jfk �� tk ⩽ c ��fk | Bsk pk,∞ ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' and the fact that ��� � 2js1Qj−Nf1 � j⩾N | Lp(ℓq) ��� ≲ ��f1 | F s1 p1,q ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Estimation of Π2(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let K be us in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' For simplicity we put � i∈K 1 r = 0 if K = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' From (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4), we get s1 n + m � i=1 � 1 pi − si n � + < 1 p ⩽ m � i=1 1 pi ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='29) We split estimation into several distinct parts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case si = n pi, i ∈ K and si < n pi, i ∈ I\\K, K ⊊ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We have s1 n + � 1 p1 − s1 n � + = 1 p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Again, we decompose K ∪ {1} into the disjoint union of K1 and K2, where K1 ⊆ I1 and K2 ⊆ I2, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We are forced to consider the following cases separately: Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' I1\\K1 ̸= ∅ and I2\\K2 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We will divide this case into the following two subcases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Here we deal with 1 p1 + � i∈I1\\K1 1 pi + � i∈I2\\K2 � 1 pi − si n � ⩽ 1 p ⩽ 1 t, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='30) where t = � �m i=1 1 pi �−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We choose θ such that −s1 < θ < s2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This guarantees Bs1+θ p,∞ ֒→ F s1 p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='31) Thanks to Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='8 it follows ��Π2(f1, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) | Bs1+θ p,∞ �� ⩽ c ��� � j � � m � i=1 ∆kifi �� | ℓs1+θ ∞ (Lp) ���.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First let 1 p0 = 1 p1 + � i∈I1\\K1 1 pi + � i∈I2\\K2 1 ti, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='32) where ti = � 1 pi − si n �−1, i ∈ I2\\K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 16 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM The same arguments used in Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2 in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, yield 2j(s1+θ)��� j � � m � i=1 ∆kifi ���� p0 ⩽ c εj � i∈I\\K ��fi | Bsi pi,∞ �� � i∈K ��fi | Bn/pi pi,∞ ��, j ∈ N0, where the positive constant c is independent of j and εj = 2j(θ−� i∈I1\\K1 si) (j + 1)|I2\\{1}| , j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The choice of θ ensure that � i∈I1\\K1 si−θ > 0, this yields {εj} ∈ ℓ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The above estimate, combined with the embedding F s1 p1,q ֒→ Bs1 p1,∞, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='33) give Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 p0,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' By the same technical above we can prove that Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t,q, where fi ∈ Bsi pi,∞, i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' To cover all p satisfying (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='30) we apply Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3 and Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case when p in the following range: � i∈I2\\K2 si n < 1 p1 + � i∈I\\(K∪{1}) 1 pi − 1 p < � i∈I\\(K∪{1}) si n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We recall that p0 is given in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let α > 0 be such that n p0 − n p < � i∈I1\\K1 si − α and α < � i∈I1\\K1 si + s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We see that B � i∈I1\\K1 si+s1−α p0,∞ ֒→ B s1+ n p0 − n p p0,min(p,q) ֒→ Bs1 p,min(p,q) ֒→ F s1 p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Using the same technical used above, it is not hard to obtain the desired estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' I1\\K1 ̸= ∅ and I2\\K2 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Then K ∪ {1} = I2 ∪ {1} ∪ I3 where I3 ⊊ I1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This case can be covered by the same arguments as in Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' So we omit the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' I1\\K1 = ∅ and I2\\K2 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' To prove we additionally do it into the two Substeps 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We begin by the case when p in the following range: 1 p1 < 1 p − � i∈I2\\K2 � 1 pi − si n � < 1 p1 + s1 n + � i∈I1\\{1} 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' s1 > n p − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let v > 0 be such that 1 p − s1 n < 1 v < 1 p1 + � i∈I1\\{1} 1 pi + � i∈I2\\K2 � 1 pi − si n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set 1 v = 1 p1 + � i∈I2\\K2 1 di + � i∈I1\\{1} 1 ti, where ti > pi, i ∈ I1\\ {1} and 1 di = 1 pi − si n , i ∈ I2\\K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' With minor technical changes given in Subcase 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1 in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, we can get the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 17 s1 ⩽ n p − n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let v > 0 be such that 1 v = 1 p1 + � i∈I1\\{1} 1 pi + � i∈I2\\K2 1 ti, σ = s1 − n p + n v , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='34) where � 1 pi − si n �−1 > ti > pi, i ∈ I2\\K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We have B n v −n+θ v,p ֒→ B n v −n v,p ֒→ Bσ v,p ֒→ F s1 p,q, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='35) where θ > n − n v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Therefore for any j ∈ N0, 2j(n v −n+θ)��� j � � m � i=1 ∆kifi ���� v ⩽c 2jνu′ j ��f1 | Bs1 p1,∞ �� � i∈I2\\K2 ��fi | Bsi pi,∞ �� � i∈I1∪K2 ��fi | Bn/pi pi,∞ ��, where the positive constant c is independent of j, � u′ j � is defined by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='18) and ν = n v − n − s1 − � i∈I1\\{1} n pi + θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The choice of θ such that ν < 0, yields � 2jν · u′ j � ∈ ℓp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We conclude the desired estimate using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='33) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Subcase 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We consider the case � i∈I1\\{1} 1 pi + � i∈I2\\K2 � 1 pi − si n � + 1 p1 + s1 n ⩽ 1 p ⩽ 1 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First let 1 v = 1 p1 + � i∈I1\\{1} � 1 pi + s1 |I1\\{1}|n � + � i∈I2\\K2 � 1 pi − si n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Here we observe that 1 pi + s1 |I1\\{1}|n > 0 for any i ∈ I1\\ {1}, since s1 + si > 0 for any i ∈ I\\ {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii), gives � i∈J2 ��Qjfi �� ∞ ⩽ c u′ j � i∈K2 ��fi | Bsi pi,∞ ��, j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The H¨older inequality and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='10/(iii), yield 2j(s1+θ)��� j � � m � i=1 ∆kifi ���� v ⩽ c u′ j2j(θ−� i∈I1\\{1} n/pi) m � i=1 ��fi | Bsi pi,∞ ��, j ∈ N0, where the positive constant c is independent of j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' By taking − s1 < θ < � i∈I1\\{1} n pi, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='36) which is possible because of |I1\\ {1}| ⩾ 1 and we get � 2j(θ−� i∈I1\\{1} n/pi)� ∈ ℓmin(p,q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let fi ∈ Bsi pi,∞, i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We conclude the desired estimate using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='31) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Therefore, Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 v,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 18 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM Now if p = t, by a simple modifications of arguments used in Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2, we get Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Hence by the same interpolation method given above, we get the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The following substeps are involved in finding the desired estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Substep 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' si = n pi, i ∈ I\\ {1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In this case we have p < p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We distinguish between the following two cases: Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 1 p1 + � i∈I1\\{1} 1 pi ⩽ 1 p ⩽ 1 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set 1 p = 1 p1 + � i∈I1\\{1} 1 pi + � i∈I2\\{1} 1 ti, ti ⩾ pi, i ∈ I2\\ {1} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' It is not hard to obtain 2j(s1+θ)��� j � � m � i=1 ∆kifi ���� p ⩽ c 2 j(θ−� i∈I1\\{1} n pi )��f1 | Bs1 p1,∞ �� m � i=2 ��fi | Bn/pi pi,∞ �� for any j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We choose θ as in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='36) and using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='31) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='33) we get the desired estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 1 p1 < 1 p < 1 p1 + � i∈I1\\{1} 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' First we see that s1 > n p1 − n, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let v > 0 be such that max � 1 p, 1 p1 − s1 n � < 1 v < 1 p1 + � i∈I1\\{1} 1 pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We set 1 v = 1 p1 + � i∈I1\\{1} 1 ti, ti > pi, i ∈ I1\\ {1} and θ > 0 such that −s1 − n v < θ − n p < − n p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let σ be as in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We can prove the following estimates 2j(σ+θ)��� j � � m � i=1 ∆kifi ���� v ⩽c 2j(σ−s1+θ)��f1 | Bs1 p1,∞ �� � i∈I1\\{1} ��∆jfi �� ti � i∈I2\\{1} ��Qjfi �� ∞ ⩽c 2 j(θ− n p + n p1 )��f1 | Bs1 p1,∞ �� m � i=2 ��fi | Bn/pi pi,∞ ��, j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' The result follows from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='31), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='33) and the fact that � 2 j(θ− n p + n p1 )� ∈ ℓ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Substep 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' si > n pi, i ∈ I3 ⊂ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If si > n pi, i ∈ I3 ⊊ I, we can cover this case by the same arguments given in Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Let fi ∈ Bsi pi,∞, i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', m}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' If si > n pi, i ∈ I\\ {1}, then we can prove that Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 t,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We get Π2(·, f2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=', fm) : F s1 p1,q −→ F s1 p1,q, by using the embeddings B s1+ n pi0 +θ v,∞ ֒→ F s1+ n pi0 v,∞ ֒→ F s1 p1,q MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES 19 for some i0 ∈ I1\\ {1} and 1 v = 1 p1 + 1 pi0 , with −s1 − n pi0 < θ < si0 − n pi0 , which is possible because of s1 + s2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We conclude the desired result using the interpolation method given in Subcase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2 in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We hope that our results will be used in the theory of function spaces, composition operators and partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' We refer the reader to the paper [3] were the authors studied the 2-linear map As p1,q(Rn, | · |α) · Ar p2,q2(Rn, | · |α) ֒→ As p,q(Rn, | · |α), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='38) induced by (f1, f2) −→ f1 · f2, with an application to the continuity of pseudodifferential operators on Triebel-Lizorkin spaces of power weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Here As p,q(Rn, |·|α) stands for either the Besov space Bs p,q(Rn, |·|α) or the Triebel-Lizorkin space F s p,q(Rn, | · |α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Also, they have proved the necessity of the majority assumptions on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Acknowledgement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' This work was supported by the General Directorate of Scientific Research and Technological Development of Algeria and the General Direction of Higher Education and Training (Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' C00L03UN280120220004), Algeria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' References [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Amann, Multiplication in Sobolev and Besov spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' In: Nonlinear Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Scuola Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Pisa, 1991, 27-50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Bahouri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Chemin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Danchin, Fourier analysis and nonlinear partial differential equa- tions, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math- ematical Sciences].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Springer, Heidelberg, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Brahim Boulares and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Drihem, Multiplication on Besov and Triebel-Lizorkin spaces of power weights, Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Comment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Advance Publication 1-32, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='7169/facm/1991 [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Drihem and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Moussai, On the pointwise multiplication in Besov and Triebel-Lizorkin spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Volume 2006, Article ID 76182, Pages 1-18 DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='1155/IJMMS/2006/76182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Franke, On the spaces F s,q p of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 125 (1986), 29-68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Frazier and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Jawerth, A discrete transform and decompositions of distribution spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 93 (1990), 34-170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Hanouzet, Applications bilineaires compatibles avec un systeme a coefficients variables continuite dans les espaces de Besov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Partial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Differential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 10 (1985), 433-465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Johnsen, Pointwise multiplication of Besov and Triebel-Lizorkin spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 175 (1995), 85-133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [9] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Lindemulder, Pointwise multiplication by the characteristic function of the half-space on anisotropic vector-valued function spaces, arXiv: 2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='03087v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Marschall, On the boundedness and compactness of nonregular pseudo-differential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 175 (1995), 231-262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Marschall, Remarks on nonregular pseudo-differential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Anwendungen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 15 (1996), 109-148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [12] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Maz’ya and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Shaposhnikova, Theory of Sobolev multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' With Applications to Differ- ential and Integral Operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Springer, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Meyries, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Veraar, Sharp embedding results for spaces of smooth functions with power weights, Studia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 208(3) (2012), 257–293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 20 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' DRIHEM [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Peetre, New Thoughts on Besov Spaces, Duke University Mathematics Series, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 1, Mathematics Department, Duke University, North Carolina, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Runst and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel, Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' De Gruyter, Berlin, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [16] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel, Pointwise multiplication in Triebel-Lizorkin spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Forum Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 5 (1993), 73-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [17] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sickel and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel, H¨older inequalities and sharp embeddings in function spaces of Bs p,q and F s p,q type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Anwendungen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 14 (1995), 105-140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel, Multiplication properties of the spaces Bs p,q and F s p,q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Quasi-Banach Algabras of func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Pura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 113 (1977), 33-42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [19] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel, Multiplication properties of Besov spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Pura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 114 (1977), 87-102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [20] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel, Theory of function spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Birkh¨auser, Basel, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [21] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Triebel, Theory of function spaces II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Birkh¨auser, Basel, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Yamazaki, A quasi-homogeneous version of paradifferential operators, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Boundedness on spaces of Besov type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Fac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Tokyo, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' IA Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 33 (1986), 131-174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='3 (2004/05), 1014–1030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' [24] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Ziedler, Nonlinear functional analysis and its application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' M’sila University, Department of Mathematics, Laboratory of Functional Analysis and Geometry of Spaces, M’sila 28000, Algeria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content=' Email address: douadidr@yahoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='fr, douadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='drihem@univ-msila.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
+page_content='dz' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/r9E1T4oBgHgl3EQfjAT1/content/2301.03259v1.pdf'}
diff --git a/rdE1T4oBgHgl3EQf2wXf/content/2301.03483v1.pdf b/rdE1T4oBgHgl3EQf2wXf/content/2301.03483v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..4a6fb6bd4090b9895a1a0c4576a5c7424c3ca096
--- /dev/null
+++ b/rdE1T4oBgHgl3EQf2wXf/content/2301.03483v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e3626e19bf5148e65bcc7fce9d16ee84f8dd23515146f20b77fc75f798234597
+size 179502
diff --git a/rtE1T4oBgHgl3EQf3AU7/content/2301.03484v1.pdf b/rtE1T4oBgHgl3EQf3AU7/content/2301.03484v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..488dc2ed68fce54758fcf306b340940fee086c8e
--- /dev/null
+++ b/rtE1T4oBgHgl3EQf3AU7/content/2301.03484v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1b3cfd2bb1217e113cefb3107e3d17e37e85d140eb52282598767519f3c8b32c
+size 678547
diff --git a/s9AzT4oBgHgl3EQfrv3p/content/tmp_files/2301.01650v1.pdf.txt b/s9AzT4oBgHgl3EQfrv3p/content/tmp_files/2301.01650v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f2af907ee346f369f5986e057491068bda2f742f
--- /dev/null
+++ b/s9AzT4oBgHgl3EQfrv3p/content/tmp_files/2301.01650v1.pdf.txt
@@ -0,0 +1,2023 @@
+An elongated quantum dot as a distributed charge sensor
+S. M. Patom¨aki,1, 2, ∗ J. Williams,1, 2 F. Berritta,3 C. Lain´e,1, 2 M. A. Fogarty,1 R. C. C. Leon,1 J. Jussot,4 S.
+Kubicek,4 A. Chatterjee,3 B. Govoreanu,4 F. Kuemmeth,3 J. J. L. Morton,1, 2, † and M. F. Gonzalez-Zalba1, ‡
+1 Quantum Motion, 9 Sterling Way, London N7 9HJ, United Kingdom
+2 London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
+3 Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
+4 imec, Kapeldreef 75, B-3001 Leuven, Belgium
+(Dated: January 5, 2023)
+Increasing the separation between semiconductor quantum dots offers scaling advantages by fa-
+cilitating gate routing and the integration of sensors and charge reservoirs. Elongated quantum
+dots have been utilized for this purpose in GaAs heterostructures to extend the range of spin-spin
+interactions. Here, we study a metal-oxide-semiconductor (MOS) device where two quantum dot
+arrays are separated by an elongated quantum dot (340 nm long, 50 nm wide). We monitor charge
+transitions of the elongated quantum dot by measuring radiofrequency single-electron currents to a
+reservoir to which we connect a lumped-element resonator. We operate the dot as a single electron
+box to achieve charge sensing of remote quantum dots in each array, separated by a distance of
+510 nm. Simultaneous charge detection on both ends of the elongated dot demonstrates that the
+charge is well distributed across its nominal length, supported by the simulated quantum-mechanical
+electron density. Our results illustrate how single-electron boxes can be realised with versatile foot-
+prints that may enable novel and compact quantum processor layouts, offering distributed charge
+sensing in addition to the possibility of mediated coupling.
+I.
+INTRODUCTION
+In recent years, silicon spin qubits hosted in gate-
+defined quantum dots (QDs) have achieved major mile-
+stones making this platform a compelling option for large
+scale quantum computing [1]. These include the demon-
+stration of high fidelity one- and two-qubit gates on
+the same device [2–4], high fidelity readout using ra-
+diofrequency (rf) single-electron transistors (SET) [5],
+the demonstration of simple instances of quantum er-
+ror correction [6] and the scale up to 6-qubit devices in
+a linear arrangement [7]. In addition, chips combining
+quantum and classical electronics have been shown to
+operate at deep cryogenic temperatures, demonstrating
+a potential route for integrated addressing, control and
+measurement of qubits [8, 9].
+Silicon spin qubits typically rely on nearest neighbour
+exchange to implement two-qubit interactions [10–12].
+Such a short-range qubit coupling applied across the
+qubit processor leads to high gate densities that hinder
+integration with local control electronics and gate fan-
+out [13, 14], and introduce nonlinear responses due to
+cross-talk [15].
+Furthermore, introducing readout sen-
+sors within the qubit plane impacts the level of connec-
+tivity that can be achieved.
+To scale up beyond one-
+dimensional qubit arrays and integrate cryogenic elec-
+tronics requires structures with enhanced functionality
+which can increase the separation between qubits, or be-
+tween qubits and sensors.
+One approach to scaling is
+∗ sofia@quantummotion.tech
+† john@quantummotion.tech
+‡ fernando@quantummotion.tech
+to use dispersive charge sensors, such as the rf single-
+electron box (SEB) [16–19]. The SEB offers similar lev-
+els of sensitivity to conventional charge sensors [20, 21]
+but only requires one charge reservoir, as opposed to two
+for the SET, facilitating the design of qubit arrays with
+higher connectivity. Another approach is to space out
+qubits by using elongated quantum dots (EQD) to me-
+diate exchange interactions between them [22–24]. Such
+an approach, requiring tunnel coupling between each of
+the remote QDs and the EQD, has been demonstrated
+in GaAs heterostructures to mediate fast, coherent ex-
+change interaction between single spins separated by half
+a micron [25]. A further advantage of the EQD is that
+it could itself act as a local charge reservoir to facilitate
+initialization [26].
+In this Article, we combine aspects of these two con-
+cepts to demonstrate an SEB with an elongated charge
+island that enables charge sensing of multiple remote
+QDs, which, due to the increased separation, show mini-
+mal cross-talk. The structure is fabricated using a three-
+layer n+-doped polycrystalline silicon gate metal-oxide-
+semiconductor (MOS) process that enables the forma-
+tion of the elongated SEB as well as few-electron QDs.
+The extended distribution and quantisation of the charge
+within the EQD, consistent with semi-classical modelling,
+allows it to sense the charge on QDs separated by over
+0.5 µm. Finally, we show tunnel coupling between the
+remote QDs and the EQD, which fulfills one of the re-
+quirements for coherent mediated exchange.
+II.
+EXPERIMENTAL METHODS
+Our device consists of two double quantum dots
+(DQDs) separated by an EQD, nominally 340 nm long
+arXiv:2301.01650v1 [cond-mat.mes-hall] 4 Jan 2023
+
+2
+(a)
+layer 1
+layer 2
+layer 3
+100 nm
+R-ohmic
+D-ohmic
+S-ohmic
+R
+S
+D
+T
+P1 P2
+P4
+P3
+B-RT
+B-12
+B-S1
+B-2T
+B-34
+B-T3
+B-4D
+RDC
+DC
+L
+Cc
+RF
+VIF
+RF
+LO
+X
+(b)
+0.0
+0.4
+0.8
+1.2
+1.6
+VR (V)
+100 50
+0 50
+VIF (mV)
+(c)
+e–
+e–
+e–
+e–
+e–
+e–
+e–
+0.300
+0.325
+VB
+RT (V)
+0.475
+0.500
+0.525
+0.550
+0.575
+0.600
+VT (V)
+.
+0 4 812
+VIF (mV)
+Figure 1.
+Formation of an elongated single elec-
+tron box. (a) Device schematic (gray dotted rectangle) with
+simplified RF circuit diagram (signal filtering omitted).
+A
+lumped-element resonator (orange dotted rectangle) is gal-
+vanically attached to the ohmic contact below the accumula-
+tion gate R and monitored via changes in the demodulated
+baseband-frequency reflectometry signal, VIF. (b) Changes in
+VIF reflect the accumulation of a 2DEG with increasing reser-
+voir gate voltage VR. All other gates are held at zero bias. (c)
+The elongated QD is operated as a single electron box. Here,
+gates at zero bias are drawn in grayscale, while biased gates
+are drawn in colour. Orange blobs are cartoons indicating lo-
+cations of QDs of interest. An elongated, multi-electron quan-
+tum dot forms under gate T and is tunnel coupled to a charge
+reservoir accumulated under gate R. Driving the resonator at
+its natural frequency drives cyclic electron tunnelling between
+the reservoir R, and the elongated quantum dot under gate
+T. The (T, B-RT) stability diagram obtained at VR = 1.5
+V shows dot-to-reservoir transitions that become increasingly
+regular with increasing VT. The signal strength depends on
+VB−RT, since the barrier voltage modulates the EQD-reservoir
+tunnel rate.
+and 50 nm wide. The measured device is fabricated with
+three 30 nm thick in-situ n+ phosphorus-doped poly-
+crystalline silicon gate layers formed with a wafer-level
+electron-beam patterning process.
+The Si substrate is
+separated from the first gate layer with a 8 nm thick ther-
+mally grown SiO2, patterned on high-resistivity (> 3 kΩ)
+p-type Si wafer to minimise the density of oxide defects.
+Gate layers are electrically isolated from one another
+with a 5 nm thick blocking high-temperature deposited
+SiO2 [27]. A schematic of the measured device is shown
+in Fig. 1 (a). We employ one layer of gates (closest to
+the silicon substrate) to provide confinement for the three
+possible current paths connecting ohmic contacts, around
+the active region of the device. A second layer of gates is
+used to form barriers between the EQD, the QDs and the
+reservoirs. As seen in other MOS QD arrays [28], QDs
+can also be formed under these ‘barrier’ gates in the sec-
+ond layer, depending on applied gate voltages. A third
+gate layer is used as plungers to control the occupation of
+the EQD, the QDs, and the extension of two-dimensional
+electron gases (2DEG) from under accumulation gates,
+denoted as reservoir (R), source (S), and drain (D), over-
+lapping with corresponding ohmics, towards the active
+region of the device.
+The device is cooled down in an Oxford Instruments
+Triton dilution refrigerator equipped with QDevil DACs,
+thermalizing filters and high-bandwidth sample hold-
+ers [29]. At base temperature (25 mK) we confirm the
+functionality of the device with gate electrode leakage
+tests, followed by pinch-off and saturation voltage mea-
+surements (see Appendix A for the preliminary device
+characterization protocol).
+We detect charge transitions between the EQD and
+the reservoir using rf reflectometry [30], via a lumped-
+element resonator attached to the ohmic contact of
+the accumulation gate R, as illustrated in the inset of
+Fig. 1 (c). Further details of the rf reflectometry setup
+and data acquisition are presented in Fig. B6 (a). The rf
+voltage Vrf drives single-electron AC tunneling currents
+between the reservoir and the EQD when not in Coulomb
+blockade. Cyclic tunneling manifests as changes in the
+complex impedance of the device, modifying the reso-
+nant frequency and matching impedance of the lumped-
+element resonator [31].
+Fig. B6 (b) shows the vector
+network analyzer response of the resonator with gate R
+biased off/on. We apply a signal with frequency close to
+that of the resonator and the reflected signal, which car-
+ries information of the complex impedance of the SEB,
+is amplified and mixed down to produce the DC signal
+VIF. By monitoring shifts in the observed charge transi-
+tions, we operate the EQD as an SEB sensor which can
+simultaneously sense QDs formed near either of its ends.
+III.
+RESULTS
+A.
+Single-electron box tune-up
+In order to operate the EQD as an SEB, we extend
+a 2DEG close to the active region of the device from a
+nearby ohmic contact by applying a positive voltage to
+gate R. We bias the EQD plunger gate, T, above the
+pinch-off voltage and tune the tunnel rate between the
+reservoir and the EQD by adjusting the voltage on the
+barrier gate B-RT. To tune the SEB, we first record VIF
+as a function of VR (see Fig. 1 (b)). As VR is increased,
+VIF changes as the 2DEG is formed, modifying the cir-
+cuit impedance. For VR ≳ 1 V, VIF is nearly constant,
+indicating that the 2DEG is fully accumulated. In this
+region, changes in the resonator response due to voltage
+sweeps on the other gates can be ascribed to AC charge
+transport between the QDs and the 2DEG in the reser-
+voir.
+
+3
+(a)
+T
+P2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+VP2 (V)
+0.712
+0.713
+0.714
+VT (V)
+0.400
+0.500
+0.568
+0.633
+0.708
+0.764
+.
+0
+5 10
+VIF (mV)
+(b)
+T
+P3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
+1.0
+VP3 (V)
+0.702
+0.703
+0.704
+VT (V)
+0.609
+0.683
+0.755
+0.812
+0.880
+0.940
+.
+5 0
+5 10
+VIF (mV)
+(c)
+50
+60
+70
+80
+90
+100
+Addition
+ voltage (mV)
+P2, B-T3 on
+P3, B-T3 on
+1
+2
+3
+4
+5
+6
+Electron number
+0.0
+0.4
+0.8
+1.2
+1.6
+VT /
+T (a.u.)
+P3, B-T3 on
+P3, B-T3 off
+Figure 2.
+Charge sensing of QDs under P2 and P3. Operating point (top schematic) and discontinuities in the SEB
+peak locations (bottom dataset) reveal electron loading voltages for (a) P2 and (b) P3 (white numbers). (c) Upper panel
+shows the addition voltages extracted from (a)-(b). Error bars, obtained from VP2 and VP3 resolution, are smaller than marker
+size. (c) Lower panel shows the sensor peak shift, δVT , with respect to peak linewidth, γT , at P3 QD charging events with
+B-T3 on (isolated from drain, as in panel (b)) and B-T3 off (connected to the reservoir formed with gate D).
+Having fixed VR = 1.5 V, we then map out the charge
+stability diagram between gates T and B-RT (Fig. 1 (c)),
+which shows dot-to-reservoir transitions (DRTs) indi-
+cating the presence of discretized charge states.
+For
+VT ≲ 0.55 V, the data suggest a complex system compris-
+ing at least two coupled QDs, while for VT ≳ 0.55 V, the
+stability diagram increasingly resembles that of a single
+QD. Selecting VB−RT = 0.29...0.31 V maximizes the sig-
+nal VIF due to optimal tunnel rates between the reservoir
+and EQD. In the following, we use VT = 0.69...0.72 V,
+which we show to be sufficient for the EQD to extend
+over the length of the gate T.
+B.
+Charge sensing of quantum dots
+We next use the EQD as an SEB to individually sense
+electrons in QDs under P2 and P3, and also as a lo-
+cal electron reservoir for these dots (see Fig. 2 (a)-(b)).
+To this end, starting from the SEB operating point of
+VR = 1.5 V, VB−RT = 0.29 V, and VT = 0.70...0.72 V,
+we further set VB−2T = 0.250 V, and VB−T3 = 0.225 V.
+We illustrate this operating point with device schemat-
+ics in Fig. 2 (a) and (b). Positive barrier gate voltages
+increase tunnel rates from P2 to T and T to P3. A sim-
+ulation of electron densities qualitatively illustrates how
+the barrier gates reshape and pull the QDs towards them.
+This effect is further discussed in Sec. III D. Barrier gate
+voltages are chosen to reside below their observed first
+electron loading voltages, based on (B-2T,T) and (T,B-
+T3) stability diagrams (see Figs. C7 (a)-(b)).
+We detect the loading of an electron to either P2 or
+P3 QDs as a discontinuity in the SEB DRT, caused by
+the mutual capacitance between the EQD and the QDs.
+We mark the 0 → 1 charge transitions as the first de-
+tected discontinuity. We find the first electrons to load
+at VP2(0 → 1) = 0.400 V, and VP3(0 → 1) = 0.609 V,
+respectively. Subsequent electrons load in steps of tens
+of millivolts. At occupancy of one electron, we find typ-
+ical sensor peak voltage signal-to-noise ratios (SNR) of
+SNRP2 = 10.7 and SNRP3 = 14.6, using an integration
+time of 1 ms (see Appendix B for details).
+In order to understand whether the sensed QDs P2
+and P3 are in the few-electron regime [32], we plot the
+extracted addition voltages in Fig. 2 (c). These addi-
+tion voltages carry information of the electron-number-
+dependent confinement energies, as Vg(nd → nd + 1) −
+Vg(nd − 1 → nd) = α−1
+dg
+�
+EC d(nd) + ∆(nd)
+�
+, where nd is
+the electron number at the QD d; αdg is the lever arm
+from QD d to gate g; and EC d(nd)+∆(nd) is the sum of
+the corresponding on-site charging energy and the con-
+finement energy. The addition voltages are irregular in
+general and, in particular, we observe an increase in the
+addition voltage both for P2 and P3 when loading from
+the presumed 4 → 5 electron state. This is consistent
+with filling the lowest two ±z valley-orbit states, such
+that the next electron occupies a higher-energy orbital
+state.
+Using
+an
+estimated
+T
+addition
+voltage
+of
+|e|−1α−1
+T T EC T
+= 4.4 ± 0.2 mV (see Fig. D8), load-
+ing the first electron under P2 and P3 induces a charge
+of dq = 0.075 e ± 0.01 for P2, and dq = 0.032 e ± 0.01 e
+for P3, respectively, onto the SEB. We also show in
+Fig. 2 (c) the shifts in VT induced by P3 electron
+loading, δVT, relative to the fitted linewidth of the
+SEB DRT, γT. This ratio δVT/γT is a proxy for charge
+sensitivity, and indicates whether the sensor is in the
+small or large signal regime [33]. When loading from the
+EQD, with VB−T3 = 0.225 V, the shifts become larger
+than the line width of the sensor peak, i.e. δVT ≥ γT,
+by the fifth electron. We retain some sensitivity to the
+QDs even when the barrier gates to the EQD are off at
+zero bias.
+In this case, we resort to loading electrons
+under P3 from a reservoir formed via D. Here, we set
+
+4
+VB−T3 = 0 V, VB−34 = 0.275 V, VP4 and VB−4D to 0.9 V,
+and VD to 1.5 V. We note that the first electron under
+P3 at this operating point is found at VP3 = 0.387 V.
+We find that in this operating point, the sensitivity is
+lower and increases more slowly.
+C.
+Charge sensing coupled quantum dots
+Having established the basic operation of the EQD as a
+SEB charge sensor for nearby QDs, we next demonstrate
+its ability to sense different configurations of nearby cou-
+pled QDs.
+We then go on to assess the sensitivity of
+this distributed charge sensor with increasing distance.
+First, we form a DQD under P3 and B-34 by extend-
+ing the reservoir 2DEG formed with gate D, setting
+VB−4D = VP4 = 0.9 V, well above their threshold volt-
+ages, while operating P3 and B-34 close to their expected
+first electron voltages. We re-tune VT = 0.7084 V, retain-
+ing VP3 and VB−34 at the center of their selected voltage
+ranges. The resulting SEB-sensed (P3,B-34) stability di-
+agram is shown in Fig. 3 (a). We observe a honeycomb
+pattern typical for a tunnel-coupled DQD, retaining sen-
+sitivity to charge transitions of both QDs, even though
+the center-to-center distance of the furthest dot to the
+EQD is 305 nm. We measure local addition voltages of
+approximately 114 ± 1 mV and 43 ± 1 mV for P3 and
+B-34, respectively.
+Second, we form a DQD under P3 and P4 (see
+Fig. 3 (b)).
+Continuing from the previous operating
+point, we adjust the barrier voltages VB−4D = VB−34 =
+0.275 V, while retaining VB−T3 = 0 V, to create con-
+finement, and retune VT = 0.7068 V. Here, the DQD
+honeycomb pattern has average addition voltages of ap-
+proximately 77±5 and 63±5 mV for P3 and P4, respec-
+tively. The observation of latching [34], i.e. distortion of
+P3 charge transitions, suggest that P3-P4 or P4-D tunnel
+rates are of the order of the ramp frequency framp (see
+Appendix B for details on data acquisition). The center-
+to-center distance of P4 to the EQD is nominally 355 nm,
+showing the charge sensing range of this extended SEB
+goes beyond those typically demonstrated by more con-
+ventional SEBs or SETs [7].
+Finally, we form a triple quantum dot between P2,
+T, and P3, by drawing in electrons under P3 from the
+reservoir D, and under P2 from the EQD. We control
+tunnel rates to electron reservoirs with VB−2T = 0.25 V,
+VB−T3 = 0 V, and VB−34 = 0.275 V. We bias the SEB
+to VT = 0.7093 V, to maximise sensitivity when VP2 and
+VP3 are set close to their expected first electron voltages
+and Fig. 3 (c) shows the resulting (P2,P3) charge sta-
+bility diagram of the triple QD. We label the estimated
+charge configuration for the P2, T, and P3 system as
+(nP2, nT, nP3).
+The estimates are based on a stability
+diagram simulation shown in Fig. 3 (d), which utilizes
+experimentally estimated lever arms and charging ener-
+gies, which are further discussed in Sec. III D and Ap-
+pendix E. The operating point is close to a so-called hex-
+tuple point, characterized by the hourglass shape, formed
+between (0, nT + 1, 0) and (1, nT, 1) charge states [35].
+To confirm our understanding of the locations of the
+QDs in the triple QD configuration above, we extract
+the various lever arm ratios from the slope of the SEB
+peak and the quasi vertical and horizontal charge sens-
+ing shifts, obtained by line fits to the SEB peak posi-
+tions (see Appendix E). We observe close to zero P2-P3
+cross-talk, as expected for remote QDs, with the esti-
+mate αP3,P2/αP3,P3 = (8 ± 6) × 10−3, obtained from
+the P3 charge transitions as a function of VP3. We get
+αP2,P3/αP2,P2 = 0±[0, 3.33×10−3], limited by the lower
+data resolution along the VP2 axis. The average of the
+fitted EQD DRT slopes, marked with dashed dark red
+lines, is αT,P3/αT,P2 = 0.65 ± 0.11. A ratio equal to 1
+would indicate an EQD wavefunction which is symmetric
+with respect to locations of gates P2 and P3. Intuitively,
+the positively biased barrier B-2T (VB−T3 = 0 V) pulls
+the EQD electron wavefunction towards P2, which could
+explain the lever arm asymmetry.
+Overall, the data from Fig. 3 (c) demonstrates the
+simultaneous readout of QDs that are separated by ap-
+proximately 510 nm, operating the elongated SEB as a
+distributed charge sensor. The fact that a single EQD
+charge transition is capacitively shifted by the addition
+of charges to either P2 or P3 demonstrates that the EQD
+extends approximately over the length of gate T. We did
+not assess P2-T and T-P3 tunnel couplings at this op-
+erating point, however, in Appendix C we demonstrate
+that by utilizing dots under B-2T and B-T3 rather than
+P2 and P3, tunnel coupling to the EQD can be achieved.
+Our results demonstrate extended EQD wavefunctions
+and tunnel coupling to QDs in the periphery, both neces-
+sary requirements to utilize the EQD states for mediated
+exchange [36].
+D.
+Simulated quantum-mechanical electron
+densities
+To support the interpretation of a delocalized charge
+state under the EQD, and to benchmark our quantitative
+understanding of the QD systems under study, we em-
+ploy a self-consistent Schr¨odinger-Poisson solver (SPS)
+from a three-dimensional nanostructure simulation soft-
+ware [37, 38] to evaluate so-called quantum-mechanical
+electron densities (QMED), denoted with ρ(r). We as-
+similate the QMEDs to probability densities under QDs
+to estimate shapes of many-electron charge states (see
+Appendix F for details of the simulation methods). Fig-
+ure 4 (a) shows (x, y) plane views of the simulated
+QMEDs of the T-P3 system studied in Fig. 2 (b)-(c).
+The two QMEDs are obtained by biasing the QD plunger
+gates (T or P3), and nearest neighbour barrier voltages at
+the non-zero biases where experimental data was taken.
+In the simulations, the barriers modify the shapes of the
+QDs, pulling QDs controlled with plunger gates towards
+the biased barriers, and extending the shape of the EQD.
+
+5
+(b)
+T
+P3 P4
+0.60 0.65 0.70 0.75 0.80 0.85 0.90
+VP3 (V)
+0.65 0.70 0.75 0.80 0.85 0.90
+VP4 (V)
+(a)
+T
+P3 B-34
+0.35
+0.40
+0.45
+0.50
+0.55
+VP3 (V)
+0.24 0.26 0.28 0.30 0.32
+VB
+34 (V)
+(c)
+T
+P2
+P3
+0.35
+0.40
+0.45
+0.50
+0.55
+VP3 (V)
+0.35
+0.40
+0.45
+0.50
+VP2 (V)
+(0,nT,0)
+(1,nT,0)
+(0,nT,1)
+(1,nT,0)
+(1,nT,0)
+(2,nT,0)
+(0,nT + 1,1)
+(1,nT + 1,1)
+(2,nT + 1,0)
+(2,nT + 1,1)
+(2,nT + 1,2)
+(1,nT + 1,2)
+(0,nT + 1,2)
+2.5
+0.0
+2.5
+5.0
+VIF (mV)
+(d)
+0.35 0.40 0.45 0.50 0.55
+VP3 (V)
+0.35
+0.40
+0.45
+0.50
+VP2 (V)
+(0,nT,0)
+(1,nT,0)
+(0,nT,1)
+(0,nT + 1,0)
+(1,nT,1)
+(1,nT + 1,0)
+(0,nT + 1,1)
+(1,nT + 1,1)
+(2,nT + 1,0)
+(2,nT + 1,1)
+(2,nT + 1,2)
+(1,nT + 1,2)
+(0,nT + 1,2)
+Figure 3.
+Elongated single-electron-box as a distributed sensor. (a)-(c) SEB charge-sensed stability diagrams of
+DQDs controlled with gates (a) P3 and B-34, (b) P3 and P4, and (c) TQD controlled with gates P2, T, and P3. Gate biasing
+and QDs are sketched with device schematics above the colour maps. (a) To define a DQD under P3 and B-34, we extend a
+2DEG from the reservoir formed under gate D. We bias B-4D in saturation, and P4 near its pinch-off. (b) To define a DQD
+under P3 and P4, we instead bias B-34 and B-4D as barriers. (c) To define a TQD between P2, T, and P3, we bias B-2T, B-T3,
+and B-34 as barriers. We bias VT = 0.7093 V to obtain a signal near the first P2 and P3 QD electrons. The estimated P2, T,
+and P3 QD charge occupations are indicated as (nP2, nT, nP3). (d) Grayscale colormap shows the voltage-cross-derivative of
+ground state of an electrostatic Hamiltonian, obtained using the experimentally estimated lever arms and charging energies.
+Orange and red dotted lines correspond to the fitted lines from panel (c).
+As we discuss below, the QD shape and location has an
+impact on (e.g.) lever arms, which are also experimen-
+tally measurable.
+The EQD length, obtained from the simulated 1σ and
+2σ QMED contours, is studied for a range of electron
+numbers, determined by integrating the simulated elec-
+tron densities for a range of VT voltages.
+The results
+are shown in Fig. 4 (b). In a simulation where only the
+gate T is biased, the EQD length increases monotoni-
+cally. The EQD length can be fitted to the power law
+xEQD = an−1/2
+T
++ b, where nT is the simulated electron
+number, a < 0, and we find b = 347 nm and b = 339 nm
+for 1σ and 2σ, respectively.
+When B-2T and B-RT are also positively biased with
+constant voltages, the electron density under B-RT only,
+nB−RT ≈ 18.8, is subtracted from the electron numbers.
+Here, the EQD length is a more complicated function
+of the electron number: The more graduate increase at
+low occupancy is due to how the B-RT gate pulls elec-
+trons, and the sharper increase at nT ≈ 6 is caused
+by the EQD density merging with the density under B-
+2T. As the electron number increases further, the EQD
+length (defined by 1σ or 2σ) gradually decreases due to
+an increasing concentration of charge in the centre of
+the QD. The simulated datapoints with VT = 0.7093 V
+(corresponding to the setpoint from Fig. 3 (c)).
+The
+estimated length at this datapoint is x = 320 ± 2 nm
+at 1σ, and x = 354 ± 2 nm at 2σ. We use four mea-
+sured datasets to estimate the lever arm components of
+the (P2,T,P3) system and compare them with simulated
+values, in Fig. 4 (c)-(e).
+Details of lever arm extrac-
+tion, as well as all estimated and simulated lever arm
+components, are found in Appendices E, F, and G. Sim-
+ulated lever arms are systematically larger compared to
+experimentally extracted values, albeit typically agreeing
+within an order of magnitude. We find the largest errors
+for αP2,P3 and αP2,T (14.2 and 5.3, respectively), while
+the remaining off-diagonal lever arms have the smallest
+errors, from 0.074 to 0.67.
+We simulate the TQD charge stability diagram from
+Fig. 3 (c) using the estimated lever arm components
+from Fig. 4 (c) (upper matrix), and resulting estimated
+capacitances (see Appendix H). The resulting voltage
+cross-derivative of the ground state of the Hamiltonian,
+d(dEg/dVP3)/dVP2, is shown in Fig. 3 (d).
+See Ap-
+pendix H for details of the simulation, and for the
+parameters used.
+The simulation displays qualitative
+agreement with data, and confirms the charge config-
+urations (nP2, nT, nP3).
+The measured sensor slope in
+the (nP3, nP2) = (1, 1) is aT = −0.703 ± 0.008, while
+the choice of lever arm matrix in the simulation leads to
+aT = −0.739. The experimental and simulated (P2,T)
+charge induced voltage shifts along VP2 agree within ex-
+perimental resolution of ±1 mV, ∆VP2 = 13 ± 1 mV.
+IV.
+OUTLOOK
+We have used the EQD as a rf-SEB charge sensor ca-
+pable of sensing QDs up to 355 nm away from the EQD
+center, suggesting that the same SEB charge state may
+be sensitive to charges in QDs separated by over 700 nm.
+Our results are well supported by quantum mechanical
+electron density simulations. The enhanced functional-
+ity provided by the EQD may be expanded in future QD-
+based architectures to sensors defined with more complex
+
+6
+(a)
+T
+P3
+200 100 0
+100 200 300
+x (nm)
+20 020
+y (nm)
+20 020
+y (nm)
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+1.4
+QMED (1018/cm3)
+(b)
+0 10 20 30 40 50
+Electron number
+0
+50
+100
+150
+200
+250
+300
+350
+400
+Elongated dot length
+B-2T, B-RT, T (1 )
+B-2T, B-RT, T (2 )
+T (1 )
+T (2 )
+(c)
+P2, P2
+T, P2
+P3, P2
+P2, T
+T, T
+P3, T
+P2, P3
+T, P3
+P3, P3
+10 5 10 4 10 3 10 2 10 1
+ij (experiment) (d)
+P2, P2
+T, P2
+P3, P2
+P2, T
+T, T
+P3, T
+P2, P3
+T, P3
+P3, P3
+10 5 10 4 10 3 10 2 10 1
+ij (simulation) (e)
+P2, P2
+T, P2
+P3, P2
+P2, T
+T, T
+P3, T
+P2, P3
+T, P3
+P3, P3
+0.0
+2.5
+5.0
+7.5 10.0
+(
+)ij
+Figure 4.
+Estimating the EQD length and the lever
+arm matrix. (a) Simulated QMEDs of the T-P3 DQD with
+B-T3 biased with a positive voltage (top panel; see Fig. 2
+(b)) and at zero bias (bottom panel; Fig. 2 (c)) are shown
+as grayscale colormaps overlayed with layer 2 (green) and 3
+(blue) gate locations (dotted rectangles). Red contours corre-
+spond to t (1 − mσ)ρmax for m = 1, 2, 3. Gate side view (top)
+highlights the locations of gates T and B-T3. (b) EQD length
+as a function of electron numbers nT, integrated from the
+QMED. Red datasets are obtained by only biasing the gate
+T, and correspond to (1 − mσ)ρmax for m = 1, 2 in increasing
+lightness. Dotted lines are fits to the power law an−1/2
+T
++ b.
+Blue datasets are obtained by biasing VB−2T = 0.275 V,
+VB−RT = 0.3 V, and varying VT, likewise m = 1, 2 are shown
+in increasing lightness. The cross markers correspond to the
+operating point of Fig. 3 (c). (c) Experimentally estimated
+lever arm matrix components. We use data from Figs. 2-3, to-
+gether with an independent estimate for αT,T to estimate the
+lever arm matrix. (d) Simulated lever arm matrix. Simula-
+tions use gate biases corresponding to experimental operating
+points, with each QMED corresponding to a QD simulated
+separately with up to nearest-neighbour gate biases. (e) Rel-
+ative errors between experimentally estimated and simulated
+lever arm matrix components.
+gate shapes, such as a right-angle or a cross. A single
+sensor could allow sensing multiple QDs placed around
+the periphery, enabling novel unit cells requiring fewer
+individual gate structures for readout. Combined with
+the demonstration of few-electron QDs, our results show
+the potential of this multi-gate polysilicon platform to
+produce scalable QD unit cells.
+Another potential application of this type of elon-
+gated QD is as a mid-range spin qubit coupler as pre-
+viously demonstrated for QDs in GaAs/AlGaAs het-
+erostructures [25]. We have here demonstrated two basic
+requirements towards this application: the quantization
+of charge in the EQD and the tunnel coupling to QDs
+at the periphery. We envision that extended QDs could
+become an important resource to increase the range of
+qubit-qubit interaction in silicon, complementing other
+approaches such as spin shuttling [39–41], capacitive cou-
+pling with floating gates [42, 43] and microwave photonic
+links [44, 45]. Additionally, we have shown that the EQD
+can be used as a local electron reservoir, which can be
+utilized in schemes mitigating charge leakage errors [26].
+V.
+ACKNOWLEDGEMENTS
+This research was supported by European Union’s
+Horizon 2020 research and innovation programme under
+grant agreement no. 951852 (QLSI), and by the UK’s En-
+gineering and Physical Sciences Research Council (EP-
+SRC) via QUES2T (EP/N015118/1), and the Hub in
+Quantum Computing and Simulation (EP/T001062/1).
+AC acknowledges funding from the Danish Independent
+Research Fund.
+M.F.G.-Z. is a UKRI Future Leaders
+Fellow (MR/V023284/1).
+Appendix A: Cryogenic device characterization
+To assess operability of the device measured in the
+main text, labelled as device A, we measure gate leak-
+age conductances, and pinch-off and saturation voltages
+at the base temperature of the cryostat. Gate leakages
+are measured by applying an increasing voltage to gate
+gi while measuring current through all channels, and re-
+peating for all gate electrodes i. Leakage conductance
+lij is taken as the average conductance over the volt-
+age range.
+The resulting leakage matrix is shown in
+Fig. A5 (a). The device under study has leakage currents
+no larger than ±1.3 pA/V at cryogenic temperatures.
+The first guess for Coulomb blockade operating point is
+obtained from gate pinch-off and saturation voltage mea-
+surements, where we operate the device similarly to a cir-
+cuit of classical MOS field-effect transistors in series. The
+device has three possible current channels: source-drain,
+reservoir-source, and drain-reservoir. Pinch-off voltages
+are measured by applying a Voi−oj = 1 mV between
+ohmics oi and oj along channel i − j, and by biasing
+all layer 2 and 3 gates along said channel at 2.0 V. The
+gate voltage of one of those gates is swept from 2.0 V
+to −0.5 V and back while recording current. Pinch-off
+and saturation voltages are defined as the voltages where
+measured current is 5% and 90% of the saturation cur-
+rent, respectively. If saturation is not observed, pinch-off
+current is defined as 5% of the maximum measured cur-
+rent.
+In this device, all three channels are functional. A sum-
+mary of the results, obtained by biasing the source-drain
+and drain-reservoir channels, is shown in Fig. A5 (b).
+The accumulation gates source (S), reservoir (R), and
+drain (D) saturate at higher voltages than other gates.
+Other layer 3 gates systematically require a larger volt-
+age range between pinch-off and saturation than layer 2
+
+7
+(a)
+TL-C
+TR-C
+R
+R-O
+B-RT
+T
+B-C
+S
+S-O
+B-SP1
+P1
+B-P1P2
+P2
+B-P2T
+B-TP3
+P3
+B-P3P4
+P4
+B-P4D
+D
+D-O
+TL-C
+TR-C
+R
+R-O
+B-RT
+T
+B-C
+S
+S-O
+B-SP1
+P1
+B-P1P2
+P2
+B-P2T
+B-TP3
+P3
+B-P3P4
+P4
+B-P4D
+D
+D-O
+10 2 10 1 100
+101
+102
+103
+104
+Average(|dI/dV|) (pA/V)
+Current
+Voltage
+(b)
+0.250.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
+Gate voltage (V)
+D
+B-4D
+P4
+B-34
+P3
+B-T3
+T
+B-2T
+P2
+B-12
+P1
+B-S1
+S
+B-RT
+R
+Figure A5.
+Leakage currents, pinch-off and satura-
+tion voltages. (a) Leakage matrix, where the colour of a
+pixel shows the average conductance between gate i (matrix
+columns), where we apply a voltage, and channel j (matrix
+rows), where we read out current.
+Applied voltage ranges
+from −4.8 mV to +4.8 mV. (b) Summary of pinch-off (tri-
+angle markers) and saturation (square markers) voltages. All
+gates except for B-RT and R are characterized through the
+source-drain channel, whereas gates B-RT and R are charac-
+terized through drain-reservoir channel. We offset the results
+on the y-axis and label each result with the abbreviated gate
+name. Red datasets correspond to layer 3 plunger gates, blue
+to layer 2 barrier gates, and green to layer 3 accumulation
+gates.
+gates. This observation is consistent with the increasing
+total oxide thickness with increasing layer index. Hys-
+teresis was not observed in this device.
+Appendix B: Radiofrequency reflectometry and data
+acquisition
+Figure B6 shows a schematic of the RF reflectometry
+setup for biasing the lumped-element resonator attached
+to the ohmic of the accumulation gate R, and acquiring
+DC
+RDC
+cryogenic
+room temperature
+L
+Cc
+-20 dB
+-45 dB
+-40 dB
+-36 dB
++40 dB
+RF
+-20 dB
+RF
+LO
+X
+preamp
+digitizer
+V IF
+170 180 190 200 210
+f (MHz)
+0.9
+0.925
+0.95
+0.975
+1.0
+S21 magnitude (a.u.)
+R OFF
+R ON
+/2
+0
+/2
+S21 phase (rad)
+Figure B6.
+Radiofrequency reflectometry.
+Simpli-
+fied cryogenic and room-temperature rf setup, with a lumped-
+element resonator (circuit bordered with orange dotted rect-
+angle) attached to the ohmic of the accumulation gate R
+(crossed square). Attenuation is performed in stages inside
+the cryostat. The total attenuation of −36 dB is shown for
+simplicity. DC filtering is not shown. Embedded plot shows
+the resonator response in a vector network analyzer reflection
+measurement, in which the input and output signal are split
+for attenuation and cryogenic amplification.
+Signal magni-
+tude is shown as blue datapoints up to a 6 dB bandwidth.
+Signal phase is shown as orange datapoints. Datasets with
+the accumulation gate R off at zero bias are plotted as lighter
+datasets, and datasets with gate R on at positive bias as
+darker datasets. Estimated resonance frequencies are denoted
+with dotted lines.
+the reflected signal. The diagram includes attenuation,
+amplification, and the key components.
+Here, RDC =
+49.99 kΩ, L = 820 nH, and Cc = 22 pF. There is also
+an overall coupling capacitor of 100 pF in series with Cc,
+omitted for simplicity.
+All device gates are connected to DC lines (not shown),
+which are biased with a voltage digital-to-analogue con-
+verter (DAC). To acquire a trace or a stability dia-
+gram, the DAC is programmed to send one- or two-
+dimensional step-discretized voltage ramps, with a step
+taking tsample = 10−4 s corresponding to ramp frequency
+framp = 10 kHz. The start of the ramp is synchronized
+to a trigger sent to the digitizer.
+We digitize VIF us-
+ing a sample rate of 1 MS/s, with the voltage pream-
+plifier low-pass cutoff flow pass = 10 kHz.
+We box-
+car filter the trace with a window size corresponding
+to tsample, and decimate accordingly to get a tsample-
+spaced dataset.
+We average by repeating acquisition
+naverage = 10 times. Hence, we estimate the integration
+time tintegrate = naverage/flow pass = 1 ms.
+
+8
+Embedded to Fig. B6 is the vector network analyzer
+(VNA) response with the gate R (and the entire de-
+vice) at zero bias (light blue and light orange datasets
+for magnitude and phase responses), and with the gate
+R on (dark blue and dark orange datasets, respectively).
+The resonator responds both by changing its resonance
+frequency and coupling coefficient –we observe the reso-
+nance frequency and the coupling coefficient to decrease,
+taking the resonator from overcoupled to undercoupled
+as a 2DEG is accumulated under gate R.
+Appendix C: Charge sensing of quantum dots
+controlled with B-2T and B-T3
+We can use the SEB to sense QDs controlled with bar-
+rier gates B-2T and B-T3. To this end, we set VP2 =
+VP3 = 0 V. We operate the EQD at a lower occupancy,
+at around VT ≈ 0.5 V, compared to the VT ≈ 0.7 V from
+main text. We estimate that the occupancy at this volt-
+age is less by approximately 45 − 50 electrons. We use a
+lower VT to reduce the EQD electron wavefunction size
+to reduce the EQD-barrier dot electron tunnel coupling.
+We show the (T,B-2T), (T,B-T3), and (B-2T,B-T3)
+stability diagrams in Figure C7 (a)-(c). In this VT range,
+we observe DRTs which couple more strongly to the T
+gate than the barrier gates. It is possible that in this
+regime the gate T hosts multiple QDs. Similarly to when
+sensing the plunger QDs (see Fig. 2), we observe the
+first few electrons being loaded under B-2T and B-T3 as
+shifts in the EQD DRT peaks. We observe approximately
+monotonic increase in tunnel coupling in the (T,B-T3)
+system (Fig. C7 (b)). The barrier-QD to EQD coupling
+changes from capacitively coupled to tunnel coupled, as
+indicated by the increasing bending of the DTR lines
+for increasing VB−T3 and VT voltages, over a range of
+∆VT = 0.1 V, or a change in T occupancy by approxi-
+mately 15 electrons. We expect this to correspond to an
+increase in the EQD electron wavefunction overlap with
+the B-T3 QD.
+We also observe B-2T electron loading events in the
+(T,B-2T) stability diagram (Fig. C7 (a)). Here, capaci-
+tive coupling is weaker at VT ≤ 0.49 V, below which the
+B-2T addition voltages are not visible. This asymmetry
+is directly demonstrated on the (B-2T, B-T3) stability
+diagram, shown in Fig. C7 (c). The EQD DRTs appear
+almost vertical, indicating relatively stronger coupling to
+B-T3 compared to B-2T. Based on the experimentally
+observed ratio αT,B−2T/αT,B−T3 (or αT,P3/αT,P2), we
+expect that the electron wavefunction shape and delo-
+calization depends on filling. At low dot occupancy, the
+wavefunctions are smaller and not centered, with at least
+two possible causes. The opening between top left and
+top right confinement gates is asymmetric with respect
+to the gate T, while the L-shape of B-RT asymmetrically
+screens the gate T. An additional effect may be played by
+orbital angular momentum. In analogy to atomic p or-
+bitals, for example, electron wavefunctions corresponding
+to different fillings might be centered towards the left or
+right of the gate T region. For higher filling, where the
+EQD behaves as a single QD, the wavefunction shapes
+homogenize and delocalize, capacitively coupling to the
+outer QDs and thereby forming a well-defined, nearly
+symmetrically coupled TQD (see main text).
+Appendix D: Elongated quantum dot charging
+energies and lever arms
+Coulomb diamond data, shown in Fig. D8 (a)-(c),
+from another elongated quantum dot device, referred to
+as device B, is used to estimate the typical EQD charg-
+ing energies and lever arms αT,T. The device schematic
+is shown in the top inset of Fig. D8 (a): the EQD is
+connected to three accumulation gates, S, R, and D, via
+barrier gates B-ST, B-RT, and B-TD. The device is from
+the same die as device A, and the EQD dimensions are
+the same.
+We measure Coulomb diamonds through the S-D chan-
+nel by applying a varying voltage to the ohmic connected
+to gate S, and a varying voltage to gate T. Barriers B-
+ST and B-TD are biased close to their pinch-off voltages,
+while the accumulation gates S and D are biased signifi-
+cantly above their respective pinch-off voltages. We plot
+the Coulomb diamonds in Fig. D8 (a). For each VT, we
+find the diamond edges as the VS−ohmic values where cur-
+rent is ± 400 pA above the background. Treating upper
+and lower diamond edges as data traces with setpoints
+given by VT, we find peak maxima and minima, which
+are denoted with cyan and orange points. We manually
+remove some of the unpaired peaks and dips from the
+low-electron regime. Ensuring we have an equal number
+of diamond peaks and dips, we process these to charging
+energies, shown in Fig. D8 (b), and lever arms, shown
+in Fig. D8 (c), using ECi = hi/2, and αTi,T = hi/(2wi),
+where hi and wi are the height and width of ith diamond,
+respectively.
+We find that the charging energies and lever arms settle
+to constant value for the last 30 or so measured electrons
+(voltages VT = 0.77 V and above; see the bottom inset
+of Fig. D8 (a) for a close-up of the data). The average
+charging energy for the last 30 electrons is EC = 0.41 ±
+0.02 meV, and the average lever arm αT,T = 0.093 ±
+0.005 eV/V, where error bars are given for one standard
+deviation.
+n Fig. D8 (d), we plot the Coulomb oscillations of
+device A measured in rf and extract the position of each
+peak to determine the charging voltages. In Fig. D8 (e),
+we plot the extracted charging voltages, and charging
+energies by utilising the lever arm estimated for device
+B. Using the lever arm estimated for the standalone gate
+T device, we obtain the average charging energy EC =
+0.41 ± 0.02 meV (see extra y-axis in Fig. D8 (f)), which
+agrees well with the device B.
+
+9
+(a)
+0.46
+0.48
+0.50
+VT (V)
+0.15 0.20 0.25 0.30 0.35
+VB
+2T (V)
+0
+10
+VIF (mV)
+VB
+RT = 0.3015 V (b)
+0.450
+0.475
+0.500
+0.525
+VT (V)
+0.15 0.20 0.25 0.30 0.35
+VB
+T3 (V)
+0
+10
+VIF (mV)
+VB
+RT = 0.300 V
+(c)
+0.225
+0.250
+0.275
+0.300
+VB
+T3 (V)
+0.24
+0.26
+0.28
+0.30
+0.32
+VB
+2T (V)
+(0,0)
+(0,1)
+(0,2)
+(1,0)
+(1,1)
+(1,2)
+(2,0)
+(2,1)
+(2,2)
+5
+0
+5
+VIF (mV)
+VT = 0.4695 V
+Figure C7.
+Charge sensing of quantum dots controlled with B-2T and B-T3.
+Stability diagrams on the (a)
+(T,B-2T), (b) (T,B-T3), and (c) (B-2T,B-T3) voltage planes. Electron loading voltages are indicated with white, dashed lines.
+Estimated charge configurations in (c) are denoted as (nB−2T, nB−T3).
+0.5
+0.6
+0.7
+0.8
+0.9
+VT (V)
+4
+3
+2
+1
+0
+1
+2
+3
+VS
+ohmic (mV)
+0 10 20 30 40 50 60
+1
+2
+3
+Charging
+ energy (meV)
+0 10 20 30 40 50 60
+Electron number
+0.050.100.150.200.25
+Lever arm (eV/V)
+101 100 10 1
+0
+10 1 100
+IS
+ohmic (nA)
+0.775 0.800 0.825 0.850 0.875
+1.0
+0.5
+0.0
+0.5
+1.0
+0.600
+0.625
+0.650
+0.675
+0.700
+VT (V)
+0.0
+2.5
+5.0
+7.5 10.0
+VIF (mV)
+0
+5
+10
+15
+20
+Electron number
+4.00
+4.25
+4.50
+4.75
+Charging voltage (mV)
+0.375 0.400 0.425 0.450
+Charging energy (meV)
+T
+TR-C
+TL-C
+R
+D
+S
+B-C
+B-ST
+B-TD
+B-RT
+(a)
+(b)
+(c)
+(d)
+(e)
+Figure D8.
+Elongated quantum dot charging ener-
+gies and lever arms. (a) Coulomb diamonds of device B,
+with diamond peaks and dips annotated as cyan and orange
+dots. Top inset shows the device schematic. Bottom inset
+shows a closeup in the high-electron-number regime. (b) Ex-
+tracted charging energies for 58 electrons, starting from some
+offset number of electrons. (c) Extracted lever arms. (d)-(e)
+Loading and charging voltages of device A. Panel (e) shows
+charging voltages converted to charging energies using αT,T
+from device B.
+Appendix E: Lever arm estimation
+The lever arm matrix is defined as the product
+ααα = −
+�
+Cdd
+�−1Cdg,
+(E1)
+where Cdd is the dot-dot and Cdg the dot-gate sub-
+matrix of the Maxwell capacitance matrix [46].
+We
+use the device B high electron number average estimate
+αT,T = 0.093 ± 0.005 eV/V to convert lever arm ratios
+measured in device A to lever arms. The slope of a dot-
+to-reservoir transition on the (Vx, Vy) voltage plane is
+given by
+ai = −αix
+αiy
+.
+(E2)
+For i = T, x = P2 (x = P3), and y = T, slope esti-
+mation with αT,T yields an estimate for αT,P2 (αT,P3).
+Using data from Fig. 2, we obtain the lever arm estimates
+plotted in Fig. E9 (a). Likewise, the inter-site charging
+energies e2�
+C−1
+dd
+�
+ij can be estimated from the horizontal
+and vertical ICT extents ∆Vx and ∆Vy, as
+∆Vx = −2
+�
+C−1
+dd
+�
+ij
+αiy − αjy
+αixαjy − αiyαjx
+(E3)
+∆Vy = aij(x23 − x12),
+(E4)
+for dots i and j, where aij is the slope of the ICT. When
+αP2,P 2 ≫ αT,P2, Eq. (E3) simplifies to
+∆VT = 2|e|
+�
+C−1
+dd
+�
+T,P2α−1
+T,T,
+(E5)
+and when αT,T ≫ αP2,T, Eq. (E4) simplifies to
+∆VP2 ≈ −2|e|
+�
+C−1
+dd
+�
+T,P2α−1
+P2,P2,
+(E6)
+and similarly for P3.
+The
+estimates
+obtained
+for
+mutual
+capacitances
+�
+C−1
+dd
+�
+T,P2 and
+�
+C−1
+dd
+�
+T,P3, and the lever arms αP2,P2
+and αP3,P3 by inverting Eqs. (E5)-(E6) are plotted in
+
+10
+Fig. E9 (b)-(c). Using the above estimates, we may also
+estimate αP2,T and αP3,T by inverting the ICT slope
+aP2,T := ∆VT
+∆VP2
+(E7)
+= αP2,P2 − αT,P2
+αP2,T − αT,T
+.
+(E8)
+The resulting estimates are plotted in Fig. E9 (d).
+We point out that the setpoint for data in Fig. 3 (c) is
+locally close to the setpoints for the (P2,T) and (T,P3)
+DQDs discussed in Figs. 2 (a) and (c), where B-T3 is
+held at zero bias. This is demonstrated by an indepen-
+dent lever arm ratio estimate. For the charge configu-
+rations (nP2, nT) = (1, nT) and (nT, nP3) = (nT, 1), we
+extract αT,P2/αT,T = 0.140 ± 0.008 and αT,P3/αT,T =
+0.097 ± 0.016, yielding αT,P3/αT,P2 = 0.69 ± 0.14, agree-
+ing with the previous estimation. Motivated by this ob-
+servation, in the following, when simulating the TQD
+stability diagram of Fig. 3 (c), we use lever arms and
+inter-site charging energies estimated from these DQD
+datasets.
+The above procedure yields estimates for 7 out of the 9
+lever arms for the (P2,T,P3) TQD system. The diagonal
+lever arms αP2,P2 and αP3,P3 also enable to convert ad-
+dition voltages to addition energies. In principle, we may
+estimate the remaining two from the P3 and P2 DRTs
+on the (P3,P2) stability diagram. The high resolution
+along VP3 enables to estimate the slope −αP3,P3/αP3,P2,
+whereas the lower resolution along VP2 renders estimat-
+ing −αP2,P3/αP2,P2 more difficult. We estimate the latter
+in a charge configuration of 3...6 electrons under P2 and
+P3, in VP2 and VP3 range of 0.6...0.9 V.
+Appendix F: Self-consistent Schr¨odinger-Poisson
+and electrostatic solvers
+The quantum-mechanical electron density (QMED)
+n−(r) is defined, as the energy integral of a sum of
+Fermi-distributed probability densities corresponding to
+different conduction bands [37]. The QMED can be ob-
+tained by iteratively solving the Schr¨odinger and Poisson
+equations [37, 38], method referred to as self-consistent
+Schr¨odinger-Poisson solver (SPS). At convergent ener-
+gies, the solver outputs both the QMED n−(r), and the
+so-called effective-mass probability density
+��Ψα,E(r)
+��2.
+Total charge associated with an electron density is ob-
+tained by integrating n−(r) over space.
+We use an SPS implementation from the semiconduc-
+tor nanostructure simulation program nextnano++ [37,
+38]. We model the device gates as 3D Schottky contacts
+over a silicon (Si) substrate. We take the work-function
+φ = 4.05 eV, consistent with n++-doped polycrystalline
+silicon.
+We take the Si/SiO2 interface as a Dirichlet
+boundary condition, which enforces the electron densi-
+ties to remain within the Si substrate. We also employ
+the electrostatics module from the general-purpose sim-
+ulation software COMSOL multiphysics, to evaluate the
+Maxwell capacitance matrix of a system of metallic ob-
+jects.
+We draw the device gate model in COMSOL and
+nextnano++ layer by layer, using device gate and oxide
+dimensions consistent with device design and expected
+fabricated dimensions. Gate layer colouring follows the
+device schematic of Fig. B6 (a). At gate overlaps, we
+draw a gate in the overlapping area, in general creating
+several, not necessarily connected, objects to describe a
+single gate. We define higher- and lower-level gate ob-
+jects as a single electrical node.
+To estimate the shape of a QD that is controlled with
+gate A in an experiment, we bias the gate A and it’s
+nearest-neighbour gates in the simulation according to
+the experimental setpoint, while retaining all other gate
+biases at zero volts. In these simulated setpoints, we use
+the SPS to solve for the electron and probability densi-
+ties. Thus, the simulation has two differences compared
+to experiments. In the simulation, we do not employ the
+reservoir gates S, R, and D; and only a subset of the de-
+vice is biased in one simulation. We split the QD QMED
+simulation into multiple parts as opposed to simulating
+all QMEDs in a single simulation for two reasons. High
+electron densities, such as those due to electron reser-
+voirs S, R, and D, converge more slowly, significantly
+incresing runtime. Also, in our experiment, we operate
+plunger gate controlled QDs in the few electron regime,
+while we operate the EQD at an occupancy of ≈ 50 − 60
+electrons. We expect the reservoir electron densities to
+be approximately a factor of 100 higher than the QD
+electron densities. Due to the large difference in magni-
+tude, the convergence of the SPS solver depends mostly
+of the reservoir electron density, leaving the estimate for
+the QD electron density inaccurate (e.g. simply void of
+electrons), and significantly different than the estimate
+obtained without including the reservoir.
+We assimilate the QMED with the wavefunction, as
+ρ(r) = n−(r).
+We prefer electron densities instead of
+probability densities to describe the many-electron states
+in the EQD. Alternatively, we could evaluate probability
+densities up to the number of electrons we expect at the
+EQD. Probability densities have orbitals with more irreg-
+ularity in shape and size as a function of electron number.
+These states do not account for electron-electron interac-
+tions, and hence we do not expect a gain in accuracy by
+using probability densities. We then consistently employ
+electron densities for all QD shape estimates.
+Shapes of a QD at e.g. nσ are taken as the 3d contour
+rboundary at which the density has fallen by nσ from the
+maximum. That is,
+rboundary =
+�
+r : ρ(r) = (1 − nσ)ρmax(r)
+�
+.
+(F1)
+Appendix G: Simulated capacitance matrices
+To estimate the Maxwell capacitance matrix C, the es-
+timated QD boundaries (Eq. (F1))are imported to COM-
+SOL as shapes, and defined as a perfect hollow conductor
+
+11
+(a)
+1
+2
+3
+4
+5
+6
+Electron number
+0.4
+0.5
+0.6
+0.7
+0.8
+Lever arm (meV/V)
+T, P3, load from D
+T, P3, load from T
+T, P2, load from T
+(b)
+1
+2
+3
+4
+5
+6
+Electron number
+0
+5
+10
+15
+20
+25
+30
+e2(C 1
+dd)T, QD ( eV)
+(T,P3), load from D
+(T,P3), load from T
+(T,P2), load from T
+(c)
+1
+2
+3
+4
+5
+6
+Electron number
+0
+10
+20
+30
+40
+Lever arm (meV/V)
+P3, P3, load from D
+P3, P3, load from T
+P2, P2, load from T
+(d)
+1
+2
+3
+4
+5
+6
+Electron number
+2.5
+5.0
+7.5
+10.0
+12.5
+15.0
+Lever arm (meV/V)
+P3, T, load from D
+P3, T, load from T
+P2, T, load from T
+(e)
+10 5 10 4 10 3 10 2 10 1
+100
+Lever arm
+P3, P3
+T, P3
+P3, T
+P3, P2
+P2, P3
+(f)
+10 5 10 4 10 3 10 2 10 1
+100
+Lever arm
+T, T
+P3, P3
+P2, P2
+T, P3
+T, P2
+P3, T
+P2, T
+Figure E9.
+Experimentally estimated lever arms. Connected datapoints show the estimated (a) αT,P2 and αT,P3,
+(b) mutual charging energies between the T QD and the P3 or P2 QDs, (c) αP2,P2 and αP3,P3, and (d) αP2,T and αP3,T.
+Dashed lines show averages over electron number. Legends further specify the operating point. (e)-(f) Comparison between
+experimentally estimated and simulated lever arms. Panel (e) shows the lever arms from operating point where the B-T3 is
+off at zero bias, and panel (f) obtained with B-T3 on at non-zero bias. Experimentally estimated lever arm components are
+drawn with blue diagonal cross markers (x). Lever arms simulated in a fixed operating point, biasing each QD-controlling gate,
+and without any other gate biases, are drawn with red filled circles. Lever arms simulated with biases at QD controlling gates,
+and nearest-neighbour gates, are drawn with green plus cross markers (+).
+which is maintained at zero bias. We use the 1σ con-
+tours in all our capacitance matrix simulations. Having
+imported all QD shapes to the same device model, we
+run the electrostatic solver to obtain C. The lever arm
+matrix is obtained from Eq. (E1).
+As a reference dataset, we calculate a capacitance ma-
+trix for the TQD system (P2,T,P3), where QD electron
+densities are obtained in a simulation where only the cor-
+responding plunger gate is biased. We compare this to a
+simulation, where we account for the effect that barriers
+have for QD shapes and locations, by biasing a plunger
+gate and nearest neighbour barrier gates. We choose the
+setpoints corresponding to B-T3 on and B-T3 off (see
+Figs. 2 and B6).
+We plot the simulated lever arms corresponding to the
+no-barrier and B-T3 off, as well as the experimentally
+estimated B-T3 off lever arms, in Fig. E9 (e). The sim-
+ulated and experimental lever arms corresponding to no-
+barrier and B-T3 on are plotted in Fig. E9 (f). We have
+averaged over charge configurations for the experimen-
+tal lever arms. We find that the simulated lever arms
+are systematically larger than experimentally estimated
+lever arms.
+Simulations with and without the neigh-
+bouring barriers produce estimates with similar magni-
+tudes, but simulations with barriers qualitatively follow
+the trends observed in the experimental lever arms. We
+associate the systematic mismatch between experimen-
+tal and simulated lever arm components to the fact that
+the simulation systematically overestimates charging en-
+ergies |e|
+�
+C−1
+dd
+�
+ij, i.e. underestimates the dot-dot capac-
+itances. One source of error is our inability to describe
+the large electron reservoirs, to which the EQD, and at
+some setpoints the P3 QD, are highly tunnel coupled to.
+The tunnel coupling affects the QD shape.
+In the main text, we summarize these results using the
+relative error matrix between experimental, αexp,ij, and
+simulated, αsim,ij, lever arms components, defined as
+�
+δα
+�
+ij = |αexp,ij − αsim,ij|/|αexp,ij|
+(G1)
+(see the lower matrix of Fig. 4 (c)).
+Appendix H: Capacitively coupled triple quantum
+dot stability diagram simulation
+We simulate the charge stability diagram of a triple
+quantum dot as the ground state of the electrostatic
+Hamiltonian
+HC =
+�
+i∈d
+1
+2
+� �
+j∈d
+e2ni(C−1
+dd )ij nj +
+�
+k∈g
+e ni αααikVk
+�
+,
+(H1)
+where e is the electron charge, ni the number operator
+for site i, ∆i is the site i orbital energy,
+�
+Cdd
+�−1 the
+inverse of the dot-dot submatrix of the capacitance ma-
+trix, ααα the lever arm matrix, and Vk the gate voltage
+of gate k.
+We represent the number operators using
+fermionic ladder operators, in term using the Jordan-
+Wigner mapping.
+We reduce to considering a single
+
+12
+orbital per site (i.e.
+up to 2 electrons per site), and,
+since ni are diagonal, it suffices to consider HC as a
+vector. The ground state is found as the smallest ele-
+ment of the vector. In order to obtain the charge stabil-
+ity diagram as a function of two voltages, we perform
+the simulation for a matrix of voltage pairs VP 2, VP 3.
+We define the stability diagram as the cross-derivative
+d
+�
+dEg(VP 2, VP 3)/dVP 3
+�
+/dVP 2,
+where Eg(VP 2, VP 3) is
+the resulting ground state matrix as a function of the
+two voltages.
+In the following, matrices are expressed in a basis with
+indices {1, 2, 3} = {P2, T, P3}.
+We use the lever arm
+matrix (expressed in units of eV/V), which reads up to
+four significant figures
+ααα =
+�
+�
+12.20
+4.99
+0.01
+0.66
+92.60 0.49
+0.07
+4.99
+9.01
+�
+� × 10−3.
+(H2)
+The exact values are given by the estimated lever arm
+components, which were not truncated.
+We use the inverse dot-dot capacitance matrix, whose
+components are proportional to charging energies, ex-
+pressed in units of eV,
+|e|
+�
+Cdd
+�−1 =
+�
+�
+0.463 0.014 10−5
+0.014, 0.407 0.004
+10−5
+0.004 0.697
+�
+� × 10−3.
+(H3)
+The matrix is assumed to be symmetric. We assimilate
+addition energies to charging energies in this simulation.
+The elements |e|
+�
+Cdd
+�−1
+P 2,P 2 and |e|
+�
+Cdd
+�−1
+P 3,P 3 are esti-
+mated from the addition energies ∆VP 2(n → n + 1) and
+∆VP 3(n → n + 1) of Fig. 3 (c), as
+|e|
+�
+Cdd
+�−1
+P 2,P 2 = 1
+2αP 2,P 2∆VP 2(1 → 2),
+(H4)
+and likewise for P3. The elements |e|
+�
+Cdd
+�
+P 2,P 3 and its
+transpose are not estimated, but a small non-zero ele-
+ment is added to aid matrix inversion. Matrix inversion
+is used when converting the charging energies to a dot-
+dot capacitance matrix.
+To account for finite threshold voltages, we shift plot-
+ting ranges for VP 3 and VP 2 after the simulation. The
+simulated ranges are from −0.05 to +0.25 V. We use a
+fixed applied voltage parameter VT = 0.0039 V to set
+the T QD DRT alignment with respect to the P2 and
+P3 DRTs. The resulting simulation is shown in Fig. 4
+(d). The charge configurations are evaluated as number
+operator expectation values at each (VP2, VP3) pair, with
+nT added for the middle QD charge configuration.
+[1] Gonzalez-Zalba, M. F.; de Franceschi, S.; Charbon, E.;
+Meunier, T.; Vinet, M.; Dzurak, A. S. Scaling silicon-
+based quantum computing using CMOS technology. Na-
+ture Electronics 2021, 4, 872–884.
+[2] Xue, X.; Russ, M.; Samkharadze, N.; Undseth, B.; Sam-
+mak, A.; Scappucci, G.; Vandersypen, L. M. K. Quantum
+logic with spin qubits crossing the surface code threshold.
+Nature 2022, 601, 343–347.
+[3] Noiri, A.; Takeda, K.; Nakajima, T.; Kobayashi, T.; Sam-
+mak, A.; Scappucci, G.; Tarucha, S. Fast universal quan-
+tum gate above the fault-tolerance threshold in silicon.
+Nature 2022, 601, 338–342.
+[4] Mills, A. R.; Guinn, C. R.; Gullans, M. J.; Sigillito, A. J.;
+Feldman, M. M.; Nielsen, E.; Petta, J. R. Two-qubit sili-
+con quantum processor with operation fidelity exceeding
+99%. Science Advances 2022, 8, eabn5130.
+[5] Connors, E. J.; Nelson, J.; Nichol, J. M. Rapid High-
+Fidelity Spin-State Readout in Si / Si - Ge Quantum
+Dots via rf Reflectometry. Phys. Rev. App. 2020, 13,
+024019.
+[6] Takeda, K.; Noiri, A.; Nakajima, T.; Kobayashi, T.;
+Tarucha, S. Quantum error correction with silicon spin
+qubits. Nature 2022, 608, 682–686.
+[7] Philips, S. G. J.; Madzik, M. T.; Amitonov, S. V.;
+de Snoo, S. L.; Russ, M.; Kalhor, N.; Volk, C.; Lawrie, W.
+I. L.; Brousse, D.; Tryputen, L.; Wuetz, B. P.; Sam-
+mak, A.; Veldhorst, M.; Scappucci, G.; Vandersypen, L.
+M. K. Universal control of a six-qubit quantum processor
+in silicon. arXiv preprint arXiv:2202.09252 2022,
+[8] Guevel, L. L.; Billiot, G.; Jehl, X.; De Franceschi, S.;
+Zurita, M.; Thonnart, Y.; Vinet, M.; Sanquer, M.; Mau-
+rand, R.; Jansen, A. G. M.; Pillonnet, G. 19.2 A 110mK
+295µW 28nm FDSOI CMOS Quantum Integrated Cir-
+cuit with a 2.8GHz Excitation and nA Current Sensing
+of an On-Chip Double Quantum Dot. 2020 IEEE Interna-
+tional Solid- State Circuits Conference - (ISSCC). 2020;
+pp 306–308.
+[9] Ruffino, A.; Yang, T.-Y.; Michniewicz, J.; Peng, Y.;
+Charbon, E.; Gonzalez-Zalba, M. F. A cryo-CMOS chip
+that integrates silicon quantum dots and multiplexed dis-
+persive readout electronics. Nat. Electron. 2022, 5, 53–
+59.
+[10] Veldhorst, M.; Yang, C. H.; Hwang, J. C. C.; Huang, W.;
+Dehollain,
+J.
+P.;
+Muhonen,
+J.
+T.;
+Simmons,
+S.;
+Laucht, A.; Hudson, F. E.; Itoh, K. M., et al. A two-
+qubit logic gate in silicon. Nature 2015, 526, 410–414.
+[11] Zajac, D. M.; Sigillito, A. J.; Russ, M.; Borjans, F.; Tay-
+lor, J. M.; Burkard, G.; Petta, J. R. Resonantly driven
+CNOT gate for electron spins. Science 2017, 359, 439–
+442.
+[12] Huang, W.; Yang, C. H.; Chan, K. W.; Tanttu, T.;
+Hensen, B.; Leon, R. C. C.; Fogarty, M. A.; Hwang, J.
+C. C.;
+Hudson, F. E.;
+Itoh, K. M.;
+Morello, A.;
+Laucht, A.; Dzurak, A. S. Fidelity benchmarks for two-
+qubit gates in silicon. Nature 2019, 569, 532–536.
+[13] Veldhorst, M.; Eenink, H. G. J.; Yang, C.-H.; Dzu-
+rak, A. S. Silicon CMOS architecture for a spin-based
+quantum computer. Nature communications 2017, 8, 1–
+
+13
+8.
+[14] Boter, J. M.; Dehollain, J. P.; Van Dijk, J. P. G.; Xu, Y.;
+Hensgens, T.; Versluis, R.; Naus, H. W. L.; Clarke, J. S.;
+Veldhorst, M.; Sebastiano, F.; Vandersypen, L. M. K.
+Spiderweb Array: A Sparse Spin-Qubit Array. Physical
+Review Applied 2022, 18, 024053.
+[15] Undseth, B.; Xue, X.; Mehmandoost, M.; Russ, M.;
+Samkharadze, N.; Sammak, A.; Dobrovitski, V. V.; Scap-
+pucci, G.; Vandersypen, L. M. Nonlinear response and
+crosstalk of strongly driven silicon spin qubits. arXiv
+preprint arXiv:2205.04905 2022,
+[16] Lafarge, P.; Pothier, H.; Williams, E. R.; Esteve, D.;
+Urbina, C.; Devoret, M. H. Direct observation of macro-
+scopic charge quantization. Zeitschrift f¨ur Physik B Con-
+densed Matter 1991, 85, 327–332.
+[17] House, M. G.; Bartlett, I.; Pakkiam, P.; Koch, M.;
+Peretz, E.; Heijden, J. V. D.; Kobayashi, T.; Rogge, S.;
+Simmons, M. Y. High-Sensitivity Charge Detection with
+a Single-Lead Quantum Dot for Scalable Quantum Com-
+putation. Phys. Rev. App. 2016, 6, 044016.
+[18] Urdampilleta, M. et al. Gate-based high fidelity spin
+readout in a CMOS device. Nat. Nanotechnol. 2019, 14,
+737–741.
+[19] Ciriano-Tejel,
+V.
+N.;
+Fogarty,
+M.
+A.;
+Schaal,
+S.;
+Hutin,
+L.;
+Bertrand,
+B.;
+Ibberson,
+L.;
+Gonzalez-
+Zalba, M. F.; Li, J.; Niquet, Y.-M.; Vinet, M.; Mor-
+ton, J. J. Spin Readout of a CMOS Quantum Dot
+by Gate Reflectometry and Spin-Dependent Tunneling.
+PRX Quantum 2021, 2, 010353.
+[20] Oakes, G. A. et al. Fast high-fidelity single-shot read-
+out of spins in silicon using a single-electron box. 2022;
+https://arxiv.org/abs/2203.06608.
+[21] Niegemann, D. J. et al. Parity and singlet-triplet high
+fidelity readout in a silicon double quantum dot at 0.5
+K. 2022; https://arxiv.org/abs/2207.10523.
+[22] Martins, F.; Malinowski, F. K.; Nissen, P. D.; Fallahi, S.;
+Gardner, G. C.; Manfra, M. J.; Marcus, C. M.; Kuem-
+meth, F. Negative spin exchange in a multielectron quan-
+tum dot. Physical review letters 2017, 119, 227701.
+[23] Malinowski,
+F.
+K.;
+Martins,
+F.;
+Smith,
+T.
+B.;
+Bartlett, S. D.; Doherty, A. C.; Nissen, P. D.; Fallahi, S.;
+Gardner, G. C.; Manfra, M. J.; Marcus, C. M.; Kuem-
+meth, F. Spin of a multielectron quantum dot and its
+interaction with a neighboring electron. Physical Review
+X 2018, 8, 011045.
+[24] Wang, Z.; Feng, M.; Serrano, S.; Gilbert, W.; Leon, R. C.;
+Tanttu, T.; Mai, P.; Liang, D.; Huang, J. Y.; Su, Y.,
+et al. Jellybean quantum dots in silicon for qubit cou-
+pling and on-chip quantum chemistry. arXiv preprint
+arXiv:2208.04724 2022,
+[25] Malinowski,
+F.
+K.;
+Martins,
+F.;
+Smith,
+T.
+B.;
+Bartlett, S. D.; Doherty, A. C.; Nissen, P. D.; Fallahi, S.;
+Gardner, G. C.; Manfra, M. J.; Marcus, C. M.; Kuem-
+meth, F. Fast spin exchange across a multielectron me-
+diator. Nature communications 2019, 10, 1–6.
+[26] Cai, Z.; Fogarty, M. A.; Schaal, S.; Patom¨aki, S.; Ben-
+jamin, S. C.; Morton, J. J. L. A silicon surface code archi-
+tecture resilient against leakage errors. Quantum 2019,
+3, 212.
+[27] Dumoulin Stuyck, N. I.;
+Li, R.;
+Godfrin, C.;
+El-
+sayed, A.; Kubicek, S.; Jussot, J.; Chan, B. T.; Mo-
+hiyaddin, F. A.; Shehata, M.; Simion, G.; Canvel, Y.;
+Goux, L.; Heyns, M.; Govoreanu, B.; Radu, I. P. Uni-
+form Spin Qubit Devices with Tunable Coupling in an
+All-Silicon 300 mm Integrated Process. 2021 Symposium
+on VLSI Circuits. 2021; pp 1–2.
+[28] Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.; A.W., L.;
+de Ronde, B.; Dehollain, J. P.; Muhonen, J. T.; Hud-
+son, F. E.; Itoh, K. M.; Morello, A.; Dzurak, A. S. An ad-
+dressable quantum dot qubit with fault-tolerant control-
+fidelity. Nat. Nano. 2014, 9, 981–985.
+[29] Electronic access: https://www.qdevil.com.
+[30] Vigneau, F.; Fedele, F.; Chatterjee, A.; Reilly, D.; Kuem-
+meth, F.; Gonzalez-Zalba, F.; Laird, E.; Ares, N. Prob-
+ing quantum devices with radio-frequency reflectometry.
+arXiv preprint arXiv:2202.10516 2022,
+[31] Gonzalez-Zalba, M. F.; Barraud, S.; Ferguson, A. J.;
+Betz, A. C. Probing the limits of gate-based charge sens-
+ing. Nature communications 2015, 6, 1–8.
+[32] Lim, W. H.; Yang, C. H.; Zwanenburg, F. A.; Dzu-
+rak, A. S. Spin filling of valley-orbit states in a silicon
+quantum dot. Nanotechnology 2011, 22, 335704.
+[33] Keith, D.; House, M. G.; Donnelly, M. B.; Watson, T. F.;
+Weber, B.; Simmons, M. Y. Single-shot spin readout
+in semiconductors near the shot-noise sensitivity limit.
+Physical Review X 2019, 9, 041003.
+[34] Yang, C. H.; Rossi, A.; Lai, N. S.; Leon, R. C. C.;
+Lim, W. H.; Dzurak, A. S. Charge state hysteresis in
+semiconductor quantum dots. Applied Physics Letters
+2014, 105, 183505.
+[35] Fedele, F. Spin interactions within a two-dimensional ar-
+ray of GaAs double dots; Niels Bohr Institute, 2020.
+[36] Srinivasa, V.; Xu, H.; Taylor, J. M. Tunable spin-qubit
+coupling mediated by a multielectron quantum dot. Phys-
+ical review letters 2015, 114, 226803.
+[37] Birner, S. Modeling of semiconductor nanostructures and
+semiconductor-electrolyte interfaces; Technische Univer-
+sit¨at M¨unchen, 2011.
+[38] nextnano++ manual. nextnano.de/manual/nextnanoplus,
+Accessed: 2022-11-08.
+[39] Yoneda, J.;
+Huang, W.;
+Feng, M.;
+Yang, C. H.;
+Chan, K. W.; Tanttu, T.; Gilbert, W.; Leon, R. C. C.;
+Hudson, F. E.; Itoh, K. M., et al. Coherent spin qubit
+transport in silicon. Nature communications 2021, 12,
+1–9.
+[40] Noiri, A.; Takeda, K.; Nakajima, T.; Kobayashi, T.; Sam-
+mak, A.; Scappucci, G.; Tarucha, S. A shuttling-based
+two-qubit logic gate for linking distant silicon quantum
+processors. arXiv preprint arXiv:2202.01357 2022,
+[41] Seidler, I.;
+Struck, T.;
+Xue, R.;
+Focke, N.;
+Trel-
+lenkamp, S.; Bluhm, H.; Schreiber, L. R. Conveyor-mode
+single-electron shuttling in Si/SiGe for a scalable quan-
+tum computing architecture. npj Quantum Information
+2022, 8, 1–7.
+[42] Gilbert, W.; Saraiva, A.; Lim, W. H.; Yang, C. H.;
+Laucht, A.; Bertrand, B.; Rambal, N.; Hutin, L.; Es-
+cott, C. C.; Vinet, M., et al. Single-electron operation of
+a silicon-CMOS 2× 2 quantum dot array with integrated
+charge sensing. Nano Letters 2020, 20, 7882–7888.
+[43] Duan, J.;
+Fogarty, M. A.;
+Williams, J.;
+Hutin, L.;
+Vinet, M.; Morton, J. J. Remote capacitive sensing
+in two-dimensional quantum-dot arrays. Nano Letters
+2020, 20, 7123–7128.
+[44] Borjans, F.; Croot, X. G.; Mi, X.; Gullans, M. J.;
+Petta, J. R. Resonant microwave-mediated interactions
+between distant electron spins. Nature 2020, 577, 195–
+198.
+[45] Harvey-Collard, P.; Dijkema, J.; Zheng, G.; Sammak, A.;
+
+14
+Scappucci, G.; Vandersypen, L. M. K. Coherent Spin-
+Spin Coupling Mediated by Virtual Microwave Photons.
+Phys. Rev. X 2022, 12, 021026.
+[46] Mills, A. R.; Zajac, D. M.; Gullans, M. J.; Schupp, F. J.;
+Hazard, T. M.; Petta, J. R. Shuttling a single charge
+across a one-dimensional array of silicon quantum dots.
+Nature communications 2019, 10, 1–6.
+
diff --git a/s9AzT4oBgHgl3EQfrv3p/content/tmp_files/load_file.txt b/s9AzT4oBgHgl3EQfrv3p/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..12878abf3c1876371c6ff773e87f1ebcff81aabe
--- /dev/null
+++ b/s9AzT4oBgHgl3EQfrv3p/content/tmp_files/load_file.txt
@@ -0,0 +1,1711 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf,len=1710
+page_content='An elongated quantum dot as a distributed charge sensor S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Patom¨aki,1, 2, ∗ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Williams,1, 2 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Berritta,3 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lain´e,1, 2 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fogarty,1 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leon,1 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Jussot,4 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kubicek,4 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Chatterjee,3 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Govoreanu,4 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kuemmeth,3 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Morton,1, 2, † and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gonzalez-Zalba1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' ‡ 1 Quantum Motion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 9 Sterling Way,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' London N7 9HJ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' United Kingdom 2 London Centre for Nanotechnology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' University College London,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' London WC1H 0AH,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' United Kingdom 3 Center for Quantum Devices,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Niels Bohr Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' University of Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Copenhagen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Denmark 4 imec,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kapeldreef 75,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B-3001 Leuven,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Belgium (Dated: January 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2023) Increasing the separation between semiconductor quantum dots offers scaling advantages by fa- cilitating gate routing and the integration of sensors and charge reservoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Elongated quantum dots have been utilized for this purpose in GaAs heterostructures to extend the range of spin-spin interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, we study a metal-oxide-semiconductor (MOS) device where two quantum dot arrays are separated by an elongated quantum dot (340 nm long, 50 nm wide).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We monitor charge transitions of the elongated quantum dot by measuring radiofrequency single-electron currents to a reservoir to which we connect a lumped-element resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We operate the dot as a single electron box to achieve charge sensing of remote quantum dots in each array, separated by a distance of 510 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simultaneous charge detection on both ends of the elongated dot demonstrates that the charge is well distributed across its nominal length, supported by the simulated quantum-mechanical electron density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Our results illustrate how single-electron boxes can be realised with versatile foot- prints that may enable novel and compact quantum processor layouts, offering distributed charge sensing in addition to the possibility of mediated coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' INTRODUCTION In recent years, silicon spin qubits hosted in gate- defined quantum dots (QDs) have achieved major mile- stones making this platform a compelling option for large scale quantum computing [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' These include the demon- stration of high fidelity one- and two-qubit gates on the same device [2–4], high fidelity readout using ra- diofrequency (rf) single-electron transistors (SET) [5], the demonstration of simple instances of quantum er- ror correction [6] and the scale up to 6-qubit devices in a linear arrangement [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In addition, chips combining quantum and classical electronics have been shown to operate at deep cryogenic temperatures, demonstrating a potential route for integrated addressing, control and measurement of qubits [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Silicon spin qubits typically rely on nearest neighbour exchange to implement two-qubit interactions [10–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Such a short-range qubit coupling applied across the qubit processor leads to high gate densities that hinder integration with local control electronics and gate fan- out [13, 14], and introduce nonlinear responses due to cross-talk [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Furthermore, introducing readout sen- sors within the qubit plane impacts the level of connec- tivity that can be achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To scale up beyond one- dimensional qubit arrays and integrate cryogenic elec- tronics requires structures with enhanced functionality which can increase the separation between qubits, or be- tween qubits and sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' One approach to scaling is ∗ sofia@quantummotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='tech † john@quantummotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='tech ‡ fernando@quantummotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='tech to use dispersive charge sensors, such as the rf single- electron box (SEB) [16–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The SEB offers similar lev- els of sensitivity to conventional charge sensors [20, 21] but only requires one charge reservoir, as opposed to two for the SET, facilitating the design of qubit arrays with higher connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Another approach is to space out qubits by using elongated quantum dots (EQD) to me- diate exchange interactions between them [22–24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Such an approach, requiring tunnel coupling between each of the remote QDs and the EQD, has been demonstrated in GaAs heterostructures to mediate fast, coherent ex- change interaction between single spins separated by half a micron [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A further advantage of the EQD is that it could itself act as a local charge reservoir to facilitate initialization [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In this Article, we combine aspects of these two con- cepts to demonstrate an SEB with an elongated charge island that enables charge sensing of multiple remote QDs, which, due to the increased separation, show mini- mal cross-talk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The structure is fabricated using a three- layer n+-doped polycrystalline silicon gate metal-oxide- semiconductor (MOS) process that enables the forma- tion of the elongated SEB as well as few-electron QDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The extended distribution and quantisation of the charge within the EQD, consistent with semi-classical modelling, allows it to sense the charge on QDs separated by over 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Finally, we show tunnel coupling between the remote QDs and the EQD, which fulfills one of the re- quirements for coherent mediated exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' EXPERIMENTAL METHODS Our device consists of two double quantum dots (DQDs) separated by an EQD, nominally 340 nm long arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='01650v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='mes-hall] 4 Jan 2023 2 (a) layer 1 layer 2 layer 3 100 nm R-ohmic D-ohmic S-ohmic R S D T P1 P2 P4 P3 B-RT B-12 B-S1 B-2T B-34 B-T3 B-4D RDC DC L Cc RF VIF RF LO X (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 VR (V) 100 50 0 50 VIF (mV) (c) e– e– e– e– e– e– e– 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='325 VB RT (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='525 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='575 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='600 VT (V) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 0 4 812 VIF (mV) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Formation of an elongated single elec- tron box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (a) Device schematic (gray dotted rectangle) with simplified RF circuit diagram (signal filtering omitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A lumped-element resonator (orange dotted rectangle) is gal- vanically attached to the ohmic contact below the accumula- tion gate R and monitored via changes in the demodulated baseband-frequency reflectometry signal, VIF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (b) Changes in VIF reflect the accumulation of a 2DEG with increasing reser- voir gate voltage VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' All other gates are held at zero bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (c) The elongated QD is operated as a single electron box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, gates at zero bias are drawn in grayscale, while biased gates are drawn in colour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Orange blobs are cartoons indicating lo- cations of QDs of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' An elongated, multi-electron quan- tum dot forms under gate T and is tunnel coupled to a charge reservoir accumulated under gate R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Driving the resonator at its natural frequency drives cyclic electron tunnelling between the reservoir R, and the elongated quantum dot under gate T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The (T, B-RT) stability diagram obtained at VR = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 V shows dot-to-reservoir transitions that become increasingly regular with increasing VT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The signal strength depends on VB−RT, since the barrier voltage modulates the EQD-reservoir tunnel rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' and 50 nm wide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The measured device is fabricated with three 30 nm thick in-situ n+ phosphorus-doped poly- crystalline silicon gate layers formed with a wafer-level electron-beam patterning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The Si substrate is separated from the first gate layer with a 8 nm thick ther- mally grown SiO2, patterned on high-resistivity (> 3 kΩ) p-type Si wafer to minimise the density of oxide defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gate layers are electrically isolated from one another with a 5 nm thick blocking high-temperature deposited SiO2 [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A schematic of the measured device is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 1 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We employ one layer of gates (closest to the silicon substrate) to provide confinement for the three possible current paths connecting ohmic contacts, around the active region of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A second layer of gates is used to form barriers between the EQD, the QDs and the reservoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' As seen in other MOS QD arrays [28], QDs can also be formed under these ‘barrier’ gates in the sec- ond layer, depending on applied gate voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A third gate layer is used as plungers to control the occupation of the EQD, the QDs, and the extension of two-dimensional electron gases (2DEG) from under accumulation gates, denoted as reservoir (R), source (S), and drain (D), over- lapping with corresponding ohmics, towards the active region of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The device is cooled down in an Oxford Instruments Triton dilution refrigerator equipped with QDevil DACs, thermalizing filters and high-bandwidth sample hold- ers [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' At base temperature (25 mK) we confirm the functionality of the device with gate electrode leakage tests, followed by pinch-off and saturation voltage mea- surements (see Appendix A for the preliminary device characterization protocol).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We detect charge transitions between the EQD and the reservoir using rf reflectometry [30], via a lumped- element resonator attached to the ohmic contact of the accumulation gate R, as illustrated in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 1 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Further details of the rf reflectometry setup and data acquisition are presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B6 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The rf voltage Vrf drives single-electron AC tunneling currents between the reservoir and the EQD when not in Coulomb blockade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Cyclic tunneling manifests as changes in the complex impedance of the device, modifying the reso- nant frequency and matching impedance of the lumped- element resonator [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B6 (b) shows the vector network analyzer response of the resonator with gate R biased off/on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We apply a signal with frequency close to that of the resonator and the reflected signal, which car- ries information of the complex impedance of the SEB, is amplified and mixed down to produce the DC signal VIF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' By monitoring shifts in the observed charge transi- tions, we operate the EQD as an SEB sensor which can simultaneously sense QDs formed near either of its ends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Single-electron box tune-up In order to operate the EQD as an SEB, we extend a 2DEG close to the active region of the device from a nearby ohmic contact by applying a positive voltage to gate R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We bias the EQD plunger gate, T, above the pinch-off voltage and tune the tunnel rate between the reservoir and the EQD by adjusting the voltage on the barrier gate B-RT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To tune the SEB, we first record VIF as a function of VR (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 1 (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' As VR is increased, VIF changes as the 2DEG is formed, modifying the cir- cuit impedance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' For VR ≳ 1 V, VIF is nearly constant, indicating that the 2DEG is fully accumulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In this region, changes in the resonator response due to voltage sweeps on the other gates can be ascribed to AC charge transport between the QDs and the 2DEG in the reser- voir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (a) T P2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 VP2 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='712 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='713 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='714 VT (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='568 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='708 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='764 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 0 5 10 VIF (mV) (b) T P3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 VP3 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='702 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='703 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='704 VT (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='609 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='755 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='880 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='940 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 5 0 5 10 VIF (mV) (c) 50 60 70 80 90 100 Addition voltage (mV) P2, B-T3 on P3, B-T3 on 1 2 3 4 5 6 Electron number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 VT / T (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=') P3, B-T3 on P3, B-T3 off Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charge sensing of QDs under P2 and P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Operating point (top schematic) and discontinuities in the SEB peak locations (bottom dataset) reveal electron loading voltages for (a) P2 and (b) P3 (white numbers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (c) Upper panel shows the addition voltages extracted from (a)-(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Error bars, obtained from VP2 and VP3 resolution, are smaller than marker size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (c) Lower panel shows the sensor peak shift, δVT , with respect to peak linewidth, γT , at P3 QD charging events with B-T3 on (isolated from drain, as in panel (b)) and B-T3 off (connected to the reservoir formed with gate D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Having fixed VR = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 V, we then map out the charge stability diagram between gates T and B-RT (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 1 (c)), which shows dot-to-reservoir transitions (DRTs) indi- cating the presence of discretized charge states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' For VT ≲ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='55 V, the data suggest a complex system compris- ing at least two coupled QDs, while for VT ≳ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='55 V, the stability diagram increasingly resembles that of a single QD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Selecting VB−RT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='31 V maximizes the sig- nal VIF due to optimal tunnel rates between the reservoir and EQD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In the following, we use VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='72 V, which we show to be sufficient for the EQD to extend over the length of the gate T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charge sensing of quantum dots We next use the EQD as an SEB to individually sense electrons in QDs under P2 and P3, and also as a lo- cal electron reservoir for these dots (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (a)-(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To this end, starting from the SEB operating point of VR = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 V, VB−RT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='29 V, and VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='72 V, we further set VB−2T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='250 V, and VB−T3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='225 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We illustrate this operating point with device schemat- ics in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Positive barrier gate voltages increase tunnel rates from P2 to T and T to P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A sim- ulation of electron densities qualitatively illustrates how the barrier gates reshape and pull the QDs towards them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' This effect is further discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' III D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Barrier gate voltages are chosen to reside below their observed first electron loading voltages, based on (B-2T,T) and (T,B- T3) stability diagrams (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C7 (a)-(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We detect the loading of an electron to either P2 or P3 QDs as a discontinuity in the SEB DRT, caused by the mutual capacitance between the EQD and the QDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We mark the 0 → 1 charge transitions as the first de- tected discontinuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We find the first electrons to load at VP2(0 → 1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='400 V, and VP3(0 → 1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='609 V, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Subsequent electrons load in steps of tens of millivolts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' At occupancy of one electron, we find typ- ical sensor peak voltage signal-to-noise ratios (SNR) of SNRP2 = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7 and SNRP3 = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6, using an integration time of 1 ms (see Appendix B for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In order to understand whether the sensed QDs P2 and P3 are in the few-electron regime [32], we plot the extracted addition voltages in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' These addi- tion voltages carry information of the electron-number- dependent confinement energies, as Vg(nd → nd + 1) − Vg(nd − 1 → nd) = α−1 dg � EC d(nd) + ∆(nd) � , where nd is the electron number at the QD d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' αdg is the lever arm from QD d to gate g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' and EC d(nd)+∆(nd) is the sum of the corresponding on-site charging energy and the con- finement energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The addition voltages are irregular in general and, in particular, we observe an increase in the addition voltage both for P2 and P3 when loading from the presumed 4 → 5 electron state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' This is consistent with filling the lowest two ±z valley-orbit states, such that the next electron occupies a higher-energy orbital state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Using an estimated T addition voltage of |e|−1α−1 T T EC T = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 mV (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8), load- ing the first electron under P2 and P3 induces a charge of dq = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='075 e ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='01 for P2, and dq = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='032 e ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='01 e for P3, respectively, onto the SEB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We also show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (c) the shifts in VT induced by P3 electron loading, δVT, relative to the fitted linewidth of the SEB DRT, γT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' This ratio δVT/γT is a proxy for charge sensitivity, and indicates whether the sensor is in the small or large signal regime [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' When loading from the EQD, with VB−T3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='225 V, the shifts become larger than the line width of the sensor peak, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' δVT ≥ γT, by the fifth electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We retain some sensitivity to the QDs even when the barrier gates to the EQD are off at zero bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In this case, we resort to loading electrons under P3 from a reservoir formed via D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, we set 4 VB−T3 = 0 V, VB−34 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='275 V, VP4 and VB−4D to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='9 V, and VD to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We note that the first electron under P3 at this operating point is found at VP3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='387 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We find that in this operating point, the sensitivity is lower and increases more slowly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charge sensing coupled quantum dots Having established the basic operation of the EQD as a SEB charge sensor for nearby QDs, we next demonstrate its ability to sense different configurations of nearby cou- pled QDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We then go on to assess the sensitivity of this distributed charge sensor with increasing distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' First, we form a DQD under P3 and B-34 by extend- ing the reservoir 2DEG formed with gate D, setting VB−4D = VP4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='9 V, well above their threshold volt- ages, while operating P3 and B-34 close to their expected first electron voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We re-tune VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7084 V, retain- ing VP3 and VB−34 at the center of their selected voltage ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The resulting SEB-sensed (P3,B-34) stability di- agram is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We observe a honeycomb pattern typical for a tunnel-coupled DQD, retaining sen- sitivity to charge transitions of both QDs, even though the center-to-center distance of the furthest dot to the EQD is 305 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We measure local addition voltages of approximately 114 ± 1 mV and 43 ± 1 mV for P3 and B-34, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Second, we form a DQD under P3 and P4 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Continuing from the previous operating point, we adjust the barrier voltages VB−4D = VB−34 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='275 V, while retaining VB−T3 = 0 V, to create con- finement, and retune VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7068 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, the DQD honeycomb pattern has average addition voltages of ap- proximately 77±5 and 63±5 mV for P3 and P4, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The observation of latching [34], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' distortion of P3 charge transitions, suggest that P3-P4 or P4-D tunnel rates are of the order of the ramp frequency framp (see Appendix B for details on data acquisition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The center- to-center distance of P4 to the EQD is nominally 355 nm, showing the charge sensing range of this extended SEB goes beyond those typically demonstrated by more con- ventional SEBs or SETs [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Finally, we form a triple quantum dot between P2, T, and P3, by drawing in electrons under P3 from the reservoir D, and under P2 from the EQD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We control tunnel rates to electron reservoirs with VB−2T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 V, VB−T3 = 0 V, and VB−34 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='275 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We bias the SEB to VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7093 V, to maximise sensitivity when VP2 and VP3 are set close to their expected first electron voltages and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c) shows the resulting (P2,P3) charge sta- bility diagram of the triple QD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We label the estimated charge configuration for the P2, T, and P3 system as (nP2, nT, nP3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The estimates are based on a stability diagram simulation shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (d), which utilizes experimentally estimated lever arms and charging ener- gies, which are further discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' III D and Ap- pendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The operating point is close to a so-called hex- tuple point, characterized by the hourglass shape, formed between (0, nT + 1, 0) and (1, nT, 1) charge states [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To confirm our understanding of the locations of the QDs in the triple QD configuration above, we extract the various lever arm ratios from the slope of the SEB peak and the quasi vertical and horizontal charge sens- ing shifts, obtained by line fits to the SEB peak posi- tions (see Appendix E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We observe close to zero P2-P3 cross-talk, as expected for remote QDs, with the esti- mate αP3,P2/αP3,P3 = (8 ± 6) × 10−3, obtained from the P3 charge transitions as a function of VP3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We get αP2,P3/αP2,P2 = 0±[0, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='33×10−3], limited by the lower data resolution along the VP2 axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The average of the fitted EQD DRT slopes, marked with dashed dark red lines, is αT,P3/αT,P2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='65 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A ratio equal to 1 would indicate an EQD wavefunction which is symmetric with respect to locations of gates P2 and P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Intuitively, the positively biased barrier B-2T (VB−T3 = 0 V) pulls the EQD electron wavefunction towards P2, which could explain the lever arm asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Overall, the data from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c) demonstrates the simultaneous readout of QDs that are separated by ap- proximately 510 nm, operating the elongated SEB as a distributed charge sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The fact that a single EQD charge transition is capacitively shifted by the addition of charges to either P2 or P3 demonstrates that the EQD extends approximately over the length of gate T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We did not assess P2-T and T-P3 tunnel couplings at this op- erating point, however, in Appendix C we demonstrate that by utilizing dots under B-2T and B-T3 rather than P2 and P3, tunnel coupling to the EQD can be achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Our results demonstrate extended EQD wavefunctions and tunnel coupling to QDs in the periphery, both neces- sary requirements to utilize the EQD states for mediated exchange [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simulated quantum-mechanical electron densities To support the interpretation of a delocalized charge state under the EQD, and to benchmark our quantitative understanding of the QD systems under study, we em- ploy a self-consistent Schr¨odinger-Poisson solver (SPS) from a three-dimensional nanostructure simulation soft- ware [37, 38] to evaluate so-called quantum-mechanical electron densities (QMED), denoted with ρ(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We as- similate the QMEDs to probability densities under QDs to estimate shapes of many-electron charge states (see Appendix F for details of the simulation methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fig- ure 4 (a) shows (x, y) plane views of the simulated QMEDs of the T-P3 system studied in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (b)-(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The two QMEDs are obtained by biasing the QD plunger gates (T or P3), and nearest neighbour barrier voltages at the non-zero biases where experimental data was taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In the simulations, the barriers modify the shapes of the QDs, pulling QDs controlled with plunger gates towards the biased barriers, and extending the shape of the EQD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 5 (b) T P3 P4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='90 VP3 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='90 VP4 (V) (a) T P3 B-34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='55 VP3 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='32 VB 34 (V) (c) T P2 P3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='55 VP3 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 VP2 (V) (0,nT,0) (1,nT,0) (0,nT,1) (1,nT,0) (1,nT,0) (2,nT,0) (0,nT + 1,1) (1,nT + 1,1) (2,nT + 1,0) (2,nT + 1,1) (2,nT + 1,2) (1,nT + 1,2) (0,nT + 1,2) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 VIF (mV) (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='55 VP3 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 VP2 (V) (0,nT,0) (1,nT,0) (0,nT,1) (0,nT + 1,0) (1,nT,1) (1,nT + 1,0) (0,nT + 1,1) (1,nT + 1,1) (2,nT + 1,0) (2,nT + 1,1) (2,nT + 1,2) (1,nT + 1,2) (0,nT + 1,2) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Elongated single-electron-box as a distributed sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (a)-(c) SEB charge-sensed stability diagrams of DQDs controlled with gates (a) P3 and B-34, (b) P3 and P4, and (c) TQD controlled with gates P2, T, and P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gate biasing and QDs are sketched with device schematics above the colour maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (a) To define a DQD under P3 and B-34, we extend a 2DEG from the reservoir formed under gate D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We bias B-4D in saturation, and P4 near its pinch-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (b) To define a DQD under P3 and P4, we instead bias B-34 and B-4D as barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (c) To define a TQD between P2, T, and P3, we bias B-2T, B-T3, and B-34 as barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We bias VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7093 V to obtain a signal near the first P2 and P3 QD electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The estimated P2, T, and P3 QD charge occupations are indicated as (nP2, nT, nP3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (d) Grayscale colormap shows the voltage-cross-derivative of ground state of an electrostatic Hamiltonian, obtained using the experimentally estimated lever arms and charging energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Orange and red dotted lines correspond to the fitted lines from panel (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' As we discuss below, the QD shape and location has an impact on (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=') lever arms, which are also experimen- tally measurable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The EQD length, obtained from the simulated 1σ and 2σ QMED contours, is studied for a range of electron numbers, determined by integrating the simulated elec- tron densities for a range of VT voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 4 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In a simulation where only the gate T is biased, the EQD length increases monotoni- cally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The EQD length can be fitted to the power law xEQD = an−1/2 T + b, where nT is the simulated electron number, a < 0, and we find b = 347 nm and b = 339 nm for 1σ and 2σ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' When B-2T and B-RT are also positively biased with constant voltages, the electron density under B-RT only, nB−RT ≈ 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8, is subtracted from the electron numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, the EQD length is a more complicated function of the electron number: The more graduate increase at low occupancy is due to how the B-RT gate pulls elec- trons, and the sharper increase at nT ≈ 6 is caused by the EQD density merging with the density under B- 2T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' As the electron number increases further, the EQD length (defined by 1σ or 2σ) gradually decreases due to an increasing concentration of charge in the centre of the QD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The simulated datapoints with VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7093 V (corresponding to the setpoint from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The estimated length at this datapoint is x = 320 ± 2 nm at 1σ, and x = 354 ± 2 nm at 2σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use four mea- sured datasets to estimate the lever arm components of the (P2,T,P3) system and compare them with simulated values, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 4 (c)-(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Details of lever arm extrac- tion, as well as all estimated and simulated lever arm components, are found in Appendices E, F, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sim- ulated lever arms are systematically larger compared to experimentally extracted values, albeit typically agreeing within an order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We find the largest errors for αP2,P3 and αP2,T (14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='3, respectively), while the remaining off-diagonal lever arms have the smallest errors, from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='074 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We simulate the TQD charge stability diagram from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c) using the estimated lever arm components from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 4 (c) (upper matrix), and resulting estimated capacitances (see Appendix H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The resulting voltage cross-derivative of the ground state of the Hamiltonian, d(dEg/dVP3)/dVP2, is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' See Ap- pendix H for details of the simulation, and for the parameters used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The simulation displays qualitative agreement with data, and confirms the charge config- urations (nP2, nT, nP3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The measured sensor slope in the (nP3, nP2) = (1, 1) is aT = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='703 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='008, while the choice of lever arm matrix in the simulation leads to aT = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='739.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The experimental and simulated (P2,T) charge induced voltage shifts along VP2 agree within ex- perimental resolution of ±1 mV, ∆VP2 = 13 ± 1 mV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' OUTLOOK We have used the EQD as a rf-SEB charge sensor ca- pable of sensing QDs up to 355 nm away from the EQD center, suggesting that the same SEB charge state may be sensitive to charges in QDs separated by over 700 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Our results are well supported by quantum mechanical electron density simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The enhanced functional- ity provided by the EQD may be expanded in future QD- based architectures to sensors defined with more complex 6 (a) T P3 200 100 0 100 200 300 x (nm) 20 020 y (nm) 20 020 y (nm) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 QMED (1018/cm3) (b) 0 10 20 30 40 50 Electron number 0 50 100 150 200 250 300 350 400 Elongated dot length B-2T, B-RT, T (1 ) B-2T, B-RT, T (2 ) T (1 ) T (2 ) (c) P2, P2 T, P2 P3, P2 P2, T T, T P3, T P2, P3 T, P3 P3, P3 10 5 10 4 10 3 10 2 10 1 ij (experiment) (d) P2, P2 T, P2 P3, P2 P2, T T, T P3, T P2, P3 T, P3 P3, P3 10 5 10 4 10 3 10 2 10 1 ij (simulation) (e) P2, P2 T, P2 P3, P2 P2, T T, T P3, T P2, P3 T, P3 P3, P3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 ( )ij Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Estimating the EQD length and the lever arm matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (a) Simulated QMEDs of the T-P3 DQD with B-T3 biased with a positive voltage (top panel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (b)) and at zero bias (bottom panel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (c)) are shown as grayscale colormaps overlayed with layer 2 (green) and 3 (blue) gate locations (dotted rectangles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Red contours corre- spond to t (1 − mσ)ρmax for m = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gate side view (top) highlights the locations of gates T and B-T3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (b) EQD length as a function of electron numbers nT, integrated from the QMED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Red datasets are obtained by only biasing the gate T, and correspond to (1 − mσ)ρmax for m = 1, 2 in increasing lightness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dotted lines are fits to the power law an−1/2 T + b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Blue datasets are obtained by biasing VB−2T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='275 V, VB−RT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='3 V, and varying VT, likewise m = 1, 2 are shown in increasing lightness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The cross markers correspond to the operating point of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (c) Experimentally estimated lever arm matrix components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use data from Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2-3, to- gether with an independent estimate for αT,T to estimate the lever arm matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (d) Simulated lever arm matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simula- tions use gate biases corresponding to experimental operating points, with each QMED corresponding to a QD simulated separately with up to nearest-neighbour gate biases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (e) Rel- ative errors between experimentally estimated and simulated lever arm matrix components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' gate shapes, such as a right-angle or a cross.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A single sensor could allow sensing multiple QDs placed around the periphery, enabling novel unit cells requiring fewer individual gate structures for readout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Combined with the demonstration of few-electron QDs, our results show the potential of this multi-gate polysilicon platform to produce scalable QD unit cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Another potential application of this type of elon- gated QD is as a mid-range spin qubit coupler as pre- viously demonstrated for QDs in GaAs/AlGaAs het- erostructures [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We have here demonstrated two basic requirements towards this application: the quantization of charge in the EQD and the tunnel coupling to QDs at the periphery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We envision that extended QDs could become an important resource to increase the range of qubit-qubit interaction in silicon, complementing other approaches such as spin shuttling [39–41], capacitive cou- pling with floating gates [42, 43] and microwave photonic links [44, 45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Additionally, we have shown that the EQD can be used as a local electron reservoir, which can be utilized in schemes mitigating charge leakage errors [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' ACKNOWLEDGEMENTS This research was supported by European Union’s Horizon 2020 research and innovation programme under grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 951852 (QLSI), and by the UK’s En- gineering and Physical Sciences Research Council (EP- SRC) via QUES2T (EP/N015118/1), and the Hub in Quantum Computing and Simulation (EP/T001062/1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' AC acknowledges funding from the Danish Independent Research Fund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' is a UKRI Future Leaders Fellow (MR/V023284/1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix A: Cryogenic device characterization To assess operability of the device measured in the main text, labelled as device A, we measure gate leak- age conductances, and pinch-off and saturation voltages at the base temperature of the cryostat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gate leakages are measured by applying an increasing voltage to gate gi while measuring current through all channels, and re- peating for all gate electrodes i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leakage conductance lij is taken as the average conductance over the volt- age range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The resulting leakage matrix is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A5 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The device under study has leakage currents no larger than ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='3 pA/V at cryogenic temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The first guess for Coulomb blockade operating point is obtained from gate pinch-off and saturation voltage mea- surements, where we operate the device similarly to a cir- cuit of classical MOS field-effect transistors in series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The device has three possible current channels: source-drain, reservoir-source, and drain-reservoir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Pinch-off voltages are measured by applying a Voi−oj = 1 mV between ohmics oi and oj along channel i − j, and by biasing all layer 2 and 3 gates along said channel at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The gate voltage of one of those gates is swept from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 V to −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 V and back while recording current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Pinch-off and saturation voltages are defined as the voltages where measured current is 5% and 90% of the saturation cur- rent, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' If saturation is not observed, pinch-off current is defined as 5% of the maximum measured cur- rent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In this device, all three channels are functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A sum- mary of the results, obtained by biasing the source-drain and drain-reservoir channels, is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A5 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The accumulation gates source (S), reservoir (R), and drain (D) saturate at higher voltages than other gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Other layer 3 gates systematically require a larger volt- age range between pinch-off and saturation than layer 2 7 (a) TL-C TR-C R R-O B-RT T B-C S S-O B-SP1 P1 B-P1P2 P2 B-P2T B-TP3 P3 B-P3P4 P4 B-P4D D D-O TL-C TR-C R R-O B-RT T B-C S S-O B-SP1 P1 B-P1P2 P2 B-P2T B-TP3 P3 B-P3P4 P4 B-P4D D D-O 10 2 10 1 100 101 102 103 104 Average(|dI/dV|) (pA/V) Current Voltage (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='00 Gate voltage (V) D B-4D P4 B-34 P3 B-T3 T B-2T P2 B-12 P1 B-S1 S B-RT R Figure A5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leakage currents, pinch-off and satura- tion voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (a) Leakage matrix, where the colour of a pixel shows the average conductance between gate i (matrix columns), where we apply a voltage, and channel j (matrix rows), where we read out current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Applied voltage ranges from −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 mV to +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 mV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (b) Summary of pinch-off (tri- angle markers) and saturation (square markers) voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' All gates except for B-RT and R are characterized through the source-drain channel, whereas gates B-RT and R are charac- terized through drain-reservoir channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We offset the results on the y-axis and label each result with the abbreviated gate name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Red datasets correspond to layer 3 plunger gates, blue to layer 2 barrier gates, and green to layer 3 accumulation gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' This observation is consistent with the increasing total oxide thickness with increasing layer index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hys- teresis was not observed in this device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix B: Radiofrequency reflectometry and data acquisition Figure B6 shows a schematic of the RF reflectometry setup for biasing the lumped-element resonator attached to the ohmic of the accumulation gate R, and acquiring DC RDC cryogenic room temperature L Cc 20 dB 45 dB 40 dB 36 dB +40 dB RF 20 dB RF LO X preamp digitizer V IF 170 180 190 200 210 f (MHz) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='975 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 S21 magnitude (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=') R OFF R ON /2 0 /2 S21 phase (rad) Figure B6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Radiofrequency reflectometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simpli- fied cryogenic and room-temperature rf setup, with a lumped- element resonator (circuit bordered with orange dotted rect- angle) attached to the ohmic of the accumulation gate R (crossed square).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Attenuation is performed in stages inside the cryostat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The total attenuation of −36 dB is shown for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' DC filtering is not shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Embedded plot shows the resonator response in a vector network analyzer reflection measurement, in which the input and output signal are split for attenuation and cryogenic amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Signal magni- tude is shown as blue datapoints up to a 6 dB bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Signal phase is shown as orange datapoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Datasets with the accumulation gate R off at zero bias are plotted as lighter datasets, and datasets with gate R on at positive bias as darker datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Estimated resonance frequencies are denoted with dotted lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' the reflected signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The diagram includes attenuation, amplification, and the key components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, RDC = 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='99 kΩ, L = 820 nH, and Cc = 22 pF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' There is also an overall coupling capacitor of 100 pF in series with Cc, omitted for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' All device gates are connected to DC lines (not shown), which are biased with a voltage digital-to-analogue con- verter (DAC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To acquire a trace or a stability dia- gram, the DAC is programmed to send one- or two- dimensional step-discretized voltage ramps, with a step taking tsample = 10−4 s corresponding to ramp frequency framp = 10 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The start of the ramp is synchronized to a trigger sent to the digitizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We digitize VIF us- ing a sample rate of 1 MS/s, with the voltage pream- plifier low-pass cutoff flow pass = 10 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We box- car filter the trace with a window size corresponding to tsample, and decimate accordingly to get a tsample- spaced dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We average by repeating acquisition naverage = 10 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hence, we estimate the integration time tintegrate = naverage/flow pass = 1 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 8 Embedded to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B6 is the vector network analyzer (VNA) response with the gate R (and the entire de- vice) at zero bias (light blue and light orange datasets for magnitude and phase responses), and with the gate R on (dark blue and dark orange datasets, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The resonator responds both by changing its resonance frequency and coupling coefficient –we observe the reso- nance frequency and the coupling coefficient to decrease, taking the resonator from overcoupled to undercoupled as a 2DEG is accumulated under gate R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix C: Charge sensing of quantum dots controlled with B-2T and B-T3 We can use the SEB to sense QDs controlled with bar- rier gates B-2T and B-T3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To this end, we set VP2 = VP3 = 0 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We operate the EQD at a lower occupancy, at around VT ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 V, compared to the VT ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7 V from main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We estimate that the occupancy at this volt- age is less by approximately 45 − 50 electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use a lower VT to reduce the EQD electron wavefunction size to reduce the EQD-barrier dot electron tunnel coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We show the (T,B-2T), (T,B-T3), and (B-2T,B-T3) stability diagrams in Figure C7 (a)-(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In this VT range, we observe DRTs which couple more strongly to the T gate than the barrier gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' It is possible that in this regime the gate T hosts multiple QDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Similarly to when sensing the plunger QDs (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2), we observe the first few electrons being loaded under B-2T and B-T3 as shifts in the EQD DRT peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We observe approximately monotonic increase in tunnel coupling in the (T,B-T3) system (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C7 (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The barrier-QD to EQD coupling changes from capacitively coupled to tunnel coupled, as indicated by the increasing bending of the DTR lines for increasing VB−T3 and VT voltages, over a range of ∆VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='1 V, or a change in T occupancy by approxi- mately 15 electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We expect this to correspond to an increase in the EQD electron wavefunction overlap with the B-T3 QD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We also observe B-2T electron loading events in the (T,B-2T) stability diagram (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C7 (a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Here, capaci- tive coupling is weaker at VT ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='49 V, below which the B-2T addition voltages are not visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' This asymmetry is directly demonstrated on the (B-2T, B-T3) stability diagram, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C7 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The EQD DRTs appear almost vertical, indicating relatively stronger coupling to B-T3 compared to B-2T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Based on the experimentally observed ratio αT,B−2T/αT,B−T3 (or αT,P3/αT,P2), we expect that the electron wavefunction shape and delo- calization depends on filling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' At low dot occupancy, the wavefunctions are smaller and not centered, with at least two possible causes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The opening between top left and top right confinement gates is asymmetric with respect to the gate T, while the L-shape of B-RT asymmetrically screens the gate T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' An additional effect may be played by orbital angular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In analogy to atomic p or- bitals, for example, electron wavefunctions corresponding to different fillings might be centered towards the left or right of the gate T region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' For higher filling, where the EQD behaves as a single QD, the wavefunction shapes homogenize and delocalize, capacitively coupling to the outer QDs and thereby forming a well-defined, nearly symmetrically coupled TQD (see main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix D: Elongated quantum dot charging energies and lever arms Coulomb diamond data, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (a)-(c), from another elongated quantum dot device, referred to as device B, is used to estimate the typical EQD charg- ing energies and lever arms αT,T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The device schematic is shown in the top inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (a): the EQD is connected to three accumulation gates, S, R, and D, via barrier gates B-ST, B-RT, and B-TD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The device is from the same die as device A, and the EQD dimensions are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We measure Coulomb diamonds through the S-D chan- nel by applying a varying voltage to the ohmic connected to gate S, and a varying voltage to gate T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Barriers B- ST and B-TD are biased close to their pinch-off voltages, while the accumulation gates S and D are biased signifi- cantly above their respective pinch-off voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We plot the Coulomb diamonds in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' For each VT, we find the diamond edges as the VS−ohmic values where cur- rent is ± 400 pA above the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Treating upper and lower diamond edges as data traces with setpoints given by VT, we find peak maxima and minima, which are denoted with cyan and orange points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We manually remove some of the unpaired peaks and dips from the low-electron regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Ensuring we have an equal number of diamond peaks and dips, we process these to charging energies, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (b), and lever arms, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (c), using ECi = hi/2, and αTi,T = hi/(2wi), where hi and wi are the height and width of ith diamond, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We find that the charging energies and lever arms settle to constant value for the last 30 or so measured electrons (voltages VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='77 V and above;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' see the bottom inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (a) for a close-up of the data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The average charging energy for the last 30 electrons is EC = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='41 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='02 meV, and the average lever arm αT,T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='093 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='005 eV/V, where error bars are given for one standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' n Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (d), we plot the Coulomb oscillations of device A measured in rf and extract the position of each peak to determine the charging voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (e), we plot the extracted charging voltages, and charging energies by utilising the lever arm estimated for device B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Using the lever arm estimated for the standalone gate T device, we obtain the average charging energy EC = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='41 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='02 meV (see extra y-axis in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D8 (f)), which agrees well with the device B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 9 (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 VT (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 VB 2T (V) 0 10 VIF (mV) VB RT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='3015 V (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='450 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='525 VT (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='35 VB T3 (V) 0 10 VIF (mV) VB RT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='300 V (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='225 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='250 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='300 VB T3 (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='32 VB 2T (V) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) 5 0 5 VIF (mV) VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4695 V Figure C7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charge sensing of quantum dots controlled with B-2T and B-T3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Stability diagrams on the (a) (T,B-2T), (b) (T,B-T3), and (c) (B-2T,B-T3) voltage planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Electron loading voltages are indicated with white, dashed lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Estimated charge configurations in (c) are denoted as (nB−2T, nB−T3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='9 VT (V) 4 3 2 1 0 1 2 3 VS ohmic (mV) 0 10 20 30 40 50 60 1 2 3 Charging energy (meV) 0 10 20 30 40 50 60 Electron number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 Lever arm (eV/V) 101 100 10 1 0 10 1 100 IS ohmic (nA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='775 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='875 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='675 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='700 VT (V) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 VIF (mV) 0 5 10 15 20 Electron number 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='00 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='50 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='75 Charging voltage (mV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='375 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='425 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='450 Charging energy (meV) T TR-C TL-C R D S B-C B-ST B-TD B-RT (a) (b) (c) (d) (e) Figure D8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Elongated quantum dot charging ener- gies and lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (a) Coulomb diamonds of device B, with diamond peaks and dips annotated as cyan and orange dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Top inset shows the device schematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bottom inset shows a closeup in the high-electron-number regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (b) Ex- tracted charging energies for 58 electrons, starting from some offset number of electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (c) Extracted lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (d)-(e) Loading and charging voltages of device A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Panel (e) shows charging voltages converted to charging energies using αT,T from device B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix E: Lever arm estimation The lever arm matrix is defined as the product ααα = − � Cdd �−1Cdg, (E1) where Cdd is the dot-dot and Cdg the dot-gate sub- matrix of the Maxwell capacitance matrix [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use the device B high electron number average estimate αT,T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='093 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='005 eV/V to convert lever arm ratios measured in device A to lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The slope of a dot- to-reservoir transition on the (Vx, Vy) voltage plane is given by ai = −αix αiy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (E2) For i = T, x = P2 (x = P3), and y = T, slope esti- mation with αT,T yields an estimate for αT,P2 (αT,P3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Using data from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2, we obtain the lever arm estimates plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E9 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Likewise, the inter-site charging energies e2� C−1 dd � ij can be estimated from the horizontal and vertical ICT extents ∆Vx and ∆Vy, as ∆Vx = −2 � C−1 dd � ij αiy − αjy αixαjy − αiyαjx (E3) ∆Vy = aij(x23 − x12), (E4) for dots i and j, where aij is the slope of the ICT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' When αP2,P 2 ≫ αT,P2, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (E3) simplifies to ∆VT = 2|e| � C−1 dd � T,P2α−1 T,T, (E5) and when αT,T ≫ αP2,T, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (E4) simplifies to ∆VP2 ≈ −2|e| � C−1 dd � T,P2α−1 P2,P2, (E6) and similarly for P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The estimates obtained for mutual capacitances � C−1 dd � T,P2 and � C−1 dd � T,P3, and the lever arms αP2,P2 and αP3,P3 by inverting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (E5)-(E6) are plotted in 10 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E9 (b)-(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Using the above estimates, we may also estimate αP2,T and αP3,T by inverting the ICT slope aP2,T := ∆VT ∆VP2 (E7) = αP2,P2 − αT,P2 αP2,T − αT,T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (E8) The resulting estimates are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E9 (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We point out that the setpoint for data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c) is locally close to the setpoints for the (P2,T) and (T,P3) DQDs discussed in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 (a) and (c), where B-T3 is held at zero bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' This is demonstrated by an indepen- dent lever arm ratio estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' For the charge configu- rations (nP2, nT) = (1, nT) and (nT, nP3) = (nT, 1), we extract αT,P2/αT,T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='140 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='008 and αT,P3/αT,T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='097 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='016, yielding αT,P3/αT,P2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='69 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='14, agree- ing with the previous estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Motivated by this ob- servation, in the following, when simulating the TQD stability diagram of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c), we use lever arms and inter-site charging energies estimated from these DQD datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The above procedure yields estimates for 7 out of the 9 lever arms for the (P2,T,P3) TQD system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The diagonal lever arms αP2,P2 and αP3,P3 also enable to convert ad- dition voltages to addition energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In principle, we may estimate the remaining two from the P3 and P2 DRTs on the (P3,P2) stability diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The high resolution along VP3 enables to estimate the slope −αP3,P3/αP3,P2, whereas the lower resolution along VP2 renders estimat- ing −αP2,P3/αP2,P2 more difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We estimate the latter in a charge configuration of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 electrons under P2 and P3, in VP2 and VP3 range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='9 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix F: Self-consistent Schr¨odinger-Poisson and electrostatic solvers The quantum-mechanical electron density (QMED) n−(r) is defined, as the energy integral of a sum of Fermi-distributed probability densities corresponding to different conduction bands [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The QMED can be ob- tained by iteratively solving the Schr¨odinger and Poisson equations [37, 38], method referred to as self-consistent Schr¨odinger-Poisson solver (SPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' At convergent ener- gies, the solver outputs both the QMED n−(r), and the so-called effective-mass probability density ��Ψα,E(r) ��2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Total charge associated with an electron density is ob- tained by integrating n−(r) over space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use an SPS implementation from the semiconduc- tor nanostructure simulation program nextnano++ [37, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We model the device gates as 3D Schottky contacts over a silicon (Si) substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We take the work-function φ = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='05 eV, consistent with n++-doped polycrystalline silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We take the Si/SiO2 interface as a Dirichlet boundary condition, which enforces the electron densi- ties to remain within the Si substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We also employ the electrostatics module from the general-purpose sim- ulation software COMSOL multiphysics, to evaluate the Maxwell capacitance matrix of a system of metallic ob- jects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We draw the device gate model in COMSOL and nextnano++ layer by layer, using device gate and oxide dimensions consistent with device design and expected fabricated dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gate layer colouring follows the device schematic of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B6 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' At gate overlaps, we draw a gate in the overlapping area, in general creating several, not necessarily connected, objects to describe a single gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We define higher- and lower-level gate ob- jects as a single electrical node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To estimate the shape of a QD that is controlled with gate A in an experiment, we bias the gate A and it’s nearest-neighbour gates in the simulation according to the experimental setpoint, while retaining all other gate biases at zero volts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In these simulated setpoints, we use the SPS to solve for the electron and probability densi- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Thus, the simulation has two differences compared to experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In the simulation, we do not employ the reservoir gates S, R, and D;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' and only a subset of the de- vice is biased in one simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We split the QD QMED simulation into multiple parts as opposed to simulating all QMEDs in a single simulation for two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' High electron densities, such as those due to electron reser- voirs S, R, and D, converge more slowly, significantly incresing runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Also, in our experiment, we operate plunger gate controlled QDs in the few electron regime, while we operate the EQD at an occupancy of ≈ 50 − 60 electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We expect the reservoir electron densities to be approximately a factor of 100 higher than the QD electron densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Due to the large difference in magni- tude, the convergence of the SPS solver depends mostly of the reservoir electron density, leaving the estimate for the QD electron density inaccurate (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' simply void of electrons), and significantly different than the estimate obtained without including the reservoir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We assimilate the QMED with the wavefunction, as ρ(r) = n−(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We prefer electron densities instead of probability densities to describe the many-electron states in the EQD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Alternatively, we could evaluate probability densities up to the number of electrons we expect at the EQD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Probability densities have orbitals with more irreg- ularity in shape and size as a function of electron number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' These states do not account for electron-electron interac- tions, and hence we do not expect a gain in accuracy by using probability densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We then consistently employ electron densities for all QD shape estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Shapes of a QD at e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' nσ are taken as the 3d contour rboundary at which the density has fallen by nσ from the maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' That is, rboundary = � r : ρ(r) = (1 − nσ)ρmax(r) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (F1) Appendix G: Simulated capacitance matrices To estimate the Maxwell capacitance matrix C, the es- timated QD boundaries (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (F1))are imported to COM- SOL as shapes, and defined as a perfect hollow conductor 11 (a) 1 2 3 4 5 6 Electron number 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8 Lever arm (meV/V) T, P3, load from D T, P3, load from T T, P2, load from T (b) 1 2 3 4 5 6 Electron number 0 5 10 15 20 25 30 e2(C 1 dd)T, QD ( eV) (T,P3), load from D (T,P3), load from T (T,P2), load from T (c) 1 2 3 4 5 6 Electron number 0 10 20 30 40 Lever arm (meV/V) P3, P3, load from D P3, P3, load from T P2, P2, load from T (d) 1 2 3 4 5 6 Electron number 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0 Lever arm (meV/V) P3, T, load from D P3, T, load from T P2, T, load from T (e) 10 5 10 4 10 3 10 2 10 1 100 Lever arm P3, P3 T, P3 P3, T P3, P2 P2, P3 (f) 10 5 10 4 10 3 10 2 10 1 100 Lever arm T, T P3, P3 P2, P2 T, P3 T, P2 P3, T P2, T Figure E9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Experimentally estimated lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Connected datapoints show the estimated (a) αT,P2 and αT,P3, (b) mutual charging energies between the T QD and the P3 or P2 QDs, (c) αP2,P2 and αP3,P3, and (d) αP2,T and αP3,T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dashed lines show averages over electron number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Legends further specify the operating point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (e)-(f) Comparison between experimentally estimated and simulated lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Panel (e) shows the lever arms from operating point where the B-T3 is off at zero bias, and panel (f) obtained with B-T3 on at non-zero bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Experimentally estimated lever arm components are drawn with blue diagonal cross markers (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lever arms simulated in a fixed operating point, biasing each QD-controlling gate, and without any other gate biases, are drawn with red filled circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lever arms simulated with biases at QD controlling gates, and nearest-neighbour gates, are drawn with green plus cross markers (+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' which is maintained at zero bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use the 1σ con- tours in all our capacitance matrix simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Having imported all QD shapes to the same device model, we run the electrostatic solver to obtain C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The lever arm matrix is obtained from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (E1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' As a reference dataset, we calculate a capacitance ma- trix for the TQD system (P2,T,P3), where QD electron densities are obtained in a simulation where only the cor- responding plunger gate is biased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We compare this to a simulation, where we account for the effect that barriers have for QD shapes and locations, by biasing a plunger gate and nearest neighbour barrier gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We choose the setpoints corresponding to B-T3 on and B-T3 off (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2 and B6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We plot the simulated lever arms corresponding to the no-barrier and B-T3 off, as well as the experimentally estimated B-T3 off lever arms, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E9 (e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The sim- ulated and experimental lever arms corresponding to no- barrier and B-T3 on are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E9 (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We have averaged over charge configurations for the experimen- tal lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We find that the simulated lever arms are systematically larger than experimentally estimated lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simulations with and without the neigh- bouring barriers produce estimates with similar magni- tudes, but simulations with barriers qualitatively follow the trends observed in the experimental lever arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We associate the systematic mismatch between experimen- tal and simulated lever arm components to the fact that the simulation systematically overestimates charging en- ergies |e| � C−1 dd � ij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' underestimates the dot-dot capac- itances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' One source of error is our inability to describe the large electron reservoirs, to which the EQD, and at some setpoints the P3 QD, are highly tunnel coupled to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The tunnel coupling affects the QD shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In the main text, we summarize these results using the relative error matrix between experimental, αexp,ij, and simulated, αsim,ij, lever arms components, defined as � δα � ij = |αexp,ij − αsim,ij|/|αexp,ij| (G1) (see the lower matrix of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 4 (c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Appendix H: Capacitively coupled triple quantum dot stability diagram simulation We simulate the charge stability diagram of a triple quantum dot as the ground state of the electrostatic Hamiltonian HC = � i∈d 1 2 � � j∈d e2ni(C−1 dd )ij nj + � k∈g e ni αααikVk � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (H1) where e is the electron charge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' ni the number operator for site i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' ∆i is the site i orbital energy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' � Cdd �−1 the inverse of the dot-dot submatrix of the capacitance ma- trix,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' ααα the lever arm matrix,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' and Vk the gate voltage of gate k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We represent the number operators using fermionic ladder operators, in term using the Jordan- Wigner mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We reduce to considering a single 12 orbital per site (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' up to 2 electrons per site), and, since ni are diagonal, it suffices to consider HC as a vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The ground state is found as the smallest ele- ment of the vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In order to obtain the charge stabil- ity diagram as a function of two voltages, we perform the simulation for a matrix of voltage pairs VP 2, VP 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We define the stability diagram as the cross-derivative d � dEg(VP 2, VP 3)/dVP 3 � /dVP 2, where Eg(VP 2, VP 3) is the resulting ground state matrix as a function of the two voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' In the following, matrices are expressed in a basis with indices {1, 2, 3} = {P2, T, P3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use the lever arm matrix (expressed in units of eV/V), which reads up to four significant figures ααα = � � 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='66 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='07 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='99 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='01 � � × 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (H2) The exact values are given by the estimated lever arm components, which were not truncated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use the inverse dot-dot capacitance matrix, whose components are proportional to charging energies, ex- pressed in units of eV, |e| � Cdd �−1 = � � 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='463 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='014 10−5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='014, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='407 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='004 10−5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='697 � � × 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' (H3) The matrix is assumed to be symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We assimilate addition energies to charging energies in this simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The elements |e| � Cdd �−1 P 2,P 2 and |e| � Cdd �−1 P 3,P 3 are esti- mated from the addition energies ∆VP 2(n → n + 1) and ∆VP 3(n → n + 1) of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 3 (c), as |e| � Cdd �−1 P 2,P 2 = 1 2αP 2,P 2∆VP 2(1 → 2), (H4) and likewise for P3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The elements |e| � Cdd � P 2,P 3 and its transpose are not estimated, but a small non-zero ele- ment is added to aid matrix inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Matrix inversion is used when converting the charging energies to a dot- dot capacitance matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' To account for finite threshold voltages, we shift plot- ting ranges for VP 3 and VP 2 after the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The simulated ranges are from −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='05 to +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='25 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' We use a fixed applied voltage parameter VT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='0039 V to set the T QD DRT alignment with respect to the P2 and P3 DRTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The resulting simulation is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 4 (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' The charge configurations are evaluated as number operator expectation values at each (VP2, VP3) pair, with nT added for the middle QD charge configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [1] Gonzalez-Zalba, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' de Franceschi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charbon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Meunier, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vinet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dzurak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Scaling silicon- based quantum computing using CMOS technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Na- ture Electronics 2021, 4, 872–884.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [2] Xue, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Russ, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Samkharadze, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Undseth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sam- mak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Scappucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vandersypen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Quantum logic with spin qubits crossing the surface code threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature 2022, 601, 343–347.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [3] Noiri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Takeda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nakajima, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kobayashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sam- mak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Scappucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tarucha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fast universal quan- tum gate above the fault-tolerance threshold in silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature 2022, 601, 338–342.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [4] Mills, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Guinn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gullans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sigillito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Feldman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nielsen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Petta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Two-qubit sili- con quantum processor with operation fidelity exceeding 99%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Science Advances 2022, 8, eabn5130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [5] Connors, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nelson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nichol, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rapid High- Fidelity Spin-State Readout in Si / Si - Ge Quantum Dots via rf Reflectometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' App.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2020, 13, 024019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [6] Takeda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Noiri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nakajima, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kobayashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tarucha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Quantum error correction with silicon spin qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature 2022, 608, 682–686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [7] Philips, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Madzik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Amitonov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' de Snoo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Russ, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kalhor, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Volk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lawrie, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Brousse, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tryputen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Wuetz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sam- mak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Veldhorst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Scappucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vandersypen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Universal control of a six-qubit quantum processor in silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='09252 2022, [8] Guevel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Billiot, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Jehl, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' De Franceschi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Zurita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Thonnart, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vinet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sanquer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Mau- rand, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Jansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Pillonnet, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='2 A 110mK 295µW 28nm FDSOI CMOS Quantum Integrated Cir- cuit with a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='8GHz Excitation and nA Current Sensing of an On-Chip Double Quantum Dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2020 IEEE Interna- tional Solid- State Circuits Conference - (ISSCC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' pp 306–308.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [9] Ruffino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Michniewicz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Peng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charbon, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gonzalez-Zalba, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dis- persive readout electronics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2022, 5, 53– 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [10] Veldhorst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hwang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dehollain, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Muhonen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simmons, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Laucht, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hudson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Itoh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A two- qubit logic gate in silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature 2015, 526, 410–414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [11] Zajac, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sigillito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Russ, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Borjans, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tay- lor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Burkard, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Petta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Resonantly driven CNOT gate for electron spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Science 2017, 359, 439– 442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [12] Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Chan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tanttu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hensen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fogarty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hwang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hudson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Itoh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Morello, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Laucht, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dzurak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fidelity benchmarks for two- qubit gates in silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature 2019, 569, 532–536.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [13] Veldhorst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Eenink, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dzu- rak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Silicon CMOS architecture for a spin-based quantum computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature communications 2017, 8, 1– 13 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [14] Boter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dehollain, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Van Dijk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hensgens, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Versluis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Naus, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Clarke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Veldhorst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sebastiano, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vandersypen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Spiderweb Array: A Sparse Spin-Qubit Array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Physical Review Applied 2022, 18, 024053.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [15] Undseth, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Xue, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Mehmandoost, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Russ, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Samkharadze, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sammak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dobrovitski, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Scap- pucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vandersypen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nonlinear response and crosstalk of strongly driven silicon spin qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='04905 2022, [16] Lafarge, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Pothier, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Williams, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Esteve, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Urbina, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Devoret, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Direct observation of macro- scopic charge quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Zeitschrift f¨ur Physik B Con- densed Matter 1991, 85, 327–332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [17] House, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bartlett, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Pakkiam, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Koch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Peretz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Heijden, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kobayashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rogge, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simmons, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Com- putation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' App.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2016, 6, 044016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [18] Urdampilleta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gate-based high fidelity spin readout in a CMOS device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nanotechnol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2019, 14, 737–741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [19] Ciriano-Tejel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fogarty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Schaal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hutin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bertrand, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Ibberson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gonzalez- Zalba, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Niquet, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vinet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Mor- ton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Spin Readout of a CMOS Quantum Dot by Gate Reflectometry and Spin-Dependent Tunneling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' PRX Quantum 2021, 2, 010353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [20] Oakes, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fast high-fidelity single-shot read- out of spins in silicon using a single-electron box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='org/abs/2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='06608.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [21] Niegemann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Parity and singlet-triplet high fidelity readout in a silicon double quantum dot at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='5 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='org/abs/2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='10523.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [22] Martins, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Malinowski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nissen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fallahi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gardner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Manfra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Marcus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kuem- meth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Negative spin exchange in a multielectron quan- tum dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Physical review letters 2017, 119, 227701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [23] Malinowski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Martins, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Smith, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bartlett, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Doherty, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nissen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fallahi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gardner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Manfra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Marcus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kuem- meth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Spin of a multielectron quantum dot and its interaction with a neighboring electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Physical Review X 2018, 8, 011045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [24] Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Feng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Serrano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gilbert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tanttu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Mai, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Liang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Su, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Jellybean quantum dots in silicon for qubit cou- pling and on-chip quantum chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='04724 2022, [25] Malinowski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Martins, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Smith, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bartlett, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Doherty, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nissen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fallahi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gardner, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Manfra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Marcus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kuem- meth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fast spin exchange across a multielectron me- diator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature communications 2019, 10, 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [26] Cai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fogarty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Schaal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Patom¨aki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Ben- jamin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Morton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A silicon surface code archi- tecture resilient against leakage errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Quantum 2019, 3, 212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [27] Dumoulin Stuyck, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Li, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Godfrin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' El- sayed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kubicek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Jussot, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Chan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Mo- hiyaddin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Shehata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simion, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Canvel, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Goux, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Heyns, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Govoreanu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Radu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Uni- form Spin Qubit Devices with Tunable Coupling in an All-Silicon 300 mm Integrated Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2021 Symposium on VLSI Circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' pp 1–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [28] Veldhorst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hwang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' de Ronde, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dehollain, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Muhonen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hud- son, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Itoh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Morello, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dzurak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' An ad- dressable quantum dot qubit with fault-tolerant control- fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 2014, 9, 981–985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [29] Electronic access: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='qdevil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [30] Vigneau, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fedele, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Chatterjee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Reilly, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kuem- meth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gonzalez-Zalba, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Laird, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Ares, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Prob- ing quantum devices with radio-frequency reflectometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='10516 2022, [31] Gonzalez-Zalba, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Barraud, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Ferguson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Betz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Probing the limits of gate-based charge sens- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature communications 2015, 6, 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [32] Lim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Zwanenburg, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dzu- rak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Spin filling of valley-orbit states in a silicon quantum dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nanotechnology 2011, 22, 335704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [33] Keith, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' House, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Donnelly, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Watson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Weber, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Simmons, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Single-shot spin readout in semiconductors near the shot-noise sensitivity limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Physical Review X 2019, 9, 041003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [34] Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rossi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lai, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dzurak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Charge state hysteresis in semiconductor quantum dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Applied Physics Letters 2014, 105, 183505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [35] Fedele, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Spin interactions within a two-dimensional ar- ray of GaAs double dots;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Niels Bohr Institute, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [36] Srinivasa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Xu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Taylor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tunable spin-qubit coupling mediated by a multielectron quantum dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Phys- ical review letters 2015, 114, 226803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [37] Birner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Technische Univer- sit¨at M¨unchen, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [38] nextnano++ manual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' nextnano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='de/manual/nextnanoplus, Accessed: 2022-11-08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [39] Yoneda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Feng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Chan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tanttu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gilbert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Leon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hudson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Itoh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Coherent spin qubit transport in silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature communications 2021, 12, 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [40] Noiri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Takeda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nakajima, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Kobayashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sam- mak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Scappucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Tarucha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A shuttling-based two-qubit logic gate for linking distant silicon quantum processors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content='01357 2022, [41] Seidler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Struck, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Xue, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Focke, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Trel- lenkamp, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bluhm, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Schreiber, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quan- tum computing architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' npj Quantum Information 2022, 8, 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [42] Gilbert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Saraiva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Lim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Laucht, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Bertrand, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rambal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hutin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Es- cott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vinet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Single-electron operation of a silicon-CMOS 2× 2 quantum dot array with integrated charge sensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nano Letters 2020, 20, 7882–7888.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [43] Duan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Fogarty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Williams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hutin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vinet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Morton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Remote capacitive sensing in two-dimensional quantum-dot arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nano Letters 2020, 20, 7123–7128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [44] Borjans, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Croot, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Mi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gullans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Petta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Resonant microwave-mediated interactions between distant electron spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature 2020, 577, 195– 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [45] Harvey-Collard, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Dijkema, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Zheng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Sammak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' 14 Scappucci, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Vandersypen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Coherent Spin- Spin Coupling Mediated by Virtual Microwave Photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' X 2022, 12, 021026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' [46] Mills, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Zajac, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Gullans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Schupp, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Hazard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Petta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Shuttling a single charge across a one-dimensional array of silicon quantum dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
+page_content=' Nature communications 2019, 10, 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/s9AzT4oBgHgl3EQfrv3p/content/2301.01650v1.pdf'}
diff --git a/tNE1T4oBgHgl3EQf3gVt/vector_store/index.faiss b/tNE1T4oBgHgl3EQf3gVt/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..a559bc24a2d25b51a58b95af72db2f1d85d5131b
--- /dev/null
+++ b/tNE1T4oBgHgl3EQf3gVt/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a2785f528981c8cfae74c2ef4ced986d6d65a96bc60e497df6251587df46320f
+size 3211309
diff --git a/w9E3T4oBgHgl3EQfOwkK/content/2301.04395v1.pdf b/w9E3T4oBgHgl3EQfOwkK/content/2301.04395v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..3121a82123c16942229c0897542da4aeb88ffa6e
--- /dev/null
+++ b/w9E3T4oBgHgl3EQfOwkK/content/2301.04395v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d484c0e4284bfe32fe119c55b8af192e76180666a12e83b5a9663708aeda698
+size 3734590
diff --git a/w9E3T4oBgHgl3EQfOwkK/vector_store/index.faiss b/w9E3T4oBgHgl3EQfOwkK/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..2dc7747da6253069bc3929b6bcd000d045cf3547
--- /dev/null
+++ b/w9E3T4oBgHgl3EQfOwkK/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d8df06b418751fb01fbb644f6ec5629d76cc5cf3469aa75d0030fa19da3f10cb
+size 3407917
diff --git a/wNAzT4oBgHgl3EQfCPpJ/vector_store/index.pkl b/wNAzT4oBgHgl3EQfCPpJ/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..edb827f3a488166cacce6b5ef9b7edc4749683b2
--- /dev/null
+++ b/wNAzT4oBgHgl3EQfCPpJ/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:36ff32d5c7b789fa9b20c9563f692b9a9f37c397382c62091b57fc9978804be0
+size 184272
diff --git a/wtE3T4oBgHgl3EQfOgmo/content/tmp_files/2301.04394v1.pdf.txt b/wtE3T4oBgHgl3EQfOgmo/content/tmp_files/2301.04394v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..40d7f1dac4575b2b990ba4de4811c99b59585ab7
--- /dev/null
+++ b/wtE3T4oBgHgl3EQfOgmo/content/tmp_files/2301.04394v1.pdf.txt
@@ -0,0 +1,1605 @@
+arXiv:2301.04394v1 [math.CO] 11 Jan 2023
+Bounds on Embeddings of Triangulations of
+Spheres
+Jack Southgate
+12/01/2023
+Abstract
+Borcea and Streinu [2012] showed that the upper bound of the number
+of congruence classes of a minimally d-volume rigid (d + 1)-uniform hy-
+pergraph on n vertices in Rd increases exponentially in n and d. We show
+that this result also holds for triangulations of S2 in R2, and then find a
+geometrically motivated bound linear in n for bipyramids. By the meth-
+ods used to deduce this bound, we show that, in general, global d-volume
+rigidity in Rd is not a generic property of a (d + 1)-uniform hypergraph.
+1
+Introduction
+Here we introduce the necessary terminology to ask the questions that motivate
+this paper. Then discuss what work has been done on them already, and their
+relations to similar questions in other types of rigidity theory.
+1.1
+Preliminary Definitions and Terminology
+A (d + 1)-uniform hypergraph Θ is a pair (V, H) of a set of vertices V and a set
+of hyperedges H ⊆
+� V
+d+1
+�
+. Write n = |V |, label the vertices by 1, ..., n and the
+hyperedges by the (d+1)-tuples i1...id+1, then we have a lexicographic ordering
+of both the vertices and the hyperedges.
+We may realise a (d+ 1)-uniform hypergraph Θ = (V, H) in Rd by pairing it
+with a configuration, defined to be a vector p = (p(1), ..., p(n)) ∈ Rdn where each
+p(i) represents the position of the vertex i in Rd, to form a framework (Θ, p) in
+Rd. Each configuration p may also be represented uniquely by a configuration
+matrix
+C(p) =
+
+
+1
+. . .
+1
+p(1)1
+. . .
+p(n)1
+...
+...
+...
+p(1)d
+. . .
+p(n)d
+
+ .
+1
+
+Moreover, for each (d+1)-tuple i1...id+1 in (Θ, p), we may specify the sub-matrix
+C(i1...id+1, p) =
+
+
+1
+. . .
+1
+p(i1)1
+. . .
+p(id+1)1
+...
+...
+...
+p(1d)d
+. . .
+p(id+1)d
+
+ .
+The d-volume measurement map of a (d + 1)-uniform hypergraph is the poly-
+nomial map
+fΘ : Rdn → Rm; p �→ (det(C(h, p)) : h ∈ H),
+that lists the signed volumes of the d-simplices defined by the hyperedges of
+(Θ, p), as p varies in Rdn.
+We say that two frameworks (Θ, p) and (Θ, q) in Rd are equivalent if
+fΘ(p) = fΘ(q),
+and congruent if
+fKd+1
+n
+(p) = fKd+1
+n
+(q),
+where Kd+1
+n
+=
+�
+V,
+� V
+d+1
+��
+is the complete (d + 1)-uniform hypergraph.
+We say that the framework (Θ, p) in Rd is (d-volume) rigid if there exists
+ε > 0 so that
+f −1
+Θ (fΘ(p)) ∩ Bε(p) = f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) ∩ Bε(p),
+where
+Bε(p) = {q ∈ Rdn : d(p, q) < ε},
+ie. if, for all frameworks defined by configurations in Bε(p), equivalence to (Θ, p)
+yields congruence to (Θ, p), and (d-volume) globally rigid if
+f −1
+Θ (fΘ(p)) = f −1
+Kd+1
+n
+(fKd+1
+n
+(p)),
+(1)
+ie. if, for all configurations, equivalence implies congruence. Finally, if, for all
+ε > 0,
+f −1
+Θ (fΘ(p)) ∩ Bε(p) ⊋ f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) ∩ Bε(p),
+(2)
+ie.
+we can continuously deform p to configurations yielding frameworks not
+congruent to (Θ, p) whilst maintaining equivalence, we say that (Θ, p) is (d-
+volume) flexible.
+Define the configuration space of (Θ, p) as the space of configurations yielding
+frameworks equivalent to (Θ, p), modulo those yieldig frameworks congruent to
+(Θ, p). We may express it as the following quotient space:
+C(Θ, p) = f −1
+Θ (fΘ(p))⧸f −1
+Kd+1
+n
+(fKd+1
+n
+(p))
+(3)
+2
+
+Note that (Θ, p) is rigid if and only if C(Θ, p) is 0-dimensional (if C(Θ, p) is also
+connected then the framework is globally rigid), and flexible otherwise.
+Call the elements of C(Θ, p) congruence classes of (Θ, p) (as they represent
+equivalence classes of configurations, where the equivalence relation is congru-
+ence of frameworks). Then the number of congruence classes of (Θ, p) is the
+number of frameworks that are equivalent to (Θ, p), up to congruence.
+1.2
+Motivating Questions and Previous and Similar Re-
+sults
+Suppose that (Θ, p) is rigid, then as the fibre f −1
+Θ (fΘ(p)) is a semi-algebraic
+set (it is the set of real points q ∈ Rdn satisfying the equations det(C(h, q)) −
+det(C(h, p)) = 0, for all h ∈ H), it has only finitely many connected components
+(see Basu and Pollack [2006] for example). Therefore C(Θ, p) consists of finitely
+many connected components, ie. (Θ, p) admits finitely many congruence classes.
+This gives rise to the following question?
+Question 1. For some (d+1)-uniform hypergraph Θ that is generically d-volume
+rigid in Rd, how many congruence classes does a generic framework of Θ in Rd
+admit?
+Borcea and Streinu [2012] studied this question for the class of hypergraphs
+that are generically minimally d-volume rigid in Rd. They adapt an argument
+they applied in answering the analogous question in Euclidean bar-joint rigidity
+(ie. measuring edge-lengths of graph frameworks instead of hyperedge-volumes
+of hypergraph frameworks) for an analogous class of graphs in Borcea and Streinu
+[2002]. We cover their approach in section 3.
+In particular Borcea and Streinu obtain an exponential upper bound for
+the number of congruence classes a generic framework in Rd of a minimally
+generically rigid hypergraph on n vertices may admit in terms of d and n (and
+both upper and lower bounds in the Euclidean bar-joint case).
+Their bounds for the Euclidean bar-joint case have been revisited several
+times including in, for example, Steffens and Theobald [2010], and their lower
+bounds improved for some classes of minimally rigid graphs by Grasegger et al.
+[2020] and Jackson et al. [2006].
+In section 5, we show how Borcea and Streinu’s upper bound also applies to
+hypergraphs defining triangulations of S2 (when d = 2). We then introduce a
+geometrically-motivated upper bound for hypergraphs defining bipyramids (also
+when d = 2).
+For completeness when compared to Borcea and Streinu [2002], we also give
+a lower bound for minimally rigid triangulations in all d in section 4.
+Finally, in considering question 1, we show in section 7 how bounds behave
+under a gluing operation that preserves minimal rigidity (or nearness to it).
+Adapting question 1 slightly yields the following question:
+Question 2. Given some (d+1)-uniform hypergraph Θ, does a generic framework
+of Θ in Rd admit just one congruence class?
+3
+
+The Euclidean bar-joint rigidity analogue to this question has been studied
+extensively, and a geometric characterisation of when a graph generically admits
+a single congruence class (or is generically globally rigid) was given by Connelly
+[2005] and Gortler et al. [2010].
+In section 6, we show by means of an example that the answer to question
+2 is not well-defined. Therefore we rephrase it as follows
+Question 3. Given a (d + 1)-uniform hypergraph Θ, which generic frameworks
+of Θ in Rd admit just one congruence class?
+We implicitly answer question 3 in terms of bipyramids in R2. Moreover,
+our lower bound shows that, for all d, there exists a minimally rigid hypergraph,
+all generic frameworks of which admit just one congruence class.
+1.3
+Acknowledgments
+This paper was prepared under the supervision of Louis Theran, with whom
+many of the results, particularly in sections 2, 6 and 7 were developed.
+2
+d-Volume Rigidity
+In this section, we give some alternate definitions of d-volume rigidity and define
+the algebro-geometric objects used in Borcea and Streinu [2012]. We also intro-
+duce pinned frameworks, which will be our primary representation of congruence
+classes for the purposes of calculating bounds.
+We will give a more-rigorous-than-strictly-necessary treatment to the defini-
+tions and lemmas. The reason for doing so is the relative scarcity of published
+literature on d-volume rigidity in comparison to Euclidean bar-joint rigidity.
+2.1
+d-Volume Preserving Affine Transformations
+An affine transformation of Rd is a map
+f : Rd → Rd; x �→ Ax + b,
+where A ∈ Rd×d and b ∈ Rd. Every affine transformation may be represented
+as an augmented matrix T ∈ R(d+1)×(d+1) that acts on points of Rd written in
+homogeneous co-ordinates:
+T
+�
+1
+x
+�
+=
+�
+1
+0t
+b
+A
+� �
+1
+x
+�
+=
+�
+1
+b + Ax
+�
+,
+We say that T is d-volume preserving if det(A) (equivalently det(T )) is equal
+to 1. Indeed, then for any d + 1 points x1, ...xd+1 ∈ Rd,
+����T
+�
+1
+x1
+�
+. . .
+T
+� 1
+xd+1
+����� = det(T )
+����
+1
+. . .
+1
+x1
+. . .
+xd+1
+���� =
+����
+1
+. . .
+1
+x1
+. . .
+xd+1
+���� .
+4
+
+Lemma 2.1. The space of d-volume preserving affine transformations, V(d, R),
+is (d2 + d − 1)-dimensional.
+Proof. The space V(d, R) is an algebraic group, isomorphic to the semidirect
+product SL(d, R) ⋉ Rd, the factors of which are themselves algebraic groups of
+dimensions d2 − 1 and d respectively. Hence
+dim(V(d, R)) = (d2 − 1) + d.
+The next two propositions show the equivalence of rigidity in terms of the
+d-volume measurement map with rigidity in terms of affine d-volume preserving
+transformations of Rd, in the same vein of Euclidean bar-joint rigidity in terms
+of edge-lengths and isometries of Rd.
+Proposition 2.2. Two frameworks of Θ = (V, H) in Rd, (Θ, p) and (Θ, q),
+are equivalent if and only if there exists a set of d-volume preserving affine
+transformations {Th : h ∈ H} such that Thp(i) = q(i), for all vertices i in each
+hyperedge h.
+A set of points P = {p(1), ..., p(n)} ⊂ Rd is affinely dependent if there exists
+a set of coefficients {a1, ..., an} ∈ R, not all equal to zero, so that
+a1p(1) + ... + anp(n) = 0,
+or equivalently, if the affine span of P, ie. the smallest affine subspace of Rd
+containing P, is a proper affine subspace of Rd. Otherwise P is affinely inde-
+pendent.
+Before beginning our proof, we note that affine transformations of Rd are
+uniquely defined by their action on a set of d + 1 affinely independent points.
+Proof. Suppose that (Θ, p) and (Θ, q) are equivalent. Then, for each (d + 1)-
+tuple i1...id+1 ∈ H:
+1. If {p(i1), ..., p(id+1)} is affinely dependent, then the volume of i1...id+1
+in (Θ, p) is 0. Morover, there exists a choice of infinitely many d-volume
+preserving affine transformations Ti1...id+1 so that Ti1...id+1C(i1...id+1, p) =
+C(i1...id+1, q).
+2. If {p(i1), ..., p(id+1)} is affinely independent, then there exists a unique
+affine transformation of Rd, Ti1...id+1 for which Ti1...id+1C(i1...id+1, p) =
+C(i1...id+1, q). Since det(C(i1...id+1, p)) = det(C(i1...id+1, q)), it follows
+that det(Ti1...id+1) = 1.
+After running over all hyperedges of Θ, we end up with our set {Th : h ∈ H}.
+Next, suppose that such a set exists {Th : h ∈ H}, then we know that
+det(C(h, q)) = det(Th) det(C(h, p)) = det(C(h, p)), for all h ∈ H. Hence (Θ, p)
+and (Θ, q) are equivalent.
+5
+
+Proposition 2.3. Two non-flat frameworks of Θ = (V, H) in Rd, (Θ, p) and
+(Θ, q), are congruent if and only if there exists a single d-volume preserving
+affine transformation T so that T p(i) = q(i), for all vertices i.
+Proof. Since (Θ, p) and (Θ, q) are not flat, there exists a hyperedge h ∈ H so
+that det(C(h, p)) = det(C(h, q)) ̸= 0. Relabel V so that h = 1...(d + 1).
+Then, since fKd+1
+n
+(p) = fKd+1
+n
+(q), for every vertex j ≥ d + 2, there are
+d + 1 hyperedges of the form 1...ˆi...(d + 1)j, for 1 ≤ i ≤ d + 1. These define d
+independent hyperplanes, the intersection of which q(j) lies within. Therefore,
+the position q(j) = T p(j), as both q(j) and p(j) are affinely dependent in the
+same manner on the vertices 1, ..., d + 1.
+Now, suppose that there exists a d-volume preserving affine transforma-
+tion T so that T p(i) = q(i), for all vertices i ∈ V . Then T C(p) = C(q), so
+det(C(i1...id+1, p)) = det(C(i1...id+1, q)), for all i1...id+1 ∈
+� V
+d+1
+�
+. Therefore
+fKd+1
+n
+(p) = fKd+1
+n
+(q), ie. (Θ, p) and (Θ, q) are congruent.
+2.2
+Flexes and Infinitesimal Rigidity
+A flex of (Θ, p) is a continuous path γ : [0, 1] → f −1
+Θ (fΘ(p)). We say that γ is
+trivial if γ[0, 1] ⊂ f −1
+Kd+1
+n
+(fKd+1
+n
+(p)).
+Proposition 2.4. Suppose that (Θ, p) is a framework in Rdn, then (Θ, p) is
+flexible if and only if (Θ, p) admits a non-trivial flex.
+In order to prove this, we will use the Curve-Selection Lemma (see Milnor
+[2016]):
+Lemma 2.5. [Curve-Selection Lemma] Let p and q be two points in a semi-
+algebraic set S, let U be an open neighbourhood of p. If q ∈ S ∩ U, then there
+exists a path γ : [0, 1] → S so that γ([0, 1]) ⊂ S ∩ U, γ(0) = p and γ(1) = q.
+Proof of Proposition 2.4. Suppose that (Θ, p) is flexible. Then, for any ε > 0,
+there exists an equivalent, but not congruent, configuration q ∈ (f −1
+Θ (fΘ(p)) ∩
+Bε(p)) \ (f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) ∩ Bε(p)). Then, as f −1
+Θ (fΘ(p)) is a semi-algebraic
+set and Bε(p) is an open neighbourhood of p, we may apply the curve-selection
+lemma to select a flex γ : [0, 1] → f −1
+Θ (fΘ(p))∩U so that γ(0) = p and γ(1) = q.
+As γ([0, 1]) ̸⊂ f −1
+Kd+1
+n
+(fKd+1
+n
+(p)), γ is not trivial.
+Suppose (Θ, p) admits a non-trivial flex γ and, for the sake of contradiction,
+that there exists ε > 0 such that f −1
+Θ (fΘ(p)) ∩ Bε(p) = f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) ∩
+Bε(p).
+Then, as γ([0, 1]) ̸⊂ f −1
+Kd+1
+n
+(fKd+1
+n
+(p)), there exist 0 < τ1 < τ2 < 1
+arbitrarily close to each other so that γ(τ1) ∈ f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) and γ(τ2) ̸∈
+f −1
+Kd+1
+n
+(fKd+1
+n
+(p)), therefore, as (Θ, γ(τ1)) is flexible and congruent to (Θ, p), we
+have that (Θ, p) is flexible.
+Proposition 2.4 links flexes to our previous notions of volume rigidity. For a
+framework (Θ, p), the following are therefore equivalent definitions of rigidity:
+6
+
+• There exists ε > 0 such that f −1
+Θ (fΘ(p)) ∩ Bε(p) = f −1
+Kd+1
+n
+(fKd+1
+n
+(p));
+• There exists ε > 0 such that, for all q ∈ Bε(p), there exists a set of d-
+volume preserving affine transformations of Rd, {Th : h ∈ H}, so that
+ThC(h, p) = C(h, q), ∀h ∈ H;
+• Every flex of (Θ, p) is trivial.
+The rigidity matrix of the framework (Θ, p) in Rd, written R(Θ, p) ∈ Rm×dn,
+is the Jacobian matrix of fΘ evaluated at p. Therefore the rank of R(Θ, p) is
+the dimension of the real measurement variety MΘ. The rows of R(Θ, p) are
+indexed by the hyperedges of Θ, whilst the columns are grouped into d-tuples,
+each indexed by the vertices of Θ. Denote the row indexed by hyperedge h by
+R(Θ, p)h and the column group indexed by vertex i by R(Θ, p)i.
+Define an infinitesimal flex η of (Θ, p) to be the infinitesimal velocity of a
+flex γ of (Θ, p):
+η = d
+dtγ
+����
+t=0
+.
+(4)
+Say that η is trivial if γ is trivial.
+Lemma 2.6. The kernel of R(Θ, p) is precisely the space of infinitesimal flexes
+of (Θ, p).
+Proof. Firstly, suppose that γ is a flex of (Θ, p), then, for all t ∈ [0, 1],
+fΘ(γ(t)) = fΘ(p),
+(5)
+differentiating equation 5 with respect to t gives
+d
+dtfΘ(γ(t)) = d
+dtfΘ(p)
+R(Θ, γ(t)) d
+dtγ(t) = 0,
+(6)
+which, evaluated at t = 0, becomes
+R(Θ, p)η = 0,
+(7)
+hence, the space of infinitesimal flexes lies within the kernel of R(Θ, p).
+Next, suppose that R(Θ, p)x = 0, for some x = (x(1), ..., x(n)) ∈ Rdn, then
+each x(i) is orthogonal to the span of each R(Θ, p)i
+h (ie. the entries of R(Θ, p) in
+column group i and row h). As the span of R(Θ, p)i
+h is the line in Rd orthogonal
+to the affine hyperplane spanned by {p(j) : j ∈ h \ {i}}, x(i) is parallel to
+each d-hyperedge opposite i in (Θ, p). This is an equivalent definition of an
+infinitesimal flex.
+7
+
+2.3
+The Measurement Variety of a Hypergraph
+Let Θ = (V, H) be a (d + 1)-uniform hypergraph. Then we may define the
+(d-volume) measurement variety, MΘ, of Θ as the closure of the image of Rdn
+under the d-volume measurement map:
+MΘ = fΘ(Rdn).
+The complete measurement variety is the measurement variety of Knd+1
+MKd+1
+n
+= fKd+1
+n
+(Rdn).
+The following lemma follows immediately from the definitions above.
+Lemma 2.7. With notation as laid out above, MΘ = πH(MKd+1
+n
+), where the
+map πH : R(
+n
+d+1) → Rm projects onto the co-ordinates indexed by hyperedges of
+Θ.
+The rigidity matrix R(Θ, p) is the differential of fΘ evaluated at p:
+R(Θ, p) : TpRdn → TfΘ(p)MΘ,
+therefore, its rank is the dimension of the neighbourhood of fΘ(p) in MΘ.
+Now, in order to find the dimensions of MΘ and fΘ, we will prove the d-
+volume rigidity theoretic to Asimow and Roth’s theorem (see Asimow and Roth
+[1978]):
+Theorem 2.8. Let Θ = (V, H) be a (d+1)-uniform hypergraph and let p ∈ Rdn
+be a regular point of fΘ. Then (Θ, p) is rigid if and only if rank(R(Θ, p)) =
+dn − d2 − d + 1, moreover, this is the maximum rank that R(Θ, p) may achieve.
+Before we prove theorem 2.8 (in a similar manner to Asimow and Roth), we
+note some of its immediate consequences:
+1. If m < dn − d2 − d + 1, then Θ will always fail to be d-volume rigid in Rd;
+2. If {p(i) : i ∈ V } lies in some proper affine subspace of Rd (ie. (Θ, p) is
+flat), then (Θ, p) will fail to be d-volume rigid in Rd.
+Proof. If (Θ, p) is flat, ie. fΘ(p) = 0 ∈ Rm, for some Θ with n > 3, then (Θ, p)
+is flexible. Indeed, let γ be a flex of (Θ, p) so that γ(i) ∈ A, where A is the affine
+span of all vertices of (Θ, p). If n > 3, then γ may be non-trivial, and γ(t) ∈ A,
+∀t ∈ [0, 1].
+Recall from lemma 2.1 that dim(V(d, R)) = d2 + d − 1. Consider the map
+Fp : V(d, R) → Rdn; T → (T p(i) : i ∈ V )
+sending each d-volume preserving affine transformation T of Rd to the config-
+uration whose framework is the image of (Θ, p) under T . Then Fp(V(d, R)) =
+8
+
+f −1
+Kd+1
+n
+(fKd+1
+n
+(p)).
+As the kernel of this map is trivial, dim(Fp(V(d, R))) =
+dn − (d2 + d − 1).
+Now, (Θ, p) is rigid if and only if there exists ε > 0 such that f −1
+Θ (fΘ(p)) ∩
+Bε(p) = f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) ∩ Bε(p).
+By the regular value theorem and our
+assumption of the regularity of p, for small ε > 0, f −1
+Θ (fΘ(p)) ∩ Bε(p) is a
+(dn − rank(R(Θ, p)))-dimensional manifold.
+As f −1
+Kd+1
+n
+(fKd+1
+n
+(p)) ∩ Bε(p) = Fp(V(d, R)) ∩ Bε ⊆ f −1
+Θ (fΘ(p)) ∩ Bε(p),
+equality follows from their dimensions matching, which happens if and only
+if rank(R(Θ, p)) = dn − (d2 + d − 1).
+Finally, since dim(f −1
+Θ (fΘ(p))) ̸< dim(f −1
+Kd+1
+n
+(fKd+1
+n
+(p))), we cannot have
+rank(R(Θ, p)) exceeding dn − (d2 + d − 1).
+For a configuration p (resp. a framework (Θ, p)), we say that p (resp. (Θ, p))
+are generic if
+f ∈ Q[x] \ {0} =⇒ f(p) ̸= 0.
+Corollary 2.8.1. A generic framework (Θ, p) in Rd is rigid if and only if it
+admits no non-trivial infinitesimal flexes.
+Proof. Suppose that (Θ, p) is flexible, then it admits a non-trivial flex, the
+infinitesimal velocity of which is a non-trivial infinitesimal flex.
+Suppose that (Θ, p) is rigid. By the genericity of p, the rank of R(Θ, p) must
+be dn − (d2 + d − 1), so the kernel of R(Θ, p) is a (d2 + d − 1)-dimensional linear
+space. Since the space of trivial infinitesimal flexes is the kernel of R(Kd+1
+n
+, p),
+which is itself a (d2+d−1)-dimensional linear space, and is contained within the
+kernel of R(Θ, p), we have equality of the two, ie. (Θ, p) admits no non-trivial
+infinitesimal flexes.
+A property P is a binary (true/false) valued function on some set X. A
+property P is generic over X if it either holds for all generic points in X or for
+none of them (ie. it is constant over the generic points of X).
+Corollary 2.8.2. Let Θ be a (d+1)-uniform hypergraph. The d-volume rigidity
+of a framework of Θ is a generic property over Rdn.
+ie. Either all generic frameworks of Θ in Rd are d-volume rigid or none are.
+Proof. Suppose that (Θ, p) and (Θ, q) are two generic frameworks in Rd, with
+(Θ, p) rigid and (Θ, q) flexible. Let M(x) be a (dn−(d2+d−1))×(dn−(d2+d−1))
+minor of R(Θ, x) (with x representing an indeterminate vector of length dn) so
+that M(q) = 0 but M(p) ̸= 0. Therefore a non-trivial polynomial with integer
+coefficients vanishes when evaluated at q but not at p, both generic points, which
+contradicts our assumption that q is generic.
+So if the generic frameworks of some hypergraph Θ are all rigid in Rd, we
+may say that Θ is rigid in Rd.
+Recall after the statement of Theorem 2.8, we list two of its immediate
+consequences. The first of these states that a necessary condition for the rigidity
+9
+
+of Θ is that m ≥ dn−(d2+d−1). This yields a natural class of hypergraphs that
+are rigid but have just dn− (d2 + d− 1) hyperedges, so removing any hyperedge
+will make them flexible. We call such hypergraphs minimally rigid.
+2.4
+Pinning
+Let Θ = (V, H) be a (d+1)-uniform hypergraph and (Θ, p) an affinely spanning
+framework in Rd. If necessary, relabel V so that 1...(d + 1) is a hyperedge and
+is not flat in (Θ, p). In order to study (Θ, p) up to its congruent frameworks, we
+introduce its pinning, ie. the unique framework (Θ, ˜p) congruent to (Θ, p) with
+configuration matrix.
+C(˜p) =
+
+
+1
+1
+1
+. . .
+1
+1
+. . .
+1
+0
+1
+0
+. . .
+0
+˜p(d + 2))1
+. . .
+˜p(n)1
+0
+0
+1
+. . .
+0
+˜p(d + 2))2
+. . .
+˜p(n)2
+...
+...
+...
+...
+...
+...
+...
+...
+0
+0
+0
+. . .
+det(C(1...(d + 1), p))
+˜p(d + 2)d
+. . .
+˜p(n)d(
+
+
+.
+(8)
+The standard pinning of (Θ, p), denoted (Θ, p) is obtained by squeezing (Θ, ˜p)
+by a factor of det(C(1...(d + 1), p)) along the xd+1-axis, ie. by multiplying the
+bottom row of C(˜p) by
+1
+det(C(1...(d+1),˜p)).
+We will work with standard pinnings from now on, noting that as they are
+an affine image of not-necessarily-standard pinnings, they share all their rigidity
+properties.
+The pinned configuration space of (Θ, p) is the space of standard pinned
+configurations equivalent to (Θ, p):
+C(Θ, p) = {q : (Θ, q) equivalent to (Θ, p)}.
+(9)
+Call the elements of C(Θ, p) the pinned congruence classes of (Θ, p).
+Lemma 2.9. The congruence classes of (Θ, p) in Rd and the pinned congruence
+classes of (Θ, p) in Rd are in one to one correspondence.
+Proof. Define the map f : C(Θ, p) → C(Θ, p) as follows:
+f([q]) = q,
+(10)
+which is well-defined since all congruent frameworks have the same standard
+pinning. There is also a well-defined inverse, obtained by stretching (Θ, p) by a
+factor of det(C(1...(d + 1), p)) along the xd+1-axis.
+As f and its inverse described above are continuous (being affine transfor-
+mations), C(Θ, p) and C(Θ, p) are homeomorphic, and so (Θ, p) and (Θ, p) can
+be considered interchangeably for our purposes.
+10
+
+3
+Upper Bounds for Minimally Rigid Hyper-
+graphs
+In this section, we outline the below result from Borcea and Streinu [2012].
+Theorem 3.1. Let (Θ, p) be a generic framework in Rd of the (d + 1)-uniform
+minimally generically rigid hypergraph Θ on n variables. Then (Θ, p) has at
+most
+(d(n − d − 1))!
+d−1
+�
+i=0
+i!
+(n − d − 1 + i)!
+(11)
+congruence classes.
+They achieve their result by showing that the projective complex measure-
+ment variety MP ⊆ CP(
+n
+d+1)−1 is birationally equivalent to the Grassmannian
+Gr(d, n − 1) ⊆ CP(
+n−1
+d )−1, and therefore that their degrees are equal (see Harris
+[2013]). A nearly generic linear subspace L of complementary dimension to MP
+in CP( n
+d+1)−1
+[z1...(d+1):...:z(n−d)...n] is defined as vanishing of the following dn−(d2+d−1)
+homogeneous linear polynomials:
+det(C(i, p))z1...(d+1) − det(C(1...(d + 1), p))zi, ∀i ∈
+�
+n
+d + 1
+�
+.
+Then, if (Θ, q) is equivalent to (Θ, p) in Rd, [fKd+1
+n
+(q)] (square brackets denoting
+the projectivisation of fKd+1
+n
+(q)) must lie in the intersection of L with MP.
+However this intersection has at most deg(MP) isolated points, and by rigidity,
+all points in the intersection are isolated. The result follows by the fact that
+the quantity in 11 is the degree of Gr(d, n − 1) (see again Harris [2013] or
+Lakshmibai and Brown [2015]).
+We consider a few small examples to see how this upper bound fares:
+Example 3.1. Consider the minimally area rigid hypergraph Θ = (V, H), where
+V = {1, 2, 3, 4} and H = {123, 124, 134} (indeed, m = 3 = 2n − 5). Take a
+generic framework (Θ, p) of Θ in R2 and standard pin it to (Θ, p) with configu-
+ration matrix
+C(p) =
+
+
+1
+1
+1
+1
+0
+1
+0
+p(4)1
+0
+0
+1
+p(4)2
+
+ .
+(12)
+Then det(C(123, p)) = 1, det(C(124, p)) = p(4)2 and det(C(134, p)) = −p(4)1,
+so if (Θ, q) ∈ C(Θ, p), then q = p. Hence (Θ, p) has a single congruence class
+(and this holds for all generic frameworks of Θ)
+Now we calculate the upper bound of the number of congrunce classes (Θ, p)
+might have given in theorem 3.1:
+(2(4 − 2 − 1))!
+0!
+(4 − 2 − 1 + 0)!
+1!
+(4 − 2 − 1 + 1)! = 1.
+(13)
+So the bound is tight for the smallest (non-trivial) case.
+⋄
+11
+
+1
+2
+3
+4
+Figure 1: (Θ, p)
+Example 3.2. The bound is also tight when d = 2 and n = 5. All area rigid hy-
+pergraphs on five vertices and five hyperedges generically admit only one congru-
+ence class, except for Θ = (V, H), with V = [5] and H = {123, 125, 145, 234, 345}
+which generically admits two. Meanwhile
+(2(5 − 2 − 1))!
+0!
+(5 − 2 − 1 + 0)!
+1!
+(5 − 2 − 1 + 1)! = 2.
+(14)
+⋄
+1
+2
+3
+4
+5
+Figure 2: The 1-skeleta of the unique minimally rigid 3-uniform hypergraph on
+five vertices and five hyperedges that generically admits two congruence classes
+The takeaway from Example 3.2 is that, although this bound is tight, it is not
+necessarily representative of the number of congruence classes of the majority
+of minimally rigid hypergraphs. In sections 5 and 6, we identify a class of rigid
+hypergraphs (and equivalently a class of minimally rigid hypergraphs) for whom
+this bound is linear, and therefore any overestimates will be of a lesser degree.
+First, we outline a strict lower bound. This bound seems to be well known.
+We include it here as a matter of complete-ness, and to mirror the inclusion of
+lower bounds in Borcea and Streinu [2002].
+12
+
+4
+A Lower Bound for Minimally Rigid Hyper-
+graphs
+In this section, we show that a generically globally rigid (d + 1)-uniform hyper-
+graph on dn − (d2 + d − 1) vertices may be found, for all n ≥ d + 1 ≥ 2.
+To this end, we introduce vertex splitting, a constructive hypergraph oper-
+ations.
+Let Θ = (V, H) be a (d + 1)-uniform hypergraph. A k-vertex split at some
+vertex i removes k − d hyperedges containing i that are connected through
+codimension 1 (ie. they can be ordered h1, ..., hk−d such that |hj ∩ hj+1| = d,
+for all 1 ≤ j < k−d), then inserts a new vertex i∗ and k new hyperedges to form
+the star of i∗, so that the link of i∗ is the boundary of the of Θ about hyperedges
+removed (we will denote the post-removal hypergraph by Θ′ = (V, H′), with
+H′ = H \ {h1, ..., hk−d}).
+Notice that if Θ has m hyperedges, then Θ∗ has m + d hyperedges.
+In
+particular, if Θ has dn − (d2 + d − 1) hyperedges, Θ∗ has d(n + 1) − (d2 + d − 1)
+hyperedges.
+Next, in order to construct a generically globally rigid and minimally rigid
+(d+1)-uniform hypergraph on any given number of vertices (greater than d+1),
+we focus in on the most rigidity-preserving k-vertex split:
+Lemma 4.1. Let Θ = (V, H) be a (d+1)-uniform hypergraph that is generically
+rigid in Rd, and suppose that Θ∗ = (V ∗, H∗) is obtained from Θ by performing
+a (d + 1)-vertex split at some vertex i ∈ V .
+Then, for generic frameworks
+(Θ, p) and (Θ∗, p∗) in Rd (where p∗ projected onto entries indexed by vertices in
+V ), the congruence classes of (Θ, p) are in one to one correspondence with the
+congruence classes of (Θ∗, p∗).
+Proof. Notice that the position of q∗(i) is uniquely defined by the position of
+p∗(i), as q∗(i) is in intersection of d independent hyperplanes defined by p∗(i).
+Then (Θ, p) is equivalent (resp. congruent) to (Θ, q) if and only if (Θ∗, p∗) is
+equivalent (resp. congruent) to (Θ∗, q∗).
+Theorem 4.2. Let d ≥ 1 and n ≥ d + 2. There exists a generically minimally
+rigid (d+1)-uniform hypergraph Θ on n vertices that is generically globally rigid
+in Cd.
+Proof. Consider the hypergraph consisting of just a single hyperedge.
+It is
+generically both globally rigid and minimally rigid.
+We proved inductively above that both of these properties are preserved
+under (d + 1)-vertex splits, so we can perform n − (d + 1) in succession to arrive
+at a (d + 1)-uniform hypergraph on n vertices that is generically globally rigid
+and generically minimally rigid.
+Therefore the lower bound for the number of congruence classes of a generic
+(d + 1)-uniform hypergraph framework in Rd is 1, and this bound is strict.
+13
+
+5
+Triangulations of S2
+Let Θ = (V, H) be a 3-uniform hypergraph. There is a unique simplicial complex
+associated to Θ, which we will denote by [Θ], the sets of 0-, 1- and 2- simplices
+of which are defined respectively as
+[Θ]0 = {[i] : i ∈ V }
+[Θ]1 = {[ij] : ij ⊂ h ∈ H}
+[Θ]2 = {[h] : h ∈ H}.
+If [Θ] is a triangulation of S2, then we call Θ a triangulation of S2.
+Since S2 is a closed 2-dimensional manifold, each 1-simplex of [Θ] must be
+contained in precisely two 2-simplices, ie. each edge of Θ must be contained in
+precisely two hyperedges. Meanwhile, each hyperedge, by definition, contains
+precisely three edges. Therefore
+3m = 2s,
+(15)
+where s is the number of edges of Θ. Meanwhile, the Euler characteristic of any
+triangulation of S2 is fixed, so
+χ(Θ) = m − s + n = 2.
+(16)
+Combining equations 15 and 16 yields m = 2n − 4 and s = 3n − 6.
+Now, the second homology group of [Θ], H2([Θ], Z) is isomorphic to Z, as
+there is a unique (up to uniform scaling) vector c = (c[h] : [h] ∈ [Θ]2) ∈ Zm so
+that
+∂2
+
+ �
+[h]∈[Θ]2
+c[h][h]
+
+ = 0,
+by the above observation, c ∈ {−1, 1}m, therefore, for every [h] ∈ [Θ]2, we may
+write
+[h] = c−1
+[h]
+
+
+�
+[h′]∈[Θ]2\{h′}
+c[h′][h′]
+
+ .
+(17)
+Now let (Θ, p) be any framework of the triangulation of S2, Θ = (V, H).
+There exists a unique map [p] : [Θ] → R2 defined by
+[p]([i]) = p(i), ∀[i] ∈ [Θ]0,
+[p]([ij]) = Conv{p(i), p(j)}, ∀[ij] ∈ [Θ]1,
+[p]([ijk]) = Conv{p(i), p(j), p(k)}, ∀[ijk] ∈ [Θ]2.
+Then, by equation 17, each triangle in [p]([Θ]), ie. each hyperedge in (Θ, p) may
+be uniquely expressed as a signed sum of all the other hyperedges of (Θ, p), and
+so, therefore may its area be.
+14
+
+As a consequence of this, if we remove any hyperedge from Θ to get Θ′, then
+the congruence classes of (Θ, p) and (Θ′, p) are in one-to-one correspondence
+(as the area of the removed hyperedge in (Θ, p) is uniquely determined by the
+hyperedges of (Θ′, p)). We therefore say that the missing hyperedge of Θ′ is
+globally linked.
+5.1
+Triangulations of S2 are Generically Rigid
+In this subsection, we prove the following theorem:
+Theorem 5.1. Let Θ = (V, H) be a triangulation of S2, then Θ is generically
+rigid.
+We will prove theorem 5.1 by induction: by the following lemma of Steinitz
+[2013], Θ may be built up by vertex splitting operations from K3
+4:
+Lemma 5.2. Let Θ be as above, then there exists a sequence of triangulations
+of S2
+Θ0 = K3
+4, Θ1, ..., ΘN−1, ΘN = Θ,
+so that Θi is obtained from Θi−1 by a vertex split, for each 1 ≤ i ≤ N.
+Lemma 5.2 may also be proved by induction, by showing how, at each tri-
+angulation of S2 on more than three vertices, we may perform inverse operation
+to vertex splitting, vertex contraction, whilst preserving the property of being
+a triangulation of S2.
+Lemma 5.3. Let (Θ, p) be a rigid generic framework of Θ = (V, H) triangu-
+lation of S2 on n > 4 vertices (assuming such a framework exists). Remove
+l > 1 hyperedges of Θ, connected through codimension 1, to obtain Θ′ = (V, H′).
+Then, Θ = (V, H′) is a flexible framework, with a (l − 1)-dimensional space of
+non-trivial finite flexes.
+Proof. We will study how the rank of rigidity matrix changes upon removing
+hyperedges. First of all, rank(R(Θ, p)) = 2n − 5, as (Θ, p) is rigid. Since any
+h ∈ H is generically globally linked, if h ∈ H \ H′, and Θ1 = (V, H \ {h}), then
+rank(R(Θ1, p)) = 2n − 5.
+Now, R(Θ1, p) is full-rank, as it has 2n − 5 rows, therefore, removing any
+further hyperedges from Θ1 (and therefore further rows from R(Θ1, p)) will
+reduce the rank by one for each hyperedge. Hence rank(R(Θ′, p)) = 2n − 5 −
+(l − 1) = 2n − l − k.
+Therefore, by the regularity of fΘ′(p), MΘ′ is a (2n − 4 − l)-dimensional
+manifold, and so C(Θ′, p) is a (2n− (2n− 4 − l)) = (l + 4)-dimensional manifold.
+As a 5-dimensional subspace of C(Θ′, p) accounts for the images of q under
+trivial flexes, this leaves a (l − 1)-dimensional subspace of C(Θ′, p) arising from
+non-trivial finite flexes.
+Proof of Theorem 5.1. Let (Θ, p) be a generic framework of a triangulation Θ =
+(V, H) of S2 on n vertices. Suppose that n is a vertex of degree greater than or
+15
+
+equal to k − 2, and is contained in the hyperedges (n − k + 1)(n − k + 2)n, (n −
+k + 2)(n − k + 3)n, ..., (n − 2)(n − 1)n. Remove the hyperedges just listed to get
+H′, let Θ′ = (V, H′). Add the vertex n + 1 and hyperedges (n − k + 1)(n − k +
+2)(n + 1), (n − k + 1)n(n + 1), (n − k + 2)(n − k + 3)(n + 1), ..., (n − 1)n(n + 1)
+to get Θ∗ = (V ∗, H∗).
+Extend p to p∗ generic, to get the generic framework (Θ∗, p∗), we will show
+that rank(R(Θ∗, p∗)) = 2(n + 1) − 5. We begin by writing R(Θ∗, p∗) in two
+different ways:
+R(Θ∗, p∗) =
+�
+R(Θ′, p)
+0
+A
+L
+�
+=
+�
+R′
+B
+0
+R(Star(n + 1), p∗)
+�
+∈ R(2(n+1)−4)×2(n+1),
+(18)
+where both matrices are block matrices, with A ∈ Rk×2n, L ∈ Rk×2, R′ ∈
+R(2n−k−4)×2(n−k) and B ∈ R(2n−k−4)×2(k+1).
+Now, the L rows of L simply list the normal vectors to the edges in the
+link of vertex n + 1, by genericity, rank(L) = 2, moreover, by lemma 5.3,
+rank(R(Θ′, p)) = 2n − 5 − (k − 3), then by the linear algebra of block lower-
+triangular matrices
+rank(R(Θ∗, p∗)) ≥ rank(R(Θ′, p)) + L = 2n − 5 − (k − 3) + 2 = 2(n + 1) − k − 2,
+clearly then, if k = 3, we are done.
+Suppose that η ∈ Ker(R(Θ∗, p∗)), let U = V (Star(n + 1)), and let πV and
+πU denote projection of a vector in R2n onto the pairs of entries indexed by V
+and U respectively. Then, πV (η) ∈ Ker(R(Θ′, p)), a (k + 2)-dimensional space.
+Suppose that πV (η) is a trivial infinitesimal flex of (Θ′, p), then πU(η) is a
+trivial infinitesimal flex of (Star(n + 1), p∗), as all but one of the vertices are
+flexed trivially, and the final vertex, n+1, is uniquely determined by the position
+of all of its neighbours. Therefore, η extends to being a trivial infinitesimal flex
+of all of (Θ∗, p∗).
+Now, suppose that η is a non-trivial infinitesimal flex of (Θ∗, p∗), consider
+πV (η), by the above argument, πV (η) must lay in the (k − 3)-dimensional space
+of non-trivial infinitesimal flexes of (Θ′, p), and η(n + 1) is uniquely defined by
+πV (η), however in doing so it must solve a further k independent linear equations
+in its remaining k − 3 variables. We may choose p∗(n + 1) so that there is no
+solution to this system, and hence the space of non-trivial infinitesimal flexes of
+(Θ∗, p∗) is 0-dimensional.
+Therefore, there exists a generic, infinitesimally rigid framework (Θ∗, p∗),
+where Θ∗ is obtained from Θ by performing a k-vertex split at vertex n. Then
+by theorem 2.8, all generic frameworks of Θ∗ are rigid, and then by induction
+and lemma 5.2, all triangulations of S2 are generically rigid.
+As all triangulations of S2 are rigid, moreover redundantly rigid, with congru-
+ence classes of a generic framework of Θ = (V, H) in one-to-one correspondence
+with the congruence classes of the same configuration paired with Θ′ = (V, H′),
+where |H′| = |H| − 1, we obtain the following corollary:
+16
+
+Corollary 5.3.1. Let Θ be a triangulation of S2 on n vertices.
+Then any
+generic framework of Θ in R2 admits at most
+1
+n − 2
+�2n − 6
+n − 3
+�
+congruence classes.
+6
+Bounds for Bipyramids
+In this section, we narrow in on a special family of triangulations of S2, bipyra-
+mids.
+A bipyramid, Bn−2 = (V, H) is a 3-uniform hypergraph that is homeomor-
+phic, as a simplicial complex, to S2. It is formed by gluing two (n − 2)-gonal
+based pyramids together at their bases, identifying those vertices on the new
+equator of the graph, and deleting the common bases. The labelling of ver-
+tices and hyperedges that we will use throughout this paper and in proofs is as
+follows:
+V = [n]
+H = {123, 12(n − 1), 134, ..., 1(n − 2)(n − 1),
+23n, 2(n − 1)n, 34n, ..., (n − 2)(n − 1)n},
+and we call the vertices 2, ..., n − 1 the equatorial vertices. See figure 3 for an
+illustration of this labelling.
+1
+2
+3
+4
+5
+6
+7
+8
+Figure 3: The hexagonal bipyramid B6
+Whilst the upper bound given above for general triangulations of S2 increase
+exponentially in n, we will show that the upper bound for bipyramids grows
+linearly in n:
+Theorem 6.1. Let Bn−2 be the (n−2)-gonal bipyramid, and (Bn−2, p) a generic
+framework in R2. Then (Bn−2, p) has at most n − 4 congruence classes.
+17
+
+The proof of this follows from defining a polynomial f on (Bn−2, p) so that
+congruence classes of (Bn−2, p) yield roots of f, and can be found in appendix
+A.
+We can also state an updated lower bound for bipyramids on an even number
+of vertices:
+Corollary 6.1.1. If n is even, any generic framework (Bn−2, p) in R2 has at
+least two congruence classes.
+Proof. Since the degree of the polynomial f is even, and f(0) = 0, there must
+be some other real root of f corresponding to some real framework equivalent
+to (Bn−2, p).
+6.1
+Global Rigidity of Hypergraphs
+Connelly [2005] and Gortler et al. [2010] proved that the Euclidean rigidity of a
+graph G in Rd is a generic property of G (ie. it is true for all generic frameworks
+of G or for none of them). In this final subsection, we show that the analogous
+result does not hold in the case of d-volume rigidity, by way of a small (in terms
+of n) example.
+Theorem 6.2. The global d-volume rigidity of a (d + 1)-uniform hypergraph Θ
+in Rd is not a generic property of Θ.
+Proof. Consider the pentagonal bipyramid B5, by Theorem 6.1, the defining
+polynomial of its configuration space is a cubic f = at3 + bt2 + ct, where a, b, c
+are rational functions defined by the pinned configurations of seven points. The
+discriminant of f, denoted disc(f) is a polynomial function of the coefficients of
+f (and therefore a rational function of those same pinned configurations), and
+is, in this case, defined as disc(f) = b2 − 4ac. The cubic f has one real root
+if and only if disc(f) < 0, and three if and only if disc(f) > 0. It therefore
+suffices to find p and q non-generic so that disc(f(p)) < 0 and disc(f(q)) > 0,
+for example those with configuration matrices
+C(p) =
+
+
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+5
+1
+7
+1
+11
+1
+2
+0
+0
+1
+1
+13
+1
+19
+1
+17
+1
+2
+
+ ,
+C(q) =
+
+
+1
+1
+1
+1
+1
+1
+1
+0
+1
+0
+1
+7
+1
+5
+1
+41
+1
+2
+0
+0
+1
+1
+19
+1
+17
+1
+13
+20
+
+ .
+Then to perturb p and q slightly, to obtain the pinning of generic frameworks ˜p
+and ˜q respectively. Since disc(f) is continuous, doing so would not have changed
+the signs, so we obtain two generic frameworks of B5, one globally rigid and one
+rigid, but not globally rigid.
+18
+
+7
+Gluing Hypergraphs
+Let Θ1 = (V1, H1) and Θ2 = (V2, H2) be two hypergraphs, with i1j1k1 ∈ H1
+and i2j2k2 ∈ H2. Define the hypergraph Θ = (V, H) in terms of V and H as
+V = V1 ⊔ V2⧸i1 ∼ i2, j1 ∼ j2, k1 ∼ k2,
+H = H1 ∪ H2,
+then Θ is the hypergraph formed by gluing together Θ1 and Θ2 at a common
+hyperedge. If ni = |Vi| and mi = |Hi| (for 1 ≤ i ≤ 2) and n = |V | and m = |H|,
+then m = m1 + m2 − 1, so if Θ1 and Θ2 are minimally rigid, then Θ will have
+one too many hyperedges to itself be minimally rigid. In order to glue together
+hypergraphs whilst preserving minimal rigidity, we define Θ′ = (V, H′), where
+H′ = H \ {ijk}, where ijk = i1j1k1 ∼ i2j2k2.
+Notice that, in Θ′, the two sub-hypergraphs Θ′
+1 = (V1, H1 \ {i1j1k1}) and
+Θ′
+2 = (V2, H2 \ {i2j2k2}) lie on either side of the non-hyperedge separating
+triangle ijk of Θ. We may successively glue hypergraphs together in this fashion,
+ending up with several non-hyperedge separating triangles as in figure 4
+Notice that, in figure 4, the copies of B3
+4, with vertex sets U1 and U2 respec-
+tively, on either side of the two non-hyperedge separating triangles 124 and 134
+behave independently of each other: There are four congruence classes of the
+generic framework (Θ′, p), represented by
+1. (Θ, p);
+2. (Θ, q1), where πU1(q1) = πU1(p) and πU2(q1) ̸= πU2(p);
+3. (Θ, q2), where πU1(q2) ̸= πU1(p) and πU2(q2) = πU2(p);
+4. (Θ, q3), where πU1(q3) ̸= πU1(p) and πU2(q3 ̸= πU2(p).
+Here πU denotes projection onto the co-ordinates {(xu, yu) : u ∈ U}.
+This leads to the lemma
+Lemma 7.1. Let Θ1 = (V1, H1), Θ2 = (V2, H2), Θ = (V, H) and Θ′ = (V, H′),
+with H′ = H\{ijk}, where ijk is a generically globally linked of both Θ1 and Θ2,
+be as above. Let (Θ′, p) and (Θ′, q) be two generic frameworks. Then (Θ′, p) and
+(Θ′, q) are equivalent (resp. congruent) if and only if (Θ1, πV1(p) and (Θ2, πV2(p)
+are equivalent (resp. congruent) to (Θ1, πV1(q)) and (Θ2, πV2(q)) respectively.
+Proof. Suppose (Θ′, p) is equivalent to (Θ′, q), then, det(C(h, p)) = det(C(h, q)),
+for all h ∈ H′, and therefore (Θ′
+1, πV1(p)) and (Θ′
+2, πV2(p)) are equivalent to
+(Θ′
+1, πV1(q)) and (Θ′
+2, πV2(q)) respectively.
+Since ijk is generically globally
+linked, we have that (Θ1, πV1(p)) and (Θ2, πV2(p)) are equivalent to (Θ1, πV1(q))
+and (Θ2, πV2(q)) respectively
+By an analogous argument, if (Θ′, p) is congruent to (Θ′, q), then (Θ1, πV1(p))
+and (Θ2, πV2(p)) are congruent to (Θ1, πV1(q)) and (Θ2, πV2(q)) respectively.
+19
+
+1
+2
+3
+4
+1
+2
+3
+4
+5
+6
+7
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+Figure 4: On the left is a tetrahedron K3
+4, on the right, we have glued an
+octahedron B3
+4 to it at the common hyperedge 124, which is then deleted to
+form a triangulation of S2. This process is repeated at hyperedge 134 to get Θ′.
+Suppose that (Θ1, πV1(p)) and (Θ2, πV2(p)) are equivalent to (Θ1, πV1(q))
+and (Θ2, πV2(q)) respectively.
+Then det(C(h, p)) = det(C(h, q)), for all h ∈
+H1 ∪ H2 ⊃ H, so (Θ, p) is equivalent to (Θ, q).
+Suppose that (Θ1, πV1(p)) and (Θ2, πV2(p)) are congruent to (Θ1, πV1(q)) and
+(Θ2, πV2(q)). Then there exist area-preserving affine transformations T1 and T2
+so that πV1(q) = T1 ◦ πV1(p) and πV2(q) = T2 ◦ πV2(p). Since T1 and T2 agree
+on their actions on the affinely independent triple p(i), p(j), p(k), T1 = T2 = T .
+Hence q = T ◦ p, so (Θ, p) and (Θ, q) are congruent.
+Proposition 7.2. Let Θ′ = (V, H′) is a triangulation of S2 formed by gluing
+together s triangulations of S2, Θi = (Vi, Hi), 1 ≤ i ≤ s, at common hyperedges,
+and then removing them. Let (Θ′, p) be a generic framework.
+1. Suppose that, for all 1 ≤ i ≤ s, (Θi, πVi(p)) has lower and upper bounds ℓi
+and ui respectively, for the number of congruence classes it admits. Then
+20
+
+(Θ, p) has lower and upper bounds
+ℓ =
+s
+�
+i=1
+ℓi and u =
+s
+�
+i=1
+ui,
+for the number of congruence classes it admits.
+2. Suppose that, for all 1 ≤ i ≤ s, (Θi, πVi(p)) admits Ni congruence classes.
+Then (Θ, p) admits
+N =
+s
+�
+i=1
+Ni
+congruence classes.
+Proof. Parts 1 and 2 follow from lemma 7.1, as well as our discussion of figure
+4. Part 2 can also be obtained by setting ℓi = ui = Ni, for all 1 ≤ i ≤ s, in part
+1.
+References
+Leonard Asimow and Ben Roth. The rigidity of graphs. Transactions of the
+American Mathematical Society, 245:279–289, 1978.
+Saugata Basu and Richard Pollack. M.-f. roy algorithms in real algebraic geom-
+etry. Algorithms and Computation in Mathematics, 10, 2006.
+Ciprian Borcea and Ileana Streinu.
+On the number of embeddings of mini-
+mally rigid graphs. In Proceedings of the eighteenth annual symposium on
+Computational geometry, pages 25–32, 2002.
+Ciprian S Borcea and Ileana Streinu. Realizations of volume frameworks. In
+International Workshop on Automated Deduction in Geometry, pages 110–
+119. Springer, 2012.
+Robert Connelly. Generic global rigidity. Discrete & Computational Geometry,
+33(4):549–563, 2005.
+Steven J Gortler, Alexander D Healy, and Dylan P Thurston. Characterizing
+generic global rigidity. American Journal of Mathematics, 132(4):897–939,
+2010.
+Georg Grasegger, Christoph Koutschan, and Elias Tsigaridas. Lower bounds on
+the number of realizations of rigid graphs. Experimental Mathematics, 29(2):
+125–136, 2020.
+Joe Harris. Algebraic geometry: a first course, volume 133. Springer Science &
+Business Media, 2013.
+21
+
+Bill Jackson, Tibor Jord´an, and Zolt´an Szabadka. Globally linked pairs of ver-
+tices in equivalent realizations of graphs. Discrete & Computational Geometry,
+35(3):493–512, 2006.
+Venkatramani Lakshmibai and Justin Brown. The grassmannian variety. In
+Developments in Mathematics, volume 42. Springer, 2015.
+John Milnor. Singular Points of Complex Hypersurfaces.(AM-61), Volume 61,
+volume 61. Princeton University Press, 2016.
+Reinhard Steffens and Thorsten Theobald. Mixed volume techniques for em-
+beddings of laman graphs. Computational Geometry, 43(2):84–93, 2010.
+Ernst Steinitz. Vorlesungen ¨uber die Theorie der Polyeder: unter Einschluß der
+Elemente der Topologie, volume 41. Springer-Verlag, 2013.
+A
+Proof of Theorem 6.1
+1
+2
+3
+4
+...
+n − 1
+n
+Figure 5: q(4), q(n−1) and q(n) may lie anywhere on the blue lines by equation
+19, furthermore, q(n) must lie on the intersection of the two red lines by equation
+20.
+Our proof is as follows: Given a suitable generic framework of the (n −
+2)-gonal bipyramid (Bn−2, p), we construct a polynomial f(p) ∈ R[t] depen-
+dent on the positions of vertices in p so that pinned frameworks (Bn−2, q(t))
+parametrised by t are equivalent to (Bn−2, p) if f(t) = 0. Then an upper bound
+for the number of congruence classes of (Bn−2, p) is the degree of f(p).
+First of all, standard pin (Bn−2, p) to get (Bn−2, p). Then, since 12(n −
+1), 134 and 23n are hyperedges of Bn−2, if (Bn−2, q) ≡ (Bn−2, p), then
+q(4) =
+� p(4)1
+p(4)2 + t
+�
+, q(n − 1) =
+�p(n − 1)1 + s
+p(n − 1)2
+�
+and q(n) =
+�p(n)1 + r
+p(n)2 − r
+�
+(19)
+22
+
+for some s, t, r ∈ R, ie. they must lie on the blue lines in figure 5
+Next, since 2(n − 1)n and 34n are both hyperedges of Bn−2, q(n) must lie
+on the intersection of the red lines in figure 5, defined by
+det(C(2(n − 1)n, q)) = det(C(2(n − 1)n, p))
+det(C(34n, q)) = det(C(34n, p)).
+(20)
+Plugging the values in equation 19 into the above equations yields
+r =
+p(n)1t
+1 − p(4)1 − p(4)2 − t =
+p(n)2s
+s + p(n − 1)1 + p(n − 1)2 − 1
+=⇒ s = −
+(p(n − 1)1 + p(n − 1)2 − 1)p(n)1t
+(p(4)1 + p(4)2 − 1)p(n)2 + (p(n)1 + p(n)2)t.
+(21)
+Next, we define the positions of the equatorial vertices in terms of p and t:
+1
+2
+3
+4
+...
+n − 1
+n
+5
+Figure 6: q(5) must lie on the intersection of the two green lines
+As each q(i)’s position is based off the positions of q(1) = (0, 0), q(i− 1) and
+q(n) = (p(n)1 + r, p(n)2 − r), as in figure 6. Therefore,
+q(i)j =
+�����
+q(i − 1)1
+q(n)1
+q(i − 1)2
+q(n)2
+���� −
+����
+p(i − 1)1
+p(n)1
+p(i − 1)2
+p(n)2
+���� +
+����
+p(i)1
+p(n)1
+p(i)2
+p(n)2
+����
+�
+q(i − 1)j
+����
+q(i − 1)1
+q(n)1
+q(i − 1)2
+q(n)2
+����
++
+����
+p(i − 1)1
+p(i)1
+p(i − 1)2
+p(i)2
+���� q(n)j
+����
+q(i − 1)1
+q(n)1
+q(i − 1)2
+q(n)2
+����
+,
+(22)
+for each j ∈ {1, 2}, for each 4 ≤ i ≤ n − 1.
+23
+
+Now, in order to simplify the formula in 22, we will get some geometric
+intuition of the determinantal terms. Notice that
+����
+p(i)1
+p(n)1
+p(i)2
+p(n)2
+����−
+����
+p(i − 1)1
+p(n)1
+p(i − 1)2
+p(n)2
+���� = det(C(1in, p))−det(C(1(i−1)n, p)), (23)
+where det(C(1(i−1)n, p)) and det(C(1i)n, p) are twice the areas enclosed by the
+(generally non-hyperedge) triangles 1(i − 1)n and 1in respectively, as in figure
+7. We may compare these values to the areas of the hyperedges 1(i − 1)i and
+(i − 1)in:
+det(C(1(i−1)i, p))−det(C((i−1)in, p)) = det(C(1(i−1)n, p))−det(C(1in, p)).
+(24)
+1
+2
+3
+4
+n − 1
+n
+i − 1
+i
+Figure 7: The non-hyperedges 1(i − 1)n and 1in are represented by their re-
+spective solid and dashed lines
+The right hand side of equation 24 is constant between equivalent frame-
+works. Hence, if (Bn−2, q) ≡ (Bn−2, p), then
+����
+q(i)1
+q(n)1
+q(i)2
+q(n)2
+����−
+����
+q(i − 1)1
+q(n)1
+q(i − 1)2
+q(n)2
+���� =
+����
+p(i)1
+p(n)1
+p(i)2
+p(n)2
+����−
+����
+p(i − 1)1
+p(n)1
+p(i − 1)2
+p(n)2
+���� , (25)
+for all 4 ≤ i ≤ n − 1. Next, we apply equation 25 sufficiently many times to
+obtain
+����
+q(i − 1)1
+q(n)1
+q(i − 1)2
+q(n)2
+���� =
+����
+q(3)1
+q(n)1
+q(3)2
+q(n)2
+���� −
+����
+p(3)1
+p(n)1
+p(3)2
+p(n)2
+���� +
+����
+p(i − 1)1
+p(n)1
+p(i − 1)2
+p(n)2
+����
+=
+����
+0
+p(n)1 + r
+1
+p(n)2 − r
+���� −
+����
+0
+p(n)1
+1
+p(n)2
+���� +
+����
+p(i − 1)1
+p(n)1
+p(i − 1)2
+p(n)2
+����
+=
+����
+p(i − 1)1
+p(n)1
+p(i − 1)2
+p(n)2
+���� − r.
+(26)
+24
+
+We may now plug this into our formula in 22 to get
+q(i)j =
+�����
+p(i)1
+p(n)1
+p(i)2
+p(n)2
+���� − r
+�
+q(i − 1)j +
+����
+p(i − 1)1
+p(i)1
+p(i − 1)2
+p(i)2
+���� (p(n)j − (−1)jr)
+����
+p(i − 1)1
+p(i)1
+p(i − 1)2
+p(i)2
+���� − r
+,
+(27)
+for each j ∈ {1, 2}, for each 4 ≤ i ≤ n − 1.
+Finally, the framework we are constructing is well-defined if q(n − 1) agrees
+in its iterative definition as in 27 and in its definition in 19, with s as in 21, ie.
+if
+������
+p(n − 1)1
+p(n)1
+p(n − 1)2
+p(n)2
+���� (1 − p(4)1 − p(4)2 − t) − p(n)1t
+�
+q(n − 2)1
++
+����
+p(n − 2)1
+p(n − 1)1
+p(n − 2)2
+p(n − 1)2
+���� (1 − p(4)1 − p(4)2)p(n)1
+�
+((p(4)1 + p(4)2 − 1)p(n)2 + (p(n)1 + p(n)2)t)
+=
+�����
+p(n − 2)1
+p(n − 1)1
+p(n − 2)2
+p(n − 1)2
+���� (1 − p(4)1 − p(4)2 − t) − p(n)1t
+�
+�
+(p(4)1 + p(4)2 − 1)p(n − 1)1p(n)2 +
+�����
+p(n − 1)1
+p(n)1
+p(n − 1)2
+p(n)2
+���� − p(n)1
+�
+t
+�
+,
+(28)
+and ������
+p(n − 1)1
+p(n)1
+p(n − 1)2
+p(n)2
+���� (1 − p(4)1 − p(4)2 − t) − p(n)1t
+�
+q(n − 2)2
++
+����
+p(n − 2)1
+p(n − 1)1
+p(n − 2)2
+p(n − 1)2
+���� ((1 − p(4)1 − p(4)2 − t)p(n)2 − p(n)1t)
+�
+=
+�����
+p(n − 2)1
+p(n − 1)1
+p(n − 2)2
+p(n − 1)2
+���� (1 − p(4)1 − p(4)2 − t) − p(n)1t
+�
+p(n − 1)2.
+(29)
+Notice, however, that it suffices to just solve equation 29. Indeed, if τ solves
+equation 29, so q(τ)(n − 1)2 = p(n − 1)2, but not 28, so q(τ)(n − 1)1 = p(n −
+1)1 + σ, for some σ ̸= s, then comparing the value of r yielded by det(C(2(n −
+1)n, q(τ)) = det(C(2(n − 1)n, p)), gives us
+s(p(n − 1)1 + p(n − 1)2 − 1) = σ(p(n − 1)1 + p(n − 1)2 − 1),
+(30)
+which contradictions our assumption of inequality, since p(n−1)1+p(n−1)2 ̸= 1.
+Subtract the right hand side from both sides of equation 29 so that we have
+an equation of the form LHS = 0 and multiply through by the denominator
+of q(n − 2)2 (which by definition, increases the degree of terms not containing
+q(n − 2)2 by 1). Then we have an equation of the form f(p)(t) = 0, with
+deg(f(p)) =
+�
+max{deg(q(n − 2)2) + 1, 2},
+if n ≥ 6
+deg(q(n − 2)2) + 1,
+if n = 5.
+(31)
+25
+
+Therefore f(p)(t) = 0 is satisfied by at most that many unique values of t.
+By considering the formula for each q(i)2 (see 27) we notice that the degree of
+the numerator of q(i)2 has a higher degree than the denominator, and so we
+multiply LHS = 0 through by the denominator without affecting the degree of
+f(p), and that the numerator’s degree increases by 1 for each equatorial vertex,
+with initial value 0 at q(3)2. Hence
+deg(f(p)) = n − 4.
+(32)
+This completes the proof, subject to the following two lemmas:
+First we show that every framework equivalent to (Bn−2, p) does in fact
+correspond to a root of f(p):
+Lemma A.1. Let (Bn−2, q) ≡ (Bn−2, p), then if t = q(4)2 −p(4)2, we have that
+f(p)(t) = 0.
+Proof. We showed above that, for every equivalent framework, we may define
+t, and then obtain uniquely the positions of all its other unpinned vertices, the
+well-defined-ness of which yields f(p)(t) = 0.
+We prove the following lemma to show that different congruence classes lead
+to different values of t:
+Lemma A.2. If (Bn−2, q1), (Bn−2, q2) ≡ (Bn−2, p), for some q1 ̸= q2, then
+t1 = q1(4)2 − p(4)2 ̸= q2(4)2 − p(4)2 = t2.
+Proof. If t1 = t2, then r1 = r2 and s1 = s2 (where r1, r2, s1, s2 are analogously
+defined). Therefore, each of the equatorial vertices’s positions are the same, and
+so the whole frameworks are equal.
+26
+
diff --git a/wtE3T4oBgHgl3EQfOgmo/content/tmp_files/load_file.txt b/wtE3T4oBgHgl3EQfOgmo/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..73a18bb0fb45a7dc699b22d8ae1b60a387f46c18
--- /dev/null
+++ b/wtE3T4oBgHgl3EQfOgmo/content/tmp_files/load_file.txt
@@ -0,0 +1,707 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf,len=706
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='04394v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='CO] 11 Jan 2023 Bounds on Embeddings of Triangulations of Spheres Jack Southgate 12/01/2023 Abstract Borcea and Streinu [2012] showed that the upper bound of the number of congruence classes of a minimally d-volume rigid (d + 1)-uniform hy- pergraph on n vertices in Rd increases exponentially in n and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We show that this result also holds for triangulations of S2 in R2, and then find a geometrically motivated bound linear in n for bipyramids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' By the meth- ods used to deduce this bound, we show that, in general, global d-volume rigidity in Rd is not a generic property of a (d + 1)-uniform hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 Introduction Here we introduce the necessary terminology to ask the questions that motivate this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then discuss what work has been done on them already, and their relations to similar questions in other types of rigidity theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 Preliminary Definitions and Terminology A (d + 1)-uniform hypergraph Θ is a pair (V, H) of a set of vertices V and a set of hyperedges H ⊆ � V d+1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Write n = |V |, label the vertices by 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', n and the hyperedges by the (d+1)-tuples i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, then we have a lexicographic ordering of both the vertices and the hyperedges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We may realise a (d+ 1)-uniform hypergraph Θ = (V, H) in Rd by pairing it with a configuration, defined to be a vector p = (p(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', p(n)) ∈ Rdn where each p(i) represents the position of the vertex i in Rd, to form a framework (Θ, p) in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Each configuration p may also be represented uniquely by a configuration matrix C(p) = \uf8ee \uf8ef\uf8ef\uf8ef\uf8f0 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 p(1)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p(n)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p(1)d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p(n)d \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 Moreover, for each (d+1)-tuple i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1 in (Θ, p), we may specify the sub-matrix C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, p) = \uf8ee \uf8ef\uf8ef\uf8ef\uf8f0 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 p(i1)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p(id+1)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p(1d)d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p(id+1)d \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The d-volume measurement map of a (d + 1)-uniform hypergraph is the poly- nomial map fΘ : Rdn → Rm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' p �→ (det(C(h, p)) : h ∈ H), that lists the signed volumes of the d-simplices defined by the hyperedges of (Θ, p), as p varies in Rdn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We say that two frameworks (Θ, p) and (Θ, q) in Rd are equivalent if fΘ(p) = fΘ(q), and congruent if fKd+1 n (p) = fKd+1 n (q), where Kd+1 n = � V, � V d+1 �� is the complete (d + 1)-uniform hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We say that the framework (Θ, p) in Rd is (d-volume) rigid if there exists ε > 0 so that f −1 Θ (fΘ(p)) ∩ Bε(p) = f −1 Kd+1 n (fKd+1 n (p)) ∩ Bε(p), where Bε(p) = {q ∈ Rdn : d(p, q) < ε}, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' if, for all frameworks defined by configurations in Bε(p), equivalence to (Θ, p) yields congruence to (Θ, p), and (d-volume) globally rigid if f −1 Θ (fΘ(p)) = f −1 Kd+1 n (fKd+1 n (p)), (1) ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' if, for all configurations, equivalence implies congruence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Finally, if, for all ε > 0, f −1 Θ (fΘ(p)) ∩ Bε(p) ⊋ f −1 Kd+1 n (fKd+1 n (p)) ∩ Bε(p), (2) ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' we can continuously deform p to configurations yielding frameworks not congruent to (Θ, p) whilst maintaining equivalence, we say that (Θ, p) is (d- volume) flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Define the configuration space of (Θ, p) as the space of configurations yielding frameworks equivalent to (Θ, p), modulo those yieldig frameworks congruent to (Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We may express it as the following quotient space: C(Θ, p) = f −1 Θ (fΘ(p))⧸f −1 Kd+1 n (fKd+1 n (p)) (3) 2 Note that (Θ, p) is rigid if and only if C(Θ, p) is 0-dimensional (if C(Θ, p) is also connected then the framework is globally rigid), and flexible otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Call the elements of C(Θ, p) congruence classes of (Θ, p) (as they represent equivalence classes of configurations, where the equivalence relation is congru- ence of frameworks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then the number of congruence classes of (Θ, p) is the number of frameworks that are equivalent to (Θ, p), up to congruence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2 Motivating Questions and Previous and Similar Re- sults Suppose that (Θ, p) is rigid, then as the fibre f −1 Θ (fΘ(p)) is a semi-algebraic set (it is the set of real points q ∈ Rdn satisfying the equations det(C(h, q)) − det(C(h, p)) = 0, for all h ∈ H), it has only finitely many connected components (see Basu and Pollack [2006] for example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore C(Θ, p) consists of finitely many connected components, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, p) admits finitely many congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' This gives rise to the following question?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' For some (d+1)-uniform hypergraph Θ that is generically d-volume rigid in Rd, how many congruence classes does a generic framework of Θ in Rd admit?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Borcea and Streinu [2012] studied this question for the class of hypergraphs that are generically minimally d-volume rigid in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' They adapt an argument they applied in answering the analogous question in Euclidean bar-joint rigidity (ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' measuring edge-lengths of graph frameworks instead of hyperedge-volumes of hypergraph frameworks) for an analogous class of graphs in Borcea and Streinu [2002].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We cover their approach in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In particular Borcea and Streinu obtain an exponential upper bound for the number of congruence classes a generic framework in Rd of a minimally generically rigid hypergraph on n vertices may admit in terms of d and n (and both upper and lower bounds in the Euclidean bar-joint case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Their bounds for the Euclidean bar-joint case have been revisited several times including in, for example, Steffens and Theobald [2010], and their lower bounds improved for some classes of minimally rigid graphs by Grasegger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' [2020] and Jackson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' [2006].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In section 5, we show how Borcea and Streinu’s upper bound also applies to hypergraphs defining triangulations of S2 (when d = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We then introduce a geometrically-motivated upper bound for hypergraphs defining bipyramids (also when d = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' For completeness when compared to Borcea and Streinu [2002], we also give a lower bound for minimally rigid triangulations in all d in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Finally, in considering question 1, we show in section 7 how bounds behave under a gluing operation that preserves minimal rigidity (or nearness to it).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Adapting question 1 slightly yields the following question: Question 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Given some (d+1)-uniform hypergraph Θ, does a generic framework of Θ in Rd admit just one congruence class?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 3 The Euclidean bar-joint rigidity analogue to this question has been studied extensively, and a geometric characterisation of when a graph generically admits a single congruence class (or is generically globally rigid) was given by Connelly [2005] and Gortler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' [2010].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In section 6, we show by means of an example that the answer to question 2 is not well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore we rephrase it as follows Question 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Given a (d + 1)-uniform hypergraph Θ, which generic frameworks of Θ in Rd admit just one congruence class?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We implicitly answer question 3 in terms of bipyramids in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Moreover, our lower bound shows that, for all d, there exists a minimally rigid hypergraph, all generic frameworks of which admit just one congruence class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='3 Acknowledgments This paper was prepared under the supervision of Louis Theran, with whom many of the results, particularly in sections 2, 6 and 7 were developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2 d-Volume Rigidity In this section, we give some alternate definitions of d-volume rigidity and define the algebro-geometric objects used in Borcea and Streinu [2012].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We also intro- duce pinned frameworks, which will be our primary representation of congruence classes for the purposes of calculating bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We will give a more-rigorous-than-strictly-necessary treatment to the defini- tions and lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The reason for doing so is the relative scarcity of published literature on d-volume rigidity in comparison to Euclidean bar-joint rigidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 d-Volume Preserving Affine Transformations An affine transformation of Rd is a map f : Rd → Rd;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' x �→ Ax + b, where A ∈ Rd×d and b ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Every affine transformation may be represented as an augmented matrix T ∈ R(d+1)×(d+1) that acts on points of Rd written in homogeneous co-ordinates: T � 1 x � = � 1 0t b A � � 1 x � = � 1 b + Ax � , We say that T is d-volume preserving if det(A) (equivalently det(T )) is equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Indeed, then for any d + 1 points x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='xd+1 ∈ Rd, ����T � 1 x1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' T � 1 xd+1 ����� = det(T ) ���� 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' xd+1 ���� = ���� 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' xd+1 ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 4 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The space of d-volume preserving affine transformations, V(d, R), is (d2 + d − 1)-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The space V(d, R) is an algebraic group, isomorphic to the semidirect product SL(d, R) ⋉ Rd, the factors of which are themselves algebraic groups of dimensions d2 − 1 and d respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence dim(V(d, R)) = (d2 − 1) + d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The next two propositions show the equivalence of rigidity in terms of the d-volume measurement map with rigidity in terms of affine d-volume preserving transformations of Rd, in the same vein of Euclidean bar-joint rigidity in terms of edge-lengths and isometries of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Two frameworks of Θ = (V, H) in Rd, (Θ, p) and (Θ, q), are equivalent if and only if there exists a set of d-volume preserving affine transformations {Th : h ∈ H} such that Thp(i) = q(i), for all vertices i in each hyperedge h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A set of points P = {p(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', p(n)} ⊂ Rd is affinely dependent if there exists a set of coefficients {a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', an} ∈ R, not all equal to zero, so that a1p(1) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' + anp(n) = 0, or equivalently, if the affine span of P, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' the smallest affine subspace of Rd containing P, is a proper affine subspace of Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Otherwise P is affinely inde- pendent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Before beginning our proof, we note that affine transformations of Rd are uniquely defined by their action on a set of d + 1 affinely independent points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ, p) and (Θ, q) are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, for each (d + 1)- tuple i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1 ∈ H: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If {p(i1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', p(id+1)} is affinely dependent, then the volume of i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1 in (Θ, p) is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Morover, there exists a choice of infinitely many d-volume preserving affine transformations Ti1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1 so that Ti1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, p) = C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If {p(i1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', p(id+1)} is affinely independent, then there exists a unique affine transformation of Rd, Ti1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1 for which Ti1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, p) = C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since det(C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, p)) = det(C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, q)), it follows that det(Ti1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' After running over all hyperedges of Θ, we end up with our set {Th : h ∈ H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Next, suppose that such a set exists {Th : h ∈ H}, then we know that det(C(h, q)) = det(Th) det(C(h, p)) = det(C(h, p)), for all h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence (Θ, p) and (Θ, q) are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 5 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Two non-flat frameworks of Θ = (V, H) in Rd, (Θ, p) and (Θ, q), are congruent if and only if there exists a single d-volume preserving affine transformation T so that T p(i) = q(i), for all vertices i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since (Θ, p) and (Θ, q) are not flat, there exists a hyperedge h ∈ H so that det(C(h, p)) = det(C(h, q)) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Relabel V so that h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, since fKd+1 n (p) = fKd+1 n (q), for every vertex j ≥ d + 2, there are d + 1 hyperedges of the form 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='ˆi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1)j, for 1 ≤ i ≤ d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' These define d independent hyperplanes, the intersection of which q(j) lies within.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore, the position q(j) = T p(j), as both q(j) and p(j) are affinely dependent in the same manner on the vertices 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, suppose that there exists a d-volume preserving affine transforma- tion T so that T p(i) = q(i), for all vertices i ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then T C(p) = C(q), so det(C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, p)) = det(C(i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1, q)), for all i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='id+1 ∈ � V d+1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore fKd+1 n (p) = fKd+1 n (q), ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, p) and (Θ, q) are congruent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2 Flexes and Infinitesimal Rigidity A flex of (Θ, p) is a continuous path γ : [0, 1] → f −1 Θ (fΘ(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We say that γ is trivial if γ[0, 1] ⊂ f −1 Kd+1 n (fKd+1 n (p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ, p) is a framework in Rdn, then (Θ, p) is flexible if and only if (Θ, p) admits a non-trivial flex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In order to prove this, we will use the Curve-Selection Lemma (see Milnor [2016]): Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' [Curve-Selection Lemma] Let p and q be two points in a semi- algebraic set S, let U be an open neighbourhood of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If q ∈ S ∩ U, then there exists a path γ : [0, 1] → S so that γ([0, 1]) ⊂ S ∩ U, γ(0) = p and γ(1) = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ, p) is flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, for any ε > 0, there exists an equivalent, but not congruent, configuration q ∈ (f −1 Θ (fΘ(p)) ∩ Bε(p)) \\ (f −1 Kd+1 n (fKd+1 n (p)) ∩ Bε(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, as f −1 Θ (fΘ(p)) is a semi-algebraic set and Bε(p) is an open neighbourhood of p, we may apply the curve-selection lemma to select a flex γ : [0, 1] → f −1 Θ (fΘ(p))∩U so that γ(0) = p and γ(1) = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As γ([0, 1]) ̸⊂ f −1 Kd+1 n (fKd+1 n (p)), γ is not trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose (Θ, p) admits a non-trivial flex γ and, for the sake of contradiction, that there exists ε > 0 such that f −1 Θ (fΘ(p)) ∩ Bε(p) = f −1 Kd+1 n (fKd+1 n (p)) ∩ Bε(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, as γ([0, 1]) ̸⊂ f −1 Kd+1 n (fKd+1 n (p)), there exist 0 < τ1 < τ2 < 1 arbitrarily close to each other so that γ(τ1) ∈ f −1 Kd+1 n (fKd+1 n (p)) and γ(τ2) ̸∈ f −1 Kd+1 n (fKd+1 n (p)), therefore, as (Θ, γ(τ1)) is flexible and congruent to (Θ, p), we have that (Θ, p) is flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='4 links flexes to our previous notions of volume rigidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' For a framework (Θ, p), the following are therefore equivalent definitions of rigidity: 6 There exists ε > 0 such that f −1 Θ (fΘ(p)) ∩ Bε(p) = f −1 Kd+1 n (fKd+1 n (p));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' There exists ε > 0 such that, for all q ∈ Bε(p), there exists a set of d- volume preserving affine transformations of Rd, {Th : h ∈ H}, so that ThC(h, p) = C(h, q), ∀h ∈ H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Every flex of (Θ, p) is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The rigidity matrix of the framework (Θ, p) in Rd, written R(Θ, p) ∈ Rm×dn, is the Jacobian matrix of fΘ evaluated at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore the rank of R(Θ, p) is the dimension of the real measurement variety MΘ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The rows of R(Θ, p) are indexed by the hyperedges of Θ, whilst the columns are grouped into d-tuples, each indexed by the vertices of Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Denote the row indexed by hyperedge h by R(Θ, p)h and the column group indexed by vertex i by R(Θ, p)i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Define an infinitesimal flex η of (Θ, p) to be the infinitesimal velocity of a flex γ of (Θ, p): η = d dtγ ���� t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (4) Say that η is trivial if γ is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The kernel of R(Θ, p) is precisely the space of infinitesimal flexes of (Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Firstly, suppose that γ is a flex of (Θ, p), then, for all t ∈ [0, 1], fΘ(γ(t)) = fΘ(p), (5) differentiating equation 5 with respect to t gives d dtfΘ(γ(t)) = d dtfΘ(p) R(Θ, γ(t)) d dtγ(t) = 0, (6) which, evaluated at t = 0, becomes R(Θ, p)η = 0, (7) hence, the space of infinitesimal flexes lies within the kernel of R(Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Next, suppose that R(Θ, p)x = 0, for some x = (x(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', x(n)) ∈ Rdn, then each x(i) is orthogonal to the span of each R(Θ, p)i h (ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' the entries of R(Θ, p) in column group i and row h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As the span of R(Θ, p)i h is the line in Rd orthogonal to the affine hyperplane spanned by {p(j) : j ∈ h \\ {i}}, x(i) is parallel to each d-hyperedge opposite i in (Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' This is an equivalent definition of an infinitesimal flex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='3 The Measurement Variety of a Hypergraph Let Θ = (V, H) be a (d + 1)-uniform hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then we may define the (d-volume) measurement variety, MΘ, of Θ as the closure of the image of Rdn under the d-volume measurement map: MΘ = fΘ(Rdn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The complete measurement variety is the measurement variety of Knd+1 MKd+1 n = fKd+1 n (Rdn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The following lemma follows immediately from the definitions above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' With notation as laid out above, MΘ = πH(MKd+1 n ), where the map πH : R( n d+1) → Rm projects onto the co-ordinates indexed by hyperedges of Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The rigidity matrix R(Θ, p) is the differential of fΘ evaluated at p: R(Θ, p) : TpRdn → TfΘ(p)MΘ, therefore, its rank is the dimension of the neighbourhood of fΘ(p) in MΘ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, in order to find the dimensions of MΘ and fΘ, we will prove the d- volume rigidity theoretic to Asimow and Roth’s theorem (see Asimow and Roth [1978]): Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ = (V, H) be a (d+1)-uniform hypergraph and let p ∈ Rdn be a regular point of fΘ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then (Θ, p) is rigid if and only if rank(R(Θ, p)) = dn − d2 − d + 1, moreover, this is the maximum rank that R(Θ, p) may achieve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Before we prove theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='8 (in a similar manner to Asimow and Roth), we note some of its immediate consequences: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If m < dn − d2 − d + 1, then Θ will always fail to be d-volume rigid in Rd;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If {p(i) : i ∈ V } lies in some proper affine subspace of Rd (ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, p) is flat), then (Θ, p) will fail to be d-volume rigid in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If (Θ, p) is flat, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' fΘ(p) = 0 ∈ Rm, for some Θ with n > 3, then (Θ, p) is flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Indeed, let γ be a flex of (Θ, p) so that γ(i) ∈ A, where A is the affine span of all vertices of (Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If n > 3, then γ may be non-trivial, and γ(t) ∈ A, ∀t ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Recall from lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 that dim(V(d, R)) = d2 + d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Consider the map Fp : V(d, R) → Rdn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' T → (T p(i) : i ∈ V ) sending each d-volume preserving affine transformation T of Rd to the config- uration whose framework is the image of (Θ, p) under T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then Fp(V(d, R)) = 8 f −1 Kd+1 n (fKd+1 n (p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As the kernel of this map is trivial, dim(Fp(V(d, R))) = dn − (d2 + d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, (Θ, p) is rigid if and only if there exists ε > 0 such that f −1 Θ (fΘ(p)) ∩ Bε(p) = f −1 Kd+1 n (fKd+1 n (p)) ∩ Bε(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' By the regular value theorem and our assumption of the regularity of p, for small ε > 0, f −1 Θ (fΘ(p)) ∩ Bε(p) is a (dn − rank(R(Θ, p)))-dimensional manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As f −1 Kd+1 n (fKd+1 n (p)) ∩ Bε(p) = Fp(V(d, R)) ∩ Bε ⊆ f −1 Θ (fΘ(p)) ∩ Bε(p), equality follows from their dimensions matching, which happens if and only if rank(R(Θ, p)) = dn − (d2 + d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Finally, since dim(f −1 Θ (fΘ(p))) ̸< dim(f −1 Kd+1 n (fKd+1 n (p))), we cannot have rank(R(Θ, p)) exceeding dn − (d2 + d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' For a configuration p (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' a framework (Θ, p)), we say that p (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, p)) are generic if f ∈ Q[x] \\ {0} =⇒ f(p) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A generic framework (Θ, p) in Rd is rigid if and only if it admits no non-trivial infinitesimal flexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ, p) is flexible, then it admits a non-trivial flex, the infinitesimal velocity of which is a non-trivial infinitesimal flex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ, p) is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' By the genericity of p, the rank of R(Θ, p) must be dn − (d2 + d − 1), so the kernel of R(Θ, p) is a (d2 + d − 1)-dimensional linear space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since the space of trivial infinitesimal flexes is the kernel of R(Kd+1 n , p), which is itself a (d2+d−1)-dimensional linear space, and is contained within the kernel of R(Θ, p), we have equality of the two, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, p) admits no non-trivial infinitesimal flexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A property P is a binary (true/false) valued function on some set X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A property P is generic over X if it either holds for all generic points in X or for none of them (ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' it is constant over the generic points of X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ be a (d+1)-uniform hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The d-volume rigidity of a framework of Θ is a generic property over Rdn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Either all generic frameworks of Θ in Rd are d-volume rigid or none are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ, p) and (Θ, q) are two generic frameworks in Rd, with (Θ, p) rigid and (Θ, q) flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let M(x) be a (dn−(d2+d−1))×(dn−(d2+d−1)) minor of R(Θ, x) (with x representing an indeterminate vector of length dn) so that M(q) = 0 but M(p) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore a non-trivial polynomial with integer coefficients vanishes when evaluated at q but not at p, both generic points, which contradicts our assumption that q is generic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' So if the generic frameworks of some hypergraph Θ are all rigid in Rd, we may say that Θ is rigid in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Recall after the statement of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='8, we list two of its immediate consequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The first of these states that a necessary condition for the rigidity 9 of Θ is that m ≥ dn−(d2+d−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' This yields a natural class of hypergraphs that are rigid but have just dn− (d2 + d− 1) hyperedges, so removing any hyperedge will make them flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We call such hypergraphs minimally rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='4 Pinning Let Θ = (V, H) be a (d+1)-uniform hypergraph and (Θ, p) an affinely spanning framework in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If necessary, relabel V so that 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1) is a hyperedge and is not flat in (Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In order to study (Θ, p) up to its congruent frameworks, we introduce its pinning, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' the unique framework (Θ, ˜p) congruent to (Θ, p) with configuration matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' C(˜p) = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 1 1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 0 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 0 ˜p(d + 2))1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' ˜p(n)1 0 0 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 0 ˜p(d + 2))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' ˜p(n)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 0 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' det(C(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1), p)) ˜p(d + 2)d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' ˜p(n)d( \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (8) The standard pinning of (Θ, p), denoted (Θ, p) is obtained by squeezing (Θ, ˜p) by a factor of det(C(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1), p)) along the xd+1-axis, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' by multiplying the bottom row of C(˜p) by 1 det(C(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d+1),˜p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We will work with standard pinnings from now on, noting that as they are an affine image of not-necessarily-standard pinnings, they share all their rigidity properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The pinned configuration space of (Θ, p) is the space of standard pinned configurations equivalent to (Θ, p): C(Θ, p) = {q : (Θ, q) equivalent to (Θ, p)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (9) Call the elements of C(Θ, p) the pinned congruence classes of (Θ, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The congruence classes of (Θ, p) in Rd and the pinned congruence classes of (Θ, p) in Rd are in one to one correspondence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Define the map f : C(Θ, p) → C(Θ, p) as follows: f([q]) = q, (10) which is well-defined since all congruent frameworks have the same standard pinning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' There is also a well-defined inverse, obtained by stretching (Θ, p) by a factor of det(C(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1), p)) along the xd+1-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As f and its inverse described above are continuous (being affine transfor- mations), C(Θ, p) and C(Θ, p) are homeomorphic, and so (Θ, p) and (Θ, p) can be considered interchangeably for our purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 10 3 Upper Bounds for Minimally Rigid Hyper- graphs In this section, we outline the below result from Borcea and Streinu [2012].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let (Θ, p) be a generic framework in Rd of the (d + 1)-uniform minimally generically rigid hypergraph Θ on n variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then (Θ, p) has at most (d(n − d − 1))!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' d−1 � i=0 i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (n − d − 1 + i)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (11) congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' They achieve their result by showing that the projective complex measure- ment variety MP ⊆ CP( n d+1)−1 is birationally equivalent to the Grassmannian Gr(d, n − 1) ⊆ CP( n−1 d )−1, and therefore that their degrees are equal (see Harris [2013]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A nearly generic linear subspace L of complementary dimension to MP in CP( n d+1)−1 [z1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d+1):.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=':z(n−d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='n] is defined as vanishing of the following dn−(d2+d−1) homogeneous linear polynomials: det(C(i, p))z1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d+1) − det(C(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='(d + 1), p))zi, ∀i ∈ � n d + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, if (Θ, q) is equivalent to (Θ, p) in Rd, [fKd+1 n (q)] (square brackets denoting the projectivisation of fKd+1 n (q)) must lie in the intersection of L with MP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' However this intersection has at most deg(MP) isolated points, and by rigidity, all points in the intersection are isolated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The result follows by the fact that the quantity in 11 is the degree of Gr(d, n − 1) (see again Harris [2013] or Lakshmibai and Brown [2015]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We consider a few small examples to see how this upper bound fares: Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Consider the minimally area rigid hypergraph Θ = (V, H), where V = {1, 2, 3, 4} and H = {123, 124, 134} (indeed, m = 3 = 2n − 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Take a generic framework (Θ, p) of Θ in R2 and standard pin it to (Θ, p) with configu- ration matrix C(p) = \uf8ee \uf8f0 1 1 1 1 0 1 0 p(4)1 0 0 1 p(4)2 \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (12) Then det(C(123, p)) = 1, det(C(124, p)) = p(4)2 and det(C(134, p)) = −p(4)1, so if (Θ, q) ∈ C(Θ, p), then q = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence (Θ, p) has a single congruence class (and this holds for all generic frameworks of Θ) Now we calculate the upper bound of the number of congrunce classes (Θ, p) might have given in theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1: (2(4 − 2 − 1))!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 0!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (4 − 2 − 1 + 0)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (4 − 2 − 1 + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (13) So the bound is tight for the smallest (non-trivial) case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' ⋄ 11 1 2 3 4 Figure 1: (Θ, p) Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The bound is also tight when d = 2 and n = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' All area rigid hy- pergraphs on five vertices and five hyperedges generically admit only one congru- ence class, except for Θ = (V, H), with V = [5] and H = {123, 125, 145, 234, 345} which generically admits two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Meanwhile (2(5 − 2 − 1))!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 0!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (5 − 2 − 1 + 0)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (5 − 2 − 1 + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (14) ⋄ 1 2 3 4 5 Figure 2: The 1-skeleta of the unique minimally rigid 3-uniform hypergraph on five vertices and five hyperedges that generically admits two congruence classes The takeaway from Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2 is that, although this bound is tight, it is not necessarily representative of the number of congruence classes of the majority of minimally rigid hypergraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In sections 5 and 6, we identify a class of rigid hypergraphs (and equivalently a class of minimally rigid hypergraphs) for whom this bound is linear, and therefore any overestimates will be of a lesser degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' First, we outline a strict lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' This bound seems to be well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We include it here as a matter of complete-ness, and to mirror the inclusion of lower bounds in Borcea and Streinu [2002].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 12 4 A Lower Bound for Minimally Rigid Hyper- graphs In this section, we show that a generically globally rigid (d + 1)-uniform hyper- graph on dn − (d2 + d − 1) vertices may be found, for all n ≥ d + 1 ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' To this end, we introduce vertex splitting, a constructive hypergraph oper- ations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ = (V, H) be a (d + 1)-uniform hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A k-vertex split at some vertex i removes k − d hyperedges containing i that are connected through codimension 1 (ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' they can be ordered h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', hk−d such that |hj ∩ hj+1| = d, for all 1 ≤ j < k−d), then inserts a new vertex i∗ and k new hyperedges to form the star of i∗, so that the link of i∗ is the boundary of the of Θ about hyperedges removed (we will denote the post-removal hypergraph by Θ′ = (V, H′), with H′ = H \\ {h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', hk−d}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Notice that if Θ has m hyperedges, then Θ∗ has m + d hyperedges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In particular, if Θ has dn − (d2 + d − 1) hyperedges, Θ∗ has d(n + 1) − (d2 + d − 1) hyperedges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Next, in order to construct a generically globally rigid and minimally rigid (d+1)-uniform hypergraph on any given number of vertices (greater than d+1), we focus in on the most rigidity-preserving k-vertex split: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ = (V, H) be a (d+1)-uniform hypergraph that is generically rigid in Rd, and suppose that Θ∗ = (V ∗, H∗) is obtained from Θ by performing a (d + 1)-vertex split at some vertex i ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, for generic frameworks (Θ, p) and (Θ∗, p∗) in Rd (where p∗ projected onto entries indexed by vertices in V ), the congruence classes of (Θ, p) are in one to one correspondence with the congruence classes of (Θ∗, p∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Notice that the position of q∗(i) is uniquely defined by the position of p∗(i), as q∗(i) is in intersection of d independent hyperplanes defined by p∗(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then (Θ, p) is equivalent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' congruent) to (Θ, q) if and only if (Θ∗, p∗) is equivalent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' congruent) to (Θ∗, q∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let d ≥ 1 and n ≥ d + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' There exists a generically minimally rigid (d+1)-uniform hypergraph Θ on n vertices that is generically globally rigid in Cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Consider the hypergraph consisting of just a single hyperedge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' It is generically both globally rigid and minimally rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We proved inductively above that both of these properties are preserved under (d + 1)-vertex splits, so we can perform n − (d + 1) in succession to arrive at a (d + 1)-uniform hypergraph on n vertices that is generically globally rigid and generically minimally rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore the lower bound for the number of congruence classes of a generic (d + 1)-uniform hypergraph framework in Rd is 1, and this bound is strict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 13 5 Triangulations of S2 Let Θ = (V, H) be a 3-uniform hypergraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' There is a unique simplicial complex associated to Θ, which we will denote by [Θ], the sets of 0-, 1- and 2- simplices of which are defined respectively as [Θ]0 = {[i] : i ∈ V } [Θ]1 = {[ij] : ij ⊂ h ∈ H} [Θ]2 = {[h] : h ∈ H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If [Θ] is a triangulation of S2, then we call Θ a triangulation of S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since S2 is a closed 2-dimensional manifold, each 1-simplex of [Θ] must be contained in precisely two 2-simplices, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' each edge of Θ must be contained in precisely two hyperedges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Meanwhile, each hyperedge, by definition, contains precisely three edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore 3m = 2s, (15) where s is the number of edges of Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Meanwhile, the Euler characteristic of any triangulation of S2 is fixed, so χ(Θ) = m − s + n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (16) Combining equations 15 and 16 yields m = 2n − 4 and s = 3n − 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, the second homology group of [Θ], H2([Θ], Z) is isomorphic to Z, as there is a unique (up to uniform scaling) vector c = (c[h] : [h] ∈ [Θ]2) ∈ Zm so that ∂2 \uf8eb \uf8ed � [h]∈[Θ]2 c[h][h] \uf8f6 \uf8f8 = 0, by the above observation, c ∈ {−1, 1}m, therefore, for every [h] ∈ [Θ]2, we may write [h] = c−1 [h] \uf8eb \uf8ed � [h′]∈[Θ]2\\{h′} c[h′][h′] \uf8f6 \uf8f8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (17) Now let (Θ, p) be any framework of the triangulation of S2, Θ = (V, H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' There exists a unique map [p] : [Θ] → R2 defined by [p]([i]) = p(i), ∀[i] ∈ [Θ]0, [p]([ij]) = Conv{p(i), p(j)}, ∀[ij] ∈ [Θ]1, [p]([ijk]) = Conv{p(i), p(j), p(k)}, ∀[ijk] ∈ [Θ]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, by equation 17, each triangle in [p]([Θ]), ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' each hyperedge in (Θ, p) may be uniquely expressed as a signed sum of all the other hyperedges of (Θ, p), and so, therefore may its area be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 14 As a consequence of this, if we remove any hyperedge from Θ to get Θ′, then the congruence classes of (Θ, p) and (Θ′, p) are in one-to-one correspondence (as the area of the removed hyperedge in (Θ, p) is uniquely determined by the hyperedges of (Θ′, p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We therefore say that the missing hyperedge of Θ′ is globally linked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 Triangulations of S2 are Generically Rigid In this subsection, we prove the following theorem: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ = (V, H) be a triangulation of S2, then Θ is generically rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We will prove theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 by induction: by the following lemma of Steinitz [2013], Θ may be built up by vertex splitting operations from K3 4: Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ be as above, then there exists a sequence of triangulations of S2 Θ0 = K3 4, Θ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', ΘN−1, ΘN = Θ, so that Θi is obtained from Θi−1 by a vertex split, for each 1 ≤ i ≤ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2 may also be proved by induction, by showing how, at each tri- angulation of S2 on more than three vertices, we may perform inverse operation to vertex splitting, vertex contraction, whilst preserving the property of being a triangulation of S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let (Θ, p) be a rigid generic framework of Θ = (V, H) triangu- lation of S2 on n > 4 vertices (assuming such a framework exists).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Remove l > 1 hyperedges of Θ, connected through codimension 1, to obtain Θ′ = (V, H′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, Θ = (V, H′) is a flexible framework, with a (l − 1)-dimensional space of non-trivial finite flexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We will study how the rank of rigidity matrix changes upon removing hyperedges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' First of all, rank(R(Θ, p)) = 2n − 5, as (Θ, p) is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since any h ∈ H is generically globally linked, if h ∈ H \\ H′, and Θ1 = (V, H \\ {h}), then rank(R(Θ1, p)) = 2n − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, R(Θ1, p) is full-rank, as it has 2n − 5 rows, therefore, removing any further hyperedges from Θ1 (and therefore further rows from R(Θ1, p)) will reduce the rank by one for each hyperedge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence rank(R(Θ′, p)) = 2n − 5 − (l − 1) = 2n − l − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore, by the regularity of fΘ′(p), MΘ′ is a (2n − 4 − l)-dimensional manifold, and so C(Θ′, p) is a (2n− (2n− 4 − l)) = (l + 4)-dimensional manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As a 5-dimensional subspace of C(Θ′, p) accounts for the images of q under trivial flexes, this leaves a (l − 1)-dimensional subspace of C(Θ′, p) arising from non-trivial finite flexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let (Θ, p) be a generic framework of a triangulation Θ = (V, H) of S2 on n vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that n is a vertex of degree greater than or 15 equal to k − 2, and is contained in the hyperedges (n − k + 1)(n − k + 2)n, (n − k + 2)(n − k + 3)n, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', (n − 2)(n − 1)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Remove the hyperedges just listed to get H′, let Θ′ = (V, H′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Add the vertex n + 1 and hyperedges (n − k + 1)(n − k + 2)(n + 1), (n − k + 1)n(n + 1), (n − k + 2)(n − k + 3)(n + 1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', (n − 1)n(n + 1) to get Θ∗ = (V ∗, H∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Extend p to p∗ generic, to get the generic framework (Θ∗, p∗), we will show that rank(R(Θ∗, p∗)) = 2(n + 1) − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We begin by writing R(Θ∗, p∗) in two different ways: R(Θ∗, p∗) = � R(Θ′, p) 0 A L � = � R′ B 0 R(Star(n + 1), p∗) � ∈ R(2(n+1)−4)×2(n+1), (18) where both matrices are block matrices, with A ∈ Rk×2n, L ∈ Rk×2, R′ ∈ R(2n−k−4)×2(n−k) and B ∈ R(2n−k−4)×2(k+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, the L rows of L simply list the normal vectors to the edges in the link of vertex n + 1, by genericity, rank(L) = 2, moreover, by lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='3, rank(R(Θ′, p)) = 2n − 5 − (k − 3), then by the linear algebra of block lower- triangular matrices rank(R(Θ∗, p∗)) ≥ rank(R(Θ′, p)) + L = 2n − 5 − (k − 3) + 2 = 2(n + 1) − k − 2, clearly then, if k = 3, we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that η ∈ Ker(R(Θ∗, p∗)), let U = V (Star(n + 1)), and let πV and πU denote projection of a vector in R2n onto the pairs of entries indexed by V and U respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, πV (η) ∈ Ker(R(Θ′, p)), a (k + 2)-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that πV (η) is a trivial infinitesimal flex of (Θ′, p), then πU(η) is a trivial infinitesimal flex of (Star(n + 1), p∗), as all but one of the vertices are flexed trivially, and the final vertex, n+1, is uniquely determined by the position of all of its neighbours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore, η extends to being a trivial infinitesimal flex of all of (Θ∗, p∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Now, suppose that η is a non-trivial infinitesimal flex of (Θ∗, p∗), consider πV (η), by the above argument, πV (η) must lay in the (k − 3)-dimensional space of non-trivial infinitesimal flexes of (Θ′, p), and η(n + 1) is uniquely defined by πV (η), however in doing so it must solve a further k independent linear equations in its remaining k − 3 variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We may choose p∗(n + 1) so that there is no solution to this system, and hence the space of non-trivial infinitesimal flexes of (Θ∗, p∗) is 0-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore, there exists a generic, infinitesimally rigid framework (Θ∗, p∗), where Θ∗ is obtained from Θ by performing a k-vertex split at vertex n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then by theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='8, all generic frameworks of Θ∗ are rigid, and then by induction and lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2, all triangulations of S2 are generically rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' As all triangulations of S2 are rigid, moreover redundantly rigid, with congru- ence classes of a generic framework of Θ = (V, H) in one-to-one correspondence with the congruence classes of the same configuration paired with Θ′ = (V, H′), where |H′| = |H| − 1, we obtain the following corollary: 16 Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ be a triangulation of S2 on n vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then any generic framework of Θ in R2 admits at most 1 n − 2 �2n − 6 n − 3 � congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 6 Bounds for Bipyramids In this section, we narrow in on a special family of triangulations of S2, bipyra- mids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A bipyramid, Bn−2 = (V, H) is a 3-uniform hypergraph that is homeomor- phic, as a simplicial complex, to S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' It is formed by gluing two (n − 2)-gonal based pyramids together at their bases, identifying those vertices on the new equator of the graph, and deleting the common bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The labelling of ver- tices and hyperedges that we will use throughout this paper and in proofs is as follows: V = [n] H = {123, 12(n − 1), 134, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', 1(n − 2)(n − 1), 23n, 2(n − 1)n, 34n, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', (n − 2)(n − 1)n}, and we call the vertices 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=', n − 1 the equatorial vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' See figure 3 for an illustration of this labelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1 2 3 4 5 6 7 8 Figure 3: The hexagonal bipyramid B6 Whilst the upper bound given above for general triangulations of S2 increase exponentially in n, we will show that the upper bound for bipyramids grows linearly in n: Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Bn−2 be the (n−2)-gonal bipyramid, and (Bn−2, p) a generic framework in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then (Bn−2, p) has at most n − 4 congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 17 The proof of this follows from defining a polynomial f on (Bn−2, p) so that congruence classes of (Bn−2, p) yield roots of f, and can be found in appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We can also state an updated lower bound for bipyramids on an even number of vertices: Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If n is even, any generic framework (Bn−2, p) in R2 has at least two congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since the degree of the polynomial f is even, and f(0) = 0, there must be some other real root of f corresponding to some real framework equivalent to (Bn−2, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 Global Rigidity of Hypergraphs Connelly [2005] and Gortler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' [2010] proved that the Euclidean rigidity of a graph G in Rd is a generic property of G (ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' it is true for all generic frameworks of G or for none of them).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In this final subsection, we show that the analogous result does not hold in the case of d-volume rigidity, by way of a small (in terms of n) example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The global d-volume rigidity of a (d + 1)-uniform hypergraph Θ in Rd is not a generic property of Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Consider the pentagonal bipyramid B5, by Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1, the defining polynomial of its configuration space is a cubic f = at3 + bt2 + ct, where a, b, c are rational functions defined by the pinned configurations of seven points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The discriminant of f, denoted disc(f) is a polynomial function of the coefficients of f (and therefore a rational function of those same pinned configurations), and is, in this case, defined as disc(f) = b2 − 4ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The cubic f has one real root if and only if disc(f) < 0, and three if and only if disc(f) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' It therefore suffices to find p and q non-generic so that disc(f(p)) < 0 and disc(f(q)) > 0, for example those with configuration matrices C(p) = \uf8ee \uf8f0 1 1 1 1 1 1 1 0 1 0 1 5 1 7 1 11 1 2 0 0 1 1 13 1 19 1 17 1 2 \uf8f9 \uf8fb , C(q) = \uf8ee \uf8f0 1 1 1 1 1 1 1 0 1 0 1 7 1 5 1 41 1 2 0 0 1 1 19 1 17 1 13 20 \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then to perturb p and q slightly, to obtain the pinning of generic frameworks ˜p and ˜q respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since disc(f) is continuous, doing so would not have changed the signs, so we obtain two generic frameworks of B5, one globally rigid and one rigid, but not globally rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 18 7 Gluing Hypergraphs Let Θ1 = (V1, H1) and Θ2 = (V2, H2) be two hypergraphs, with i1j1k1 ∈ H1 and i2j2k2 ∈ H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Define the hypergraph Θ = (V, H) in terms of V and H as V = V1 ⊔ V2⧸i1 ∼ i2, j1 ∼ j2, k1 ∼ k2, H = H1 ∪ H2, then Θ is the hypergraph formed by gluing together Θ1 and Θ2 at a common hyperedge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If ni = |Vi| and mi = |Hi| (for 1 ≤ i ≤ 2) and n = |V | and m = |H|, then m = m1 + m2 − 1, so if Θ1 and Θ2 are minimally rigid, then Θ will have one too many hyperedges to itself be minimally rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In order to glue together hypergraphs whilst preserving minimal rigidity, we define Θ′ = (V, H′), where H′ = H \\ {ijk}, where ijk = i1j1k1 ∼ i2j2k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Notice that, in Θ′, the two sub-hypergraphs Θ′ 1 = (V1, H1 \\ {i1j1k1}) and Θ′ 2 = (V2, H2 \\ {i2j2k2}) lie on either side of the non-hyperedge separating triangle ijk of Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We may successively glue hypergraphs together in this fashion, ending up with several non-hyperedge separating triangles as in figure 4 Notice that, in figure 4, the copies of B3 4, with vertex sets U1 and U2 respec- tively, on either side of the two non-hyperedge separating triangles 124 and 134 behave independently of each other: There are four congruence classes of the generic framework (Θ′, p), represented by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, p);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, q1), where πU1(q1) = πU1(p) and πU2(q1) ̸= πU2(p);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, q2), where πU1(q2) ̸= πU1(p) and πU2(q2) = πU2(p);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (Θ, q3), where πU1(q3) ̸= πU1(p) and πU2(q3 ̸= πU2(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Here πU denotes projection onto the co-ordinates {(xu, yu) : u ∈ U}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' This leads to the lemma Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ1 = (V1, H1), Θ2 = (V2, H2), Θ = (V, H) and Θ′ = (V, H′), with H′ = H\\{ijk}, where ijk is a generically globally linked of both Θ1 and Θ2, be as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let (Θ′, p) and (Θ′, q) be two generic frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then (Θ′, p) and (Θ′, q) are equivalent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' congruent) if and only if (Θ1, πV1(p) and (Θ2, πV2(p) are equivalent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' congruent) to (Θ1, πV1(q)) and (Θ2, πV2(q)) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose (Θ′, p) is equivalent to (Θ′, q), then, det(C(h, p)) = det(C(h, q)), for all h ∈ H′, and therefore (Θ′ 1, πV1(p)) and (Θ′ 2, πV2(p)) are equivalent to (Θ′ 1, πV1(q)) and (Θ′ 2, πV2(q)) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since ijk is generically globally linked, we have that (Θ1, πV1(p)) and (Θ2, πV2(p)) are equivalent to (Θ1, πV1(q)) and (Θ2, πV2(q)) respectively By an analogous argument, if (Θ′, p) is congruent to (Θ′, q), then (Θ1, πV1(p)) and (Θ2, πV2(p)) are congruent to (Θ1, πV1(q)) and (Θ2, πV2(q)) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 19 1 2 3 4 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 Figure 4: On the left is a tetrahedron K3 4, on the right, we have glued an octahedron B3 4 to it at the common hyperedge 124, which is then deleted to form a triangulation of S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' This process is repeated at hyperedge 134 to get Θ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ1, πV1(p)) and (Θ2, πV2(p)) are equivalent to (Θ1, πV1(q)) and (Θ2, πV2(q)) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then det(C(h, p)) = det(C(h, q)), for all h ∈ H1 ∪ H2 ⊃ H, so (Θ, p) is equivalent to (Θ, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that (Θ1, πV1(p)) and (Θ2, πV2(p)) are congruent to (Θ1, πV1(q)) and (Θ2, πV2(q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then there exist area-preserving affine transformations T1 and T2 so that πV1(q) = T1 ◦ πV1(p) and πV2(q) = T2 ◦ πV2(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Since T1 and T2 agree on their actions on the affinely independent triple p(i), p(j), p(k), T1 = T2 = T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence q = T ◦ p, so (Θ, p) and (Θ, q) are congruent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let Θ′ = (V, H′) is a triangulation of S2 formed by gluing together s triangulations of S2, Θi = (Vi, Hi), 1 ≤ i ≤ s, at common hyperedges, and then removing them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let (Θ′, p) be a generic framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that, for all 1 ≤ i ≤ s, (Θi, πVi(p)) has lower and upper bounds ℓi and ui respectively, for the number of congruence classes it admits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then 20 (Θ, p) has lower and upper bounds ℓ = s � i=1 ℓi and u = s � i=1 ui, for the number of congruence classes it admits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Suppose that, for all 1 ≤ i ≤ s, (Θi, πVi(p)) admits Ni congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then (Θ, p) admits N = s � i=1 Ni congruence classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Parts 1 and 2 follow from lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1, as well as our discussion of figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Part 2 can also be obtained by setting ℓi = ui = Ni, for all 1 ≤ i ≤ s, in part 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' References Leonard Asimow and Ben Roth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The rigidity of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Transactions of the American Mathematical Society, 245:279–289, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Saugata Basu and Richard Pollack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='-f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' roy algorithms in real algebraic geom- etry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Algorithms and Computation in Mathematics, 10, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Ciprian Borcea and Ileana Streinu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' On the number of embeddings of mini- mally rigid graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In Proceedings of the eighteenth annual symposium on Computational geometry, pages 25–32, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Ciprian S Borcea and Ileana Streinu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Realizations of volume frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In International Workshop on Automated Deduction in Geometry, pages 110– 119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Springer, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Robert Connelly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Generic global rigidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Discrete & Computational Geometry, 33(4):549–563, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Steven J Gortler, Alexander D Healy, and Dylan P Thurston.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Characterizing generic global rigidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' American Journal of Mathematics, 132(4):897–939, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Georg Grasegger, Christoph Koutschan, and Elias Tsigaridas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Lower bounds on the number of realizations of rigid graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Experimental Mathematics, 29(2): 125–136, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Joe Harris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Algebraic geometry: a first course, volume 133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Springer Science & Business Media, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 21 Bill Jackson, Tibor Jord´an, and Zolt´an Szabadka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Globally linked pairs of ver- tices in equivalent realizations of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Discrete & Computational Geometry, 35(3):493–512, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Venkatramani Lakshmibai and Justin Brown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' The grassmannian variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' In Developments in Mathematics, volume 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' John Milnor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Singular Points of Complex Hypersurfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (AM-61), Volume 61, volume 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Princeton University Press, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Reinhard Steffens and Thorsten Theobald.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Mixed volume techniques for em- beddings of laman graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Computational Geometry, 43(2):84–93, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Ernst Steinitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Vorlesungen ¨uber die Theorie der Polyeder: unter Einschluß der Elemente der Topologie, volume 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Springer-Verlag, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' A Proof of Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1 1 2 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' n − 1 n Figure 5: q(4), q(n−1) and q(n) may lie anywhere on the blue lines by equation 19, furthermore, q(n) must lie on the intersection of the two red lines by equation 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Our proof is as follows: Given a suitable generic framework of the (n − 2)-gonal bipyramid (Bn−2, p), we construct a polynomial f(p) ∈ R[t] depen- dent on the positions of vertices in p so that pinned frameworks (Bn−2, q(t)) parametrised by t are equivalent to (Bn−2, p) if f(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then an upper bound for the number of congruence classes of (Bn−2, p) is the degree of f(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' First of all, standard pin (Bn−2, p) to get (Bn−2, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then, since 12(n − 1), 134 and 23n are hyperedges of Bn−2, if (Bn−2, q) ≡ (Bn−2, p), then q(4) = � p(4)1 p(4)2 + t � , q(n − 1) = �p(n − 1)1 + s p(n − 1)2 � and q(n) = �p(n)1 + r p(n)2 − r � (19) 22 for some s, t, r ∈ R, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' they must lie on the blue lines in figure 5 Next, since 2(n − 1)n and 34n are both hyperedges of Bn−2, q(n) must lie on the intersection of the red lines in figure 5, defined by det(C(2(n − 1)n, q)) = det(C(2(n − 1)n, p)) det(C(34n, q)) = det(C(34n, p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (20) Plugging the values in equation 19 into the above equations yields r = p(n)1t 1 − p(4)1 − p(4)2 − t = p(n)2s s + p(n − 1)1 + p(n − 1)2 − 1 =⇒ s = − (p(n − 1)1 + p(n − 1)2 − 1)p(n)1t (p(4)1 + p(4)2 − 1)p(n)2 + (p(n)1 + p(n)2)t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (21) Next, we define the positions of the equatorial vertices in terms of p and t: 1 2 3 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' n − 1 n 5 Figure 6: q(5) must lie on the intersection of the two green lines As each q(i)’s position is based off the positions of q(1) = (0, 0), q(i− 1) and q(n) = (p(n)1 + r, p(n)2 − r), as in figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore, q(i)j = ����� q(i − 1)1 q(n)1 q(i − 1)2 q(n)2 ���� − ���� p(i − 1)1 p(n)1 p(i − 1)2 p(n)2 ���� + ���� p(i)1 p(n)1 p(i)2 p(n)2 ���� � q(i − 1)j ���� q(i − 1)1 q(n)1 q(i − 1)2 q(n)2 ���� + ���� p(i − 1)1 p(i)1 p(i − 1)2 p(i)2 ���� q(n)j ���� q(i − 1)1 q(n)1 q(i − 1)2 q(n)2 ���� , (22) for each j ∈ {1, 2}, for each 4 ≤ i ≤ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 23 Now, in order to simplify the formula in 22, we will get some geometric intuition of the determinantal terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Notice that ���� p(i)1 p(n)1 p(i)2 p(n)2 ����− ���� p(i − 1)1 p(n)1 p(i − 1)2 p(n)2 ���� = det(C(1in, p))−det(C(1(i−1)n, p)), (23) where det(C(1(i−1)n, p)) and det(C(1i)n, p) are twice the areas enclosed by the (generally non-hyperedge) triangles 1(i − 1)n and 1in respectively, as in figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We may compare these values to the areas of the hyperedges 1(i − 1)i and (i − 1)in: det(C(1(i−1)i, p))−det(C((i−1)in, p)) = det(C(1(i−1)n, p))−det(C(1in, p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (24) 1 2 3 4 n − 1 n i − 1 i Figure 7: The non-hyperedges 1(i − 1)n and 1in are represented by their re- spective solid and dashed lines The right hand side of equation 24 is constant between equivalent frame- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence, if (Bn−2, q) ≡ (Bn−2, p), then ���� q(i)1 q(n)1 q(i)2 q(n)2 ����− ���� q(i − 1)1 q(n)1 q(i − 1)2 q(n)2 ���� = ���� p(i)1 p(n)1 p(i)2 p(n)2 ����− ���� p(i − 1)1 p(n)1 p(i − 1)2 p(n)2 ���� , (25) for all 4 ≤ i ≤ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Next, we apply equation 25 sufficiently many times to obtain ���� q(i − 1)1 q(n)1 q(i − 1)2 q(n)2 ���� = ���� q(3)1 q(n)1 q(3)2 q(n)2 ���� − ���� p(3)1 p(n)1 p(3)2 p(n)2 ���� + ���� p(i − 1)1 p(n)1 p(i − 1)2 p(n)2 ���� = ���� 0 p(n)1 + r 1 p(n)2 − r ���� − ���� 0 p(n)1 1 p(n)2 ���� + ���� p(i − 1)1 p(n)1 p(i − 1)2 p(n)2 ���� = ���� p(i − 1)1 p(n)1 p(i − 1)2 p(n)2 ���� − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (26) 24 We may now plug this into our formula in 22 to get q(i)j = ����� p(i)1 p(n)1 p(i)2 p(n)2 ���� − r � q(i − 1)j + ���� p(i − 1)1 p(i)1 p(i − 1)2 p(i)2 ���� (p(n)j − (−1)jr) ���� p(i − 1)1 p(i)1 p(i − 1)2 p(i)2 ���� − r , (27) for each j ∈ {1, 2}, for each 4 ≤ i ≤ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Finally, the framework we are constructing is well-defined if q(n − 1) agrees in its iterative definition as in 27 and in its definition in 19, with s as in 21, ie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' if ������ p(n − 1)1 p(n)1 p(n − 1)2 p(n)2 ���� (1 − p(4)1 − p(4)2 − t) − p(n)1t � q(n − 2)1 + ���� p(n − 2)1 p(n − 1)1 p(n − 2)2 p(n − 1)2 ���� (1 − p(4)1 − p(4)2)p(n)1 � ((p(4)1 + p(4)2 − 1)p(n)2 + (p(n)1 + p(n)2)t) = ����� p(n − 2)1 p(n − 1)1 p(n − 2)2 p(n − 1)2 ���� (1 − p(4)1 − p(4)2 − t) − p(n)1t � � (p(4)1 + p(4)2 − 1)p(n − 1)1p(n)2 + ����� p(n − 1)1 p(n)1 p(n − 1)2 p(n)2 ���� − p(n)1 � t � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (28) and ������ p(n − 1)1 p(n)1 p(n − 1)2 p(n)2 ���� (1 − p(4)1 − p(4)2 − t) − p(n)1t � q(n − 2)2 + ���� p(n − 2)1 p(n − 1)1 p(n − 2)2 p(n − 1)2 ���� ((1 − p(4)1 − p(4)2 − t)p(n)2 − p(n)1t) � = ����� p(n − 2)1 p(n − 1)1 p(n − 2)2 p(n − 1)2 ���� (1 − p(4)1 − p(4)2 − t) − p(n)1t � p(n − 1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (29) Notice, however, that it suffices to just solve equation 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Indeed, if τ solves equation 29, so q(τ)(n − 1)2 = p(n − 1)2, but not 28, so q(τ)(n − 1)1 = p(n − 1)1 + σ, for some σ ̸= s, then comparing the value of r yielded by det(C(2(n − 1)n, q(τ)) = det(C(2(n − 1)n, p)), gives us s(p(n − 1)1 + p(n − 1)2 − 1) = σ(p(n − 1)1 + p(n − 1)2 − 1), (30) which contradictions our assumption of inequality, since p(n−1)1+p(n−1)2 ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Subtract the right hand side from both sides of equation 29 so that we have an equation of the form LHS = 0 and multiply through by the denominator of q(n − 2)2 (which by definition, increases the degree of terms not containing q(n − 2)2 by 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Then we have an equation of the form f(p)(t) = 0, with deg(f(p)) = � max{deg(q(n − 2)2) + 1, 2}, if n ≥ 6 deg(q(n − 2)2) + 1, if n = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (31) 25 Therefore f(p)(t) = 0 is satisfied by at most that many unique values of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' By considering the formula for each q(i)2 (see 27) we notice that the degree of the numerator of q(i)2 has a higher degree than the denominator, and so we multiply LHS = 0 through by the denominator without affecting the degree of f(p), and that the numerator’s degree increases by 1 for each equatorial vertex, with initial value 0 at q(3)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Hence deg(f(p)) = n − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' (32) This completes the proof, subject to the following two lemmas: First we show that every framework equivalent to (Bn−2, p) does in fact correspond to a root of f(p): Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Let (Bn−2, q) ≡ (Bn−2, p), then if t = q(4)2 −p(4)2, we have that f(p)(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We showed above that, for every equivalent framework, we may define t, and then obtain uniquely the positions of all its other unpinned vertices, the well-defined-ness of which yields f(p)(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' We prove the following lemma to show that different congruence classes lead to different values of t: Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If (Bn−2, q1), (Bn−2, q2) ≡ (Bn−2, p), for some q1 ̸= q2, then t1 = q1(4)2 − p(4)2 ̸= q2(4)2 − p(4)2 = t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' If t1 = t2, then r1 = r2 and s1 = s2 (where r1, r2, s1, s2 are analogously defined).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' Therefore, each of the equatorial vertices’s positions are the same, and so the whole frameworks are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
+page_content=' 26' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wtE3T4oBgHgl3EQfOgmo/content/2301.04394v1.pdf'}
diff --git a/xtAzT4oBgHgl3EQf7v7M/content/2301.01895v1.pdf b/xtAzT4oBgHgl3EQf7v7M/content/2301.01895v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..28cc7530ba1a69973af31a3127f5730dd384aede
--- /dev/null
+++ b/xtAzT4oBgHgl3EQf7v7M/content/2301.01895v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e8baf773e2e52f9ed3e312c5ba58830eb41ccb761177e1f42beecdddd0972ea1
+size 6712950
diff --git a/y9E2T4oBgHgl3EQf4Ain/content/2301.04177v1.pdf b/y9E2T4oBgHgl3EQf4Ain/content/2301.04177v1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..73b3f52e693f6c7397654658ff7462394ef81593
--- /dev/null
+++ b/y9E2T4oBgHgl3EQf4Ain/content/2301.04177v1.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f81e0bc546d6ce3702a774d9daa069615350618217c707b50f4d1de9efc49afc
+size 1926710
diff --git a/y9E2T4oBgHgl3EQf4Ain/vector_store/index.pkl b/y9E2T4oBgHgl3EQf4Ain/vector_store/index.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..13a6092451b3e545647075bd12a06df7c1908d91
--- /dev/null
+++ b/y9E2T4oBgHgl3EQf4Ain/vector_store/index.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4d6e6b68942855b63bc09c50551e1ac598c84f6c948e76edfc1cabfbcf73549a
+size 398940
diff --git a/ztFAT4oBgHgl3EQfBhzw/content/tmp_files/2301.08405v1.pdf.txt b/ztFAT4oBgHgl3EQfBhzw/content/tmp_files/2301.08405v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a1421a826bee5ecc6b7a7b6a21e801b9775fbcac
--- /dev/null
+++ b/ztFAT4oBgHgl3EQfBhzw/content/tmp_files/2301.08405v1.pdf.txt
@@ -0,0 +1,1224 @@
+
+Page 1
+ SugarChain: Blockchain technology meets Agriculture - The case
+study and analysis of the Indian sugarcane farming
+
+Naresh Kshetri*1, Chandra Sekhar Bhusal2, Dilip Kumar3, Devendra Chapagain4
+
+1Lindenwood University, USA, NKshetri@lindenwood.edu,
+ 2Federation University, Australia, Chandra045Bhusal@gmail.com
+3United University, India, DilipKumar.phdcs21@uniteduniversity.edu.in,
+ 4Tribhuvan University, Nepal, DevCpgn@gmail.com
+
+Abstract. Not only in our country and Asia, but the agriculture sector is also lagging all
+over the world while using new technologies and innovations. Farmers are not getting the
+accurate price and compensation of their products because of several reasons. The
+intermediate persons or say middlemen are controlling the prices and product delivery on
+their own. Due to lack of education, technological advancement, market knowledge, post-
+harvesting processes, and middleman involvement, farmers are always deprived of their
+actual pay and efforts. The use of blockchain technology can help such farmers to automate
+the process with high trust. We have presented our case study and analysis for the Indian
+sugarcane farming with data collected from farmers. The system implementation, testing,
+and result analysis has been shown based on the case study. The overall purpose of our
+research is to emphasize and motivate the agricultural products and benefit the farmers with
+the use of blockchain technology.
+
+Keywords: Blockchain technology, Agriculture, Trust, Analysis, Case study, System
+implementation, Sugarcane farming
+
+I. INTRODUCTION
+
+Sugarcane is a widely grown crop in India. Even sugarcane plants spread in most of the sub-continent in India.
+In India, sugarcane grows over 49.18 lakh hectares and India is set to become the fourth greatest growing
+financial system in the world (with USD 4.9 trillion in 2024 as Germany) next to the USA (25.3 trillion), China
+(20.6 trillion) and Japan (5.6 trillion) [1]. Sugarcane (cultivated in more than 109 countries) is the primary root
+of sugar except the sugar juice is used for producing white sugar, brown sugar and jaggery (also called Gur).
+Other than these, the main products (by-products) of the sugarcane production are bagasse (food products) and
+molasses (viscous liquid produced during sugar production from raw juice) [2].
+
+Bagasse is primarily used as fuel. It is also used for invention of compressed fiber board paper, plastic and
+other. Molasses is castoff in distilleries for developing of ethyl alcohol, butyl alcohol, citric acid etc. More
+specifically, we can say that it delivers employment to millions of individuals directly or indirectly. But
+actually, there are various problems faced by farmers of India like varieties, manufacture technologies, farm
+outfits, climate variation, artifact development, value accumulation, marketing etc. Actually, the former
+government has taken a lot of decisions. Perhaps there is no improvement in earning for farmers in India and
+needs to shift from simple farming to more efficient, justifiable, and productive farming. India is an agricultural
+kingdom and agriculture is only ~16% of GDP in India but the prime sector for occupation [3].
+In this paper we have explored the possibilities of using the blockchain technologies in sugarcane farming so
+that automation in sugarcane agriculture can improve production quality, quantity and efficiency. Farmers of
+sugarcane can create a global market and Blockchain technology can be one of the important pillars for this
+evolution of technology in agribusiness in addition to cybersecurity and cyber defense [4]. As blockchain
+technology is based on transparency, security and authenticity, it may be a great value chain to better
+understand possible emerging technologies in the field of agribusiness.
+
+*Corresponding author, Dept. of Math, CS & IT, Lindenwood University, MO, USA.
+
+
+Page 2
+Blockchain is the technology after the world’s common cryptocurrency i.e., Bitcoin [5]. The main advantage
+of the blockchain technology was the probability of allowing information interchange between the parties
+without physical occurrence. In dissimilarity to the client-server architecture, blockchain technology is
+grounded on peer-to-peer (P2P) architecture [6]. The power or ability here doesn’t relax on a sole computer
+rather the power rests on all the contestants of networks. Distributed peer-to-peer environment of blockchain-
+based technologies has no sole point of catastrophe. It uses the popular technical advancements like hashing,
+digital signatures, consensus mechanisms and difficulty correction. The consensus algorithm engaged by
+blockchain has proved the security, scalability and confidentiality of the podium via operating on 100%
+verification and 0% trust [7] [8].
+
+The existing agriculture industry lacks the efficient food traceability method that can trail and monitor the
+entire life cycle of food making that includes the processes of food raw substantial cultivation/breeding,
+processing, transporting, warehousing and marketing that involve a bulky number of disloyal business parties
+[9]. Food traceability attempts to record, store and transfer sufficient data about food, feed, food-producing
+creatures or substances at all the phases of the agricultural supply chain. Such statistics is crucial to check the
+product for security and eminence control and can be sketched upward or downward at any time [10]. Lack of
+trust among the countless actors of the supply chain and distrust of customers about the quality of product are
+other major issues seen in the traditional agricultural supply chain. Blockchain as a circulated ledger where
+data is immutable and can be accessed by all the participating actors promises to solve the major problems of
+current agribusiness. Following are approximate of the profits of using blockchain technology in agriculture:
+
+1. Product Traceability: Every information is recorded at each stage of the product's journey to the customer's
+table and is visible to all participants. The customers are able to trace the source and quality of the product.
+Such admission to the product’s information ensures the consumer about the safety and quality of the products
+they consume [10]. The immutable and permanent stored information in the blockchain enables tracing much
+quicker, efficient, and easier [11].
+
+
+2. Building Customer Trust: The immutable information stored in blockchain can be accessed by the customer
+using their mobile devices that enable them to trace the critical information like its origin, how they are grown
+and processed. This reliefs to enhance the customer's trust and sureness in the product they ingest [10].
+
+3. Enhance Supply chain: Blockchain-enabled agriculture supply chain comforts to deliver real-time
+information to all supply chain participants improving the efficiency and transparency of the agricultural
+supply chain. The birthplace and quality of the product can be proved at any point thus decreasing and
+removing product waste in their process. The flow of immutable, real-time, and quality info advantage to
+accomplish the inventory and charge dynamically [10].
+
+4. Ensure Food Quality: Blockchain along with IoT enables us to capture real-time information like product’s
+condition (humidity, temperature) during the transition between various actors. Such information helps to
+ensure the quality of the product at every stage of the supply chain [11].
+
+5. Increase Efficiency in Supply Chain: The product’s information that can be accessed by all the participating
+actors not only build trust among each other but also help to make supply chain efficient and effective. The
+issue of timely payment to different stakeholders in the supply chain also shows a major role in well-organized
+supply chain. The smart contract as part of blockchain qualifies it to be a reliable means of distribution of
+payment among various actors in an efficient and well-timed manner as conditions of each contract are met.
+No actors have to wait for their payment as payments are initiated automatically from the fund that has been
+authorized by the bursars when certain conditions are met [10] [11].
+
+Our study and analysis is arranged as follows. In Section II, we present a brief outline of background study,
+historical works and try to identify the necessity and tradition of BCT in the agriculture sector. We then discuss
+in Section III, about the existing methods and models used (including their impact and possibility for Indian
+sugarcane farming) followed by the case study (based on the primary data i.e., questionnaire developed for
+farmers) in Section IV. We have recommended the BCT model to help farmers for their actual pay and efforts
+
+
+Page 3
+and to automate the process with high trust in Section V with system implementations and testing of our
+research work in Section VI. In Section VII, we presented the analysis of our study and outcomes along with
+the conclusions and possible forthcoming scope in Section VIII.
+
+II. LITERATURE REVIEW AND RELATED WORK
+
+In [10], N. Kshetri et. al. (2021), surveyed many former works in the field of BCT and its applications linked
+to agribusiness. The paper also deliberates the advantages and situations through current improvement of the
+agribusiness zone. It is witnessed that the transparency and trust of BCT with its widespread network
+architecture (using blocks of data and information) can profit agribusiness in several magnitudes. The authors
+have also projected a blockchain-based agribusiness model (that is of unique nature) for info transparency and
+refining the efficiency of the communal sector in absence of third parties in the network. It looks that the
+ground-breaking technology, BCT, can help several sectors including the agribusiness zone too. Customers
+and farmers (along with all agribusiness consumers) both are profited with the use of BCT-based agribusiness.
+The effectiveness in the supply chain can be enhanced and delivered real-time to all affiliates that can alter the
+inventory and charge of the product.
+
+In [12], F. Miatton and L. Amado (2020), introduced the notion of Commodity Fairness Index used to size
+the inequality, or economic imbalance in a commodity value chain, and estimates it in the case of Colombian
+coffee. Coffee is one of the most broadly consumed beverages in the ecosphere and internationally
+merchandised commodities, but the coffee value chain is impervious and disturbed. The application of BCT
+to the coffee manufacturing enables inclusive business models that rewards quality and tough work, and in
+turn converts into greater trust, confidence and fairness across the complete industry as well as among end
+buyers. The authors also described the system architecture of a network application built upon Hyperledger
+Fabric that surfaces the way to improve coffee farmers’ survives by bringing transparency and traceability into
+the whole value chain and refining its fairness as an effect.
+
+In [13], H. Fang et. al. (2020), provided a review to study both techniques and applications of BCT in the
+agricultural zone. First, the practical elements, with data structure, cryptographic methods, and consensus
+mechanisms are clarified in detail. Second, the prevailing agricultural blockchain applications are classified
+and reviewed to reveal the use of the blockchain techniques. Increasingly, BCT is drawing significant attention
+in numerous agricultural applications. These applications could please the diverse needs in the ecosystem of
+agricultural products, perfection of contract exchanges and transaction efficiency. The authors also provided
+widespread platforms and smart contracts to display how practitioners use them to develop agricultural
+applications. Thirdly, the authors also identified key defies in agricultural systems, and debated the efforts and
+solutions to challenge these problems with an upgraded food supply chain (in post COVID-19 epidemic) as an
+sketch to demonstrate an effective practice of BCT.
+
+In [14], M. D. Borah et. al. (2019), implemented an easy web-based stage in Agricultural Supply Chain
+Management (SCM) using BCT, which is a decentralized safeguarded system to get transparency, enhanced
+product value. Blockchain plays a vivacious role in FARMAR to track and trace the source of food products
+in the food supply chain. SCM is a crucial business process in all domains of the economy. SCM uses precise
+processes to connect from producer to consumer necessity through a chain. Additional advantage of using BCT
+in FARMAR is security where hacking or altering of the existing data is difficult by any intermediary. As an
+add-on to this process, IoT devices (Mobile phone-based Android apps) are used to modernize the real time
+quality and transfer time of the product in FARMAR. It is integrated for upgraded traceability and usability of
+the products in the supply chain. The writers also believe that the FARMER aims to succeed these goals by
+developing a web application where FARMAR makes a value chain of integrity from farmstead to fork by
+using BCT.
+
+In [15], Z. Hao et al. (2019), proposed an automatic commercial transaction mechanism i.e., consortium
+blockchain model where food can be exported independent of a favorite third party. The novel Food Trading
+System with COnsortium blockchaiN (FTSCON) improves trust and security concerns in transactions.
+FTSCON uses consortium BCT to set authorization and authentication for altered roles in food transactions,
+
+
+Page 4
+which meet the defy of the privacy protection of multi-stakeholders. Orthodox food trading stages face several
+issues, such as hurriedly to find trading objects and shelter the reliability of transaction data. With e-commerce
+developing quickly, food trading has also recently moved to the online domain. Blockchain has reformed many
+industries owing to its robustness, decentralization, and end-to-end credibility. Security analysis displays that
+FTSCON progresses transaction security and privacy protection by announcing a smart-contract life-cycle
+supervision method. Experiment outcomes based on a series of data signpost that the proposed algorithm can
+triumph profit improvement of traders.
+
+In [16], V. Sudha et al. (2021), recommended a blockchain based supply chain management system that would
+crack all the problems of outdated and poor supply chain administration in India. The paper highlights the
+major glitches faced by Indian farmers: (i) absence of facility to stock their products, (ii) incapable to monitor
+the product’s standing and sell them with income. The proposed system is supposed to provide transparency
+about the product’s status while preserving a good connection among producer and consumer. Authors present
+the architecture of the proposed system where product information is composed from the farmers using the
+application beforehand they are conveyed from the farmer's place and this information is confirmed by the
+smart contract. Once all the information is established correct, it is warehoused in the blockchain network.
+Different sensors (IoT agents) are located in the storage place and transportation vehicle to measure
+temperature, humidity and existence of chemicals. All the complete information recorded by sensors are stored
+in a blockchain that lets together farmers and consumers know the status of the products at many stages of the
+supply chain. The system also aids to track the varying market price and integrate the recent market price in
+the blockchain.
+
+In [17], Q. Lu & X. Hu (2018), developed a model called OriginChain from the case study for Product
+Traceability. OriginChain restructures the service provider’s present traceability system by interchanging the
+central database with a blockchain. OriginChain offers transparent tamper-proof traceability data, enhances
+the data’s availability, and automates regulatory-compliance checking. The authors have implemented and
+tested OriginChain under realistic circumstances employing the user’s traceability information. OriginChain
+currently employs a geologically distributed private blockchain at the traceability service provider, which has
+branch offices in three countries. The greatest visions that authors learned is the design (impact on cost, if it is
+public blockchain because of more lines of code) and adaptability (quality attribute required by many industrial
+projects that are dynamic, also means the smart contract to be modernized by a number of authorities beyond
+the threshold demarcated in the factory contract) of blockchain-based systems.
+
+In [18], T. Rocha et al. (2021), proposed SmartAgriChain that anticipates to implement a supply chain and
+certification system based on Hyperledger Sawtooth that will be proficient of identity management,
+hierarchical users/organizations, significant scalability, little costs, little energy consumption and compatibility
+with legacy schemes. The proposed result does not compromise currently existing features, but it will,
+however, permit all the actors to take part in the agri-food supply chain system and persistently monitor its
+actions. Management of certification issuance and product counterfeit proofs in the agri-food supply chain are
+very serious and reaching glitches nowadays. The currently existing management systems for this process are
+either obsolete or have significant issues when it comes to security, trust, traceability, management or product
+certification. The introduction of BCT, due to its core properties, has the potential to crack identity, ownership,
+data temper, traceability, and certification issues. The writers also explored and explained the system design
+and architecture in detail as well as a price projection based on the total of nodes of the distributed system.
+
+In [19], Gunasekera, D., & Valenzuela, E. (2020) analyzed the concept of economic effect due to blockchain
+adoption in Australian grain. Authors has further refined the concept of productivity gain quantified using a
+Global Trade Analysis Project (GTAP) model, which is a broadly used computable general equilibrium tool
+for analyzing the international economy and undertaking the illustrative scenarios of (i) Blockchain use
+(grains) scenario: (ii) Blockchain use (finance) scenario: and (iii) combined scenario: combining scenario 1
+and scenario 2. From the ancient trends in productivity improvements in key industry sectors, adoption of
+blockchain technology in Australian grain sectors will increase productivity by five per cent to ten per cent
+over ten years (2020-2030). The analysis shows increase in productivity due to reduction of transaction cost
+after adoption of blockchain technology as a ‘distributed ledger technology’ that empowers the quick
+
+
+Page 5
+settlement of payments to grain producers as a possible productivity gain in business transaction services
+sectors that provide services to the agriculture sectors.
+
+
+
+In [20], Lin, J., Shen, Z., Zhang, A., & Chai, Y. (2018) recommends a blockchain technology and IoT based
+food tractability system based which is confidential and self-organized. Writers described the architecture of
+the proposed system that comprises the traditional ERP legacy system and a new IoT system connecting all
+parties in agri-business. The system is a computer-generated blockchain network consisting of dual types of
+nodes where one is furnished with all functionalities of blockchain node and additional is the thin node which
+is just a simple payment verification (SPV) node that only authenticates the compensation and stores
+transactional statistics. IoT technologies eradicate human intervention by exchanging manual recording and
+verification as possible. All actors including consumers would be able to entrance the data stored in the system
+and authenticate them using their smart phone thus growing trust among the actors. Further writers plan to
+implement smart contracts that would relief law executors for problem ID and well-timed processing.
+
+In [21], Xiong, H., Dalhaus, T., Wang, P., & Huang, J. (2020) examined the four uses of blockchain
+technology in agriculture and food sectors: food supply chain, agriculture insurance, smart farming and
+transaction of agricultural products. Decentralized crop insurance grounded on blockchain technology and
+smart contracts enable automated payouts to compensate the farmer can be revolutionary in agriculture
+insurance. Smart farming can be achieved with a combination of IoT and blockchain technology that serves to
+store data and information generated by all the actors in a distributed database providing access to all
+participants ensuring trust and transparency. Blockchain with characteristics of decentralization, security and
+transparency help to address the existing difficulties in food supply chain for instance food traceability, food
+security and trust, supply chain inefficiency by making it probable to track all the product information of food
+quality and safety in the complete supply chain. The author highlights the challenges of e-commerce trade of
+agricultural products such as information insecurity, cash on delivery and high operating costs which can be
+solved by practice of blockchain technology. Blockchain (i) provides information security by encryption
+mechanism that provides the authentication requirements, (ii) enhance supply chain management by lowering
+the information sharing cost among the actors, (iii) provide digital payment solution with cryptocurrency and
+(iv) build customer confidence by letting customer access all the product information in transparent manner.
+
+In [22], Kamilaris, A., Fonts, A., & Prenafeta-Boldύ, F. X. (2019) surveyed the adoption of the blockchain
+technology and its impression in agriculture and food supply chain. Authors have analyzed the challenges and
+potential of some of the ongoing projects and initiatives. Food security can be achieved with blockchain
+technology that provides transparent details, creating records and resources verifiable and accessible to respond
+more promptly and efficiently in case of emergencies. One example is Blockchain for Zero Hunger (2017),
+where digital food coupons was distributed via Ethereum-based blockchain to Palestinian immigrants in the
+Jordan’s Azra camps. Blockchain can address the issue of food safety via traceability of products at each stage
+in the supply chain that enables to guarantee good hygiene conditions, identify frauds, risks and unhygienic
+products in the early stage. Some of the initiatives for food safety are Walmart and Kroger that adopted
+blockchain technology for the supply chain Chinese pork and Mexican mangoes. Another impact of blockchain
+technology is the food reliability which is about swapping the food reliably where blockchain enables each
+actor of the supply chain to exchange all details of origin of the product. Downstream Beer Company used the
+blockchain technology where every detail of the beer is recorded in the blockchain which can be accessed by
+customers using their smartphones. Similar companies who adopted blockchain technology for food integrity
+are ecommerce platform JD.com, Grass Roots Farmers’ Cooperative. Another impact of blockchain
+technology includes support to small farmers by forming cooperatives of farmers that enable farmers to obtain
+a larger portion of the value of the crops they grow by joining cooperatives. Blockchain technology is
+incorporated in various waste management and environmental awareness, for instance Plastic Bank was
+established to reduce the plastic waste by rewarding the blockchain-secured digital token for those who bring
+plastic bags to bank recycling centers. The article concludes with blockchain technology having huge potential
+in the future once issues like accessibility, technical and design issues, policy regulating the blockchain
+technologies are resolved.
+
+
+
+Page 6
+In [23], Demestichas, K., Peppes, N., Alexakis, T., & Adamopoulou, E. (2020), presents a summary of how
+blockchain technology implementation has enabled the trace of agri-food products. Author also presents a
+short-term explanation about blockchain’s architecture, smart contracts, consensus methodology and kinds of
+blockchains. Author’s chatted different existing blockchain based frameworks in blend with IoT and smart
+contracts whose central aim is food safety and food security. Blockchain delivers an immutable distributed
+ledger with an encryption mechanism to segment every product’s information at every stage of the supply
+chain with each patron. Authors also highlight some of the businesses who have built blockchain based systems
+for tracking and tracing the agri-food products. Some of them which are IBM Food Trust to trace the origin of
+the Chinese pork products and mangoes, Provenance for tracing fish products, AgriOpenData for tracing whole
+agri-food, AgriDigital for refining whole grain supply chain by making it easy, humble and secure to connect
+farmer and purchaser. Authors also present some of the defies for blockchain implementation despite the
+technology gaining more and more space in the supply chain.
+
+In [24], Torky, M., & Hassanein, A. E. (2020), examines the impact of integrating blockchain technology
+and IoT to develop smart applications to be used in agriculture and also proposed a model that could address
+some of the major defies in IoT based agricultural systems. The author also discusses the challenges of
+developing the blockchain-IoT system for agriculture. The author reveals that integration of blockchain and
+IoT would be a great contribution to revolutionize the digital transformation in various domains including
+agriculture and highlights top five blockchain and IoT predictions by 2030 .In the proposed model, IoT peers
+cooperate and shape trust over the blockchain network. The IoT transactions are broadcasted on the network
+based on the blockchain protocols. The authors proposed the hybrid design form that integrates IoT, Cloud
+computing, Fog computing and Blockchain where blockchain can be used to function as data warehouse and
+transaction monitoring and verifier for dissimilar heterogeneous fog networks which are controlled by cloud.
+Blockchain can provide solutions for (i) sensing problem of IoT devices (ii) energy consumption in IoT
+devices, (iii) network complexity problem of IoT devices, (iv) bandwidth and latency problem of IoT devices
+communications and (v) limited data storage problem of IoT devices. Authors also discussed some
+blockchain’s technical challenges of storage and scalability, forking, latency and throughput.
+
+
+In [25], Revathy, S., & Priya, S. S. (2020, September) proposes a Blockchain-based Producer-Consumer
+Model (BPCM) which permits the farmer to trade their commodities directly to the buyer while avoiding the
+inter agents using the smart contracts that permit the farmer to add more profit. The writer also examines the
+blockchain features along with its application and discusses the profit of farmer’s direct marketing. In the
+outdated producer consumer model, the farmer or producer has to sell their agri-product to the retailer and the
+retailer sells the same to the consumer by growing the price. Here inter agents get more profit as farmers have
+no control in setting the amount. The proposed BPCM is developed using Ethereum, a communal blockchain
+where farmers and consumers are provided with an exceptional identity, and all are connected to the blockchain
+network. The nodes willing to link the BPCM have to verify its identity using Proof of Work (PoW) consensus
+where nodes will not be added to the network if the node fails to prove its individuality. The model limits the
+transactions between the consumers’ nodes that will not let any inter agent who intend to pretend the consumers
+using the smart contract. Here the consumers can purchase the products directly from the farmer at a practical
+price. The transaction can be originated by either producer (farmer) or the consumer with their individual
+identity that generate the block for the transaction. The newly formed block is then broadcasted in the network
+to all the nodes for authentication. The smart contract is used for the authentication of the transaction where it
+checks whether the transaction is requested amongst the farmer nodes and consumer nodes or between the
+consumer nodes. If the transaction is amongst farmer node and consumer nodes, smart contract will execute
+the transaction as lawful. The transaction request from consumer node to consumer node is blocked allowing
+the farmer to sell their products to ‘n’ consumers while limiting the middleman in the identity of the customer
+to earn the revenue. The Proof of Work (PoW) consensus algorithm is used to guarantee that all the nodes in
+the BPCM approve to the transaction. Finally, when the transaction is confirmed, the block is added to the
+chain where the transaction gets implemented. The blockchain ledger is restructured with new transactions and
+each node maintains a replica of the transaction. In this model the transaction is not confirmed if (1) the node
+failed to verify its identity and (2) the transaction initiated is amongst the customer nodes. The proposed model
+aids a unique model where farmers directly can sell their product to buyers where they have control on the
+price and consumers also get product at practical price while maintaining direct relationship with the farmer.
+
+
+Page 7
+
+In, [26] Papa, Semou, (2017), presents how exchanges are recognized between farmers and cooperative,
+between cooperative and the transformer or amongst the transformer and the dealer. As they are not present at
+the time of interchange none of the actors has admission to all of the transaction. So, this transaction can be
+decentralized using block chain technology operating without a vital body. This technology concentrates on
+creating direct relationships while growing confidence and visibility into the movement of goods. Papa Semou
+also termed certification and traceability in agriculture. These traceability techniques will aid to capture, store
+and manage all the data of the product. Finally, the blockchain assurances to not only be limited to the simple
+recording of transactions but also implementing computer programs.
+
+III. EXISTING METHODS & BUSINESS MODELS
+
+The first step of using BCT is always to improve the equilibrium and fairness of the respective industry to
+convey transparency. The system design and communication pattern in such models / architecture is very
+important in order to enable transparency and traceability into the total value chain. A web-built app upon the
+Hyperledger Fabric blockchain framework is described where message movement starts with a user interacting
+with a web-based app whichever by desktop or smartphone, introducing the idea of Commodity Fairness Index
+(CFI) [12]. The request to fetch / write the data, if allowed, is sent to the REST API responsible for generating
+a link amongst server and client. API (that uses queue manager to store request) acknowledges request and
+assigns a matchless key that will be used to receive the blockchain’s wish later on. The examples of requests
+can be to register a farmer, query history from blockchain, update the status and location of a shipment as it
+moves along the supply chain. The message flow passes through API, Nodes, Certifying Authority, Ordering
+Service, Distributed memory-key database, and at the end web/mobile app accepts the response to its new
+request via REST API after querying the distributed ledger expending the unique key.
+
+The case of the agricultural supply chain shows the farmers are underprivileged of their fair part and the
+intermediaries. To eradicate the middleman in supply chain management, BCT can be helpful by the proposed
+method - FARMAR [14]. This process involves of a series of steps where each and every IoT device is kept
+for tracing and all data is added to the blockchain network via a shared ledger. The experimental setup and
+tools used for the FARMAR are BigchainDB, Linux (UBUNTU), Python 3.6, and Monit. BigchainDB (version
+2.0b9) is a database with blockchain features that has great throughput, low latency, powerful query
+functionality, decentralized control, immutable data room, and built-in asset support. Linux (Ubuntu version
+16.04 and above) is the OS for easy, fast installation, and setup with good community support. During the
+development and testing phase, writers have used a fresh version of PYTHON and PIP. The writers have used
+Monit’s (Watchdog) for system observing and fixing errors because one cannot make sure that all the servers
+are running brilliant all the time.
+
+Trading of food also shifted to the online domain with e-commerce growing day by day. BCT has reformed
+many industries due to its robustness, decentralization and end-to-end credibility. To improve trust in security
+issues and transactions, a novel Food Trading System with Consortium Blockchain (FTSCON) was proposed
+[15]. It practices consortium BCT to set permission and authentication for altered roles in food transactions,
+which meet the test of the privacy protection of multi-stakeholders. The architecture of FTSCON includes two
+entities: User node and Scheduling node. The consortium blockchain is made up of three fragments: Block
+containing the transaction data, Consensus mechanism and Smart contract. The consortium blockchain is a
+P2P model and the rights and compulsions of all peers in the P2P network are the equivalent. The algorithm
+of optimized transaction combination is intended for the purpose of serving users find suitable transaction
+objects. It can choose the optimized swapping portfolio for buyers. The virtual double auction mechanism is
+used to eradicate competition. Moreover, a smart-contract life-cycle management method is presented, and
+security analysis shows that FTSCON progresses transaction security and privacy protection. Experimental
+results based on a sequence of data indicate that the proposed algorithm can triumph profit improvement of
+merchants.
+
+There is a significant advantage of employing BCT with IoT in the agriculture domain. A proposed system
+(blockchain based solution) is developed to keep way of the goods and manage the workflow [16]. Front end
+
+
+Page 8
+of the system is developed in JavaScript. Whenever farming goods are conveyed from a farmer’s place, all the
+details about goods (such as size, color, nature, organic or inorganic, cultivation time, humidity, market rate
+etc.) are measured and kept in the blockchain. The model has a User Interface that connects to the Smart
+contract which leads to the creation of blocks in order to store in the blockchain. In the Blockchain, the
+transaction can be effectively created only if constraints specified in the applications are pleased. The
+transactions are the events produced by the nodes/parties in the blockchain. Before adding a transaction to a
+block, the transactions are confirmed by all the parties. A block is linked to the further block in the network
+by including the hash value. The commencement of a transaction is done by invoking the program in a smart
+contract. All the promises to be executed are in the form of condition statements. When all the requirements
+are fulfilled, the action followed by it takes place. When a transaction is effective, next it must be added to a
+block. The records preserved in the blockchain are immutable, values once stored cannot be changed by
+anybody, whereas any person in the SCM can see the documents.
+
+Product suppliers and retailers usually want independent traceability service suppliers who are government-
+certified to examine the products throughout the supply chain. Suppliers need to receive certificates to display
+their products’ source and quality to consumers and to conform to regulations. Retailers need verification of
+the products’ origin and quality. Blockchains nurture continually because the data and code on them are
+immutable. The proposed model, OriginChain, now employs a geographically scattered private blockchain at
+the traceability service provider company, plot is to establish a consortium blockchain, which will include
+other organizations [17]. OriginChain has division offices in three countries and the plan is to establish a
+trustworthy traceability platform that covers other organizations, including government-certified labs, big
+suppliers and retailers that have long term associations with the company. Compared to a public blockchain,
+such a consortium blockchain (i.e., OriginChain a private blockchain) can accomplish better and cost less.
+Product suppliers or retailers accomplish product or enterprise information through the product-and-enterprise-
+management module. They access the information on the blockchain through a webserver introduced by
+OriginChain. After the traceability service provider authenticates an application from a product supplier, both
+parties sign a legal agreement about what traceability services are concealed. OriginChain creates a “smart
+contract” that represents the legal settlement.
+
+SN
+Methods / Models
+Author (s)
+Title
+Journal / Conference (Year)
+Ref.
+1.
+OriginChain (for product
+traceability)
+Q. Lu & X. Xu
+Adaptable Blockchain-based Systems: A
+Case Study for Product Traceability
+IEEE Software (Volume: 34,
+Issue: 06, 2017)
+[17]
+2.
+Food Trading System with
+COnsortium blockchaiN
+(FTSCON)
+Z. Hao et. al.
+Novel Automatic Food Trading System
+Using Consortium Blockchain
+Arabian Journal for Science and
+Engineering (2019)
+[15]
+3.
+Commodity Fairness Index
+(CFI) for Coffee Value
+Chain
+F. Mittatton &
+L. Amado
+Fairness, Transparency and Traceability
+in the Coffee Value Chain through
+Blockchain innovation
+IEEE Conference on Technology
+and Entrepreneurship - Virtual
+(ICTE-V, 2020)
+[12]
+4.
+FARMer And Rely
+(FARMAR)
+M.D. Borah
+et.al.
+Supply Chain Management in
+Agriculture using Blockchain and IoT
+Springer Nature Singapore
+(Book Chapter, 2020)
+[14]
+5.
+BCT-based model for
+SCM
+V. Sudha et. al.
+Blockchain-based Solution to improve
+Supply Chain Management in Indian
+Agriculture
+IEEE International Conference
+on AI and SS (ICAIS 2021)
+[16]
+Table-1: Summary of proposed existing methods / business models from 2017 - 2021 [12] [14] [15] [16] [17]
+
+IV. CASE STUDY FOR SUGARCHAIN
+
+Our case study for sugarcane farming is based upon 15 questionnaires for the sugarcane farmers. The
+questionnaire is listed in the Appendix section of this paper. Forty sugarcane farmers from several states of
+India have participated in the case study and data collection process. We have used Google Forms to collect
+the primary data from the farmers. The results have been represented in various pie-charts and bar graphs
+making it easy for analyzing. The data collection and case study took almost 05 - 06 months due to various
+obstacles and hindrances (ongoing Covid and its variants in India, lockdown imposed by governments, lack of
+
+
+Page 9
+communication and language representation for farmers, nature of primary data etc.). Despite these, we were
+able to collect primary data from 40 farmers which represents the real and exact problems faced by sugarcane
+farmers.
+
+Out of 40 sugarcane farmer responses, our first question, “Q1: For how many years have you been doing
+sugarcane farming?” has a mixed response of answers (67.5% stated more than 10 years, whereas 17.5% and
+15% stated as 06-10 years and 01-05 years respectively). In our second question (Q2: Is sugarcane farming
+the major farm for you?) 80% have sugarcane as their major farm whereas 20% have indicated rice, wheat,
+grains, banana and other crops as their major farm beside sugarcanes. The third question of our questionnaire,
+Q3: How long (in months) does it take approximately to get the sugarcane harvest? has several answers but
+all answers are between a range of 8 months - 11 months. 75% of the responses said “Yes” for the fourth
+question, Q4: Does your production cost is recovered by selling on a price set by the government? whereas
+20% and 5% responded as “No” and “Don’t Know” respectively. Like the answer of Q3, the answer of Q5 (At
+what rate do the sugar mills generally purchase your sugarcane?) is also in the mixed response range of Rs.
+3 - Rs. 12 (INR).
+
+One major headache for sugarcane farmers can be clearly seen in the response to the sixth question (Q6: Is the
+sugarcane affected by worms/viruses?) 90% stated that their sugarcane is affected by worms/viruses, whereas
+5% sugarcane farmers said “No”, and the other 5% farmers said, “Don’t Know”. Another major issue for
+sugarcane farmers is the payment for their sugarcane purchased. Majority of the farmers in our survey (92.5%)
+stated that they only get paid after a few times (say 15 days, 1 month or more than that), whereas 7.5 % of the
+farmers only said they get their payment instantly (within a week or less than within a week). This problem of
+payment delay was asked to sugarcane farmers as our seventh question i.e., for Q7: Did you get paid for your
+sugarcane sold instantly or after a few times?
+
+Beside the problems of sugarcane worms/viruses and late payment, farmers have pointed out various other
+problems in response to our eighth question (Q8: Can you say one major problem, while cultivating and/or
+harvesting the sugarcane?) of the questionnaire. We requested the participating farmers to point out one major
+problem at the time of cultivating or harvesting the sugarcane, in which 77.5% of the farmers have specified
+the problem. The common problems as raised by the sugarcane farmers are labor shortage (at both cultivating
+and harvesting times), water or irrigation problem, lack of manpower, expensive labor cost during loading and
+unloading of sugarcane (after harvesting), lack of seeds and fertilizers, lack of harvesting machines, lack of
+medicines for sugarcane, need to be moisture etc. Only 22.5% of farmers have denied saying or mention major
+problems for sugarcane farmers.
+
+The above stated problems by almost 78% farmers (in Q8) isn’t the end of the problem for farmers. Two major
+problems are clearly identified in response to Q9 and Q10. Finding the buyer (at their own effort and contact)
+for their sugarcane after harvesting it, is another dark side of sugarcane farming. In response to Q9 (Do you
+need to find a buyer, or can you easily sell the sugarcane?), 70% of the farmers agreed that they should find a
+buyer whereas 30% said we can easily sell the sugarcane without finding the buyer. Another serious issue
+outlined is at Q10 by 80% of farmers stating that weather/climate is affecting the sugarcane farming. Only
+15% of the farmers replied with a “No” and 5% of the farmers said “Don’t know” for the answer to the question
+(Q10: Is weather impacting/affecting the sugarcane farming?).
+
+
+[Q1] For how many years have you been doing sugarcane farming?
+40 responses
+01-05 years
+06-10 years
+67.5%
+>10 years
+15%
+17.5%[Q2] Is sugarcane farming the primary (major) farm for you?
+40 responses
+Yes, sugarcane is major farm
+No
+20%
+80%
+Page 10
+
+
+40 responses
+Yes
+No
+20%
+Don't know
+75%[Q7] Did you get paid for your sugarcane sold instantly or after a few times?
+40 responses
+Instantly
+No after few times, (1 week/15 days/1
+month etc.)
+92.5%
+7 .5%[Q6] Is the sugarcane affected by worms/viruses?
+40 responses
+Yes
+No
+Don't know
+%06[Q8] Can you say one major problem, while cultivating and/or while harvesting the sugarcane?
+40o responses
+Yes
+No
+22.5%
+77.5%[Q10] Is weather impacting/affecting the sugarcane farming?
+40 responses
+Yes
+No
+15%
+Don't know
+80%[Q9] Do you need to find a buyer, or can you easily sell the sugarcane?
+40 responses
+Yes, find a buyer
+No, we don't need to find the buyer
+70%
+Don't know
+30%[Q12]Howsugarcanereachesthefactoryforfurtherprocessing?
+40responses
+Byfarmers own-self
+By government agencies
+22.5%
+Other's
+75%[Q11] lsthefertilizersandseedsforsugarcaneavailableeasily?
+40responses
+Yes
+No
+27.5%
+Don't know
+72.5%[Q13]Isthereanyimpactofwildanimalsinsugarcanefarming?
+40 responses
+Yes
+40%
+No
+Don't know
+60%[Q14]Arethereanyproblemsfacedbyyou(liketransportations,gov.taxesoranyother)?
+40 responses
+Yes
+40%
+No
+Don't know
+57.5%
+Page 11
+The availability of fertilizers and seeds for sugarcane
+is clearly mentioned by the farmers in response to the
+answer to the 11th question (Q11: Is the fertilizers and
+seeds for sugarcane available easily?). Out of the
+three options provided in the Q11, 72.5% said they get
+the fertilizers and seeds available easily whereas
+27.5% on the contrary said the fertilizers and seeds are
+not available easily. Although the fertilizer is
+available easily, the transportation of sugarcane is not
+available easily, which is mentioned in Q12 (How
+sugarcane
+reaches
+the
+factory
+for
+further
+processing?) of the questionnaire. 75% of farmers mentioned that they have to arrange the vehicles on their
+own from fields to the factory, but 2.5% only agreed that government help for such transportation and 22.5%
+stated “others” to reach the sugarcane to the factory.
+
+The impact of wild animals (say, some wild cats, wild pigs, foxes, even leopards and tiger etc. apart from rats,
+snakes, and mice) also have an impact in the sugarcane farming as mentioned by farmers to the answer to 13th
+question (Q13: Is there any impact of wild animals in sugarcane farming?). Sugarcane fields are the homes to
+a number of insects and reptiles as mentioned by farmers, as many animals eat and damage the sugarcane
+crops. Almost 60% of the sugarcane farmers agreed that there is the impact of sugarcane farming whereas only
+40% of the sugarcane farmers stated that there is no such impact.
+
+The answer to the 14th question (Q14: Are there any problems faced by you?) about any other problems faced
+by farmers has pointed out several short-term and long-term difficulties of sugarcane farmers. 57.5 % of
+farmers have mentioned problems faced whereas 40% mentioned “no” problem, but 2.5% of farmers said
+“don’t know” about that. Despite the lack of fertilizers, technical experts, late payments of sugarcane, farmers
+have pointed out transportation (truck/tractor) and labor shortage problems. Farmers also mentioned the issue
+of stuck vehicles (tractor / truck) after loading the sugarcane due to unpaved and narrow roads in many villages
+and districts. The last question of the case study is the 15th question (Q15: How do you get seeds for cultivating
+the sugarcane?), which says that only 7.5% of farmers get seeds from government offices. Majority of the
+farmers depend on either private seed’s shop (17.5%) or other ways (75%) to get the seeds for sugarcane.
+
+V. PROPOSED ALGORITHM & FLOWCHART
+
+The Algorithm A1 (SugarChain) describes a high-level process of user registration and login to the
+SugarChain. If the user is already registered, then he/she can login to the system. Upon the successful login,
+and user session is created. The algorithm also shows the process for password recovery. If the user is new
+then he/she has to provide details (name, id, email, and phone) as input to register. Once a user is registered
+successfully, a userID (public key) is returned to the user that is used for login to the system. The Flowchart
+F1 is a pictorial representation of Algorithm A1.
+
+The Algorithm A2 (User Registration) describes the process of user registration. User is asked for userID as
+input to start the registration. If userID is not found in the blockchain then the user is asked to enter name,
+email phone, password for registration. All user details are encrypted before storing in the blockchain that
+provides security for user details. Once details are stored in the blockchain successfully, the system returns a
+userID (public key). The userID and password (set by user) is used to login to the system. Flowchart F2 above
+is a graphical representation of Algorithm A2.
+
+Algorithm A3 (User Login) illustrates the procedure for login and password recovery. Registered users can
+login to the system by using userID (public key) and password. If login is successful, then user_session is
+returned where the user is able to perform the transaction until the session expires. If the user's login is
+unsuccessful, then the user has to go for a password recovery process where the user is asked a series of security
+questions. Once the user provides correct answers, then user_session is returned. If password could not be
+recovered, then the user is a registered user. Flowchart F3 is a pictorial representation of the Algorithm A3.
+
+[Q15] Howdoyougetseedsforcultivatingthesugarcane?
+40 responses
+Governmentagricultureoffice
+Private seed's shop
+75%
+Other's
+7.5%
+17.5%
+Page 12
+
+Algorithm A4 (User Transaction) illustrates the process for performing transactions once the user has logged
+in successfully. Users can update product details like quality of sugarcane, location of farm, quantity, sugar
+mill information, payment, and other transactional data. All the information is saved in the blockchain. Once
+the data is stored in the blockchain, the system returns a transactionID which is used to track the product in
+the supply chain. The Flowchart F4 is a graphical representation of Algorithm A4.
+
+Algorithm-1 (A1): SugarChain
+Flowchart-1 (F1): SugarChain
+1. START
+2.
+If new_user then
+3.
+
+i. Enter details (name, id, email, phone)
+4.
+
+ii. Return userID (public key)
+5.
+End If
+6.
+Else
+7.
+
+i. Enter login credentials
+8.
+
+If login successful then
+9.
+
+
+ii. Return user_session
+10.
+
+End If
+11.
+
+
+If valid user_session then
+12.
+
+ iii. Update info
+13.
+
+
+
+iv. Return transaction_ID
+14.
+
+
+End If
+15.
+
+
+Else
+16.
+
+
+
+iii. Session expired
+17.
+
+
+End Else
+18.
+
+Else
+19.
+
+ Print “Login Unsuccessful”
+20.
+
+
+ii. Go to A3
+21.
+
+
+If password recovered then
+22.
+
+
+
+Return user_session
+23.
+
+
+Else
+24.
+
+
+
+Go to A2
+25.
+
+
+End Else
+26.
+
+End Else
+27.
+End Else
+28. END
+
+
+
+Start
+No
+Yes
+New User?
+Enter loginln Details
+EnterName,D,EmailPhone
+Return Userld(Public Key)
+No
+Login Unsuccessful
+LoginSuccessful?
+Yes
+Yes
+Return user_session
+Password
+Recovered?
+A2
+No
+ 10 years
+[Q2] Is sugarcane farming the primary (major) farm for you? (a) yes
+(b) no, ________ is major farm
+[Q3] How long (in months) does it take approximately to get the sugarcane harvest? __________ months
+[Q4] Do your production cost is recovered by selling on a price set by the government? (a) yes
+(b) no
+(c) don’t know
+[Q5] At what rate (price per kg) do the sugar mills generally purchase your sugarcane? __________ per kg
+[Q6] Is sugarcane affected by worms/viruses? (a) yes (b) no (c) don’t know
+[Q7] Did you get paid for your sugarcane sold instantly or after a few times? (a) instantly (b) no after few times, ________ days
+[Q8] Can you say one major problem, while cultivating and/or while harvesting the sugarcane? (a) yes _____________ (b) no
+[Q9] Do you need to find a buyer, or can you easily sell the sugarcane? (a) find buyer (b) no need to find the buyer (c) don’t know
+[Q10] Is weather impacting/affecting sugarcane farming? (a) yes (b) no
+(c) don’t know
+[Q11] Is fertilizer and seeds for sugarcane available easily? (a) yes (b) no (c) don’t know
+[Q12] How sugarcane reaches the factory for further processing? (a) by farmers (b) by government agencies (c) others
+[Q13] Is there any impact of wild animals in sugarcane farming? (a) yes (b) no (c) don’t know
+[Q14] Are there any problems faced by you (like transportations, gov. taxes or any other)? (a) yes ______ (b) no (c) don’t know
+[Q15] How do you get seeds for cultivating / harvesting sugarcane? (a) government agriculture office (b) private seeds shop (c) others
+
+A2: Primary data collected from farmers (based on our approved questionnaire):
+1. [NK] Data-01-Farmer (24 June 2021, Thu) 15. [DK] Data-07-Farmer (28 Oct 2021, Thu) 29. [DK] Data-05-Farmer (22 Sep 2021, Wed)
+2. [NK] Data-02-Farmer (25 June 2021, Fri) 16. [DC] Data-01-Farmer (19 Aug 2021, Thu) 30. [DK] Data-08-Farmer (28 Oct 2021, Thu)
+3. [NK] Data-03-Farmer (26 Jun 2021, Sat) 17. [DC] Data-02-Farmer (19 Aug 2021, Thu) 31. [CSB] Data-01-Farmer (14 Aug 2021, Sat)
+4. [NK] Data-04-Farmer (30 Jun 2021, Wed) 18. [DC] Data-03-Farmer (19 Aug 2021, Thu) 32. [CSB] Data-02-Farmer (14 Aug 2021, Sat)
+5. [NK] Data-05-Farmer (02 July 2021, Fri) 19. [DC] Data-04-Farmer (19 Aug 2021, Thu) 33. [CSB] Data-03-Farmer (14 Aug 2021, Sat)
+6. [NK] Data-06-Farmer (03 July 2021, Sat) 20. [DC] Data-05-Farmer (19 Aug 2021, Thu) 34. [CSB] Data-04-Farmer (14 Aug 2021, Sat)
+7. [NK] Data-07-Farmer (06 July 2021, Tue) 21. [DC] Data-06-Farmer (30 Aug 2021, Mon) 35. [CSB] Data-05-Farmer (26 Aug 2021, Thu)
+8. [NK] Data-08-Farmer (06 July 2021, Tue) 22. [DC] Data-07-Farmer (30 Aug 2021, Mon) 36. [CSB] Data-06-Farmer (29 Aug 2021, Sun)
+
+
+Page 17
+9. [NK] Data-09-Farmer (28 July 2021, Wed) 23. [DC] Data-08-Farmer (30 Aug 2021, Mon) 37. [CSB] Data-07-Farmer (12 Sep 2021, Sun)
+10. [NK] Data-10-Farmer (11 Aug 2021, Wed) 24. [DC] Data-09-Farmer (1 Sept 2021, Wed) 38. [CSB] Data-08-Farmer (12 Sep 2021, Sun)
+11. [NK] Data-11-Farmer (20 Aug 2021, Fri) 25. [DK] Data-01-Farmer (12 July 2021, Mon) 39. [NK] Data-14-Farmer (08 Dec 2021, Wed)
+12. [NK] Data-12-Farmer (09 Sep 2021, Thu) 26. [DK] Data-02-Farmer (16 Aug 2021, Mon) 40. [NK] Data-15-Farmer (28 Dec 2021, Tue)
+13. [NK] Data-13-Farmer (21 Sep 2021, Tue) 27. [DK] Data-03-Farmer (16 Aug 2021, Mon)
+
+
+14. [DK] Data-06-Farmer (28 Oct 2021, Thu) 28. [DK] Data-04-Farmer (17 Dec 2021, Fri)
+
+
+
+
+REFERENCES
+
+[1] Focus Economics - Economic Forecasts from the World’s Leading Economists, The world’s top 5 largest economies in 2024, https://www.focus-
+economics.com/blog/the-largest-economies-in-the-world
+[2] M.L. Dotaniya et. al. (2016), Use of sugarcane industrial by-products for improving sugarcane productivity and soil health, International Journal
+of Recycling of Organic Waste in Agriculture, SpringerLink, https://link.springer.com/article/10.1007/s40093-016-0132-8, Published: 29 June 2016
+[3] R. Tongia (2019), India’s Biggest Challenge: The Future of Farming, The India Forum (TIF) - A journal magazine on contemporary issues,
+https://www.theindiaforum.in/article/india-s-biggest-challenge-future-farming Issue: 04 October 2019
+[4] N. Kshetri et. al. (2022), Blockchain Technology Applications for Cyber Defense and Cybersecurity: A Survey and Solutions, International Journal
+of
+Advanced
+Computer
+Science
+and
+Applications
+(IJACSA),
+Volume:
+13,
+Number:
+11,
+2022,
+Page:
+364-370,
+DOI:
+https://dx.doi.org/10.14569/IJACSA.2022.0131140, December 2022
+[5] Santoshi, N., Bitcoin: A Peer-to-Peer Electronic Cash System - The Bitcoin Whitepaper (2009), https://www.bitcoinpaper.info/bitcoinpaper-html/
+[6] N. Kshetri (2021), Blockchain Technology for Improving Transparency and Citizen’s Trust, Book series: Advances in Information and
+Communication, AISC Volume: 1363, Online ISBN: 978-3-030-73100-7, pp: 716-735, https://link.springer.com/chapter/10.1007%2F978-3-030-73100-
+7_52, Springer Nature Switzerland AG 2021, DOI: https://doi.org/10.1007/978-3-030-73100-7_52, First online: 13 April 2021
+[7] Cong, L. W. & He. Z., Blockchain disruption and smart contracts, The Review of Financial Studies, Vol-32, Issue-5, PP: 1754-1797 (May 2019)
+[8] Borrows, M. et. al., The Future of Public Service Identity : Blockchain. Reform Research Trust, London (November 2017),
+https://reform.co.uk/sites/default/files/2018-10/Blockchain%20report_WEB%20%281%29.pdf
+[9] Sudha, V., Kalaiselvi, R., & Shanmughasundaram, P. (2021, March). Blockchain based solution to improve the Supply Chain Management in Indian
+agriculture. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 1289-1292). IEEE.
+[10] N. Kshetri et. al. (2021), BCT-AA: A survey of Blockchain-based Applications in context with Agribusiness, SSRN Electronic Journal (May 2021),
+DOI: https://dx.doi.org/10.2139/ssrn.3834004, Electronic copy available at: https://ssrn.com/abstract=3834004
+[11] Sengupta, U., & Kim, H. M. (2021). Meeting Changing Customer Requirements in Food and Agriculture through the Application of Blockchain
+Technology. Frontiers in Blockchain, 4, 5.
+[12] F. Miatton & L. Amado (2020), Fairness, Transparency and Traceability in the Coffee Value Chain through Blockchain Innovation, Proceedings
+of the IEEE 2020 Conference on Technology and Entrepreneurship - Virtual (ICTE-V) April 2020, https://doi.org/10.1109/ICTE-V50708.2020.9113785
+[13] H. Fang et. al. (2020), Blockchain technology in Current Agricultural Systems: from techniques to applications, IEEE Access (Date of publication:
+August 5, 2020, Volume 8 2020, 143920 - 143937), August 2020, DOI 10.1109/ACCCESS.2020.3014522
+[14] M. D. Borah et. al. (2019), Supply Chain Management in Agriculture using Blockchain and IoT, Book chapter: Advanced Applications of
+Blockchain Technology, Studies in Big Data (Volume 60), Springer Nature Singapore 2020, https://doi.org/10.1007/978-981-13-8775-3_11
+[15] D. Mao et. al. (2019), Novel Automatic Food Trading System Using Consortium Blockchain, Arabian Journal for Science and Engineering
+44:3439-3455 Springer, htpps://doi.org/10.1007/s13369-018-3537-z, Published online: 10 September 2018
+[16] V. Sudha et. al. (2021), Blockchain based solution to improve the Supply Chain Management in Indian agriculture, IEEE Xplore, 21021
+International Conference on Artificial Intelligence and Smart Systems (ICAIS 2021), htpps://doi.org/10.1109ICAIS50930.2021.9395867, Date of
+Conference: 25-27 March 2021
+[17] Q. Lu & X. Xu (2017), Adaptable Blockchain-based Systems, A Case Study for Product Traceability, IEEE Software (Volume: 34, Issue: 6 Nov /
+Dec 2017), htpps://doi.org/10.1109/MS.2017.4121227, Date of Publication: 13 November 2017
+[18] T. Rocha et. al. (2021), SmartAgriChain: A Blockchain based solution for Agrifood Certification and Supply chain management, International
+Journal of Environment, Agriculture, and Biotechnology (Vol-6, Issue-3, May-Jun2021), ISSN: 2456-1878, htpps://dx.doi.org/10.22161/ijeab.63.25,
+Available online: 30 June 2021
+[19] Gunasekera, D., & Valenzuela, E. (2020). Adoption of Blockchain Technology in the Australian Grains Trade: An Assessment of Potential
+Economic Effects. Economic Papers: A journal of applied economics and policy, 39(2), 152-161.
+[20] Lin, J., Shen, Z., Zhang, A., & Chai, Y. (2018, July). Blockchain and IoT based food traceability for smart agriculture. In Proceedings of the 3rd
+International Conference on Crowd Science and Engineering (pp. 1-6).
+[21] Xiong, H., Dalhaus, T., Wang, P., Huang, J. (2020). Blockchain technology for agriculture: applications & rationale. Frontiers in Blockchain, 3, 7
+[22] Kamilaris, A., Fonts, A., & Prenafeta-Boldύ, F. X. (2019). The rise of blockchain technology in agriculture and food supply chains. Trends in Food
+Science & Technology, 91, 640-652.
+[23] Demestichas, K., Peppes, N., Alexakis, T., & Adamopoulou, E. (2020). Blockchain in Agriculture Traceability Systems: A Review. Applied
+Sciences, 10(12), 4113.
+[24] Torky, M., & Hassanein, A. E. (2020). Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and
+challenges. Computers and Electronics in Agriculture, 105476.
+[25] Revathy, S., & Priya, S. S. (2020, September). Blockchain based Producer-Consumer Model for Farmers. In 2020 4th International Conference
+on Computer, Communication and Signal Processing (ICCCSP) (pp. 1-5). IEEE.
+[26] Faye, P. S. (2017). Use of Blockchain Technology in Agribusiness: Transparency and Monitoring in Agricultural Trade. Atintis Press, 40.
+
+
diff --git a/ztFAT4oBgHgl3EQfBhzw/content/tmp_files/load_file.txt b/ztFAT4oBgHgl3EQfBhzw/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9cd56f8c0326ca13d50776b063de0f5b80fd8f8c
--- /dev/null
+++ b/ztFAT4oBgHgl3EQfBhzw/content/tmp_files/load_file.txt
@@ -0,0 +1,829 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf,len=828
+page_content='Page 1 SugarChain: Blockchain technology meets Agriculture - The case study and analysis of the Indian sugarcane farming Naresh Kshetri*1, Chandra Sekhar Bhusal2, Dilip Kumar3, Devendra Chapagain4 1Lindenwood University, USA, NKshetri@lindenwood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='edu, 2Federation University, Australia, Chandra045Bhusal@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com 3United University, India, DilipKumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='phdcs21@uniteduniversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='in, 4Tribhuvan University, Nepal, DevCpgn@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Not only in our country and Asia, but the agriculture sector is also lagging all over the world while using new technologies and innovations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Farmers are not getting the accurate price and compensation of their products because of several reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The intermediate persons or say middlemen are controlling the prices and product delivery on their own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Due to lack of education, technological advancement, market knowledge, post- harvesting processes, and middleman involvement, farmers are always deprived of their actual pay and efforts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The use of blockchain technology can help such farmers to automate the process with high trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' We have presented our case study and analysis for the Indian sugarcane farming with data collected from farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The system implementation, testing, and result analysis has been shown based on the case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The overall purpose of our research is to emphasize and motivate the agricultural products and benefit the farmers with the use of blockchain technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Keywords: Blockchain technology, Agriculture, Trust, Analysis, Case study, System implementation, Sugarcane farming I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' INTRODUCTION Sugarcane is a widely grown crop in India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Even sugarcane plants spread in most of the sub-continent in India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In India, sugarcane grows over 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='18 lakh hectares and India is set to become the fourth greatest growing financial system in the world (with USD 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='9 trillion in 2024 as Germany) next to the USA (25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='3 trillion), China (20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='6 trillion) and Japan (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='6 trillion) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Sugarcane (cultivated in more than 109 countries) is the primary root of sugar except the sugar juice is used for producing white sugar, brown sugar and jaggery (also called Gur).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Other than these, the main products (by-products) of the sugarcane production are bagasse (food products) and molasses (viscous liquid produced during sugar production from raw juice) [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Bagasse is primarily used as fuel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It is also used for invention of compressed fiber board paper, plastic and other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Molasses is castoff in distilleries for developing of ethyl alcohol, butyl alcohol, citric acid etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' More specifically, we can say that it delivers employment to millions of individuals directly or indirectly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' But actually, there are various problems faced by farmers of India like varieties, manufacture technologies, farm outfits, climate variation, artifact development, value accumulation, marketing etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Actually, the former government has taken a lot of decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Perhaps there is no improvement in earning for farmers in India and needs to shift from simple farming to more efficient, justifiable, and productive farming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' India is an agricultural kingdom and agriculture is only ~16% of GDP in India but the prime sector for occupation [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In this paper we have explored the possibilities of using the blockchain technologies in sugarcane farming so that automation in sugarcane agriculture can improve production quality, quantity and efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Farmers of sugarcane can create a global market and Blockchain technology can be one of the important pillars for this evolution of technology in agribusiness in addition to cybersecurity and cyber defense [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' As blockchain technology is based on transparency, security and authenticity, it may be a great value chain to better understand possible emerging technologies in the field of agribusiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Corresponding author, Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' of Math, CS & IT, Lindenwood University, MO, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Page 2 Blockchain is the technology after the world’s common cryptocurrency i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Bitcoin [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The main advantage of the blockchain technology was the probability of allowing information interchange between the parties without physical occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In dissimilarity to the client-server architecture, blockchain technology is grounded on peer-to-peer (P2P) architecture [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The power or ability here doesn’t relax on a sole computer rather the power rests on all the contestants of networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Distributed peer-to-peer environment of blockchain- based technologies has no sole point of catastrophe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It uses the popular technical advancements like hashing, digital signatures, consensus mechanisms and difficulty correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The consensus algorithm engaged by blockchain has proved the security, scalability and confidentiality of the podium via operating on 100% verification and 0% trust [7] [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The existing agriculture industry lacks the efficient food traceability method that can trail and monitor the entire life cycle of food making that includes the processes of food raw substantial cultivation/breeding, processing, transporting, warehousing and marketing that involve a bulky number of disloyal business parties [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Food traceability attempts to record, store and transfer sufficient data about food, feed, food-producing creatures or substances at all the phases of the agricultural supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Such statistics is crucial to check the product for security and eminence control and can be sketched upward or downward at any time [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Lack of trust among the countless actors of the supply chain and distrust of customers about the quality of product are other major issues seen in the traditional agricultural supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain as a circulated ledger where data is immutable and can be accessed by all the participating actors promises to solve the major problems of current agribusiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Following are approximate of the profits of using blockchain technology in agriculture: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" Product Traceability: Every information is recorded at each stage of the product's journey to the customer's table and is visible to all participants." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The customers are able to trace the source and quality of the product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Such admission to the product’s information ensures the consumer about the safety and quality of the products they consume [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The immutable and permanent stored information in the blockchain enables tracing much quicker, efficient, and easier [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Building Customer Trust: The immutable information stored in blockchain can be accessed by the customer using their mobile devices that enable them to trace the critical information like its origin, how they are grown and processed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" This reliefs to enhance the customer's trust and sureness in the product they ingest [10]." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Enhance Supply chain: Blockchain-enabled agriculture supply chain comforts to deliver real-time information to all supply chain participants improving the efficiency and transparency of the agricultural supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The birthplace and quality of the product can be proved at any point thus decreasing and removing product waste in their process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The flow of immutable, real-time, and quality info advantage to accomplish the inventory and charge dynamically [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Ensure Food Quality: Blockchain along with IoT enables us to capture real-time information like product’s condition (humidity, temperature) during the transition between various actors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Such information helps to ensure the quality of the product at every stage of the supply chain [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Increase Efficiency in Supply Chain: The product’s information that can be accessed by all the participating actors not only build trust among each other but also help to make supply chain efficient and effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The issue of timely payment to different stakeholders in the supply chain also shows a major role in well-organized supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The smart contract as part of blockchain qualifies it to be a reliable means of distribution of payment among various actors in an efficient and well-timed manner as conditions of each contract are met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' No actors have to wait for their payment as payments are initiated automatically from the fund that has been authorized by the bursars when certain conditions are met [10] [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Our study and analysis is arranged as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In Section II, we present a brief outline of background study, historical works and try to identify the necessity and tradition of BCT in the agriculture sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' We then discuss in Section III, about the existing methods and models used (including their impact and possibility for Indian sugarcane farming) followed by the case study (based on the primary data i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', questionnaire developed for farmers) in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' We have recommended the BCT model to help farmers for their actual pay and efforts Page 3 and to automate the process with high trust in Section V with system implementations and testing of our research work in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In Section VII, we presented the analysis of our study and outcomes along with the conclusions and possible forthcoming scope in Section VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' LITERATURE REVIEW AND RELATED WORK In [10], N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Kshetri et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021), surveyed many former works in the field of BCT and its applications linked to agribusiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The paper also deliberates the advantages and situations through current improvement of the agribusiness zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It is witnessed that the transparency and trust of BCT with its widespread network architecture (using blocks of data and information) can profit agribusiness in several magnitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The authors have also projected a blockchain-based agribusiness model (that is of unique nature) for info transparency and refining the efficiency of the communal sector in absence of third parties in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It looks that the ground-breaking technology, BCT, can help several sectors including the agribusiness zone too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Customers and farmers (along with all agribusiness consumers) both are profited with the use of BCT-based agribusiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The effectiveness in the supply chain can be enhanced and delivered real-time to all affiliates that can alter the inventory and charge of the product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [12], F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Miatton and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Amado (2020), introduced the notion of Commodity Fairness Index used to size the inequality, or economic imbalance in a commodity value chain, and estimates it in the case of Colombian coffee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Coffee is one of the most broadly consumed beverages in the ecosphere and internationally merchandised commodities, but the coffee value chain is impervious and disturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The application of BCT to the coffee manufacturing enables inclusive business models that rewards quality and tough work, and in turn converts into greater trust, confidence and fairness across the complete industry as well as among end buyers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The authors also described the system architecture of a network application built upon Hyperledger Fabric that surfaces the way to improve coffee farmers’ survives by bringing transparency and traceability into the whole value chain and refining its fairness as an effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [13], H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Fang et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020), provided a review to study both techniques and applications of BCT in the agricultural zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' First, the practical elements, with data structure, cryptographic methods, and consensus mechanisms are clarified in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Second, the prevailing agricultural blockchain applications are classified and reviewed to reveal the use of the blockchain techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Increasingly, BCT is drawing significant attention in numerous agricultural applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' These applications could please the diverse needs in the ecosystem of agricultural products, perfection of contract exchanges and transaction efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The authors also provided widespread platforms and smart contracts to display how practitioners use them to develop agricultural applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Thirdly, the authors also identified key defies in agricultural systems, and debated the efforts and solutions to challenge these problems with an upgraded food supply chain (in post COVID-19 epidemic) as an sketch to demonstrate an effective practice of BCT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [14], M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Borah et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2019), implemented an easy web-based stage in Agricultural Supply Chain Management (SCM) using BCT, which is a decentralized safeguarded system to get transparency, enhanced product value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain plays a vivacious role in FARMAR to track and trace the source of food products in the food supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' SCM is a crucial business process in all domains of the economy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' SCM uses precise processes to connect from producer to consumer necessity through a chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Additional advantage of using BCT in FARMAR is security where hacking or altering of the existing data is difficult by any intermediary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' As an add-on to this process, IoT devices (Mobile phone-based Android apps) are used to modernize the real time quality and transfer time of the product in FARMAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It is integrated for upgraded traceability and usability of the products in the supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The writers also believe that the FARMER aims to succeed these goals by developing a web application where FARMAR makes a value chain of integrity from farmstead to fork by using BCT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [15], Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Hao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2019), proposed an automatic commercial transaction mechanism i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', consortium blockchain model where food can be exported independent of a favorite third party.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The novel Food Trading System with COnsortium blockchaiN (FTSCON) improves trust and security concerns in transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' FTSCON uses consortium BCT to set authorization and authentication for altered roles in food transactions, Page 4 which meet the defy of the privacy protection of multi-stakeholders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Orthodox food trading stages face several issues, such as hurriedly to find trading objects and shelter the reliability of transaction data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' With e-commerce developing quickly, food trading has also recently moved to the online domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain has reformed many industries owing to its robustness, decentralization, and end-to-end credibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Security analysis displays that FTSCON progresses transaction security and privacy protection by announcing a smart-contract life-cycle supervision method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Experiment outcomes based on a series of data signpost that the proposed algorithm can triumph profit improvement of traders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [16], V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Sudha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021), recommended a blockchain based supply chain management system that would crack all the problems of outdated and poor supply chain administration in India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The paper highlights the major glitches faced by Indian farmers: (i) absence of facility to stock their products, (ii) incapable to monitor the product’s standing and sell them with income.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The proposed system is supposed to provide transparency about the product’s status while preserving a good connection among producer and consumer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" Authors present the architecture of the proposed system where product information is composed from the farmers using the application beforehand they are conveyed from the farmer's place and this information is confirmed by the smart contract." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Once all the information is established correct, it is warehoused in the blockchain network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Different sensors (IoT agents) are located in the storage place and transportation vehicle to measure temperature, humidity and existence of chemicals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' All the complete information recorded by sensors are stored in a blockchain that lets together farmers and consumers know the status of the products at many stages of the supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The system also aids to track the varying market price and integrate the recent market price in the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [17], Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Lu & X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Hu (2018), developed a model called OriginChain from the case study for Product Traceability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' OriginChain restructures the service provider’s present traceability system by interchanging the central database with a blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' OriginChain offers transparent tamper-proof traceability data, enhances the data’s availability, and automates regulatory-compliance checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The authors have implemented and tested OriginChain under realistic circumstances employing the user’s traceability information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' OriginChain currently employs a geologically distributed private blockchain at the traceability service provider, which has branch offices in three countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The greatest visions that authors learned is the design (impact on cost, if it is public blockchain because of more lines of code) and adaptability (quality attribute required by many industrial projects that are dynamic, also means the smart contract to be modernized by a number of authorities beyond the threshold demarcated in the factory contract) of blockchain-based systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [18], T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Rocha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021), proposed SmartAgriChain that anticipates to implement a supply chain and certification system based on Hyperledger Sawtooth that will be proficient of identity management, hierarchical users/organizations, significant scalability, little costs, little energy consumption and compatibility with legacy schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The proposed result does not compromise currently existing features, but it will, however, permit all the actors to take part in the agri-food supply chain system and persistently monitor its actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Management of certification issuance and product counterfeit proofs in the agri-food supply chain are very serious and reaching glitches nowadays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The currently existing management systems for this process are either obsolete or have significant issues when it comes to security, trust, traceability, management or product certification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The introduction of BCT, due to its core properties, has the potential to crack identity, ownership, data temper, traceability, and certification issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The writers also explored and explained the system design and architecture in detail as well as a price projection based on the total of nodes of the distributed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [19], Gunasekera, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Valenzuela, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020) analyzed the concept of economic effect due to blockchain adoption in Australian grain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Authors has further refined the concept of productivity gain quantified using a Global Trade Analysis Project (GTAP) model, which is a broadly used computable general equilibrium tool for analyzing the international economy and undertaking the illustrative scenarios of (i) Blockchain use (grains) scenario: (ii) Blockchain use (finance) scenario: and (iii) combined scenario: combining scenario 1 and scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' From the ancient trends in productivity improvements in key industry sectors, adoption of blockchain technology in Australian grain sectors will increase productivity by five per cent to ten per cent over ten years (2020-2030).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The analysis shows increase in productivity due to reduction of transaction cost after adoption of blockchain technology as a ‘distributed ledger technology’ that empowers the quick Page 5 settlement of payments to grain producers as a possible productivity gain in business transaction services sectors that provide services to the agriculture sectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [20], Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Chai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2018) recommends a blockchain technology and IoT based food tractability system based which is confidential and self-organized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Writers described the architecture of the proposed system that comprises the traditional ERP legacy system and a new IoT system connecting all parties in agri-business.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The system is a computer-generated blockchain network consisting of dual types of nodes where one is furnished with all functionalities of blockchain node and additional is the thin node which is just a simple payment verification (SPV) node that only authenticates the compensation and stores transactional statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' IoT technologies eradicate human intervention by exchanging manual recording and verification as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' All actors including consumers would be able to entrance the data stored in the system and authenticate them using their smart phone thus growing trust among the actors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Further writers plan to implement smart contracts that would relief law executors for problem ID and well-timed processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [21], Xiong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Dalhaus, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020) examined the four uses of blockchain technology in agriculture and food sectors: food supply chain, agriculture insurance, smart farming and transaction of agricultural products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Decentralized crop insurance grounded on blockchain technology and smart contracts enable automated payouts to compensate the farmer can be revolutionary in agriculture insurance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Smart farming can be achieved with a combination of IoT and blockchain technology that serves to store data and information generated by all the actors in a distributed database providing access to all participants ensuring trust and transparency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain with characteristics of decentralization, security and transparency help to address the existing difficulties in food supply chain for instance food traceability, food security and trust, supply chain inefficiency by making it probable to track all the product information of food quality and safety in the complete supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The author highlights the challenges of e-commerce trade of agricultural products such as information insecurity, cash on delivery and high operating costs which can be solved by practice of blockchain technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain (i) provides information security by encryption mechanism that provides the authentication requirements, (ii) enhance supply chain management by lowering the information sharing cost among the actors, (iii) provide digital payment solution with cryptocurrency and (iv) build customer confidence by letting customer access all the product information in transparent manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [22], Kamilaris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Fonts, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Prenafeta-Boldύ, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2019) surveyed the adoption of the blockchain technology and its impression in agriculture and food supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Authors have analyzed the challenges and potential of some of the ongoing projects and initiatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Food security can be achieved with blockchain technology that provides transparent details, creating records and resources verifiable and accessible to respond more promptly and efficiently in case of emergencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' One example is Blockchain for Zero Hunger (2017), where digital food coupons was distributed via Ethereum-based blockchain to Palestinian immigrants in the Jordan’s Azra camps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain can address the issue of food safety via traceability of products at each stage in the supply chain that enables to guarantee good hygiene conditions, identify frauds, risks and unhygienic products in the early stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Some of the initiatives for food safety are Walmart and Kroger that adopted blockchain technology for the supply chain Chinese pork and Mexican mangoes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Another impact of blockchain technology is the food reliability which is about swapping the food reliably where blockchain enables each actor of the supply chain to exchange all details of origin of the product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Downstream Beer Company used the blockchain technology where every detail of the beer is recorded in the blockchain which can be accessed by customers using their smartphones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Similar companies who adopted blockchain technology for food integrity are ecommerce platform JD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com, Grass Roots Farmers’ Cooperative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Another impact of blockchain technology includes support to small farmers by forming cooperatives of farmers that enable farmers to obtain a larger portion of the value of the crops they grow by joining cooperatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain technology is incorporated in various waste management and environmental awareness, for instance Plastic Bank was established to reduce the plastic waste by rewarding the blockchain-secured digital token for those who bring plastic bags to bank recycling centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The article concludes with blockchain technology having huge potential in the future once issues like accessibility, technical and design issues, policy regulating the blockchain technologies are resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Page 6 In [23], Demestichas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Peppes, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Alexakis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Adamopoulou, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020), presents a summary of how blockchain technology implementation has enabled the trace of agri-food products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Author also presents a short-term explanation about blockchain’s architecture, smart contracts, consensus methodology and kinds of blockchains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Author’s chatted different existing blockchain based frameworks in blend with IoT and smart contracts whose central aim is food safety and food security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain delivers an immutable distributed ledger with an encryption mechanism to segment every product’s information at every stage of the supply chain with each patron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Authors also highlight some of the businesses who have built blockchain based systems for tracking and tracing the agri-food products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Some of them which are IBM Food Trust to trace the origin of the Chinese pork products and mangoes, Provenance for tracing fish products, AgriOpenData for tracing whole agri-food, AgriDigital for refining whole grain supply chain by making it easy, humble and secure to connect farmer and purchaser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Authors also present some of the defies for blockchain implementation despite the technology gaining more and more space in the supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [24], Torky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Hassanein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020), examines the impact of integrating blockchain technology and IoT to develop smart applications to be used in agriculture and also proposed a model that could address some of the major defies in IoT based agricultural systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The author also discusses the challenges of developing the blockchain-IoT system for agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The author reveals that integration of blockchain and IoT would be a great contribution to revolutionize the digital transformation in various domains including agriculture and highlights top five blockchain and IoT predictions by 2030 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='In the proposed model, IoT peers cooperate and shape trust over the blockchain network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The IoT transactions are broadcasted on the network based on the blockchain protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The authors proposed the hybrid design form that integrates IoT, Cloud computing, Fog computing and Blockchain where blockchain can be used to function as data warehouse and transaction monitoring and verifier for dissimilar heterogeneous fog networks which are controlled by cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain can provide solutions for (i) sensing problem of IoT devices (ii) energy consumption in IoT devices, (iii) network complexity problem of IoT devices, (iv) bandwidth and latency problem of IoT devices communications and (v) limited data storage problem of IoT devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Authors also discussed some blockchain’s technical challenges of storage and scalability, forking, latency and throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In [25], Revathy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Priya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020, September) proposes a Blockchain-based Producer-Consumer Model (BPCM) which permits the farmer to trade their commodities directly to the buyer while avoiding the inter agents using the smart contracts that permit the farmer to add more profit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The writer also examines the blockchain features along with its application and discusses the profit of farmer’s direct marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In the outdated producer consumer model, the farmer or producer has to sell their agri-product to the retailer and the retailer sells the same to the consumer by growing the price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Here inter agents get more profit as farmers have no control in setting the amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The proposed BPCM is developed using Ethereum, a communal blockchain where farmers and consumers are provided with an exceptional identity, and all are connected to the blockchain network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The nodes willing to link the BPCM have to verify its identity using Proof of Work (PoW) consensus where nodes will not be added to the network if the node fails to prove its individuality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The model limits the transactions between the consumers’ nodes that will not let any inter agent who intend to pretend the consumers using the smart contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Here the consumers can purchase the products directly from the farmer at a practical price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The transaction can be originated by either producer (farmer) or the consumer with their individual identity that generate the block for the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The newly formed block is then broadcasted in the network to all the nodes for authentication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The smart contract is used for the authentication of the transaction where it checks whether the transaction is requested amongst the farmer nodes and consumer nodes or between the consumer nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If the transaction is amongst farmer node and consumer nodes, smart contract will execute the transaction as lawful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The transaction request from consumer node to consumer node is blocked allowing the farmer to sell their products to ‘n’ consumers while limiting the middleman in the identity of the customer to earn the revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The Proof of Work (PoW) consensus algorithm is used to guarantee that all the nodes in the BPCM approve to the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Finally, when the transaction is confirmed, the block is added to the chain where the transaction gets implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The blockchain ledger is restructured with new transactions and each node maintains a replica of the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In this model the transaction is not confirmed if (1) the node failed to verify its identity and (2) the transaction initiated is amongst the customer nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The proposed model aids a unique model where farmers directly can sell their product to buyers where they have control on the price and consumers also get product at practical price while maintaining direct relationship with the farmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Page 7 In, [26] Papa, Semou, (2017), presents how exchanges are recognized between farmers and cooperative, between cooperative and the transformer or amongst the transformer and the dealer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' As they are not present at the time of interchange none of the actors has admission to all of the transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' So, this transaction can be decentralized using block chain technology operating without a vital body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' This technology concentrates on creating direct relationships while growing confidence and visibility into the movement of goods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Papa Semou also termed certification and traceability in agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' These traceability techniques will aid to capture, store and manage all the data of the product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Finally, the blockchain assurances to not only be limited to the simple recording of transactions but also implementing computer programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' EXISTING METHODS & BUSINESS MODELS The first step of using BCT is always to improve the equilibrium and fairness of the respective industry to convey transparency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The system design and communication pattern in such models / architecture is very important in order to enable transparency and traceability into the total value chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' A web-built app upon the Hyperledger Fabric blockchain framework is described where message movement starts with a user interacting with a web-based app whichever by desktop or smartphone, introducing the idea of Commodity Fairness Index (CFI) [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The request to fetch / write the data, if allowed, is sent to the REST API responsible for generating a link amongst server and client.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' API (that uses queue manager to store request) acknowledges request and assigns a matchless key that will be used to receive the blockchain’s wish later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The examples of requests can be to register a farmer, query history from blockchain, update the status and location of a shipment as it moves along the supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The message flow passes through API, Nodes, Certifying Authority, Ordering Service, Distributed memory-key database, and at the end web/mobile app accepts the response to its new request via REST API after querying the distributed ledger expending the unique key.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The case of the agricultural supply chain shows the farmers are underprivileged of their fair part and the intermediaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' To eradicate the middleman in supply chain management, BCT can be helpful by the proposed method - FARMAR [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' This process involves of a series of steps where each and every IoT device is kept for tracing and all data is added to the blockchain network via a shared ledger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The experimental setup and tools used for the FARMAR are BigchainDB, Linux (UBUNTU), Python 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='6, and Monit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' BigchainDB (version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='0b9) is a database with blockchain features that has great throughput, low latency, powerful query functionality, decentralized control, immutable data room, and built-in asset support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Linux (Ubuntu version 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='04 and above) is the OS for easy, fast installation, and setup with good community support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' During the development and testing phase, writers have used a fresh version of PYTHON and PIP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The writers have used Monit’s (Watchdog) for system observing and fixing errors because one cannot make sure that all the servers are running brilliant all the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Trading of food also shifted to the online domain with e-commerce growing day by day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' BCT has reformed many industries due to its robustness, decentralization and end-to-end credibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' To improve trust in security issues and transactions, a novel Food Trading System with Consortium Blockchain (FTSCON) was proposed [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It practices consortium BCT to set permission and authentication for altered roles in food transactions, which meet the test of the privacy protection of multi-stakeholders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The architecture of FTSCON includes two entities: User node and Scheduling node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The consortium blockchain is made up of three fragments: Block containing the transaction data, Consensus mechanism and Smart contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The consortium blockchain is a P2P model and the rights and compulsions of all peers in the P2P network are the equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The algorithm of optimized transaction combination is intended for the purpose of serving users find suitable transaction objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' It can choose the optimized swapping portfolio for buyers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The virtual double auction mechanism is used to eradicate competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Moreover, a smart-contract life-cycle management method is presented, and security analysis shows that FTSCON progresses transaction security and privacy protection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Experimental results based on a sequence of data indicate that the proposed algorithm can triumph profit improvement of merchants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' There is a significant advantage of employing BCT with IoT in the agriculture domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' A proposed system (blockchain based solution) is developed to keep way of the goods and manage the workflow [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Front end Page 8 of the system is developed in JavaScript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Whenever farming goods are conveyed from a farmer’s place, all the details about goods (such as size, color, nature, organic or inorganic, cultivation time, humidity, market rate etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') are measured and kept in the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The model has a User Interface that connects to the Smart contract which leads to the creation of blocks in order to store in the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In the Blockchain, the transaction can be effectively created only if constraints specified in the applications are pleased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The transactions are the events produced by the nodes/parties in the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Before adding a transaction to a block, the transactions are confirmed by all the parties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' A block is linked to the further block in the network by including the hash value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The commencement of a transaction is done by invoking the program in a smart contract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' All the promises to be executed are in the form of condition statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' When all the requirements are fulfilled, the action followed by it takes place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' When a transaction is effective, next it must be added to a block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The records preserved in the blockchain are immutable, values once stored cannot be changed by anybody, whereas any person in the SCM can see the documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Product suppliers and retailers usually want independent traceability service suppliers who are government- certified to examine the products throughout the supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Suppliers need to receive certificates to display their products’ source and quality to consumers and to conform to regulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Retailers need verification of the products’ origin and quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchains nurture continually because the data and code on them are immutable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The proposed model, OriginChain, now employs a geographically scattered private blockchain at the traceability service provider company, plot is to establish a consortium blockchain, which will include other organizations [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' OriginChain has division offices in three countries and the plan is to establish a trustworthy traceability platform that covers other organizations, including government-certified labs, big suppliers and retailers that have long term associations with the company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Compared to a public blockchain, such a consortium blockchain (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', OriginChain a private blockchain) can accomplish better and cost less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Product suppliers or retailers accomplish product or enterprise information through the product-and-enterprise- management module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' They access the information on the blockchain through a webserver introduced by OriginChain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' After the traceability service provider authenticates an application from a product supplier, both parties sign a legal agreement about what traceability services are concealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' OriginChain creates a “smart contract” that represents the legal settlement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' SN Methods / Models Author (s) Title Journal / Conference (Year) Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' OriginChain (for product traceability) Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Lu & X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Xu Adaptable Blockchain-based Systems: A Case Study for Product Traceability IEEE Software (Volume: 34, Issue: 06, 2017) [17] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Food Trading System with COnsortium blockchaiN (FTSCON) Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Hao et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Novel Automatic Food Trading System Using Consortium Blockchain Arabian Journal for Science and Engineering (2019) [15] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Commodity Fairness Index (CFI) for Coffee Value Chain F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Mittatton & L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Amado Fairness, Transparency and Traceability in the Coffee Value Chain through Blockchain innovation IEEE Conference on Technology and Entrepreneurship - Virtual (ICTE-V, 2020) [12] 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' FARMer And Rely (FARMAR) M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Borah et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Supply Chain Management in Agriculture using Blockchain and IoT Springer Nature Singapore (Book Chapter, 2020) [14] 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' BCT-based model for SCM V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Sudha et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain-based Solution to improve Supply Chain Management in Indian Agriculture IEEE International Conference on AI and SS (ICAIS 2021) [16] Table-1: Summary of proposed existing methods / business models from 2017 - 2021 [12] [14] [15] [16] [17] IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' CASE STUDY FOR SUGARCHAIN Our case study for sugarcane farming is based upon 15 questionnaires for the sugarcane farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The questionnaire is listed in the Appendix section of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Forty sugarcane farmers from several states of India have participated in the case study and data collection process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' We have used Google Forms to collect the primary data from the farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The results have been represented in various pie-charts and bar graphs making it easy for analyzing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The data collection and case study took almost 05 - 06 months due to various obstacles and hindrances (ongoing Covid and its variants in India, lockdown imposed by governments, lack of Page 9 communication and language representation for farmers, nature of primary data etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Despite these, we were able to collect primary data from 40 farmers which represents the real and exact problems faced by sugarcane farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Out of 40 sugarcane farmer responses, our first question, “Q1: For how many years have you been doing sugarcane farming?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' has a mixed response of answers (67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% stated more than 10 years, whereas 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% and 15% stated as 06-10 years and 01-05 years respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In our second question (Q2: Is sugarcane farming the major farm for you?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') 80% have sugarcane as their major farm whereas 20% have indicated rice, wheat, grains, banana and other crops as their major farm beside sugarcanes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The third question of our questionnaire, Q3: How long (in months) does it take approximately to get the sugarcane harvest?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' has several answers but all answers are between a range of 8 months - 11 months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 75% of the responses said “Yes” for the fourth question, Q4: Does your production cost is recovered by selling on a price set by the government?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' whereas 20% and 5% responded as “No” and “Don’t Know” respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Like the answer of Q3, the answer of Q5 (At what rate do the sugar mills generally purchase your sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') is also in the mixed response range of Rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 3 - Rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 12 (INR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' One major headache for sugarcane farmers can be clearly seen in the response to the sixth question (Q6: Is the sugarcane affected by worms/viruses?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') 90% stated that their sugarcane is affected by worms/viruses, whereas 5% sugarcane farmers said “No”, and the other 5% farmers said, “Don’t Know”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Another major issue for sugarcane farmers is the payment for their sugarcane purchased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Majority of the farmers in our survey (92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5%) stated that they only get paid after a few times (say 15 days, 1 month or more than that), whereas 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5 % of the farmers only said they get their payment instantly (within a week or less than within a week).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' This problem of payment delay was asked to sugarcane farmers as our seventh question i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', for Q7: Did you get paid for your sugarcane sold instantly or after a few times?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Beside the problems of sugarcane worms/viruses and late payment, farmers have pointed out various other problems in response to our eighth question (Q8: Can you say one major problem, while cultivating and/or harvesting the sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') of the questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' We requested the participating farmers to point out one major problem at the time of cultivating or harvesting the sugarcane, in which 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% of the farmers have specified the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The common problems as raised by the sugarcane farmers are labor shortage (at both cultivating and harvesting times), water or irrigation problem, lack of manpower, expensive labor cost during loading and unloading of sugarcane (after harvesting), lack of seeds and fertilizers, lack of harvesting machines, lack of medicines for sugarcane, need to be moisture etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Only 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% of farmers have denied saying or mention major problems for sugarcane farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The above stated problems by almost 78% farmers (in Q8) isn’t the end of the problem for farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Two major problems are clearly identified in response to Q9 and Q10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Finding the buyer (at their own effort and contact) for their sugarcane after harvesting it, is another dark side of sugarcane farming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In response to Q9 (Do you need to find a buyer, or can you easily sell the sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' ), 70% of the farmers agreed that they should find a buyer whereas 30% said we can easily sell the sugarcane without finding the buyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Another serious issue outlined is at Q10 by 80% of farmers stating that weather/climate is affecting the sugarcane farming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Only 15% of the farmers replied with a “No” and 5% of the farmers said “Don’t know” for the answer to the question (Q10: Is weather impacting/affecting the sugarcane farming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [Q1] For how many years have you been doing sugarcane farming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 40 responses 01-05 years 06-10 years 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% >10 years 15% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5%[Q2] Is sugarcane farming the primary (major) farm for you?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Yes, sugarcane is major farm No 20% 80% Page 10 40 responses Yes No 20% Don't know 75%[Q7] Did you get paid for your sugarcane sold instantly or after a few times?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 40 responses Instantly No after few times, (1 week/15 days/1 month etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5%[Q6] Is the sugarcane affected by worms/viruses?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Yes No Don't know %06[Q8] Can you say one major problem, while cultivating and/or while harvesting the sugarcane?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 40o responses Yes No 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5%[Q10] Is weather impacting/affecting the sugarcane farming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Yes No 15% Don't know 80%[Q9] Do you need to find a buyer, or can you easily sell the sugarcane?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Yes, find a buyer No, we don't need to find the buyer 70% Don't know 30%[Q12]Howsugarcanereachesthefactoryforfurtherprocessing?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 40responses Byfarmers own-self By government agencies 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content="5% Other's 75%[Q11] lsthefertilizersandseedsforsugarcaneavailableeasily?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 40responses Yes No 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content="5% Don't know 72." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5%[Q13]Isthereanyimpactofwildanimalsinsugarcanefarming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Yes 40% No Don't know 60%[Q14]Arethereanyproblemsfacedbyyou(liketransportations,gov." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='taxesoranyother)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Yes 40% No Don't know 57." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% Page 11 The availability of fertilizers and seeds for sugarcane is clearly mentioned by the farmers in response to the answer to the 11th question (Q11: Is the fertilizers and seeds for sugarcane available easily?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Out of the three options provided in the Q11, 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% said they get the fertilizers and seeds available easily whereas 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% on the contrary said the fertilizers and seeds are not available easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Although the fertilizer is available easily, the transportation of sugarcane is not available easily, which is mentioned in Q12 (How sugarcane reaches the factory for further processing?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') of the questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 75% of farmers mentioned that they have to arrange the vehicles on their own from fields to the factory, but 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% only agreed that government help for such transportation and 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% stated “others” to reach the sugarcane to the factory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The impact of wild animals (say, some wild cats, wild pigs, foxes, even leopards and tiger etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' apart from rats, snakes, and mice) also have an impact in the sugarcane farming as mentioned by farmers to the answer to 13th question (Q13: Is there any impact of wild animals in sugarcane farming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Sugarcane fields are the homes to a number of insects and reptiles as mentioned by farmers, as many animals eat and damage the sugarcane crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Almost 60% of the sugarcane farmers agreed that there is the impact of sugarcane farming whereas only 40% of the sugarcane farmers stated that there is no such impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The answer to the 14th question (Q14: Are there any problems faced by you?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=') about any other problems faced by farmers has pointed out several short-term and long-term difficulties of sugarcane farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5 % of farmers have mentioned problems faced whereas 40% mentioned “no” problem, but 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% of farmers said “don’t know” about that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Despite the lack of fertilizers, technical experts, late payments of sugarcane, farmers have pointed out transportation (truck/tractor) and labor shortage problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Farmers also mentioned the issue of stuck vehicles (tractor / truck) after loading the sugarcane due to unpaved and narrow roads in many villages and districts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The last question of the case study is the 15th question (Q15: How do you get seeds for cultivating the sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' ), which says that only 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% of farmers get seeds from government offices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Majority of the farmers depend on either private seed’s shop (17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5%) or other ways (75%) to get the seeds for sugarcane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' PROPOSED ALGORITHM & FLOWCHART The Algorithm A1 (SugarChain) describes a high-level process of user registration and login to the SugarChain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If the user is already registered, then he/she can login to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Upon the successful login, and user session is created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The algorithm also shows the process for password recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If the user is new then he/she has to provide details (name, id, email, and phone) as input to register.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Once a user is registered successfully, a userID (public key) is returned to the user that is used for login to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The Flowchart F1 is a pictorial representation of Algorithm A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The Algorithm A2 (User Registration) describes the process of user registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' User is asked for userID as input to start the registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If userID is not found in the blockchain then the user is asked to enter name, email phone, password for registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' All user details are encrypted before storing in the blockchain that provides security for user details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Once details are stored in the blockchain successfully, the system returns a userID (public key).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The userID and password (set by user) is used to login to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Flowchart F2 above is a graphical representation of Algorithm A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Algorithm A3 (User Login) illustrates the procedure for login and password recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Registered users can login to the system by using userID (public key) and password.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If login is successful, then user_session is returned where the user is able to perform the transaction until the session expires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" If the user's login is unsuccessful, then the user has to go for a password recovery process where the user is asked a series of security questions." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Once the user provides correct answers, then user_session is returned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If password could not be recovered, then the user is a registered user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Flowchart F3 is a pictorial representation of the Algorithm A3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [Q15] Howdoyougetseedsforcultivatingthesugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=" 40 responses Governmentagricultureoffice Private seed's shop 75% Other's 7." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='5% Page 12 Algorithm A4 (User Transaction) illustrates the process for performing transactions once the user has logged in successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Users can update product details like quality of sugarcane, location of farm, quantity, sugar mill information, payment, and other transactional data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' All the information is saved in the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Once the data is stored in the blockchain, the system returns a transactionID which is used to track the product in the supply chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The Flowchart F4 is a graphical representation of Algorithm A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Algorithm 1 (A1): SugarChain Flowchart 1 (F1): SugarChain 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' START 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If new_user then 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Enter details (name, id, email, phone) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Return userID (public key) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End If 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Else 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Enter login credentials 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If login successful then 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Return user_session 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End If 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If valid user_session then 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Update info 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' iv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Return transaction_ID 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End If 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Else 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' iii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Session expired 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End Else 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Else 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Print “Login Unsuccessful” 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Go to A3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' If password recovered then 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Return user_session 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Else 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Go to A2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End Else 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End Else 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' End Else 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' END Start No Yes New User?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Enter loginln Details EnterName,D,EmailPhone Return Userld(Public Key) No Login Unsuccessful LoginSuccessful?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Yes Yes Return user_session Password Recovered?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' A2 No 10 years [Q2] Is sugarcane farming the primary (major) farm for you?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes (b) no, ________ is major farm [Q3] How long (in months) does it take approximately to get the sugarcane harvest?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' __________ months [Q4] Do your production cost is recovered by selling on a price set by the government?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes (b) no (c) don’t know [Q5] At what rate (price per kg) do the sugar mills generally purchase your sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' __________ per kg [Q6] Is sugarcane affected by worms/viruses?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes (b) no (c) don’t know [Q7] Did you get paid for your sugarcane sold instantly or after a few times?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) instantly (b) no after few times, ________ days [Q8] Can you say one major problem, while cultivating and/or while harvesting the sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes _____________ (b) no [Q9] Do you need to find a buyer, or can you easily sell the sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) find buyer (b) no need to find the buyer (c) don’t know [Q10] Is weather impacting/affecting sugarcane farming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes (b) no (c) don’t know [Q11] Is fertilizer and seeds for sugarcane available easily?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes (b) no (c) don’t know [Q12] How sugarcane reaches the factory for further processing?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) by farmers (b) by government agencies (c) others [Q13] Is there any impact of wild animals in sugarcane farming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes (b) no (c) don’t know [Q14] Are there any problems faced by you (like transportations, gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' taxes or any other)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) yes ______ (b) no (c) don’t know [Q15] How do you get seeds for cultivating / harvesting sugarcane?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (a) government agriculture office (b) private seeds shop (c) others A2: Primary data collected from farmers (based on our approved questionnaire): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-01-Farmer (24 June 2021, Thu) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-07-Farmer (28 Oct 2021, Thu) 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-05-Farmer (22 Sep 2021, Wed) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-02-Farmer (25 June 2021, Fri) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-01-Farmer (19 Aug 2021, Thu) 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-08-Farmer (28 Oct 2021, Thu) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-03-Farmer (26 Jun 2021, Sat) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-02-Farmer (19 Aug 2021, Thu) 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-01-Farmer (14 Aug 2021, Sat) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-04-Farmer (30 Jun 2021, Wed) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-03-Farmer (19 Aug 2021, Thu) 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-02-Farmer (14 Aug 2021, Sat) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-05-Farmer (02 July 2021, Fri) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-04-Farmer (19 Aug 2021, Thu) 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-03-Farmer (14 Aug 2021, Sat) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-06-Farmer (03 July 2021, Sat) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-05-Farmer (19 Aug 2021, Thu) 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-04-Farmer (14 Aug 2021, Sat) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-07-Farmer (06 July 2021, Tue) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-06-Farmer (30 Aug 2021, Mon) 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-05-Farmer (26 Aug 2021, Thu) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-08-Farmer (06 July 2021, Tue) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-07-Farmer (30 Aug 2021, Mon) 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-06-Farmer (29 Aug 2021, Sun) Page 17 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-09-Farmer (28 July 2021, Wed) 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-08-Farmer (30 Aug 2021, Mon) 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-07-Farmer (12 Sep 2021, Sun) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-10-Farmer (11 Aug 2021, Wed) 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DC] Data-09-Farmer (1 Sept 2021, Wed) 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [CSB] Data-08-Farmer (12 Sep 2021, Sun) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-11-Farmer (20 Aug 2021, Fri) 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-01-Farmer (12 July 2021, Mon) 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-14-Farmer (08 Dec 2021, Wed) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-12-Farmer (09 Sep 2021, Thu) 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-02-Farmer (16 Aug 2021, Mon) 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-15-Farmer (28 Dec 2021, Tue) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [NK] Data-13-Farmer (21 Sep 2021, Tue) 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-03-Farmer (16 Aug 2021, Mon) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-06-Farmer (28 Oct 2021, Thu) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [DK] Data-04-Farmer (17 Dec 2021, Fri) REFERENCES [1] Focus Economics - Economic Forecasts from the World’s Leading Economists, The world’s top 5 largest economies in 2024, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='focus- economics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com/blog/the-largest-economies-in-the-world [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Dotaniya et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2016), Use of sugarcane industrial by-products for improving sugarcane productivity and soil health, International Journal of Recycling of Organic Waste in Agriculture, SpringerLink, https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com/article/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1007/s40093-016-0132-8, Published: 29 June 2016 [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Tongia (2019), India’s Biggest Challenge: The Future of Farming, The India Forum (TIF) - A journal magazine on contemporary issues, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='theindiaforum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='in/article/india-s-biggest-challenge-future-farming Issue: 04 October 2019 [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Kshetri et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2022), Blockchain Technology Applications for Cyber Defense and Cybersecurity: A Survey and Solutions, International Journal of Advanced Computer Science and Applications (IJACSA), Volume: 13, Number: 11, 2022, Page: 364-370, DOI: https://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='14569/IJACSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='0131140, December 2022 [5] Santoshi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Bitcoin: A Peer-to-Peer Electronic Cash System - The Bitcoin Whitepaper (2009), https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='bitcoinpaper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='info/bitcoinpaper-html/ [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Kshetri (2021), Blockchain Technology for Improving Transparency and Citizen’s Trust, Book series: Advances in Information and Communication, AISC Volume: 1363, Online ISBN: 978-3-030-73100-7, pp: 716-735, https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com/chapter/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1007%2F978-3-030-73100- 7_52, Springer Nature Switzerland AG 2021, DOI: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1007/978-3-030-73100-7_52, First online: 13 April 2021 [7] Cong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' & He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Blockchain disruption and smart contracts, The Review of Financial Studies, Vol-32, Issue-5, PP: 1754-1797 (May 2019) [8] Borrows, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', The Future of Public Service Identity : Blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Reform Research Trust, London (November 2017), https://reform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='uk/sites/default/files/2018-10/Blockchain%20report_WEB%20%281%29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='pdf [9] Sudha, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Kalaiselvi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Shanmughasundaram, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021, March).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain based solution to improve the Supply Chain Management in Indian agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 1289-1292).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [10] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Kshetri et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021), BCT-AA: A survey of Blockchain-based Applications in context with Agribusiness, SSRN Electronic Journal (May 2021), DOI: https://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='2139/ssrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='3834004, Electronic copy available at: https://ssrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='com/abstract=3834004 [11] Sengupta, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Meeting Changing Customer Requirements in Food and Agriculture through the Application of Blockchain Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Frontiers in Blockchain, 4, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Miatton & L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Amado (2020), Fairness, Transparency and Traceability in the Coffee Value Chain through Blockchain Innovation, Proceedings of the IEEE 2020 Conference on Technology and Entrepreneurship - Virtual (ICTE-V) April 2020, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1109/ICTE-V50708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='9113785 [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Fang et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020), Blockchain technology in Current Agricultural Systems: from techniques to applications, IEEE Access (Date of publication: August 5, 2020, Volume 8 2020, 143920 - 143937), August 2020, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1109/ACCCESS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='3014522 [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Borah et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2019), Supply Chain Management in Agriculture using Blockchain and IoT, Book chapter: Advanced Applications of Blockchain Technology, Studies in Big Data (Volume 60), Springer Nature Singapore 2020, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1007/978-981-13-8775-3_11 [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Mao et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2019), Novel Automatic Food Trading System Using Consortium Blockchain, Arabian Journal for Science and Engineering 44:3439-3455 Springer, htpps://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1007/s13369-018-3537-z, Published online: 10 September 2018 [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Sudha et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021), Blockchain based solution to improve the Supply Chain Management in Indian agriculture, IEEE Xplore, 21021 International Conference on Artificial Intelligence and Smart Systems (ICAIS 2021), htpps://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1109ICAIS50930.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='9395867, Date of Conference: 25-27 March 2021 [17] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Lu & X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Xu (2017), Adaptable Blockchain-based Systems, A Case Study for Product Traceability, IEEE Software (Volume: 34, Issue: 6 Nov / Dec 2017), htpps://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='1109/MS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='4121227, Date of Publication: 13 November 2017 [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Rocha et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2021), SmartAgriChain: A Blockchain based solution for Agrifood Certification and Supply chain management, International Journal of Environment, Agriculture, and Biotechnology (Vol-6, Issue-3, May-Jun2021), ISSN: 2456-1878, htpps://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='22161/ijeab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content='25, Available online: 30 June 2021 [19] Gunasekera, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Valenzuela, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Adoption of Blockchain Technology in the Australian Grains Trade: An Assessment of Potential Economic Effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Economic Papers: A journal of applied economics and policy, 39(2), 152-161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [20] Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Chai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2018, July).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain and IoT based food traceability for smart agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In Proceedings of the 3rd International Conference on Crowd Science and Engineering (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 1-6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [21] Xiong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Dalhaus, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain technology for agriculture: applications & rationale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Frontiers in Blockchain, 3, 7 [22] Kamilaris, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Fonts, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Prenafeta-Boldύ, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' The rise of blockchain technology in agriculture and food supply chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Trends in Food Science & Technology, 91, 640-652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [23] Demestichas, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Peppes, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', Alexakis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Adamopoulou, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain in Agriculture Traceability Systems: A Review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Applied Sciences, 10(12), 4113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [24] Torky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Hassanein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Computers and Electronics in Agriculture, 105476.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [25] Revathy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=', & Priya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2020, September).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Blockchain based Producer-Consumer Model for Farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' In 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' 1-5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' [26] Faye, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Use of Blockchain Technology in Agribusiness: Transparency and Monitoring in Agricultural Trade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}
+page_content=' Atintis Press, 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ztFAT4oBgHgl3EQfBhzw/content/2301.08405v1.pdf'}